WO2018145358A1 - 量子棒组合物、量子棒偏光片及其制作方法 - Google Patents

量子棒组合物、量子棒偏光片及其制作方法 Download PDF

Info

Publication number
WO2018145358A1
WO2018145358A1 PCT/CN2017/079906 CN2017079906W WO2018145358A1 WO 2018145358 A1 WO2018145358 A1 WO 2018145358A1 CN 2017079906 W CN2017079906 W CN 2017079906W WO 2018145358 A1 WO2018145358 A1 WO 2018145358A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum rod
group
quantum
polarizer
photo
Prior art date
Application number
PCT/CN2017/079906
Other languages
English (en)
French (fr)
Inventor
兰松
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/533,999 priority Critical patent/US10400161B2/en
Publication of WO2018145358A1 publication Critical patent/WO2018145358A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/89Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing mercury
    • C09K11/892Chalcogenides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/108Materials and properties semiconductor quantum wells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a quantum rod composition, a quantum rod polarizer, and a method of fabricating the same.
  • Quantum dot display technology has been fully upgraded in various dimensions such as color gamut coverage, accuracy, red, green and blue color purity. It is regarded as the commanding height of global display technology and is also regarded as a display technology revolution affecting the whole world.
  • Quantum Dots also known as semiconductor nanocrystals, are binary or ternary inorganic nanoparticles composed of II-VI or III-V elements.
  • Cd cadmium
  • E sulfur
  • S selenium
  • Te cerium
  • Quantum dots generally have a particle size of 2-10 nm, and quantum dots of different sizes have different energy band widths.
  • the size of the equivalent sub-dots is smaller than the Bohr radius of the excitons, the electrons and holes of the quantum dots are quantum-limited. The original continuous energy band will be transformed into a vertical energy level structure, which can emit fluorescence after being stimulated.
  • quantum dots Compared with traditional fluorescent materials, quantum dots have many unique properties: (1) the fluorescence emission peak is narrow (the half width is generally 20 to 30 nm) and is symmetrically distributed; (2) the fluorescent color is adjustable; (3) Good optical stability; (4) long fluorescence lifetime and good biocompatibility.
  • a quantum rod refers to a one-dimensional material that is affected by quantum confinement effects in both dimension directions, and most of which are nanomaterials composed of II-VI or III-V elements. Due to the quantum confinement effect, the transport of electrons and holes inside is limited, so that the continuous band structure becomes a separate energy level structure. When the size of the quantum rods is different, the quantum confinement of electrons and holes is different, and the discrete energy levels are different. After being excited by external energy, quantum rods of different sizes emit light of different wavelengths, that is, light of various colors.
  • the quantum rod is capable of emitting linearly polarized light, that is, the light from the quantum rod has linear polarization along the length of the quantum rod.
  • quantum rods are arranged in a disorderly and disorderly manner under normal conditions and cannot exhibit their linear polarization characteristics, how to achieve quantum rods in a liquid crystal cell Steady and fixed alignment has become the focus of research in the display industry.
  • Another object of the present invention is to provide a method for fabricating a quantum rod polarizer.
  • the quantum rod polarizer is prepared by using the quantum rod composition described above, and the process is simple, and the polarization performance of the obtained quantum rod polarizer is stable.
  • the object of the present invention is to provide a quantum rod polarizer with stable polarization performance, which can be applied to a liquid crystal display device, can improve light source utilization rate and obtain higher purity light, thereby realizing high color gamut and low power of color display. Consumption.
  • the present invention provides a quantum rod composition
  • a quantum rod composition comprising a photoalignment modifier quantum rod, a polymerizable monomer, and a solvent; the photoalignment modifier quantum rod comprising a quantum rod and light modified around the quantum rod An aligning agent.
  • the photo-alignment agent has the structural formula of A-Sp-B-Sp-R;
  • A is -SH, -NH 2 , -NH-, -COOH, or -CN;
  • Sp is a chemical bond, a phenyl group, a cycloalkyl group, -O-, -S-, -CO-, -CO-O-, -OCO-, -CH 2 S-, -CF 2 O-, -OCF 2 -, -CF 2 S-, -(CH 2 ) n -, -(CH 2 ) n - a group obtained by substituting one or more C atoms with a phenyl or cycloalkyl group, or -(CH 2 ) n - a group obtained by substituting one or more H atoms by an F atom; wherein -(CH 2 ) n -, n is an integer of 1 to 4;
  • the structural formula of B is Wherein M is a modifying group of a benzene ring, and M is -H, -OH, or -F, Representing a chemical bond;
  • the photoalignment agent comprises one or more of the following compounds:
  • the polymerizable monomer includes one or more of the following four structural formulas:
  • P is a polymerizable group selected from at least one of a methacrylate group, an acrylate group, a vinyl group, a vinyloxy group, and an epoxy group; wherein in the (P) n , n is bonded to the same One
  • the number of the polymerizable groups P, n is an integer of 1-3, and when n is greater than 1, the n polymerizable groups P are the same or different;
  • X is a substituent group selected from -F, -Cl, -Br, -CH 3 , -CN, a linear or branched alkyl group of 2 to 8 carbon atoms, and the linear or branched alkyl group At least one of the groups obtained by substituting one or more non-adjacent -CH 2 - by -O- or -S-; in the (X) m , m is attached to the same
  • the number of the substituent groups X in the above, m is an integer of 0 to 3, and when m is more than 1, the m substituent groups X are the same or different.
  • the polymerizable monomer comprises one or more of the following compounds:
  • the solvent includes at least one of toluene and benzene; in the quantum rod composition, the mass percentage of the total of the photo-aligning agent-modified quantum rod and the polymerizable monomer is 1% to 10%, and the light alignment The mass ratio of the modified quantum rod to the polymerizable monomer is from 1:1 to 50.
  • the invention also provides a method for manufacturing a quantum rod polarizer, comprising the following steps:
  • Step 1 Providing the above quantum rod composition and a substrate
  • Step 2 uniformly coating the quantum rod composition on a substrate to form a quantum rod film
  • Step 3 irradiating the quantum rod film with linearly polarized light, so that the photoalignment modifier quantum rods in the quantum rod film are aligned in the same direction;
  • Step 4 irradiating the quantum rod film with UV light to polymerize the polymerizable monomer in the quantum rod film to form a polymer network, and the polymer network can anchor the photoalignment modifier quantum rod , making it arranged in a fixed direction;
  • Step 5 heat treating the quantum rod film to remove the solvent in the quantum rod film to obtain a quantum rod polarizer.
  • the linearly polarized light having a wavelength of 450nm is a blue linear polarized light, linearly polarized light of the illuminance of 80mW / cm 2 ⁇ 100mW / cm 2, irradiation time of 1min ⁇ 10min.
  • the wavelength of the UV light is 300 nm to 400 nm
  • the illuminance of the UV light is 4 mW/cm 2 to 6 mW/cm 2
  • the irradiation time is 20 min to 60 min;
  • the temperature at which the quantum rod film is subjected to heat treatment is 120 ° C to 180 ° C, and the heating time is 20 min to 40 min.
  • the present invention also provides a quantum rod polarizer produced by the above method for fabricating a quantum rod polarizer, comprising a polymer network formed by polymerizing a polymerizable monomer and anchored in the polymer network and along the same Directionally aligned photo-aligning agents modify the quantum rods.
  • the present invention provides a quantum rod composition
  • a quantum rod composition comprising a photo-alignment modifier-modified quantum rod, a polymerizable monomer, and a solvent
  • the photo-alignment modifier-modified quantum rod can be oriented under irradiation of linearly polarized light.
  • the polymerizable monomer is capable of forming a polymer network under irradiation of UV light, thereby anchoring the photoalignment modifier quantum rod to fix the alignment direction thereof.
  • the method for fabricating a quantum rod polarizer provided by the invention adopts the above quantum rod composition to prepare a quantum rod polarizer, and the process is simple, and in the obtained quantum rod polarizer, the arrangement direction of the photoalignment modifier quantum rod is uniform and The direction is fixed and the polarization performance is stable.
  • the invention provides a quantum rod polarizer with stable polarization performance, can be applied to a liquid crystal display device, can improve light source utilization rate and obtain higher purity light, thereby realizing high color gamut and low power consumption of color display.
  • FIG. 1 is a schematic view showing the structure of a photo-alignment modifier quantum rod in a quantum rod composition of the present invention
  • FIG. 2 is a flow chart showing a method of fabricating a quantum rod polarizer of the present invention
  • FIG. 3 is a schematic view showing steps 1-2 of the method for fabricating a quantum rod polarizer of the present invention
  • FIG. 4 is a schematic view showing a step 3 of a method for fabricating a quantum rod polarizer of the present invention
  • Figure 5 is a schematic view showing the step 4 of the method for fabricating the quantum rod polarizer of the present invention.
  • 6-7 is a schematic view showing the step 5 of the method for fabricating the quantum rod polarizer of the present invention.
  • Figure 8 is a schematic view showing the structure of a quantum rod polarizer of the present invention.
  • the present invention first provides a quantum rod composition, including a photo-aligning agent.
  • the quantum rod 10, the polymerizable monomer 20, and the solvent 70 are modified;
  • the photo-alignment modifier quantum rod 10 includes a quantum rod 11 and a photo-alignment agent 12 modified around the quantum rod 11.
  • the photo-alignment agent 12 is a small molecular material containing an azo group, and its structural formula is A-Sp-B-Sp-R;
  • A is -SH, -NH 2 , -NH-, -COOH, or -CN;
  • Sp is a chemical bond, a phenyl group, a cycloalkyl group, -O-, -S-, -CO-, -CO-O-, -OCO-, -CH 2 S-, -CF 2 O-, -OCF 2 -, -CF 2 S-, -(CH 2 ) n -, -(CH 2 ) n - a group obtained by substituting one or more C atoms with a phenyl or cycloalkyl group, or -(CH 2 ) n - a group obtained by substituting one or more H atoms by an F atom; wherein -(CH 2 ) n -, n is an integer of 1 to 4;
  • the structural formula of B is Wherein M is a modifying group of a benzene ring, and M is -H, -OH, or -F, Representing a chemical bond;
  • the photo-aligning agent 12 comprises one or more of the following compounds:
  • the quantum rod 11 has a core-shell structure.
  • the core of the quantum rod 11 is formed of a semiconductor material of II-VI, III-V, I-III-VI or IV-VI.
  • the core of the quantum rod 11 is formed of a II-VI semiconductor material, Preferably, it is formed of one or more of CdSe, CdS, CdTe, ZnO, ZnSe, ZnS, ZnTe, HgSe, HgTe and CdZnSe.
  • the shell of the quantum rod 11 is formed by one or more of an alloy, an oxide, and a doping material. Further, the shell of the quantum rod 11 may be a single layer structure or a multilayer structure.
  • the polymerizable monomer 20 includes a combination of one or more of an acrylate and a derivative thereof, a methacrylate and a derivative thereof, styrene and a derivative thereof, an epoxy resin, and a derivative thereof. .
  • the polymerizable monomer 20 comprises one or more of the following four structural formulas:
  • P is a polymerizable group selected from at least one of a methacrylate group, an acrylate group, a vinyl group, a vinyloxy group, and an epoxy group; wherein in the (P) n , n is bonded to the same One
  • the number of the polymerizable groups P, n is an integer of 1-3, and when n is greater than 1, the n polymerizable groups P are the same or different;
  • X is a substituent group selected from -F, -Cl, -Br, -CH 3 , -CN, a linear or branched alkyl group of 2 to 8 carbon atoms, and the linear or branched alkyl group At least one of the groups obtained by substituting one or more non-adjacent -CH 2 - by -O- or -S-; in the (X) m , m is attached to the same
  • the number of the substituent groups X in the above, m is an integer of 0 to 3, and when m is more than 1, the m substituent groups X are the same or different.
  • the polymerizable monomer 20 comprises one or more of the following compounds:
  • the solvent 70 includes at least one of toluene and benzene.
  • the mass percentage of the total of the photo-aligning agent-modified quantum rod 10 and the polymerizable monomer 20 is 1% to 10%.
  • the mass ratio of the photo-aligning agent-modified quantum rod 10 to the polymerizable monomer 20 is 1:1 to 50.
  • the quantum rod composition of the present invention comprises a photo-alignment modifier quantum rod 10, a polymerizable monomer 20, and a solvent 70, and the photo-alignment modifier-modified quantum rod 10 can be aligned under the action of linear polarized light.
  • the polymerizable monomer 20 is capable of forming a polymer network under irradiation of ultraviolet (UV) light, thereby anchoring the photo-aligning agent-modified quantum rod 10 to fix its alignment direction, and thus the quantum rod composition of the present invention can be used for In the quantum rod polarizer produced by the quantum rod polarizer, the arrangement direction of the photoalignment modifier quantum rod 10 is uniform and the direction is fixed, and the polarization performance is stable.
  • the present invention also provides a method for fabricating a quantum rod polarizer, comprising the following steps:
  • Step 1 As shown in FIG. 3, the above quantum rod composition and substrate 30 are provided.
  • the substrate 30 is a TFT substrate, a CF substrate, or a plain glass substrate.
  • Step 2 As shown in FIG. 3, the quantum rod composition is uniformly coated on a substrate 30 to form a quantum rod thin film 40.
  • the quantum rod composition is uniformly coated on the substrate 30 by spin coating.
  • Step 3 As shown in FIG. 4, the quantum rod thin film 40 is irradiated with linearly polarized light, so that the photoalignment modifier quantum rods 10 in the quantum rod thin film 40 are aligned in the same direction.
  • the photo-alignment agent modulates the alignment of the quantum rods 10 by the action of the linear polarized light, and the photo-aligning agent modifies the photo-aligning agent 12 in the quantum rod 10 in a certain direction.
  • the alignment is arranged to drive the quantum rods 11 modified by them to be aligned.
  • the linearly polarized light is blue linearly polarized light having a wavelength of 450 nm, and the blue linearly polarized light of the wavelength can induce the azo group-containing photoalignment agent 12 provided by the present invention.
  • the alignment is arranged to direct the alignment of the photoalignment modifier quantum rods 10.
  • the step 3 the linearly polarized light illumination intensity of 80mW / cm 2 ⁇ 100mW / cm 2, preferably 90mW / cm 2, irradiation time of 1min ⁇ 10min.
  • Step 4 the quantum rod film 40 is irradiated with UV light to polymerize the polymerizable monomer 20 in the quantum rod film 40 to form a polymer network 60.
  • the polymer network 60 The photo-alignment agent can be anchored to modify the quantum rod 10 so that its alignment direction is fixed.
  • the wavelength of the UV light is 300 nm to 400 nm, preferably 310 nm.
  • the illuminance of the UV light is 4 mW/cm 2 to 6 mW/cm 2 , and the irradiation time is 20 min to 60 min.
  • Step 5 as shown in FIG. 6-7, the quantum rod film 40 is subjected to heat treatment to remove the solvent 70 in the quantum rod film 40 to obtain a quantum rod polarizer 50.
  • the temperature at which the quantum rod film 40 is heat-treated is 120 to 180 ° C, and the heating time is 20 to 40 min.
  • the quantum rod polarizer 50 is prepared by using the quantum rod composition described above, and the process is simple.
  • the arrangement direction of the photoalignment modifier quantum rod 10 is uniform and The direction is fixed and the polarization performance is stable.
  • the present invention also provides a quantum rod polarizer 50 obtained by the above method, which comprises a polymer network 60 formed by polymerizing a polymerizable monomer 20 and is A photo-alignment agent anchored in the polymer network 60 and oriented in the same direction modifies the quantum rod 10.
  • the photo-alignment modifier quantum rod 11 in the quantum rod 10 comprises a red light quantum rod, a green light quantum rod and a blue light quantum rod. Therefore, when the quantum rod polarizer 50 of the present invention is subjected to backlight illumination, the emitted light is red.
  • the white linearly polarized light formed by mixing linearly polarized light, green linearly polarized light, and blue linearly polarized light can be applied to a conventional liquid crystal display device instead of the conventional lower polarizer, and can be used together with a color filter. Thereby achieving a color display.
  • the quantum rod polarizer of the present invention wherein the photoalignment modifier quantum rods 10 are arranged in the same direction
  • the direction is fixed, the backlight can be absorbed and converted into linearly polarized light with uniform polarization direction, and the polarization performance is stable, and can be applied to a liquid crystal display device instead of the lower polarizer, compared with the existing filter type lower polarizer.
  • the invention of the quantum rod polarizer can improve the utilization of the light source and obtain higher purity light by introducing the quantum rod material, thereby realizing high color gamut and low power consumption of the color display.
  • the present invention provides a quantum rod composition, a quantum rod polarizer, and a method of fabricating the same.
  • the quantum rod composition of the present invention comprises a photo-alignment modifier-modified quantum rod, a polymerizable monomer, and a solvent, and the photo-alignment modifier-modified quantum rod can be aligned under irradiation of linearly polarized light, and the polymerizable monomer can A polymer network is formed under irradiation of UV light to anchor the photoalignment modifier quantum rods to fix their alignment direction.
  • the quantum rod polarizer is prepared by using the quantum rod composition described above, and the process is simple.
  • the alignment direction of the photoalignment modifier quantum rod is uniform and the direction is fixed.
  • the polarization performance is stable.
  • the quantum rod polarizer of the present invention has stable polarization performance and can be applied to a liquid crystal display device, and can improve light source utilization rate and obtain higher purity light, thereby realizing high color gamut and low power consumption of color display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

公开了一种量子棒组合物、量子棒偏光片及其制作方法。所述量子棒组合物包括光配向剂修饰量子棒、可聚合单体及溶剂,所述光配向剂修饰量子棒能够在线偏振光的照射作用下定向排列,所述可聚合单体能够在UV光的照射作用下形成聚合物网络,从而对所述光配向剂修饰量子棒进行锚定,固定其排列方向。所述量子棒偏光片的制作方法,采用上述量子棒组合物来制备量子棒偏光片,制程简单,制得的量子棒偏光片中,光配向剂修饰量子棒的排列方向一致且方向固定,偏振性能稳定。所述量子棒偏光片偏振性能稳定,可应用于液晶显示装置中,能够提高光源利用率并获得更高纯度的光,从而实现彩色显示的高色域和低功耗。

Description

量子棒组合物、量子棒偏光片及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种量子棒组合物、量子棒偏光片及其制作方法。
背景技术
随着科技的发展和社会的进步,人们对于信息交流和传递等方面的依赖程度日益增加,而显示器件作为信息交换和传递的主要载体和物质基础,现已成为众多从事信息光电研究科学家争相抢占的热点和高地。
量子点显示技术在色域覆盖率、精确性、红绿蓝色彩纯净度等各个维度已全面升级,被视为全球显示技术的制高点,也被视为影响全球的显示技术革命。革命性的实现全色域显示,最真实还原图像色彩。
量子点(Quantum Dots,简称QDs)又可称为半导体纳米晶体,是由II-VI族或III-V族元素组成二元或三元的无机纳米粒子,目前研究较多的主要是镉(Cd)的二元化合物CdE(E为硫(S)、硒(Se)、或碲(Te))。量子点的颗粒大小一般为2-10nm,并且不同尺寸的量子点具有不同的能带宽度,当量子点的尺寸小于其激子的波尔半径时,量子点的电子和空穴被量子限域,原来连续的能带将变成分立能级结构,受激后可以发射出荧光。
与传统的荧光材料相比较,量子点具有很多独特的性质:(1)荧光发射峰窄(半峰宽一般处于20~30nm)并且呈对称分布;(2)荧光发光颜色可调;(3)光学稳定性好;(4)荧光寿命长,生物相容性好。
但如果将量子点应用到液晶显示装置(TFT-LCD)中的液晶盒(cell)中,就需要使量子点达到具有偏光的特性,因此就产生了量子棒(Quantum Rod,简称QR)。量子棒指的是在两个维度方向上都受到量子限域效应影响的一种一维材料,大部分由II-VI族或III-V族元素组成的纳米材料。由于量子限域效应,其内部的电子和空穴的运输受到限制,使得连续的能带结构变成分离的能级结构。当量子棒的尺寸不同时,电子与空穴的量子限域程度不一样,分立的能级结构不同。在受到外来能量激发后,不同尺寸的量子棒即发出不同波长的光,也就是各种颜色的光。
量子棒能够发射线性偏振光,也即是说,来自量子棒的光沿量子棒的长度方向具有线性偏振性。然而,由于量子棒在常规情况下呈杂乱无序的方式排列,并不能发挥其线偏振特性,因此如何将量子棒在液晶盒中达到 稳固定向排列成为显示器行业研究的重点。
发明内容
本发明的目的在于提供一种量子棒组合物,可用于制备量子棒偏光片,制得的量子棒偏光片的偏振性能稳定。
本发明的目的还在于提供一种量子棒偏光片的制作方法,采用上述量子棒组合物来制备量子棒偏光片,制程简单,制得的量子棒偏光片的偏振性能稳定。
本发明的目的还在于提供一种量子棒偏光片,偏振性能稳定,可应用于液晶显示装置中,能够提高光源利用率并获得更高纯度的光,从而实现彩色显示的高色域和低功耗。
为实现上述目的,本发明提供一种量子棒组合物,包括光配向剂修饰量子棒、可聚合单体、及溶剂;所述光配向剂修饰量子棒包括量子棒及修饰于量子棒周围的光配向剂。
所述光配向剂的结构通式为A-Sp-B-Sp-R;
A为-SH、-NH2、-NH-、-COOH、或-CN;
Sp为化学键、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、-(CH2)n-中一个或多个C原子被苯基或环烷基取代后得到的基团、或者-(CH2)n-中一个或多个H原子被F原子取代后得到的基团;所述-(CH2)n-中,n为1~4的整数;
B的结构式为
Figure PCTCN2017079906-appb-000001
其中M为苯环的修饰基团,M为-H、-OH、或-F,
Figure PCTCN2017079906-appb-000002
表示化学键;
R为具有5~20个C原子的直链或支链烷基、该直链或支链烷基中一个或多个-CH2-被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-或-CH=CH-取代后得到的基团、或者该直链或支链烷基中一个或多个H原子被F或Cl原子取代后得到的基团。
优选的,所述光配向剂包括以下化合物中的一种或多种:
Figure PCTCN2017079906-appb-000003
Figure PCTCN2017079906-appb-000004
Figure PCTCN2017079906-appb-000005
所述可聚合单体包括以下四种结构通式代表的化合物中的一种或多种:
Figure PCTCN2017079906-appb-000006
Figure PCTCN2017079906-appb-000007
Figure PCTCN2017079906-appb-000008
上述四种结构通式中,
Figure PCTCN2017079906-appb-000009
为苯环或环烷烃;
Sp为化学键、-(CH2)n-、或者-(CH2)n-中一个或多个-CH2-被-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-、-OCH2-、-CH2O-、-CH=CH-、-CF=CF-、-C≡C-、-CH=CH-COO-或-OCO-CH=CH-取代后得到的基团;所述-(CH2)n-中,n为1~8的整数;
P为可聚合基团,其选自甲基丙烯酸酯基、丙烯酸酯基、乙烯基、乙烯氧基、及环氧基中的至少一种;所述(P)n中,n为连接于同一个
Figure PCTCN2017079906-appb-000010
上的可聚合基团P的个数,n为1~3的整数,n大于1时,n个可聚合基团P相同或不 同;
X为取代基团,其选自-F,-Cl,-Br、-CH3、-CN、2~8个碳原子的直链或支链烷基、及该直链或支链烷基中一个或多个不相邻的-CH2-被-O-或-S-取代后得到的基团中的至少一种;所述(X)m中,m为连接于同一个
Figure PCTCN2017079906-appb-000011
上的取代基团X的个数,m为0~3的整数,m大于1时,m个取代基团X相同或不同。
优选的,所述可聚合单体包括以下化合物中的一种或多种:
Figure PCTCN2017079906-appb-000012
Figure PCTCN2017079906-appb-000013
Figure PCTCN2017079906-appb-000014
所述溶剂包括甲苯与苯中的至少一种;所述量子棒组合物中,所述光配向剂修饰量子棒与可聚合单体的总和的质量百分比为1%~10%,所述光配向剂修饰量子棒与可聚合单体的质量比为1∶1~50。
本发明还提供一种量子棒偏光片的制作方法,包括如下步骤:
步骤1、提供上述量子棒组合物与基板;
步骤2、将所述量子棒组合物均匀涂布于基板上,形成量子棒薄膜;
步骤3、采用线偏振光对所述量子棒薄膜进行照射,使所述量子棒薄膜中的光配向剂修饰量子棒沿同一方向定向排列;
步骤4、采用UV光对所述量子棒薄膜进行照射,使所述量子棒薄膜中的可聚合单体聚合,形成聚合物网络,所述聚合物网络能够锚定所述光配向剂修饰量子棒,使其排列方向固定;
步骤5、对所述量子棒薄膜进行加热处理,去除所述量子棒薄膜中的溶剂,制得量子棒偏光片。
所述步骤3中,所述线偏振光为波长为450nm的蓝色线偏振光,所述线偏振光的照度为80mW/cm2~100mW/cm2,照射时间为1min~10min。
所述步骤4中,所述UV光的波长为300nm~400nm,所述UV光的照度为4mW/cm2~6mW/cm2,照射时间为20min~60min;
所述步骤5中,对所述量子棒薄膜进行加热处理的温度为120℃~180℃,加热时间为20min~40min。
本发明还提供一种采用上述量子棒偏光片的制作方法制得的量子棒偏光片,其包括由可聚合单体聚合形成的聚合物网络以及被锚定于所述聚合物网络中且沿同一方向定向排列的光配向剂修饰量子棒。
本发明的有益效果:本发明提供的一种量子棒组合物,包括光配向剂修饰量子棒、可聚合单体、及溶剂,所述光配向剂修饰量子棒能够在线偏振光的照射作用下定向排列,所述可聚合单体能够在UV光的照射作用下形成聚合物网络,从而对所述光配向剂修饰量子棒进行锚定,固定其排列方向。本发明提供的一种量子棒偏光片的制作方法,采用上述量子棒组合物来制备量子棒偏光片,制程简单,制得的量子棒偏光片中,光配向剂修饰量子棒的排列方向一致且方向固定,偏振性能稳定。本发明提供的一种量子棒偏光片,偏振性能稳定,可应用于液晶显示装置中,能够提高光源利用率并获得更高纯度的光,从而实现彩色显示的高色域和低功耗。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的量子棒组合物中的光配向剂修饰量子棒的结构示意图;
图2为本发明的量子棒偏光片的制作方法的流程图;
图3为本发明的量子棒偏光片的制作方法的步骤1-2的示意图;
图4为本发明的量子棒偏光片的制作方法的步骤3的示意图;
图5为本发明的量子棒偏光片的制作方法的步骤4的示意图;
图6-7为本发明的量子棒偏光片的制作方法的步骤5的示意图;
图8为本发明的量子棒偏光片的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1及图3,本发明首先提供一种量子棒组合物,包括光配向剂 修饰量子棒10、可聚合单体20、及溶剂70;所述光配向剂修饰量子棒10包括量子棒11及修饰于量子棒11周围的光配向剂12。
所述光配向剂12为含有偶氮基团的小分子材料,其结构通式为A-Sp-B-Sp-R;
A为-SH、-NH2、-NH-、-COOH、或-CN;
Sp为化学键、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、-(CH2)n-中一个或多个C原子被苯基或环烷基取代后得到的基团、或者-(CH2)n-中一个或多个H原子被F原子取代后得到的基团;所述-(CH2)n-中,n为1~4的整数;
B的结构式为
Figure PCTCN2017079906-appb-000015
其中M为苯环的修饰基团,M为-H、-OH、或-F,
Figure PCTCN2017079906-appb-000016
表示化学键;
R为具有5~20个C原子的直链或支链烷基、该直链或支链烷基中一个或多个-CH2-被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-或-CH=CH-取代后得到的基团、或者该直链或支链烷基中一个或多个H原子被F或Cl原子取代后得到的基团。
优选的,所述光配向剂12包括以下化合物中的一种或多种:
Figure PCTCN2017079906-appb-000017
Figure PCTCN2017079906-appb-000018
Figure PCTCN2017079906-appb-000019
优选的,所述量子棒11具有核壳结构。
具体的,所述量子棒11的核由II-VI、III-V、I-III-VI或IV-VI族半导体材料形成。优选的,所述量子棒11的核由II-VI族半导体材料形成,更 优选的,由CdSe、CdS、CdTe、ZnO、ZnSe、ZnS、ZnTe、HgSe、HgTe与CdZnSe中的一种或多种形成。
具体的,所述量子棒11的壳由合金、氧化物和掺杂材料中的一种或多种形成,进一步的,所述量子棒11的壳可以为单层结构或多层结构。
具体的,所述可聚合单体20包括丙烯酸酯及其衍生物、甲基丙烯酸酯及其衍生物、苯乙烯及其衍生物、环氧树脂及其衍生物中的一种或多种的组合。
优选的,所述可聚合单体20包括以下四种结构通式代表的化合物中的一种或多种:
Figure PCTCN2017079906-appb-000020
Figure PCTCN2017079906-appb-000021
Figure PCTCN2017079906-appb-000022
上述四种结构通式中,
Figure PCTCN2017079906-appb-000023
为苯环或环烷烃;
Sp为化学键、-(CH2)n-、或者-(CH2)n-中一个或多个-CH2-被-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-、-OCH2-、-CH2O-、-CH=CH-、-CF=CF-、-C≡C-、-CH=CH-COO-或-OCO-CH=CH-取代后得到的基团;所述-(CH2)n-中,n为1~8的整数;
P为可聚合基团,其选自甲基丙烯酸酯基、丙烯酸酯基、乙烯基、乙烯氧基、及环氧基中的至少一种;所述(P)n中,n为连接于同一个
Figure PCTCN2017079906-appb-000024
上的可聚合基团P的个数,n为1~3的整数,n大于1时,n个可聚合基团P相同或不同;
X为取代基团,其选自-F,-Cl,-Br、-CH3、-CN、2~8个碳原子的直链 或支链烷基、及该直链或支链烷基中一个或多个不相邻的-CH2-被-O-或-S-取代后得到的基团中的至少一种;所述(X)m中,m为连接于同一个
Figure PCTCN2017079906-appb-000025
上的取代基团X的个数,m为0~3的整数,m大于1时,m个取代基团X相同或不同。
优选的,所述可聚合单体20包括以下化合物中的一种或多种:
Figure PCTCN2017079906-appb-000026
Figure PCTCN2017079906-appb-000027
Figure PCTCN2017079906-appb-000028
具体的,所述溶剂70包括甲苯与苯中的至少一种。
具体的,所述量子棒组合物中,所述光配向剂修饰量子棒10与可聚合单体20的总和的质量百分比为1%~10%。
优选的,所述量子棒组合物中,所述光配向剂修饰量子棒10与可聚合单体20的质量比为1∶1~50。
本发明的量子棒组合物,包括光配向剂修饰量子棒10、可聚合单体20、及溶剂70,所述光配向剂修饰量子棒10能够在线偏振光的照射作用下定向排列,所述可聚合单体20能够在紫外(UV)光的照射作用下形成聚合物网络,从而对所述光配向剂修饰量子棒10进行锚定,固定其排列方向,因此本发明的量子棒组合物可用于制作量子棒偏光片,制得的量子棒偏光片中,光配向剂修饰量子棒10的排列方向一致且方向固定,偏振性能稳定。
请参阅图2,基于上述量子棒组合物,本发明还提供一种量子棒偏光片的制作方法,包括如下步骤:
步骤1、如图3所示,提供上述量子棒组合物与基板30。
具体的,所述基板30为TFT基板、CF基板或者素玻璃基板。
步骤2、如图3所示,将所述量子棒组合物均匀涂布于基板30上,形成量子棒薄膜40。
优选的,所述步骤2中,采用旋转涂布(spin coating)的方式将所述量子棒组合物均匀涂布于基板30上。
步骤3、如图4所示,采用线偏振光对所述量子棒薄膜40进行照射,使所述量子棒薄膜40中的光配向剂修饰量子棒10沿同一方向定向排列。
具体的,所述步骤3中,所述光配向剂修饰量子棒10定向排列的机理是:在线偏振光的照射作用下,所述光配向剂修饰量子棒10中的光配向剂12沿一定方向定向排列,带动被其修饰的量子棒11定向排列。
具体的,所述步骤3中,所述线偏振光为波长为450nm的蓝色线偏振光,该波长的蓝色线偏振光可诱导本发明提供的含有偶氮基团的光配向剂12进行定向排列,从而引导所述光配向剂修饰量子棒10定向排列。
优选的,所述步骤3中,所述线偏振光的照度为80mW/cm2~100mW/cm2,优选为90mW/cm2,照射时间为1min~10min。
步骤4、如图5所示,采用UV光对所述量子棒薄膜40进行照射,使所述量子棒薄膜40中的可聚合单体20聚合,形成聚合物网络60,所述聚合物网络60能够锚定所述光配向剂修饰量子棒10,使其排列方向固定。
具体的,所述步骤4中,所述UV光的波长为300nm~400nm,优选为310nm。
优选的,所述步骤4中,所述UV光的照度为4mW/cm2~6mW/cm2,照射时间为20min~60min。
步骤5、如图6-7所示,对所述量子棒薄膜40进行加热处理,去除所述量子棒薄膜40中的溶剂70,制得量子棒偏光片50。
具体的,所述步骤5中,对所述量子棒薄膜40进行加热处理的温度为120℃~180℃,加热时间为20min~40min。
本发明的量子棒偏光片的制作方法,采用上述量子棒组合物来制备量子棒偏光片50,制程简单,制得的量子棒偏光片50中,光配向剂修饰量子棒10的排列方向一致且方向固定,偏振性能稳定。
请参阅图8,基于上述量子棒偏光片的制作方法,本发明还提供一种采用上述方法制得的量子棒偏光片50,其包括由可聚合单体20聚合形成的聚合物网络60以及被锚定于所述聚合物网络60中且沿同一方向定向排列的光配向剂修饰量子棒10。
优选的,所述光配向剂修饰量子棒10中的量子棒11包括红光量子棒、绿光量子棒及蓝光量子棒,因此本发明的量子棒偏光片50受到背光照射时,发出的光为由红色线偏振光、绿色线偏振光、及蓝色线偏振光混合形成的白色线偏振光,可应用于现有的液晶显示装置中取代传统的下偏光片,并可以与彩色滤光片配合使用,从而实现彩色显示。
本发明的量子棒偏光片,其中的光配向剂修饰量子棒10排列方向一致 且方向固定,能够吸收背光并将其转化为偏振方向统一的线偏振光,偏振性能稳定,可应用于液晶显示装置中取代下偏光片,与现有的过滤型的下偏光片相比,本发明的量子棒偏光片通过引入量子棒材料,可提高光源利用率并获得更高纯度的光,从而实现彩色显示的高色域和低功耗。
综上所述,本发明提供一种量子棒组合物、量子棒偏光片及其制作方法。本发明的量子棒组合物,包括光配向剂修饰量子棒、可聚合单体、及溶剂,所述光配向剂修饰量子棒能够在线偏振光的照射作用下定向排列,所述可聚合单体能够在UV光的照射作用下形成聚合物网络,从而对所述光配向剂修饰量子棒进行锚定,固定其排列方向。本发明的量子棒偏光片的制作方法,采用上述量子棒组合物来制备量子棒偏光片,制程简单,制得的量子棒偏光片中,光配向剂修饰量子棒的排列方向一致且方向固定,偏振性能稳定。本发明的量子棒偏光片,偏振性能稳定,可应用于液晶显示装置中,能够提高光源利用率并获得更高纯度的光,从而实现彩色显示的高色域和低功耗。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种量子棒组合物,包括光配向剂修饰量子棒、可聚合单体、及溶剂;所述光配向剂修饰量子棒包括量子棒及修饰于量子棒周围的光配向剂。
  2. 如权利要求1所述的量子棒组合物,其中,所述光配向剂的结构通式为A-Sp-B-Sp-R;
    A为-SH、-NH2、-NH-、-COOH、或-CN;
    Sp为化学键、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、-(CH2)n-中一个或多个C原子被苯基或环烷基取代后得到的基团、或者-(CH2)n-中一个或多个H原子被F原子取代后得到的基团;所述-(CH2)n-中,n为1~4的整数;
    B的结构式为
    Figure PCTCN2017079906-appb-100001
    其中M为苯环的修饰基团,M为-H、-OH、或-F,
    Figure PCTCN2017079906-appb-100002
    表示化学键;
    R为具有5~20个C原子的直链或支链烷基、该直链或支链烷基中一个或多个-CH2-被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-或-CH=CH-取代后得到的基团、或者该直链或支链烷基中一个或多个H原子被F或Cl原子取代后得到的基团。
  3. 如权利要求2所述的量子棒组合物,其中,所述光配向剂包括以下化合物中的一种或多种:
    Figure PCTCN2017079906-appb-100003
  4. 如权利要求1所述的量子棒组合物,其中,所述可聚合单体包括以下四种结构通式代表的化合物中的一种或多种:
    Figure PCTCN2017079906-appb-100004
    上述四种结构通式中,
    Figure PCTCN2017079906-appb-100005
    为苯环或环烷烃;
    Sp为化学键、-(CH2)n-、或者-(CH2)n-中一个或多个-CH2-被-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-、-OCH2-、-CH2O-、-CH=CH-、-CF=CF-、-C≡C-、-CH=CH-COO-或-OCO-CH=CH-取代后得到的基团;所述-(CH2)n-中,n为1~8的整数;
    P为可聚合基团,其选自甲基丙烯酸酯基、丙烯酸酯基、乙烯基、乙烯氧基、及环氧基中的至少一种;所述(P)n中,n为连接于同一个
    Figure PCTCN2017079906-appb-100006
    上的可聚合基团P的个数,n为1~3的整数,n大于1时,n个可聚合基团P相同或不同;
    X为取代基团,其选自-F,-Cl,-Br、-CH3、-CN、2~8个碳原子的直链或支链烷基、及该直链或支链烷基中一个或多个不相邻的-CH2-被-O-或-S-取代后得到的基团中的至少一种;所述(X)m中,m为连接于同一个
    Figure PCTCN2017079906-appb-100007
    上的取代基团X的个数,m为0~3的整数,m大于1时,m个取代基团X相同或不同。
  5. 如权利要求4所述的量子棒组合物,其中,所述可聚合单体包括以下化合物中的一种或多种:
    Figure PCTCN2017079906-appb-100008
  6. 如权利要求1所述的量子棒组合物,其中,所述溶剂包括甲苯与苯中的至少一种;所述量子棒组合物中,所述光配向剂修饰量子棒与可聚合单体的总和的质量百分比为1%~10%,所述光配向剂修饰量子棒与可聚合单体的质量比为1∶1~50。
  7. 一种量子棒偏光片的制作方法,包括如下步骤:
    步骤1、提供如权利要求1所述的量子棒组合物与基板;
    步骤2、将所述量子棒组合物均匀涂布于基板上,形成量子棒薄膜;
    步骤3、采用线偏振光对所述量子棒薄膜进行照射,使所述量子棒薄膜中的光配向剂修饰量子棒沿同一方向定向排列;
    步骤4、采用UV光对所述量子棒薄膜进行照射,使所述量子棒薄膜中的可聚合单体聚合,形成聚合物网络,所述聚合物网络能够锚定所述光配向剂修饰量子棒,使其排列方向固定;
    步骤5、对所述量子棒薄膜进行加热处理,去除所述量子棒薄膜中的溶剂,制得量子棒偏光片。
  8. 如权利要求7所述的量子棒偏光片的制作方法,其中,所述步骤3中,所述线偏振光为波长为450nm的蓝色线偏振光,所述线偏振光的照度为80mW/cm2~100mW/cm2,照射时间为1min~10min。
  9. 如权利要求7所述的量子棒偏光片的制作方法,其中,所述步骤4中,所述UV光的波长为300nm~400nm,所述UV光的照度为4mW/cm2~6mW/cm2,照射时间为20min~60min;
    所述步骤5中,对所述量子棒薄膜进行加热处理的温度为120℃~180℃,加热时间为20min~40min。
  10. 一种采用如权利要求7所述的量子棒偏光片的制作方法制得的量子棒偏光片,包括由可聚合单体聚合形成的聚合物网络以及被锚定于所述聚合物网络中且沿同一方向定向排列的光配向剂修饰量子棒。
PCT/CN2017/079906 2017-02-07 2017-04-10 量子棒组合物、量子棒偏光片及其制作方法 WO2018145358A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/533,999 US10400161B2 (en) 2017-02-07 2017-04-10 Quantum rod composition, quantum rod polarizer and fabricating method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710067467.1A CN106833612B (zh) 2017-02-07 2017-02-07 量子棒组合物、量子棒偏光片及其制作方法
CN201710067467.1 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018145358A1 true WO2018145358A1 (zh) 2018-08-16

Family

ID=59121415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079906 WO2018145358A1 (zh) 2017-02-07 2017-04-10 量子棒组合物、量子棒偏光片及其制作方法

Country Status (3)

Country Link
US (1) US10400161B2 (zh)
CN (1) CN106833612B (zh)
WO (1) WO2018145358A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092138A (zh) * 2017-06-28 2017-08-25 深圳Tcl新技术有限公司 液晶显示面板和液晶显示装置
CN109298562A (zh) * 2018-11-26 2019-02-01 昆山龙腾光电有限公司 量子棒薄膜及其制作方法、液晶显示装置
US11441074B2 (en) * 2019-08-08 2022-09-13 The Hong Kong University Of Science And Technology Ligand, nanoparticle, and thin film with the same
CN111580209A (zh) * 2020-05-20 2020-08-25 Tcl华星光电技术有限公司 偏光片、光学薄膜及其制备方法
CN112327537A (zh) * 2020-11-03 2021-02-05 重庆惠科金渝光电科技有限公司 彩膜基板及其制备方法和显示面板
CN113156690B (zh) * 2021-02-26 2022-09-20 昆山龙腾光电股份有限公司 量子棒偏光片及其制造方法和显示装置
CN116107013B (zh) * 2023-04-13 2023-07-04 Tcl华星光电技术有限公司 偏光片及其制备方法、显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602227A (zh) * 2014-11-13 2016-05-25 乐金显示有限公司 量子棒组合物、量子棒膜和包含该量子棒膜的显示装置
CN105700247A (zh) * 2016-04-19 2016-06-22 深圳市华星光电技术有限公司 液晶显示装置、量子棒配向板及其制造方法
CN105733557A (zh) * 2016-04-22 2016-07-06 深圳市华星光电技术有限公司 配体修饰量子点材料、液晶显示面板的制作方法及液晶显示面板
US20170031211A1 (en) * 2015-07-29 2017-02-02 Lg Display Co., Ltd. Quantum rod layer, method of fabricating the same and display device including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840355B1 (ko) * 2011-10-28 2018-05-08 엘지디스플레이 주식회사 고 투과율을 갖는 액정표시장치
KR101998065B1 (ko) * 2012-12-28 2019-07-09 엘지디스플레이 주식회사 양자 막대 및 이를 이용한 디스플레이
CN103484131B (zh) * 2013-08-29 2016-08-10 深圳市华星光电技术有限公司 液晶介质组合物
JP6353410B2 (ja) * 2014-07-18 2018-07-04 富士フイルム株式会社 重合性液晶組成物、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置
JP6380979B2 (ja) * 2014-09-29 2018-08-29 富士フイルム株式会社 液晶組成物、偏光発光フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置
CN105316008A (zh) * 2015-11-16 2016-02-10 深圳市华星光电技术有限公司 反应型垂直取向材料、液晶显示面板、及液晶配向方法
CN105467653B (zh) * 2015-12-08 2019-02-01 深圳市华星光电技术有限公司 液晶显示面板及量子棒偏光片的制作方法
CN105885872B (zh) * 2016-04-07 2018-11-23 深圳市华星光电技术有限公司 液晶材料、液晶显示面板及液晶显示面板的制作方法
CN105936830A (zh) * 2016-04-22 2016-09-14 深圳市华星光电技术有限公司 液晶材料、液晶显示面板的制作方法及液晶显示面板
CN109313366B (zh) * 2016-05-10 2021-11-05 香港科技大学 光配向量子棒增强膜
CN105974631B (zh) * 2016-07-13 2019-04-30 深圳市华星光电技术有限公司 柔性基板及其制作方法与柔性液晶显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602227A (zh) * 2014-11-13 2016-05-25 乐金显示有限公司 量子棒组合物、量子棒膜和包含该量子棒膜的显示装置
US20170031211A1 (en) * 2015-07-29 2017-02-02 Lg Display Co., Ltd. Quantum rod layer, method of fabricating the same and display device including the same
CN105700247A (zh) * 2016-04-19 2016-06-22 深圳市华星光电技术有限公司 液晶显示装置、量子棒配向板及其制造方法
CN105733557A (zh) * 2016-04-22 2016-07-06 深圳市华星光电技术有限公司 配体修饰量子点材料、液晶显示面板的制作方法及液晶显示面板

Also Published As

Publication number Publication date
US10400161B2 (en) 2019-09-03
US20180312748A1 (en) 2018-11-01
CN106833612A (zh) 2017-06-13
CN106833612B (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2018145358A1 (zh) 量子棒组合物、量子棒偏光片及其制作方法
JP5940079B2 (ja) ディスプレイバックライトユニット及びディスプレイバックライトユニットの形成方法
US10221354B2 (en) Luminescent particle, materials and products including same, and methods
KR20200060430A (ko) 광변환 필름 및 그것을 이용한 화상 표시 소자
KR102113381B1 (ko) 광전환 소자 및 이를 포함하는 디스플레이 장치
WO2017008442A1 (zh) 发光复合物、发光材料、显示用基板及制备方法、显示装置
TW201842090A (zh) 分散體及使用其之噴墨用墨水組成物、光轉換層及液晶顯示元件
TW201835652A (zh) 液晶顯示元件
TW201833301A (zh) 液晶顯示元件
CN109021968B (zh) 用于制造量子点聚合物膜的方法
WO2014183334A1 (zh) 液晶显示屏、显示装置及单色量子点层的制备方法
KR20090028928A (ko) 나노결정 3차원 가공방법 및 표시장치
WO2013078242A1 (en) Methods for coating semiconductor nanocrystals
US10126485B2 (en) Optical film and lighting and display products including same
JP2022191228A (ja) 量子ドットカラーフィルタインク組成物、および量子ドットカラーフィルタインク組成物を利用したデバイス
JP6501134B2 (ja) 液晶表示素子
CN109917587B (zh) 液晶显示装置及其制作方法
CN113943410A (zh) 量子点薄膜及其制备方法和量子点发光二极管
Shu et al. Fabrication and optical properties of high-quality blue-emitting CsPbBr3 QDs-PMMA films
WO2018120511A1 (zh) 一种量子点薄膜及其制备方法
Malak et al. Programmed Emission Transformations: Negative‐to‐Positive Patterning Using the Decay‐to‐Recovery Behavior of Quantum Dots
CN105810786A (zh) 利用量子点实现全光谱的方法和装置
Ji et al. Fluorescence properties and laser-induced enhancement of CsPbBr3 quantum dot with three different ligand amine systems
KR101953024B1 (ko) 편광 및 색재현성의 양자 막대 필름을 포함하는 액정표시소자
Yu et al. Enhanced Photoluminescence Intensity of Quantum Dot Films With the Sandwich Column Array Structure by Uniform Electrical Induction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15533999

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895730

Country of ref document: EP

Kind code of ref document: A1