WO2018143352A1 - 走行制御装置および走行制御方法 - Google Patents

走行制御装置および走行制御方法 Download PDF

Info

Publication number
WO2018143352A1
WO2018143352A1 PCT/JP2018/003429 JP2018003429W WO2018143352A1 WO 2018143352 A1 WO2018143352 A1 WO 2018143352A1 JP 2018003429 W JP2018003429 W JP 2018003429W WO 2018143352 A1 WO2018143352 A1 WO 2018143352A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel
control unit
vehicle
inertial
travel control
Prior art date
Application number
PCT/JP2018/003429
Other languages
English (en)
French (fr)
Inventor
尚基 高橋
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to US16/482,810 priority Critical patent/US20210009132A1/en
Priority to DE112018000686.7T priority patent/DE112018000686T5/de
Priority to CN201880008573.5A priority patent/CN110234551A/zh
Publication of WO2018143352A1 publication Critical patent/WO2018143352A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/20Direction indicator values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present disclosure relates to a travel control device and a travel control method for controlling travel of a vehicle.
  • Patent Document 1 when the inertia travel prohibition condition that the change rate of the accelerator opening is equal to or less than a predetermined negative first threshold is satisfied, the inertia travel is terminated during the inertia travel, and then the inertia is performed. Prohibiting traveling is disclosed.
  • the traveling state may be frequently switched.
  • the driver simply puts his / her feet on the accelerator and the driver's unconscious accelerating operation may cause the driver to run inertial or not to change the driving state frequently.
  • an object of the present disclosure is to provide a technique capable of appropriately switching the traveling state of the vehicle.
  • the travel control device includes an automatic travel control unit that causes the vehicle to travel according to a travel schedule including drive travel and inertia travel, and prohibits the inertia travel when the accelerator opening exceeds a first threshold. And an inertial traveling control unit that controls the automatic traveling control unit to release the prohibition of the inertial traveling when the opening degree falls below a second threshold value that is smaller than the first threshold value.
  • the traveling state of the vehicle can be switched appropriately.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle including a travel control device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of functional blocks of the travel control device.
  • FIG. 3 is a diagram illustrating an example of road gradient information and a travel schedule.
  • FIG. 4 is a diagram for explaining an example of inertial running control.
  • FIG. 5 is a flowchart illustrating an operation example of the travel control device.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle including a travel control device according to an embodiment of the present disclosure.
  • a vehicle 1 shown in FIG. 1 is, for example, a large vehicle such as a truck equipped with an inline 6-cylinder diesel engine.
  • coasting refers to coasting when the gear stage of the transmission is neutral.
  • the vehicle 1 has a drive system configuration for traveling, such as an engine 3, a clutch 4, a transmission (transmission) 5, a propulsion shaft (propeller shaft) 6, and a differential device (differential gear) 7. , A drive shaft 8 and wheels 9.
  • a drive system configuration for traveling such as an engine 3, a clutch 4, a transmission (transmission) 5, a propulsion shaft (propeller shaft) 6, and a differential device (differential gear) 7.
  • the power of the engine 3 is transmitted to the transmission 5 via the clutch 4.
  • the power transmitted to the transmission 5 is further transmitted to the wheels 9 via the propulsion shaft 6, the differential device 7, and the drive shaft 8. Thereby, the motive power of the engine 3 is transmitted to the wheels 9 and the vehicle 1 travels.
  • the vehicle 1 has a braking device 40 as a configuration of a braking system for stopping the vehicle.
  • the braking device 40 includes a foot brake 41 that provides resistance to the wheels 9, a retarder 42 that provides resistance to the propulsion shaft 6, and an auxiliary brake 43 such as an exhaust brake that applies load to the engine.
  • the vehicle 1 has an automatic travel device 2 as a configuration of a control system that controls the automatic travel of the vehicle 1.
  • the automatic travel device 2 is a device that automatically controls the output of the engine 3, the connection / disconnection of the clutch 4, and the speed change of the transmission 5 to automatically travel the vehicle 1, and includes a plurality of control devices.
  • the automatic travel device 2 includes an engine ECU (engine control device) 10, a power transmission ECU (power transmission control device) 11, a target vehicle speed setting device 13, an increase / decrease value setting device 14, and a navigation device 20.
  • the vehicle information acquisition device 30 and the travel control device 100 are included.
  • the engine ECU 10, the power transmission ECU 11, and the travel control device 100 are connected to each other via an in-vehicle network so that necessary data and control signals can be transmitted / received to / from each other.
  • the engine ECU 10 controls the output of the engine 3.
  • the power transmission ECU 11 controls the connection and disconnection of the clutch 4 and the shift of the transmission 5.
  • the target vehicle speed setting device 13 sets the target vehicle speed “V ′” when the vehicle 1 automatically travels in the travel control device 100.
  • the increase / decrease value setting device 14 sets the speed decrease value “ ⁇ va” and the speed increase value “+ vb” during automatic traveling of the vehicle 1 in the travel control device 100. These values “V ′”, “ ⁇ va”, and “+ vb” are parameters used for automatic traveling of the vehicle 1.
  • the target vehicle speed setting device 13 and the increase / decrease value setting device 14 include, for example, an information input interface such as a display with a touch panel arranged on a dashboard (not shown) of the driver's seat, and accept the setting of the above parameters from the driver.
  • the target vehicle speed V ′, the speed decrease value ⁇ va, and the speed increase value + vb are appropriately referred to as “setting information”.
  • the navigation device 20 receives a GPS (global positioning system) signal, acquires road information indicating the current position of the vehicle 1 and road conditions, and outputs the road information to the travel control device 100.
  • GPS global positioning system
  • the road information includes road gradient information indicating the gradient of each point on the road in order to generate a travel schedule described later.
  • the road gradient information is, for example, data describing the altitude (road altitude) of the corresponding position in association with the horizontal position (latitude / longitude information, etc.) of each place on the road.
  • the vehicle information acquisition device 30 acquires the vehicle information indicating the operation content by the driver and the state of the vehicle 1 and outputs the vehicle information to the travel control device 100.
  • the vehicle information acquisition device 30 includes an accelerator sensor 31 that detects the opening (depression amount) of an accelerator pedal, a brake switch 32 that detects whether or not the brake pedal is depressed, a shift lever 33, a turn signal switch 34, and a vehicle.
  • 1 includes a vehicle speed sensor 35 that detects a vehicle speed V of 1.
  • the traveling control device 100 generates a traveling schedule including driving traveling and inertia traveling based on the above-described setting information, road information, and vehicle information. Then, the travel control device 100 controls each part of the vehicle 1 so that the vehicle 1 travels according to the generated travel schedule. However, as will be described below, the travel control device 100 prohibits coasting and cancels coasting based on the accelerator opening output from the accelerator sensor 31.
  • FIG. 2 is a diagram illustrating an example of functional blocks of the travel control device 100.
  • FIG. 2 also shows the accelerator sensor 31 shown in FIG. 1 in addition to the travel control device 100.
  • the travel control device 100 includes an inertia travel control unit 110 and an automatic travel control unit 120.
  • Accelerator sensor 31 outputs the accelerator opening as described above.
  • the accelerator opening output from the accelerator sensor 31 is received by the inertial traveling control unit 110 of the traveling control device 100.
  • the inertial traveling control unit 110 controls the automatic traveling control unit 120 to prohibit inertial traveling and to cancel the prohibition of inertial traveling based on the accelerator opening output from the accelerator sensor 31.
  • the inertial traveling control unit 110 causes the automatic traveling control unit 120 to prohibit inertial traveling when the accelerator opening exceeds the first threshold (see, for example, the arrow A1 in FIG. 4). Is output.
  • the inertial travel control unit 110 instructs the automatic travel control unit 120 to perform inertial travel. In order to cancel the prohibition, the prohibition signal output is stopped.
  • the automatic travel control unit 120 generates a travel schedule including drive travel and inertial travel, and causes the vehicle 1 to travel according to the generated travel schedule based on the current position of the vehicle 1.
  • the automatic traveling control unit 120 realizes traveling at a speed according to the traveling schedule by controlling the fuel injection amount of the engine 3 through the power transmission ECU 11 during driving traveling. Further, the automatic travel control unit 120 disconnects the clutch 4 via the power transmission ECU 11 during inertial travel. In addition, the automatic travel control unit 120 appropriately controls each part of the braking device 40 to stop the vehicle 1.
  • the automatic travel control unit 120 sequentially generates a travel schedule for a predetermined travel distance from the current position of the vehicle 1 or for a predetermined time length from the current time at regular intervals.
  • the moving average vehicle speed is the target vehicle speed V ′
  • the automatic travel control unit 120 generates a travel schedule that actively performs coasting on a downhill road based on the road information. Further, the automatic traveling control unit 120 changes from driving to inertial traveling before the top position on the condition that the vehicle speed is equal to or higher than the allowable minimum vehicle speed “V min '” at the top position where the road turns from the uphill to the downhill. A travel schedule including the contents to be switched is generated.
  • FIG. 3 is a diagram illustrating an example of road gradient information and a travel schedule.
  • Road gradient information for example, as shown by the upper solid line 211 in FIG. 3, including the information indicating the road elevation horizontal distance per (distance) from the current position L 0 of the vehicle 1.
  • the horizontal distance from the current position L 0 of the vehicle 1 can also be replaced by the elapsed time from the current time.
  • the road elevation can be replaced with a road gradient from the relationship with the preceding and following road elevations.
  • the road gradient information of the solid line 211 indicates that the current position L 0 of the vehicle 1 is in the middle of an uphill, and a downhill exists immediately after the uphill.
  • the automatic travel control unit 120 sequentially determines whether or not there is a portion that turns from an uphill to a downhill (top of a slope) within a predetermined distance range ahead of the road. judge.
  • the automatic travel control unit 120 when the top of the hill there, determines if the switch to coasting in the position L 1 immediately after the current position L 0, is beyond the top of the left slope coasting . That is, the automatic travel control unit 120 calculates whether or not the vehicle speed at the top of the slope is equal to or higher than the allowable minimum vehicle speed “V min ′”. The automatic travel control unit 120 performs this calculation based on the current vehicle speed “v 0 ”, the travel resistance coefficient of the vehicle 1 obtained in advance through experiments or the like, and road gradient information.
  • Automatic travel control unit 120 when judging that is beyond the top of the left slope of coasting, for example, switched to coasting in the position L 1 immediately after the vehicle speed is "V min ' ⁇ V max'" (the V'- to a position L 2 departing from the va ⁇ V '+ vb range) decides to maintain the coasting. Then, the automatic travel control unit 120, as shown by the solid line 212 on the lower side of FIG. 3, to produce a traveling schedule of the contents to maintain the coasting to a position L 2 switch to coasting at position L 1.
  • the automatic travel control unit 120 is, for example, using the following equation (1), estimated vehicle speed of the top position L t in the case where the vehicle 1 makes a coasting until the top position L t (hereinafter “V t ” is calculated.
  • M current vehicle weight of the vehicle 1 g is the gravitational acceleration, h0 altitude of the current position L 0 of the vehicle 1, h t altitude atop position L t, mu is the rolling resistance coefficient of the vehicle 1, [Delta] x is a distance (road) in the horizontal direction from the current position L 0 to the top position L t.
  • the automatic travel control unit 120 maintains this if it is coasting and is driving and traveling If so, it is decided to switch to coasting. That is, the automatic travel control unit 120 generates a travel schedule as indicated by a solid line 212 in FIG. 3, for example, and controls the vehicle 1 according to the travel schedule.
  • Such a travel schedule including an inertial travel section determined based on road gradient information effectively improves the fuel consumption of the vehicle 1.
  • the driver does not need to perform successive accelerator operations.
  • the automatic traveling based on the traveling schedule including the driving traveling and the inertia traveling generated based on the road gradient information is referred to as “eco map cruise traveling”.
  • the automatic traveling control unit 120 does not perform inertial traveling even if the traveling schedule is inertial traveling. If the prohibition signal is not output from the inertial traveling control unit 110 and the traveling schedule is inertial traveling, the automatic traveling control unit 120 performs inertial traveling.
  • FIG. 4 is a diagram for explaining a control example of inertial running. Assume that the first threshold value shown in FIG. 4 is larger than the second threshold value.
  • the first threshold value is, for example, a value at which the accelerator opening is 5% (full opening is 100%), and the second threshold value is, for example, a value at which the accelerator opening is 2%.
  • the accelerator is stepped on when the vehicle 1 is coasting. If the accelerator opening output from the accelerator sensor 31 is less than the first threshold value, the inertial traveling control unit 110 does not output a prohibition signal to the automatic traveling control unit 120. That is, the vehicle 1 does not cancel the inertial traveling and continues the inertial traveling only if the accelerator is stepped on a little (if the accelerator opening is less than the first threshold).
  • the automatic travel control unit 120 when the accelerator opening output from the accelerator sensor 31 exceeds the first threshold value as indicated by the arrow A1, the automatic travel control unit 120 outputs a prohibition signal to the inertial travel control unit 110. .
  • the automatic travel control unit 120 cancels (ends) inertial travel of the vehicle 1 and controls the vehicle 1 to travel according to the accelerator opening, for example. That is, when the driver steps on the accelerator greatly (when the accelerator is stepped on so that the accelerator opening exceeds the first threshold value), the vehicle 1 is released from inertia and accelerates according to the driver's accelerator operation. That is, the driver can release the inertia traveling and accelerate the vehicle 1 by stepping on the accelerator.
  • inertial traveling control unit 110 continues to output the prohibition signal until the accelerator opening falls below the second threshold. That is, when the inertial traveling is canceled, the vehicle 1 is prohibited from inertial traveling until the driver returns the accelerator to some extent (until the accelerator is returned so that the accelerator opening falls below the second threshold). Accelerates according to the accelerator operation.
  • the inertial running control unit 110 stops outputting the prohibition signal when the accelerator opening is below the second threshold, as indicated by an arrow A2. Thereby, the automatic travel control unit 120 controls the vehicle 1 to perform inertial travel.
  • the inertial running control unit 110 stops outputting the prohibition signal until the accelerator opening exceeds the first threshold when the accelerator opening is below the second threshold and the prohibition signal is stopped. That is, the vehicle 1 does not cancel the inertial running only if the accelerator is stepped on a little (if the accelerator opening is less than the first threshold), and continues the inertial running.
  • the prohibition signal output from the inertial traveling control unit 110 has hysteresis.
  • the traveling control apparatus 100 can suppress, for example, switching of the traveling state due to frequent accelerator operations that are not conscious of the driver.
  • the traveling control apparatus 100 can accelerate the vehicle 1 from inertial traveling according to the accelerator operation that the driver is aware of.
  • the inertial traveling control unit 110 does not output a prohibition signal unless the accelerator opening exceeds the first threshold during driving traveling. Therefore, as long as the accelerator opening does not exceed the first threshold, the vehicle 1 can shift from driving to inertial traveling according to the traveling schedule (inertial traveling is not prohibited).
  • FIG. 5 is a flowchart showing an operation example of the travel control device 100.
  • the traveling control device 100 executes the processing of the flowchart illustrated in FIG. 5 at a predetermined cycle. It is assumed that the automatic travel control unit 120 causes the vehicle 1 to coast by eco-map cruise travel.
  • the inertial traveling control unit 110 receives the accelerator opening from the accelerator sensor 31 (step S1).
  • inertial running control unit 110 determines whether or not the accelerator opening received in step S1 has exceeded a first threshold (step S2).
  • the inertial traveling control unit 110 outputs a prohibition signal to the automatic traveling control unit 120 when it is determined that the accelerator opening degree received in step S1 has exceeded the first threshold (“Yes” in S2) (step S3). ).
  • inertial running control unit 110 ends the process of the flowchart. Thereby, the automatic traveling control unit 120 prohibits the inertial traveling of the vehicle 1.
  • step S4 determines that the accelerator opening received in step S1 does not exceed the first threshold value ("No" in S2), the accelerator opening received in step S1 is Then, it is determined whether or not the value falls below the second threshold (step S4).
  • the inertial traveling control unit 110 stops outputting the prohibition signal to the automatic traveling control unit 120 when it is determined that the accelerator opening degree received in step S1 is lower than the second threshold (“Yes” in S4). (Step S5). Thereby, the automatic travel control unit 120 cancels the prohibition of inertial traveling of the vehicle 1.
  • step S1 when it is determined that the accelerator opening received in step S1 is not less than the second threshold ("No" in S4), the inertial traveling control unit 110 ends the process of the flowchart.
  • the travel control device 100 includes the automatic travel control unit 120 that causes the vehicle 1 to travel according to a travel schedule including drive travel and inertia travel.
  • the travel control device 100 also prohibits inertial travel when the accelerator opening output from the accelerator sensor 31 exceeds the first threshold, and the accelerator opening falls below a second threshold smaller than the first threshold.
  • the inertial traveling control unit 110 that controls the automatic traveling control unit 120 to cancel the prohibition of inertial traveling is provided. Thereby, the traveling control device 100 can appropriately switch the traveling state of the vehicle.
  • the travel control device is suitable for use in a vehicle that travels according to a travel schedule including drive travel and inertia travel.

Abstract

走行制御装置(100)の自動走行制御部(120)は、駆動走行と惰性走行とを含む走行スケジュールに従って車両を走行させる。惰性走行制御部(110)は、アクセルセンサ(31)から出力されるアクセル開度が第1の閾値を超えた場合、惰性走行を禁止し、アクセル開度が第1の閾値より小さい第2の閾値を下回った場合、惰性走行の禁止を解除するように、自動走行制御部(120)を制御する。

Description

走行制御装置および走行制御方法
 本開示は、車両の走行を制御する走行制御装置および走行制御方法に関する。
 特許文献1には、アクセル開度の変化率が所定の負の第1閾値以下であるという惰性走行禁止条件が成立したとき、惰性走行の実行中には、惰性走行を終了し、その後に惰性走行を禁止することが開示されている。
日本国特開2016-118240号公報
 しかしながら、特許文献1のようなアクセル開度による惰性走行制御の場合、走行状態が頻繁に切り替わる恐れがある。例えば、ドライバが単にアクセルに足を載せ、意識しないアクセル操作によって、惰性走行になったり、ならなかったりと走行状態が頻繁に切り替わる恐れがある。
 そこで本開示は、車両の走行状態を適切に切り替えることができる技術を提供することを目的とする。
 本開示の走行制御装置は、駆動走行と惰性走行とを含む走行スケジュールに従って車両を走行させる自動走行制御部と、アクセル開度が第1の閾値を超えた場合、前記惰性走行を禁止し、アクセル開度が前記第1の閾値より小さい第2の閾値を下回った場合、前記惰性走行の禁止を解除するように前記自動走行制御部を制御する惰性走行制御部と、を有する。
 本開示によれば、車両の走行状態を適切に切り替えることができる。
図1は、本開示の一実施形態に係る走行制御装置を含む車両の構成例を示した図である。 図2は、走行制御装置の機能ブロックの一例を示した図である。 図3は、道路勾配情報および走行スケジュールの一例を示す図である。 図4は、惰性走行の制御例を説明する図である。 図5は、走行制御装置の動作例を示したフローチャートである。
 以下、本開示の実施の形態を、図面を参照して説明する。
 図1は、本開示の一実施形態に係る走行制御装置を含む車両の構成例を示した図である。図1に示す車両1は、例えば、直列6気筒のディーゼルエンジンを搭載した、トラック等の大型車両である。なお、以下の説明に置いて、惰性走行とは、変速機のギヤ段がニュートラルである場合の惰性走行を指す。
 図1に示すように、車両1は、走行するための駆動系統の構成として、エンジン3、クラッチ4、変速機(トランスミッション)5、推進軸(プロペラシャフト)6、差動装置(デファレンシャルギヤ)7、駆動軸(ドライブシャフト)8、および車輪9を有する。
 エンジン3の動力は、クラッチ4を経由して変速機5に伝達される。変速機5に伝達された動力は、さらに、推進軸6、差動装置7、および駆動軸8を介して車輪9に伝達される。これにより、エンジン3の動力が車輪9に伝達されて車両1が走行する。
 また、車両1は、車両を停止させる制動系統の構成として、制動装置40を有する。制動装置40は、車輪9に対して抵抗力を与えるフットブレーキ41、推進軸6に対して抵抗力を与えるリターダ42、およびエンジンに対して負荷を与える排気ブレーキなどの補助ブレーキ43を含む。
 さらに、車両1は、車両1の自動走行を制御する制御系統の構成として、自動走行装置2を有する。自動走行装置2は、エンジン3の出力、クラッチ4の断接、および変速機5の変速を制御して、車両1を自動走行させる装置であり、複数の制御装置を備える。
 具体的には、自動走行装置2は、エンジン用ECU(エンジン用制御装置)10、動力伝達用ECU(動力伝達用制御装置)11、目標車速設定装置13、増減値設定装置14、ナビゲーション装置20、車両情報取得装置30、および走行制御装置100を有する。なお、エンジン用ECU10、動力伝達用ECU11、および、走行制御装置100は、車載ネットワークにより相互に接続され、必要なデータや制御信号を相互に送受信可能となっている。
 エンジン用ECU10は、エンジン3の出力を制御する。動力伝達用ECU11は、クラッチ4の断接および変速機5の変速を制御する。
 目標車速設定装置13は、車両1の自動走行時の目標車速「V’」を、走行制御装置100に設定する。増減値設定装置14は、車両1の自動走行時の速度減少値「-va」、および、速度増加値「+vb」を、走行制御装置100に設定する。これらの値「V’」、「-va」、「+vb」は、車両1の自動走行に用いられるパラメータである。
 目標車速設定装置13および増減値設定装置14は、例えば、運転席のダッシュボード(図示せず)に配置されたタッチパネル付きディスプレイ等の情報入力インタフェースを含み、運転者から上記パラメータの設定を受け付ける。目標車速V’、速度減少値-va、速度増加値+vbは、適宜、「設定情報」という。
 ナビゲーション装置20は、GPS(global positioning system)信号を受信し、車両1の現在位置および道路の状況を示す道路情報を取得し、走行制御装置100へ出力する。
 道路情報は、後述の走行スケジュールの生成のために、道路の各地点の勾配を示す道路勾配情報を含む。道路勾配情報は、例えば、道路各所の水平位置(緯度経度情報等)に対応付けて、該当する位置の標高(道路標高)を記述したデータである。
 車両情報取得装置30は、運転者による操作内容や車両1の状態を示す車両情報を取得し、走行制御装置100へ出力する。例えば、車両情報取得装置30は、アクセルペダルの開度(踏み込み量)を検出するアクセルセンサ31、ブレーキペダルの踏み込みの有無を検出するブレーキスイッチ32、シフトレバー33、ターンシグナルスイッチ34、および、車両1の車速Vを検出する車速センサ35を含む。
 走行制御装置100は、上述の設定情報、道路情報、および車両情報に基づいて、駆動走行と惰性走行とを含む走行スケジュールを生成する。そして、走行制御装置100は、生成した走行スケジュールに従って車両1が走行するように、車両1の各部を制御する。ただし、走行制御装置100は、以下で説明するように、アクセルセンサ31から出力されるアクセル開度に基づいて、惰性走行を禁止し、また、惰性走行の禁止を解除する。
 図2は、走行制御装置100の機能ブロックの一例を示した図である。図2には、走行制御装置100の他に、図1に示したアクセルセンサ31も示してある。図2に示すように、走行制御装置100は、惰性走行制御部110と、自動走行制御部120とを有している。
 アクセルセンサ31は、上記したように、アクセル開度を出力する。アクセルセンサ31から出力されるアクセル開度は、走行制御装置100の惰性走行制御部110に受信される。
 惰性走行制御部110は、アクセルセンサ31から出力されるアクセル開度に基づいて、自動走行制御部120に対して惰性走行を禁止し、また、惰性走行の禁止を解除するように制御する。
 例えば、惰性走行制御部110は、アクセル開度が第1の閾値を超えたとき(例えば、図4の矢印A1を参照)、自動走行制御部120に対し、惰性走行を禁止させるため、禁止信号を出力する。また、惰性走行制御部110は、アクセル開度が第1の閾値より小さい第2の閾値を下回ったとき(例えば、図4の矢印A2を参照)、自動走行制御部120に対し、惰性走行の禁止を解除させるため、禁止信号の出力を停止する。
 自動走行制御部120は、駆動走行と惰性走行とを含む走行スケジュールを生成し、車両1の現在位置に基づき、生成された走行スケジュールに従って車両1を走行させる。
 例えば、自動走行制御部120は、駆動走行時には、動力伝達用ECU11を介して、エンジン3の燃料噴射量の制御等を行うことにより、走行スケジュールに沿った速度での走行を実現させる。また、自動走行制御部120は、惰性走行時には、動力伝達用ECU11を介してクラッチ4を切断する。また、自動走行制御部120は、適宜、制動装置40の各部を制御して車両1を停止させる。
 ここで、走行スケジュールの例について説明する。自動走行制御部120は、例えば、車両1の現在位置から所定の走行距離分の、あるいは、現在時刻から所定の時間長分の走行スケジュールを、一定間隔で逐次生成する。かかる走行スケジュールは、例えば、移動平均車速が目標車速V’であり、惰性走行における最高車速が「Vmax’=V’+vb」以下であり、かつ、惰性走行における最低車速が「Vmin’=V’-va」以上であるという走行条件を満たすように、生成される。
 例えば、自動走行制御部120は、道路情報に基づいて、下り坂の道路では惰性走行を積極的に行うような走行スケジュールを生成する。さらに、自動走行制御部120は、道路が上り坂から下り坂に転じる頂点位置において車速が許容最低車速「Vmin’」以上となることを条件として、頂点位置の手前において駆動走行から惰性走行へと切り替える内容を含む走行スケジュールを生成する。
 図3は、道路勾配情報および走行スケジュールの一例を示す図である。道路勾配情報は、例えば、図3の上側の実線211で示すように、車両1の現在位置Lからの水平距離(道のり)毎に道路標高を示す情報を含む。なお、車両1の現在位置Lからの水平距離は、現在時刻からの経過時間に置き換えることも可能である。また、道路標高は、前後の道路標高との関係から、道路勾配に置き換えることも可能である。実線211の道路勾配情報は、車両1の現在位置Lが上り坂の途中であり、当該上り坂の直後には下り坂が存在していることを示している。
 例えば、自動走行制御部120は、道路勾配情報に基づいて、道路前方の所定の距離の範囲内に、上り坂から下り坂へと転じる部分(坂の頂上)が存在するか否かを、逐次判定する。
 そして、自動走行制御部120は、坂の頂上が存在する場合、現在位置Lの直後の位置Lで惰性走行に切り替えた場合に、惰性走行のまま坂の頂上を超えられるかを判定する。すなわち、自動走行制御部120は、坂の頂上における車速が許容最低車速「Vmin’」以上となるか否かを計算する。自動走行制御部120は、かかる計算を、現在の車速「v」と、実験等により予め求められた車両1の走行抵抗係数と、道路勾配情報とに基づいて行う。
 上り坂で惰性走行に切り替えた場合、車速は徐々に低下する。しかしながら、下り坂に差し掛かる位置で最低車速が「Vmin’」(V’-va)以上の車速が維持される程度に、速度が高い、あるいは、頂上までの距離が短い場合がある。このような場合、上り坂で惰性走行に切り替えたとしても、惰性走行における最低車速が「Vmin’」以上であるという上記走行条件を満たすことが可能である。
 自動走行制御部120は、惰性走行のまま坂の頂上を超えられると判定した場合、例えば、直後の位置Lで惰性走行に切り替え、車速が「Vmin’~Vmax’」(V’-va~V’+vb)の範囲を逸脱する位置Lまで惰性走行を維持することを決定する。そして、自動走行制御部120は、図3の下側に実線212で示すように、位置Lで惰性走行に切り替えて位置Lまで惰性走行を維持する内容の走行スケジュールを生成する。
 具体的には、自動走行制御部120は、例えば、以下の式(1)を用いて、車両1が頂上位置Lまで惰性走行を行った場合の頂上位置Lにおける車速の推定値(以下「頂上推定車速」という)「v」を算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、Mは車両1の現在の車重、gは重力加速度、h0は車両1の現在位置Lの標高、hは頂上位置Lの標高、μは車両1の転がり抵抗係数、Δxは現在位置Lから頂上位置Lまでの水平方向における距離(道のり)である。
 そして、自動走行制御部120は、算出された頂上推定車速「v」が設定された許容最低車速「Vmin’」以上である場合、惰性走行中であればこれを維持し、駆動走行中であれば惰性走行に切り替えることを決定する。すなわち、自動走行制御部120は、例えば図3の実線212に示すような走行スケジュールを生成し、これに従って車両1を制御する。
 このような、道路勾配情報に基づいて決定された惰性走行の区間を含む走行スケジュールは、車両1の燃費を効果的に向上させる。また、走行スケジュールに従って車両1を走行させることにより、運転者が逐次のアクセル操作を行う必要がなくなる。以下、道路勾配情報に基づいて生成された、駆動走行と惰性走行とを含む走行スケジュールに基づく自動走行は、「エコ地図クルーズ走行」という。
 図2の説明に戻る。自動走行制御部120は、惰性走行制御部110から禁止信号が出力されていると、走行スケジュールが惰性走行となっていても、惰性走行を行わない。自動走行制御部120は、惰性走行制御部110から禁止信号が出力されておらず、走行スケジュールが惰性走行であると、惰性走行を行う。
 図4は、惰性走行の制御例を説明する図である。図4に示す第1の閾値は、第2の閾値より値が大きいとする。第1の閾値は、例えば、アクセル開度が5%(全開を100%とする)となる値であり、第2の閾値は、例えば、アクセル開度が2%となる値である。
 車両1が惰性走行中のとき、アクセルが踏まれたとする。アクセルセンサ31から出力されるアクセル開度が第1の閾値未満であると、惰性走行制御部110は、自動走行制御部120に対し、禁止信号を出力しない。すなわち、車両1は、アクセルが少し踏まれただけでは(アクセル開度が第1の閾値未満であれば)、惰性走行が解除されず、惰性走行を続ける。
 一方、アクセルセンサ31から出力されるアクセル開度が、矢印A1に示すように、第1の閾値を超えた場合、自動走行制御部120は、惰性走行制御部110に対し、禁止信号を出力する。これにより、自動走行制御部120は、車両1の惰性走行を解除(終了)し、例えば、車両1に対してアクセル開度に応じた走行を行うよう制御する。すなわち、ドライバがアクセルを大きく踏むと(アクセル開度が第1の閾値を超えるようにアクセルを踏むと)、車両1は、惰性走行が解除され、ドライバのアクセル操作に応じた加速を行う。つまり、ドライバは、アクセルを大きく踏むことにより、惰性走行を解除し、車両1を加速させることができる。
 惰性走行制御部110は、アクセル開度が第1の閾値を超え、禁止信号を出力すると、アクセル開度が第2の閾値を下回るまでは、禁止信号を出力し続ける。すなわち、車両1は、惰性走行が解除されると、ドライバがある程度アクセルを戻すまでは(アクセル開度が第2の閾値を下回るようにアクセルを戻すまでは)、惰性走行が禁止され、ドライバのアクセル操作に応じた加速を行う。
 惰性走行制御部110は、矢印A2に示すように、アクセル開度が第2の閾値を下回ると、禁止信号の出力を停止する。これにより、自動走行制御部120は、車両1が惰性走行を行うように制御する。
 惰性走行制御部110は、アクセル開度が第2の閾値を下回り、禁止信号の出力を停止すると、アクセル開度が第1の閾値を超えるまで、禁止信号の出力を停止する。すなわち、車両1は、アクセルが少し踏まれただけでは(アクセル開度が第1の閾値未満であれば)惰性走行が解除されず、惰性走行を続ける。
 このように、惰性走行制御部110から出力される禁止信号は、ヒステリシスを持つ。これにより、走行制御装置100は、例えば、ドライバの意識しない頻繁なアクセル操作による、走行状態の切り替わることを抑制できる。また、走行制御装置100は、ドライバの意識したアクセル操作に応じて、車両1を惰性走行から、加速させることができる。
 なお、上記では、車両1が惰性走行中のときについて説明したが、駆動走行中でも同様である。例えば、駆動走行中、アクセル開度が第1の閾値を超えない限り、惰性走行制御部110からは、禁止信号は出力されない。従って、車両1は、アクセル開度が第1の閾値を超えない限りは、走行スケジュールに従って、駆動走行から惰性走行に移行することができる(惰性走行は禁止されない)。
 走行制御装置100の動作例について説明する。
 図5は、走行制御装置100の動作例を示したフローチャートである。走行制御装置100は、例えば、運転者からエコ地図クルーズ走行の操作を受け付けると、所定の周期で図5に示すフローチャートの処理を実行する。なお、自動走行制御部120は、エコ地図クルーズ走行によって、車両1を惰性走行させているとする。
 まず、惰性走行制御部110は、アクセルセンサ31からアクセル開度を受信する(ステップS1)。
 次に、惰性走行制御部110は、ステップS1にて受信したアクセル開度が、第1の閾値を超えたか否か判定する(ステップS2)。惰性走行制御部110は、ステップS1にて受信したアクセル開度が、第1の閾値を超えたと判定した場合(S2の「Yes」)、自動走行制御部120に禁止信号を出力する(ステップS3)。そして、惰性走行制御部110は、当該フローチャートの処理を終了する。これにより、自動走行制御部120は、車両1の惰性走行を禁止する。
 一方、惰性走行制御部110は、ステップS1にて受信したアクセル開度が、第1の閾値を超えてないと判定した場合(S2の「No」)、ステップS1にて受信したアクセル開度が、第2の閾値を下回ったか否か判定する(ステップS4)。惰性走行制御部110は、ステップS1にて受信したアクセル開度が、第2の閾値を下回ったと判定した場合(S4の「Yes」)、自動走行制御部120への禁止信号の出力を停止する(ステップS5)。これにより、自動走行制御部120は、車両1の惰性走行の禁止を解除する。
 一方、惰性走行制御部110は、ステップS1にて受信したアクセル開度が、第2の閾値を下回ってないと判定した場合(S4の「No」)、当該フローチャートの処理を終了する。
 以上説明したように、走行制御装置100は、駆動走行と惰性走行とを含む走行スケジュールに従って車両1を走行させる自動走行制御部120を有する。また、走行制御装置100は、アクセルセンサ31から出力されるアクセル開度が第1の閾値を超えた場合、惰性走行を禁止し、アクセル開度が第1の閾値より小さい第2の閾値を下回った場合、惰性走行の禁止を解除するように自動走行制御部120を制御する惰性走行制御部110を有する。これにより、走行制御装置100は、車両の走行状態を適切に切り替えることができる。
 本出願は、2017年2月3日付で出願された日本国特許出願(特願2017-018717)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示に係る走行制御装置は、駆動走行と惰性走行とを含む走行スケジュールに従って走行する車両に用いるのに好適である。
 31 アクセルセンサ
 100 走行制御装置
 110 惰性走行制御部
 120 自動走行制御部

Claims (4)

  1.  駆動走行と惰性走行とを含む走行スケジュールに従って車両を走行させる自動走行制御部と、
     アクセル開度が第1の閾値を超えた場合、前記惰性走行を禁止し、アクセル開度が前記第1の閾値より小さい第2の閾値を下回った場合、前記惰性走行の禁止を解除するように前記自動走行制御部を制御する惰性走行制御部と、
     を有する走行制御装置。
  2.  前記惰性走行制御部は、アクセル開度が前記第1の閾値を超えた後、前記第2の閾値を下回るまで、前記自動走行制御部に対し前記惰性走行を禁止する、
     請求項1に記載の走行制御装置。
  3.  前記惰性走行制御部は、アクセル開度が前記第2の閾値を下回った後、前記第1の閾値を超えるまで、前記自動走行制御部に対し前記惰性走行の禁止を解除する、
     請求項1に記載の走行制御装置。
  4.  駆動走行と惰性走行とを含む走行スケジュールに従って車両を走行させ、
     アクセル開度が第1の閾値を超えた場合、惰性走行を禁止し、アクセル開度が第1の閾値より小さい第2の閾値を下回った場合、前記惰性走行の禁止を解除する、
     走行制御方法。
PCT/JP2018/003429 2017-02-03 2018-02-01 走行制御装置および走行制御方法 WO2018143352A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/482,810 US20210009132A1 (en) 2017-02-03 2018-02-01 Travel control device and travel control method
DE112018000686.7T DE112018000686T5 (de) 2017-02-03 2018-02-01 Fahrsteuerungsvorrichtung und fahrsteuerungsverfahren
CN201880008573.5A CN110234551A (zh) 2017-02-03 2018-02-01 行驶控制装置及行驶控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018717A JP2018122819A (ja) 2017-02-03 2017-02-03 走行制御装置および走行制御方法
JP2017-018717 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143352A1 true WO2018143352A1 (ja) 2018-08-09

Family

ID=63039808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003429 WO2018143352A1 (ja) 2017-02-03 2018-02-01 走行制御装置および走行制御方法

Country Status (5)

Country Link
US (1) US20210009132A1 (ja)
JP (1) JP2018122819A (ja)
CN (1) CN110234551A (ja)
DE (1) DE112018000686T5 (ja)
WO (1) WO2018143352A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016022772A (ja) * 2014-07-17 2016-02-08 株式会社デンソー 車両制御装置
JP2016182935A (ja) * 2015-03-27 2016-10-20 いすゞ自動車株式会社 走行制御装置および走行制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5985142B2 (ja) * 2010-07-30 2016-09-06 いすゞ自動車株式会社 惰行制御装置
WO2013014741A1 (ja) * 2011-07-25 2013-01-31 トヨタ自動車株式会社 車両制御装置
JP5633557B2 (ja) * 2012-11-28 2014-12-03 トヨタ自動車株式会社 走行制御装置
JP6331295B2 (ja) * 2013-09-05 2018-05-30 いすゞ自動車株式会社 車両の自動走行装置、車両、及び車両の自動走行方法
JP6555463B2 (ja) 2014-12-19 2019-08-07 三菱ふそうトラック・バス株式会社 車両の走行制御装置
JP6323919B2 (ja) 2016-10-28 2018-05-16 株式会社ニューギン 遊技機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016022772A (ja) * 2014-07-17 2016-02-08 株式会社デンソー 車両制御装置
JP2016182935A (ja) * 2015-03-27 2016-10-20 いすゞ自動車株式会社 走行制御装置および走行制御方法

Also Published As

Publication number Publication date
CN110234551A (zh) 2019-09-13
JP2018122819A (ja) 2018-08-09
US20210009132A1 (en) 2021-01-14
DE112018000686T5 (de) 2019-10-17

Similar Documents

Publication Publication Date Title
CN107428339B (zh) 行驶控制装置及行驶控制方法
WO2013014741A1 (ja) 車両制御装置
WO2016152750A1 (ja) 走行制御装置、及び、走行制御方法
US11220276B2 (en) Travel control device, vehicle, and travel control method
WO2016152751A1 (ja) 走行制御装置、及び、走行制御方法
WO2018143351A1 (ja) 走行制御装置および走行制御方法
JP7005904B2 (ja) 走行制御装置、車両および走行制御方法
WO2016152749A1 (ja) 走行制御装置、及び、走行制御方法
WO2016152723A1 (ja) 走行制御装置、及び、走行制御方法
WO2018173965A1 (ja) 走行制御装置、車両および走行制御方法
JP6885131B2 (ja) 走行制御装置、車両および走行制御方法
JP2018127095A (ja) 走行制御装置、車両および走行制御方法
WO2018143352A1 (ja) 走行制御装置および走行制御方法
US11214255B2 (en) Vehicle control device and vehicle control method
WO2018173964A1 (ja) 走行制御装置、車両および走行制御方法
JP6958082B2 (ja) 走行制御装置、車両および走行制御方法
JP7056033B2 (ja) 走行制御装置、車両および走行制御方法
JP6932939B2 (ja) 走行制御装置、車両および走行制御方法
JP2018127138A (ja) 走行制御装置、車両および走行制御方法
JP2019031189A (ja) 走行制御装置、車両および走行制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747839

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18747839

Country of ref document: EP

Kind code of ref document: A1