WO2018143116A1 - カラーフィルター方式の色彩輝度計を校正する方法およびカラーフィルター方式の色彩輝度計 - Google Patents

カラーフィルター方式の色彩輝度計を校正する方法およびカラーフィルター方式の色彩輝度計 Download PDF

Info

Publication number
WO2018143116A1
WO2018143116A1 PCT/JP2018/002671 JP2018002671W WO2018143116A1 WO 2018143116 A1 WO2018143116 A1 WO 2018143116A1 JP 2018002671 W JP2018002671 W JP 2018002671W WO 2018143116 A1 WO2018143116 A1 WO 2018143116A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
correction
measurement values
values
luminance meter
Prior art date
Application number
PCT/JP2018/002671
Other languages
English (en)
French (fr)
Inventor
良太 宮
崇慶 岡田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201880009082.2A priority Critical patent/CN110234969B/zh
Priority to JP2018565524A priority patent/JP6787411B2/ja
Publication of WO2018143116A1 publication Critical patent/WO2018143116A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters

Definitions

  • the present invention relates to a method for calibrating a color filter type color luminance meter and a color filter type color luminance meter.
  • the color display synthesizes the composite color (W) by performing additive color mixing of the three basic colors red (R), green (G), and blue (B), and displays the combined W.
  • the displayed color value of W is adjusted by adjusting the amount of R, G, and B color mixture.
  • the tristimulus values of W are R tristimulus values (X R , Y R , Z R ), G tristimulus values (X G , Y G , Z G ) and B tristimulus values (X B , Y B , Z B ) do not coincide with the sum.
  • Patent Document 1 The technique described in Patent Document 1 is an example.
  • a 3-by-3 conversion matrix B for linearly converting the color space coordinate values is calculated. That is, the correction coefficient b satisfying the equation (2) when the three measured values before correction for each basic color are x, y, and z and the three reference values for each basic color are X, Y, and Z.
  • a 3-by-3 transformation matrix B having 11 , b 12 , b 13 , b 21 , b 22 , b 23 , b 31 , b 32 and b 33 as components is calculated.
  • the color space is rotated, enlarged or reduced so that the three measurement values before correction are converted into three true values at the calibration point of each basic color.
  • the three measurement values before correction are not necessarily converted into three true values at the calibration point of W.
  • a 3-by-3 conversion matrix for linearly converting the color space coordinate values so that the three measurement values before correction of W are converted into the three reference values of W C is calculated. That is, the correction coefficient satisfying the expression (3) when the three measurement values before correction are x ′ W , y ′ W and z ′ W and the three reference values are X W , Y W and Z W.
  • a transformation matrix C which is a 3-by-3 diagonal matrix having c 11 , c 22 and c 33 as components, is calculated.
  • the color space is expanded or reduced so that the three measurement values before correction are converted into three true values at the W calibration point.
  • the transformation matrices B and C are three before correction.
  • a column vector having measured values as components is sequentially multiplied from the left. That is, a 3-by-3 conversion matrix M having correction coefficients m 11 , m 12 , m 13 , m 21 , m 22 , m 23 , m 31 , m 32, and m 33 as components is satisfied.
  • the calculated transformation matrix M is multiplied from the left by a column vector having three measurement values before correction, and a column vector having three measurement values after correction is obtained.
  • the color luminance meter includes three spectroscopic sensors each having spectral responsivities approximated to the x component, the y component, and the z component of the xyz color matching function. Measurement values X, Y and Z representing the magnitudes of the signals to be output are obtained.
  • the color luminance meter is calibrated at W, R, G and B calibration points.
  • Table 1 shows examples of reference values for W, R, G, and B.
  • Table 2 shows examples of measured values before correction of W, R, G, and B.
  • Table 3 shows examples of measured values after correction of W, R, G, and B.
  • FIG. 8 is a diagram illustrating examples of W, R, G, and B reference values and pre-correction measured values of W, R, G, and B on a three-dimensional color space in a conventional color luminance meter.
  • FIG. 9 is a diagram illustrating examples of W, R, G, and B reference values and corrected measurement values of W, R, G, and B in a three-dimensional color space in a conventional color luminance meter.
  • the measurement value 930 before W correction, the measurement value 931 before R correction, the measurement value 932 before G correction, the measurement value 932 before correction B, and the measurement value 933 before correction B become W
  • the reference value 950 for R, the reference value 951 for R, the reference value 952 for G, and the reference value 953 for B do not match.
  • the corrected W measurement value 940 matches the W reference value 950, and no error occurs in the corrected W measurement value 940.
  • the corrected measurement value 941, the corrected G measurement value 942, and the corrected B measurement value 943 do not match the R reference value 951, the G reference value 952, and the B reference value 953, respectively.
  • An error occurs in the value 941, the corrected measurement value 942 of G, and the corrected measurement value 943 of B. From this, it can be understood that the calibration is accurately performed at the W calibration point, but the calibration is not accurately performed at the R, G, and B calibration points.
  • FIG. 10 is a diagram illustrating examples of W, R, G, and B reference values and measured values before correction of W, R, G, and B on a chromaticity diagram in a conventional color luminance meter.
  • FIG. 11 is a diagram illustrating an example of measured values before correction of W, R, G, and B and measured values before correction of each color on a chromaticity diagram in a conventional color luminance meter.
  • FIG. 12 illustrates examples of W, R, G, and B reference values, W, R, G, and B pre-correction measurement values and post-correction measurement values for each color on a chromaticity diagram in a conventional color luminance meter.
  • the measurement value 930 before W correction, the measurement value 931 before R correction, the measurement value 932 before G correction, the measurement value 932 before correction B, and the measurement value 933 before correction B become W
  • the reference value 950 for R, the reference value 951 for R, the reference value 952 for G, and the reference value 953 for B do not match.
  • the ratio of the distance between the corrected measurement values 961 does not change greatly from the ratio of the distance between the adjacent measurement values 960 before correction. From this, it can be confirmed that the three-dimensional color space before correction is linearly transformed into the three-dimensional color space after correction.
  • the corrected W measurement value 940 matches the W reference value 950, and no error occurs in the corrected W measurement value 940.
  • the corrected measurement value 941, the corrected G measurement value 942, and the corrected B measurement value 943 do not match the R reference value 951, the G reference value 952, and the B reference value 953, respectively.
  • An error occurs in the value 941, the corrected measurement value 942 of G, and the corrected measurement value 943 of B. From this, it can be understood that the calibration is accurately performed at the W calibration point, but the calibration is not accurately performed at the R, G, and B calibration points.
  • the invention described below aims to solve this problem.
  • the problem to be solved by the invention described below is to prevent an error from occurring in all the measured values after correction of three or more basic colors and synthesized colors in a color filter type color luminance meter.
  • n spectral sensors provided in a color filter type color luminance meter have different spectral responsiveness and output n signals corresponding to the colors to be measured, respectively.
  • n is an integer of 3 or more.
  • n pre-correction measurement values each indicating the magnitude of n signals to n post-correction measurement values is performed.
  • the n-dimensional color space before correction is corrected so that conversion is performed from n measurement values before correction in the n-dimensional color space before correction to n measurement values after correction in the corrected n-dimensional color space.
  • the n pre-correction measurement values of each color which is a specific value of n measurement values before correction, are changed to n reference values of each color.
  • conversion from n measurement values before correction in the n-dimensional color space before correction to n measurement values after correction in the n-dimensional color space after correction is determined.
  • 1 1st Embodiment 1st Embodiment is related with correction
  • FIG. 1 is a diagram for explaining correction of measured values in the color luminance meter according to the first embodiment.
  • the color luminance meter for correcting the measurement value according to the first embodiment is a color luminance type color luminance meter.
  • n spectral sensors 122_1, 122_2,. Prepare.
  • the spectral sensors 122_1, 122_2,..., 122_n have different spectral responsiveness and output n signals corresponding to the colors to be measured measured by the color luminance meter.
  • n is an integer of 3 or more.
  • the color filter type color luminance meter is also called a stimulus value direct reading type color luminance meter.
  • n pre-correction measurement values v (1), v (2),. ., v (n) to n corrected measurement values V (1), V (2),..., V (n) are converted.
  • the conversion is made from the measurement values v (1), v (2),..., V (n) before correction in the n-dimensional color space before correction to the measurement value V (1) after correction in the corrected n-dimensional color space.
  • V (2), ..., V (n) is performed by n + 1-order homographic transformation that nonlinearly transforms the n-dimensional color space before correction into the n-dimensional color space after correction. Is called.
  • the conversion may be performed by conversion other than n + 1-order homographic conversion.
  • FIG. 2 is a diagram for explaining calibration of the color luminance meter according to the first embodiment.
  • the measurement value v before correction when the i-th color, which is each of the first to n + 2 colors, is the color to be measured.
  • Measured value v (i, 1), v (i, 2), ..., v of i-th color which is a specific value of (1), v (2), ..., v (n) (i, n) is obtained.
  • the transformation is determined so that the transformation to V (i, 2), ..., V (i, n) is performed. That is, the measurement values v (i, 1), v (i, 2), ..., v (i, n) of the i-th color are a 1 , a 2 , ..., an respectively .
  • S is a coefficient of a certain magnification.
  • V (i, 1), V (i, 2), ..., V (i, n) of the i-th color is an accurate color value of the i-th color, and the i-th color is It can be obtained by measuring with a spectral color luminance meter.
  • Equation (5) can be summarized as Equation (6).
  • Equation (7) is obtained.
  • the left side of equation (7) is a matrix P of n ⁇ (n + 2) rows and 1 column, ie, n 2 + 2n rows and 1 column
  • the first factor on the right side of equation (7) is n ⁇ (n + 2) rows (n + 1) 2 ⁇
  • the second factor on the right side of the equation (7) is a matrix H of (n + 1) 2 ⁇ 1 rows 1 column, that is, n 2 + 2n rows 1 columns.
  • Equation (8) Since the matrix M is a square matrix, there is an inverse matrix M ⁇ 1 of the matrix M. Therefore, the homographic transformation matrix H is calculated as shown in Equation (8).
  • the measurement values v (i, 1), v (i, 2),..., V (i) of the i-th color which is each of the first to n + 2 colors. , n) to the reference value V (i, 1), V (i, 2),..., V (i, n) of the i-th color, after the correction of the i-th color
  • the first to n + 2 colors can include n basic colors and composite colors. Therefore, after this calibration is performed, the corrected measurement value matches the reference value at both of the n basic color calibration points and the composite color calibration point, and no error occurs in the corrected measurement value. Calibration is performed with high accuracy.
  • the second embodiment relates to a color luminance meter, correction of measurement values in the color luminance meter, and calibration of the color luminance meter.
  • FIG. 3 is a block diagram illustrating a color luminance meter according to the second embodiment.
  • FIG. 4 is a schematic diagram illustrating a light detection unit provided in the color luminance meter of the second embodiment.
  • the correction of the measurement value performed in the color luminance meter 200 illustrated in FIG. 3 is obtained by setting n to 3 in the correction of the measurement value in the first embodiment.
  • n is set to 3 in the calibration of the first embodiment.
  • the color luminance meter 200 is a color luminance type color luminance meter, and is configured to measure the color value of the color displayed on the color display. As shown in FIG. 212, an input unit 214, an output unit 216, and a memory 218. As illustrated in FIG. 4, the light detection unit 210 includes a lens 220, a spectroscopic sensor 222_1, a spectroscopic sensor 222_2, and a spectroscopic sensor 222_3. The color luminance meter 200 may include components other than these components. The color luminance meter 200 may measure colors other than those displayed on the color display.
  • the spectroscopic sensors 222_1, 222_2, and 222_3 have spectral responsivities that approximate the x component, the y component, and the z component of the xyz color matching function, respectively. Therefore, the spectral sensors 222_1, 222_2, and 222_3 have different spectral responsiveness.
  • the spectroscopic sensors 222_1, 222_2 and 222_3 receive light arriving from the display via the lens 220 and output a signal corresponding to the received light. To do. Thereby, the spectroscopic sensors 222_1, 222_2, and 222_3 output signals according to the color to be measured.
  • the calculation unit 212 converts the three pre-correction measurement values x, y, and z indicating the magnitudes of the signals output from the spectroscopic sensors 222_1, 222_2, and 222_3, respectively, into three post-correction measurement values X, Y, and Z. I do.
  • the conversion is performed so that the pre-correction measurement values x, y, and z in the three-dimensional color space before correction are converted into the post-correction measurement values X, Y, and Z in the three-dimensional color space after correction. This is performed by fourth-order homographic transformation that nonlinearly transforms the three-dimensional color space into a corrected three-dimensional color space.
  • the calculation unit 212 reads the conversion coefficient necessary for the fourth-order homographic conversion from the memory 218.
  • the calculation unit 212 is realized by causing an embedded computer to execute a calculation program. Part or all of the processing performed by the calculation unit 212 may be performed by hardware that does not execute the program.
  • the output unit 216 outputs the obtained corrected measurement values X, Y, and Z.
  • the corrected measured values X, Y, and Z which are the color values in the XYZ color system
  • other types of color values obtained from the corrected measured values X, Y, and Z may be output.
  • color values in the Munsell color system, L * a * b * color system, L * C * h color system, Hunter Lab color system, and the like may be output.
  • the output unit 216 may be a user interface that presents data to the operator, or may be a communication unit that transmits data to other devices.
  • the user interface is a display, a printer, or the like.
  • red (R), green (G), blue (B), composite color (W) and black (K) are displayed on the color display, and displayed R, G, B, W and K are measured by the color luminance meter 200.
  • R is the measured color
  • R before-correction measured values x R , y R and z R which are specific values of the measured values x, y and z before correction, when G is the measured color.
  • Pre-correction measurement values x G , y G and z G which are specific values of the measurement values x, y and z before correction Specific values of the measurement values x, y and z before correction when B is the color to be measured uncorrected measured value x B of B is, y B and z B, W is the measured value before correction when a measured color x, y and a specific value of z W of pre-correction measured value x W, y
  • the pre-correction measurement values x 0 , y 0, and z 0 of K which are specific values of the measurement values x, y, and z before correction when W and z W are the color to be measured, are obtained.
  • the reference value X R , Y R and Z R for R , the reference value X G , Y G and Z G for G , the reference value X B , Y B and Z B for W, and the reference value for W are input to the input unit 214.
  • X W , Y W and Z W , and K reference values X 0 , Y 0 and Z 0 are input.
  • the input unit 214 may be a user interface that receives an operation by an operator, or a communication unit that receives data from another device.
  • the user interface is a keyboard, buttons, dial, touch panel, or the like.
  • the calculation unit 212 performs conversion from the R pre-correction measurement values x R , y R and z R to the R reference values X R , Y R and Z R , and the G pre-correction measurement values x G , y G And z G to G reference values X G , Y G and Z G , and B pre-correction measured values x B , y B and z B to B reference values X B , Y B and Z B Conversion to W, pre-correction measured values x W , y W and z W are converted to W reference values X W , Y W and Z W , and K pre-correction measured values x 0 , The conversion is determined such that conversion from y 0 and z 0 to K reference values X 0 , Y 0 and Z 0 is performed.
  • the arithmetic unit 212 calculates the calibration coefficients h 11 , h 12 , h 13 , h 14 , h, which are the components of the homographic transformation matrix H that satisfy the expressions (7), (9), (10), and (11).
  • Calibration coefficient h 11, h 12, h 13 , h 14, h 21, h 22, h 23, h 24, h 31, h 32, h 33, h 34, h 41, h 42 and h 43 are luminance colorimeter It may be calculated outside of 200.
  • the corrected measured value matches the reference value at each of the R, G, B, W, and K calibration points, and no error occurs in the corrected measured value. Done. Therefore, after this calibration is performed, the corrected measured value matches the reference value at both of the three basic color R, G and B calibration points and the composite color W calibration point. No error occurs and calibration is performed with high accuracy.
  • Table 4 shows examples of W, R, G, and B reference values.
  • Table 5 shows examples of measured values before correction of W, R, G and B.
  • Table 6 shows examples of measured values after correction of W, R, G, and B. Since the K reference value, the pre-correction measurement value, and the post-correction measurement value are 0, the description of the K reference value, the pre-correction measurement value, and the post-correction measurement value is omitted.
  • the measured values after correction of W, R, G, and B are standards of W, R, G, and B. It corresponds to each value, and no error occurs in the corrected measured values of W, R, G and B. From this, it can be understood that the calibration is performed with high accuracy at the calibration points of W, R, G and B.
  • FIG. 5 is a diagram illustrating an example of W, R, G, and B reference values and corrected values of W, R, G, and B in a three-dimensional color space in the color luminance meter according to the second embodiment. .
  • a measured value 240 after W correction a measured value 241 after R correction, a measured value 242 after G correction, and a measurement after B correction.
  • the value 243 coincides with the W reference value 250, the R reference value 251, the G reference value 252, and the B reference value 253, and the W corrected measurement value 240, the R corrected measurement value 241, and the G correction.
  • No error occurs in the post-measurement value 242 and the post-correction measurement value 243 of B. From this, it can be understood that the calibration is performed with high accuracy at the calibration points of W, R, G and B.
  • FIG. 6 is an example of W, R, G, and B reference values, W, R, G, and B pre-correction measurement values and post-correction measurement values for each color in the chromaticity diagram of the color luminance meter according to the second embodiment.
  • FIG. FIG. 11 is a diagram illustrating examples of measured values before correction of W, R, G, and B and measured values before correction of each color on the chromaticity diagram in the color luminance meter according to the second embodiment.
  • the post-correction measurement value 261 for each color in the RGB color space shown in FIG. 6 is used as the pre-correction measurement value 260 for each color in the RGB color space shown in FIG.
  • the ratio of distances between adjacent corrected measurements 261 varies significantly from the ratio of distances between adjacent uncorrected measurements 260. From this, it can be confirmed that the three-dimensional color space before correction is nonlinearly transformed into the three-dimensional color space after correction.
  • the corrected W measurement value 240 matches the W reference value 250 but also the R corrected measurement value 241 and the G corrected measurement.
  • the corrected value 243 and the corrected measurement value 243 of B coincide with the R reference value 251, the G reference value 252 and the B reference value 253, respectively. From this, it can be understood that the calibration is performed with high accuracy at the calibration points of W, R, G and B.
  • the third embodiment relates to a color luminance meter, correction of measurement values in the color luminance meter, and calibration of the color luminance meter.
  • the color space before the correction can be nonlinearly transformed into the color space after the correction by homographic conversion so that the calibration can be performed with high accuracy. Is shown.
  • FIG. 3 is also a block diagram illustrating a color luminance meter according to the third embodiment.
  • FIG. 7 is a schematic view illustrating a light detection unit provided in the color luminance meter of the third embodiment.
  • n is set to 4 in the correction of the measurement value in the first embodiment.
  • n is set to 4 in the calibration of the first embodiment.
  • the color luminance meter 300 is a color filter type color luminance meter, and is configured to measure the color value of the color displayed on the color display. As shown in FIG. 312, an input unit 314, an output unit 316, and a memory 318. As illustrated in FIG. 7, the light detection unit 310 includes a lens 320, a spectral sensor 322_1, a spectral sensor 322_2, a spectral sensor 322_3, and a spectral sensor 322_4.
  • the spectroscopic sensors 322_1, 322_2, and 322_3 have spectral responsivities that approximate the x component, the y component, and the z component of the xyz color matching function, respectively. Therefore, the spectroscopic sensors 322_1, 322_2, and 322_3 have different spectral responsiveness.
  • the spectral sensor 322_4 also has a spectral response that is different from the spectral response of the spectral sensors 322_1, 322_2, and 322_3.
  • the spectroscopic sensors 322_1, 322_2, 322_3, and 322_4 receive light arriving from the display via the lens 320, and a signal corresponding to the received light. Is output. Accordingly, the spectroscopic sensors 322_1, 322_2, 322_3, and 322_4 output signals corresponding to the color to be measured.
  • the calculation unit 312 calculates four post-correction measurement values X, Y, z from four pre-correction measurement values x, y, z, and v indicating the magnitudes of the signals output from the spectroscopic sensors 322_1, 322_2, 322_3, and 322_4, respectively. Convert to Z and V. The conversion is performed so that the measurement values x, y, z and v before correction in the four-dimensional color space before correction are converted into the measurement values X, Y, Z and V after correction in the four-dimensional color space after correction. This is performed by fifth-order homographic transformation that nonlinearly transforms a four-dimensional color space before correction into a four-dimensional color space after correction.
  • the calculation unit 312 reads the conversion coefficient necessary for the fifth-order homographic conversion from the memory 318.
  • the output unit 316 outputs the obtained corrected measurement values X, Y, Z, and V.
  • red (R), green (G), blue (B), yellow (Y), composite color (W) and black (K) are displayed and displayed on the color display.
  • R, G, B, Y, W and K are measured by the color luminance meter 300.
  • the pre-correction measurement values x R , y R , z R and v R , G of R which are specific values of the measurement values x, y, z and v before correction when R is the color to be measured, are measured.
  • Pre-correction measurement values x G , y G , z G and v G , and B G which are specific values of the measurement values x, y, z and v before correction in the case of color
  • Pre-correction measurement values x B , y B , z B and v B , Y which are specific values of the measurement values x, y, z, and v, are measured values x, y, z before correction when the measured colors are the measured colors.
  • Specific values of Y and pre-correction measured values x Y , y Y , z Y and v Y , and W are specific values of pre-corrected measured values x, y, z and v
  • Pre-correction measurement values x W , y W , z W and v W , and K measurement values before correction which are specific values of the measurement values x, y, z and v before correction when K is the color to be measured x 0 , y 0 , z 0 and v 0 are obtained.
  • the reference value X R , Y R , Z R and V R of R , the reference value X G , Y G , Z G and V G of G , the reference value X B , Y B , Z of B are input to the input unit 314.
  • B and V B , Y reference values X Y , Y Y , Z Y and V Y , W reference values X W , Y W , Z W and V W , and K reference values X 0 , Y 0 , Z 0 And V 0 are input.
  • the calculation unit 312 performs conversion from R measured values x R , y R , z R and v R to R reference values X R , Y R , Z R and V R to measure G before correction.
  • the values x G , y G , z G and v G are converted to G reference values X G , Y G , Z G and V G , and B pre-correction measured values x B , y B , z B and v Conversion from B to B reference values X B , Y B , Z B and V B is performed, and Y pre-correction measured values x Y , y Y , z Y and v Y to Y reference values X Y , Conversion to Y Y , Z Y and V Y is performed, and the pre-correction measured values x W , y W , z W and v W of W are converted to reference values X W , Y W , Z
  • the arithmetic unit 312 has the calibration coefficients h 11 , h 12 , h 13 , h 14 , h that are components of the homographic transformation matrix H that satisfy the expressions (7), (12), (13), and (14).
  • the corrected measurement value matches the reference value at each of the R, G, B, Y, W, and K calibration points, and no error occurs in the corrected measurement value. Accurately done. Therefore, after this calibration is performed, the corrected measured value matches the reference value at both the calibration points of the basic colors R, G, B and Y and the calibration point of the composite color W, and the corrected measured value is obtained. No error occurs and calibration is performed with high accuracy.
  • the method for calibrating the color filter type color luminance meter and the color filter type color luminance meter according to the present invention may be used in the color measurement field for measuring the color of a color display or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

カラーフィルター方式の色彩輝度計において3個以上の基本色の校正点および合成色の全部の補正後測定値に誤差が生じないようにする。 カラーフィルター方式の色彩輝度計に備えられる3個の分光センサーが、互いに異なる分光応答度を有し、被測定色に応じた3個の信号をそれぞれ出力する。3個の信号の大きさをそれぞれ示す3個の補正前測定値から3個の補正後測定値への変換が行われる。補正前の3次元色空間における3個の補正前測定値から補正後の3次元色空間における3個の補正後測定値への変換が行われるように補正前の3次元色空間が補正後の3次元色空間に非線形に変形される。R,G,BおよびWの各々である各色が被測定色である場合における補正前測定値の具体値である各色の補正前測定値から各色の基準値への変換が行われるように変換が定められる。3個の分光センサーが4個以上の分光センサーに置き換えられてもよい。

Description

カラーフィルター方式の色彩輝度計を校正する方法およびカラーフィルター方式の色彩輝度計
 本発明は、カラーフィルター方式の色彩輝度計を校正する方法およびカラーフィルター方式の色彩輝度計に関する。
 カラーディスプレイは、3個の基本色である赤色(R)、緑色(G)および青色(B)を混合する加法混色を行うことにより合成色(W)を合成し、合成したWを表示する。表示されるWの色彩値は、R,GおよびBの混色量を調整することにより調整される。
 カラーディスプレイにより表示されたWの色彩値がカラーフィルター方式の色彩輝度計により測定された場合は、Wの測定された色度値がWの理論上の色度値からずれるという問題が生じる。この問題は、カラーディスプレイが行う加法混色の不完全性に起因する。すなわち、この問題は、カラーディスプレイにおいては、式(1)に示されるように、Wの三刺激値(XW,YW,ZW)がRの三刺激値(XR,YR,ZR)、Gの三刺激値(XG,YG,ZG)およびBの三刺激値(XB,YB,ZB)の和と一致しないことに起因する。
Figure JPOXMLDOC01-appb-M000001
 この問題を解消するため、カラーフィルター方式の色彩輝度計において3個の補正前測定値から3個の補正後測定値への3行3列の変換行列を用いた線形変換を行うことが提案されている。特許文献1に記載された技術は、その一例である。
 特許文献1に記載された技術に代表される従来の技術においては、R,GおよびBの校正点において校正が行われた後に、Wの校正点において校正が行われる。
 R,GおよびBの各々である各基本色の校正点において校正が行われる場合は、各基本色の3個の補正前測定値が各基本色の3個の基準値に変換されるように色空間座標値を線形変換する3行3列の変換行列Bが計算される。すなわち、各基本色の3個の補正前測定値がx,yおよびzであり各基本色の3個の基準値がX,YおよびZである場合に式(2)を満たす、補正係数b11,b12,b13,b21,b22,b23,b31,b32およびb33を成分に持つ3行3列の変換行列Bが計算される。
Figure JPOXMLDOC01-appb-M000002
 変換行列Bによれば、各基本色の校正点において3個の補正前測定値が3個の真値に変換されるように色空間の回転、拡大または縮小が行われる。しかし、加法混色が成立しない場合は、変換行列Bによっては、Wの校正点において3個の補正前測定値が3個の真値に変換されるとは限らない。
 Wの校正点において校正が行われる場合は、Wの3個の補正前測定値がWの3個の基準値に変換されるように色空間座標値を線形変換する3行3列の変換行列Cが計算される。すなわち、3個の補正前測定値がx'W,y'Wおよびz'Wであり3個の基準値がXW,YWおよびZWである場合に式(3)を満たす、補正係数c11,c22およびc33を成分に持つ3行3列の対角行列である変換行列Cが計算される。
Figure JPOXMLDOC01-appb-M000003
 変換行列Cによれば、Wの校正点において3個の補正前測定値が3個の真値に変換されるように色空間の拡大または縮小が行われる。
 R,GおよびBの各々である各基本色の校正点において校正が行われWの校正点において校正が行われた後に測定が行われた場合は、変換行列BおよびCが3個の補正前測定値を成分に持つ列ベクトルに左から順次に掛けられる。すなわち、式(4)を満たす、補正係数m11,m12,m13,m21,m22,m23,m31,m32およびm33を成分に持つ3行3列の変換行列Mが計算され、計算された変換行列Mが3個の補正前測定値を成分に持つ列ベクトルに左から掛けられ、3個の補正後測定値を成分に持つ列ベクトルが得られる。
Figure JPOXMLDOC01-appb-M000004
 このような従来の技術においては、R,GおよびBの校正点ならびにWの校正点の両方において校正が行われる。
特開平6-323910号公報
 特許文献1に記載された技術に代表される従来の技術においては、3個の基本色である赤色(R)、緑色(G)および青色(B)の校正点において校正が行われた後に合成色(W)の校正点においてさらに校正が行われる。このため、Wの校正点において校正が行われた後には、R,GおよびBの補正前測定値が真値に線形変換されなくなる。すなわち、R,GおよびBの補正後測定値に誤差が生じる。
 続いて、カラーディスプレイに表示された色の色彩値を測定するカラーフィルター方式の色彩輝度計が従来の技術により校正された場合にR,GおよびBの補正後測定値に生じる誤差の例について説明する。
 ここで説明される例においては、色彩輝度計が、xyz等色関数のx成分、y成分およびz成分に近似した分光応答度をそれぞれ有する3個の分光センサーを備え、3個の分光センサーが出力する信号の大きさをそれぞれ表現する測定値X,YおよびZを得る。当該色彩輝度計は、W,R,GおよびBの校正点において校正される。
 表1は、W,R,GおよびBの基準値の例を示す。表2は、W,R,GおよびBの補正前測定値の例を示す。表3は、W,R,GおよびBの補正後測定値の例を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表3を表1と比較することにより理解されるように、従来の技術により色彩輝度計が校正された場合は、Wの補正後測定値がWの基準値に一致し、Wの補正後測定値に誤差が生じない。しかし、R,GおよびBの補正後測定値がR,GおよびBの基準値にそれぞれ一致せず、R,GおよびBの補正後測定値に誤差が生じる。このことからは、Wの校正点において校正が精度よく行われるが、R,GおよびBの校正点において校正が精度よく行われないことを理解できる。
 続いて、3次元色空間上の基準値、補正前測定値および補正後測定値の例を参照しながら、従来の色彩輝度計において補正後測定値に生じる誤差について説明する。
 図8は、従来の色彩輝度計における3次元色空間上のW,R,GおよびBの基準値ならびにW,R,GおよびBの補正前測定値の例を図示する図である。図9は、従来の色彩輝度計における3次元色空間上のW,R,GおよびBの基準値ならびにW,R,GおよびBの補正後測定値の例を図示する図である。
 補正が行われる前は、図8に図示されるように、Wの補正前測定値930、Rの補正前測定値931、Gの補正前測定値932およびBの補正前測定値933が、Wの基準値950、Rの基準値951、Gの基準値952およびBの基準値953にそれぞれ一致しない。
 補正が行われた後は、図9に図示されるように、Wの補正後測定値940がWの基準値950に一致し、Wの補正後測定値940に誤差が生じないが、Rの補正後測定値941、Gの補正後測定値942およびBの補正後測定値943がRの基準値951、Gの基準値952およびBの基準値953にそれぞれ一致せず、Rの補正後測定値941、Gの補正後測定値942およびBの補正後測定値943に誤差が生じる。このことからは、Wの校正点において校正が精度よく行われるが、R,GおよびBの校正点において校正が精度よく行われないことを理解できる。
 続いて、色度図上の基準値、補正前測定値および補正後測定値の例を参照しながら、従来の色彩輝度計において補正後測定値に生じる誤差について説明する。
 図10は、従来の色彩輝度計における色度図上のW,R,GおよびBの基準値ならびにW,R,GおよびBの補正前測定値の例を図示する図である。図11は、従来の色彩輝度計における色度図上のW,R,GおよびBの補正前測定値ならびに各色の補正前測定値の例を図示する図である。図12は、従来の色彩輝度計における色度図上のW,R,GおよびBの基準値、W,R,GおよびBの補正前測定値ならびに各色の補正後測定値の例を図示する図である。
 補正が行われる前は、図10に図示されるように、Wの補正前測定値930、Rの補正前測定値931、Gの補正前測定値932およびBの補正前測定値933が、Wの基準値950、Rの基準値951、Gの基準値952およびBの基準値953にそれぞれ一致しない。
 図12に図示されるRGB色空間内の各色の補正後測定値961を図11に図示されるRGB色空間内の各色の補正前測定値960と比較することにより理解されるように、隣接する補正後測定値961の間の距離の比は隣接する補正前測定値960の間の距離の比から大きく変化しない。このことからは、補正前の3次元色空間が補正後の3次元色空間に線形に変形されることを確認できる。
 補正が行われた後は、図12に図示されるように、Wの補正後測定値940がWの基準値950に一致し、Wの補正後測定値940に誤差が生じないが、Rの補正後測定値941、Gの補正後測定値942およびBの補正後測定値943がRの基準値951、Gの基準値952およびBの基準値953にそれぞれ一致せず、Rの補正後測定値941、Gの補正後測定値942およびBの補正後測定値943に誤差が生じる。このことからは、Wの校正点において校正が精度よく行われるが、R,GおよびBの校正点において校正が精度よく行われないことを理解できる。
 このように、従来の技術においては、R,GおよびBの校正点において校正が行われた後にWの校正点においてさらに校正が行われ、R,GおよびBの補正後測定値に誤差が生じる。このようにR,G,BおよびWの補正後測定値の全部に誤差が生じないようにできないのは、3個の補正前測定値から3個の補正後測定値への変換が3行3列の変換行列を用いる線形変換であるため、色空間の変形の自由度が小さいことによる。この問題は、3個の基本色が4個以上の基本色に置き換えられる場合、R,GおよびBが他の3個の基本色に置き換えられる場合、カラーディスプレイにより表示された色以外の色が測定される場合等にも生じる。
 以下で説明する発明は、この問題を解決することを目的とする。以下で説明する発明が解決しようとする課題は、カラーフィルター方式の色彩輝度計において3個以上の基本色および合成色の補正後測定値の全部に誤差が生じないようにすることである。
 以下で説明する発明においては、カラーフィルター方式の色彩輝度計に備えられるn個の分光センサーが、互いに異なる分光応答度を有し、被測定色に応じたn個の信号をそれぞれ出力する。nは、3以上の整数である。
 n個の信号の大きさをそれぞれ示すn個の補正前測定値からn個の補正後測定値への変換が行われる。補正前のn次元色空間におけるn個の補正前測定値から補正後のn次元色空間におけるn個の補正後測定値への変換が行われるように補正前のn次元色空間が補正後のn次元色空間に非線形に変形される。
 互いに異なるn+2個の色の各々である各色が被測定色である場合におけるn個の補正前測定値の具体値である各色のn個の補正前測定値から各色のn個の基準値への変換が行われるように、補正前のn次元色空間におけるn個の補正前測定値から補正後のn次元色空間におけるn個の補正後測定値への変換が定められる。
 以下で説明する発明によれば、カラーフィルター方式の色彩輝度計において3個以上の基本色および合成色の補正後測定値の全部に誤差が生じなくなる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1実施形態の色彩輝度計における測定値の補正を説明する図である。 第1実施形態の色彩輝度計の校正を説明する図である。 第2実施形態および第3実施形態の色彩輝度計を図示するブロック図である。 第2実施形態の色彩輝度計に備えられる光検出部を図示する模式図である。 第2実施形態の色彩輝度計における3次元色空間上の基準値および補正後測定値の例を図示する図である。 第2実施形態の色彩輝度計における色度図上の基準値、補正前測定値および補正後測定値の例を図示する図である。 第3実施形態の色彩輝度計に備えられる光検出部を図示する模式図である。 従来の色彩輝度計における3次元色空間上の基準値および補正前測定値の例を図示する図である。 従来の色彩輝度計における3次元色空間上の基準値および補正後測定値の例を図示する図である。 従来の色彩輝度計における色度図上のW,R,GおよびBの基準値ならびにW,R,GおよびBの補正前測定値の例を図示する図である。 従来の色彩輝度計および第2実施形態の色彩輝度計における色度図上のW,R,GおよびBの補正前測定値ならびに各色の補正前測定値の例を図示する図である。 従来の色彩輝度計における色度図上のW,R,GおよびBの基準値、W,R,GおよびBの補正前測定値ならびに各色の補正後測定値の例を図示する図である。
 1 第1実施形態
 第1実施形態は、色彩輝度計における測定値の補正および色彩輝度計の校正に関する。
 図1は、第1実施形態の色彩輝度計における測定値の補正を説明する図である。
 第1実施形態の測定値の補正を行う色彩輝度計は、カラーフィルター方式の色彩輝度計であり、図1に図示されるように、n個の分光センサー122_1,122_2,・・・,122_nを備える。分光センサー122_1,122_2,・・・,122_nは、互いに異なる分光応答度を有し、色彩輝度計により測定される被測定色に応じたn個の信号をそれぞれ出力する。nは、3以上の整数である。カラーフィルター方式の色彩輝度計は、刺激値直読型の色彩輝度計とも呼ばれる。
 第1実施形態の測定値の補正においては、図1に図示されるように、n個の信号の大きさをそれぞれ示すn個の補正前測定値v(1),v(2),...,v(n)からn個の補正後測定値V(1),V(2),...,V(n)への変換が行われる。変換は、補正前のn次元色空間における補正前測定値v(1),v(2),...,v(n)から補正後のn次元色空間における補正後測定値V(1),V(2),...,V(n)への変換が行われるように補正前のn次元色空間を補正後のn次元色空間に非線形に変形するn+1次のホモグラフィック変換により行われる。変換がn+1次のホモグラフィック変換以外の変換により行われてもよい。
 図2は、第1実施形態の色彩輝度計の校正を説明する図である。
 第1実施形態の色彩輝度計の校正においては、図2に図示されるように、第1から第n+2の色の各々である第iの色が被測定色である場合における補正前測定値v(1),v(2),...,v(n)の具体値である第iの色の補正前測定値v(i,1),v(i,2),...,v(i,n)が得られる。
 また、第iの色の補正前測定値v(i,1),v(i,2),...,v(i,n)から第iの色の基準値V(i,1),V(i,2),...,V(i,n)への変換が行われるように変換が定められる。すなわち、第iの色の補正前測定値v(i,1),v(i,2),...,v(i,n)がそれぞれa1,a2,...,anであり、第iの色の基準値V(i,1),V(i,2),...,V(i,n)がそれぞれA1,A2,...,Anである場合に式(5)を満たす、ホモグラフィック変換行列Hの成分となる(n+1)2-1個の校正係数h11,h12,...,h1n,h1(n+1),h21,h22,...,h2n,h2(n+1),...,hn1,hn2,...,hnn,hn(n+1),h(n+1)1,h(n+1)2,...,h(n+1)nが計算される。Sは、ある倍率の係数である。
Figure JPOXMLDOC01-appb-M000008
 第iの色の基準値V(i,1),V(i,2),...,V(i,n)は、第iの色の正確な色彩値であり、第iの色を分光方式の色彩輝度計により測定すること等により得られる。
 式(5)は、式(6)のようにまとめられる。
Figure JPOXMLDOC01-appb-M000009
 ホモグラフィック変換行列Hの成分となる(n+1)2-1個の校正係数h11,h12,...,h1n,h1(n+1),h21,h22,...,h2n,h2(n+1),...,hn1,hn2,...,hnn,hn(n+1),h(n+1)1,h(n+1)2,...,h(n+1)nが存在するため、式(6)の左辺はn行1列の行列であり、式(6)の右辺の第1因子はn行(n+1)2-1列の行列であり、式(6)の右辺の第2因子は(n+1)2-1行1列の行列である。
 第1から第n+2の色の各々について式(6)が作成され、作成されたn+2個の式(6)が垂直方向に互いに結合されることにより、左辺および右辺の行数がn+2倍になり、式(7)が得られる。式(7)の左辺はn×(n+2)行1列すなわちn2+2n行1列の行列Pであり、式(7)の右辺の第1因子はn×(n+2)行(n+1)2-1列すなわちn2+2n行n2+2n列の行列Mであり、式(7)の右辺の第2因子は(n+1)2-1行1列すなわちn2+2n行1列の行列Hである。
Figure JPOXMLDOC01-appb-M000010
 行列Mは正方行列であるため、行列Mの逆行列M-1が存在する。したがって、ホモグラフィック変換行列Hは、式(8)のように計算される。
Figure JPOXMLDOC01-appb-M000011
 この校正が行われた後は、第1から第n+2の色の各々である第iの色の補正前測定値v(i,1),v(i,2),...,v(i,n)から第iの色の基準値V(i,1),V(i,2),...,V(i,n)への変換が行われるため、第iの色の補正後測定値に誤差が生じない。すなわち、第1から第n+2の色の校正点の各々において、補正後測定値が基準値に一致し、補正後測定値に誤差が生じず、校正が精度よく行われる。また、第1から第n+2までの色には、n個の基本色および合成色を含めることができる。したがって、この校正が行われた後は、n個の基本色の校正点および合成色の校正点の両方において、補正後測定値が基準値に一致し、補正後測定値に誤差が生じず、校正が精度よく行われる。
 2 第2実施形態
 第2実施形態は、色彩輝度計、色彩輝度計における測定値の補正および色彩輝度計の校正に関する。
 図3は、第2実施形態の色彩輝度計を図示するブロック図である。図4は、第2実施形態の色彩輝度計に備えられる光検出部を図示する模式図である。
 図3に図示される色彩輝度計200において行われる測定値の補正は、第1実施形態の測定値の補正においてnを3にしたものである。図3に図示される色彩輝度計200の校正は、第1実施形態の校正においてnを3にしたものである。
 色彩輝度計200は、カラーフィルター方式の色彩輝度計であり、カラーディスプレイに表示された色の色彩値を測定するように構成され、図3に図示されるように、光検出部210、演算部212、入力部214、出力部216およびメモリー218を備える。光検出部210は、図4に図示されるように、レンズ220、分光センサー222_1、分光センサー222_2および分光センサー222_3を備える。色彩輝度計200がこれらの構成物以外の構成物を備えてもよい。色彩輝度計200がカラーディスプレイに表示された色以外を測定してもよい。
 分光センサー222_1,222_2および222_3は、xyz等色関数のx成分、y成分およびz成分に近似した分光応答度をそれぞれ有する。したがって、分光センサー222_1,222_2および222_3は、互いに異なる分光応答度を有する。
 色彩輝度計200がディスプレイに表示された色を測定する場合は、分光センサー222_1,222_2および222_3が、ディスプレイから到来した光をレンズ220を経由して受光し、受光した光に応じた信号を出力する。これにより、分光センサー222_1,222_2および222_3は、被測定色に応じた信号を出力する。
 演算部212は、分光センサー222_1,222_2および222_3が出力した信号の大きさをそれぞれ示す3個の補正前測定値x,yおよびzから3個の補正後測定値X,YおよびZへの変換を行う。変換は、補正前の3次元色空間における補正前測定値x,yおよびzから補正後の3次元色空間における補正後測定値X,YおよびZへの変換が行われるように補正前の3次元色空間を補正後の3次元色空間に非線形に変形する4次のホモグラフィック変換により行われる。
 演算部212は、4次のホモグラフィック変換に必要な変換係数をメモリー218から読み出す。
 演算部212は、組み込みコンピューターに演算プログラムを実行させることにより実現される。演算部212が行う処理の一部または全部がプログラムを実行しないハードウェアにより行われてもよい。
 出力部216は、得られた補正後測定値X,YおよびZを出力する。XYZ表色系における色彩値である補正後測定値X,YおよびZに代えて、補正後測定値X,YおよびZから得られる他の種類の色彩値が出力されてもよい。例えば、マンセル表色系、L***表色系、L**h表色系、ハンターLab表色系等における色彩値が出力されてもよい。
 出力部216は、操作者にデータを提示するユーザーインターフェースであってもよいし、他の機器にデータを送信する通信部であってもよい。ユーザーインターフェースは、ディスプレイ、プリンター等である。
 色彩輝度計200が校正される場合は、赤色(R)、緑色(G)、青色(B)、合成色(W)および黒色(K)がカラーディスプレイに表示され、表示されたR,G,B,WおよびKが色彩輝度計200により測定される。これにより、Rが被測定色である場合における補正前測定値x,yおよびzの具体値であるRの補正前測定値xR,yRおよびzR、Gが被測定色である場合における補正前測定値x,yおよびzの具体値であるGの補正前測定値xG,yGおよびzG、Bが被測定色である場合における補正前測定値x,yおよびzの具体値であるBの補正前測定値xB,yBおよびzB、Wが被測定色である場合における補正前測定値x,yおよびzの具体値であるWの補正前測定値xW,yWおよびzW、ならびにKが被測定色である場合における補正前測定値x,yおよびzの具体値であるKの補正前測定値x0,y0およびz0が得られる。
 また、入力部214に、Rの基準値XR,YRおよびZR、Gの基準値XG,YGおよびZG、Bの基準値XB,YBおよびZB、Wの基準値XW,YWおよびZW、ならびにKの基準値X0,Y0およびZ0が入力される。
 入力部214は、操作者による操作を受け付けるユーザーインターフェースであってもよいし、他の機器からデータを受信する通信部であってもよい。ユーザーインターフェースは、キーボード、ボタン、ダイヤル、タッチパネル等である。
 演算部212は、Rの補正前測定値xR,yRおよびzRからRの基準値XR,YRおよびZRへの変換が行われ、Gの補正前測定値xG,yGおよびzGからGの基準値XG,YGおよびZGへの変換が行われ、Bの補正前測定値xB,yBおよびzBからBの基準値XB,YBおよびZBへの変換が行われ、Wの補正前測定値xW,yWおよびzWからWの基準値XW,YWおよびZWへの変換が行われ、Kの補正前測定値x0,y0およびz0からKの基準値X0,Y0およびZ0への変換が行われるように変換を定める。すなわち、演算部212は、式(7),(9),(10)および(11)を満たす、ホモグラフィック変換行列Hの成分となる校正係数h11,h12,h13,h14,h21,h22,h23,h24,h31,h32,h33,h34,h41,h42およびh43を計算し、計算した校正係数h11,h12,h13,h14,h21,h22,h23,h24,h31,h32,h33,h34,h41,h42およびh43をメモリー218に書き込む。校正係数h11,h12,h13,h14,h21,h22,h23,h24,h31,h32,h33,h34,h41,h42およびh43が色彩輝度計200の外部において計算されてもよい。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 この校正が行われた後は、R,G,B,WおよびKの校正点の各々において、補正後測定値が基準値に一致し、補正後測定値に誤差が生じず、校正が精度よく行われる。したがって、この校正が行われた後は、3個の基本色R,GおよびBの校正点ならびに合成色Wの校正点の両方において、補正後測定値が基準値に一致し、補正後測定値に誤差が生じず、校正が精度よく行われる。
 続いて、第2実施形態の色彩輝度計200において補正後測定値に生じる誤差の例について説明する。
 表4は、W,R,GおよびBの基準値の例を示す。表5は、W,R,GおよびBの補正前測定値の例を示す。表6は、W,R,GおよびBの補正後測定値の例を示す。Kの基準値、補正前測定値および補正後測定値は0になるため、Kの基準値、補正前測定値および補正後測定値についての説明は省略される。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 第2実施形態の色彩輝度計200においては、表6を表4と比較することにより理解されるように、W,R,GおよびBの補正後測定値がW,R,GおよびBの基準値にそれぞれ一致し、W,R,GおよびBの補正後測定値に誤差が生じない。このことからは、W,R,GおよびBの校正点において校正が精度よく行われることを理解できる。
 続いて、3次元色空間上の基準値、補正前測定値および補正後測定値の例を参照しながら、第2実施形態の色彩輝度計200において補正後測定値に生じる誤差の例について説明する。
 図5は、第2実施形態の色彩輝度計における3次元色空間上のW,R,GおよびBの基準値およびW,R,GおよびBの補正後測定値の例を図示する図である。
 第2実施形態の色彩輝度計200においては、図5に図示されるように、Wの補正後測定値240、Rの補正後測定値241、Gの補正後測定値242およびBの補正後測定値243がWの基準値250、Rの基準値251、Gの基準値252およびBの基準値253にそれぞれ一致し、Wの補正後測定値240、Rの補正後測定値241、Gの補正後測定値242およびBの補正後測定値243に誤差が生じない。このことからは、W,R,GおよびBの校正点において校正が精度よく行われることを理解できる。
 続いて、色度図上の基準値、補正前測定値および補正後測定値の例を参照しながら第2実施形態の色彩輝度計200において補正後測定値に生じる誤差の例について説明する。
 図6は、第2実施形態の色彩輝度計における色度図上のW,R,GおよびBの基準値、W,R,GおよびBの補正前測定値および各色の補正後測定値の例を図示する図である。図11は、第2実施形態の色彩輝度計における色度図上のW,R,GおよびBの補正前測定値および各色の補正前測定値の例を図示する図でもある。
 第2実施形態の色彩輝度計200においては、図6に図示されるRGB色空間内の各色の補正後測定値261を図11に図示されるRGB色空間内の各色の補正前測定値260と比較することにより理解されるように、隣接する補正後測定値261の間の距離の比が隣接する補正前測定値260の間の距離の比から大きく変化する。このことからは、補正前の3次元色空間が補正後の3次元色空間に非線形に変形されることを確認できる。
 補正が行われた後は、図6に図示されるように、Wの補正後測定値240がWの基準値250に一致するだけでなく、Rの補正後測定値241、Gの補正後測定値242およびBの補正後測定値243がRの基準値251、Gの基準値252およびBの基準値253にそれぞれ一致する。このことからは、W,R,GおよびBの校正点において校正が精度よく行われることを理解できる。
 3 第3実施形態
 第3実施形態は、色彩輝度計、色彩輝度計における測定値の補正および色彩輝度計の校正に関する。第3実施形態においては、色彩輝度計が4個以上の分光センサーを備える場合においてもホモグラフィック変換により補正前の色空間を補正後の色空間に非線形に変形し校正を精度よく行うことができることが示される。
 図3は、第3実施形態の色彩輝度計を図示するブロック図でもある。図7は、第3実施形態の色彩輝度計に備えられる光検出部を図示する模式図である。
 図3に図示される色彩輝度計300において行われる測定値の補正は、第1実施形態の測定値の補正においてnを4にしたものである。図3に図示される色彩輝度計300の校正は、第1実施形態の校正においてnを4にしたものである。
 色彩輝度計300は、カラーフィルター方式の色彩輝度計であり、カラーディスプレイに表示された色の色彩値を測定するように構成され、図3に図示されるように、光検出部310、演算部312、入力部314、出力部316およびメモリー318を備える。光検出部310は、図7に図示されるように、レンズ320、分光センサー322_1、分光センサー322_2、分光センサー322_3および分光センサー322_4を備える。
 分光センサー322_1,322_2および322_3は、xyz等色関数のx成分、y成分およびz成分に近似した分光応答度をそれぞれ有する。したがって、分光センサー322_1,322_2および322_3は、互いに異なる分光応答度を有する。分光センサー322_4も、分光センサー322_1,322_2および322_3が有する分光応答度と異なる分光応答度を有する。
 色彩輝度計300がディスプレイに表示された色を測定する場合は、分光センサー322_1,322_2,322_3および322_4が、ディスプレイから到来した光をレンズ320を経由して受光し、受光した光に応じた信号を出力する。これにより、分光センサー322_1,322_2,322_3および322_4は、被測定色に応じた信号を出力する。
 演算部312は、分光センサー322_1,322_2,322_3および322_4が出力した信号の大きさをそれぞれ示す4個の補正前測定値x,y,zおよびvから4個の補正後測定値X,Y,ZおよびVへの変換を行う。変換は、補正前の4次元色空間における補正前測定値x,y,zおよびvから補正後の4次元色空間における補正後測定値X,Y,ZおよびVへの変換が行われるように補正前の4次元色空間を補正後の4次元色空間に非線形に変形する5次のホモグラフィック変換により行われる。
 演算部312は、5次のホモグラフィック変換に必要な変換係数をメモリー318から読み出す。
 出力部316は、得られた補正後測定値X,Y,ZおよびVを出力する。
 色彩輝度計300が校正される場合は、カラーディスプレイに赤色(R)、緑色(G)、青色(B)、黄色(Y)、合成色(W)および黒色(K)が表示され、表示されたR,G,B,Y,WおよびKが色彩輝度計300により測定される。これにより、Rが被測定色である場合における補正前測定値x,y,zおよびvの具体値であるRの補正前測定値xR,yR,zRおよびvR、Gが被測定色である場合における補正前測定値x,y,zおよびvの具体値であるGの補正前測定値xG,yG,zGおよびvG、Bが被測定色である場合における補正前測定値x,y,zおよびvの具体値であるBの補正前測定値xB,yB,zBおよびvB、Yが被測定色である場合における補正前測定値x,y,zおよびvの具体値であるYの補正前測定値xY,yY,zYおよびvY、Wが被測定色である場合における補正前測定値x,y,zおよびvの具体値であるWの補正前測定値xW,yW,zWおよびvW、ならびにKが被測定色である場合における補正前測定値x,y,zおよびvの具体値であるKの補正前測定値x0,y0,z0およびv0が得られる。
 また、入力部314に、Rの基準値XR,YR,ZRおよびVR、Gの基準値XG,YG,ZGおよびVG、Bの基準値XB,YB,ZBおよびVB、Yの基準値XY,YY,ZYおよびVY、Wの基準値XW,YW,ZWおよびVW、ならびにKの基準値X0,Y0,Z0およびV0が入力される。
 演算部312は、Rの補正前測定値xR,yR,zRおよびvRからRの基準値XR,YR,ZRおよびVRへの変換が行われ、Gの補正前測定値xG,yG,zGおよびvGからGの基準値XG,YG,ZGおよびVGへの変換が行われ、Bの補正前測定値xB,yB,zBおよびvBからBの基準値XB,YB,ZBおよびVBへの変換が行われ、Yの補正前測定値xY,yY,zYおよびvYからYの基準値XY,YY,ZYおよびVYへの変換が行われ、Wの補正前測定値xW,yW,zWおよびvWからWの基準値XW,YW,ZWおよびVWへの変換が行われ、Kの補正前測定値x0,y0,z0およびv0からKの基準値X0,Y0,Z0およびV0への変換が行われるように変換を定める。すなわち、演算部312は、式(7),(12),(13)および(14)を満たす、ホモグラフィック変換行列Hの成分となる校正係数h11,h12,h13,h14,h15,h21,h22,h23,h24,h25,h31,h32,h33,h34,h35,h41,h42,h43,h44,h45,h51,h52,h53およびh54を計算し、計算した校正係数h11,h12,h13,h14,h15,h21,h22,h23,h24,h25,h31,h32,h33,h34,h35,h41,h42,h43,h44,h45,h51,h52,h53およびh54をメモリー318に書き込む。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 この校正が行われた後は、R,G,B,Y,WおよびKの校正点の各々において、補正後測定値が基準値に一致し、補正後測定値に誤差が生じず、校正が精度よく行われる。したがって、この校正が行われた後は、基本色R,G,BおよびYの校正点ならびに合成色Wの校正点の両方において、補正後測定値が基準値に一致し、補正後測定値に誤差が生じず、校正が精度よく行われる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 本発明に係るカラーフィルター方式の色彩輝度計を校正する方法およびカラーフィルター方式の色彩輝度計は、カラーディスプレイ等の色を測定する色測定分野において利用可能性がある。
 122_1,122_2,・・・,122_n,222_1,222_2,222_3,322_1,322_2,322_3,322_4 分光センサー
 200,300 色彩輝度計
 212,312 演算部

Claims (8)

  1.  互いに異なる分光応答度を有し、被測定色に応じたn個の信号をそれぞれ出力し、nが3以上の整数であるn個の分光センサーと、
     前記n個の信号の大きさをそれぞれ示す補正前のn次元色空間におけるn個の補正前測定値から補正後のn次元色空間におけるn個の補正後測定値への変換が行われるように前記補正前のn次元色空間を前記補正後のn次元色空間に非線形に変形する演算部と、
    を備えるカラーフィルター方式の色彩輝度計において、
     互いに異なるn+2個の色の各々である各色が前記被測定色である場合における前記n個の補正前測定値の具体値である各色のn個の補正前測定値を得る工程と、
     前記各色のn個の補正前測定値から各色のn個の基準値への変換が行われるように前記補正前のn次元色空間におけるn個の補正前測定値から補正後のn次元色空間におけるn個の補正後測定値への変換を定める工程と、
    を備えるカラーフィルター方式の色彩輝度計を校正する方法。
  2.  前記補正前のn次元色空間におけるn個の補正前測定値から補正後のn次元色空間におけるn個の補正後測定値への変換は、n+1次のホモグラフィック変換である
    請求項1に記載のカラーフィルター方式の色彩輝度計を校正する方法。
  3.  nは、3であり、
     前記n個の分光センサーは、xyz等色関数のx成分、y成分およびz成分に近似した分光応答度をそれぞれ有し、
     前記n+2個の色は、赤色、緑色、青色、合成色および黒色である
    請求項1または2に記載のカラーフィルター方式の色彩輝度計を校正する方法。
  4.  nは、4であり、
     前記n個の分光センサーは、xyz等色関数のx成分、y成分およびz成分に近似した分光応答度をそれぞれ有する3個の分光センサーを含み、
     前記n+2個の色は、赤色、緑色、青色、黄色、合成色および黒色である
    請求項1または2に記載のカラーフィルター方式の色彩輝度計を校正する方法。
  5.  互いに異なる分光応答度を有し、被測定色に応じたn個の信号をそれぞれ出力し、nが3以上の整数であるn個の分光センサーと、
     前記n個の信号の大きさをそれぞれ示す補正前のn次元色空間におけるn個の補正前測定値から補正後のn次元色空間におけるn個の補正後測定値への変換が行われるように前記補正前のn次元色空間を前記補正後のn次元色空間に非線形に変形し、互いに異なるn+2個の色の各々である各色が前記被測定色である場合における前記n個の補正前測定値の具体値である各色のn個の補正前測定値から各色のn個の基準値への変換が行われるように前記補正前のn次元色空間におけるn個の補正前測定値から補正後のn次元色空間におけるn個の補正後測定値への変換が定められる演算部と、
    を備えるカラーフィルター方式の色彩輝度計。
  6.  前記補正前のn次元色空間におけるn個の補正前測定値から補正後のn次元色空間におけるn個の補正後測定値への変換は、n+1次のホモグラフィック変換である
    請求項5に記載のカラーフィルター方式の色彩輝度計。
  7.  nは、3であり、
     前記n個の分光センサーは、xyz等色関数のx成分、y成分およびz成分に近似した分光応答度をそれぞれ有し、
     前記n+2個の色は、赤色、緑色、青色、合成色および黒色である
    請求項5または6に記載のカラーフィルター方式の色彩輝度計。
  8.  nは、4であり、
     前記n個の分光センサーは、xyz等色関数のx成分、y成分およびz成分に近似した分光応答度をそれぞれ有する3個の分光センサーを含み、
     前記n+2個の色は、赤色、緑色、青色、黄色、合成色および黒色である
    請求項5または6に記載のカラーフィルター方式の色彩輝度計。
PCT/JP2018/002671 2017-02-03 2018-01-29 カラーフィルター方式の色彩輝度計を校正する方法およびカラーフィルター方式の色彩輝度計 WO2018143116A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880009082.2A CN110234969B (zh) 2017-02-03 2018-01-29 对滤色器方式的色彩亮度计进行校准的方法以及滤色器方式的色彩亮度计
JP2018565524A JP6787411B2 (ja) 2017-02-03 2018-01-29 カラーフィルター方式の色彩輝度計を校正する方法およびカラーフィルター方式の色彩輝度計

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018168 2017-02-03
JP2017-018168 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143116A1 true WO2018143116A1 (ja) 2018-08-09

Family

ID=63040793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002671 WO2018143116A1 (ja) 2017-02-03 2018-01-29 カラーフィルター方式の色彩輝度計を校正する方法およびカラーフィルター方式の色彩輝度計

Country Status (3)

Country Link
JP (1) JP6787411B2 (ja)
CN (1) CN110234969B (ja)
WO (1) WO2018143116A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514174A (ja) * 1996-01-25 1999-11-30 メダー インコーポレイテッド 機械視覚システムにおいてカラーカメラを自動的に較正するための方法及びそのシステム
US20030169347A1 (en) * 2002-03-06 2003-09-11 Jenkins David R. Color calibration method for imaging color measurement device
JP2009141684A (ja) * 2007-12-06 2009-06-25 Olympus Corp 色変換係数算出装置、色変換係数算出プログラム、色変換係数算出方法
US20130021528A1 (en) * 2011-02-28 2013-01-24 Shichang Liu Image Transmission and Display Method Comply with Chromaticity and Visual Fidelity Principle
JP2015178995A (ja) * 2014-03-19 2015-10-08 株式会社オプトコム 色調校正装置、撮像装置及び色調検査装置
JP2015536459A (ja) * 2012-10-23 2015-12-21 アップル インコーポレイテッド 分光器で支援された特別設計パターン閉ループ較正による高精度イメージング測色計
JP2016105079A (ja) * 2014-11-11 2016-06-09 インストゥルメント・システムズ・オプティシェ・メステクニーク・ゲーエムベーハー 測色計の較正

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4065485B2 (ja) * 2001-11-09 2008-03-26 キヤノン株式会社 カラー画像形成装置の色検知手段出力値の補正方法、およびその方法を備えたカラー画像形成装置
JP3800326B2 (ja) * 2002-02-05 2006-07-26 セイコーエプソン株式会社 光検出装置、光検出方法、プログラムおよび記録媒体
TW200604669A (en) * 2004-07-01 2006-02-01 Seiko Epson Corp Color filter, color image display device, and electronic apparatus
JP4386096B2 (ja) * 2007-05-18 2009-12-16 ソニー株式会社 画像入力処理装置、および、その方法
EP2857813A1 (en) * 2013-10-04 2015-04-08 ams AG Colour sensor arrangement and method for colour sensor calibration

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514174A (ja) * 1996-01-25 1999-11-30 メダー インコーポレイテッド 機械視覚システムにおいてカラーカメラを自動的に較正するための方法及びそのシステム
US20030169347A1 (en) * 2002-03-06 2003-09-11 Jenkins David R. Color calibration method for imaging color measurement device
JP2009141684A (ja) * 2007-12-06 2009-06-25 Olympus Corp 色変換係数算出装置、色変換係数算出プログラム、色変換係数算出方法
US20130021528A1 (en) * 2011-02-28 2013-01-24 Shichang Liu Image Transmission and Display Method Comply with Chromaticity and Visual Fidelity Principle
JP2015536459A (ja) * 2012-10-23 2015-12-21 アップル インコーポレイテッド 分光器で支援された特別設計パターン閉ループ較正による高精度イメージング測色計
JP2015178995A (ja) * 2014-03-19 2015-10-08 株式会社オプトコム 色調校正装置、撮像装置及び色調検査装置
JP2016105079A (ja) * 2014-11-11 2016-06-09 インストゥルメント・システムズ・オプティシェ・メステクニーク・ゲーエムベーハー 測色計の較正

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GARDNER, J. L. ET AL.: "Tristimulus Colorimeter Calibration Matrix Uncertainties", COLOR RESEARCH AND APPLICATION, vol. 38, no. 4, August 2013 (2013-08-01), pages 251 - 258, XP055532220 *

Also Published As

Publication number Publication date
CN110234969A (zh) 2019-09-13
CN110234969B (zh) 2021-10-22
JP6787411B2 (ja) 2020-11-18
JPWO2018143116A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
CN103079076B (zh) 自适应伽玛校正曲线的色彩校正矩阵的产生方法及装置
US7940393B2 (en) Method and system for approximating the spectrum of a plurality of color samples
US6768814B1 (en) Methods applying color measurement by means of an electronic imaging device
US20090046171A1 (en) Non-linear color correction
TW201423064A (zh) 藉由以分光儀協助之特定設計圖案閉迴路校準之高準確成像色度計
JP2007093477A (ja) 色測定装置の校正方法および校正装置、色測定方法、色測定装置
KR20090113164A (ko) 색 온도를 신속하게 자동 조정하는 방법
JP2008304362A (ja) 色測定方法、色測定装置、および三刺激値直読型計測器
WO2018143116A1 (ja) カラーフィルター方式の色彩輝度計を校正する方法およびカラーフィルター方式の色彩輝度計
US8284260B2 (en) Optimal raw RGB determination for color calibration
KR20180062571A (ko) 표시 패널의 보상 데이터 생성 방법 및 장치
JP2006222783A (ja) 色変換テーブルの作成
JP2013012979A (ja) 画像処理装置及び画像処理方法
JP2008157782A (ja) 三刺激値直読型計測器の校正方法、校正システム、色測定方法、および色測定装置
TWI410954B (zh) 色彩管理電路與相關色彩管理方法
US7453610B2 (en) Color display system and image transforming device
JP5097927B2 (ja) 色変換マトリクス算出方法
CN204832018U (zh) 用于棉花色泽的测量装置
JP3389678B2 (ja) 色の測定装置
JP2007322203A (ja) 三刺激値直読型計測器の校正方法、校正システム、色測定方法、色測定装置、および三刺激値直読型計測器
JP2005249596A (ja) 複数のカラーモニタのキャリブレーション方法
JP2007292659A (ja) 色度測定方法および色度測定装置
WO2007047633A2 (en) Generic spectral model for imaging devices
KR101116906B1 (ko) 컬러보정계수 산출프로그램이 저장된 저장매체 및 그를 이용한 영상 입/출력장치의 컬러보정방법
US9311885B2 (en) Image color estimation method, image color estimation device, and image color estimation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565524

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747485

Country of ref document: EP

Kind code of ref document: A1