WO2018143044A1 - 弾性表面波装置 - Google Patents

弾性表面波装置 Download PDF

Info

Publication number
WO2018143044A1
WO2018143044A1 PCT/JP2018/002252 JP2018002252W WO2018143044A1 WO 2018143044 A1 WO2018143044 A1 WO 2018143044A1 JP 2018002252 W JP2018002252 W JP 2018002252W WO 2018143044 A1 WO2018143044 A1 WO 2018143044A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
wiring pattern
circuit
piezoelectric substrate
wave device
Prior art date
Application number
PCT/JP2018/002252
Other languages
English (en)
French (fr)
Inventor
幸一郎 川崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020197022590A priority Critical patent/KR102260267B1/ko
Priority to JP2018565488A priority patent/JPWO2018143044A1/ja
Priority to CN201880009738.0A priority patent/CN110249526B/zh
Publication of WO2018143044A1 publication Critical patent/WO2018143044A1/ja
Priority to US16/529,877 priority patent/US11057015B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/66Phase shifters
    • H03H9/68Phase shifters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only

Definitions

  • the present invention relates to a surface acoustic wave device, and more specifically to a technique for downsizing a surface acoustic wave device.
  • SAW surface acoustic wave
  • a surface acoustic wave resonator has a structure in which a large number of interdigital electrodes (IDTs) are arranged on a piezoelectric substrate. It is important to reduce the surface area of the piezoelectric substrate.
  • IDTs interdigital electrodes
  • Patent Document 1 functional elements such as IDT electrodes are arranged on the main surface (front surface) of the piezoelectric substrate, and on the surface (back surface) opposite to the main surface of the piezoelectric substrate.
  • a surface acoustic wave device having a configuration in which a wiring electrode for connecting to an external device or the like is arranged and the functional element and the wiring electrode are connected by a through electrode (via) is disclosed.
  • the present invention has been made to solve such a problem, and an object of the present invention is to reduce the size of the surface acoustic wave device and improve the degree of design freedom.
  • the surface acoustic wave device includes a piezoelectric substrate and a plurality of functional elements formed on the first surface of the piezoelectric substrate. At least some of the plurality of functional elements include an IDT (Inter Digital Transducer) electrode, and a surface acoustic wave resonator is formed by the piezoelectric substrate and the IDT electrode. A part of the wiring pattern that connects the first functional element and the second functional element included in the plurality of functional elements is formed on a second surface different from the first surface of the piezoelectric substrate.
  • IDT Inter Digital Transducer
  • the second surface of the piezoelectric substrate is a back surface when the first surface is the surface of the piezoelectric substrate.
  • the piezoelectric substrate is a multilayer substrate in which two or more substrate layers are laminated.
  • the piezoelectric substrate includes a first substrate layer and a second substrate layer stacked on the first substrate layer.
  • the second surface of the piezoelectric substrate is a surface between the first substrate layer and the second substrate layer.
  • the surface acoustic wave device further includes a first through electrode and a second through electrode that penetrate from the first surface to the second surface of the piezoelectric substrate.
  • the wiring pattern formed on the second surface of the piezoelectric substrate is connected to the first functional element by the first through electrode and is connected to the second functional element by the second through electrode.
  • the wiring pattern formed on the second surface of the piezoelectric substrate is connected to the first functional element via the first wiring formed on the first side surface of the piezoelectric substrate, and the second side surface of the piezoelectric substrate.
  • the second functional element is connected to the second functional element through the second wiring.
  • the piezoelectric substrate when the piezoelectric substrate is viewed in plan from the stacking direction, at least a part of the wiring pattern formed on the first surface of the piezoelectric substrate overlaps the wiring pattern formed on the second surface.
  • some of the plurality of functional elements intersect with the wiring pattern formed on the second surface of the piezoelectric substrate.
  • the surface acoustic wave device further includes an input terminal and an output terminal.
  • the plurality of functional elements include a filter unit and a cancel circuit.
  • the filter unit passes a signal of a predetermined frequency band in the input signal from the input terminal to the output terminal.
  • the cancel circuit is connected in parallel to the filter unit between the input terminal and the output terminal.
  • the cancel circuit attenuates a signal outside the predetermined frequency band in the signal output from the output terminal. At least a part of the wiring pattern from the input terminal to the output terminal via the cancel circuit is formed on the second surface of the piezoelectric substrate.
  • the first functional element is a filter unit
  • the second functional element is a cancel circuit. At least a part of the wiring pattern that connects the filter unit and the cancel circuit is formed on the second surface of the piezoelectric substrate.
  • the filter unit is a reception filter.
  • the input terminal is connected to the antenna, and the output terminal is connected to the receiving circuit.
  • the cancel circuit is connected in parallel to the reception filter.
  • the filter unit is a transmission filter.
  • the input terminal is connected to the transmission circuit, and the output terminal is connected to the antenna.
  • the cancel circuit is connected in parallel to the transmission filter.
  • the cancellation circuit includes an amplitude adjustment circuit configured to adjust the amplitude of the input signal and a phase adjustment circuit configured to adjust the phase of the input signal.
  • the first functional element is an amplitude adjustment circuit
  • the second functional element is a phase adjustment circuit. At least a part of the wiring pattern that connects the amplitude adjustment circuit and the phase adjustment circuit is formed on the second surface of the piezoelectric substrate.
  • the cancel circuit includes first and second amplitude adjustment circuits and a phase adjustment circuit.
  • the first amplitude adjustment circuit adjusts the amplitude of the input signal.
  • the phase adjustment circuit adjusts the phase of the signal from the first amplitude adjustment circuit.
  • the second amplitude adjustment circuit adjusts the amplitude of the signal from the phase adjustment circuit.
  • the first functional element is a phase adjustment circuit
  • the second functional element is at least one of a first amplitude adjustment circuit and a second amplitude adjustment circuit.
  • At least one of a wiring pattern that connects the first amplitude adjustment circuit and the phase adjustment circuit and a wiring pattern that connects the phase adjustment circuit and the second amplitude adjustment circuit is formed on the second surface of the piezoelectric substrate.
  • the plurality of functional elements include a transmission filter, a reception filter, and a cancel circuit.
  • the transmission filter filters the signal from the transmission circuit received at the first terminal and outputs the filtered signal to the antenna.
  • the reception filter filters the signal received from the antenna and outputs the signal from the second terminal to the reception circuit.
  • the cancel circuit is connected between the first terminal and the second terminal, and reduces the influence of the signal received at the first terminal in the signal output from the second terminal. A part of the wiring pattern connected from the first terminal to the second terminal via the cancel circuit is formed on the second surface of the piezoelectric substrate.
  • the piezoelectric substrate is formed of a single crystal material of any one of lithium tantalate (LiTaO3), lithium niobate (LiNbO3), alumina, silicon (Si), and sapphire, or a laminated material made of LiTaO3 or LiNbO3. Is done.
  • a plurality of functional elements are arranged on one surface (first surface) of the piezoelectric substrate, and at least a part of the wiring pattern connecting the functional elements is defined as the first surface. Formed on different second surfaces.
  • the area for forming the wiring pattern which connects between the functional elements in the 1st surface can be reduced, size reduction of a surface acoustic wave apparatus can be achieved.
  • the functional element and the wiring pattern on the first surface and the wiring pattern on the second surface are not two-dimensional (planar) but three-dimensional. Therefore, the degree of freedom in designing the apparatus can be improved.
  • FIG. 1 is a cross-sectional view of a surface acoustic wave device according to a first embodiment. It is a figure which shows an example of the equivalent circuit of the surface acoustic wave apparatus according to Embodiment 1.
  • FIG. It is a figure which shows an example of arrangement
  • 6 is a cross-sectional view of a first modification of the first embodiment.
  • FIG. 6 is a cross-sectional view of a second modification of the first embodiment.
  • FIG. 5 is a layout diagram of a comparative example in which a wiring pattern that connects a cancel circuit and a filter unit is disposed only on the surface of a piezoelectric substrate of a surface acoustic wave device.
  • FIG. 1 shows a cross-sectional view of an example of a surface acoustic wave device 10 according to the first embodiment.
  • the surface acoustic wave device 10 includes a cover portion 20, a support portion 22, a piezoelectric substrate 24, and a support substrate 27.
  • the piezoelectric substrate 24 is laminated on the support substrate 27.
  • the piezoelectric substrate 24 may be a piezoelectric single crystal material such as lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ), alumina (Al 2 O 3 ), and sapphire, or LiTaO 3 , LiNbO 3 or It is formed of a piezoelectric laminated material made of silicon (Si).
  • a plurality of functional elements 30 are arranged on the first surface (front surface) 25 of the piezoelectric substrate 24.
  • the functional element is formed using an electrode material such as a single metal composed of at least one of aluminum, copper, silver, gold, titanium, tungsten, platinum, chromium, nickel, and molybdenum, or an alloy containing these as a main component.
  • an electrode material such as a single metal composed of at least one of aluminum, copper, silver, gold, titanium, tungsten, platinum, chromium, nickel, and molybdenum, or an alloy containing these as a main component.
  • a pair of comb-like electrodes IDT: Inter Digital Transducer
  • a surface acoustic wave resonator is formed by the piezoelectric substrate 24 and the IDT electrode.
  • a support portion 22 is provided on the first surface 25 of the piezoelectric substrate 24.
  • a space is formed around the plurality of functional elements 30 including the IDT electrodes by disposing the cover portion 20 to face the first surface 25 via the support portion 22. As a result, the surface acoustic wave propagates in a portion of the piezoelectric substrate 24 adjacent to the space.
  • a through electrode (via) 34 is formed in the piezoelectric substrate 24 in the stacking direction (Z-axis direction in FIG. 1), and the functional element 30 is connected to the terminal electrode 28 formed in the support substrate 27 by the through electrode 34. Is connected.
  • the terminal electrode 28 is a terminal for electrically connecting to a mounting board (not shown).
  • the functional element is connected to an external circuit or a ground potential via the terminal electrode 28.
  • a part of the wiring pattern (wiring pattern 32 in FIG. 1) for connecting the functional elements 30 is formed on the second surface (back surface) 26 of the piezoelectric substrate 24.
  • the wiring pattern 32 is connected to the functional element 30 formed on the first surface by the through electrode 36.
  • the wiring patterns connecting the functional elements 30 other than the wiring pattern 32 formed on the second surface 26 are formed on the first surface 25. In FIG. 1, only one wiring pattern 32 formed on the second surface 26 is shown, but a plurality of wiring patterns may be formed on the second surface 26.
  • FIG. 2 is a diagram showing an example of an equivalent circuit of the surface acoustic wave device 10 of FIG.
  • the case where the surface acoustic wave device 10 is a transmission filter used in a communication device such as a smartphone will be described as an example.
  • the surface acoustic wave device 10 is connected to a transmission circuit (not shown) through an input terminal (terminal TX) and is connected to an antenna (not shown) through an output terminal (terminal ANT).
  • the surface acoustic wave device 10 is connected between the series arm resonance units S1 to S4 connected in series to the series arm provided between the input terminal TX and the output terminal ANT, and between the series arm and the ground potential GND.
  • This is a ladder type filter including parallel arm resonating parts P1 to P3 provided on the parallel arm. Each resonating part is composed of one or more surface acoustic wave resonators, and corresponds to the functional element 30 in FIG.
  • the configuration of the transmission filter shown in FIG. 2 is an example, and other configurations may be used as long as the filter is formed by a surface acoustic wave resonator.
  • the parallel arm resonance part P1 has one end connected to a connection node between the series arm resonance part S1 and the series arm resonance part S2, and the other end connected to the ground potential GND.
  • the parallel arm resonance unit P2 has one end connected to a connection node between the series arm resonance unit S2 and the series arm resonance unit S3, and the other end connected to the ground potential GND.
  • the parallel arm resonance unit P3 has one end connected to a connection node between the series arm resonance unit S3 and the series arm resonance unit S4, and the other end connected to the ground potential GND.
  • the double circles indicated by V1, V2, V5, V8, and V9 in FIG. 2 indicate the through electrodes 34 in FIG. 1, and the double circles indicated by V3, V4, V6, and V7 in FIG.
  • a circle indicates the through electrode 36 in FIG.
  • the wiring pattern indicated by a solid line is formed on the first surface 25 of the piezoelectric substrate 24 in FIG. The pattern is formed on the second surface 26.
  • FIG. 3 is a diagram showing an example of the arrangement of each resonance part and wiring pattern in the piezoelectric substrate of FIG. 3A and 3B are views when the first surface 25 and the second surface 26 of the piezoelectric substrate 24 of FIG. 1 are viewed in plan from the positive direction of the Z axis in the drawing to the negative direction, respectively. is there.
  • the series arm resonance part S1 is connected to the series arm resonance part S2 and the parallel arm resonance part P1 by a wiring pattern.
  • the series arm resonance part S1 is connected to the terminal TX of the second surface 26 through the through electrode V1.
  • the parallel arm resonance part P1 is connected to the terminal GND of the second surface 26 through the through electrode V2.
  • the series arm resonance part S2 is connected to one end of the wiring pattern L1 on the second surface 26 via the through electrode V3.
  • the other end of the wiring pattern L1 is connected to the wiring pattern connected to the series arm resonance unit S3 and the parallel arm resonance unit P2 on the first surface 25 through the through electrode V4.
  • the series arm resonance portion S3 is connected to the series arm resonance portion S4 by another wiring pattern and is connected to one end of the wiring pattern L2 on the second surface 26 through the through electrode V6.
  • the other end of the wiring pattern L2 is connected to the parallel arm resonance part P3 of the first surface 25 through the through electrode V7.
  • the parallel arm resonating part P3 is further connected to the terminal GND of the second surface 26 through the through electrode V8.
  • the series arm resonating unit S4 is further connected to the terminal ANT on the second surface 26 via the through electrode V9.
  • FIG. 4 is a diagram corresponding to FIGS. 3A and 3B in the case of a comparative example in which all functional elements and wiring patterns are formed on the first surface (front surface) of the piezoelectric substrate. Comparing the drawings of the first surface of FIGS. 3A and 4A, in FIG. 3A, the space surrounded by the broken line is empty. As described above, in the surface acoustic wave device 10 according to the first embodiment, a part of the wiring pattern that connects the respective resonance portions (functional elements) is formed on the second surface 26 on the back surface side, thereby The surface area occupied by the functional elements and the wiring pattern on the surface 25 side can be reduced.
  • the respective resonance parts are arranged at the same position.
  • a vacant space is provided at the left end of the piezoelectric substrate 24.
  • the size of the piezoelectric substrate 24 can be reduced by arranging the resonating portions so as to approach each other. As a result, the surface acoustic wave device can be miniaturized, leading to a reduction in component costs.
  • the wiring patterns and the wiring patterns and the functional elements do not cross each other. It is necessary to design the arrangement.
  • the wiring pattern on the second surface is the same as that on the first surface. It is also possible to arrange so as to intersect the wiring pattern.
  • the wiring pattern on the second surface it is possible to arrange the wiring pattern on the second surface so as to overlap the functional element on the first surface when the piezoelectric substrate is viewed in plan. Become. That is, the degree of freedom in design can be improved by three-dimensionally arranging the functional elements and the wiring patterns.
  • FIG. 5 is a cross-sectional view of the surface acoustic wave device 10A according to the first modification. 5 differs from FIG. 1 mainly in that the piezoelectric substrate 24A is formed of a multilayer substrate in which a first substrate 24-1 and a second substrate 24-2 are stacked. . In FIG. 5, the description of the elements overlapping with those in FIG. 1 will not be repeated.
  • the piezoelectric substrate 24A is formed of a plurality of substrates, only the back surface 26B of the piezoelectric substrate 24A is used as a second surface different from the first surface 25 (the surface of the piezoelectric substrate 24A) on which the functional element 30 is disposed.
  • the intermediate surface 26A between the first substrate 24-1 and the second substrate 24-2 can be used.
  • FIG. 5 shows an example in which the intermediate surface 26A is used as the second surface, and the wiring pattern 32A is formed on the intermediate surface 26A.
  • the wiring pattern 32A is connected to the functional element on the first surface 25 by the through electrode 36A formed on the first substrate 24-1.
  • a wiring pattern may be formed on both the intermediate surface 26A and the back surface 26B.
  • wiring patterns may be formed on a plurality of intermediate surfaces.
  • the back surface and the intermediate surface can be used as the second surface different from the first surface on which the functional elements are arranged.
  • the design flexibility is further improved, and the surface acoustic wave device can be further miniaturized by designing the wiring pattern in an appropriate arrangement.
  • Modification 2 In the first embodiment and the first modification, the example in which the functional element on the first surface of the piezoelectric substrate and the wiring pattern on the second surface are connected by the through electrode has been described. In Modification 2, an example in which a functional element on the first surface and a wiring pattern on the second surface are connected using a wiring pattern formed on the side surface of the piezoelectric substrate will be described.
  • FIG. 6 is a cross-sectional view of the surface acoustic wave device 10B according to the second modification.
  • the piezoelectric substrate 24 is disposed in a box-shaped protective resin formed by the support substrate 27 and the side wall portion 40.
  • the wiring pattern 32 ⁇ / b> B formed on the second surface (back surface) 26 of the piezoelectric substrate 24 further extends to the first surface (front surface) 25 of the piezoelectric substrate 24 along the side surface of the piezoelectric substrate 24.
  • the functional element 30 disposed on the surface 25 is connected.
  • FIG. 7 is a diagram showing an example of the arrangement of functional elements and wiring patterns on the piezoelectric substrate 24 of the surface acoustic wave device 10B of FIG.
  • one end of the wiring pattern L2 # formed on the second surface 26 rises to the first surface 25 by the wiring pattern V7 # formed on the left side surface of the piezoelectric substrate 24 in FIG. It is connected to the resonance part P3.
  • the other end of the wiring pattern L2 # rises to the first surface 25 by the wiring pattern V6 # formed on the right side surface of the piezoelectric substrate 24, and connects the series arm resonance unit S3 and the series arm resonance unit S4. Connected to the wiring pattern.
  • the wiring pattern formed on the second surface is connected to the functional element on the first surface using the wiring pattern formed on the side surface.
  • the surface area occupied by the functional elements and wiring patterns on the piezoelectric substrate can be reduced, and the degree of design freedom can be improved.
  • both ends of the wiring pattern L2 # reach the first surface with the wiring pattern formed on the side surface has been described as an example, but the wiring pattern on the side surface of either one of the end portions has been described.
  • the other may be configured to use a through electrode.
  • the configuration of the second modification can also be applied to the first modification that uses the intermediate surface of the multilayer substrate.
  • Modification 3 In the first embodiment, the case where the surface acoustic wave device is a transmission filter of a communication device has been described as an example. However, the configuration of the present embodiment can also be applied to a reception filter of a communication device.
  • FIG. 8 is a diagram showing an example of an equivalent circuit when the surface acoustic wave device is a reception filter.
  • the surface acoustic wave device 10C is connected to an antenna (not shown) through an input terminal (terminal ANT) and connected to a receiving circuit (not shown) through an output terminal (terminal RX). .
  • the surface acoustic wave device 10C is connected between the series arm resonance units S10 and S11 connected in series to the series arm provided between the input terminal ANT and the output terminal RX, and between the series arm and the ground potential GND. It is a filter provided with parallel arm resonance part P10.
  • the series arm resonance part S11 forms a so-called longitudinally coupled resonator type filter.
  • the series arm resonating unit S11 includes IDT electrodes ID1 to ID3 and a reflector REF.
  • the one end of the IDT electrode ID2 is connected to the series arm resonance unit S10, and the other end is connected to the ground potential GND through the through electrode.
  • the IDT electrode ID1 is disposed adjacent to one side surface of the IDT electrode ID2.
  • the IDT electrode ID3 is disposed adjacent to the other side surface of the IDT electrode ID2.
  • One end of each of IDT electrodes ID1 and ID3 is connected to output terminal RX.
  • the other end of each of IDT electrodes ID1, ID3 is connected to ground potential GND through a through electrode.
  • the reflector REF is disposed adjacent to each IDT electrode ID1, ID3.
  • the configuration of the first and second modifications may be further applied to the third modification.
  • a filter is a band that allows a signal in a specific frequency band (pass band) to pass through. Functions as a path filter. In the band-pass filter, it is desirable that the attenuation amount of the frequency band (stop band) outside the pass band is large.
  • a configuration that secures an attenuation amount in the stop band by adding an additional circuit (cancellation circuit) in parallel to the filter unit as disclosed in Japanese Patent Application Laid-Open No. 2014-171210 is known. It has been.
  • the additional circuit generates a signal component having a phase opposite to that of the signal passing through the filter unit and adds the signal component to the output signal, thereby canceling out the amplitude of the output signal in the stop band and securing the attenuation amount. Is.
  • the additional circuit is connected in parallel with the filter unit between the input terminal and the output terminal, but as shown in FIG. 3 and the like, the input terminal and the output terminal leak signal due to capacitive coupling. In general, they are provided as far as possible from each other. Therefore, the wiring pattern that connects the additional circuit, the input terminal, and the output terminal tends to be relatively long. In this case, for example, a wiring pattern is formed along the periphery of the piezoelectric substrate, which may require a large surface area.
  • the wiring pattern added by the additional circuit on the first surface by forming a part of the wiring pattern connecting the additional circuit, the input terminal and the output terminal on the second surface.
  • FIG. 9 shows an example of an equivalent circuit of surface acoustic wave device 10 # according to the second embodiment.
  • a cancel circuit 100 is added to the configuration of FIG. 2 of the first embodiment.
  • the description of the elements overlapping with those in FIG. 2 will not be repeated.
  • surface acoustic wave device 10 # further includes cancel circuit 100 connected in parallel with the filter section shown in FIG. 2 between input terminal TX and output terminal ANT.
  • the cancel circuit 100 includes an amplitude adjustment circuit and a phase adjustment circuit.
  • the phase adjustment circuit inverts the phase of the input signal from the input terminal TX.
  • the amplitude adjustment circuit reduces the amplitude of the input signal from the input terminal TX.
  • the amount of amplitude reduction is determined according to the magnitude of the stopband signal in the signal that has passed through the filter unit. In this way, by adding a signal having an opposite phase to the input signal to the output signal from the filter unit, it is possible to ensure the attenuation amount of the signal in the stop band.
  • a part of the wiring pattern connecting the cancel circuit 100 and the input terminal TX (L3 in FIG. 9) and a part of the wiring pattern connecting the cancel circuit 100 and the output terminal ANT (L4 in FIG. 9). Is formed on the second surface 26 through the through electrode.
  • FIG. 10 is a diagram showing an example of the arrangement of each resonance part and wiring pattern in the piezoelectric substrate in the second embodiment.
  • 10A and 10B are views when the first surface 25 and the second surface 26 of the piezoelectric substrate 24 are viewed in plan from the positive direction of the Z axis in the drawing to the negative direction, respectively.
  • each resonance part on the piezoelectric substrate 24 is arranged in the same manner as in the comparative example (FIG. 4) of the first embodiment, and a cancel circuit 100 is further added on the piezoelectric substrate 24. ing.
  • the one end of the cancel circuit 100 is connected to the terminal ANT on the second surface 26 via the through electrode V9B, similarly to the series arm resonance unit S4.
  • the other end of the cancel circuit 100 is connected to one end of the wiring pattern L3 on the second surface 26 via the through electrode V10B.
  • the other end of the wiring pattern L3 is connected to the wiring pattern connected to the through electrode V1B (that is, the terminal TX) on the first surface 25 through the through electrode V11B.
  • the through electrode V10B and the terminal TX may be directly connected on the second surface 26.
  • FIG. 11 is a diagram showing a comparative example in which all functional elements and wiring patterns of the same circuit as in FIG. 10 are formed on the first surface 25 of the piezoelectric substrate 24. Comparing FIG. 10A and FIG. 11A, it can be seen that the wiring pattern connecting the cancel circuit 100 and the series arm resonance portion S1 crosses the other wiring patterns in three dimensions. Thus, when wiring patterns are crossed, it is necessary to form an insulating film between overlapping wiring patterns. Alternatively, in order to eliminate such crossing of wiring patterns, it is necessary to form wiring patterns on the outside of other functional elements and wiring patterns (that is, portions along the outer periphery of the piezoelectric substrate 24). . If it does so, it will be necessary to enlarge further the surface area of the piezoelectric substrate 24, and an apparatus size will enlarge.
  • the wiring pattern connecting the cancel circuit 100 and the series arm resonance unit S1 is formed on the second surface 26, thereby eliminating the intersection of the wiring patterns as shown in FIG. In addition, the expansion of the surface area of the piezoelectric substrate 24 can be suppressed.
  • FIG. 10 the example in which only the wiring pattern L3 in FIG. 9 is formed on the second surface 26 has been described.
  • a wiring pattern L4 that connects the terminal ANT may be further formed on the second surface.
  • only the wiring pattern L4 may be formed on the second surface 26.
  • a part of the wiring pattern between the resonance units in the filter unit as in the first embodiment. (L1, L2) may be further provided on the second surface 26.
  • the apparatus size can be further reduced by appropriately arranging the cancel circuit 100 in the empty space on the first surface 25 obtained by forming the wiring pattern between the resonance portions on the second surface 26. It becomes.
  • FIG. 13 is a diagram showing details of the cancel circuit 100 of FIG. Referring to FIG. 13, cancel circuit 100 includes capacitors C1 and C2 that function as an amplitude adjustment circuit, and a surface acoustic wave vibrator S100 that functions as a phase adjustment circuit.
  • the capacitor C1 has one end connected to the input terminal TX and the other end connected to one end of the surface acoustic wave vibrator S100.
  • the other end of the surface acoustic wave resonator S100 is connected to one end of the capacitor C2.
  • the other end of the capacitor C2 is connected to the output terminal ANT.
  • the functional elements of the capacitors C1 and C2 and the surface acoustic wave vibrator S100 are arranged on the first surface 25 of the piezoelectric substrate 24.
  • the wiring pattern connecting the capacitor C1 and the surface acoustic wave vibrator S100 is used.
  • At least one of a part (L5 in FIG. 13) and a part of the wiring pattern (L6 in FIG. 13) that connects the surface acoustic wave resonator S100 and the capacitor C2 is provided through the through electrode. Formed. That is, at least a part of the wiring pattern from the input terminal TX to the output terminal ANT via the cancel circuit 100 (at least a part of the wiring patterns L3 to L6) is formed on the second surface 26 of the piezoelectric substrate 24.
  • a part of the wiring pattern that connects the functional elements constituting the cancel circuit 100 is also formed on the second surface 26, thereby reducing the wiring pattern space required on the first surface 25. Therefore, an increase in device size can be suppressed.
  • such a cancel circuit can be applied to a duplexer in which the transmission filter 210 and the reception filter 220 are formed in one device, like the surface acoustic wave device 200 shown in FIG. is there.
  • a transmission terminal TX for connection to the transmission circuit 310 in addition to the cancellation circuit 250 connected in parallel to the transmission filter 210 and the cancellation circuit 260 connected in parallel to the reception filter 220, a transmission terminal TX for connection to the transmission circuit 310, It is also possible to provide a cancel circuit 270 between the receiving terminal RX for connection to the receiving circuit 320.
  • the transmission filter 210 and the reception filter 220 share the antenna terminal ANT. Therefore, when the transmission signal is output from the transmission circuit 310 to the antenna 300, the transmission signal is received by the reception filter. It can also be transmitted to the receiving circuit 320 via 220. Further, depending on the distance between the wiring pattern connecting the transmission terminal TX and the transmission filter 210 and the wiring pattern connecting the reception filter 220 and the reception terminal RX, the signal on the transmission side may be caused by capacitive coupling between the wiring patterns. It can leak to the receiving side. Therefore, by providing the cancel circuit 270 between the transmission terminal TX and the reception terminal RX, it is possible to eliminate the influence on the reception signal caused by the transmission signal.
  • each of the cancel circuits 250, 260, and 270 in FIG. 14 also has a part of the wiring pattern that connects the functional elements included in the second surface as shown in FIG. You may make it form in.
  • it is not essential to provide all the cancel circuits and a configuration in which some of the cancel circuits 250, 260, and 270 are provided may be employed. Modifications 1 to 3 in the first embodiment are also applicable to the configuration of the second embodiment.
  • a part of the wiring pattern that connects the functional elements is a surface (second surface) different from the surface (first surface) on which the functional elements are arranged on the piezoelectric substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性表面波装置(10)は、圧電性基板(24)と、圧電性基板の第1面(25)に形成される複数の機能素子(30)とを備える。複数の機能素子(30)の少なくとも一部には、IDT(Inter Digital Transducer)電極が含まれており、圧電性基板(24)とIDT電極により弾性表面波共振子が形成される。複数の機能素子(30)に含まれる第1機能素子と第2機能素子とを接続する配線パターンの一部(32)は、圧電性基板(24)の第1面(25)とは異なる第2面(26)に形成される。

Description

弾性表面波装置
 本発明は、弾性表面波装置に関し、より特定的には、弾性表面波装置を小型化するための技術に関する。
 携帯電話あるいはスマートフォンなどの電子機器において、弾性表面波(SAW:Surface Acoustic Wave)共振子を用いた弾性表面波フィルタが使用されている。
 近年、これらの電子機器の小型化および高性能化に伴って、使用される電子部品の小型化,高密度化が必要とされており、弾性表面波共振子においても小型化が望まれている。一般的に、弾性表面波共振子は、圧電性基板上に多数の櫛歯状電極(IDT:Inter Digital Transducer)を配置する構成とされるため、弾性表面波共振子の小型化においては、当該圧電性基板の表面積を低減することが重要である。
 特許第5733791号公報(特許文献1)には、圧電性基板の主面(表面)にIDT電極などの機能素子を配置するとともに、圧電性基板の主面とは反対側の面(裏面)に外部機器等と接続するための配線電極を配置し、当該機能素子と配線電極とを貫通電極(ビア)で接続する構成を有する弾性表面波デバイスが開示されている。
特許第5733791号公報
 しかしながら、特許文献1に開示された弾性表面波デバイスにおいては、機能素子間を接続するための配線パターンが圧電性基板の表面に形成されているため、基板の表面積を低減するには限界がある。また、基板の1つの面に機能素子および機能素子間を接続する配線パターンを配置することが必要であるため、各機能素子の配置および配線パターンのルートの設計における自由度も制限されてしまう。
 本発明は、このような課題を解決するためになされたものであって、その目的は、弾性表面波装置の小型化を図るとともに、設計の自由度を向上させることである。
 本発明に従う弾性表面波装置は、圧電性基板と、圧電性基板の第1面に形成される複数の機能素子とを備える。複数の機能素子の少なくとも一部には、IDT(Inter Digital Transducer)電極が含まれており、圧電性基板とIDT電極により弾性表面波共振子が形成される。複数の機能素子に含まれる第1機能素子と第2機能素子とを接続する配線パターンの一部は、圧電性基板の第1面とは異なる第2面に形成される。
 好ましくは、圧電性基板の第2面は、第1面を圧電性基板の表面とした場合の裏面である。
 好ましくは、圧電性基板は、2つ以上の基板層が積層された多層基板である。圧電性基板は、第1基板層と、第1基板層上に積層された第2基板層とを含む。圧電性基板の第2面は、第1基板層と第2基板層との間の面である。
 好ましくは、弾性表面波装置は、圧電性基板の第1面から第2面まで貫通する第1貫通電極および第2貫通電極をさらに備える。圧電性基板の第2面に形成された配線パターンは、第1貫通電極により第1機能素子と接続されるとともに、第2貫通電極により第2機能素子と接続される。
 好ましくは、圧電性基板の第2面に形成された配線パターンは、圧電性基板の第1側面に形成された第1配線を介して第1機能素子と接続され、圧電性基板の第2側面に形成された第2配線を介して第2機能素子と接続される。
 好ましくは、圧電性基板を積層方向から平面視した場合に、圧電性基板の第1面に形成された配線パターンの少なくとも一部は、第2面に形成された配線パターンと重なる。
 好ましくは、圧電性基板を積層方向から平面視した場合に、複数の機能素子の一部は、圧電性基板の第2面に形成された配線パターンと交差する。
 好ましくは、弾性表面波装置は、入力端子と出力端子とをさらに備える。複数の機能素子は、フィルタ部と、キャンセル回路とを含む。フィルタ部は、入力端子からの入力信号における所定の周波数帯域の信号を出力端子に通過させる。キャンセル回路は、入力端子と出力端子との間にフィルタ部に並列に接続される。キャンセル回路は、出力端子から出力される信号における、上記の所定の周波数帯域の範囲外の信号を減衰させる。入力端子からキャンセル回路を介して出力端子へ至る配線パターンの少なくとも一部は、圧電性基板の第2面に形成される。
 好ましくは、第1機能素子はフィルタ部であり、第2機能素子はキャンセル回路である。フィルタ部とキャンセル回路とを接続する配線パターンの少なくとも一部は、圧電性基板の第2面に形成される。
 好ましくは、フィルタ部は受信用フィルタである。入力端子はアンテナに接続され、出力端子は受信回路に接続される。キャンセル回路は、受信用フィルタに並列に接続される。
 好ましくは、フィルタ部は送信用フィルタである。入力端子は送信回路に接続され、出力端子はアンテナに接続される。キャンセル回路は、送信用フィルタに並列に接続される。
 好ましくは、キャンセル回路は、入力信号の振幅を調整するように構成された振幅調整回路と、入力信号の位相を調整するように構成された位相調整回路とを含む。第1機能素子は振幅調整回路であり、第2機能素子は位相調整回路である。振幅調整回路と位相調整回路とを接続する配線パターンの少なくとも一部は、圧電性基板の第2面に形成される。
 好ましくは、キャンセル回路は、第1および第2振幅調整回路と、位相調整回路とを含む。第1振幅調整回路は、入力信号の振幅を調整する。位相調整回路は、第1振幅調整回路からの信号の位相を調整する。第2振幅調整回路は、位相調整回路からの信号の振幅を調整する。第1機能素子は位相調整回路であり、第2機能素子は第1振幅調整回路および第2振幅調整回路の少なくとも一方である。第1振幅調整回路と位相調整回路とを接続する配線パターン、および、位相調整回路と第2振幅調整回路とを接続する配線パターンの少なくとも一方は、圧電性基板の第2面に形成される。
 好ましくは、複数の機能素子は、送信用フィルタと、受信用フィルタと、キャンセル回路とを含む。送信用フィルタは、第1端子で受けた送信回路からの信号をフィルタリングしてアンテナに出力する。受信用フィルタは、アンテナから受信した信号をフィルタリングして第2端子から受信回路に出力する。キャンセル回路は、第1端子と第2端子との間に接続され、第2端子から出力される信号における、第1端子で受けた信号の影響を低減させる。第1端子からキャンセル回路を介して第2端子へ接続される配線パターンの一部は、圧電性基板の第2面に形成される。
 好ましくは、圧電性基板は、タンタル酸リチウム(LiTaO3)、ニオブ酸リチウム(LiNbO3)、アルミナ、シリコン(Si)、およびサファイアのいずれかの単結晶材料、あるいは、LiTaO3またはLiNbO3からなる積層材料により形成される。
 本発明による弾性表面波装置によれば、圧電性基板の一方の面(第1面)に複数の機能素子が配置され、機能素子間を接続する配線パターンの少なくとも一部が第1面とは異なる第2面に形成される。これにより、第1面における機能素子間を接続する配線パターンを形成するための面積が削減できるため、弾性表面波装置の小型化を図ることができる。また、配線パターンの一部が第2面に形成されることで、第1面上の機能素子および配線パターンと、第2面の配線パターンとを二次元的(平面的)ではなく三次元的に配置することが可能となるため、装置の設計の自由度を向上することが可能となる。
実施の形態1に従う弾性表面波装置の断面図である。 実施の形態1に従う弾性表面波装置の等価回路の一例を示す図である。 図2の弾性表面波装置の圧電性基板における機能素子および配線パターンの配置の一例を示す図である。 弾性表面波装置の圧電性基板の表面のみに機能素子および配線パターンを配置した比較例の配置図である。 実施の形態1の変形例1の断面図である。 実施の形態1の変形例2の断面図である。 図6の弾性表面波装置の圧電性基板における機能素子および配線パターンの配置の一例を示す図である。 縦結合共振型フィルタの場合の変形例3の等価回路を示す図である。 実施の形態2に従う弾性表面波装置の等価回路の一例を示す図である。 図9の弾性表面波装置の圧電性基板における機能素子および配線パターンの配置の一例を示す図である。 弾性表面波装置の圧電性基板の表面のみにキャンセル回路とフィルタ部とを接続する配線パターンを配置した比較例の配置図である。 フィルタ部内の共振部間の配線パターンの一部、および、キャンセル回路とフィルタ部とを接続する配線パターンの一部の双方を第2面に配置した弾性表面波装置の等価回路の一例を示す図である。 図9におけるキャンセル回路の詳細を示す図である。 送信用フィルタおよび受信用フィルタの双方を有する弾性表面波装置の例におけるキャンセル回路の配置を説明するための図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 図1は、本実施の形態1に従う弾性表面波装置10の一例の断面図を示す。図1を参照して、弾性表面波装置10は、カバー部20と、支持部22と、圧電性基板24と、支持基板27とを備える。
 圧電性基板24は、支持基板27上に積層されている。圧電性基板24は、たとえば、タンタル酸リチウム(LiTaO)、ニオブ酸リチウム(LiNbO)、アルミナ(Al)、およびサファイアのような圧電単結晶材料、あるいは、LiTaO、LiNbOまたはシリコン(Si)からなる圧電積層材料により形成される。圧電性基板24の第1面(表面)25には、複数の機能素子30が配置されている。機能素子として、たとえばアルミニウム、銅、銀、金、チタン、タングステン、白金、クロム、ニッケル、モリブデンの少なくとも一種からなる単体金属、またはこれらを主成分とする合金などの電極材を用いて形成された一対の櫛歯状電極(IDT:Inter Digital Transducer)が含まれる。圧電性基板24とIDT電極とによって弾性表面波共振子が形成される。
 圧電性基板24の第1面25には、支持部22が設けられている。この支持部22を介してカバー部20を第1面25に対向配置することによって、IDT電極を含む複数の機能素子30の周囲に空間が形成される。これにより圧電性基板24の当該空間に隣接する部分において、弾性表面波が伝搬するようになっている。
 圧電性基板24には、積層方向(図1のZ軸方向)に貫通電極(ビア)34が形成されており、この貫通電極34によって、支持基板27に形成された端子電極28に機能素子30が接続される。端子電極28は、図示しない実装基板に電気的に接続するための端子である。機能素子は、端子電極28を介して、外部回路や接地電位に接続される。
 圧電性基板24の第2面(裏面)26には、機能素子30同士を接続する配線パターンの一部(図1中の配線パターン32)が形成されている。配線パターン32は、貫通電極36によって第1面に形成された機能素子30に接続される。なお、明確には図示していないが、機能素子30同士を接続する配線パターンのうち、第2面26に形成される配線パターン32以外のものは、第1面25に形成されている。また、図1においては、第2面26に形成される配線パターン32が1つだけ記載されているが、複数の配線パターンが第2面26に形成されていてもよい。
 図2は、図1の弾性表面波装置10の等価回路の一例を示す図である。図2の等価回路においては、弾性表面波装置10が、スマートフォンなどの通信機器で用いられる送信用フィルタの場合を例として説明する。
 弾性表面波装置10は、入力端子(端子TX)により送信回路(図示せず)と接続され、出力端子(端子ANT)によりアンテナ(図示せず)と接続されている。弾性表面波装置10は、入力端子TXと出力端子ANTとの間に設けられる直列腕に直列に接続された直列腕共振部S1~S4と、直列腕と接地電位GNDとの間に接続された並列腕に設けられた並列腕共振部P1~P3とを備えるラダー型フィルタである。各共振部は、1つ以上の弾性表面波共振子により構成されており、図1における機能素子30に対応する。なお、図2に示された送信用フィルタの構成は一例であり、弾性表面波共振子により形成されるフィルタであれば、他の構成であってもよい。
 並列腕共振部P1は、一方端が直列腕共振部S1と直列腕共振部S2との間の接続ノードに接続され、他方端が接地電位GNDに接続されている。並列腕共振部P2は、一方端が直列腕共振部S2と直列腕共振部S3との間の接続ノードに接続され、他方端が接地電位GNDに接続されている。並列腕共振部P3は、一方端が直列腕共振部S3と直列腕共振部S4との間の接続ノードに接続され、他方端が接地電位GNDに接続されている。
 ここで、図2中のV1,V2,V5,V8,V9で示される二重丸は図1における貫通電極34を示しており、図2中のV3,V4,V6,V7で示される二重丸は図1における貫通電極36を示している。また、入出力端子および各共振部間を接続する配線パターンのうち、実線で記載された配線パターンは図1における圧電性基板24の第1面25に形成されており、破線で記載された配線パターンは第2面26に形成されている。
 図3は、図2の圧電性基板における各共振部および配線パターンの配置の一例を示す図である。図3(A),(B)は、図1の圧電性基板24の第1面25および第2面26を、それぞれ図中のZ軸の正方向から負方向に平面視したときの図である。
 図3を参照して、第1面25においては、直列腕共振部S1が配線パターンにより直列腕共振部S2および並列腕共振部P1と接続されている。直列腕共振部S1は、貫通電極V1を介して第2面26の端子TXと接続されている。並列腕共振部P1は、貫通電極V2を介して第2面26の端子GNDと接続されている。直列腕共振部S2は、貫通電極V3を介して第2面26の配線パターンL1の一方端に接続される。配線パターンL1の他方端は貫通電極V4を介して、第1面25において、直列腕共振部S3と並列腕共振部P2とに接続されている配線パターンに接続される。
 直列腕共振部S3は、他の配線パターンにより、直列腕共振部S4に接続されるとともに貫通電極V6を介して第2面26の配線パターンL2の一方端に接続される。配線パターンL2の他方端は、貫通電極V7を介して、第1面25の並列腕共振部P3に接続される。並列腕共振部P3は、さらに貫通電極V8を介して第2面26の端子GNDに接続される。直列腕共振部S4は、さらに貫通電極V9を介して、第2面26の端子ANTに接続される。
 なお、図2,図3の例では、配線パターンL1,L2のみが第2面に形成される例とされているが、共振部の接続が異なる場合には、必要に応じて別の配線パターンを第2面に形成してもよい。
 図4は、圧電性基板の第1面(表面)に、すべての機能素子および配線パターンを形成した比較例の場合の、図3(A),(B)に対応する図である。図3(A)および図4(A)の第1面の図を比較すると、図3(A)においては破線で囲われた部分のスペースが空いた状態となっている。このように、本実施の形態1に従う弾性表面波装置10においては、各共振部(機能素子)間を接続する配線パターンの一部を裏面側の第2面26に形成することによって、第1面25側において機能素子および配線パターンで占められる表面積を削減することができる。
 図3(A)においては、図4(A)との比較を容易にするために、各共振部を同じ位置に配置しているが、たとえば、空いたスペースを圧電性基板24の左端部に寄せるように各共振部を配置することによって、圧電性基板24の大きさを小さくすることができる。これにより、弾性表面波装置の小型化を図ることができるので、部品コストの低減にもつながる。
 また、図4(A)のような第1面のみに、平面的(二次元的)に機能素子および配線パターンを形成する場合、配線パターン同士、および、配線パターンと機能素子とが交差しないように配置を設計することが必要となる。しかしながら、実施の形態1の弾性表面波装置のように、第2面に一部の配線パターンを配置することによって、圧電性基板を平面視した場合に第2面の配線パターンが第1面の配線パターンと交差するような配置とすることも可能となる。また、第2面に一部の配線パターンを配置することによって、圧電性基板を平面視した場合に、第2面の配線パターンが第1面の機能素子と重なるように配置することも可能となる。すなわち、機能素子および配線パターンを三次元的に配置することによって、設計の自由度を向上させることができる。
 (変形例1)
 上述の実施の形態1においては、圧電性基板24が単層基板である場合を例として説明した。この場合には、機能素子が配置される第1面25を表面とすると、第2面26は圧電性基板24の裏面となる。当該変形例1においては、圧電性基板が多層基板の場合について説明する。
 図5は、変形例1に従う弾性表面波装置10Aの断面図である。図5においては、図1と比較して、主に、圧電性基板24Aが、第1基板24-1と第2基板24-2とを積層した多層基板で形成されている点が異なっている。なお、図5において、図1と重複する要素の説明は繰り返さない。
 圧電性基板24Aが複数の基板で形成される場合には、機能素子30が配置される第1面25(圧電性基板24Aの表面)と異なる第2面として、圧電性基板24Aの裏面26Bだけでなく、第1基板24-1と第2基板24-2との間の中間面26Aを利用することもできる。図5においては、第2面として中間面26Aが用いられる例が示されており、配線パターン32Aが中間面26Aに形成されている。この場合には、配線パターン32Aは、第1基板24-1に形成された貫通電極36Aによって第1面25上の機能素子に接続される。
 なお、中間面26Aおよび裏面26Bの双方に配線パターンを形成してもよい。また、圧電性基板が3以上の基板を積層した多層基板である場合は、複数の中間面に配線パターンを形成してもよい。
 このように、圧電性基板として多層基板を用いた場合には、機能素子が配置された第1面と異なる第2面として、裏面および中間面を利用することができるので、機能素子および配線パターンの設計の自由度がさらに向上し、配線パターンを適切な配置に設計することによって、弾性表面波装置のさらなる小型化を実現することが可能となる。
 (変形例2)
 実施の形態1および変形例1においては、圧電性基板の第1面の機能素子と第2面の配線パターンとを貫通電極で接続する例について説明した。変形例2においては、第1面の機能素子と第2面の配線パターンとを、圧電性基板の側面に形成した配線パターンを用いて接続する例について説明する。
 図6は、変形例2に従う弾性表面波装置10Bの断面図である。図6においては、圧電性基板24は、支持基板27と側壁部40とで形成された箱状の保護樹脂内に配置されている。そして、圧電性基板24の第2面(裏面)26に形成された配線パターン32Bは、さらに圧電性基板24の側面に沿って圧電性基板24の第1面(表面)25まで延び、第1面25に配置された機能素子30に接続されている。
 図7は、図6の弾性表面波装置10Bの圧電性基板24における機能素子および配線パターンの配置の一例を示す図である。図7においては、第2面26に形成された配線パターンL2#の一方端は、図7における圧電性基板24の左側面に形成された配線パターンV7#により第1面25まで立上り、並列腕共振部P3に接続されている。また、配線パターンL2#の他方端は、圧電性基板24の右側面に形成された配線パターンV6#により第1面25まで立上り、直列腕共振部S3と直列腕共振部S4とを接続している配線パターンに接続されている。
 変形例2のように、側面に形成された配線パターンを用いて、第2面に形成された配線パターンと第1面の機能素子とを接続する構成とすることによっても、図1の例と同様に、圧電性基板上において機能素子および配線パターンで占められる表面積を削減することができるとともに、設計の自由度を向上させることができる。
 なお、図6の例では、配線パターンL2#の双方の端部が側面に形成された配線パターンで第1面に至る場合を例として説明したが、どちらか一方の端部について側面の配線パターンを用い、他方については貫通電極を用いる構成であってもよい。また、変形例2の構成は、多層基板の中間面を使用する変形例1にも適用可能である。
 (変形例3)
 実施の形態1においては、弾性表面波装置が通信機器の送信用フィルタの場合を例として説明したが、本実施の形態の構成は通信機器の受信用フィルタの場合にも適用可能である。
 図8は、弾性表面波装置が受信用フィルタである場合の等価回路の一例を示す図である。
 図8を参照して、弾性表面波装置10Cは、入力端子(端子ANT)によりアンテナ(図示せず)と接続され、出力端子(端子RX)により受信回路(図示せず)と接続されている。弾性表面波装置10Cは、入力端子ANTと出力端子RXとの間に設けられる直列腕に直列に接続された直列腕共振部S10,S11と、直列腕と接地電位GNDとの間に接続された並列腕共振部P10とを備えるフィルタである。
 直列腕共振部S11は、いわゆる縦結合共振子型フィルタを形成している。直列腕共振部S11は、IDT電極ID1~ID3と、反射器REFとを含んで構成される。
 IDT電極ID2の一方端は直列腕共振部S10に接続され、他方端は貫通電極を介して接地電位GNDに接続される。IDT電極ID1は、IDT電極ID2の一方側の側面に隣接して配置される。IDT電極ID3は、IDT電極ID2の他方側の側面に隣接して配置される。IDT電極ID1,ID3の各々の一方端は、出力端子RXに接続される。IDT電極ID1,ID3の各々の他方端は、貫通電極を介して接地電位GNDに接続される。反射器REFは、各IDT電極ID1,ID3に隣接して配置される。
 図8からわかるように、このような縦結合共振子型フィルタにおいては、接地電極GNDへの配線パターン(図8中の破線の部分に該当)を第1面に形成すると、IDT電極ID1,ID3と出力端子RXとを接続する配線パターンと交差する部分が発生し得る。そのため、第1面のみに配線パターンを形成する場合には、当該交差する部分においては、配線パターン間に絶縁層を設けるような立体配置とする必要がある。
 しかしながら、図8のように、たとえば接地電位GNDに接続するための配線パターンを第2面に設けることによって、第1面における配線パターンの交差部分が排除できるので、製造工程を簡略化でき製造コストの削減にもつながる。
 なお、変形例3についても、変形例1,2の構成をさらに適用してもよい。
 [実施の形態2]
 実施の形態1においては、弾性表面波装置が送信用あるいは受信用のフィルタである場合について説明したが、一般的にこのようなフィルタは、特定の周波数帯域(通過帯域)の信号を通過させるバンドパスフィルタとして機能する。バンドパスフィルタにおいては、上記の通過帯域外の周波数帯域(阻止帯域)の減衰量が大きいことが望ましい。
 このような場合に、たとえば特開2014-171210号公報に開示されているような、フィルタ部に並列に付加回路(キャンセル回路)を追加することによって、阻止帯域における減衰量を確保する構成が知られている。この付加回路は、概略的には、フィルタ部を通過する信号と逆位相を有する信号成分を生成し、出力信号に加えることによって、阻止帯域における出力信号の振幅を相殺して減衰量を確保するものである。
 一方で、このような追加的な回路を弾性表面波装置に設けると、圧電性基板上の表面積がさらに必要となるため、装置サイズが大型化してしまうことが懸念される。
 ここで、付加回路は入力端子と出力端子との間にフィルタ部に並列に接続されるが、図3等に記載されているように、入力端子と出力端子とは、容量結合による信号の漏洩を防止するために、一般的には互いにできるだけ離れた位置に設けられる。そのため、付加回路と入力端子および出力端子とを接続する配線パターンは、比較的長くなる傾向にある。そうすると、たとえば、圧電性基板の周囲に沿うように配線パターンを形成することとなり、多くの表面積が必要となる可能性がある。
 そこで、実施の形態2においては、付加回路と入力端子および出力端子とを接続する配線パターンの一部を第2面に形成することによって、第1面において付加回路によって追加される配線パターンに必要となるスペースを削減する。これによって、付加回路の追加により阻止帯域の減衰特性を向上させるとともに、装置の大型化の抑制、あるいは、装置の小型化を実現することが可能となる。
 図9は、実施の形態2に従う弾性表面波装置10#の等価回路の一例を示す図である。図9では、実施の形態1の図2の構成に、キャンセル回路100が追加された構成となっている。図9において、図2と重複する要素の説明は繰り返さない。
 図9を参照して、弾性表面波装置10#は、入力端子TXと出力端子ANTとの間に、図2に示すフィルタ部と並列に接続されたキャンセル回路100をさらに備える。キャンセル回路100は、図9には示されていないが、振幅調整回路と位相調整回路とを含む。位相調整回路は、入力端子TXからの入力信号の位相を反転する。振幅調整回路は、入力端子TXからの入力信号の振幅を低減する。振幅の低減量は、フィルタ部を通過した信号における阻止帯域の信号の大きさに応じて決定される。このように、入力信号の逆位相の信号をフィルタ部からの出力信号に加えることによって、阻止帯域の信号の減衰量を確保することができる。
 さらに、キャンセル回路100と入力端子TXとを接続する配線パターンの一部(図9中のL3)、およびキャンセル回路100と出力端子ANTとを接続する配線パターンの一部(図9中のL4)の少なくとも一方が、貫通電極を介して第2面26に形成される。このようにすることによって、配線パターンL3,L4を第2面26に形成することによって、キャンセル回路100の追加に伴って第1面25に形成される配線パターン用の面積の増加を最小限に留めることができる。これによって、装置サイズの増加を抑制しつつ、阻止帯域における減衰量を確保することが可能となる。
 図10は、実施の形態2における圧電性基板における各共振部および配線パターンの配置の一例を示す図である。図10(A),(B)は、圧電性基板24における第1面25および第2面26を、それぞれ図中のZ軸の正方向から負方向に平面視したときの図である。
 図10の例においては、圧電性基板24上の各共振部は、実施の形態1の比較例(図4)と同様に配置されており、さらにキャンセル回路100が圧電性基板24上に追加されている。
 キャンセル回路100の一方端は、直列腕共振部S4と同様に、貫通電極V9Bを介して第2面26の端子ANTに接続される。また、キャンセル回路100の他方端は、貫通電極V10Bを介して第2面26の配線パターンL3の一方端に接続される。配線パターンL3の他方端は、貫通電極V11Bを介して、第1面25において、貫通電極V1B(すなわち、端子TX)に接続される配線パターンに接続される。あるいは、図10(B)中の配線パターンL3Aのように、第2面26において貫通電極V10Bと端子TXとを直接接続してもよい。
 図11は、図10と同様の回路のすべての機能素子および配線パターンを、圧電性基板24の第1面25に形成した場合の比較例を示す図である。図10(A)および図11(A)を比較すると、キャンセル回路100と直列腕共振部S1とを接続する配線パターンが、他の配線パターンと立体的に交差していることがわかる。このように、配線パターンを交差させる場合には、重なり合う配線パターン間に絶縁膜を形成することが必要となる。あるいは、このような配線パターンの交差を排除するためには、他の機能素子や配線パターンの外側(すなわち、圧電性基板24の外周に沿った部分)に配線パターンを形成することが必要となる。そうすると、圧電性基板24の表面積をさらに拡大することが必要となり、装置サイズが大型化してしまう。
 本実施の形態2の図10のように、キャンセル回路100と直列腕共振部S1とを接続する配線パターンを第2面26に形成することで、図11のような配線パターンの交差部分を排除することができるとともに、圧電性基板24の表面積の拡大を抑制することができる。
 なお、図10においては、図9における配線パターンL3のみを第2面26に形成する例を説明したが、キャンセル回路100が配置される位置によっては、配線パターンL3に加えて、キャンセル回路100と端子ANTとを接続する配線パターンL4をさらに第2面26に形成するようにしてもよい。あるいは、配線パターンL4のみを第2面26に形成するようにしてもよい。
 また、フィルタ部とキャンセル回路100との間の配線パターン(L3,L4)に加えて、図12に示すように、実施の形態1と同様に、フィルタ部における共振部間の配線パターンの一部(L1,L2)をさらに第2面26に設けるようにしてもよい。この場合、共振部間の配線パターンを第2面26に形成することによって得られた第1面25の空きスペースにキャンセル回路100を適切に配置することによって、装置サイズをさらに低減することが可能となる。
 図13は、図9のキャンセル回路100の詳細を示す図である。図13を参照して、キャンセル回路100は、振幅調整回路として機能するキャパシタC1,C2と、位相調整回路として機能する弾性表面波振動子S100とを含む。
 キャパシタC1の一方端は入力端子TXに接続され、他方端は弾性表面波振動子S100の一方端に接続される。弾性表面波振動子S100の他方端は、キャパシタC2の一方端に接続される。キャパシタC2の他方端は、出力端子ANTに接続される。
 ここで、キャパシタC1,C2および弾性表面波振動子S100の機能素子は、圧電性基板24の第1面25に配置されるが、キャパシタC1と弾性表面波振動子S100とを接続する配線パターンの一部(図13中のL5)、および弾性表面波振動子S100とキャパシタC2とを接続する配線パターンの一部(図13中のL6)の少なくとも一方は、貫通電極を介して第2面26に形成される。すなわち、入力端子TXからキャンセル回路100を介して出力端子ANTへ至るまでの配線パターンの少なくとも一部(配線パターンL3~L6の少なくとも一部)が、圧電性基板24の第2面26に形成される。
 なお、振幅調整回路を2つのキャパシタで形成することは必須ではなく、キャパシタC1,C2のいずれか一方のみが設けられる構成であってもよい。
 このように、キャンセル回路100を構成する機能素子間を接続する配線パターンについても、その一部を第2面26に形成することによって、第1面25に必要とされる配線パターンのスペースを低減できるので、装置サイズの増加を抑制することができる。
 なお、上記の説明においては、キャンセル回路を送信用フィルタに設ける場合を例として説明したが、図8で示したような受信用フィルタに対しても同様に適用することができる。
 さらに、このようなキャンセル回路は、図14に示される弾性表面波装置200のように、送信用フィルタ210と受信用フィルタ220とが1つの装置に形成されたデュプレクサについても適用することが可能である。この場合には、送信用フィルタ210に並列に接続されるキャンセル回路250、および、受信用フィルタ220に並列に接続されるキャンセル回路260に加え、送信回路310に接続するための送信端子TXと、受信回路320に接続するための受信端子RXとの間にキャンセル回路270を設けることも可能である。
 このようなデュプレクサにおいては、送信用フィルタ210と受信用フィルタ220とでアンテナ端子ANTを共有しているため、送信回路310からアンテナ300へ送信信号を出力する際に、その送信信号が受信用フィルタ220を経由して受信回路320へも伝達され得る。また、送信端子TXと送信用フィルタ210とを接続する配線パターンと、受信用フィルタ220と受信端子RXとを接続する配線パターンの距離によっては、配線パターン間の容量結合によって、送信側の信号が受信側に漏洩し得る。そのため、送信端子TXと受信端子RXとの間にキャンセル回路270を設けることによって、送信信号に起因する受信信号への影響を排除することができる。
 そして、このようなデュプレクサにおいてキャンセル回路を設ける場合に、各キャンセル回路に接続する配線パターン(図14中のL10,L11,L20,L21,L30,L31)の少なくとも一部を、圧電性基板24の第2面26に形成することによって、各フィルタ部における阻止帯域の減衰量を確保しつつ、装置サイズの増加を抑制することができる。
 なお、図14には示していないが、図14の各キャンセル回路250,260,270についても、図13のように、内部に含まれる機能素子間を接続する配線パターンの一部を第2面に形成するようにしてもよい。また、すべてのキャンセル回路を設けることは必須ではなく、キャンセル回路250,260,270のうちの一部が設けられる構成であってもよい。また、実施の形態1における変形例1~3についても、実施の形態2の構成に適用可能である。
 以上のように、弾性表面波装置において、各機能素子間を接続する配線パターンの一部を、圧電性基板において機能素子が配置される面(第1面)とは異なる面(第2面)に形成することによって、装置サイズの増加を抑制することができるとともに、設計の自由度を向上させることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,10A~10C,10#,200 弾性表面波装置、20 カバー部、22 支持部、24,24A 圧電性基板、24-1 第1基板、24-2 第2基板、25 第1面、26,26A,26B 第2面、27 支持基板、28 端子電極、30 機能素子、32,32A,32B,L1~L6,L10,L11,L20,L21,L30,L31,V6#,V7# 配線パターン、34,36,36A,V1,V1A~V1C,V2,V2A~V1C,V3~V5,V5A~V5C,V6~V8,V8A~V8C,V9,V9A~V9C,V10B,V10C,V11B,V11C 貫通電極、40 側壁部、100,250,260,270 キャンセル回路、210 送信用フィルタ、220 受信用フィルタ、300 アンテナ、310 送信回路、320 受信回路、ANT,GND,RX,TX 端子、C1,C2 キャパシタ、ID1~ID3 IDT電極、P1~P3,P10,S1~S4,S10,S11 共振部、REF 反射器、S100 弾性表面波振動子。

Claims (15)

  1.  圧電性基板と、
     前記圧電性基板の第1面に形成される複数の機能素子とを備え、
     前記複数の機能素子の少なくとも一部には、IDT(Inter Digital Transducer)電極が含まれており、前記圧電性基板と前記IDT電極により弾性表面波共振子が形成され、
     前記複数の機能素子に含まれる第1機能素子と第2機能素子とを接続する配線パターンの一部は、前記圧電性基板の前記第1面とは異なる第2面に形成される、弾性表面波装置。
  2.  前記第2面は、前記第1面を前記圧電性基板の表面とした場合の裏面である、請求項1に記載の弾性表面波装置。
  3.  前記圧電性基板は、2つ以上の基板層が積層された多層基板であり、
     前記圧電性基板は、第1基板層と、前記第1基板層上に積層された第2基板層とを含み、
     前記第2面は、前記第1基板層と前記第2基板層との間の面である、請求項1に記載の弾性表面波装置。
  4.  前記圧電性基板には、前記第1面から前記第2面まで貫通する第1貫通電極および第2貫通電極が形成されており、
     前記第2面に形成された配線パターンは、前記第1貫通電極により前記第1機能素子と接続され、前記第2貫通電極により前記第2機能素子と接続される、請求項1~3のいずれか1項に記載の弾性表面波装置。
  5.  前記第2面に形成された配線パターンは、前記圧電性基板の第1側面に形成された第1配線を介して前記第1機能素子と接続され、前記圧電性基板の第2側面に形成された第2配線を介して前記第2機能素子と接続される、請求項1~3のいずれか1項に記載の弾性表面波装置。
  6.  前記圧電性基板を積層方向から平面視した場合に、前記第1面に形成された配線パターンの少なくとも一部は、前記第2面に形成された配線パターンと交差する、請求項1~5のいずれか1項に記載の弾性表面波装置。
  7.  前記圧電性基板を積層方向から平面視した場合に、前記複数の機能素子の一部は、前記第2面に形成された配線パターンと重なる、請求項1~5のいずれか1項に記載の弾性表面波装置。
  8.  入力端子と出力端子とをさらに備え、
     前記複数の機能素子は、
     前記入力端子からの入力信号における所定の周波数帯域の信号を前記出力端子に通過させるように構成されたフィルタ部と、
     前記入力端子と前記出力端子との間に前記フィルタ部に並列に接続されたキャンセル回路とを含み、
     前記キャンセル回路は、前記出力端子から出力される信号における、前記所定の周波数帯域外の信号を減衰させるように構成され、
     前記入力端子から前記キャンセル回路を介して前記出力端子に至る配線パターンの少なくとも一部は、前記第2面に形成される、請求項1~7のいずれか1項に記載の弾性表面波装置。
  9.  前記第1機能素子は前記フィルタ部であり、前記第2機能素子は前記キャンセル回路であり、
     前記フィルタ部と前記キャンセル回路とを接続する配線パターンの少なくとも一部は、前記第2面に形成される、請求項8に記載の弾性表面波装置。
  10.  前記フィルタ部は受信用フィルタであり、
     前記入力端子はアンテナに接続されるとともに、前記出力端子は受信回路に接続され、
     前記キャンセル回路は、前記受信用フィルタに並列に接続される、請求項9に記載の弾性表面波装置。
  11.  前記フィルタ部は送信用フィルタであり、
     前記入力端子は送信回路に接続されるとともに、前記出力端子はアンテナに接続され、
     前記キャンセル回路は、前記送信用フィルタに並列に接続される、請求項9に記載の弾性表面波装置。
  12.  前記キャンセル回路は、
     前記入力信号の振幅を調整するように構成された振幅調整回路と、
     前記入力信号の位相を調整するように構成された位相調整回路とを含み、
     前記第1機能素子は前記振幅調整回路であり、前記第2機能素子は前記位相調整回路であり、
     前記振幅調整回路と前記位相調整回路とを接続する配線パターンの少なくとも一部は、前記第2面に形成される、請求項8に記載の弾性表面波装置。
  13.  前記キャンセル回路は、
     前記入力信号の振幅を調整するように構成された第1振幅調整回路と、
     前記第1振幅調整回路からの信号の位相を調整するように構成された位相調整回路と、
     前記位相調整回路からの信号の振幅を調整するように構成された第2振幅調整回路とをさらに含み、
     前記第1機能素子は、前記位相調整回路であり、
     前記第2機能素子は前記第1振幅調整回路および前記第2振幅調整回路の少なくとも一方であり、
     前記第1振幅調整回路と前記位相調整回路とを接続する配線パターン、および、前記位相調整回路と前記第2振幅調整回路とを接続する配線パターンの少なくとも一方は、前記第2面に形成される、請求項8に記載の弾性表面波装置。
  14.  前記複数の機能素子は、
     第1端子で受けた送信回路からの信号をフィルタリングしてアンテナに出力するように構成された送信用フィルタと、
     前記アンテナから受信した信号をフィルタリングして第2端子から受信回路に出力するように構成された受信用フィルタと、
     前記第1端子と前記第2端子との間に接続されたキャンセル回路とを含み、
     前記キャンセル回路は、前記第2端子から出力される信号における、前記第1端子で受けた信号の影響を低減させるように構成され、
     前記第1端子から前記キャンセル回路を介して前記第2端子へ接続される配線パターンの一部は、前記第2面に形成される、請求項1~7のいずれか1項に記載の弾性表面波装置。
  15.  前記圧電性基板は、
     タンタル酸リチウム(LiTaO)、ニオブ酸リチウム(LiNbO)、アルミナ(Al)、およびサファイアのいずれかの単結晶材料、あるいは、LiTaO、LiNbOまたはシリコン(Si)からなる積層材料により形成される、請求項1~14のいずれか1項に記載の弾性表面波装置。
PCT/JP2018/002252 2017-02-03 2018-01-25 弾性表面波装置 WO2018143044A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197022590A KR102260267B1 (ko) 2017-02-03 2018-01-25 탄성 표면파 장치
JP2018565488A JPWO2018143044A1 (ja) 2017-02-03 2018-01-25 弾性表面波装置
CN201880009738.0A CN110249526B (zh) 2017-02-03 2018-01-25 声表面波装置
US16/529,877 US11057015B2 (en) 2017-02-03 2019-08-02 Surface acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-018684 2017-02-03
JP2017018684 2017-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/529,877 Continuation US11057015B2 (en) 2017-02-03 2019-08-02 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
WO2018143044A1 true WO2018143044A1 (ja) 2018-08-09

Family

ID=63039704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002252 WO2018143044A1 (ja) 2017-02-03 2018-01-25 弾性表面波装置

Country Status (5)

Country Link
US (1) US11057015B2 (ja)
JP (1) JPWO2018143044A1 (ja)
KR (1) KR102260267B1 (ja)
CN (1) CN110249526B (ja)
WO (1) WO2018143044A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176738A1 (ja) * 2021-02-17 2022-08-25 株式会社村田製作所 弾性波フィルタ、弾性波フィルタの製造方法、高周波モジュール及び通信装置
WO2022244671A1 (ja) * 2021-05-17 2022-11-24 株式会社村田製作所 フィルタおよびマルチプレクサ
WO2023085368A1 (ja) * 2021-11-12 2023-05-19 株式会社村田製作所 弾性波装置
WO2023233843A1 (ja) * 2022-06-02 2023-12-07 株式会社村田製作所 高周波モジュール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167956B2 (ja) * 2020-03-25 2022-11-09 カシオ計算機株式会社 アンテナ受信装置及び電子時計

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163668A (ja) * 1997-11-28 1999-06-18 Matsushita Electric Ind Co Ltd 積層圧電単結晶基板及びそれを用いた圧電デバイス
JP2013247466A (ja) * 2012-05-24 2013-12-09 Taiyo Yuden Co Ltd フィルタ、分波器及び通信モジュール
WO2016068003A1 (ja) * 2014-10-29 2016-05-06 株式会社村田製作所 圧電モジュール
JP2016178621A (ja) * 2015-03-18 2016-10-06 太陽誘電株式会社 弾性波デバイス
WO2016208287A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 弾性波フィルタ装置
JP2017022501A (ja) * 2015-07-08 2017-01-26 太陽誘電株式会社 弾性波デバイス、分波器、及びモジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733791B2 (ja) 1974-06-12 1982-07-19
JP5733791B2 (ja) 2011-03-18 2015-06-10 日本電波工業株式会社 圧電デバイス及びその製造方法
JP2014171210A (ja) 2013-02-08 2014-09-18 Panasonic Corp 高周波フィルタ
KR101754193B1 (ko) * 2013-08-02 2017-07-05 가부시키가이샤 무라타 세이사쿠쇼 분파장치
US10218334B2 (en) 2015-03-18 2019-02-26 Taiyo Yuden Co., Ltd. Acoustic wave device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163668A (ja) * 1997-11-28 1999-06-18 Matsushita Electric Ind Co Ltd 積層圧電単結晶基板及びそれを用いた圧電デバイス
JP2013247466A (ja) * 2012-05-24 2013-12-09 Taiyo Yuden Co Ltd フィルタ、分波器及び通信モジュール
WO2016068003A1 (ja) * 2014-10-29 2016-05-06 株式会社村田製作所 圧電モジュール
JP2016178621A (ja) * 2015-03-18 2016-10-06 太陽誘電株式会社 弾性波デバイス
WO2016208287A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 弾性波フィルタ装置
JP2017022501A (ja) * 2015-07-08 2017-01-26 太陽誘電株式会社 弾性波デバイス、分波器、及びモジュール

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176738A1 (ja) * 2021-02-17 2022-08-25 株式会社村田製作所 弾性波フィルタ、弾性波フィルタの製造方法、高周波モジュール及び通信装置
WO2022244671A1 (ja) * 2021-05-17 2022-11-24 株式会社村田製作所 フィルタおよびマルチプレクサ
WO2023085368A1 (ja) * 2021-11-12 2023-05-19 株式会社村田製作所 弾性波装置
WO2023233843A1 (ja) * 2022-06-02 2023-12-07 株式会社村田製作所 高周波モジュール

Also Published As

Publication number Publication date
US20190356298A1 (en) 2019-11-21
KR102260267B1 (ko) 2021-06-02
JPWO2018143044A1 (ja) 2019-11-07
US11057015B2 (en) 2021-07-06
CN110249526A (zh) 2019-09-17
CN110249526B (zh) 2023-02-21
KR20190097276A (ko) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2018143044A1 (ja) 弾性表面波装置
CN110249525B (zh) 声表面波装置
JP7132944B2 (ja) 弾性波フィルタ、分波器および通信装置
US20190267968A1 (en) Acoustic wave device and communication apparatus
JP7136026B2 (ja) マルチプレクサ
WO2018012367A1 (ja) 受信フィルタ、分波器および通信装置
CN212258915U (zh) 滤波器以及多工器
JP7103420B2 (ja) フィルタ装置およびマルチプレクサ
EP2432123A1 (en) Duplexer
JP2012244551A (ja) デュプレクサの受信側フィルタ及びデュプレクサ
JP6702278B2 (ja) マルチプレクサ
US20210143791A1 (en) Filter and multiplexer
JP7352638B2 (ja) フィルタデバイス及び通信装置
WO2019244938A1 (ja) フィルタおよびマルチプレクサ
WO2022050210A1 (ja) 弾性波フィルタおよびマルチプレクサ
WO2019049823A1 (ja) 弾性波フィルタ装置及び複合フィルタ装置
KR102521168B1 (ko) 멀티플렉서
WO2023248823A1 (ja) フィルタデバイス、多層基板及び通信装置
WO2023032942A1 (ja) 高周波フィルタおよびマルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565488

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022590

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747919

Country of ref document: EP

Kind code of ref document: A1