WO2018142971A1 - 一体化成形体及びその製造方法 - Google Patents

一体化成形体及びその製造方法 Download PDF

Info

Publication number
WO2018142971A1
WO2018142971A1 PCT/JP2018/001605 JP2018001605W WO2018142971A1 WO 2018142971 A1 WO2018142971 A1 WO 2018142971A1 JP 2018001605 W JP2018001605 W JP 2018001605W WO 2018142971 A1 WO2018142971 A1 WO 2018142971A1
Authority
WO
WIPO (PCT)
Prior art keywords
core layer
molded body
resin
sandwich structure
fibers
Prior art date
Application number
PCT/JP2018/001605
Other languages
English (en)
French (fr)
Inventor
中山裕之
佐々木英晃
森内將成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP18747457.2A priority Critical patent/EP3578353A4/en
Priority to CN201880005723.7A priority patent/CN110139747B/zh
Priority to JP2018511296A priority patent/JP6960108B2/ja
Priority to KR1020197020803A priority patent/KR20190113777A/ko
Priority to SG11201906941RA priority patent/SG11201906941RA/en
Priority to US16/482,059 priority patent/US20200061952A1/en
Publication of WO2018142971A1 publication Critical patent/WO2018142971A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/081Combinations of fibres of continuous or substantial length and short fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/22Fibres of short length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention is used, for example, as a part or casing portion of a personal computer, OA device, mobile phone, etc., and is suitable for applications that require lightweight, high strength, high rigidity, and thin wall thickness, and an excellent design surface.
  • the present invention relates to an integrated molded body and a manufacturing method thereof.
  • another structure is joined to a sandwich structure composed of a core layer made of reinforcing fibers and resin, and a skin layer made of reinforcing fibers and resin, and integrally molded.
  • Small and light-weight molded structures are known, but such molded structures are required to be thinner and more reliable in joining.
  • Patent Literature 1 “a laminated member (II) having a sandwich structure and a laminated member (II) in which a resin member (III) is arranged at least partially around a plate end portion of the laminated member (II).
  • a configuration in which the resin member (III) forms a convex shape at least partially with respect to the soft member layer (IIb)” is described. In other words, there is disclosed an effect of “high strength, high rigidity, and thinning”.
  • the soft member layer (IIb) a foam material, a resin sheet or the like can be preferably used for weight reduction, and the purpose of using the laminated member (II) having a relatively low compressive strength, such as a foam material, is more in injection molding.
  • the object is to easily form the resin member (III) into a convex shape and to reduce the weight of the laminated member (II) (paragraph [0023]).
  • the soft member layer (IIb) is joined.
  • Patent Document 2 “at least two inclined surfaces in which the fiber reinforced resin A is disposed in a mold as a preform, and the side surfaces contacting the resin B of the fiber reinforced resin A are inclined at different angles from each other.
  • a manufacturing method of forming a side surface having a shape before insert molding and supplying the liquefied resin B to insert-mold the fiber reinforced resin A is described. Is difficult to form a closed space in which the resin B hardly flows, and the resin B can flow until it makes good contact over the entire side surface of the fiber reinforced resin A.
  • the fiber reinforced resin A and the resin B "Adhesiveness and its reliability are ensured" are disclosed.
  • Patent Document 2 there is no description on how to create a side surface having a shape having at least two inclined surfaces inclined concavely at different angles. Certainly, by providing an inclination, the resin B easily flows in insert molding, but it takes time to process a complicated shape that provides the inclination. Moreover, since the inclination of two different angles is provided, it is difficult to make the fiber reinforced resin A thinner.
  • a sandwich structure having a core material and a skin material provided on both surfaces of the core material, the core material and the skin material have short fibers dispersed randomly in the matrix resin. It is made of fiber reinforced resin, the reinforcing fiber content in the core material is 20 to 80 wt%, the reinforcing fiber content in the skin material is 30 to 80 wt%, and the flexural modulus of the skin material is required to be 10 GPa or more. And the apparent density of the core material is 0.2 to 1.2 g / cm 3 or more, preferably, the porosity of the skin material is less than 10 vol%, and the porosity of the core material is 10 to 80 vol%.
  • Patent Document 3 a mat-like molded body containing reinforcing fibers for a core material and a matrix resin is formed by heating and pressing, and a mat containing reinforcing fibers for a skin material and a matrix resin.
  • a method of obtaining a sandwich structure having a light weight and high rigidity by sandwiching a molded article formed by heating and pressing and the description of joining the sandwich structure and another structure is as follows. None has been done or suggested.
  • the first member and the second member are disclosed to be bonded via an adhesive layer, and the thermoplastic resin constituting the adhesive layer is It is described that they are integrated by impregnating the reinforcing fiber bundle constituting the fiber reinforcing material (II).
  • the first member and the second member are overlapped via the adhesive layer, so the thickness of the joint portion Becomes thicker than the surroundings.
  • Patent Document 5 discloses a molding method using the shape restoring force of discontinuous fibers in the core layer. That is, “a skin material made of a non-expandable fiber-reinforced thermoplastic resin is disposed on at least one surface of the core layer to form a molding substrate, and the molding substrate is heated and melted to melt the core layer and the skin. The material is integrated with the discontinuous fibers in the core layer, and the core layer is expanded so that the core layer has a predetermined low density by expressing the shape restoring force of the core layer. Is manufactured in a mold and press-molded ”, whereby“ the core layer has a desired low density, thereby reducing the weight of the structure.
  • High mechanical properties of the structure is achieved by setting the desired expansion ratio and appropriately increasing the thickness of the core layer compared to the initial thickness before expansion. Effect is disclosed.
  • a structure having high mechanical properties can be obtained by appropriately increasing the thickness of the core layer compared to the initial thickness before expansion, but the structure itself is thinned. Has its limits. Further, there is no suggestion regarding joining the sandwich-like structure and another structure using the function of developing the shape restoring force of the core layer.
  • Patent Document 6 An integrated molded body and a method for manufacturing the same are provided (Patent Document 6).
  • Patent Document 6 At least a part of a plate end portion of a sandwich structure composed of a core layer made of discontinuous fibers and a thermoplastic resin (A) and a skin layer made of continuous fibers and a resin (B) is used as a joint portion.
  • An integrated molded body having a region higher than the rate and a manufacturing method thereof are provided.
  • Patent Document 6 it has been found that the following problems still remain with only the technique provided by Patent Document 6 above. That is, in particular, when the integrated molded body shown in FIG. 4 of Patent Document 6 is molded, for example, as shown in FIG. 1, the plate end portion of the sandwich structure 103 composed of the core layer 101 and the skin layer 102 is formed. When the integrated molded body 106 is formed by arranging another structure (C) 105 as the joint 104, the core layer 101 a of the main body 107 other than the joint 104 in the sandwich structure 103 is formed.
  • C another structure
  • the resin R forming another structure (C) 105 to be joined is placed in the mold 108. Will be injected.
  • the injection resin R is supplied to the entire region where the joint 104 is formed. At that time, the heat of the injection resin R is transferred to the internal core layer 101 through the skin layer 102, and the comparison is made in the core layer 101.
  • the object of the present invention is to pay attention to the remaining problems in the technology provided by the above-mentioned Patent Document 6 and integrate the sandwich structure and another structure while taking advantage of the technology of Patent Document 6. In this case, it is possible to easily mold excellent design surfaces by preventing the occurrence of sink marks due to heat transfer from the injection resin, light weight, high strength and high rigidity, and different structures.
  • An object of the present invention is to provide an integrated molded body having a high bonding strength and capable of being thinned, and a method for manufacturing the same.
  • the integrated molded body according to the present invention employs the following configuration.
  • a sandwich structure composed of a core layer made of discontinuous fibers and a thermoplastic resin (A) and a skin layer made of continuous fibers and a resin (B) is used as a joint, and the joint
  • the sandwich structure has a stepped portion at least at a part of the end portion, and the stepped portion forms a main body portion that forms a high surface in the stepped portion, and a boundary surface that connects a high surface and a low surface of the stepped portion.
  • the integrated molded article according to any one of (9).
  • the sandwich structure has another step portion in addition to a part of the end portion and the another structure (C) is arranged, and the another step portion is on both sides of the other step portion.
  • a main body portion forming a high surface, another boundary surface portion forming another boundary surface connecting a high surface on both sides of the other stepped portion and a low surface positioned between the high surfaces on both sides, and the main body portions on both sides
  • the other structure (C) is not in contact with the other boundary surface, and is composed of another thinnest portion having a core layer with a porosity lower than that of the core layer in the core layer.
  • the core layer is formed by expanding a core layer precursor composed of discontinuous fibers and a thermoplastic resin (A) in the thickness direction by a springback by heating to form a void.
  • the discontinuous fiber constituting the core layer is present as a fiber bundle composed of 500 or less single fibers, and the fiber bundle is randomly oriented, according to any one of (1) to (15) Integrated molded body.
  • Discontinuous fibers constituting the core layer are dispersed in the form of monofilaments, discontinuous single fibers (a), and other discontinuous single fibers (b) intersecting the discontinuous single fibers (a).
  • the manufacturing method of the integrally molded body which concerns on this invention employ
  • At least a part of an end portion of a sandwich structure composed of a core layer made of discontinuous fibers and a thermoplastic resin (A) and a skin layer made of continuous fibers and a resin (B) is used as a bonding portion, and the bonding
  • a step of forming a molded body precursor by arranging a skin layer precursor in which the continuous fiber is impregnated with the resin (B) on both surfaces of the core layer precursor [3] A step of heat-press-molding the molded body precursor, solidifying or curing the skin layer precursor to form a skin layer, and integrating the core layer precursor and the skin layer [4] A press die is brought into contact with each other to develop the restoring force of the discontinuous fibers in the core layer precursor to form voids in the core layer and expand the sandwich structure to a predetermined thickness.
  • Sandwich structure forming step comprising the thinnest wall portion having a core layer having a porosity lower than the porosity of the core layer in the boundary surface portion and the main body portion [5]
  • the shaped sandwich structure is placed in a mold, and the molten resin of another structure (C) is brought into contact with the boundary surface of the joint in the mold.
  • the sandwich structure and the other structure (C) are joined by injecting the resin in a state where it is blocked in the middle of the mold so as to be in contact with at least a part of the thinnest wall portion.
  • the core layer precursor containing discontinuous fibers and the thermoplastic resin (A) is softened to the thermoplastic resin (A).
  • a skin layer precursor in which a skin layer is disposed only in a region corresponding to the main body portion on at least one surface of the core layer is formed, and heated by pressing.
  • (18) or (19) wherein the skin layer precursor is solidified or cured to form a skin layer, and the main body portion is expanded to a predetermined thickness and includes a core layer having voids.
  • a method for producing an integrated molded body (21) A thermoplastic resin film or non-woven fabric is disposed on the skin layer or core layer constituting the joint, or an adhesive is applied, and then the resin of another structure (C) melted is injection molded.
  • a stepped portion is provided at the end of the sandwich structure by forming a portion having a different porosity and different thickness of the core layer, and a part of the stepped portion.
  • FIG. It is a general
  • molding which shows the remaining problem in patent document 6.
  • FIG. It is a schematic perspective view of the integrated molded object which concerns on one Embodiment of this invention.
  • FIG. 3 is a schematic cross-sectional view in the thickness direction of the integrated molded body viewed along the line A-A ′ in FIG. 2.
  • FIG. 2 It is a general
  • the integrated molded body according to the present invention includes at least a part of an end portion of a sandwich structure composed of a core layer composed of discontinuous fibers and a thermoplastic resin (A) and a skin layer composed of continuous fibers and a resin (B). It is an integrated molded body in which another structure (C) is arranged in the joint portion as a joint portion,
  • the sandwich structure has a stepped portion at least at a part of the end portion, and the stepped portion forms a main body portion that forms a high surface in the stepped portion, and a boundary surface that connects a high surface and a low surface of the stepped portion.
  • It is composed of a thinnest wall portion having a core layer with a porosity lower than the porosity of the core layer in the boundary surface portion and the main body portion, and the another structure (C) is not in contact with the boundary surface, It is an integrated molded body characterized in that it is joined to at least a part of the thinnest portion.
  • FIG. 2 shows an integrated molded body according to an embodiment of the present invention
  • FIG. 3 shows a schematic cross section in the thickness direction of the integrated molded body seen along the line AA ′ of FIG. Yes.
  • the core layer 3 is composed of discontinuous fibers 4 and a thermoplastic resin (A) of matrix resin, and the core layer 3 has a certain size.
  • a gap 5 is formed.
  • At least a part of the end portion of the sandwich structure 1 is provided with a joint portion 6, and the joint portion 6 has a resin (C) constituting another structure (C) 7 (for convenience, a matrix resin constituting a core layer).
  • thermoplastic resin (A) a matrix resin constituting the skin layer as a resin (B), and a matrix resin constituting another structure (C) as a resin (C)).
  • a step portion 11 is provided at least at a part of the end portion of the sandwich structure 1, and the step portion 11 includes a main body portion 8 forming a high surface 8 a in the step portion 11, and a high surface 8 a and a low surface of the step portion 11.
  • the thinnest wall portion 10 includes a boundary surface portion 9 that forms a boundary surface 9a that connects 10a and a core layer 3b that has a lower porosity than the porosity of the core layer 3a in the main body portion 8.
  • the another structure (C) 7 is not in contact with the boundary surface 9a, and is joined to only at least a part of the thinnest portion 10.
  • this integrated molded body 100 first, compared to a case where another structure (C) is simply joined to the side flat portion of the sandwich structure, the joining area can be increased, and the effect of increasing the joining strength is obtained. can get.
  • Another structural body (C) 7 is bonded to at least a part of 10, and the lower surface side of FIG. 3 is formed on the design surface.
  • the joint 6 may be provided over the entire circumference of the sandwich structure 1 or may be provided only at a necessary portion in the circumferential direction of the sandwich structure 1. What is necessary is just to determine according to the use of the integrated molded object 100.
  • another structural body (C) 7 in the integrated molded body 100 is not in contact with the boundary surface 9a and is joined to only at least a part of the thinnest portion 10.
  • the structure is formed, for example, as shown in FIG. 4 shown in contrast with FIG.
  • the shaped sandwich structure 1 is placed in the mold 12, and the resin (C) constituting another structure (C) 7 is injected into the mold 12.
  • the resin R injected on the inner surface side of the mold 12 integrally with the mold 12 or separately from the mold 12 is divided into the side surface 10b of the thinnest portion 10 and a part (end) of the upper surface 10a.
  • the damming portion 13 is disposed so as to be in contact with only the portion (part of the portion side) and not to contact the boundary surface 9a.
  • the resin R is injected so as to be bonded to only a part of the thinnest wall portion 10, so that the boundary layer portion 9 and the core layer 3 in the main body portion 8 as shown in FIG.
  • the heat of the injection resin R is transferred, and in the core layer 3 in the region having a relatively large number of voids, the amount of shrinkage of the core layer during cooling is increased.
  • the problem that there is a risk of occurrence of a defect such as deformation due to sink due to shrinkage of the resin is solved, and a desired design surface can be reliably obtained.
  • the thickness of another structure (C) 7 is changed to the thickness of the main body 8.
  • the thickness of the main body portion 8 and the thickness of the portion consisting only of another structure (C) 7 joined via the joint portion 6 are the same. It is possible to make the thickness of the integrated molded body 100 uniform throughout. Alternatively, the thickness and shape of the integrated molded body 100 including another structure (C) 7 within a predetermined range can be obtained. As a result, the entire integrated molded body 100 can be reduced in thickness and weight.
  • the porosity of the core layer 3 in the region where the main body portion 8 is formed in the integrated molded body 100 as described above is 50% or more and 80% or less, and the porosity of the core layer 3 in the region where the thinnest portion 10 is formed is 0. % Or more and less than 50%.
  • a desired thickness can be formed by providing a certain gap in the core layer and changing the void ratio.
  • the porosity of the core layer 3 in the region where the main body portion 8 is formed is preferably 52 to 78%, more preferably 58 to 75%, and still more preferably 60 to 70%. If the porosity is less than 50%, a certain height in the main body portion 8 cannot be secured, and the effect of increasing the bonding strength between the sandwich structure 1 and another structure (C) 7 may be weakened.
  • the porosity of the core layer 3 in the region where the thinnest portion 10 is formed is preferably 0 to 45%, more preferably 0 to 40%, and still more preferably 0 to 35%.
  • the porosity is 50% or more, a certain height difference cannot be secured between the main body 8 and the effect of increasing the bonding strength between the sandwich structure 1 and another structure (C) may be weakened. .
  • the boundary surface 9 a of the boundary surface portion 9 preferably has an angle ⁇ of 1 to 20 ° with respect to the in-plane direction of the main body portion 8.
  • the angle ⁇ is 90 °
  • the boundary surface 9a of the boundary surface portion 9 rises vertically from the thinnest wall portion 10, but the present invention is also established in such a case as described later.
  • This angle ⁇ (°) is more preferably 2 to 10 °, still more preferably 3 to 8 °.
  • the length Lb from the end face of the sandwich structure 1 of the joint portion 6 is preferably in the range of 3 to 30 mm.
  • the length Lb is preferably in the range of 3 to 30 mm.
  • the thickness Db of the main body 8 of the sandwich structure 1 is in the range of 0.4 to 2 mm, and the thickness Tc of the joint 6 is in the range of 0.1 to 1.7 mm.
  • Db / Tc is preferably in the range of 1.1-20.
  • Db is less than 0.4 mm or Db / Tc is less than 1.1, the bonding strength between the sandwich structure 1 and another structure (C) 7 may be weakened.
  • Db exceeds 2 mm or Db / Tc exceeds 20 the sandwich structure 1 may be prevented from being thinned.
  • the distance L from the edge of the main body 8 on the side of the boundary surface 9 to another structure (C) 7 joined to at least a part of the thinnest wall 10 is in the range of 0.1 to 30 mm. Is preferred.
  • the distance L is less than 0.1 mm, it is difficult to ensure a non-contact state with the boundary surface portion 9 of another structure (C) 7, and when it exceeds 30 mm, the other structure (C) 7 and the main body portion There is a possibility that the space formed between the first and second members becomes too long, resulting in problems in application of the integrated molded body 100.
  • the angle ⁇ of the boundary surface 9 a of the boundary surface portion 9 with respect to the in-plane direction of the main body portion 8 can be 90 °, In this case, although it does not substantially appear as a region for forming the boundary surface portion 9, a non-contact state with respect to the boundary surface portion 9 of another structure (C) 7 is secured as illustrated.
  • Parameters relating to each shape other than the angle ⁇ in this case are represented in FIG. 6 using the same reference numerals as those used in FIG.
  • FIG. 7 shows a case where a bonding layer is provided on the skin layer 2, and illustrates the case where the angle of the boundary surface 9 a of the boundary surface portion 9 described above with respect to the in-plane direction of the main body portion 8 is 90 °.
  • the bonding layer 21 is provided in advance on the skin layer 2 constituting the bonding portion 6, and then another structure (C) 7 is formed.
  • a stepped portion and a bonding layer 21 can be provided on the upper and lower skin layers 2. With these configurations, the bonding force between the skin layer 2 and another structure (C) 7 can be enhanced.
  • the bonding layer 21 an acrylic, epoxy, styrene, nylon, ester or the like adhesive, a thermoplastic resin film, a nonwoven fabric, or the like can be used.
  • a thermoplastic resin layer as a bonding layer on the outermost layer of the skin layer 2 or the core layer 3. If the bonding layer 21 provided on the outermost layer of the skin layer 2 or the core layer 3 is made of the same material as that of another structure (C) 7, it is possible to increase the bonding strength.
  • the resin provided in the outermost layer of the skin layer 2 or the core layer 3 is not particularly limited as long as it has good compatibility even if it is not the same resin as the adhesive used for the bonding layer.
  • Another structure (C) It is preferable to select the most suitable one according to the type of the resin constituting 7.
  • the continuous fiber used for the skin layer 2 means a reinforcing fiber continuous in a length of 150 mm or more, preferably 200 mm or more in at least one direction. That is, the discontinuous fiber used in the present invention means a fiber having a length of less than 150 mm.
  • the discontinuous fiber used for the core layer 3 is not particularly limited, and examples thereof include metal fibers such as aluminum, brass, and stainless steel, polyacrylonitrile (PAN) -based, rayon-based, lignin-based, and pitch-based carbon.
  • Insulating fiber such as fiber, graphite fiber, glass, organic fiber such as aramid resin, polyphenylene sulfide resin, polyester resin, acrylic resin, nylon resin, polyethylene resin, inorganic fiber such as silicon carbide and silicon nitride Is mentioned.
  • the surface treatment may be given to these fibers.
  • the surface treatment examples include a treatment with a coupling agent, a treatment with a sizing agent, a treatment with a binding agent, and an adhesion treatment of an additive in addition to a process for depositing a metal as a conductor.
  • these reinforcing fibers may be used individually by 1 type, and may use 2 or more types together.
  • PAN-based, pitch-based, and rayon-based carbon fibers that are excellent in specific strength and specific rigidity are preferably used from the viewpoint of weight reduction effect.
  • glass fibers are preferably used from the viewpoint of improving the economical efficiency of the resulting molded article, and it is particularly preferable to use carbon fibers and glass fibers in combination from the balance of mechanical properties and economic efficiency.
  • aramid fibers are preferably used from the viewpoint of improving the impact absorbability and formability of the obtained molded product, and it is particularly preferable to use carbon fibers and aramid fibers in combination from the balance of mechanical properties and impact absorbability. Further, from the viewpoint of improving the conductivity of the obtained molded product, reinforcing fibers coated with a metal such as nickel, copper, ytterbium, etc. can also be used. Among these, PAN-based carbon fibers having excellent mechanical properties such as strength and elastic modulus can be used more preferably.
  • the type of the thermoplastic resin (A) used for the core layer 3 is not particularly limited, and any of the thermoplastic resins exemplified below can be used.
  • polyester resins such as polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PEN resin), liquid crystal polyester resin, polyethylene (PE) resin, polypropylene ( Polyolefin resins such as PP) resin and polybutylene resin, polyarylene sulfide resins such as polyoxymethylene (POM) resin, polyamide (PA) resin, polyphenylene sulfide (PPS) resin, polyketone (PK) resin, polyether ketone (PEK) ) Resin, polyether ether ketone (PEEK) resin, polyether ketone ketone (PEKK) resin, polyether nitrile (PEN) resin, polytetrafluoro
  • PET polyethylene
  • crystalline resin such as liquid crystal polymer (LCP), styrene resin, polycarbonate (PC) resin, polymethyl methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene ether (PPE) resin, Amorphous resin such as polyimide (PI) resin, polyamideimide (PAI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, polyethersulfone resin, polyarylate (PAR) resin, etc.
  • LCP liquid crystal polymer
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • PVC polyvinyl chloride
  • PPE polyphenylene ether
  • Amorphous resin such as polyimide (PI) resin, polyamideimide (PAI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, polyethersulfone resin, polyarylate (PAR) resin, etc.
  • Resin phenoxy resin, thermoplastic resin such as polystyrene resin, polyolefin resin, polyurethane resin, polyester resin, polyamide resin, polybutadiene resin, polyisoprene resin, fluorine resin, acrylonitrile resin, etc.
  • thermoplastic resin such as polystyrene resin, polyolefin resin, polyurethane resin, polyester resin, polyamide resin, polybutadiene resin, polyisoprene resin, fluorine resin, acrylonitrile resin, etc.
  • a polyolefin resin is preferable from the viewpoint of light weight of the obtained molded product
  • a polyamide resin is preferable from the viewpoint of strength
  • an amorphous material such as a polycarbonate resin, a styrene resin, and a modified polyphenylene ether resin from the viewpoint of surface appearance.
  • Resin is preferable, polyarylene sulfide resin is preferable from the viewpoint of heat resistance, and polyether ether ketone resin
  • the illustrated thermoplastic resin may contain an impact improver such as an elastomer or a rubber component, and other fillers and additives as long as the object of the present invention is not impaired.
  • an impact improver such as an elastomer or a rubber component
  • other fillers and additives as long as the object of the present invention is not impaired.
  • these include inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers. , Release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, or coupling agents.
  • the continuous fibers used in the skin layer 2 can be, for example, the same type of reinforcing fibers as the discontinuous fibers used in the core layer 3 described above.
  • the tensile elastic modulus of the continuous fiber is preferably 360 to 1000 GPa, more preferably 500 to 800 GPa from the viewpoint of the rigidity of the sandwich structure.
  • the rigidity of the sandwich structure may be inferior.
  • the tensile elastic modulus is larger than 1000 GPa, the crystallinity of the reinforcing fiber needs to be increased, and the reinforcing fiber is manufactured. It becomes difficult.
  • the tensile elastic modulus of the reinforcing fiber is within the above range, it is preferable from the viewpoint of further improving the rigidity of the sandwich structure and improving the productivity of the reinforcing fiber.
  • the tensile elastic modulus of the reinforcing fiber can be measured by a strand tensile test described in JIS R7601-1986.
  • the resin (B) used for the skin layer 2 is not particularly limited, and a thermoplastic resin or a thermosetting resin can be used.
  • a thermoplastic resin for example, the same type of resin as the thermoplastic resin (A) used in the core layer 3 described above can be used.
  • thermosetting resins include unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol (resole type) resins, urea / melamine resins, polyimide resins, maleimide resins, and benzoxazine resins. Resins and the like can be preferably used. For these, a resin in which two or more kinds are blended may be applied.
  • an epoxy resin is particularly preferable from the viewpoint of mechanical properties of the molded body and heat resistance.
  • the epoxy resin is preferably contained as a main component of the resin to be used in order to express its excellent mechanical properties, and specifically, it is preferably contained by 60% by weight or more per resin composition.
  • the resin used for the other structural body (C) is not particularly limited, and the above-described thermoplastic resin or thermosetting resin can be used.
  • thermoplastic resin or thermosetting resin can be used.
  • PPS resin is used from the viewpoint of heat resistance and chemical resistance
  • polycarbonate resin and styrene resin are used from the viewpoint of molded product appearance and dimensional stability
  • polyamide resin is used from the viewpoint of strength and impact resistance of the molded product. More preferably used.
  • a resin (C) containing reinforcing fibers as the resin (C) used for another structure (C) in order to increase the strength and rigidity of the integrated molded body.
  • reinforcing fibers include metal fibers such as aluminum fibers, brass fibers, and stainless fibers, carbon fibers such as polyacrylonitrile, rayon, lignin, and pitch, graphite fibers, glass fibers, silicon carbide fibers, and silicon nitride.
  • Inorganic fibers such as fibers, organic fibers such as aramid fibers, polyparaphenylene benzobisoxazole (PBO) fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, and polyethylene fibers can be used. These reinforcing fibers may be used alone or in combination of two or more.
  • carbon fiber is preferable from the viewpoint of the balance of specific strength, specific rigidity, and lightness, and at least polyacrylonitrile-based carbon fiber is preferably included from the viewpoint of excellent specific strength and specific elastic modulus.
  • the resin (C) constituting another structure (C) may contain other fillers and additives within a range not impairing the object of the present invention, depending on required properties.
  • inorganic fillers non-phosphorous flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers , Mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, coupling agents and the like.
  • the sandwich structure 1 preferably has a rectangular parallelepiped shape having a smaller side area than the bottom area.
  • the so-called thin-walled rectangular parallelepiped shape which has a smaller side area compared to the bottom area, such as a PC housing
  • the area of the side surface is narrow, and strong bonding strength is required to join another structure to that part. is necessary.
  • the joining configuration of the present invention and the joining method described later even if the joint portion has a small area, another structure can be joined with strong strength. .
  • the core layer 3 is preferably formed by expanding a core layer precursor composed of discontinuous fibers and the thermoplastic resin (A) in the thickness direction by spring back by heating to form a void. .
  • the molded body containing the discontinuous fibers constituting the core layer 3 and the thermoplastic resin (A) is heated and pressurized to a temperature equal to or higher than the softening point or melting point of the resin, then the pressure is released, and the residual stress of the discontinuous fibers Desired voids can be formed in the core layer 3 by expanding with a restoring force to return to the original state upon release, so-called springback.
  • the restoration action is suppressed by a certain pressurizing means or the like in a part of the area, the porosity can be suppressed low.
  • the discontinuous fibers constituting the core layer 3 are preferably 5 to 75% by mass, and the thermoplastic resin (A) is preferably 25 to 95% by mass.
  • the blending ratio between the discontinuous fibers and the thermoplastic resin (A) is one element that specifies the porosity.
  • the resin component contained in the core layer 3 is removed and the weight of only the discontinuous fiber remaining is measured. Can be obtained.
  • a method for removing the resin component contained in the core layer 3 include a melting method and a burning method.
  • the weight can be measured using an electronic scale or an electronic balance.
  • the blending ratio of the core layer 3 is preferably 7 to 70% by mass of the discontinuous fibers, 30 to 93% by mass of the thermoplastic resin (A), more preferably 20 to 50% by mass of the discontinuous fibers.
  • the resin (A) is 50 to 80% by mass, more preferably 25 to 40% by mass of discontinuous fibers and 60 to 75% by mass of the thermoplastic resin (A). If the discontinuous fibers are less than 5% by mass and the thermoplastic resin (A) is more than 95% by mass, it is difficult for spring back to occur, so that the porosity cannot be increased and the core layer 3 has a different porosity. In some cases, it is difficult to provide the region, and as a result, the bonding strength with another structure (C) 7 also decreases. On the other hand, when the discontinuous fiber is more than 75% by mass and the thermoplastic resin (A) is less than 25% by mass, the specific rigidity of the sandwich structure 1 is lowered.
  • the number average fiber length of the discontinuous fibers constituting the core layer is preferably 0.5 to 50 mm.
  • the number average fiber length of the discontinuous fibers is preferably 0.8 to 40 mm, more preferably 1.5 to 20 mm, and still more preferably 3 to 10 mm.
  • the number average fiber length is shorter than 0.5 mm, it may be difficult to form voids having a certain size or more.
  • the number average fiber length is longer than 50 mm, it is difficult to randomly disperse from the fiber bundle, and the core layer 3 cannot generate sufficient spring back, so the size of the gap is limited. The bonding strength with the structure (C) 7 is reduced.
  • discontinuous fibers are directly extracted from the discontinuous fiber group and measured by microscopic observation. If the resin is attached to the discontinuous fiber group, dissolve the resin from the discontinuous fiber group using a solvent that dissolves only the resin contained in the discontinuous fiber group, filter the remaining discontinuous fiber, and measure by microscopic observation. If there is no solvent to dissolve the resin, or if there is no solvent to dissolve the resin, burn the resin only in a temperature range where the discontinuous fibers do not oxidize, and separate the discontinuous fibers and measure by microscopic observation (burning off) Law).
  • the dissolution method is preferably used because the change in the weight of the discontinuous fibers is small.
  • the discontinuous fibers constituting the core layer are present as a fiber bundle composed of 500 or less single fibers and are randomly oriented.
  • the discontinuous fibers constituting the core layer are dispersed in a monofilament shape, and the discontinuous single fibers (a) and other discontinuous single fibers (a) intersecting the discontinuous single fibers (a).
  • the average value of the two-dimensional orientation angle formed with the fiber (b) is preferably 10 to 80 degrees.
  • discontinuous fibers exist in a fiber bundle composed of 500 or less single fibers and are randomly oriented, discontinuous fibers constituting the core layer can intersect and exist, so that a large spring back can be obtained. It is possible to form a void having a certain size or more.
  • “dispersed in a monofilament shape” means a ratio of single fibers having a two-dimensional contact angle of 1 degree or more with respect to discontinuous fibers arbitrarily selected in the core layer of the sandwich structure (hereinafter referred to as fibers). (Also referred to as a dispersion ratio) is 80% or more, in other words, in a constituent element, two or more single fibers are in contact with each other and a parallel bundle is less than 20%. Therefore, here, only those in which the weight fraction of the fiber bundle having 100 or less filaments in the core layer composed of at least discontinuous fibers corresponds to 100% are targeted.
  • the two-dimensional contact angle is an angle formed by a discontinuous single fiber and a discontinuous single fiber that comes into contact with the discontinuous single fiber. Of the angles to be formed, it is defined as an angle on the acute angle side of 0 degree or more and 90 degrees or less.
  • This two-dimensional contact angle will be further described with reference to the drawings.
  • 9 (a) and 9 (b) show an embodiment of the present invention, and a schematic diagram when discontinuous fibers in the core layer of the sandwich structure are observed from the plane direction (a) and the thickness direction (b).
  • the evaluation target of the two-dimensional contact angle is the discontinuous single fibers 15 to 17, and the two discontinuous single fibers that are in contact with each other are formed.
  • the angle 20 is an acute angle side of 0 degree to 90 degrees.
  • the method for measuring the two-dimensional contact angle is not particularly limited, and for example, a method of observing the orientation of discontinuous fibers from the surface of the core layer 3 of the sandwich structure 1 can be exemplified. In this case, it becomes easier to observe the discontinuous fibers by polishing the surface of the sandwich structure 1 to expose the discontinuous fibers of the core layer 3. Moreover, the method of imaging
  • the core layer 3 is placed at a high temperature in a heating furnace or the like to burn off the thermoplastic resin component.
  • Examples of the method of observing the orientation of the discontinuous fibers from the mat made of the discontinuous fibers taken out using an optical microscope or an electron microscope can be exemplified. Based on the observation method, the fiber dispersion rate is measured by the following procedure. With all discontinuous single fibers (discontinuous single fibers 15-17 in FIG. 9) in contact with randomly selected discontinuous single fibers (discontinuous single fibers 14 in FIG. 9) Measure the two-dimensional contact angle. This is performed for 100 discontinuous single fibers, and the total number of all discontinuous single fibers whose two-dimensional contact angle is measured, and the number of discontinuous single fibers whose two-dimensional contact angle is 1 degree or more, and The ratio is calculated from the ratio.
  • the discontinuous fibers constituting the core layer 3 are randomly dispersed.
  • the term “discontinuous fibers are randomly dispersed” means that the average value of the two-dimensional orientation angles of arbitrarily selected reinforcing fibers in the sandwich structure 1 is 30 to 60 degrees.
  • the two-dimensional orientation angle is an angle formed by discontinuous single fibers and discontinuous single fibers intersecting with the discontinuous single fibers, and the discontinuous single fibers intersecting with each other are formed. Of the angles, it is defined as an angle on the acute angle side of 0 degrees or more and 90 degrees or less. This two-dimensional orientation angle will be further described with reference to the drawings.
  • the discontinuous single fiber 14 when the discontinuous single fiber 14 is used as a reference, the discontinuous single fiber 14 intersects with other discontinuous single fibers 15-19.
  • Crossing here means a state in which a discontinuous single fiber as a reference is observed crossing another discontinuous single fiber in a two-dimensional plane to be observed.
  • the continuous single fibers 15 to 19 do not necessarily need to be in contact with each other, and the state observed when they are projected is not an exception. That is, when the discontinuous single fiber 14 serving as a reference is viewed, all of the discontinuous single fibers 15 to 19 are to be evaluated for the two-dimensional orientation angle. In FIG. Of the two angles formed by the two discontinuous single fibers, the angle 20 on the acute angle side is 0 degree or more and 90 degrees or less.
  • the method for measuring the two-dimensional orientation angle is not particularly limited.
  • a method for observing the orientation of discontinuous fibers from the surface of the component can be exemplified, and the same means as the method for measuring the two-dimensional contact angle described above.
  • the average value of the two-dimensional orientation angle is measured by the following procedure. With all the discontinuous single fibers (discontinuous single fibers 15-19 in FIG. 9) intersecting with randomly selected discontinuous single fibers (discontinuous single fibers 14 in FIG. 9) The average value of the two-dimensional orientation angle is measured. For example, in the case where there are many other discontinuous single fibers intersecting a certain discontinuous single fiber, the average value obtained by randomly selecting 20 other discontinuous single fibers that intersect may be used instead. Good. The measurement is repeated a total of 5 times based on another discontinuous single fiber, and the average value is calculated as the average value of the two-dimensional orientation angle.
  • the discontinuous fibers are monofilamentally and randomly dispersed, the above-described discontinuous fibers are uniformly dispersed in the core layer 3 rather than being dispersed in a fiber bundle composed of 500 or less single fibers. be able to.
  • the sandwich structure 1 may be weak in a region having a lot of voids locally. For this reason, it is preferable that the voids exist in the core layer 3 in a uniformly continuous state from the viewpoint of increasing the strength of the sandwich structure 1.
  • the fiber dispersion rate of the core layer 3 made of discontinuous fibers is preferably 90% or more, and more preferably as it approaches 100%. Further, the average value of the two-dimensional orientation angle of the discontinuous fibers is preferably 40 to 50 degrees, and it is more preferable as it approaches 45 degrees which is an ideal angle.
  • the discontinuous fiber mat suitably used for the core layer 3 having voids or the molded body in which the discontinuous fibers are impregnated with the thermoplastic resin (A) includes, for example, 500 discontinuous fibers in advance.
  • the fiber bundles and / or monofilaments are produced.
  • a manufacturing method of the discontinuous fiber mat specifically, an airlaid method in which the discontinuous fiber is formed into a dispersion sheet by an air flow, or a carding method in which the discontinuous fiber is formed by mechanically combing and forming a sheet. Or a dry process using a radrite method in which discontinuous fibers are stirred in water to make paper.
  • a method of adjusting the stirring conditions of the discontinuous fibers a method of diluting the reinforcing fiber concentration of the dispersion, a method of adjusting the viscosity of the dispersion, and dispersion
  • a method for suppressing vortex flow when transferring the liquid can be exemplified.
  • the discontinuous fiber mat is preferably manufactured by a wet method, and the discontinuous fiber mat is adjusted by increasing the concentration of input fibers or adjusting the flow rate (flow rate) of the dispersion and the speed of the mesh conveyor.
  • the proportion of reinforcing fibers can be easily adjusted. For example, by slowing down the mesh conveyor with respect to the flow rate of the dispersion liquid, the orientation of the fibers in the resulting mat made of discontinuous fibers becomes difficult to take in the take-off direction, and the mat made of bulky discontinuous fibers It can be manufactured.
  • the mat composed of discontinuous fibers may be composed of discontinuous fibers alone, the discontinuous fibers are mixed with a powder or fiber-shaped matrix resin component, or the discontinuous fibers are mixed with an organic compound or an inorganic compound.
  • Mixed or discontinuous reinforcing fibers may be sealed with a resin component.
  • the present invention uses at least a part of an end portion of a sandwich structure composed of a core layer made of discontinuous fibers and a thermoplastic resin (A) and a skin layer made of continuous fibers and a resin (B) as a joint,
  • An integrated molded body manufacturing method in which another structure (C) is bonded to a bonded portion, and comprising at least the following steps [1] to [5]. is there.
  • a step of forming a molded body precursor by arranging a skin layer precursor in which the continuous fiber is impregnated with the resin (B) on both surfaces of the core layer precursor [3] A step of heat-press-molding the molded body precursor, solidifying or curing the skin layer precursor to form a skin layer, and integrating the core layer precursor and the skin layer [4] A press die is brought into contact with each other to develop the restoring force of the discontinuous fibers in the core layer precursor to form voids in the core layer and expand the sandwich structure to a predetermined thickness.
  • Sandwich structure forming step comprising a thinnest wall portion having a core layer with a porosity lower than the porosity of the core layer in the boundary surface portion and the main body portion [5]
  • the shaped sandwich structure is placed in a mold, and the molten resin of another structure (C) is brought into contact with the boundary surface of the joint in the mold.
  • the sandwich structure and the other structure (C) are joined by injecting the resin in a state where it is blocked in the middle of the mold so as to be in contact with at least a part of the thinnest wall portion. Integration process
  • FIG. 10 [1] shows a step [1] of preparing a core layer precursor 33 in which a thermoplastic resin (A) layer 32 is arranged on both surfaces of a web 31 made of discontinuous fibers.
  • the thermoplastic resin (A) layer 32 is preferably a film or a nonwoven fabric from the viewpoint of workability to be laminated with another base material.
  • FIG. 10 [2] shows a step [2] in which a skin layer precursor 34 in which continuous fibers are impregnated with resin (B) is disposed on both sides of the core layer precursor 33 to form a molded body precursor.
  • the skin layer precursor 34 is preferably, for example, a prepreg in which continuous fibers are impregnated with a resin (B) made of a thermosetting resin or a thermoplastic resin.
  • FIG. 10 [3] shows a step [3] in which the core layer precursor 33 and the skin layer precursor 34 are integrated by hot press molding using the upper die 35 and the lower die 36 to form a sandwich structure. Yes.
  • the resin (B) used for the skin layer precursor 34 is a thermosetting resin, it is cured or solidified by heating, but in the case of a thermoplastic resin, it is softened by heating. After that, cooling is required to a temperature at which the thermoplastic resin solidifies.
  • the pressure when impregnating the web 31 made of discontinuous fibers with the thermoplastic resin (A) layer 32 in the form of a film or a nonwoven fabric is preferably 0.5 to 30 MPa, more preferably 1 to 5 MPa. It is good to do.
  • the pressure is lower than 0.5 MPa, the discontinuous fiber web 31 may not be impregnated with the thermoplastic resin (A) layer 32, and when the pressure is higher than 30 MPa, the discontinuous fibers of the core layer precursor 33 may become thermoplastic resin ( A) By flowing through the layer 32, the discontinuous fiber web 31 may be broken.
  • the temperature when the thermoplastic resin (A) layer 32 is impregnated with the film or nonwoven fabric is preferably a temperature higher than the melting point or softening point of the thermoplastic resin, and the melting point or softening point + 10 ° C. or higher. More preferably, the melting point or softening point is 20 ° C. or higher.
  • the melting point or softening point of the thermoplastic resin is preferably + 150 ° C. or lower.
  • the resin (B) is a thermosetting resin
  • a prepreg impregnated in continuous fibers is prepared as a skin layer precursor.
  • a laminated body in which the skin layer precursor 34 is arranged on at least one surface of the core layer precursor 33 obtained in the step [1] is formed, and this laminated body is heated by hot press molding to give a pressure of 0.5 to 30 MPa.
  • the skin layer precursor resin (B) is cured to produce a skin layer.
  • the resin (B) is a thermoplastic resin
  • the prepreg impregnated in the continuous fiber can be used as the skin layer precursor 34, which is heated by hot press molding to give a pressure of 0.5 to 30 MPa.
  • the skin layer can be produced by transporting to a press machine for cooling and pressurizing to a temperature at which the thermoplastic resin is solidified.
  • the core layer precursor and the skin layer precursor are simultaneously subjected to hot press molding, so that the discontinuous fiber web of the core layer precursor enters the skin layer and the anchoring effect by the discontinuous fiber web causes the core
  • An integrated molded body of the layer precursor and the skin layer precursor can be obtained. It is preferable that the core layer or core layer precursor and the skin layer are firmly adhered from the viewpoint of maximizing the bending characteristics of the sandwich structure.
  • a press molding machine and a double belt press can be suitably used as equipment for producing the core layer precursor and the skin layer.
  • a batch type it is preferable to apply the former, and when a thermoplastic resin is used, productivity can be improved by using an intermittent press system in which two or more machines for heating and cooling are arranged in parallel.
  • productivity can be improved by using an intermittent press system in which two or more machines for heating and cooling are arranged in parallel.
  • a continuous type it is preferable to apply the latter, and since continuous processing can be easily performed, the continuous productivity is excellent.
  • FIG. 10 [4] A is a diagram illustrating a process of developing the restoring force of the discontinuous fibers in the core layer precursor and expanding it to a predetermined thickness.
  • die which provided the shape of the main-body part other than is shown.
  • the upper die 35 is changed to a die having a cavity (region) 37 corresponding to the main body portion of the sandwich structure, and the core layer is formed by press molding again.
  • the bonding force of the thermoplastic resin (A) to the discontinuous fibers is weakened by heating of the press molding, and then the residual stress of the reinforcing fibers is released by releasing the pressure.
  • the internal discontinuous fiber mat is spring-backed, and a core layer having voids whose thickness is adjusted to a predetermined expansion ratio is obtained.
  • the main body portion and the joint portion as shown in FIG. It is possible to shape the sandwich structure 1 having regions with different core layer porosity.
  • the sandwich structure and the other structure (C) are separately molded in advance and joined together.
  • (2) a method in which a sandwich structure is formed in advance and another structure (C) is formed, and at the same time, both are joined.
  • a sandwich structure is press-molded and another structure (C) is produced by injection molding.
  • welding means such as hot plate welding, vibration welding, ultrasonic welding, laser welding, resistance welding, induction heating welding and the like.
  • the sandwich structure is press-molded and then inserted into an injection mold, and the material for forming another structure (C) is injection-molded into the mold and integrated. There is a way to make it. From the viewpoint of mass productivity of the integrally molded product, the method (2) is preferable, and insert injection molding or outsert injection molding is preferably used.
  • the voids formed in the core layer are formed by using the core layer precursor containing discontinuous fibers and the thermoplastic resin (A) as the softening of the thermoplastic resin (A). It is preferably formed by heating and pressurizing above the point or melting point, then releasing the pressurization and expanding by springback. In this way, the entire core layer precursor is heated and pressed at once, and the pressure is released, so that even if the sandwich structure having a large area or the joint has a complicated stepped portion, the entire sandwich structure Can be accurately molded at a time.
  • the porosity can be controlled by adjusting the thickness of the core layer. As the thickness of the core layer is increased when releasing the pressure, the amount of expansion due to the springback increases, and the porosity formed in the core layer can be increased. Specifically, the cavity height of the upper mold is set to a predetermined core layer height, and when the number of product types increases, the distance between the upper mold and the lower mold is controlled when releasing the pressure. Methods can also be used.
  • the skin layer can be deformed along the shape of the upper die region 37 by the spring back of the core layer precursor, but the joint is formed by other methods. be able to.
  • a hot air oven and an IR (infrared) heater can be suitably used as equipment for heating the skin layer precursor and the core layer precursor.
  • a bonding layer is provided on the skin layer or the core layer of the sandwich structure, and then the resin (C) of another structure melted is injection-molded, so that the peripheral end of the sandwich structure is formed. It is preferable that another structure (C) is joined and integrated by solidifying or curing the injection molding resin (C) at the formed portions having different thicknesses.
  • the method of providing the bonding layer on the skin layer or the core layer of the sandwich structure is to apply an adhesive of the same material as that of another structure (C) to the portion formed on the side surface of the peripheral edge of the sandwich structure.
  • a method of laminating a film or non-woven fabric of the same material as another structure (C) on the outermost layer of the skin layer or core layer, and integrating the bonding layer with the sandwich structure by hot press molding From the viewpoint of excellent productivity, there is a method in which a film or non-woven fabric of the same material as another structure (C) is laminated on the outermost layer of the skin layer or core layer, and the bonding layer is integrated with the sandwich structure by hot press molding. preferable.
  • a stepped portion is formed at the end of the sandwich structure, and another structure (C) is joined only to at least a part of the thinnest portion.
  • another structure (C) is joined only to at least a part of the thinnest portion.
  • a similar structure can be provided in a portion other than the end of the sandwich structure.
  • FIG. 11 as shown in the schematic cross-sectional view in the thickness direction of the integrated molded body 200 showing an example in which another step portion and another structure (C) are provided in addition to the end portion of the sandwich structure, Steps 42 similar to those shown in FIGS.
  • FIGS. 2 and 3 are formed on at least a part of the end of the sandwich structure 41, and another structure (C ) 44 is joined, but in this example, the sandwich structure 41 is formed with another step 45 in an arbitrary portion other than a part of the end, and another structure (C) 44.
  • a separate structure body (C) 46 is arranged, and this another stepped portion 45 includes a main body portion 47 that forms a high surface 47 a on both sides of the another stepped portion 45, and both sides of the other stepped portion 45.
  • Another structure (C) 46 is not in contact with another boundary surface 48 a, and is joined only to at least a part of another thinnest portion 49.
  • another boundary surface 48a located on both sides of the stepped portion 45 has the same inclination angle as that shown in FIGS. 2 and 3, and the other structural body (C) 46 is different from the other.
  • the thinnest portion 49 is joined to a part of the upper surface of the upper core layer.
  • the technique of joining another structure (C) in the present invention to at least a part of the thinnest wall portion without contacting the boundary surface of the boundary surface portion is applied to a portion other than the end portion of the sandwich structure body.
  • the possibility of the occurrence of defects on the design surface side due to this can be removed, and a desired integrated molded body can be obtained more reliably and easily.
  • FIG. 41 When the technique of the present invention is applied to a portion other than the end portion of the sandwich structure, a part of the end portion of the sandwich structure 41 is shown in FIG.
  • the other boundary surface 52a of the other stepped surface portion 52 (one other boundary surface portion 52 in the illustrated example) of the other stepped portion 51 formed in an arbitrary portion other than the upper surface (another surface of the thinnest portion 49)
  • the lower surface of the step portion 51 of the step portion 51 rises vertically, and another structure (C) 53 is not in contact with the other boundary surface 48a and the other boundary surface 52a. It is joined to at least a part of the thin portion 49.
  • another structure (C) 53 is arrange
  • FIG. thus, as long as another structure (C) 53 adopts a structure that does not contact another boundary surface 48a and another boundary surface 52a, the other structure (C) 53 can be disposed at an arbitrary position, and the other stepped portions 45 and 51 are substantially formed. It can be formed into an arbitrary shape, and the other structures (C) 46 and 53 to be joined can also be formed into an arbitrary shape and size.
  • a structure applicable to the end portion of the sandwich structure described above for example, the boundary surface of the boundary surface portion is 1 in the in-plane direction of the main body portion.
  • Structure having an angle of ⁇ 20 ° structure in which a bonding layer is provided at least in part between the skin layer and another structure (C), and voids in the core layer in the region forming the main body
  • another structure (C) Structure with a thickness Tc in the range of 0.1 to 1.7 mm at the joint, Structure with Db / Tc in the range of 1.1 to 20, Thinnest from the boundary side edge of the main body Distance to another structure (C) joined to only at least part of the part L is for the structure in the range of 0.1
  • the test piece is set to have a size of 50 mm in length and 25 mm in width in a plane perpendicular to the thickness direction of the integrated molded body so that the joint is in the center in the longitudinal direction.
  • the distance between the fulcrums was 32 times the thickness of the test piece, and the bending strength was determined according to ASTM D790, which was defined as the bonding strength.
  • ASTM D790 which was defined as the bonding strength.
  • the obtained bonding strength was evaluated according to the following criteria.
  • a and B were acceptable and C and D were unacceptable.
  • Example 1 As shown in FIG. 10 [4] B, when manufacturing a sandwich structure having different core layer porosity between the main body portion and the thinnest wall portion, an upper die 35 having an angle of 4 degrees at the boundary surface portion is used. Thus, a sandwich structure having an interface angle ( ⁇ ) of 4 degrees was obtained.
  • the sandwich structure obtained above was set in an injection mold, clamped, and then the molten resin (C) was injection molded to produce an integrated molded body shown in the schematic diagram of FIG. .
  • the integrated molded body had high bonding strength, and a good appearance without a design surface side dent in the vicinity of the bonded portion with another structure (C) bonded to the sandwich structure was obtained.
  • Table 1 summarizes the characteristics of the integrated molded body.
  • Example 2 As shown in FIG. 10 [4] B, when manufacturing a sandwich structure having different core layer porosity between the main body portion and the thinnest wall portion, an upper die 35 having an angle of 90 degrees at the boundary surface portion is used. As a result, a sandwich structure having an interface angle ( ⁇ ) of 90 degrees was obtained.
  • the sandwich structure obtained above was set in an injection mold, clamped, and then the molten resin (C) was injection molded to produce an integrated molded body shown in the schematic diagram of FIG. .
  • the integrated molded body had high bonding strength, and a good appearance without a design surface side dent in the vicinity of the bonded portion with another structure (C) bonded to the sandwich structure was obtained.
  • Table 1 summarizes the characteristics of the integrated molded body.
  • Example 3 As shown in FIG. 10 [4] B, when manufacturing a sandwich structure having different core layer porosity between the main body portion and the thinnest wall portion, an upper die 35 having an angle of 2 degrees at the boundary surface portion is used. As a result, a sandwich structure having an interface angle ( ⁇ ) of 2 degrees was obtained.
  • the sandwich structure obtained above was set in an injection mold, clamped, and then the molten resin (C) was injection molded to produce an integrated molded body shown in the schematic diagram of FIG. .
  • the integrated molded body had high bonding strength, and a good appearance without a design surface side dent in the vicinity of the bonded portion with another structure (C) bonded to the sandwich structure was obtained.
  • Table 1 summarizes the characteristics of the integrated molded body.
  • Example 4 As shown in FIG. 10 [4] B, when manufacturing a sandwich structure in which the porosity of the core layer of the main body portion and the thinnest wall portion is different, the upper die 35 having an angle of 18 degrees at the boundary surface portion is used. Thus, a sandwich structure having an interface angle ( ⁇ ) of 18 degrees was obtained.
  • the sandwich structure obtained above was set in an injection mold, clamped, and then the molten resin (C) was injection molded to produce an integrated molded body shown in the schematic diagram of FIG. .
  • the integrated molded body had high bonding strength, and a good appearance without a design surface side dent in the vicinity of the bonded portion with another structure (C) bonded to the sandwich structure was obtained.
  • Table 1 summarizes the characteristics of the integrated molded body.
  • the sandwich structure was produced in the same manner as in Example 1. After the obtained sandwich structure is set in an injection mold and clamped, when the molten resin (C) is injection molded, the length (Lb) of the joint is as short as 2 mm. An integrated molded body shown in the schematic diagram of FIG. 5 was produced. Although the good appearance without the design surface side dent in the vicinity of the joint portion with another structure (C) joined to the sandwich structure was obtained, the joint strength of the integrally molded product was low and did not reach the acceptable level. As a result, it was found from the comparison with Example 3 that the joint strength (Lb) is preferably 3 mm in order to make the joint strength acceptable. Table 1 summarizes the characteristics of the integrated molded body.
  • Example 1 The sandwich structure was produced in the same manner as in Example 1. When the obtained sandwich structure is set in an injection mold, clamped, and then the molten resin (C) is injection molded, another structure as shown in FIG. An integrated molded body joined with (C) was produced. Although the integrated molded body has high bonding strength, the design surface side dent in the vicinity of the bonded portion with another structure (C) bonded to the sandwich structure was large. Table 1 summarizes the characteristics of the integrated molded body.
  • Example 2 A sandwich structure was produced in the same manner as in Example 4. After the obtained sandwich structure was set in an injection mold and clamped, when the molten resin (C) was injection molded, the length (Lb) of the joint was as short as 2 mm, As shown in FIG. 1, an integrated molded body in which another structure (C) was joined to the boundary surface portion was manufactured. The integrated molded body had low bonding strength and did not reach the acceptable level. Moreover, the design surface side dent of the junction part vicinity with another structure (C) joined to the sandwich structure was also large. Table 1 summarizes the characteristics of the integrated molded body.
  • the integrated molded body and the method for producing the same according to the present invention can be applied to any application that requires light weight, high strength, high rigidity, and thinning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

不連続繊維と熱可塑性樹脂(A)からなるコア層及び連続繊維と樹脂(B)からなるスキン層から構成されるサンドイッチ構造体の少なくとも端部の一部に別の構造体(C)を接合した一体化成形体であって、サンドイッチ構造体は少なくとも端部の一部に段差部を有し、該段差部は、該段差部における高い面を形成する本体部、段差部の高い面と低い面をつなぐ境界面を形成する境界面部及び本体部におけるコア層の空隙率よりも低い空隙率のコア層を有する最薄肉部から構成され、かつ、別の構造体(C)は境界面に接しておらず、最薄肉部の少なくとも一部のみと接合されている一体化成形体、及びその製造方法。軽量、高強度・高剛性でかつ薄肉であり、しかも優れた意匠面を有する一体化成形体が得られる。

Description

一体化成形体及びその製造方法
 本発明は、例えばパソコンやOA機器、携帯電話等の部品や筐体部分として用いられ、軽量、高強度・高剛性でかつ薄肉化が要求され、優れた意匠面が要求される用途に適した一体化成形体及びその製造方法に関する。
 現在、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電製品、玩具用品などの電気・電子機器の携帯化が進むにつれ、より小型、軽量化が要求されている。その要求を達成するために、機器を構成する部品、特に筐体には、外部から荷重がかかった場合に筐体が大きく撓んで内部部品と接触、破壊を起こさないようにする必要があるため、高強度・高剛性化を達成しつつ、かつ薄肉化が求められている。
 また、上記のような要求を満たすために、強化繊維と樹脂からなるコア層と強化繊維と樹脂からなるスキン層から構成されるサンドイッチ構造体に、別の構造体を接合させて一体化成形し小型軽量化した成形構造体が知られているが、このような成形構造体においては、より一層の薄肉化、接合の信頼性が要求されている。
 特許文献1では、「サンドイッチ構造を有する積層部材(II)と該積層部材(II)の板端部周囲の少なくとも一部に樹脂部材(III)を配した複合成形品(I)において、積層部材(II)と樹脂部材(III)との接合部において、樹脂部材(III)が軟質部材層(IIb)に対し、少なくとも一部が凸形状を形成している構成」が、記載され、「軽量、高強度・高剛性で、かつ薄肉化を図ることができる」効果が開示されている。その軟質部材層(IIb)としては軽量化のため、発泡材、樹脂シート等が好ましく使用でき、発泡材のような比較的圧縮強度の低い積層部材(II)を用いる目的は、射出成形でより樹脂部材(III)を凸形状に形成しやすいと共に積層部材(II)をより軽量化することを目的としている(段落[0023])。しかし、この特許文献1の構成では、軟質部材層(IIb)の凹形状部位に、樹脂部材(III)を射出成形して凸形状となることで軟質部材層(IIb)と接合させる構成では、線状態で接触している領域にしか接合強度を持たせられず、接触面積が少なく、接合強度には限界がある。また接合強度を高めるには、凸形状を形成する軟質部材層(IIb)の層厚を厚くする必要があり、薄肉化を阻害する。
 また、特許文献2では、「繊維強化樹脂Aを予備成形体として型内に配置し、前記繊維強化樹脂Aの樹脂Bに接触する側面として、互いに異なる角度で凹型に傾斜する少なくとも2つの傾斜面を有する形状の側面を、インサート成形前に形成しておき、液状化した樹脂Bを供給して繊維強化樹脂Aをインサート成形する製造方法」が、記載され、これにより、「両傾斜面間には、樹脂Bが流れ込みにくい閉空間は形成され難くなり、樹脂Bは繊維強化樹脂Aの側面全面にわたって良好に接触するまで流れ込むことが可能になる。その結果、繊維強化樹脂Aと樹脂Bとの接着性およびその信頼性が確保される」効果が開示されている。しかし、この特許文献2の構成では、互いに異なる角度で凹型に傾斜する少なくとも2つの傾斜面を有する形状の側面をどのように作成するのかについての記載はなされていない。確かに傾斜を設けることによりインサート成形において樹脂Bが流れ込みやすくなるが、その傾斜を設ける複雑形状の加工に手間がかかる。また、2つの異なる角度の傾斜を設けるため、どうしても繊維強化樹脂Aの薄肉化が困難となる。
 また、特許文献3では、「芯材と、芯材の両面に設けられた表皮材とを有するサンドイッチ構造体であって、芯材及び表皮材は、短繊維がマトリックス樹脂中にランダムに分散した繊維強化樹脂よりなり、芯材中の強化繊維含有率が20~80wt%であり、表皮材中の強化繊維含有率が30~80wt%であり、表皮材の曲げ弾性率が10GPa以上が必須であり、芯材の見かけ密度が0.2~1.2g/cm以上である。好ましくは、表皮材の空隙率が10vol%未満であり、芯材の空隙率が10~80vol%であるとする構成」が、記載され、「サンドイッチ構造体の厚さの許容範囲が広がり、軽量で高剛性であるサンドイッチ構造体が得られる効果」が、開示されている。この空隙形成は、芯材用マトリックス樹脂が溶融している状態で、加熱プレス盤による加圧を解除する。これにより、溶融状態の芯材部分は、その強化繊維のスプリングバックにより膨張し、形成されることが記載されており(段落[0037])、また、芯材と表皮材との強固な接着について、芯材用マット状成形体中の強化繊維の一部が、繊維強化成形体中に入り込むアンカー効果現象によるものと記載されている(段落[0041])。しかし、この特許文献3の構成では、芯材用の強化繊維とマトリックス樹脂とを含有するマット状成形体を加熱加圧成形したものを、表皮材用の強化繊維とマトリックス樹脂とを含有するマット状成形体を加熱加圧成形したものを用いて挟んで軽量で高剛性のサンドイッチ状構造体を得る方法であるが、このサンドイッチ状構造体と別の構造体とを接合することに関し、記載はなされておらず、また示唆なされるものはない。
 さらに、不連続繊維の形状の復元力を発現させる方法を用いた成形方法が開示されている。特許文献4では、「芯材(I)と、該芯材(I)の両面に配置された、連続した強化繊維(A)とマトリックス樹脂(B)からなる繊維強化材(II)とからなるサンドイッチ構造体(III)であって、前記芯材(I)が、空隙を有するサンドイッチ構造体」が記載され、「前記空隙が、不連続の強化繊維と熱可塑性樹脂からなり、該強化繊維のフィラメント同士の交差で形成される空隙である」ことが開示され、この構成により、「軽量性、薄肉性に優れたサンドイッチ構造体を提供でき、また、このサンドイッチ構造体を他の部材と一体化することができる」効果が開示されている。そのサンドイッチ構造体を他の部材と一体化する方法として、第1の部材と、第2の部材との、接着層を介しての接合が開示され、その接着層を構成する熱可塑性樹脂が、繊維強化材(II)を構成する強化繊維束に含浸させることで一体化することが記載されている。しかし、この特許文献4の構成では、サンドイッチ構造体を他の部材と一体化する方法として、第1の部材と第2の部材が接着層を介してオーバーラップされるため、接合部分の厚さが周囲よりも厚くなる。また、コア層に空隙率が異なる領域を設け、肉厚が異なる部位を形成し、サンドイッチ状構造体と別の構造体とを同じ厚さにて接合することに関し示唆等はなされていない。
 また、特許文献5では、コア層中の不連続繊維の形状復元力を利用した成形方法が開示されている。すなわち、「コア層の少なくとも一面に非膨張性の繊維強化熱可塑性樹脂からなる表皮材を配置して成形用基材を形成し、該成形用基材を加熱し溶融させることによりコア層と表皮材とを一体化させるとともに、コア層中の不連続繊維にコア層の形状復元力を発現させてコア層が所定の低い密度となるようにコア層を膨張させ、しかる後に、成形用基材を成形型内にセットし、プレス成形する構造体の製造方法」が記載され、これにより、「コア層が所望の低い密度とされることにより、構造体の軽量化が達成され、コア層が所望の膨張倍率とされてコア層の厚さが膨張前の初期厚さに比べ適切に増大された状態とされることにより、構造体の高い機械特性、とくに肉厚増大に伴う高い剛性が達成される」効果が開示されている。しかし、この特許文献5の構成では、コア層の厚さを膨張前の初期厚さに比べ適切に増大させることにより、高い機械特性の構造体を得ることはできるが、構造体自体の薄肉化には限界がある。また、コア層の形状復元力を発現させる機能を用いて、サンドイッチ状構造体と別の構造体とを接合することに関し示唆等はなされていない。
 そして、上記のような従来技術の問題点を解消するために、先に本出願人により、軽量、高強度・高剛性で、かつ別の構造体との高い接合強度を有し、薄肉化を可能とする一体化成形体及びその製造方法が提供されている(特許文献6)。特許文献6では、不連続繊維と熱可塑性樹脂(A)からなるコア層及び連続繊維と樹脂(B)からなるスキン層から構成されるサンドイッチ構造体の板端部の少なくとも一部を接合部とし、前記接合部に別の構造体(C)を配した一体化成形体であって、前記サンドイッチ構造体のうち前記接合部以外の本体部におけるコア層の空隙率が前記接合部におけるコア層の空隙率より高い領域を有する一体化成形体と、その製造方法が提供されている。
特開2007-038519号公報 特開2009-113244号公報 特開2012-000890号公報 国際公開2006/028107号公報 特開2013-198984号公報 特開2016-049649号公報
 しかしながら、上記特許文献6により提供された技術だけでは、未だ以下のような問題点が残されていることが判明した。すなわち、とくに特許文献6の図4に示されている一体化成形体を成形する場合、例えば図1に示すように、コア層101とスキン層102から構成されるサンドイッチ構造体103の板端部を接合部104とし該接合部104に別の構造体(C)105を配することにより一体化成形体106を成形する場合、サンドイッチ構造体103のうち接合部104以外の本体部107におけるコア層101aの空隙率が接合部104におけるコア層101bの空隙率より高くなるようにサンドイッチ構造体103を賦形した状態で、接合される別の構造体(C)105を形成する樹脂Rを金型108内に射出することになる。射出樹脂Rは、接合部104を形成する領域全体に供給されるが、その際、スキン層102を介して内部のコア層101に射出樹脂Rの熱が伝熱され、コア層101のうち比較的空隙が多い領域では、冷却時におけるコア層の収縮量が大きくなり、それによって成形される一体化成形体106の意匠面109側に、コア層の収縮に伴うヒケによる変形等の不具合、とくに凹み110が発生するおそれがあるという問題点が残されていることが判明した。
 そこで本発明の課題は、とくに上記特許文献6により提供された技術における残された問題点に着目し、特許文献6による技術の利点を活かしつつ、サンドイッチ構造体とそれとは別の構造体を一体化する場合に、射出樹脂からの伝熱によるヒケ等の問題の発生を防止して容易に優れた意匠面の成形が可能であり、軽量、高強度・高剛性で、かつ別の構造体との高い接合強度を有し、薄肉化を可能とする一体化成形体及びその製造方法を提供することにある。
 上記課題を解決するために、本発明に係る一体化成形体は以下の構成を採用している。
(1)不連続繊維と熱可塑性樹脂(A)からなるコア層及び連続繊維と樹脂(B)からなるスキン層から構成されるサンドイッチ構造体の少なくとも端部の一部を接合部とし、前記接合部に別の構造体(C)を配した一体化成形体であって、
 前記サンドイッチ構造体は少なくとも端部の一部に段差部を有し、該段差部は、該段差部における高い面を形成する本体部、段差部の高い面と低い面をつなぐ境界面を形成する境界面部及び前記本体部におけるコア層の空隙率よりも低い空隙率のコア層を有する最薄肉部から構成され、かつ、前記別の構造体(C)は前記境界面に接しておらず、前記最薄肉部の少なくとも一部のみと接合されていることを特徴とする一体化成形体。
(2)前記境界面部の境界面は、前記本体部の面内方向に対して、1~20°の角度を有している、(1)に記載の一体化成形体。
(3)前記スキン層と前記別の構造体(C)との間の少なくとも一部に接合層が設けられている、(1)または(2)に記載の一体化成形体。
(4)前記コア層と前記別の構造体(C)との間の少なくとも一部に接合層が設けられている、(1)~(3)のいずれかに記載の一体化成形体。
(5)前記本体部を形成する領域における前記コア層の空隙率が50%以上80%以下、前記最薄肉部を形成する領域における前記コア層の空隙率が0%以上50%未満である、(1)~(4)のいずれかに記載の一体化成形体。
(6)前記サンドイッチ構造体の全周にわたって前記接合部が形成されてなる、(1)~(5)のいずれかに記載の一体化成形体。
(7)前記接合部の前記サンドイッチ構造体の端面からの長さLbが3~30mmの範囲にある、(1)~(6)のいずれかに記載の一体化成形体。
(8)前記本体部の厚さDbが0.4~2mm、前記接合部の厚さTcが0.1~1.7mmの範囲にある、(1)~(7)のいずれかに記載の一体化成形体。
(9)Db/Tcが1.1~20の範囲にある、(8)に記載の一体化成形体。
(10)前記本体部の前記境界面部側端縁から前記最薄肉部の少なくとも一部のみと接合された前記別の構造体(C)までの距離Lが0.1~30mmの範囲にある、(1)~(9)のいずれかに記載の一体化成形体。
(11)前記サンドイッチ構造体は前記端部の一部以外にも別の段差部を有するとともに前記別の構造体(C)が配され、前記別の段差部は、該別の段差部の両側における高い面を形成する本体部、該別の段差部の両側の高い面と該両側の高い面間に位置する低い面をつなぐ別の境界面を形成する別の境界面部及び前記両側の本体部におけるコア層の空隙率よりも低い空隙率のコア層を有する別の最薄肉部から構成され、かつ、前記別の構造体(C)は前記別の境界面に接しておらず、前記別の最薄肉部の少なくとも一部のみと接合されている、(1)~(10)のいずれかに記載の一体化成形体。
(12)前記本体部の厚さと、前記接合部を介して接合された前記別の構造体(C)のみからなる部分の厚さとが同じ厚さを有する、(1)~(11)のいずれかに記載の一体化成形体。
(13)前記コア層は、不連続繊維と熱可塑性樹脂(A)とからなるコア層前駆体を加熱によるスプリングバックにより厚さ方向に膨張させて空隙を形成させてなる、(1)~(12)のいずれかに記載の一体化成形体。
(14)前記コア層を構成する不連続繊維が5~75重量%、熱可塑性樹脂(A)が25~95重量%の範囲にある、(1)~(13)のいずれかに記載の一体化成形体。
(15)前記コア層を構成する不連続繊維の数平均繊維長が0.5~50mmの範囲にある、(1)~(14)のいずれかに記載の一体化成形体。
(16)前記コア層を構成する不連続繊維が500本以下の単繊維からなる繊維束で存在し、前記繊維束がランダムに配向してなる、(1)~(15)のいずれかに記載の一体化成形体。
(17)コア層を構成する不連続繊維がモノフィラメント状に分散し、不連続な単繊維(a)と、前記不連続な単繊維(a)と交差する他の不連続な単繊維(b)とで形成される二次元配向角の平均値が10~80度の範囲にある、(16)に記載の一体化成形体。
 また、本発明に係る一体化成形体の製造方法は以下の構成を採用している。
(18)不連続繊維と熱可塑性樹脂(A)からなるコア層及び連続繊維と樹脂(B)からなるスキン層から構成されるサンドイッチ構造体の少なくとも端部の一部を接合部とし、前記接合部に、別の構造体(C)を接合させる一体化成形体の製造方法であって、少なくとも以下の工程[1]~工程[5]からなることを特徴とする、一体化成形体の製造方法。
[1]前記不連続繊維からなるウエブの少なくとも片面に前記熱可塑性樹脂(A)層を配したコア層前駆体を準備する工程
[2]前記コア層前駆体の両面に、前記連続繊維に前記樹脂(B)を含浸させたスキン層前駆体を配して成形体前駆体を形成する工程
[3]前記成形体前駆体を加熱プレス成形し、前記スキン層前駆体を固化または硬化させてスキン層を形成するとともに、前記コア層前駆体と前記スキン層とを一体化させる工程
[4]前記コア層前駆体中の前記不連続繊維の復元力を発現させコア層内に空隙を形成させて前記サンドイッチ構造体を所定厚さに膨張させるにあたり、プレス金型を当接させることにより前記サンドイッチ構造体の少なくとも端部の一部に段差部を形成し、該段差部を、該段差部における高い面を形成する本体部、段差部の高い面と低い面をつなぐ境界面を形成する境界面部及び前記本体部におけるコア層の空隙率よりも低い空隙率のコア層を有する最薄肉部から構成するサンドイッチ構造体賦形工程
[5]金型内に前記賦形されたサンドイッチ構造体を配置し、金型内の前記接合部に対し、溶融させた別の構造体(C)の樹脂を、前記境界面には接せず前記最薄肉部の少なくとも一部のみと接するように樹脂の流動を金型内の途中でせき止めた状態にて射出することにより、前記サンドイッチ構造体と前記別の構造体(C)を接合して一体化させる工程
(19)前記[4]サンドイッチ構造体賦形工程において、不連続繊維と熱可塑性樹脂(A)とを含有する前記コア層前駆体を、前記熱可塑性樹脂(A)の軟化点または融点以上に加熱及び加圧した後、加圧を解除し、スプリングバックにより膨張させることにより前記空隙を形成させる、(18)に記載の一体化成形体の製造方法。
(20)前記[2]成形体前駆体の形成工程において、前記コア層の少なくとも一方の表面における本体部に相当する領域にのみにスキン層を配したスキン層前駆体を形成し、加熱プレスにより前記スキン層前駆体を固化または硬化してスキン層を形成するとともに、所定厚さに膨張させて空隙を有するコア層を備えた前記本体部を形成する、(18)または(19)に記載の一体化成形体の製造方法。
(21)前記接合部を構成するスキン層又はコア層に熱可塑性樹脂フィルム若しくは不織布を配置、又は接着剤を塗布し、その後に溶融させた別の構造体(C)の樹脂を射出成形することにより、前記サンドイッチ構造体と別の構造体(C)とを接合一体化させる、(18)~(20)のいずれかに記載の一体化成形体の製造方法。
 本発明に係る一体化成形体及びその製造方法によれば、サンドイッチ構造体の端部にコア層の空隙率が異なり厚さの異なる部位を形成することにより段差部を設け、その段差部の一部に別の構造体(C)を接合する構成とすることにより、一体化成形体の薄肉形成を可能とし、軽量、高強度・高剛性で、かつ別の構造体との高い接合強度を達成しつつ、段差部を本体部、境界面部及び最薄肉部から構成し、かつ、別の構造体(C)は境界面には接しておらず、前記最薄肉部の少なくとも一部のみと接合されている構成とすることにより、別の構造体(C)を構成する樹脂から境界面部への伝熱を実質的に阻止することが可能になり、該伝熱によるヒケ等に起因する意匠面側の不具合の発生のおそれを除去でき、所望の一体化成形体をより確実かつ容易に得ることができる。
特許文献6における残された問題点を示す一体化成形体成形時の概略部分断面図である。 本発明の一実施形態に係る一体化成形体の概略斜視図である。 図2のA―A’線に沿って見た一体化成形体の厚さ方向における概略断面図である。 図1と対比させた本発明の一実施形態に係る一体化成形体の製造方法の一工程を示す概略部分断面図である。 本発明におけるパラメータの一部を説明するための一体化成形体の厚さ方向における概略断面図である。 本発明の別の実施形態に係る一体化成形体の厚さ方向における概略断面図である。 本発明の一実施形態に係る一体化成形体のスキン層に接合層を設けた場合の概略断面図である。 本発明の一実施形態に係る一体化成形体の上下両面に段差部と接合層を設けた場合の概略断面図である。 本発明に用いるコア層を構成する不連続繊維の分散状態を表した模式図である。 本発明の一実施形態に係る一体化成形体の製造方法の一例を示した概略構成図である。 本発明においてサンドイッチ構造体の端部以外にも別の段差部と別の構造体(C)を設けた場合の一例を示す一体化成形体の厚さ方向における概略断面図である。 本発明においてサンドイッチ構造体の端部以外にも別の段差部と別の構造体(C)を設けた場合の別の例を示す一体化成形体の厚さ方向における概略断面図である。
  以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、本発明はこれら図面によって何ら制限されるものではない。
 本発明に係る一体化成形体は、不連続繊維と熱可塑性樹脂(A)からなるコア層及び連続繊維と樹脂(B)からなるスキン層から構成されるサンドイッチ構造体の少なくとも端部の一部を接合部とし、前記接合部に別の構造体(C)を配した一体化成形体であって、
 前記サンドイッチ構造体は少なくとも端部の一部に段差部を有し、該段差部は、該段差部における高い面を形成する本体部、段差部の高い面と低い面をつなぐ境界面を形成する境界面部及び前記本体部におけるコア層の空隙率よりも低い空隙率のコア層を有する最薄肉部から構成され、かつ、前記別の構造体(C)は前記境界面に接しておらず、前記最薄肉部の少なくとも一部のみと接合されていることを特徴とする一体化成形体である。
 図2は、本発明の一実施形態に係る一体化成形体を示しており、図3は、図2のA―A’線に沿って見た一体化成形体の厚さ方向における概略断面を示している。図2におけるコア層3及びスキン層2から構成されるサンドイッチ構造体1において、コア層3は不連続繊維4とマトリクス樹脂の熱可塑性樹脂(A)とから構成され、コア層3に一定の大きさの空隙5が形成されている。サンドイッチ構造体1の端部の少なくとも一部に接合部6が設けられ、該接合部6に、別の構造体(C)7を構成する樹脂(C)(便宜上、コア層を構成するマトリクス樹脂を熱可塑性樹脂(A)、スキン層を構成するマトリクス樹脂を樹脂(B)、別の構造体(C)を構成するマトリックス樹脂を樹脂(C)と称する場合がある。)が射出成形されて接合されることにより、一体化成形体100が構成されている。サンドイッチ構造体1の端部の少なくとも一部に段差部11が設けられ、該段差部11は、該段差部11における高い面8aを形成する本体部8、段差部11の高い面8aと低い面10aをつなぐ境界面9aを形成する境界面部9及び前記本体部8におけるコア層3aの空隙率よりも低い空隙率のコア層3bを有する最薄肉部10から構成されている。上記別の構造体(C)7は、境界面9aには接しておらず、上記最薄肉部10の少なくとも一部のみと接合されている。この一体化成形体100においては、まず、単にサンドイッチ構造体の側面平坦部に別の構造体(C)を接合する場合に比べて、その接合面積を広くすることができ、接合強度を高める効果が得られる。
 この実施形態に係る一体化成形体100においては、図3にも示すように、本体部8におけるコア層3aに比べて空隙率の低い(空隙のない場合を含む)コア層3bを有する最薄肉部10の少なくとも一部のみに別の構造体(C)7が接合されており、図3の下面側が意匠面に形成されている。上記接合部6は、サンドイッチ構造体1の全周にわたって設けられていてもよく、サンドイッチ構造体1の周方向における必要な部位のみに設けられていてもよい。一体化成形体100の用途に応じて決めればよい。
 製造方法の詳細については後述するが、上記一体化成形体100における、別の構造体(C)7が、境界面9aには接しておらず、最薄肉部10の少なくとも一部のみと接合されている構造は、例えば、図1と対比させて示した図4に示すように形成される。図3に示したように賦形されたサンドイッチ構造体1が金型12内に配置され、該金型12内に別の構造体(C)7を構成する樹脂(C)が射出されるが、金型12の内面側に、金型12と一体に、あるいは金型12とは別体で、射出されてくる樹脂Rを、最薄肉部10の側面10bと、上面10aの一部(端部側の一部)のみと接して接合され、境界面9aには接しないようにせき止めるせき止め部13が配置される。このように樹脂Rが最薄肉部10の一部のみと接合されるように射出されることにより、前述の図1にて示したような、境界面部9や本体部8内のコア層3に射出樹脂Rの熱が伝熱され、コア層3のうち比較的空隙が多い領域で冷却時におけるコア層の収縮量が大きくなり、それによって成形される一体化成形体の意匠面側に、コア層の収縮に伴うヒケによる変形等の不具合が発生するおそれがあるという問題が解消され、確実に所望の意匠面が得られるようになる。すなわち、別の構造体(C)7が高い接合強度をもって接合されつつ、意匠面側に不具合が発生しない、薄型軽量化可能な一体化成形体100が得られる。最薄肉部10ではそのコア層の空隙率が低くされて強度が高められるとともに最薄肉部10が薄肉化されているので、別の構造体(C)7の厚さを本体部8の厚さに揃えることも可能になり、つまり、本体部8の厚さと、接合部6を介して接合された別の構造体(C)7のみからなる部分の厚さとが同じ厚さを有する構造とすることができ、一体化成形体100の厚みを全体にわたって均一にすることが可能になる。あるいは別の構造体(C)7を含む一体化成形体100の全体について所定範囲内の厚さ、形状とすることも可能になる。その結果、一体化成形体100の全体を薄型軽量化することが可能になる。
 上記のような一体化成形体100における本体部8を形成する領域におけるコア層3の空隙率としては50%以上80%以下、最薄肉部10を形成する領域におけるコア層3の空隙率としては0%以上50%未満であることが好ましい。コア層に一定の空隙を設け、その空隙率を変えることで、所望の厚さを形成することができる。本体部8を形成する領域におけるコア層3の空隙率は、好ましくは52~78%、より好ましくは58~75%、さらに好ましくは60~70%である。空隙率が50%よりも小さいと本体部8における一定の高さを確保することが出来ず、サンドイッチ構造体1と別の構造体(C)7との接合強度を高める効果が弱まる場合がある。空隙率が80%よりも大きいとサンドイッチ構造体1の強度が不足する場合がある。また、最薄肉部10を形成する領域におけるコア層3の空隙率は、好ましくは0~45%、より好ましくは0~40%、さらに好ましくは0~35%である。空隙率が50%以上であると本体部8との間で一定の高低差を確保することが出来ず、サンドイッチ構造体1と別の構造体(C)接合強度を高める効果が弱まる場合がある。
 上記のような一体化成形体100における各形状に関するパラメータは以下のように設定されることが好ましい。図5に各形状パラメータを示すが、まず、境界面部9の境界面9aは、本体部8の面内方向に対して、1~20°の角度θを有していることが好ましい。なお、角度θが90°の場合、境界面部9の境界面9aは最薄肉部10から垂直に立ち上がることになるが、後述するようにそのような場合にも本発明は成立する。この角度θ(°)は、より好ましくは2~10°、更に好ましくは3~8°である。
 また、接合部6のサンドイッチ構造体1の端面からの長さLbは3~30mmの範囲にあることが好ましい。長さLbを特定の範囲内とすることにより、サンドイッチ構造体1の強度や薄肉化、別の構造体(C)7との接合強度を高めることが可能になる。Lbが3mm未満であると、別の構造体(C)7との接合強度が弱まる場合がある。30mmを超えると、サンドイッチ構造体1の本体部8の占める領域が減少しすぎるおそれがあり、サンドイッチ構造体1自身の剛性が低下する場合がある。
 また、サンドイッチ構造体1の本体部8の厚さDbが0.4~2mm、接合部6の厚さTcが0.1~1.7mmの範囲にあることが好ましい。さらに、DbとTcとの関係において、Db/Tcが1.1~20の範囲にあることが好ましい。Dbが0.4mm未満、又は、Db/Tcが1.1未満であると、サンドイッチ構造体1と別の構造体(C)7との接合強度が弱まる場合がある。Dbが2mmを超えるか、Db/Tcが20を超える場合には、サンドイッチ構造体1の薄肉化の妨げになる場合がある。
 さらに、本体部8の境界面部9側端縁から最薄肉部10の少なくとも一部のみと接合された別の構造体(C)7までの距離Lは、0.1~30mmの範囲にあることが好ましい。距離Lが0.1mm未満であると、別の構造体(C)7の境界面部9との非接触状態が確保しにくくなり、30mmを超えると、別の構造体(C)7と本体部8との間に形成される空間部が長くなり過ぎ、一体化成形体100の適用上不具合が生じるおそれがある。
 本発明に係る一体化成形体においては、例えば図6に示すように、前述の境界面部9の境界面9aの本体部8の面内方向に対する角度θを90°とすることも可能であり、その場合、境界面部9を形成する領域としては実質的に現れないが、別の構造体(C)7の境界面部9に対する非接触状態は図示の如く確保される。この場合の角度θ以外の各形状に関するパラメータについて、図5に用いた符号と同一の符号を使用して図6に表す。
 また、本発明においては、例えば図7に示すように、スキン層2と別の構造体(C)7との間、または/およびコア層3と別の構造体(C)7との間の少なくとも一部に接合層21を設けることができる。図7はスキン層2に接合層を設けた場合を示しており、上述の境界面部9の境界面9aの本体部8の面内方向に対する角度を90°とした場合について例示している。接合部6を構成するスキン層2上にあらかじめ接合層21を設けておき、その後に別の構造体(C)7を形成した構成である。また、図8のように、上下両面のスキン層2に段差部と接合層21を設けることもできる。これらの構成により、スキン層2と別の構造体(C)7との接合力を強化できる。
 ここで接合層21としては、アクリル系、エポキシ系、スチレン系、ナイロン系、エステル系などの接着剤や、熱可塑性樹脂フィルム、不織布等を用いることができる。また、接着性をより高めるには、スキン層2またはコア層3の最表層に、接合層として熱可塑性樹脂層を設けることが好ましい。スキン層2またはコア層3の最外層に設ける接合層21を別の構造体(C)7と同材質にすれば、接合強度を高めることも可能である。スキン層2またはコア層3の最外層に設ける樹脂は、接合層に用いる接着剤と同一樹脂でなくとも相溶性が良いものであれば特に限定されるものではなく、別の構造体(C)7を構成する樹脂の種類によって最適なものを選定することが好ましい。
 本発明においてスキン層2に用いられる連続繊維とは、少なくとも一方向に150mm以上、好ましくは200mm以上の長さにわたり連続した強化繊維を意味する。つまり、本発明に用いられる不連続繊維は150mm未満の長さの繊維を意味する。
 本発明において、コア層3に用いられる不連続繊維に特に制限はなく、例えば、アルミニウム、黄銅、ステンレスなどの金属繊維や、ポリアクリルニトリル(PAN)系、レーヨン系、リグニン系、ピッチ系の炭素繊維や、黒鉛繊維や、ガラスなどの絶縁性繊維や、アラミド樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、アクリル樹脂、ナイロン樹脂、ポリエチレン樹脂などの有機繊維や、シリコンカーバイト、シリコンナイトライドなどの無機繊維が挙げられる。また、これらの繊維に表面処理が施されているものであってもよい。表面処理としては、導電体として金属の被着処理のほかに、カップリング剤による処理、サイジング剤による処理、結束剤による処理、添加剤の付着処理などがある。また、これらの強化繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。中でも、軽量化効果の観点から、比強度、比剛性に優れるPAN系、ピッチ系、レーヨン系などの炭素繊維が好ましく用いられる。また、得られる成形品の経済性を高める観点からは、ガラス繊維が好ましく用いられ、とりわけ力学特性と経済性のバランスから炭素繊維とガラス繊維を併用することが好ましい。さらに、得られる成形品の衝撃吸収性や賦形性を高める観点からは、アラミド繊維が好ましく用いられ、とりわけ力学特性と衝撃吸収性のバランスから炭素繊維とアラミド繊維を併用することが好ましい。また、得られる成形品の導電性を高める観点からは、ニッケルや銅やイッテルビウムなどの金属を被覆した強化繊維を用いることもできる。これらの中で、強度と弾性率などの力学的特性に優れるPAN系の炭素繊維をより好ましく用いることができる。
 また、本発明において、コア層3に用いられる熱可塑性樹脂(A)の種類としては特に制限はなく、以下に例示される熱可塑性樹脂のいずれの樹脂も用いることができる。例えばポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN樹脂)、液晶ポリエステル樹脂等のポリエステル樹脂や、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィン樹脂や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリフェニレンスルフィド(PPS)樹脂などのポリアリーレンスルフィド樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリエーテルニトリル(PEN)樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、液晶ポリマー(LCP)などの結晶性樹脂、スチレン系樹脂の他、ポリカーボネート(PC)樹脂、ポリメチルメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PSU)樹脂、ポリエーテルサルホン樹脂、ポリアリレート(PAR)樹脂などの非晶性樹脂、その他、フェノール系樹脂、フェノキシ系樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂、およびアクリロニトリル系樹脂等の熱可塑エラストマー等や、これらの共重合体および変性体等から選ばれる熱可塑性樹脂が挙げられる。中でも、得られる成形品の軽量性の観点からはポリオレフィン樹脂が好ましく、強度の観点からはポリアミド樹脂が好ましく、表面外観の観点からポリカーボネート樹脂やスチレン系樹脂、変性ポリフェニレンエーテル系樹脂のような非晶性樹脂が好ましく、耐熱性の観点からポリアリーレンスルフィド樹脂が好ましく、連続使用温度の観点からポリエーテルエーテルケトン樹脂が好ましく用いられる。
 例示された熱可塑性樹脂は、本発明の目的を損なわない範囲で、エラストマーあるいはゴム成分などの耐衝撃性向上剤、他の充填材や添加剤を含有してもよい。これらの例としては、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、あるいは、カップリング剤が挙げられる。
 本発明において、スキン層2に用いられる連続繊維は、例えば、前述したコア層3で用いられる不連続繊維と同様の種類の強化繊維を用いることができる。
 また、連続繊維の引張弾性率は、サンドイッチ構造体の剛性の点から好ましくは360~1000GPa、より好ましくは500~800GPaの範囲内であるものが使用できる。強化繊維の引張弾性率が、360GPaよりも小さい場合は、サンドイッチ構造体の剛性が劣る場合があり、1000GPaよりも大きい場合は、強化繊維の結晶性を高める必要があり、強化繊維を製造するのが困難となる。強化繊維の引張弾性率が、前記範囲内であるとサンドイッチ構造体の更なる剛性向上、強化繊維の製造性向上の点で好ましい。なお、強化繊維の引張弾性率は、JIS R7601-1986に記載のストランド引張試験により測定することができる。
 本発明において、スキン層2に用いられる樹脂(B)に特に制限はなく、熱可塑性樹脂または熱硬化性樹脂を用いることができる。熱可塑性樹脂の場合、例えば前述したコア層3で用いられる熱可塑性樹脂(A)と同様の種類の樹脂を用いることができる。また、熱硬化性樹脂での例示としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール(レゾール型)樹脂、ユリア・メラミン樹脂、ポリイミド樹脂、マレイミド樹脂、ベンゾオキサジン樹脂などの熱硬化性樹脂などを好ましく用いることができる。これらは、2種以上をブレンドした樹脂などを適用してもよい。この中でも、特に、エポキシ樹脂は、成形体の力学特性や、耐熱性の観点から好ましい。エポキシ樹脂は、その優れた力学特性を発現するために、使用する樹脂の主成分として含まれるのが好ましく、具体的には樹脂組成物当たり60重量%以上含まれることが好ましい。
 本発明において、別の構造体(C)に使用される樹脂としては特に制限はなく、前述した熱可塑性樹脂または熱硬化性樹脂を用いることができる。とりわけ、耐熱性、耐薬品性の観点からはPPS樹脂が、成形品外観、寸法安定性の観点からはポリカーボネート樹脂やスチレン系樹脂が、成形品の強度、耐衝撃性の観点からはポリアミド樹脂がより好ましく用いられる。
 また、一体化成形体の高強度・高剛性化を図るために別の構造体(C)に用いる樹脂(C)として、強化繊維を含有させたものを用いることも好ましい。強化繊維としては、例えばアルミニウム繊維、黄銅繊維、ステンレス繊維などの金属繊維、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系等の炭素繊維や黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維などの無機繊維や、アラミド繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維などの有機繊維等が使用できる。これらの強化繊維は単独で用いても、また、2種以上併用してもよい。中でも、比強度、比剛性、軽量性のバランスの観点から炭素繊維が好ましく、比強度・比弾性率に優れる点でポリアクリロニトリル系炭素繊維を少なくとも含むことが好ましい。
 さらに、別の構造体(C)を構成する樹脂(C)には、要求される特性に応じ、本発明の目的を損なわない範囲で他の充填材や添加剤を含有してもよい。例えば、無機充填材、リン系以外の難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。
 また、本発明において、サンドイッチ構造体1は底面積に比べて側面部面積が小さい直方体形状であることが好ましい。例えば、パソコンの筺体のように底面積に比べて側面部面積が小さい、いわゆる薄肉型直方体形状においては、側面部の面積は狭く、その部分に別の構造体を接合するには強い接合強度が必要である。このような形態であっても、本発明の接合構成や後述する接合方法を採ることにより、狭い面積の接合部であっても、強い強度を持って、別の構造体を接合することができる。
 また、本発明において、コア層3は、不連続繊維と熱可塑性樹脂(A)とからなるコア層前駆体を加熱によるスプリングバックにより厚さ方向に膨張させて空隙を形成させてなることが好ましい。コア層3を構成する不連続繊維と熱可塑性樹脂(A)とを含有する成形体を樹脂の軟化点または融点以上に加熱及び加圧した後、加圧を解除し、不連続繊維の残留応力解放時に元に戻ろうとする復元力、いわゆるスプリングバックにより膨張させることにより、コア層3内に所望の空隙を形成することができる。その復元過程において、一部の領域で一定の加圧手段等によりその復元作用を抑えると、空隙率を低く抑えることができる。
 また、本発明において、コア層3を構成する不連続繊維が、5~75質量%、熱可塑性樹脂(A)が25~95質量%であることが好ましい。
 コア層3の形成において、不連続繊維と熱可塑性樹脂(A)の配合量比は、空隙率を特定する一つの要素である。不連続繊維と熱可塑性樹脂(A)の配合量比の求め方に特に制限はないが、例えば、コア層3に含まれる樹脂成分を除去し、残った不連続繊維のみの重量を測定することで求めることができる。コア層3に含まれる樹脂成分を除去する方法として、溶解法、あるいは焼き飛ばし法などを例示することができる。重量の測定には、電子はかり、電子天秤を用いて測定することができる。測定する成形材料の大きさを100mm×100mm角とし、測定数はn=3で行い、その平均値を用いることができる。コア層3の配合量比は、好ましくは、不連続繊維が7~70質量%、熱可塑性樹脂(A)が30~93質量%、より好ましくは不連続繊維が20~50質量%、熱可塑性樹脂(A)が50~80質量%、さらに好ましくは不連続繊維が25~40質量%、熱可塑性樹脂(A)が60~75質量%である。不連続繊維が5質量%よりも少なく、熱可塑性樹脂(A)が95質量%よりも多いと、スプリングバックが起きにくくなるため空隙率を高めることができず、コア層3に空隙率が異なる領域を設けにくくなる場合があり、その結果、別の構造体(C)7との接合強度も低下する。一方、不連続繊維が75質量%よりも多く、熱可塑性樹脂(A)が25質量%よりも少ないと、サンドイッチ構造体1の比剛性が低下する。
 また、本発明において、コア層を構成する不連続繊維の数平均繊維長が、0.5~50mmであることが好ましい。
 不連続繊維の数平均繊維長を特定の長さとすることで、コア層のスプリングバックによる空隙の生成を確実なものとすることができる。数平均繊維長は、好ましくは0.8~40mm、より好ましくは1.5~20mm、さらに好ましくは3~10mmである。数平均繊維長が0.5mmよりも短いと、一定大きさ以上の空隙形成が困難となる場合がある。一方、数平均繊維長が50mmよりも長いと、繊維束からランダム分散させることが困難となり、コア層3が十分なスプリングバックを生じることができなくなるため、空隙の大きさが限定的となり、別の構造体(C)7との接合強度が低下する。
 不連続繊維の繊維長を測定する方法としては、例えば、不連続繊維群から直接不連続繊維を摘出して顕微鏡観察により測定する方法がある。不連続繊維群に樹脂が付着している場合には、不連続繊維群から、それに含まれる樹脂のみを溶解する溶剤を用いて樹脂を溶解させ、残った不連続繊維を濾別して顕微鏡観察により測定する方法(溶解法)や、樹脂を溶解する溶剤がない場合には、不連続繊維が酸化減量しない温度範囲において樹脂のみを焼き飛ばし、不連続繊維を分別して顕微鏡観察により測定する方法(焼き飛ばし法)などがある。不連続繊維群から不連続繊維を無作為に400本選び出し、その長さを1μm単位まで光学顕微鏡にて測定し、繊維長とその割合を求めることができる。なお、不連続繊維群から直接不連続繊維を摘出する方法と、焼き飛ばし法や溶解法で不連続繊維を摘出する方法とを比較した場合、条件を適切に選定することで、得られる結果に特別な差異を生じることはない。これらの測定方法の中で溶解法を採用するのが、不連続繊維の重量変化が少ない点で好ましい。
 また、本発明は、コア層を構成する不連続繊維が、500本以下の単繊維からなる繊維束で存在し、かつランダムに配向してなることが好ましい。
 また、本発明は、コア層を構成する不連続繊維が、モノフィラメント状に分散し、不連続な単繊維(a)と、前記不連続な単繊維(a)と交差する他の不連続な単繊維(b)とで形成される二次元配向角の平均値が10~80度であることが好ましい。
 不連続繊維が500本以下の単繊維からなる繊維束で存在し、かつランダムに配向することで、コア層を構成する不連続繊維同士が交差して存在できるため、大きなスプリングバックを得ることができ、一定大きさ以上の空隙を形成できる。ここで、モノフィラメント状に分散しているとは、サンドイッチ構造体のコア層中にて任意に選択した不連続繊維について、その二次元接触角が1度以上である単繊維の割合(以下、繊維分散率とも称す)が80%以上であることを指し、言い換えれば、構成要素中において単繊維の2本以上が接触して並行した束が20%未満であることをいう。従って、ここでは、少なくとも不連続繊維からなるコア層におけるフィラメント数100本以下の繊維束の重量分率が100%に該当するもののみを対象とする。
 ここで、二次元接触角とは、不連続な単繊維と該不連続な単繊維と接触する不連続な単繊維とで形成される角度のことであり、接触する不連続な単繊維同士が形成する角度のうち、0度以上90度以下の鋭角側の角度と定義する。この二次元接触角について、図面を用いてさらに説明する。図9(a)、(b)は本発明における一実施態様であって、サンドイッチ構造体のコア層中の不連続繊維を面方向(a)および厚さ方向(b)から観察した場合の模式図である。不連続な単繊維14を基準とすると、不連続な単繊維14は図9(a)では不連続な単繊維15~19と交わって観察されるが、図9(b)では不連続な単繊維14は不連続な単繊維18および19とは接触していない。この場合、基準となる不連続な単繊維14について、二次元接触角度の評価対象となるのは不連続な単繊維15~17であり、接触する2つの不連続な単繊維が形成する2つの角度のうち、0度以上90度以下の鋭角側の角度20である。
 二次元接触角を測定する方法としては、特に制限はないが、例えば、サンドイッチ構造体1のコア層3表面から不連続繊維の配向を観察する方法が例示できる。この場合、サンドイッチ構造体1の表面を研磨してコア層3の不連続繊維を露出させることで、より不連続繊維を観察しやすくなる。また、X線CT透過観察して不連続繊維の配向画像を撮影する方法も例示できる。X線透過性の高い不連続繊維の場合には、不連続繊維にトレーサ用の繊維を混合しておく、あるいは不連続繊維にトレーサ用の薬剤を塗布しておくと、不連続繊維を観察しやすくなるため好ましい。また、上記方法で測定が困難な場合には、サンドイッチ構造体1からコア層3を分離させた後、コア層3を加熱炉等により高温下に置いて、熱可塑性樹脂成分を焼失させた後、取り出した不連続繊維からなるマットから、光学顕微鏡または電子顕微鏡を用いて、不連続繊維の配向を観察する方法が例示できる。前記観察方法に基づき、繊維分散率は次の手順で測定する。無作為に選択した不連続な単繊維(図9における不連続な単繊維14)に対して接触している全ての不連続な単繊維(図9における不連続な単繊維15~17)との二次元接触角を測定する。これを100本の不連続な単繊維についておこない、二次元接触角を測定した全ての不連続な単繊維の総本数と、二次元接触角が1度以上である不連続な単繊維の本数との比率から、割合を算出する。
 さらに、コア層3を構成する不連続繊維は、ランダムに分散していることが、とりわけ好ましい。ここで、不連続繊維がランダムに分散しているとは、サンドイッチ構造体1における任意に選択した強化繊維の二次元配向角の平均値が30~60度であることをいう。かかる二次元配向角とは、不連続な単繊維と該不連続な単繊維と交差する不連続な単繊維とで形成される角度のことであり、交差する不連続な単繊維同士が形成する角度のうち、0度以上90度以下の鋭角側の角度と定義する。この二次元配向角について、図面を用いてさらに説明する。図9(a)、(b)において、不連続な単繊維14を基準とすると、不連続な単繊維14は他の不連続な単繊維15~19と交差している。ここで交差とは、観察する二次元平面において、基準とする不連続な単繊維が他の不連続な単繊維と交わって観察される状態のことを意味し、不連続な単繊維14と不連続な単繊維15~19が必ずしも接触している必要はなく、投影して見た場合に交わって観察される状態についても例外ではない。つまり、基準となる不連続な単繊維14について見た場合、不連続な単繊維15~19の全てが二次元配向角の評価対象であり、図9(a)中において二次元配向角は交差する2つの不連続な単繊維が形成する2つの角度のうち、0度以上90度以下の鋭角側の角度20である。
 二次元配向角を測定する方法としては、特に制限はないが、例えば、構成要素の表面から不連続繊維の配向を観察する方法が例示でき、上述した二次元接触角の測定方法と同様の手段を取ることができる。二次元配向角の平均値は、次の手順で測定する。無作為に選択した不連続な単繊維(図9における不連続な単繊維14)に対して交差している全ての不連続な単繊維(図9における不連続な単繊維15~19)との二次元配向角の平均値を測定する。例えば、ある不連続な単繊維に交差する別の不連続な単繊維が多数の場合には、交差する別の不連続な単繊維を無作為に20本選び測定した平均値を代用してもよい。前記測定について別の不連続な単繊維を基準として合計5回繰り返し、その平均値を二次元配向角の平均値として算出する。
 不連続繊維がモノフィラメント状かつランダムに分散していることで、上述した不連続繊維が500本以下の単繊維からなる繊維束状に分散するよりも、コア層3中に空隙を均一に存在させることができる。例えば空隙が一定の大きさで形成されていたとしても、それが偏って存在した場合、局所的に空隙が多い領域ではサンドイッチ構造体1が弱くなる可能性がある。このため、空隙をコア層3中に均一に連続した状態で存在させることは、サンドイッチ構造体1を高強度にする観点で好ましい。
 かかる観点から、不連続繊維からなるコア層3の繊維分散率は90%以上が好ましく、100%に近づくほどより好ましい。また、不連続繊維の二次元配向角の平均値としては、40~50度が好ましく、理想的な角度である45度に近づくほど好ましい。
 空隙を有するコア層3または不連続繊維に熱可塑性樹脂(A)を含浸させた成形体に好適に用いられる不連続繊維のマットは、例えば、不連続繊維を予め、500本以下の単繊維からなる繊維束状および/またはモノフィラメント状に分散して製造される。不連続繊維マットの製造方法としては、具体的には、不連続繊維を空気流にて分散シート化するエアレイド法や不連続繊維を機械的にくし削りながら形成してシート化するカーディング法などの乾式プロセス、不連続繊維を水中にて攪拌して抄紙するラドライト法による湿式プロセスを用いることができる。不連続繊維をよりモノフィラメント状に近づける手段としては、乾式プロセスにおいては、開繊バーを設ける方法やさらに開繊バーを振動させる方法、さらにカードの目をファイン(極細状態)にする方法や、カードの回転速度を調整する方法などが例示でき、湿式プロセスにおいては、不連続繊維の攪拌条件を調整する方法、分散液の強化繊維濃度を希薄化する方法、分散液の粘度を調整する方法、分散液を移送させる際に渦流を抑制する方法などが例示できる。特に、不連続繊維マットは、湿式法で製造されることが好ましく、投入繊維の濃度を増やしたり、分散液の流速(流量)とメッシュコンベアの速度を調整したりすることで不連続繊維マットの強化繊維の割合を容易に調整することができる。例えば、分散液の流速に対して、メッシュコンベアの速度を遅くすることで、得られる不連続繊維からなるマット中の繊維の配向が引き取り方向に向き難くなり、嵩高い不連続繊維からなるマットを製造可能である。不連続繊維からなるマットとしては、不連続繊維単体から構成されていてもよく、不連続繊維が粉末形状や繊維形状のマトリックス樹脂成分と混合されていたり、不連続繊維が有機化合物や無機化合物と混合されていたり、不連続の強化繊維同士が樹脂成分で目止めされていてもよい。
 次に、本発明に係る一体化成形体の製造方法について図面を参照しながら説明する。
 本発明は、不連続繊維と熱可塑性樹脂(A)からなるコア層及び連続繊維と樹脂(B)からなるスキン層から構成されるサンドイッチ構造体の少なくとも端部の一部を接合部とし、前記接合部に、別の構造体(C)を接合させる一体化成形体の製造方法であって、少なくとも以下の工程[1]~工程[5]からなることを特徴とする一体化成形体の製造方法である。
[1]前記不連続繊維からなるウエブの少なくとも片面に前記熱可塑性樹脂(A)層を配したコア層前駆体を準備する工程
[2]前記コア層前駆体の両面に、前記連続繊維に前記樹脂(B)を含浸させたスキン層前駆体を配して成形体前駆体を形成する工程
[3]前記成形体前駆体を加熱プレス成形し、前記スキン層前駆体を固化または硬化させてスキン層を形成するとともに、前記コア層前駆体と前記スキン層とを一体化させる工程
[4]前記コア層前駆体中の前記不連続繊維の復元力を発現させコア層内に空隙を形成させて前記サンドイッチ構造体を所定厚さに膨張させるにあたり、プレス金型を当接させることにより前記サンドイッチ構造体の少なくとも端部の一部に段差部を形成し、該段差部を、該段差部における高い面を形成する本体部、段差部の高い面と低い面をつなぐ境界面を形成する境界面部及び前記本体部におけるコア層の空隙率よりも低い空隙率のコア層を有する最薄肉部から構成するサンドイッチ構造体賦形工程
[5]金型内に前記賦形されたサンドイッチ構造体を配置し、金型内の前記接合部に対し、溶融させた別の構造体(C)の樹脂を、前記境界面には接せず前記最薄肉部の少なくとも一部のみと接するように樹脂の流動を金型内の途中でせき止めた状態にて射出することにより、前記サンドイッチ構造体と前記別の構造体(C)を接合して一体化させる工程
 本発明の製造方法の一工程例を、図10[1]~[5]を用いて説明する。
 図10[1]は、不連続繊維からなるウエブ31の両面に熱可塑性樹脂(A)層32を配したコア層前駆体33を準備する工程[1]を示している。熱可塑性樹脂(A)層32は他の基材と積層する作業性の観点からフィルムや不織布が好ましい。
 図10[2]は、コア層前駆体33の両面に、連続繊維に樹脂(B)を含浸させたスキン層前駆体34を配して成形体前駆体を形成する工程[2]を示している。スキン層前駆体34としては、例えば、熱硬化性樹脂や熱可塑性樹脂からなる樹脂(B)が連続繊維に含浸されたプリプレグであることが好ましい。
 図10[3]は、コア層前駆体33とスキン層前駆体34とを、上型35と下型36による加熱プレス成形により一体化させ、サンドイッチ構造体を成形する工程[3]を示している。この工程[3]において、スキン層前駆体34に用いられた樹脂(B)が熱硬化性樹脂の場合には、加熱により硬化または固化するが、熱可塑性樹脂の場合には、加熱により軟化させた後、熱可塑性樹脂が固化する温度まで冷却が必要となる。
 ここで、フィルムや不織布の形態を有する熱可塑性樹脂(A)層32を不連続繊維からなるウエブ31内に含浸させる際の圧力は、0.5~30MPaが好ましく、さらに好ましくは1~5MPaとするのがよい。0.5MPaよりも圧力が小さいと熱可塑性樹脂(A)層32が不連続繊維ウエブ31に含浸しないことがあり、また30MPaよりも大きいとコア層前駆体33の不連続繊維が熱可塑性樹脂(A)層32により流動することで、不連続繊維ウエブ31が割れることがある。熱可塑性樹脂(A)層32のフィルムや不織布を含浸させる際の温度は、熱可塑性樹脂の場合、熱可塑性樹脂の融点あるいは軟化点以上の温度であることが好ましく、融点あるいは軟化点+10℃以上、さらに好ましくは、融点あるいは軟化点+20℃以上が良い。なお、熱可塑性樹脂(A)層32のフィルムや不織布を含浸させる際の温度が、熱可塑性樹脂の融点あるいは軟化点よりも温度が高すぎる場合、熱可塑性樹脂の分解や劣化が生じることがあるため、熱可塑性樹脂の融点あるいは軟化点+150℃以下であるのが好ましい。
 次に、スキン層34を作製する工程について説明する。例えば、樹脂(B)が熱硬化性樹脂の場合、連続繊維に含浸されたプリプレグをスキン層前駆体として準備する。工程[1]で得られたコア層前駆体33の少なくとも片面にスキン層前駆体34を配した積層体を形成し、この積層体を加熱プレス成形により加熱し0.5~30MPaの圧力を付与すると、スキン層前駆体の樹脂(B)が硬化してスキン層を作製することができる。また、樹脂(B)が熱可塑性樹脂の場合は、連続繊維に含浸されたプリプレグをスキン層前駆体34とすることができ、加熱プレス成形により加熱し、0.5~30MPaの圧力を付与することで、熱可塑性樹脂を軟化させた後、冷却用プレス成形機に搬送し、熱可塑性樹脂が固化する温度まで加圧することでスキン層を作製することができる。このとき、コア層前駆体とスキン層前駆体とを同時に加熱プレス成形を行うことにより、コア層前駆体の不連続繊維ウエブがスキン層内に入り込み、不連続繊維ウエブによるアンカリング効果により、コア層前駆体とスキン層前駆体の一体化成形体を得ることができる。コア層またはコア層前駆体とスキン層とが強固に密着していることは、サンドイッチ構造体の曲げ特性を最大限発現させる観点から好ましい。
 上記した工程[3]において、コア層前駆体とスキン層を作製するための設備としては、プレス成形機、ダブルベルトプレスを好適に用いることができる。バッチ式の場合は前者を適用することが好ましく、さらに熱可塑性樹脂を用いる場合には加熱用と冷却用の2機以上を並列した間欠式プレスシステムとすることで生産性を向上させることができる。連続式の場合は後者を適用することが好ましく、連続的な加工を容易におこなうことができるため連続生産性に優れる。
 図10[4]Aは、コア層前駆体中の不連続繊維の復元力を発現させて所定厚さに膨張させるにあたり、サンドイッチ構造体の板端部の少なくとも一部の接合部と、接合部以外の本体部の形状を付与したプレス金型を当接させた状態を示している。具体的には、上型35を、サンドイッチ構造体の本体部に対応するキャビティ(領域)37を備えた金型に変更し、再度プレス成形してコア層を形成する工程である。プレス成形により、コア層前駆体33が加熱されると、プレス成形の加熱により熱可塑性樹脂(A)の不連続繊維に対する結合力が弱まり、その後、加圧を解除することで強化繊維の残留応力が解放され、内部の不連続繊維マットがスプリングバックし、所定の膨張倍率に厚さが調整された、空隙を有するコア層となる。この時、サンドイッチ構造体の板端部において、本体部に対応する領域37と接合部に対応する領域の高さを変えることで、図10[4]Bに示すような、本体部と接合部とのコア層の空隙率が異なる領域を有するサンドイッチ構造体1を賦形することができる。
 その後、図10[5]に示すように、サンドイッチ構造体1の端部の少なくとも一部に形成した接合部6に、溶融させた樹脂(C)を射出成形することにより、別の構造体(C)7を接合一体化させた一体化成形体100が得られる。樹脂(C)を射出成形するに際しては、図10[5]に示すように、溶融させた別の構造体(C)7の樹脂を、境界面9aには接せず最薄肉部10の少なくとも一部のみと接するように樹脂の流動を金型内の途中でせき止めた状態にて射出する。別の構造体(C)とサンドイッチ構造体の一体化方法に特に制限はなく、例えば、(1)サンドイッチ構造体と別の構造体(C)とを別々に予め成形しておき、両者を接合する方法、(2)サンドイッチ構造体を予め成形しておき、別の構造体(C)を成形すると同時に両者を接合する方法、がある。前記(1)の具体例としては、サンドイッチ構造体をプレス成形し、別の構造体(C)を射出成形にて作製する。作製したそれぞれの部材を、熱板溶着、振動溶着、超音波溶着、レーザー溶着、抵抗溶着、誘導加熱溶着、などの公知の溶着手段により接合する方法がある。一方、前記(2)の具体例としては、サンドイッチ構造体をプレス成形し、次いで射出成形金型に挿入し、別の構造体(C)を形成する材料を金型に射出成形し、一体化させる方法がある。一体化成形品の量産性の観点からは、好ましくは(2)の方法であって、インサート射出成形やアウトサート射出成形が好ましく使用される。
 また、[4] サンドイッチ構造体賦形工程において、コア層に形成された空隙は、不連続繊維と熱可塑性樹脂(A)とを含有するコア層前駆体を、熱可塑性樹脂(A)の軟化点または融点以上に加熱及び加圧した後、加圧を解除し、スプリングバックにより膨張させることにより形成されることが好ましい。このようにコア層前駆体全体を一度に加熱加圧し、加圧を解除することで、大面積を有するサンドイッチ構造体や接合部が複雑な段差部を有するものであっても、サンドイッチ構造体全体を一度に精度良く成形することができる。
 空隙率の制御はコア層の厚さ調整により行うことができる。加圧を解除する際にコア層の厚さを大きくさせるほど、スプリングバックによる膨張量は増え、コア層に形成する空隙率を増加させることができる。具体的には、上型のキャビティ高さを所定のコア層高さとなるようにする他、製品種類が増える場合には、加圧を解除する際に上型と下型との距離を制御する方法も使用することができる。
 ここで、接合部の製造方法について更に説明する。図10[4]Bに示すように、コア層前駆体のスプリングバックにより、スキン層も上型の領域37の形状に沿うよう変形させることができるが、これ以外の方法でも接合部を形成することができる。
 また、スキン層前駆体やコア層前駆体を加熱するための設備としては、熱風オーブン、IR(赤外線)ヒーターを好適に用いることができる。
 また、本発明において、サンドイッチ構造体のスキン層又はコア層に接合層を設け、その後に溶融させた別の構造体の樹脂(C)を射出成形することにより、サンドイッチ構造体の周端部に形成された肉厚が異なる部位に、射出成形樹脂(C)を固化または硬化させることにより、別の構造体(C)を接合一体化させることが好ましい。サンドイッチ構造体のスキン層又はコア層に接合層を設ける方法は、サンドイッチ構造体の周端部側面に形成された肉厚が異なる部位に別の構造体(C)と同材質の接着剤を塗布する方法、スキン層またはコア層の最表層に別の構造体(C)と同材質のフィルムや不織布を積層し、加熱プレス成形で接合層をサンドイッチ構造体と一体化する方法、がある。生産性に優れる点から、スキン層またはコア層の最表層に別の構造体(C)と同材質のフィルムや不織布を積層し、加熱プレス成形で接合層をサンドイッチ構造体と一体化する方法が好ましい。
 以上の如く、本発明に係る一体化成形体においては、サンドイッチ構造体の端部に段差部を形成してその最薄肉部の少なくとも一部のみに別の構造体(C)が接合されていることを必須の構成とするが、サンドイッチ構造体の端部以外の部位に同様の構造部を設けることができる。例えば図11に、サンドイッチ構造体の端部以外にも別の段差部と別の構造体(C)を設けた場合の一例を示す一体化成形体200の厚さ方向における概略断面図示すように、サンドイッチ構造体41の端部の少なくとも一部には、図2、図3に示したのと同様の段差部42が形成され、その最薄肉部43の少なくとも一部のみに別の構造体(C)44が接合されているが、本例においては、サンドイッチ構造体41は上記端部の一部以外の任意の部位にも別の段差部45が形成されるとともに別の構造体(C)44とは別の構造体(C)46が配され、この別の段差部45は、該別の段差部45の両側における高い面47aを形成する本体部47、該別の段差部45の両側の高い面47aと該両側の高い面47a間に位置する低い面49aをつなぐ別の境界面48aを形成する別の境界面部48及び両側の本体部47におけるコア層50aの空隙率よりも低い空隙率のコア層50bを有する別の最薄肉部49から構成され、かつ、別の構造体(C)46は別の境界面48aに接しておらず、別の最薄肉部49の少なくとも一部のみと接合されている。図示例では、段差部45の両側に位置する別の境界面48aは、図2、図3に示したのと同様の傾斜角度を有しており、別の構造体(C)46は、別の最薄肉部49の上側コア層の上面の一部に接合されている。
 このように、本発明における別の構造体(C)を境界面部の境界面とは接せず、最薄肉部の少なくとも一部のみと接合する技術は、サンドイッチ構造体の端部以外の部位にも同様に展開可能である。したがって、サンドイッチ構造体の端部以外の部位においても、別の構造体(C)を構成する樹脂から境界面部への伝熱を実質的に阻止することが可能になり、該伝熱によるヒケ等に起因する意匠面側の不具合の発生のおそれを除去でき、所望の一体化成形体をより確実かつ容易に得ることができるようになる。
 また、上記本発明における技術をサンドイッチ構造体の端部以外の部位に展開する場合、例えば図12にさらに別の一体化成形体201の例を示すように、サンドイッチ構造体41の端部の一部以外の任意の部位に形成される別の段差部51の別の境界面部52(図示例では一方の別の境界面部52)の別の境界面52aが、別の最薄肉部49の上面(別の段差部51における低い面)から垂直に立ち上がる面に形成されており、別の構造体(C)53が、別の境界面48aと別の境界面52aには接しておらず、別の最薄肉部49の少なくとも一部のみと接合されている。図示例では、別の構造体(C)53は、別の最薄肉部49の上面(別の段差部51における低い面)の中央から一方側にずれた位置に配置されている。このように別の構造体(C)53は、別の境界面48aと別の境界面52aに接しない構造を採る限り、任意の位置に配置でき、別の段差部45、51も実質的に任意の形状に形成でき、さらに、接合される別の構造体(C)46、53についても、実質的に任意の形状、サイズに形成できる。
 上記のようなサンドイッチ構造体の端部以外の部位においても、前述のサンドイッチ構造体の端部において適用可能な構造、例えば、境界面部の境界面が、本体部の面内方向に対して、1~20°の角度を有している構造、スキン層と別の構造体(C)との間の少なくとも一部に接合層が設けられている構造、本体部を形成する領域におけるコア層の空隙率が50%以上80%以下、最薄肉部を形成する領域におけるコア層の空隙率が0%以上50%未満である構造、本体部の厚さDbが0.4~2mm、別の構造体(C)の接合部における厚さTcが0.1~1.7mmの範囲にある構造、Db/Tcが1.1~20の範囲にある構造、本体部の境界面部側端縁から最薄肉部の少なくとも一部のみと接合された別の構造体(C)までの距離Lが0.1~30mmの範囲にある構造については、同様に適用可能である。
 以下、実施例によって、本発明の効果について具体的に説明するが、下記の実施例は本発明を何ら制限するものではない。実施例に用いた測定方法を下記する。
(1)サンドイッチ構造体と別の構造体(C)の長さと角度
 一体化成形体から接合部を含んだ小片を切り出し、エポキシ樹脂に包埋した後、一体化成形体の厚さ方向の断面を研磨することで試料を作製した。この試料をレーザー顕微鏡((株)キーエンス製、VK-9510)を用いて撮影した後、画像計測ツールを用いて、図5に示すように、サンドイッチ構造体に接合された別の構造体(C)の接合部長さ(Lb)、境界面部端縁から別の構造体(C)までの距離(L)、サンドイッチ構造体の境界面部角度(θ)を測定した。
(2)接合強度
 一体化成形体のうち、接合部が長手方向中央となるように、一体化成形体の厚さ方向に垂直な面内において長さ50mm、幅25mmのサイズになるように試験片を切り出し、支点間距離が試験片厚さの32倍で、ASTM D790に準拠して曲げ強度を求め、これを接合強度とした。さらに、得られた接合強度を以下の基準で評価した。A、Bが合格であり、C、Dが不合格とした。
  A:100MPa以上
  B:60MPa以上100MPa未満
  C:40MPa以上60MPa未満
  D:40MPa未満あるいは測定不可
(3)一体化成形体の意匠面側凹みと外観
 図1に示すような、サンドイッチ構造体に接合された別の構造体(C)との接合部近傍の意匠面側凹みを表面粗さ計((株)東京精密製、サーフコム480A)のうねり測定で測定するとともに、目視で外観を確認した。さらに、得られた凹み量と外観を以下の基準で評価した。○が合格であり、△、×が不合格とした。
  ○:凹みが5μm未満でかつ目視で凹みが見えない
  △:凹みが5μm以上20μm未満 
  ×:凹みが20μm以上
(実施例1)
 図10〔4〕Bに示すような、本体部と最薄肉部とのコア層の空隙率が異なるサンドイッチ構造体を製造する際に、境界面部に4度の角度をつけた上型35を用いることで、境界面部の角度(θ)が4度のサンドイッチ構造体を得た。
 上記で得たサンドイッチ構造体を射出成形金型内にセットし、型締めを行った後、溶融させた樹脂(C)を射出成形して、図5の模式図に示す一体化成形体を製造した。一体化成形体は接合強度が高く、サンドイッチ構造体に接合された別の構造体(C)との接合部近傍の意匠面側凹みが無い良外観が得られた。一体化成形体の特性をまとめて表1に示す。
(実施例2)
 図10〔4〕Bに示すような、本体部と最薄肉部とのコア層の空隙率が異なるサンドイッチ構造体を製造する際に、境界面部に90度の角度をつけた上型35を用いることで、境界面部の角度(θ)が90度のサンドイッチ構造体を得た。
 上記で得たサンドイッチ構造体を射出成形金型内にセットし、型締めを行った後、溶融させた樹脂(C)を射出成形して、図5の模式図に示す一体化成形体を製造した。一体化成形体は接合強度が高く、サンドイッチ構造体に接合された別の構造体(C)との接合部近傍の意匠面側凹みが無い良外観が得られた。一体化成形体の特性をまとめて表1に示す。
(実施例3)
 図10〔4〕Bに示すような、本体部と最薄肉部とのコア層の空隙率が異なるサンドイッチ構造体を製造する際に、境界面部に2度の角度をつけた上型35を用いることで、境界面部の角度(θ)が2度のサンドイッチ構造体を得た。
 上記で得たサンドイッチ構造体を射出成形金型内にセットし、型締めを行った後、溶融させた樹脂(C)を射出成形して、図5の模式図に示す一体化成形体を製造した。一体化成形体は接合強度が高く、サンドイッチ構造体に接合された別の構造体(C)との接合部近傍の意匠面側凹みが無い良外観が得られた。一体化成形体の特性をまとめて表1に示す。
(実施例4)
 図10〔4〕Bに示すような、本体部と最薄肉部とのコア層の空隙率が異なるサンドイッチ構造体を製造する際に、境界面部に18度の角度をつけた上型35を用いることで、境界面部の角度(θ)が18度のサンドイッチ構造体を得た。
 上記で得たサンドイッチ構造体を射出成形金型内にセットし、型締めを行った後、溶融させた樹脂(C)を射出成形して、図5の模式図に示す一体化成形体を製造した。一体化成形体は接合強度が高く、サンドイッチ構造体に接合された別の構造体(C)との接合部近傍の意匠面側凹みが無い良外観が得られた。一体化成形体の特性をまとめて表1に示す。
(参考実施例5)
 サンドイッチ構造体は実施例1同様に作製した。得られたサンドイッチ構造体を射出成形金型内にセットし、型締めを行った後、溶融させた樹脂(C)を射出成形した際に、接合部の長さ(Lb)が2mmと短い、図5の模式図に示す一体化成形体を製造した。サンドイッチ構造体に接合された別の構造体(C)との接合部近傍の意匠面側凹みが無い良外観が得られたが、一体化成形体の接合強度が低く合格レベルに達しなかった。その結果、接合強度も合格レベルにするには、実施例3との比較から、接合部の長さ(Lb)を3mmとすることが好ましいことが判明した。一体化成形体の特性をまとめて表1に示す。
(比較例1)
 サンドイッチ構造体は実施例1同様に作製した。得られたサンドイッチ構造体を射出成形金型内にセットし、型締めを行った後、溶融させた樹脂(C)を射出成形した際に、図1に示すように境界面部まで別の構造体(C)が接合した一体化成形体を製造した。一体化成形体は接合強度が高いものの、サンドイッチ構造体に接合された別の構造体(C)との接合部近傍の意匠面側凹みが大きかった。一体化成形体の特性をまとめて表1に示す。
(比較例2)
 サンドイッチ構造体は実施例4同様に作製した。得られたサンドイッチ構造体を射出成形金型内にセットし、型締めを行った後、溶融させた樹脂(C)を射出成形した際に、接合部の長さ(Lb)が2mmと短く、図1に示すように境界面部まで別の構造体(C)が接合した一体化成形体を製造した。一体化成形体は接合強度が低く合格レベルに達しなかった。また、サンドイッチ構造体に接合された別の構造体(C)との接合部近傍の意匠面側凹みも大きかった。一体化成形体の特性をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 本発明に係る一体化成形体及びその製造方法は、軽量、高強度・高剛性でかつ薄肉化が要求されるあらゆる用途に適用可能である。
1、41 サンドイッチ構造体
2 スキン層
3 コア層
3a 空隙率の高いコア層
3b 空隙率の低いコア層
4 コア層内での繊維
5 空隙
6 接合部
7 別の構造体(C)
8 本体部
8a 段差部の高い面
9、42 境界面部
9a 境界面
10、43 最薄肉部
10a 段差部の低い面(最薄肉部の上面)
10b 最薄肉部の側面
11 段差部
12 金型
13 せき止め部
14、15、16、17、18、19 不連続な単繊維
20 二次元接触角、二次元配向角
21 接合層
31 不連続繊維ウエブ
32 熱可塑性樹脂(A)
33 コア層前駆体
34 スキン層前駆体
35 プレス金型の上型
36 プレス金型の下型
37 プレス金型の間隙が異なる領域
45,51 別の段差部
46、53 別の構造体(C)
47 本体部
47a 別の段差部の高い面
48、52 別の境界面部
48a、52a 別の境界面
49 別の最薄肉部
49a 別の段差部の低い面(別の最薄肉部の上面)
50a 空隙率の高いコア層
50b 空隙率の低いコア層
100、200、201 一体化成形体

Claims (21)

  1.  不連続繊維と熱可塑性樹脂(A)からなるコア層及び連続繊維と樹脂(B)からなるスキン層から構成されるサンドイッチ構造体の少なくとも端部の一部を接合部とし、前記接合部に別の構造体(C)を配した一体化成形体であって、
     前記サンドイッチ構造体は少なくとも端部の一部に段差部を有し、該段差部は、該段差部における高い面を形成する本体部、段差部の高い面と低い面をつなぐ境界面を形成する境界面部及び前記本体部におけるコア層の空隙率よりも低い空隙率のコア層を有する最薄肉部から構成され、かつ、前記別の構造体(C)は前記境界面に接しておらず、前記最薄肉部の少なくとも一部のみと接合されていることを特徴とする一体化成形体。
  2.  前記境界面部の境界面は、前記本体部の面内方向に対して、1~20°の角度を有している、請求項1に記載の一体化成形体。
  3.  前記スキン層と前記別の構造体(C)との間の少なくとも一部に接合層が設けられている、請求項1または2に記載の一体化成形体。
  4.  前記コア層と前記別の構造体(C)との間の少なくとも一部に接合層が設けられている、請求項1~3のいずれかに記載の一体化成形体。
  5.  前記本体部を形成する領域における前記コア層の空隙率が50%以上80%以下、前記最薄肉部を形成する領域における前記コア層の空隙率が0%以上50%未満である、請求項1~4のいずれかに記載の一体化成形体。
  6.  前記サンドイッチ構造体の全周にわたって前記接合部が形成されてなる、請求項1~5のいずれかに記載の一体化成形体。
  7.  前記接合部の前記サンドイッチ構造体の端面からの長さLbが3~30mmの範囲にある、請求項1~6のいずれかに記載の一体化成形体。
  8.  前記本体部の厚さDbが0.4~2mm、前記接合部の厚さTcが0.1~1.7mmの範囲にある、請求項1~7のいずれかに記載の一体化成形体。
  9.  Db/Tcが1.1~20の範囲にある、請求項8に記載の一体化成形体。
  10.  前記本体部の前記境界面部側端縁から前記最薄肉部の少なくとも一部のみと接合された前記別の構造体(C)までの距離Lが0.1~30mmの範囲にある、請求項1~9のいずれかに記載の一体化成形体。
  11.  前記サンドイッチ構造体は前記端部の一部以外にも別の段差部を有するとともに前記別の構造体(C)が配され、前記別の段差部は、該別の段差部の両側における高い面を形成する本体部、該別の段差部の両側の高い面と該両側の高い面間に位置する低い面をつなぐ別の境界面を形成する別の境界面部及び前記両側の本体部におけるコア層の空隙率よりも低い空隙率のコア層を有する別の最薄肉部から構成され、かつ、前記別の構造体(C)は前記別の境界面に接しておらず、前記別の最薄肉部の少なくとも一部のみと接合されている、請求項1~10のいずれかに記載の一体化成形体。
  12.  前記本体部の厚さと、前記接合部を介して接合された前記別の構造体(C)のみからなる部分の厚さとが同じ厚さを有する、請求項1~11のいずれかに記載の一体化成形体。
  13.  前記コア層は、不連続繊維と熱可塑性樹脂(A)とからなるコア層前駆体を加熱によるスプリングバックにより厚さ方向に膨張させて空隙を形成させてなる、請求項1~12のいずれかに記載の一体化成形体。
  14.  前記コア層を構成する不連続繊維が5~75重量%、熱可塑性樹脂(A)が25~95重量%の範囲にある、請求項1~13のいずれかに記載の一体化成形体。
  15.  前記コア層を構成する不連続繊維の数平均繊維長が0.5~50mmの範囲にある、請求項1~14のいずれかに記載の一体化成形体。
  16.  前記コア層を構成する不連続繊維が500本以下の単繊維からなる繊維束で存在し、前記繊維束がランダムに配向してなる、請求項1~15のいずれかに記載の一体化成形体。
  17.  コア層を構成する不連続繊維がモノフィラメント状に分散し、不連続な単繊維(a)と、前記不連続な単繊維(a)と交差する他の不連続な単繊維(b)とで形成される二次元配向角の平均値が10~80度の範囲にある、請求項16に記載の一体化成形体。
  18.  不連続繊維と熱可塑性樹脂(A)からなるコア層及び連続繊維と樹脂(B)からなるスキン層から構成されるサンドイッチ構造体の少なくとも端部の一部を接合部とし、前記接合部に、別の構造体(C)を接合させる一体化成形体の製造方法であって、少なくとも以下の工程[1]~工程[5]からなることを特徴とする、一体化成形体の製造方法。
    [1]前記不連続繊維からなるウエブの少なくとも片面に前記熱可塑性樹脂(A)層を配したコア層前駆体を準備する工程
    [2]前記コア層前駆体の両面に、前記連続繊維に前記樹脂(B)を含浸させたスキン層前駆体を配して成形体前駆体を形成する工程
    [3]前記成形体前駆体を加熱プレス成形し、前記スキン層前駆体を固化または硬化させてスキン層を形成するとともに、前記コア層前駆体と前記スキン層とを一体化させる工程
    [4]前記コア層前駆体中の前記不連続繊維の復元力を発現させコア層内に空隙を形成させて前記サンドイッチ構造体を所定厚さに膨張させるにあたり、プレス金型を当接させることにより前記サンドイッチ構造体の少なくとも端部の一部に段差部を形成し、該段差部を、該段差部における高い面を形成する本体部、段差部の高い面と低い面をつなぐ境界面を形成する境界面部及び前記本体部におけるコア層の空隙率よりも低い空隙率のコア層を有する最薄肉部から構成するサンドイッチ構造体賦形工程
    [5]金型内に前記賦形されたサンドイッチ構造体を配置し、金型内の前記接合部に対し、溶融させた別の構造体(C)の樹脂を、前記境界面には接せず前記最薄肉部の少なくとも一部のみと接するように樹脂の流動を金型内の途中でせき止めた状態にて射出することにより、前記サンドイッチ構造体と前記別の構造体(C)を接合して一体化させる工程
  19.  前記[4]サンドイッチ構造体賦形工程において、不連続繊維と熱可塑性樹脂(A)とを含有する前記コア層前駆体を、前記熱可塑性樹脂(A)の軟化点または融点以上に加熱及び加圧した後、加圧を解除し、スプリングバックにより膨張させることにより前記空隙を形成させる、請求項18に記載の一体化成形体の製造方法。
  20.  前記[2]成形体前駆体の形成工程において、前記コア層の少なくとも一方の表面における本体部に相当する領域にのみにスキン層を配したスキン層前駆体を形成し、加熱プレスにより前記スキン層前駆体を固化または硬化してスキン層を形成するとともに、所定厚さに膨張させて空隙を有するコア層を備えた前記本体部を形成する、請求項18または19に記載の一体化成形体の製造方法。
  21.  前記接合部を構成するスキン層又はコア層に熱可塑性樹脂フィルム若しくは不織布を配置、又は接着剤を塗布し、その後に溶融させた別の構造体(C)の樹脂を射出成形することにより、前記サンドイッチ構造体と別の構造体(C)とを接合一体化させる、請求項18~20のいずれかに記載の一体化成形体の製造方法。
PCT/JP2018/001605 2017-01-31 2018-01-19 一体化成形体及びその製造方法 WO2018142971A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18747457.2A EP3578353A4 (en) 2017-01-31 2018-01-19 SINGLE HOLDER MOLDED BODY AND ITS PRODUCTION PROCESS
CN201880005723.7A CN110139747B (zh) 2017-01-31 2018-01-19 一体化成型体及其制造方法
JP2018511296A JP6960108B2 (ja) 2017-01-31 2018-01-19 一体化成形体及びその製造方法
KR1020197020803A KR20190113777A (ko) 2017-01-31 2018-01-19 일체화 성형체 및 그의 제조 방법
SG11201906941RA SG11201906941RA (en) 2017-01-31 2018-01-19 Integrally molded body and method for producing same
US16/482,059 US20200061952A1 (en) 2017-01-31 2018-01-19 Integrally molded body and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015382 2017-01-31
JP2017-015382 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018142971A1 true WO2018142971A1 (ja) 2018-08-09

Family

ID=63040590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001605 WO2018142971A1 (ja) 2017-01-31 2018-01-19 一体化成形体及びその製造方法

Country Status (8)

Country Link
US (1) US20200061952A1 (ja)
EP (1) EP3578353A4 (ja)
JP (1) JP6960108B2 (ja)
KR (1) KR20190113777A (ja)
CN (1) CN110139747B (ja)
SG (1) SG11201906941RA (ja)
TW (1) TWI738964B (ja)
WO (1) WO2018142971A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112389035A (zh) * 2019-08-19 2021-02-23 仁宝电脑工业股份有限公司 复合材料结构
WO2024095814A1 (ja) * 2022-10-31 2024-05-10 東レ株式会社 多孔質サンドイッチ構造体及びそれを用いた一体化成形体
JP7482278B1 (ja) 2023-01-31 2024-05-13 マクセル株式会社 樹脂成形体
WO2024116786A1 (ja) * 2022-11-29 2024-06-06 パナソニックオートモーティブシステムズ株式会社 パネル体、表示装置、およびパネル体の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778210B1 (en) * 2018-03-30 2023-11-15 Toray Industries, Inc. Method for manufacturing molded article and preform of molded article
WO2020094671A1 (de) * 2018-11-05 2020-05-14 Mitsubishi Chemical Advanced Materials Composites Ag Verfahren zur herstellung eines thermoplastisch verformbaren faserverstärkten flächigen halbzeugs
DE102020206045A1 (de) * 2020-05-13 2021-11-18 Ford Global Technologies, Llc Verfahren zur Herstellung eines Hohlkörper-Verbundbauteils, sowie Projektil zum Einsatz in einem solchen Verfahren
JP7512919B2 (ja) * 2021-02-02 2024-07-09 トヨタ自動車株式会社 ハイブリッド成形体、成形装置、及び成形方法
CN117083710A (zh) * 2021-03-25 2023-11-17 株式会社巴川制纸所 传热体
TW202241693A (zh) 2021-04-19 2022-11-01 仁寶電腦工業股份有限公司 複合材料結構

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028107A1 (ja) 2004-09-07 2006-03-16 Toray Industries, Inc. サンドイッチ構造体およびそれを用いた一体化成形体
JP2007038519A (ja) 2005-08-03 2007-02-15 Toray Ind Inc 複合成形品
JP2007526150A (ja) * 2004-03-05 2007-09-13 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 複合物品
JP2009113244A (ja) 2007-11-02 2009-05-28 Toyota Boshoku Corp 成形構造体及び成形構造体の製造方法
JP2012000890A (ja) 2010-06-17 2012-01-05 Mitsubishi Plastics Inc サンドイッチ構造体
JP2013198984A (ja) 2012-03-23 2013-10-03 Toray Ind Inc 繊維強化熱可塑性樹脂構造体およびその製造方法
JP2016049649A (ja) 2014-08-29 2016-04-11 東レ株式会社 一体化成形体及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320655A (ja) * 1993-05-11 1994-11-22 Nippon Steel Corp 繊維強化熱可塑性樹脂多孔質成形品およびその成形方法
KR20060028107A (ko) 2004-09-24 2006-03-29 삼성전자주식회사 평판형광램프 및 이를 갖는 액정표시장치
DE102005030842A1 (de) * 2005-07-01 2007-01-04 Ahlmann, Ulrich Nagelbare, gepresste Kunststoffplatte aus langglasfaserverstärktem Polypropylen mit einem integrierten Kantenschutz ohne Metalleinlage
JP5828380B2 (ja) * 2011-06-27 2015-12-02 東レ株式会社 複合成形体およびその製造方法
CN105492200A (zh) * 2013-08-30 2016-04-13 东丽株式会社 夹层结构体、使用该夹层结构体的一体化成型品及它们的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526150A (ja) * 2004-03-05 2007-09-13 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 複合物品
WO2006028107A1 (ja) 2004-09-07 2006-03-16 Toray Industries, Inc. サンドイッチ構造体およびそれを用いた一体化成形体
JP2007038519A (ja) 2005-08-03 2007-02-15 Toray Ind Inc 複合成形品
JP2009113244A (ja) 2007-11-02 2009-05-28 Toyota Boshoku Corp 成形構造体及び成形構造体の製造方法
JP2012000890A (ja) 2010-06-17 2012-01-05 Mitsubishi Plastics Inc サンドイッチ構造体
JP2013198984A (ja) 2012-03-23 2013-10-03 Toray Ind Inc 繊維強化熱可塑性樹脂構造体およびその製造方法
JP2016049649A (ja) 2014-08-29 2016-04-11 東レ株式会社 一体化成形体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578353A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112389035A (zh) * 2019-08-19 2021-02-23 仁宝电脑工业股份有限公司 复合材料结构
WO2024095814A1 (ja) * 2022-10-31 2024-05-10 東レ株式会社 多孔質サンドイッチ構造体及びそれを用いた一体化成形体
WO2024116786A1 (ja) * 2022-11-29 2024-06-06 パナソニックオートモーティブシステムズ株式会社 パネル体、表示装置、およびパネル体の製造方法
JP7482278B1 (ja) 2023-01-31 2024-05-13 マクセル株式会社 樹脂成形体
WO2024162214A1 (ja) * 2023-01-31 2024-08-08 マクセル株式会社 樹脂成形体

Also Published As

Publication number Publication date
JP6960108B2 (ja) 2021-11-05
KR20190113777A (ko) 2019-10-08
CN110139747B (zh) 2021-05-11
CN110139747A (zh) 2019-08-16
TW201834843A (zh) 2018-10-01
TWI738964B (zh) 2021-09-11
SG11201906941RA (en) 2019-08-27
JPWO2018142971A1 (ja) 2019-11-14
EP3578353A4 (en) 2020-09-02
EP3578353A1 (en) 2019-12-11
US20200061952A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2018142971A1 (ja) 一体化成形体及びその製造方法
JP2015085613A (ja) 一体化成形体及びその製造方法
TWI781970B (zh) 一體成形體及其製造方法
JP2016049649A (ja) 一体化成形体及びその製造方法
JP6481778B2 (ja) 複合構造体およびその製造方法
JP6447127B2 (ja) サンドイッチ積層体、サンドイッチ構造体とそれを用いた一体化成形品およびそれらの製造方法
JP5578290B1 (ja) 中空構造を有する成形体およびその製造方法
JP5626330B2 (ja) 繊維強化樹脂シート、成形体、一体化成形品およびそれらの製造方法、ならびに実装部材
JP6197968B1 (ja) 構造体の製造方法
JP2011224873A (ja) 繊維強化樹脂製サンドイッチ構造体
JP2011166124A (ja) 電気・電子機器筐体
WO2019189314A1 (ja) 複合材料成形品及びその製造方法
JP7193945B2 (ja) ハイブリッド不織複合部品
JP2017122382A (ja) 止水板
WO2023153256A1 (ja) 一体化成形体
WO2024095814A1 (ja) 多孔質サンドイッチ構造体及びそれを用いた一体化成形体
JP7322702B2 (ja) 成形品およびその製造方法
WO2022050213A1 (ja) 熱可塑性プリプレグ、繊維強化プラスチック、及びそれらの製造方法
WO2016143645A1 (ja) チョップドテープ繊維強化熱可塑性樹脂シート材及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511296

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197020803

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018747457

Country of ref document: EP

Effective date: 20190902