WO2018142956A1 - シールドコネクタ - Google Patents

シールドコネクタ Download PDF

Info

Publication number
WO2018142956A1
WO2018142956A1 PCT/JP2018/001412 JP2018001412W WO2018142956A1 WO 2018142956 A1 WO2018142956 A1 WO 2018142956A1 JP 2018001412 W JP2018001412 W JP 2018001412W WO 2018142956 A1 WO2018142956 A1 WO 2018142956A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield shell
ring
shield
axial direction
claw
Prior art date
Application number
PCT/JP2018/001412
Other languages
English (en)
French (fr)
Inventor
泰弘 田中
暢 早坂
鈴木 徹
祐平 竹下
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017112316A external-priority patent/JP6603687B2/ja
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to EP18748439.9A priority Critical patent/EP3579357B1/en
Priority to CN201880005958.6A priority patent/CN110178274B/zh
Publication of WO2018142956A1 publication Critical patent/WO2018142956A1/ja
Priority to US16/459,801 priority patent/US10461480B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6592Specific features or arrangements of connection of shield to conductive members the conductive member being a shielded cable
    • H01R13/6593Specific features or arrangements of connection of shield to conductive members the conductive member being a shielded cable the shield being composed of different pieces

Definitions

  • the present invention relates to a shield connector.
  • Patent Document 1 discloses a technique of a fixing member that presses a braided wire against the shell body by being fitted to the outer periphery of the shell body with a braided wire interposed between the shield shell and the shell body. Is disclosed.
  • An object of the present invention is to provide a shield connector that can suppress variations in the contact state of the braided conductor with respect to the shield shell.
  • a braided conductor through which an electric wire is inserted, a cylindrical shield shell having conductivity, and a pressing surface facing the shield shell in the axial direction of the shield shell are formed over the entire inner circumference.
  • a cylindrical ring, and the pressing surface is inclined in a direction intersecting the axial direction in a cross section along the axial direction, and the pressing surface extends over the entire circumference.
  • the braided conductor is fixed to the shield shell while maintaining a state in which the braided conductor is pressed in the axial direction against the shield shell.
  • a braided conductor through which an electric wire is inserted, a cylindrical shield shell having conductivity, and a pressing surface facing the shield shell in the axial direction of the shield shell are formed over the entire inner surface.
  • the pressing surface is inclined in a direction intersecting the axial direction in a cross section along the axial direction.
  • the ring is fixed to the shield shell while maintaining the state where the pressing surface presses the braided conductor against the shield shell in the axial direction over the entire circumference.
  • the shield connector according to the present invention has an effect that variation in the contact state of the braided conductor with respect to the shield shell can be suppressed.
  • FIG. 1 is a plan view of a shield connector according to an embodiment.
  • FIG. 2 is an exploded perspective view of the shield connector according to the embodiment.
  • FIG. 3 is a plan view for explaining assembly of the shield connector according to the embodiment.
  • FIG. 4 is a cross-sectional view illustrating assembly of the shield connector according to the embodiment.
  • FIG. 5 is a front view of the ring according to the embodiment.
  • FIG. 6 is a perspective view of a shield shell and a ring according to a first modification of the embodiment.
  • FIG. 7 is a perspective view showing a caulking process in the first modification of the embodiment.
  • FIG. 8 is a perspective view of a ring according to a second modification of the embodiment.
  • FIG. 9 is a perspective view of a shield connector according to a third modification of the embodiment.
  • FIG. 10 is a perspective view of another shield connector according to a third modification of the embodiment.
  • FIG. 11 is a cross-sectional view of a shield connector according to a fourth modification of the embodiment.
  • FIG. 12 is a cross-sectional view of a shield connector according to a fifth modification of the embodiment.
  • FIG. 13 is an explanatory diagram of a ring according to a sixth modification of the embodiment.
  • FIG. 14 is a side view of a shield shell according to a sixth modification of the embodiment.
  • FIG. 15 is a perspective view illustrating assembly of the shield connector in the sixth modification of the embodiment.
  • FIG. 16 is a cross-sectional view illustrating assembly of the shield connector in the sixth modification of the embodiment.
  • FIG. 17 is a cross-sectional view illustrating assembly of the shield connector in the sixth modification of the embodiment.
  • FIG. 18 is a cross-sectional view of a shield connector according to a seventh modification of the embodiment.
  • FIG. 19 is a cross-sectional view of a shield connector according to a seventh modification of the embodiment.
  • FIG. 1 is a plan view of a shield connector according to the embodiment
  • FIG. 2 is an exploded perspective view of the shield connector according to the embodiment
  • FIG. 3 is a plan view illustrating assembly of the shield connector according to the embodiment.
  • FIG. 5 is a front view of the ring which concerns on embodiment.
  • FIG. 4 shows a IV-IV cross section of FIG.
  • the shield connector 1 includes a braided conductor 2, a shield shell 3, a ring 4, and a housing 5.
  • the shield connector 1 constitutes a shield circuit that shields noise by being electrically connected to the braided conductor 2.
  • the ring 4 is assembled to the shield shell 3 with the braided conductor 2 interposed therebetween.
  • the ring 4 is assembled to the shield shell 3 in the direction indicated by the arrow A in FIG. In the following description, the direction indicated by the arrow A is simply referred to as “assembly direction A”.
  • the assembly direction A is a direction along the axial direction X of the shield shell 3.
  • the end in the assembly direction A is referred to as “front end 41”, and the end opposite to the front end 41 is referred to as “rear end 42”.
  • the end in the assembly direction A is referred to as “front end 31”, and the end opposite to the front end 31 is referred to as “rear end 32”.
  • the end portion in the assembly direction A in the braided conductor 2 is referred to as a “front end 21”.
  • the braided conductor 2 is a cylindrical conductor in which a plurality of braided wires are knitted in an intersecting manner.
  • the braided wire of the braided conductor 2 is made of a conductive metal such as copper or aluminum.
  • the braided conductor 2 of the present embodiment has an elliptical cross section or a shape similar to an elliptical shape. However, the cross-sectional shape of the braided conductor 2 is not limited to those illustrated, and may be circular or other shapes.
  • An electric wire 6 is inserted into the hollow portion of the braided conductor 2.
  • the electric wire 6 is, for example, a covered electric wire having a conductive core wire and an insulating coating that covers the core wire.
  • a terminal is electrically connected to the end of the electric wire 6.
  • the terminal is held by a terminal holding portion formed in the housing 5.
  • the housing 5 is fastened to a housing such as a power supply unit, for example.
  • the shield shell 3 is a cylindrical member.
  • the shield shell 3 is made of a conductive material.
  • the shield shell 3 of the present embodiment is made of a conductive metal such as copper or aluminum.
  • the cross-sectional shape of the shield shell 3 of this embodiment is an ellipse or a shape similar to an ellipse. However, the cross-sectional shape of the shield shell 3 is not limited to that illustrated, and may be a circular shape or other shapes.
  • the major axis direction of the cross-sectional shape is referred to as “lateral direction Y”, and the minor axis direction is referred to as “height direction Z”.
  • the lateral direction Y is a longitudinal direction in the cross-sectional shape of the shield shell 3 or the ring 4.
  • the major axis direction is the lateral direction Y
  • the minor axis direction is the height direction Z.
  • the shield shell 3 has a hole 33.
  • the hole 33 is formed at the rear end 32 side of the shield shell 3, that is, the end portion on the side where the braided conductor 2 is connected.
  • the hole 33 penetrates the metal plate constituting the shield shell 3 in the plate thickness direction, and communicates the internal space and the external space of the shield shell 3. In other words, the hole 33 penetrates the shield shell 3 in the radial direction of the shield shell 3.
  • the shield shell 3 of the present embodiment is provided with two holes 33.
  • Each hole 33 is disposed at the end of the shield shell 3 in the height direction Z. In other words, the hole 33 is disposed in a portion of the shield shell 3 having a small curvature, that is, a portion having a moderate degree of curvature.
  • the two holes 33 oppose each other in the height direction Z across the axis of the shield shell 3.
  • the shape of the hole 33 of this embodiment is a rectangle.
  • the ring 4 is a cylindrical member.
  • the ring 4 is formed of, for example, a conductive metal such as copper or aluminum.
  • the cross-sectional shape of the ring 4 of this embodiment is an ellipse or a shape similar to an ellipse.
  • the cross-sectional shape of the ring 4 is not limited to that illustrated, and may be a circle or other shapes.
  • the cross-sectional shape of the ring 4, the cross-sectional shape of the shield shell 3, and the cross-sectional shape of the braided conductor 2 correspond to each other.
  • the ring 4 has two pairs of claw portions 43 and 43.
  • the claw portions 43 are respectively disposed at the front end 41 of the ring 4.
  • the pair of claw portions 43 and 43 are disposed at the end portion in the height direction Z of the ring 4.
  • claw part 43 is arrange
  • a substantially T-shaped cutout 44 is formed at the front end 41 of the ring 4 so as to leave the claw portion 43.
  • the pair of claw portions 43, 43 extend in the circumferential direction of the ring 4 toward the other claw portion 43.
  • the tips of the pair of claw portions 43 and 43 are opposed to each other in the circumferential direction of the ring 4 with the notch 44 interposed therebetween.
  • one claw portion 43 projects toward one side in the lateral direction Y, and the other claw portion 43 projects toward the other side in the lateral direction Y.
  • a tapered portion 45 is provided on the rear end 42 side of the ring 4.
  • the taper portion 45 is inclined so as to go inward in the radial direction from the front end 41 side toward the rear end 42 side. Accordingly, the cross-sectional area inside the tapered portion 45 decreases as it goes from the front end 41 side to the rear end 42 side.
  • the tapered portion 45 is formed so that the cross-sectional shapes at each position in the axial direction X are similar to each other.
  • the pressing surface 45a is a surface facing the inside of the tapered portion 45 in the radial direction.
  • the pressing surface 45 a faces the rear end 32 of the shield shell 3 in the axial direction X of the shield shell 3.
  • the pressing surface 45 a is an annular surface and is an inclined surface inclined with respect to the axial direction X. As will be described later, the ring 4 presses the braided conductor 2 against the shield shell 3 by the pressing surface 45a.
  • the braided conductor 2 has a main body part 22, a taper part 23, and an edge part 24.
  • the main body 22 is a part that covers the electric wire 6.
  • the edge portion 24 is a portion that covers the rear end 32 side of the shield shell 3.
  • the tapered portion 23 is a portion that connects the main body portion 22 and the edge portion 24.
  • the cross-sectional area inside the taper portion 23 decreases from the edge portion 24 toward the main body portion 22. As shown in FIG. 4, at the edge portion 24 and the taper portion 23, the end portion of the braided conductor 2 is folded inward to be double.
  • the electric wire 6 on which the braided conductor 2 is assembled is inserted into the shield shell 3.
  • the terminal attached to the electric wire 6 is inserted into the terminal holding part of the housing 5.
  • the housing 5 is fixed to the front end 31 side of the shield shell 3.
  • the portion of the shield shell 3 on the rear end 32 side is inserted into the edge 24 of the braided conductor 2.
  • the ring 4 through which the braided conductor 2 is inserted is assembled to the shield shell 3.
  • the ring 4 covers the rear end 32 side of the shield shell 3 such that the braided conductor 2 is sandwiched between the ring 4 and the shield shell 3.
  • the rear end 32 of the shield shell 3 is inserted into the ring 4 from the front end 41 side of the ring 4 while being covered with the braided conductor 2.
  • the ring 4 is pressed toward the assembly direction A against the shield shell 3 as shown by an arrow Y1 in FIGS.
  • This fitting process is performed by an operator using a jig, for example.
  • the fitting process may be performed by an assembling apparatus.
  • the ring 4 pressed in the assembling direction A sandwiches the braided conductor 2 between the rear end 32 of the shield shell 3.
  • the pressing surface 45 a of the ring 4 faces the rear end 32 of the shield shell 3 in the axial direction X, and the braided conductor 2 is sandwiched between the rear end 32.
  • the ring 4 is pushed in the assembling direction A until the claw 43 of the ring 4 faces the hole 33 of the shield shell 3.
  • the caulking process which bends the nail
  • the pair of claw portions 43 and 43 are bent in the radial direction so that the base end portions are bent at substantially right angles, and are inserted into the holes 33.
  • the bent claw portion 43 projects into the hollow portion of the shield shell 3 through the hole portion 33.
  • the bent claw portion 43 is locked by the hole portion 33 and restricts relative movement of the ring 4 with respect to the shield shell 3 in the removal direction.
  • the ring 4 is fixed in the axial direction X with respect to the shield shell 3 while pressing the braided conductor 2 against the shield shell 3. That is, the claw portion 43 after crimping restricts the relative movement of the shield shell 3 and the ring 4 in the axial direction X, and maintains the electrical connection state between the braided conductor 2 and the shield shell 3.
  • the caulking structure for caulking the shield shell 3 and the ring 4 is configured such that compressive stress in the axial direction X remains on the braided conductor 2 after caulking.
  • the state where the braided conductor 2 is compressed by the pressing surface 45a of the ring 4 and the rear end 32 of the shield shell 3 is maintained.
  • the positions of the claw part 43 and the hole part 33 are designed so that the compressive stress in the axial direction X applied to the braided conductor 2 in the fitting process remains after caulking.
  • the hole 33 locks the claw 43 and restricts the relative movement in the axial direction X between the shield shell 3 and the ring 4 at a position where the compressive stress of the braided conductor 2 remains. Therefore, even after the caulking step is completed and the pressing force in the axial direction X is no longer applied from the outside, the state where the pressing surface 45a and the shield shell 3 press the braided conductor 2 in the axial direction X is maintained.
  • the pressing surface 45a of the ring 4 is continuously provided over the entire circumference.
  • the tapered portion 45 has an annular shape when viewed in the axial direction. Further, the tapered portion 45 is formed so as to face the rear end 32 of the shield shell 3 in the assembly direction A. In a state where the shield shell 3 is inserted into the ring 4, the tapered portion 45 faces the entire circumference of the rear end 32.
  • the pressing surface 45a of the tapered portion 45 formed in this way sandwiches the braided conductor 2 between the shield shell 3 and the entire circumference. . That is, the rear end 32 of the shield shell 3 receives a pressing force from the pressing surface 45a over the entire circumference.
  • the pressing surface 45a of this embodiment is inclined with respect to the axial direction X in the cross section along the axial direction X, as shown in FIG. More specifically, the pressing surfaces 45a are inclined so as to approach each other from the front end 41 side toward the rear end 42 side, in other words, toward the axial center of the ring 4. Since the pressing surface 45a is inclined, when the ring 4 is pressed toward the assembling direction A in the fitting process, the axial center position of the ring 4 is automatically set so that the pressing force is distributed over the entire circumference. Adjusted. Therefore, the ring 4 can press the braided conductor 2 toward the rear end 32 of the shield shell 3 with a uniform pressing force over the entire circumference.
  • the caulking process is performed by, for example, a caulking jig.
  • the jig contacts the claw portion 43 while moving in the height direction Z, and the claw portion 43 is bent toward the inside in the radial direction.
  • the ring 4 is crimped to the shield shell 3 by inserting the bent claw portion 43 into the hole 33.
  • the pressing jig and the caulking jig may be integrated.
  • the caulking process may be performed by an assembling apparatus. When the fitting process and the caulking process are performed, the shield shell 3, the braided conductor 2, and the ring 4 are integrated to form a shielding unit that shields the electric wire 6 from noise.
  • the shield connector 1 includes the braided conductor 2 through which the electric wire 6 is inserted, the cylindrical shield shell 3 having conductivity, and the cylinder having the pressing surface 45a over the entire inner circumference. And a ring 4 having a shape.
  • the pressing surface 45 a is a surface facing the shield shell 3 in the axial direction X of the shield shell 3.
  • the pressing surface 45a may be an annular surface.
  • the pressing surface 45 a is inclined in a direction intersecting the axial direction X in a cross section along the axial direction X.
  • the cross-sectional shape of the pressing surface 45a in the cross section along the axial direction X is not limited to the illustrated linear shape, and may be curved.
  • the ring 4 is fixed to the shield shell 3 while maintaining the state in which the pressing surface 45a presses the braided conductor 2 against the shield shell 3 in the axial direction X over the entire circumference.
  • the braided conductor 2 is sandwiched between the pressing surface 45a of the ring 4 and the shield shell 3 over the entire circumference. Therefore, the ring 4 can press the braided conductor 2 against the shield shell 3 over the entire circumference and generate a compressive stress on the braided conductor 2.
  • the ring 4 is assembled to the shield shell 3 so as to maintain a state in which the braided conductor 2 is pressed in the axial direction X toward the shield shell 3. Since the pressing force that presses the braided conductor 2 toward the shield shell 3 remains, the electrical connection between the braided conductor 2 and the shield shell 3 is easily stabilized.
  • the shield connector 1 of the present embodiment can suppress variations in the contact state of the braided conductor 2 with the shield shell 3 due to the pressing force in the axial direction X remaining after crimping. Therefore, the shield connector 1 of the present embodiment can stabilize the electrical connectivity between the braided conductor 2 and the shield shell 3 and improve the shielding performance.
  • the pressing surface 45 a of the ring 4 is an inclined surface that is inclined in a direction intersecting with the axial direction X of the shield shell 3. Since the pressing surface 45a is inclined, the compressive stress of the braided conductor 2 pressed against the shield shell 3 is easily distributed evenly in the circumferential direction.
  • the shield shell 3 has a hole 33 penetrating in the radial direction.
  • the ring 4 has a claw portion 43 that is bent toward the radial direction.
  • the ring 4 is fixed to the shield shell 3 by inserting the bent claw portion 43 into the hole portion 33.
  • the pressing force that presses the braided conductor 2 against the shield shell 3 is a force in the axial direction X of the shield shell 3. Therefore, it is possible to provide a relief structure in the shield shell 3.
  • the force in the plate thickness direction (radial direction) at the time of caulking requires only a small pressing force to bend the claw portion 43. Therefore, the shield connector 1 of the present embodiment does not require a core when caulking the ring 4 to the shield shell 3.
  • the caulking is carried out by caulking. Parts are generated. Since the protruding portion protrudes outward in the radial direction, the physique of the shield connector 1 is expanded.
  • the pressing force is mainly applied to the claw portion 43. Since it is not necessary to deform the entire ring 4 in the caulking process, no protruding portion is generated, and the physique of the shield connector 1 is unlikely to increase.
  • the claw portion 43 is a piece portion extending in the circumferential direction in the ring 4 and is bent in the radial direction and inserted into the hole portion 33. Therefore, even if a force in the direction opposite to the assembly direction A is applied to the ring 4, the shape of the bent claw portion 43 is difficult to return to the original shape.
  • the force in the pulling direction applied to the ring 4 is a force in a direction perpendicular to the plate thickness direction of the bent claw portion 43. Accordingly, the claw portion 43 has sufficient rigidity to resist the force in the removal direction, and can regulate the removal of the ring 4.
  • FIG. 6 is a perspective view of a shield shell and a ring according to a first modification of the embodiment
  • FIG. 7 is a perspective view showing a caulking process in the first modification of the embodiment.
  • the difference from the above embodiment is a hole 34 of the shield shell 3 and a claw 46 of the ring 4.
  • the pair of claw portions 46 and 46 extend in a direction away from each other along the circumferential direction.
  • a C-shaped hole 47 is formed in the ring 4 so as to leave the claw 46.
  • a pair of claw parts 46 and 46 are arranged so that mutual base end parts may adjoin.
  • claw part 46,46 protrudes in the direction away from the other nail
  • Two pairs of claw portions 46 and 46 are formed on the ring 4. The two sets of claw portions 46 and 46 face each other in the height direction Z.
  • the pair of holes 34 are formed in the shield shell 3 of the first modification.
  • the pair of holes 34 are provided adjacent to each other in the circumferential direction.
  • the pair of holes 34, 34 are formed at positions facing the pair of claws 46, 46 when the shield shell 3 is inserted into the ring 4.
  • the ring 4 is assembled to the shield shell 3 with the braided conductor 2 sandwiched between the rear end 32 of the shield shell 3 in the same manner as in the above embodiment.
  • the caulking process for caulking the ring 4 to the shield shell 3 is performed by, for example, a jig 7 shown in FIG.
  • claw part 46 is a shape after crimping.
  • the electric wire 6 and the braided conductor 2 are abbreviate
  • the jig 7 has symmetrically shaped pressing members 7A and 7B.
  • the pressing members 7A and 7B have a pressing portion 71 that presses and bends the claw portion 46.
  • the pressing portion 71 has a curved surface 72 that contacts the claw portion 46.
  • the claw portion 46 in contact with the curved surface 72 is bent toward the inside in the radial direction by the curved surface 72.
  • the pressing members 7A and 7B sandwich the ring 4 while moving in a direction approaching each other as indicated by an arrow Y2.
  • the curved surface 72 of the pressing portion 71 presses the claw portion 46, and the claw portion 46 is bent and inserted into the hole portion 34.
  • the claw portion 46 is bent while the pressing members 7A and 7B move in the lateral direction Y. That is, the pressing force applied to the ring 4 from the pressing members 7A and 7B is a force in the lateral direction Y.
  • the cross-sectional shape of the ring 4 is an elliptical shape in which the lateral direction Y is the major axis direction. That is, in the ring 4, the rigidity against the pressing force in the lateral direction Y is higher than the rigidity against the pressing force in the height direction Z. Therefore, when the direction of the pressing force for bending the claw portion 46 is the lateral direction Y as in this modification, there is an effect that the main body portion of the ring 4 is not easily deformed in the caulking step. Therefore, according to the configuration of the present modification, unintended deformation of the shield connector 1 hardly occurs in the caulking process. As a result, the quality of the shield connector 1 can be stabilized and the quality can be improved.
  • FIG. 8 is a perspective view of a ring according to a second modification.
  • the pair of claw portions 46 and 46 may be disposed at the end portion in the lateral direction Y of the ring 4.
  • the claw portion 46 of the second modified example is disposed in a portion of the ring 4 where the curvature is large, that is, a portion where the degree of curvature is steep.
  • the hole 34 of the shield shell 3 is provided at a position corresponding to the claw 46 of the second modified example, that is, at the end in the lateral direction Y of the shield shell 3.
  • the direction of the force for bending the claw portion 46 is the horizontal direction Y, as in the first modification. Accordingly, unintended deformation of the shield connector 1 is unlikely to occur in the caulking process.
  • FIG. 9 is a perspective view of a shield connector according to a third modification of the embodiment
  • FIG. 10 is a perspective view of another shield connector according to the third modification of the embodiment.
  • the ring 4 and the shield shell 3 are joined by punching.
  • the hole 8 is formed by punching in a state where the braided conductor 2 and the shield shell 3 are fitted to the ring 4. By this drilling process, the ring 4 and the shield shell 3 are joined.
  • the hole 8 is formed so as to penetrate the ring 4 and the shield shell 3.
  • recesses may be formed in the ring 4 and the shield shell 3 by punching.
  • FIG. 11 is a cross-sectional view of a shield connector according to a fourth modification of the embodiment.
  • the difference from the above embodiment is that the shield shell 3 has a tapered portion 35.
  • a taper portion 35 is provided on the rear end 32 side of the shield shell 3.
  • the tapered portion 35 is formed in a tapered shape in which the cross-sectional area decreases along the axial direction X toward the rear end 32 side.
  • the tapered portion 35 is formed such that the cross-sectional shapes at the respective positions in the axial direction X are similar to each other.
  • the outer surface of the tapered portion 35 is a support surface 35 a that sandwiches the braided conductor 2 between the pressing surface 45 a of the ring 4.
  • the support surface 35a faces the pressing surface 45a of the ring 4 in the axial direction X.
  • the support surface 35 a is inclined with respect to the axial direction X in a cross section along the axial direction X.
  • the pressing surface 45 a of the ring 4 is assembled to the shield shell 3 with the braided conductor 2 being sandwiched between the pressing surface 45 a and the support surface 35 a of the shield shell 3.
  • the ring 4 is fixed to the shield shell 3 so as to continue pressing the braided conductor 2 toward the support surface 35a even after the pressing surface 45a is crimped.
  • the support surface 35a is an inclined surface as in this modification, the braided conductor 2 is sandwiched from both sides by two surfaces facing each other. Therefore, the stress concentration of the compressive stress hardly occurs in the braided conductor 2.
  • FIG. 12 is a cross-sectional view of a shield connector according to a fifth modification of the embodiment.
  • the fifth modification is different from the above-described embodiment in that the ring 4 has a protrusion 48 instead of the tapered portion 45.
  • a protrusion 48 is provided on the inner surface side of the ring 4 so as to protrude inward in the radial direction.
  • the protrusion 48 is disposed on the rear end 42 side of the ring 4.
  • the protrusion 48 is continuously formed on the inner surface of the ring 4 over the entire circumference.
  • the protrusion 48 has a pressing surface 48a.
  • the pressing surface 48a is an inclined surface that is inclined so as to go radially inward from the front end 41 side toward the rear end 42 side.
  • the pressing surface 48 a faces the rear end 32 of the shield shell 3 in the axial direction X.
  • the pressing surface 48a sandwiches the braided conductor 2 over the entire circumference between the pressing surface 48a and the shield shell 3 in the same manner as the pressing surface 45a of the above embodiment.
  • the ring 4 is fixed to the shield shell 3 so that the pressing surface 48a continues to press the braided conductor 2 toward the shield shell 3 even after crimping.
  • the shape of the pressing surface 48a is not limited to the illustrated shape.
  • the pressing surface 48a may be curved such that the cross-sectional shape along the axial direction X is an arc shape.
  • FIG. 13 is an explanatory diagram of a ring according to a sixth modification of the embodiment, in which FIG. 13 (a) is a perspective view of the ring, and FIG. 13 (b) is a side view of the ring.
  • FIG. 14 is a side view of a shield shell according to a sixth modification of the embodiment.
  • FIG. 15 is a perspective view for explaining assembly of the shield connector in the sixth modification of the embodiment
  • FIG. 16 is a cross-sectional view for explaining assembly of the shield connector in the sixth modification of the embodiment
  • the shield connector 1 according to the sixth modification is different from the above embodiment in the hole 36 of the shield shell 3 and the claw 49 of the ring 4.
  • the pair of claw portions 49, 49 extend in the circumferential direction in a direction away from each other.
  • the ring 4 is formed with a C-shaped hole so as to leave the claw portion 49.
  • a pair of claw parts 49 and 49 are arranged so that mutual base end parts may adjoin.
  • claw part 49,49 protrudes in the direction away from the other nail
  • the pair of claw portions 49, 49 are arranged at the end portions in the lateral direction Y of the ring 4 and face each other in the height direction Z. In other words, the pair of claw portions 49, 49 are arranged in a portion with a large curvature in the ring 4, that is, a portion with a sharp curvature.
  • the side edge portion 49a on the rear side in the assembly direction A extends in the circumferential direction from the proximal end portion to the distal end portion.
  • the rear side edge portion 49a includes a straight shape portion 49a1 extending linearly along the circumferential direction in the region on the proximal end side.
  • the rear side edge portion 49a includes a tapered portion 49a2 that is inclined with respect to the circumferential direction in a region on the tip end side.
  • the tapered portion 49a2 is inclined so as to go in the assembling direction A as it reaches the tip of the claw portion 49.
  • the tapered portion 49a2 is formed continuously from the straight shape portion 49a1.
  • the ring 4 is formed with two pairs of claw portions 49, 49.
  • the two sets of claw portions 49 and 49 oppose each other in the lateral direction Y.
  • the shield shell 3 is formed with a pair of holes 36 and 36.
  • the pair of holes 36, 36 have a quadrangular shape and are provided adjacent to each other in the circumferential direction.
  • the pair of hole portions 36 and 36 are formed at positions facing the pair of claw portions 46 and 46 when the ring 4 is attached to the shield shell 3. That is, the pair of hole portions 36 and 36 are disposed at the end portion in the horizontal direction Y of the shield shell 3 and face each other in the height direction Z. Therefore, the pair of holes 36 and 36 are arranged in a portion with a large curvature in the shield shell 3, that is, a portion with a sharp curvature.
  • the rear side edge portion 36 a includes a straight shape portion 36 a 1 that extends linearly along the circumferential direction in a region near the other hole portion 36.
  • the rear side edge portion 36 a includes a tapered portion 36 a 2 that is inclined with respect to the circumferential direction in a region far from the other hole portion 36.
  • the taper-shaped part 36a2 is inclined so as to go in the direction opposite to the assembly direction A as the distance from the other hole part 36 increases.
  • the tapered portion 36a2 is formed continuously from the straight shape portion 36a1.
  • Two pairs of such a pair of holes 36 and 36 are formed in the shield shell 3.
  • the two sets of hole portions 36, 36 face each other in the lateral direction Y.
  • the ring 4 through which the braided conductor 2 is inserted is assembled to the shield shell 3 in the same manner as in the above embodiment. .
  • the ring 4 covers the rear end 32 side of the shield shell 3 such that the braided conductor 2 is sandwiched between the ring 4 and the shield shell 3.
  • the ring 4 is set at a position where the claw 49 of the ring 4 overlaps the hole 36 of the shield shell 3.
  • a caulking process for bending the pair of claw portions 49 and 49 is executed.
  • an external force F along the height direction Z is applied to each claw portion 49 toward the hollow portion of the ring 4.
  • the claw portion 49 that has received this external force F is bent in the radial direction and inserted into the hole 36.
  • the side edge portion 49 a of the claw portion 49 is pressed against the side edge portion 36 a of the hole portion 36.
  • tapered portions 36a2 and 49a2 are set on the side edge portions 36a and 49a, respectively.
  • the tapered portion 49 a 2 of the claw portion 49 is pressed against the tapered portion 36 a 2 of the hole 36 so as to intersect with the tapered portion 36 a 2 of the hole 36.
  • a component force due to the external force F is generated in the claw portion 49.
  • This component force corresponds to a force in the axial direction X (specifically, the assembly direction A), and the ring 4 is urged in the assembly direction A by the component force in the axial direction X.
  • the ring 4 When urged in the assembly direction A by the component force in the axial direction X, the ring 4 moves toward the shield shell 3 and engages with the shield shell 3. The ring 4 is pressed toward the shield shell 3 with the braided conductor 2 sandwiched between the rear end 32 of the shield shell 3. As shown in FIGS. 16 and 17, the pressing surface 45 a of the ring 4 faces the rear end 32 of the shield shell 3 in the axial direction X, and the braided conductor 2 is sandwiched between the rear end 32.
  • the claw portion 49 is bent until the base end portion is bent at a substantially right angle. In this state, the claw portion 49 projects into the hollow portion of the shield shell 3 through the hole portion 36. Further, the intersection of the side edge portion 49a of the claw portion 49 and the side edge portion 36a of the hole portion 36 reaches the straight shape portions 36a1 and 49a1.
  • the bent claw portion 49 is locked to the hole portion 36 by the engaging force between the straight shape portions 36a1 and 49a1 and restricts the relative movement of the ring 4 with respect to the shield shell 3 in the removal direction.
  • the ring 4 is fixed in the axial direction X with respect to the shield shell 3 in a state where the braided conductor 2 is pressed against the shield shell 3. That is, the straight-shaped portions 36a1 and 49a1 regulate the relative movement in the axial direction X between the shield shell 3 and the ring 4 and maintain the electrical connection state between the braided conductor 2 and the shield shell 3.
  • the caulking structure for caulking the shield shell 3 and the ring 4 is configured such that compressive stress in the axial direction X remains on the braided conductor 2 after caulking. Therefore, even if the caulking step is completed, the state where the pressing surface 45a and the shield shell 3 press the braided conductor 2 in the axial direction X is maintained.
  • the tapered portions 36a2 and 49a2 are set on the side edge portion 49a of the claw portion 49 and the side edge portion 36a of the hole portion 36.
  • an external force F in the height direction Z is applied to the claw portion 49, whereby a component force in the axial direction X is applied to the claw portion 49. Since the ring 4 is biased according to this component force, the ring 4 moves in the assembly direction A, and the braided conductor 2 can be pressed against the shield shell 3 in the axial direction X. Therefore, the ring 4 can be pressed against the shield shell 3 via the braided conductor 2 only by caulking the claw 49 with the external force F.
  • the hole 36 and the claw portion 49 function as a biasing unit that biases the ring 4 in order to press the braided conductor 2 in the axial direction X against the shield shell 3.
  • the tapered portions 36a2 and 49a2 are set in the side edge portion 36a of the hole portion 36 and the side edge portion 49a of the claw portion 49, respectively.
  • the side edge portion 36a and the claw portion 49 of the hole portion 36 are set.
  • the tapered portions 36a2 and 49a2 may be set only on one of the side edge portions 49a.
  • a component force in the axial direction X is applied to the claw portion 49 due to the shape of the tapered portions 36a2 and 49a2, and the ring 4 is biased according to the component force.
  • one of the ring 4 and the shield shell 3 moves relative to the other, and the braided conductor 2 can be pressed against the shield shell 3 in the axial direction X.
  • the side edge portion 36a of the hole portion 36 and the side edge portion 49a of the claw portion 49 further include straight shape portions 36a1 and 49a1 connected to the tapered shape portions 36a2 and 49a2.
  • the bent claw portion 49 is locked in the hole portion 36 by the engaging force between the straight shape portions 36a1 and 49a1.
  • the position of the ring 4 can be held with a spring property.
  • uniform compressive stress can be obtained in the braided conductor 2 even in an environment where thermal deformation occurs.
  • the above-described effects can be obtained by providing the straight shape portions 36a1 and 49a1.
  • the means for fixing the ring 4 to the shield shell 3 is not limited to those exemplified in the above embodiment and each modification.
  • the ring 4 may be pressed against the shield shell 3 and fixed by the elastic force of an elastic member such as rubber or a spring.
  • FIG. 18 is a cross-sectional view of a shield connector according to a seventh modification of the embodiment.
  • the shield connector 1 shown in FIG. 18 employs a fastener 56 such as a bolt as a biasing means for biasing the ring 4.
  • the fastener 56 passes through a flange portion 51 provided at the front end 41 of the ring 4 and is fastened to a housing H such as a power supply unit.
  • the fastener 56 urges the ring 4 in the assembling direction A by using the fastening force when the fastener 56 is fastened by fastening the ring 4 to the housing H together.
  • the ring 4 can press the braided conductor 2 against the shield shell 3 in the axial direction X.
  • FIG. 19 is a cross-sectional view of a shield connector according to a seventh modification of the embodiment.
  • the shield connector 1 shown in FIG. 19 employs an elastic member 57 such as a spring as a biasing means for biasing the ring 4.
  • the elastic member 57 is provided between the flange portion 51 provided at the front end 41 of the ring 4 and the cover 60 that covers the outer periphery of the ring 4.
  • the cover 60 is connected to the housing H, and the position thereof is fixed.
  • the elastic member 57 urges the ring 4 in the assembling direction A by its reaction force. Thereby, the ring 4 can press the braided conductor 2 against the shield shell 3 in the axial direction X.

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

シールドコネクタ(1)は、電線が挿通される編組導体(2)と、導電性を有する筒状のシールドシェル(3)と、シールドシェルの軸方向(X)においてシールドシェルと対向する押圧面(45a)が内面側の全周にわたって形成された筒状のリング(4)と、を備え、押圧面は、軸方向に沿った断面において軸方向に対して交差する方向に傾斜しており、リングは、押圧面が全周にわたって編組導体をシールドシェルに対して軸方向に押圧した状態を維持したままシールドシェルに対して固定される。

Description

シールドコネクタ
 本発明は、シールドコネクタに関する。
 従来、シールドシェルに対して編組導体を固定する部材を有するシールドコネクタがある。特許文献1には、シールドシェルのシェル本体との間に編組線を介在させた状態でシェル本体の外周に嵌合されることにより、シェル本体に編組線を押圧して接触させる固定部材の技術が開示されている。
特開2016-167351号公報
 シールドシェルに対する編組導体の固定について、なお改良の余地が残されている。例えば、シールドシェルに対する編組導体の接触状態のバラツキを抑制できることが望ましい。
 本発明の目的は、シールドシェルに対する編組導体の接触状態のバラツキを抑制することができるシールドコネクタを提供することである。
 本発明のシールドコネクタは、電線が挿通される編組導体と、導電性を有する筒状のシールドシェルと、前記シールドシェルの軸方向において前記シールドシェルと対向する押圧面が内面側の全周にわたって形成された筒状のリングと、を備え、前記押圧面は、前記軸方向に沿った断面において前記軸方向に対して交差する方向に傾斜しており、前記リングは、前記押圧面が全周にわたって前記編組導体を前記シールドシェルに対して前記軸方向に押圧した状態を維持したまま前記シールドシェルに対して固定されることを特徴とする。
 本発明に係るシールドコネクタは、電線が挿通される編組導体と、導電性を有する筒状のシールドシェルと、シールドシェルの軸方向においてシールドシェルと対向する押圧面が内面側の全周にわたって形成された筒状のリングと、を備える。押圧面は、軸方向に沿った断面において軸方向に対して交差する方向に傾斜している。リングは、押圧面が全周にわたって編組導体をシールドシェルに対して軸方向に押圧した状態を維持したままシールドシェルに対して固定される。本発明に係るシールドコネクタによれば、リングは、傾斜した押圧面が全周にわたって編組導体をシールドシェルに対して軸方向に押圧した状態を維持したままシールドシェルに対して固定される。よって、本発明に係るシールドコネクタは、シールドシェルに対する編組導体の接触状態のバラツキを抑制することができるという効果を奏する。
図1は、実施形態に係るシールドコネクタの平面図である。 図2は、実施形態に係るシールドコネクタの分解斜視図である。 図3は、実施形態に係るシールドコネクタの組付けを説明する平面図である。 図4は、実施形態に係るシールドコネクタの組付けを説明する断面図である。 図5は、実施形態に係るリングの正面図である。 図6は、実施形態の第1変形例に係るシールドシェルおよびリングの斜視図である。 図7は、実施形態の第1変形例における加締め工程を示す斜視図である。 図8は、実施形態の第2変形例に係るリングの斜視図である。 図9は、実施形態の第3変形例に係るシールドコネクタの斜視図である。 図10は、実施形態の第3変形例に係る他のシールドコネクタの斜視図である。 図11は、実施形態の第4変形例に係るシールドコネクタの断面図である。 図12は、実施形態の第5変形例に係るシールドコネクタの断面図である。 図13は、実施形態の第6変形例に係るリングの説明図である。 図14は、実施形態の第6変形例に係るシールドシェルの側面図である。 図15は、実施形態の第6変形例におけるシールドコネクタの組付けを説明する斜視図である。 図16は、実施形態の第6変形例におけるシールドコネクタの組付けを説明する断面図である。 図17は、実施形態の第6変形例におけるシールドコネクタの組付けを説明する断面図である。 図18は、実施形態の第7変形例に係るシールドコネクタの断面図である。 図19は、実施形態の第7変形例に係るシールドコネクタの断面図である。
 以下に、本発明の実施形態に係るシールドコネクタにつき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。
[実施形態]
 図1から図5を参照して、実施形態について説明する。本実施形態は、シールドコネクタに関する。図1は、実施形態に係るシールドコネクタの平面図、図2は、実施形態に係るシールドコネクタの分解斜視図、図3は、実施形態に係るシールドコネクタの組付けを説明する平面図、図4は、実施形態に係るシールドコネクタの組付けを説明する断面図、図5は、実施形態に係るリングの正面図である。図4には、図3のIV-IV断面が示されている。
 図1および図2に示すように、本実施形態に係るシールドコネクタ1は、編組導体2と、シールドシェル3と、リング4と、ハウジング5とを有する。シールドコネクタ1は、編組導体2と電気的に接続されることでノイズを遮蔽するシールド回路を構成する。リング4は、編組導体2を間に挟んでシールドシェル3に対して組み付けられる。リング4は、図2に矢印Aで示す方向でシールドシェル3に対して組み付けられる。以下の説明では、矢印Aで示す方向を単に「組付け方向A」と称する。組付け方向Aは、シールドシェル3の軸方向Xに沿った方向である。
 リング4において、組付け方向Aの端部を「前端41」と称し、前端41とは逆側の端部を「後端42」と称する。同様に、シールドシェル3において、組付け方向Aの端部を「前端31」と称し、前端31とは逆側の端部を「後端32」と称する。また、編組導体2において組付け方向Aの端部を「前端21」と称する。
 編組導体2は、複数の編組線が交差状に編み込まれた筒状の導体である。編組導体2の編組線は、銅やアルミニウム等の導電性の金属で構成されている。本実施形態の編組導体2は、断面形状が楕円形または楕円形に類似した形状である。ただし、編組導体2の断面形状は、例示したものには限定されず、円形やその他の形状であってもよい。編組導体2の中空部には、電線6が挿通される。電線6は、例えば、導電性の芯線と、芯線を覆う絶縁性の被覆とを有する被覆電線である。電線6の端部には、端子が電気的に接続される。端子は、ハウジング5に形成された端子保持部によって保持される。ハウジング5は、例えば、電力供給ユニット等の筐体に対して締結される。
 シールドシェル3は、筒状の部材である。シールドシェル3は、導電性の材料によって形成されている。本実施形態のシールドシェル3は、銅やアルミニウム等の導電性の金属によって形成されている。本実施形態のシールドシェル3の断面形状は、楕円形または楕円形に類似した形状である。ただし、シールドシェル3の断面形状は、例示したものには限定されず、円形やその他の形状であってもよい。シールドシェル3やリング4において、断面形状の長軸方向を「横方向Y」と称し、短軸方向を「高さ方向Z」と称する。横方向Yは、シールドシェル3やリング4の断面形状における長手方向である。シールドシェル3やリング4の断面形状が楕円形状である場合、長軸方向が横方向Yとなり、短軸方向が高さ方向Zとなる。
 シールドシェル3は、穴部33を有する。穴部33は、シールドシェル3における後端32側、すなわち編組導体2が接続される側の端部に形成されている。穴部33は、シールドシェル3を構成する金属板を板厚方向に貫通しており、シールドシェル3の内部空間と外部空間とを連通している。言い換えると、穴部33は、シールドシェル3をシールドシェル3の径方向に貫通している。本実施形態のシールドシェル3には、二つの穴部33が設けられている。各穴部33は、シールドシェル3における高さ方向Zの端部に配置されている。言い換えると、穴部33は、シールドシェル3における曲率の小さな部分、すなわち湾曲度合いが緩やかな部分に配置されている。二つの穴部33は、シールドシェル3の軸を挟んで高さ方向Zにおいて対向している。本実施形態の穴部33の形状は、矩形である。
 リング4は、筒状の部材である。リング4は、例えば、銅やアルミニウム等の導電性の金属によって形成される。本実施形態のリング4の断面形状は、楕円形または楕円形に類似した形状である。ただし、リング4の断面形状は、例示したものには限定されず、円形やその他の形状であってもよい。リング4の断面形状と、シールドシェル3の断面形状と、編組導体2の断面形状とは互いに対応している。
 リング4は、一対の爪部43,43を二組有する。爪部43は、それぞれリング4の前端41に配置されている。一対の爪部43,43は、リング4における高さ方向Zの端部に配置されている。言い換えると、爪部43は、リング4における曲率の小さな部分、すなわち湾曲度合いが緩やかな部分に配置されている。リング4の前端41には、爪部43を残すようにして略T字形状の切欠き44が形成されている。一対の爪部43,43は、それぞれ他方の爪部43に向けてリング4の周方向に延出している。つまり、一対の爪部43,43の先端同士は、切欠き44を挟んでリング4の周方向において対向している。一対の爪部43,43のうち一方の爪部43は横方向Yの一方に向けて突出しており、他方の爪部43は横方向Yの他方に向けて突出している。
 リング4の後端42側には、テーパ部45が設けられている。テーパ部45は、前端41側から後端42側へ向かうに従って径方向の内側へ向かうように傾斜している。従って、テーパ部45の内側の断面積は、前端41側から後端42側へ向かうに従って減少する。テーパ部45は、軸方向Xの各位置における断面形状が互いに相似形状となるように形成されている。押圧面45aは、テーパ部45における径方向の内側を向く面である。押圧面45aは、シールドシェル3の軸方向Xにおいてシールドシェル3の後端32と対向する。押圧面45aは、円環状の面であり、かつ軸方向Xに対して傾斜した傾斜面である。後述するように、リング4は、押圧面45aによって編組導体2をシールドシェル3に対して押圧する。
 編組導体2は、本体部22と、テーパ部23と、縁部24とを有する。本体部22は、電線6を覆う部分である。縁部24は、シールドシェル3の後端32側を覆う部分である。テーパ部23は、本体部22と縁部24とをつなぐ部分である。テーパ部23の内側の断面積は、縁部24から本体部22へ向かうに従って減少している。図4に示すように、縁部24およびテーパ部23では、編組導体2の端部が内側に向けて折り返されて二重となっている。
 本実施形態のシールドコネクタ1の組み付け方法について説明する。図2に示すように、編組導体2が組み付けられている電線6がシールドシェル3に挿通される。電線6に取り付けられた端子は、ハウジング5の端子保持部に挿入される。ハウジング5は、シールドシェル3の前端31側に固定される。そして、シールドシェル3における後端32側の部分が編組導体2の縁部24に挿入される。更に、編組導体2を挿通させたリング4がシールドシェル3に対して組み付けられる。リング4は、シールドシェル3との間に編組導体2を挟み込むようにしてシールドシェル3の後端32側を覆う。言い換えると、シールドシェル3の後端32は、編組導体2に覆われた状態でリング4の前端41側からリング4に対して挿入される。
 リング4は、図3および図4に矢印Y1で示すように、シールドシェル3に対して組付け方向Aに向けて押圧されてシールドシェル3と嵌合する。この嵌合工程は、例えば、作業者が治具を用いて行う。嵌合工程は、組付け装置によってなされてもよい。組付け方向Aに向けて押圧されるリング4は、シールドシェル3の後端32との間に編組導体2を挟み込む。図4に示すように、リング4の押圧面45aは、軸方向Xにおいてシールドシェル3の後端32と対向しており、後端32との間に編組導体2を挟み込む。
 リング4は、リング4の爪部43がシールドシェル3の穴部33と対向する位置まで組付け方向Aに向けて押し込まれる。爪部43と穴部33とが高さ方向Zにおいて対向すると、爪部43を折り曲げる加締め工程が実行される。加締め工程において、一対の爪部43,43は、それぞれ基端部分が略直角に屈曲するように径方向に向けて折り曲げられ、穴部33に挿入される。折り曲げられた爪部43は、穴部33を介してシールドシェル3の中空部に突出する。
 折り曲げられた爪部43は、穴部33によって係止され、シールドシェル3に対するリング4の抜け方向の相対移動を規制する。リング4は、シールドシェル3に対して編組導体2を押圧した状態でシールドシェル3に対して軸方向Xに固定される。すなわち、加締め後の爪部43は、シールドシェル3とリング4との軸方向Xの相対移動を規制し、編組導体2とシールドシェル3との電気的な接続状態を維持する。本実施形態において、シールドシェル3とリング4とを加締める加締め構造は、加締め後において軸方向Xの圧縮応力が編組導体2に残留するように構成されている。より詳しくは、加締め後において、リング4の押圧面45aとシールドシェル3の後端32とによって編組導体2が圧縮された状態が維持される。爪部43および穴部33の位置は、嵌合工程において編組導体2に対して加えられた軸方向Xの圧縮応力が加締め後に残存するように設計されている。言い換えると、穴部33は爪部43を係止して、編組導体2の圧縮応力が残存する位置でシールドシェル3とリング4との軸方向Xにおける相対移動を規制する。従って、加締め工程が終了し、軸方向Xの押圧力が外部から加えられなくなった後も、押圧面45aおよびシールドシェル3が編組導体2を軸方向Xに押圧した状態が維持される。
 また、本実施形態のシールドコネクタ1では、リング4の押圧面45aが全周にわたって連続的に設けられている。図5に示すように、テーパ部45は、軸方向視した場合に円環形状となっている。また、テーパ部45は、組付け方向Aにおいてシールドシェル3の後端32と対向するように形成されている。シールドシェル3がリング4に対して挿入された状態で、テーパ部45は後端32の全周に対して対向する。このように形成されたテーパ部45の押圧面45aは、リング4がシールドシェル3に対して組付け方向Aに向けて押し付けられると、全周にわたってシールドシェル3との間に編組導体2を挟み込む。つまり、シールドシェル3の後端32は、全周にわたって押圧面45aからの押圧力を受ける。
 本実施形態の押圧面45aは、図4に示すように、軸方向Xに沿った断面において軸方向Xに対して傾斜している。より詳しくは、押圧面45aは、前端41側から後端42側へ向かうに従って互いに近づくように、言い換えるとリング4の軸心に向けて近づくように傾斜している。押圧面45aが傾斜していることにより、嵌合工程においてリング4が組付け方向Aに向けて押し付けられると、その押し付け力を全周に分散させるようにリング4の軸心位置が自動的に調整される。よって、リング4は、全周にわたって均等な押圧力で編組導体2をシールドシェル3の後端32に向けて押圧することができる。
 加締め工程は、例えば、加締め用の治具によってなされる。加締め工程では、治具が高さ方向Zに移動しながら爪部43に当接し、爪部43を径方向の内側に向けて折り曲げる。折り曲げられた爪部43が穴部33に挿入されることで、リング4がシールドシェル3に対して加締められる。押し付け用の治具と加締め用の治具は一体であってもよい。加締め工程は、組付け装置によってなされてもよい。嵌合工程および加締め工程がなされると、シールドシェル3、編組導体2、およびリング4が一体化され、電線6をノイズから遮蔽する遮蔽ユニットが形成される。
 以上説明したように、本実施形態のシールドコネクタ1は、電線6が挿通される編組導体2と、導電性を有する筒状のシールドシェル3と、押圧面45aを内面側の全周にわたって有する筒状のリング4と、を有する。押圧面45aは、シールドシェル3の軸方向Xにおいてシールドシェル3と対向する面である。押圧面45aは、円環状の面であってもよい。押圧面45aは、軸方向Xに沿った断面において軸方向Xに対して交差する方向に傾斜している。軸方向Xに沿った断面における押圧面45aの断面形状は、例示した直線状に限らず、湾曲していてもよい。リング4は、押圧面45aが全周にわたって編組導体2をシールドシェル3に対して軸方向Xに押圧した状態を維持したままシールドシェル3に対して固定される。
 本実施形態のシールドコネクタ1は、リング4の押圧面45aが全周にわたってシールドシェル3との間に編組導体2を挟み込む。よって、リング4は、全周にわたって編組導体2をシールドシェル3に対して押圧し、編組導体2に圧縮応力を発生させることができる。リング4は、編組導体2をシールドシェル3に向けて軸方向Xに押圧した状態を維持するようにシールドシェル3に対して組み付けられる。編組導体2をシールドシェル3に向けて押し付ける押圧力が残留していることで、編組導体2とシールドシェル3との電気的な接続が安定しやすい。すなわち、本実施形態のシールドコネクタ1は、加締め後に残留している軸方向Xの押圧力によりシールドシェル3に対する編組導体2の接触状態のバラツキを抑制することができる。よって、本実施形態のシールドコネクタ1は、編組導体2とシールドシェル3との電気的な接続性を安定させることやシールド性を向上させることができる。
 また、本実施形態のシールドコネクタ1において、リング4の押圧面45aは、シールドシェル3の軸方向Xに対して交差する方向に傾斜した傾斜面である。押圧面45aが傾斜していることで、シールドシェル3に対して押圧される編組導体2の圧縮応力が周方向に沿って均等に分散されやすい。
 また、本実施形態のシールドコネクタ1では、シールドシェル3は、径方向に貫通した穴部33を有する。リング4は、径方向に向けて折り曲げられる爪部43を有する。リング4は、折り曲げられた爪部43が穴部33に挿入されることでシールドシェル3に対して固定される。シールドシェル3に対する編組導体2の組み付け(嵌合工程)において、シールドシェル3に対して編組導体2を押圧する押圧力は、シールドシェル3の軸方向Xの力である。よって、シールドシェル3に逃がし構造を設けることが可能となる。また、加締めの際の板厚方向(半径方向)の力は、爪部43を折り曲げるだけの小さな押圧力で済む。よって、本実施形態のシールドコネクタ1は、シールドシェル3に対するリング4の加締めにおいて中子が不要である。
 また、一般的な加締めのように上下の金型の間にリング4、編組導体2、シールドシェル3および中子を挟み込んでリング4の全体を圧縮して変形させる場合、加締めによって食みだし部が発生する。食みだし部が径方向の外側に向けて突出することで、シールドコネクタ1の体格が拡大してしまう。これに対して、本実施形態のシールドコネクタ1では、押圧力が主として爪部43に掛かる。加締め工程においてリング4の全体を変形させる必要が無いため、食みだし部が発生せず、シールドコネクタ1の体格が増加しにくい。
 また、本実施形態のシールドコネクタ1では、爪部43は、リング4における周方向に延在する片部であり、径方向に向けて折り曲げられて穴部33に挿入される。従って、リング4に対して組付け方向Aとは逆方向の力が掛かったとしても、折り曲げられた爪部43の形状が元に戻りにくい。リング4に対して掛かる抜け方向の力は、折り曲げられた爪部43の板厚方向と直交する方向の力となる。従って、爪部43は、抜け方向の力に対抗する十分な剛性を有し、リング4の抜けを規制することができる。
[実施形態の第1変形例]
 実施形態の第1変形例について説明する。図6は、実施形態の第1変形例に係るシールドシェルおよびリングの斜視図、図7は、実施形態の第1変形例における加締め工程を示す斜視図である。第1変形例のシールドコネクタ1において、上記実施形態と異なる点は、シールドシェル3の穴部34およびリング4の爪部46である。
 第1変形例のリング4において、一対の爪部46,46は、周方向に沿って互いに離間する方向に向けて延出している。リング4には、爪部46を残すようにC字形状の穴部47が形成されている。一対の爪部46,46は、互いの基端部同士が隣接するように配置されている。一対の爪部46,46は、周方向に沿って他方の爪部46から遠ざかる向きに突出している。リング4には、一対の爪部46,46が二組形成されている。二組の爪部46,46は、高さ方向Zにおいて対向している。
 第1変形例のシールドシェル3には、一対の穴部34,34が二組形成されている。一対の穴部34,34は、周方向において隣接して設けられている。一対の穴部34,34は、リング4に対してシールドシェル3が挿入された際に一対の爪部46,46と対向する位置に形成されている。第1変形例のシールドコネクタ1では、上記実施形態と同様にして、シールドシェル3の後端32との間に編組導体2を挟んでリング4がシールドシェル3に組み付けられる。
 シールドシェル3に対してリング4を加締める加締め工程は、例えば、図7に示す治具7によってなされる。なお、図7では、爪部46の形状は加締め後の形状である。また、図7では、加締め後のシールドコネクタ1の内部状態を把握しやすいように、電線6および編組導体2が省略されている。治具7は、対称な形状の押圧部材7A,7Bを有する。押圧部材7A,7Bは、爪部46を押圧して折り曲げる押圧部71を有する。押圧部71は、爪部46に接触する湾曲面72を有する。湾曲面72に当接した爪部46は、湾曲面72によって径方向の内側に向けて折り曲げられる。押圧部材7A,7Bは、矢印Y2に示すように互いに近づく方向に移動しながらリング4を挟み込む。この際に、押圧部71の湾曲面72が爪部46を押圧し、爪部46を折り曲げて穴部34に挿入する。
 本変形例では、押圧部材7A,7Bが横方向Yに向けて移動しながら爪部46を折り曲げる。つまり、押圧部材7A,7Bからリング4に対して加えられる押圧力は、横方向Yの力である。リング4の断面形状は、横方向Yが長軸方向の楕円形状である。つまり、リング4において、横方向Yの押圧力に対する剛性が高さ方向Zの押圧力に対する剛性よりも高い。よって、本変形例のように爪部46を折り曲げる押圧力の方向が横方向Yである場合、加締め工程においてリング4の本体部分が変形しにくいという効果がある。従って、本変形例の構成によれば、加締め工程においてシールドコネクタ1に意図しない変形が発生しにくい。その結果、シールドコネクタ1の品質の安定や品質の向上が可能となる。
[実施形態の第2変形例]
 実施形態の第2変形例について説明する。図8は、第2変形例に係るリングの斜視図である。図8に示すように、一対の爪部46,46は、リング4における横方向Yの端部に配置されてもよい。第2変形例の爪部46は、リング4における曲率の大きな部分、すなわち湾曲度合いが急な部分に配置されている。シールドシェル3の穴部34は、図6に示す位置に代えて、第2変形例の爪部46に対応する位置、すなわちシールドシェル3における横方向Yの端部に設けられる。本変形例においても、上記第1変形例と同様に、爪部46を折り曲げる力の方向が横方向Yとなる。従って、加締め工程においてシールドコネクタ1に意図しない変形が発生しにくい。
[実施形態の第3変形例]
 実施形態の第3変形例について説明する。図9は、実施形態の第3変形例に係るシールドコネクタの斜視図、図10は、実施形態の第3変形例に係る他のシールドコネクタの斜視図である。第3変形例に係るシールドコネクタ1では、パンチ加工によってリング4とシールドシェル3とが接合される。例えば、リング4に編組導体2およびシールドシェル3を嵌合させた状態で、パンチにより穴8が形成される。この穴開け加工により、リング4とシールドシェル3とが接合される。穴8は、リング4およびシールドシェル3を貫通するように形成される。なお、穴8が形成されることに代えて、パンチ加工によりリング4およびシールドシェル3に凹部が形成されてもよい。
[実施形態の第4変形例]
 実施形態の第4変形例について説明する。図11は、実施形態の第4変形例に係るシールドコネクタの断面図である。第4変形例において、上記実施形態と異なる点は、シールドシェル3がテーパ部35を有する点である。
 図11に示すように、シールドシェル3の後端32側には、テーパ部35が設けられている。テーパ部35は、軸方向Xに沿って後端32側へ向かうに従って断面積が減少するテーパ形状に形成されている。テーパ部35は、軸方向Xの各位置における断面形状が互いに相似形状となるように形成されている。テーパ部35の外側面は、リング4の押圧面45aとの間に編組導体2を挟み込む支持面35aである。支持面35aは、軸方向Xにおいてリング4の押圧面45aと対向する。支持面35aは、軸方向Xに沿った断面において軸方向Xに対して傾斜している。
 リング4の押圧面45aは、シールドシェル3の支持面35aとの間に編組導体2を挟み込んでシールドシェル3に対して組み付けられる。リング4は、押圧面45aが加締め後においても編組導体2を支持面35aに向けて押圧し続けるようにシールドシェル3に対して固定される。本変形例のように支持面35aが傾斜面である場合、編組導体2が互いに対向する二つの面によって両側から挟み込まれる。従って、編組導体2において圧縮応力の応力集中が生じにくい。
[実施形態の第5変形例]
 実施形態の第5変形例について説明する。図12は、実施形態の第5変形例に係るシールドコネクタの断面図である。第5変形例において、上記実施形態と異なる点は、リング4がテーパ部45に代えて突起48を有する点である。
 図12に示すように、リング4の内面側には、径方向の内側に向けて突出する突起48が設けられている。突起48は、リング4における後端42側に配置されている。突起48は、リング4の内面に全周にわたって連続的に形成されている。突起48は、押圧面48aを有する。押圧面48aは、前端41側から後端42側へ向かうに従って径方向の内側へ向かうように傾斜している傾斜面である。押圧面48aは、軸方向Xにおいてシールドシェル3の後端32と対向している。押圧面48aは、上記実施形態の押圧面45aと同様に、シールドシェル3との間に全周にわたって編組導体2を挟み込む。リング4は、押圧面48aが加締め後においても編組導体2をシールドシェル3に向けて押圧し続けるようにシールドシェル3に対して固定される。なお、押圧面48aの形状は、例示した形状には限定されない。押圧面48aは、例えば、軸方向Xに沿った断面形状が円弧形状となるように湾曲していてもよい。
[実施形態の第6変形例]
 実施形態の第6変形例について説明する。図13は、実施形態の第6変形例に係るリングの説明図であり、同図(a)はリングの斜視図、同図(b)はリングの側面図である。図14は、実施形態の第6変形例に係るシールドシェルの側面図である。図15は、実施形態の第6変形例におけるシールドコネクタの組み付けを説明する斜視図、図16は、実施形態の第6変形例におけるシールドコネクタの組み付けを説明する断面図、図17は、実施形態の第6変形例におけるシールドコネクタの組み付けを説明する断面図である。第6変形例のシールドコネクタ1において、上記実施形態と異なる点は、シールドシェル3の穴部36およびリング4の爪部49である。
 第6変形例のリング4において、一対の爪部49,49は、周方向に沿って互いに離間する方向に向けて延出している。リング4には、爪部49を残すようにC字形状の穴部が形成されている。一対の爪部49,49は、互いの基端部同士が隣接するように配置されている。一対の爪部49,49は、周方向に沿って他方の爪部49から遠ざかる向きに突出している。一対の爪部49,49は、リング4における横方向Yの端部に配置され、高さ方向Zにおいて対向している。換言すれば、一対の爪部49,49は、リング4における曲率の大きな部分、すなわち湾曲度合いが急な部分に配置されている。
 個々の爪部49において、組付け方向Aの後側の側縁部49aは、基端部から先端部にかけて周方向に延在している。この後側の側縁部49aは、基端部側の領域に、周方向に沿って直線状に延在するストレート形状部49a1を備えている。また、後側の側縁部49aは、先端部側の領域に、周方向に対して傾斜したテーパ形状部49a2を備えている。テーパ形状部49a2は、爪部49の先端部に至るにつれ組付け方向Aへと向かうような傾斜にされている。テーパ形状部49a2は、ストレート形状部49a1から連続的に形成されている。
 リング4には、一対の爪部49,49が二組形成されている。二組の爪部49,49は、横方向Yにおいて対向している。
 シールドシェル3には、一対の穴部36,36が形成されている。一対の穴部36,36は、四角形状を有しており、周方向において隣接して設けられている。一対の穴部36,36は、シールドシェル3に対してリング4が装着された際に、一対の爪部46,46と対向する位置に形成されている。すなわち、一対の穴部36,36は、シールドシェル3における横方向Yの端部に配置され、高さ方向Zにおいて対向している。したがって、一対の穴部36,36は、シールドシェル3における曲率の大きな部分、すなわち湾曲度合いが急な部分に配置されている。
 個々の穴部36において、組付け方向Aの後側の側縁部36aは周方向に延在している。この後側の側縁部36aは、他方の穴部36と近い側の領域に、周方向に沿って直線状に延在するストレート形状部36a1を備えている。また、後側の側縁部36aは、他方の穴部36から遠い側の領域に、周方向に対して傾斜したテーパ形状部36a2を備えている。テーパ形状部36a2は、他方の穴部36から遠ざかるにつれ、組付け方向Aとは反対方向へと向かうような傾斜にされている。テーパ形状部36a2は、ストレート形状部36a1から連続的に形成されている。
 シールドシェル3には、このような一対の穴部36,36が二組形成されている。二組の穴部36,36は、横方向Yにおいて対向している。
 以下、実施形態の第6変形例に係るシールドコネクタ1の組み付け方法について説明する。図15及び図16に示すように、実施形態の第6変形例に係るシールドコネクタ1では、上記実施形態と同様にして、編組導体2を挿通させたリング4がシールドシェル3に対して組み付けられる。リング4は、シールドシェル3との間に編組導体2を挟み込むようにしてシールドシェル3の後端32側を覆う。
 リング4は、リング4の爪部49がシールドシェル3の穴部36と重なる位置にセットされる。爪部49と穴部36とが高さ方向Zにおいて重なると、一対の爪部49,49を折り曲げる加締め工程が実行される。加締め工程では、個々の爪部49に対して、高さ方向Zに沿った外力Fがリング4の中空部に向けて付与される。この外力Fを受けた爪部49は、径方向に向けて折り曲げられ、穴部36に挿入される。
 爪部49が折り曲げられると、爪部49の側縁部49aが穴部36の側縁部36aに押し当てられる。具体的には、各々の側縁部36a,49aにはテーパ形状部36a2,49a2が設定されている。このため、爪部49のテーパ形状部49a2は、穴部36のテーパ形状部36a2に交差する格好で、その穴部36のテーパ形状部36a2に押し当てられる。爪部49のテーパ形状部49a2が穴部36のテーパ形状部36a2に押し当てられると、爪部49には、外力Fに起因する分力が発生する。この分力は、軸方向X(具体的には、組付け方向A)の力と対応しており、リング4は、軸方向Xの分力により組付け方向Aへと付勢される。
 爪部49の折り曲げが進むと、テーパ形状部36a2,49a2における各側縁部36a,49aの交点が、ストレート形状部36a1,49a1側へと移行する。爪部49のテーパ形状部49a2が穴部36のテーパ形状部36a2に押し当てられている間、爪部49には軸方向Xの分力が同様に発生する。
 軸方向Xの分力により組付け方向Aへと付勢されると、リング4は、シールドシェル3に向けて移動し、シールドシェル3と嵌合する。リング4は、シールドシェル3の後端32との間に編組導体2を挟み込んだ状態で、シールドシェル3側へと押圧される。図16及び図17に示すように、リング4の押圧面45aは、軸方向Xにおいてシールドシェル3の後端32と対向しており、この後端32との間に編組導体2を挟み込む。
 最終的に、爪部49は、基端部分が略直角に屈曲する状態まで折り曲げられる。この状態において、爪部49は、穴部36を介してシールドシェル3の中空部に突出する。また、爪部49の側縁部49aと穴部36の側縁部36aとの交点は、ストレート形状部36a1,49a1に到達する。
 折り曲げられた爪部49は、ストレート形状部36a1,49a1同士の係合力により穴部36に係止され、シールドシェル3に対するリング4の抜け方向の相対移動を規制する。また、リング4は、シールドシェル3に対して編組導体2を押圧した状態でシールドシェル3に対して軸方向Xに固定される。すなわち、ストレート形状部36a1,49a1は、シールドシェル3とリング4との軸方向Xの相対移動を規制し、編組導体2とシールドシェル3との電気的な接続状態を維持する。本実施形態において、シールドシェル3とリング4とを加締める加締め構造は、加締め後において軸方向Xの圧縮応力が編組導体2に残留するように構成されている。従って、加締め工程が終了しても、押圧面45a及びシールドシェル3が編組導体2を軸方向Xに押圧した状態が維持される。
 実施形態の第6変形例によれば、爪部49の側縁部49a及び穴部36の側縁部36aにテーパ形状部36a2,49a2が設定されている。この構造により、高さ方向Zの外力Fが爪部49に与えられることで、この爪部49に対して軸方向Xの分力が与えられる。この分力に応じてリング4が付勢されるので、リング4が組付け方向Aへと移動し、編組導体2をシールドシェル3に対して軸方向Xに押圧することができる。そのため、外力Fにより爪部49を加締めるのみで、編組導体2を介してシールドシェル3にリング4を押圧することができる。これにより、押圧工程と加締め工程とを同時に行うことができるので、例えばハンドプレスを用いるといったように、製造工程の簡素化及び製造設備の簡素化を図ることができる。また、加締めにより組み付けを行うため、中子を用いるような煩雑な手法を用いずに組み付けを行うことができる。本変形例において、穴部36及び爪部49は、編組導体2をシールドシェル3に対して軸方向Xに押圧するために、リング4を付勢する付勢手段として機能する。
 なお、本変形例では、穴部36の側縁部36a及び爪部49の側縁部49aのそれぞれにテーパ形状部36a2,49a2を設定したが、穴部36の側縁部36a及び爪部49の側縁部49aの一方にのみ、テーパ形状部36a2,49a2を設定するものであってもよい。この場合であっても、テーパ形状部36a2,49a2の形状に起因して爪部49に軸方向Xの分力が与えられることとなり、この分力に応じてリング4が付勢される。その結果、リング4及びシールドシェル3の一方が他方に対して相対移動し、編組導体2をシールドシェル3に対して軸方向Xに押圧することができる。
 また、穴部36の側縁部36a及び爪部49の側縁部49aは、テーパ形状部36a2,49a2に接続するストレート形状部36a1,49a1をさらに備えている。ストレート形状部36a1,49a1同士の係合力により、折り曲げられた爪部49が穴部36に係止される。このストレート形状部36a1,49a1において係止状態を維持することで、ばね性をもった状態でリング4の位置を保持することができる。その結果、熱変形が発生するような環境においても、編組導体2において均一な圧縮応力を得ることができる。
 なお、爪部49の側縁部49a及び穴部36の側縁部36aは、全てをテーパ形状部36a2,49a2で構成してもよい。ただし、ストレート形状部36a1,49a1を設けることで、上述のような効果を得ることができる。
[実施形態の第7変形例]
 実施形態の第7変形例について説明する。シールドシェル3に対してリング4を固定する手段は、上記実施形態および各変形例で例示したものには限定されない。例えば、ゴムやバネ等の弾性部材の弾性力によってリング4がシールドシェル3に対して押圧されて固定されてもよい。
 図18は、実施形態の第7変形例に係るシールドコネクタの断面図である。この図18に示すシールドコネクタ1は、リング4を付勢する付勢手段として、ボルトなどの締結具56を採用している。締結具56は、リング4の前端41に設けたフランジ部51を貫通して電力供給ユニット等の筐体Hに締結されている。この締結具56は、筐体Hに対してリング4を共締めすることで、締結具56を締め付けた際の締結力を用いてリング4を組付け方向Aへと付勢している。これにより、リング4は、編組導体2をシールドシェル3に対して軸方向Xに押圧することができる。
 図19は、実施形態の第7変形例に係るシールドコネクタの断面図である。この図19に示すシールドコネクタ1は、リング4を付勢する付勢手段として、バネなどの弾性部材57を採用している。弾性部材57は、リング4の前端41に設けたフランジ部51と、リング4の外周を覆うカバー60との間に設けられている。カバー60は、筐体Hに連結され、その位置が固定されており、弾性部材57は、自身の反力により、リング4を組付け方向Aへと付勢している。これにより、リング4は、編組導体2をシールドシェル3に対して軸方向Xに押圧することができる。
 上記の実施形態および変形例に開示された内容は、適宜組み合わせて実行することができる。
 1 シールドコネクタ
 2 編組導体
 3 シールドシェル
 4 リング
 5 ハウジング
 6 電線
 7 治具
 8 穴
 21 前端
 22 本体部
 23 テーパ部
 24 縁部
 31 前端
 32 後端
 33,34,36 穴部
 35 テーパ部
 35a 支持面
 36a 側縁部
 36a1 ストレート形状部
 36a2 テーパ形状部
 41 前端
 42 後端
 43,46,49 爪部
 44 切欠き
 45 テーパ部
 45a 押圧面
 47 穴部
 48 突起
 48a 押圧面
 49a 側縁部
 49a1 ストレート形状部
 49a2 テーパ形状部
 51 フランジ部
 56 締結具
 57 弾性部材
 60 カバー
 71 押圧部
 72 湾曲面
 A 組付け方向
 X 軸方向
 Y 横方向
 Z 高さ方向
 H 筐体

Claims (7)

  1.  電線が挿通される編組導体と、
     導電性を有する筒状のシールドシェルと、
     前記シールドシェルの軸方向において前記シールドシェルと対向する押圧面が内面側の全周にわたって形成された筒状のリングと、
     を備え、
     前記押圧面は、前記軸方向に沿った断面において前記軸方向に対して交差する方向に傾斜しており、
     前記リングは、前記押圧面が全周にわたって前記編組導体を前記シールドシェルに対して前記軸方向に押圧した状態を維持したまま前記シールドシェルに対して固定される
     ことを特徴とするシールドコネクタ。
  2.  前記シールドシェルは、径方向に貫通した穴部を有し、
     前記リングは、径方向に向けて折り曲げられる爪部を有し、折り曲げられた前記爪部が前記穴部に挿入されることで前記シールドシェルに対して固定される
     請求項1に記載のシールドコネクタ。
  3.  前記爪部は、前記リングに形成された周方向に延在する片部であり、径方向に向けて折り曲げられて前記穴部に挿入される
     請求項2に記載のシールドコネクタ。
  4.  前記シールドシェルは、前記押圧面との間に前記編組導体を挟み込む支持面を有し、
     前記支持面は、前記軸方向に沿った断面において前記軸方向に対して交差する方向に傾斜している
     請求項1から3の何れか1項に記載のシールドコネクタ。
  5.  前記リング及び前記シールドシェルの少なくとも一方に設けられ、前記編組導体を前記シールドシェルに対して前記軸方向に押圧するために、前記リングを付勢する付勢手段をさらに有する
     請求項1に記載のシードルコネクタ。
  6.  前記シールドシェルは、径方向に貫通した穴部を有し、
     前記リングは、径方向の内側に向けて折り曲げられて前記穴部に挿入される爪部を有し、
     前記付勢手段は、前記穴部及び前記爪部から構成され、前記穴部又は前記爪部の少なくとも一方が、周方向に延在する側縁部の少なくとも一部に当該周方向に対して傾斜したテーパ形状部を備えており、
     前記付勢手段は、折り曲げられた前記爪部の側縁部が前記穴部の側縁部に押し当てられることで、前記爪部に前記軸方向の分力を発生させる
     請求項5に記載のシールドコネクタ。
  7.  前記穴部又は前記爪部の少なくとも一方は、周方向に沿って延在し、前記テーパ形状部に接続するストレート形状部をさらに備える
     請求項6に記載のシールドコネクタ。
PCT/JP2018/001412 2017-02-06 2018-01-18 シールドコネクタ WO2018142956A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18748439.9A EP3579357B1 (en) 2017-02-06 2018-01-18 Shield connector
CN201880005958.6A CN110178274B (zh) 2017-02-06 2018-01-18 屏蔽连接器
US16/459,801 US10461480B1 (en) 2017-02-06 2019-07-02 Shield connector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017019945 2017-02-06
JP2017-019945 2017-02-06
JP2017112316A JP6603687B2 (ja) 2017-02-06 2017-06-07 シールドコネクタ
JP2017-112316 2017-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/459,801 Continuation US10461480B1 (en) 2017-02-06 2019-07-02 Shield connector

Publications (1)

Publication Number Publication Date
WO2018142956A1 true WO2018142956A1 (ja) 2018-08-09

Family

ID=63040559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001412 WO2018142956A1 (ja) 2017-02-06 2018-01-18 シールドコネクタ

Country Status (1)

Country Link
WO (1) WO2018142956A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4178046A1 (en) * 2021-11-05 2023-05-10 Tyco Electronics Japan G.K. Electric connector unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026880A (ja) * 2012-07-27 2014-02-06 Japan Aviation Electronics Industry Ltd コネクタ
JP2014160576A (ja) * 2013-02-20 2014-09-04 Yazaki Corp シールド編組線の接続構造およびシールドコネクタ
JP2015002089A (ja) * 2013-06-17 2015-01-05 矢崎総業株式会社 シールドユニット
WO2015041213A1 (ja) * 2013-09-17 2015-03-26 矢崎総業株式会社 シールドユニット
JP2016167351A (ja) 2015-03-09 2016-09-15 住友電装株式会社 固定部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026880A (ja) * 2012-07-27 2014-02-06 Japan Aviation Electronics Industry Ltd コネクタ
JP2014160576A (ja) * 2013-02-20 2014-09-04 Yazaki Corp シールド編組線の接続構造およびシールドコネクタ
JP2015002089A (ja) * 2013-06-17 2015-01-05 矢崎総業株式会社 シールドユニット
WO2015041213A1 (ja) * 2013-09-17 2015-03-26 矢崎総業株式会社 シールドユニット
JP2016167351A (ja) 2015-03-09 2016-09-15 住友電装株式会社 固定部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579357A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4178046A1 (en) * 2021-11-05 2023-05-10 Tyco Electronics Japan G.K. Electric connector unit

Similar Documents

Publication Publication Date Title
JP6603687B2 (ja) シールドコネクタ
JP6492929B2 (ja) コネクタ
JP4767760B2 (ja) シールド電線用アース端子
US8827569B2 (en) Connector
JP6163089B2 (ja) シールド構造、シールドシェル及び電線付きシールドコネクタの製造方法
JP5219877B2 (ja) 同軸ケーブル用コネクタ
JP7149542B2 (ja) コネクタ
JP2010160957A (ja) シールド電線の端末接続構造
US20200212604A1 (en) Wire crimping structure and shielded conductive path
US11211732B2 (en) Plug-in connector part with caulked contact elements and method for producing said plug-in connector part
JP2008288021A (ja) シールドコネクタ
WO2018142956A1 (ja) シールドコネクタ
JP5480410B1 (ja) シールド付コネクタ、シールド付コネクタの組立方法
JP6182424B2 (ja) シールドユニット及びその製造方法
JP2014099339A (ja) シールドコネクタ
JP2012135167A (ja) シールドケーブル
JP2009117286A (ja) 端子金具とシールド電線の接続構造
JP6078302B2 (ja) 端子金具
JP2017098002A (ja) ケーブルアッセンブリ及びケーブルアッセンブリの製造方法
JP2016051577A (ja) シールド部材及び電気コネクタ
JP2019201174A (ja) ケーブルの固定構造およびケーブルの固定方法
JP6943728B2 (ja) 接地用部材、及び、接地用部材付きシールド電線
JP2015011792A (ja) バッテリーターミナル
JP2016018673A (ja) シールド部材、電気コネクタ及びシールド部材の製造方法
US10270212B2 (en) Shield structure, shield shell and method of manufacturing shield connector with electric wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018748439

Country of ref document: EP