WO2018142770A1 - 信号処理装置、信号処理方法及びコンピュータプログラム - Google Patents

信号処理装置、信号処理方法及びコンピュータプログラム Download PDF

Info

Publication number
WO2018142770A1
WO2018142770A1 PCT/JP2017/044374 JP2017044374W WO2018142770A1 WO 2018142770 A1 WO2018142770 A1 WO 2018142770A1 JP 2017044374 W JP2017044374 W JP 2017044374W WO 2018142770 A1 WO2018142770 A1 WO 2018142770A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital signal
signal
delta
sampling frequency
output
Prior art date
Application number
PCT/JP2017/044374
Other languages
English (en)
French (fr)
Inventor
宜紀 田森
宏平 浅田
徹徳 板橋
慎平 土谷
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/480,381 priority Critical patent/US10896668B2/en
Priority to KR1020197021004A priority patent/KR20190113778A/ko
Priority to EP17894910.3A priority patent/EP3579225A4/en
Priority to CN201780084545.7A priority patent/CN110226200A/zh
Priority to JP2018565972A priority patent/JP7020432B2/ja
Publication of WO2018142770A1 publication Critical patent/WO2018142770A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17827Desired external signals, e.g. pass-through audio such as music or speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17873General system configurations using a reference signal without an error signal, e.g. pure feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17875General system configurations using an error signal without a reference signal, e.g. pure feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3027Feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/43Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a single bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/502Details of the final digital/analogue conversion following the digital delta-sigma modulation
    • H03M3/506Details of the final digital/analogue conversion following the digital delta-sigma modulation the final digital/analogue converter being constituted by a pulse width modulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation

Definitions

  • the present disclosure relates to a signal processing device, a signal processing method, and a computer program.
  • a noise canceling system that suppresses external noise and enhances the sound insulation effect when a listener listens to audio content using a sound reproduction device such as headphones or earphones has been put into practical use.
  • a general noise canceling system generates a signal that cancels noise collected by a noise detection microphone and adds it to an audio signal to suppress external noise (Patent Documents 1 and 2). Etc.).
  • an audio signal in an existing noise canceling system is a DSD (Direct Stream Digital) audio signal having a sampling frequency of the megahertz order (for example, 2.8 MHz) and a quantization bit number of 1 bit, Audio characteristics are deteriorated by adding noise.
  • DSD Direct Stream Digital
  • the present disclosure proposes a new and improved signal processing apparatus, signal processing method, and computer program capable of suppressing external noise without deteriorating audio characteristics.
  • an A / D that outputs a digital signal having a predetermined sampling frequency and a quantization bit number a, including a first delta-sigma modulator that performs a first delta-sigma modulation process on an input analog signal.
  • a converter a filter unit that outputs a digital signal having the sampling frequency and the number of quantization bits b through a digital filter having a predetermined filter characteristic given to the output of the A / D converter, and the filter unit
  • a second delta-sigma modulator that performs a second delta-sigma modulation process on the output of the output and outputs a digital signal having the sampling frequency and the number of quantization bits a, an output of the second delta-sigma modulator, and the sampling frequency
  • an adder for adding the input digital signal having the quantization bit number a.
  • an A / D that outputs a digital signal having a predetermined sampling frequency and a quantization bit number a, including a first delta sigma modulator that performs a first delta sigma modulation process on an input analog signal.
  • a D converter a filter unit that passes a digital filter having a predetermined filter characteristic given to an output of the A / D converter, and outputs a digital signal having the sampling frequency and the number of quantization bits b; and the filter A second delta sigma modulator that performs a second delta sigma modulation process on the output of the unit and outputs a digital signal having the sampling frequency and the number of quantization bits a, and an output of the second delta sigma modulator
  • a first bit expander that expands the number of quantization bits from a to c, an output of the first bit expander, and the sampling frequency Comprising the number and first adder for adding the input digital signal quantization bit rate c, and the signal processing apparatus is provided.
  • a first delta-sigma modulation process is performed on an input analog signal to generate a digital signal having a predetermined sampling frequency and a quantization bit number a, and the digital signal is quantized.
  • a first delta-sigma modulation unit that outputs the number of bits expanded from a to c, and a first equalization by equalizing the input digital signal of the sampling frequency and the number of quantization bits c to a first target characteristic
  • a signal is generated
  • a delta-sigma modulation process is performed on the first equalized signal to generate a digital signal having a predetermined sampling frequency and a quantization bit number a, and the quantization bit number for the digital signal
  • a first equalizer unit that outputs the signal from a to c, and an input digital signal having the sampling frequency and the number of quantization bits c equalized to a second target characteristic, Generating a digital signal, performing a delta-sigma modulation process on the second equalized signal to generate a digital signal having a predetermined sampling frequency and a quantization bit number
  • a filter unit that passes a digital filter having a predetermined filter characteristic and outputs a digital signal having the sampling frequency and the number of quantization bits b; and an output of the filter unit
  • a second delta-sigma modulation unit that performs a luta sigma modulation process to generate a digital signal having the sampling frequency and the number of quantization bits a, extends the number of quantization bits from a to c, and outputs the digital signal;
  • a signal processing device comprising: a second addition unit that adds outputs of the second delta-sigma modulation unit, the delay unit, and the second equalizer unit.
  • a first delta sigma modulation process is performed on an input analog signal, and a digital signal having a predetermined sampling frequency and a quantization bit number a is output. Passing a digital signal having a predetermined filter characteristic to the digital signal having the quantization bit number a and outputting the digital signal having the sampling frequency and the quantization bit number b; Performing a second delta-sigma modulation process on the digital signal to output the digital signal having the sampling frequency and the number of quantization bits a; the output of the second delta-sigma modulation process; and the sampling frequency and the quantization bit Summing the number a of input digital signals.
  • a signal processing method is provided.
  • the input analog signal is subjected to first delta-sigma modulation processing to output a digital signal having a predetermined sampling frequency and a quantization bit number a, and the predetermined sampling frequency and quantum Passing a digital signal having a predetermined filter characteristic to the digital signal having the quantization bit number a and outputting the digital signal having the sampling frequency and the quantization bit number b; and the sampling frequency and the quantization bit
  • a second delta-sigma modulation process is performed on the output of the digital signal of number b to output the digital signal of the sampling frequency and the number of quantization bits a, and the output of the second delta-sigma modulation process is quantized.
  • a digital signal in which the number of quantization bits is extended from a to c, and the number of quantization bits is extended to c Includes, and adding the input digital signal of the sampling frequency and quantization bit number c, the signal processing method is provided.
  • the input analog signal is subjected to delta-sigma modulation processing to generate a digital signal having a predetermined sampling frequency and a quantization bit number a, and the number of quantization bits for the digital signal
  • the first delta-sigma modulation process is performed to output the signal from a to c, and the input digital signal having the sampling frequency and the number of quantization bits c is equalized to a first target characteristic to obtain the first
  • An equalized signal is generated, a delta-sigma modulation process is performed on the first equalized signal, a digital signal having a predetermined sampling frequency and a quantization bit number a is generated, and the digital signal is quantized.
  • a second equalized signal is generated by equalizing to the target characteristic, and a delta-sigma modulation process is performed on the second equalized signal to generate a digital signal having a predetermined sampling frequency and a quantization bit number a.
  • a signal processing method includes adding and performing a first addition process.
  • a first delta-sigma modulation process is performed on an input analog signal to a computer to output a digital signal having a predetermined sampling frequency and a quantization bit number a, and the predetermined sampling Passing a digital signal having a predetermined filter characteristic to a digital signal having a frequency and a quantization bit number a, and outputting the digital signal having the sampling frequency and the quantization bit number b; and the quantization bit Performing a second delta-sigma modulation process on the digital signal of several b to output the digital signal of the sampling frequency and the number of quantization bits a, the output of the second delta-sigma modulation process, the sampling frequency and Adding an input digital signal having a quantization bit number a to Over data program is provided.
  • a first delta-sigma modulation process is performed on an input analog signal to a computer to output a digital signal having a predetermined sampling frequency and a quantization bit number a, and the predetermined sampling Passing a digital signal having a predetermined filter characteristic to a digital signal having a frequency and a quantization bit number a, and outputting the digital signal having the sampling frequency and the quantization bit number b;
  • a second delta sigma modulation process is performed on the output of the digital signal having the quantization bit number b to output the digital signal having the sampling frequency and the quantization bit number a, and the output of the second delta sigma modulation process.
  • the number of quantization bits is expanded from a to c, and the number of quantization bits is expanded to c.
  • a digital signal, and adding the input digital signal of the sampling frequency and quantization bit rate c, to the execution, the computer program is provided.
  • a digital signal having a predetermined sampling frequency and the number of quantization bits a is generated by performing delta sigma modulation processing on an input analog signal to a computer, and the digital signal is quantized.
  • Performing a first delta-sigma modulation process for outputting the number of quantization bits from a to c, and equalizing the input digital signal having the sampling frequency and the number of quantization bits c to a first target characteristic A first equalized signal is generated, and a delta-sigma modulation process is performed on the first equalized signal to generate a digital signal having a predetermined sampling frequency and a quantization bit number a.
  • the second equalized signal is equalized to a second target characteristic to generate a second equalized signal, and the second equalized signal is subjected to delta-sigma modulation processing to obtain a predetermined sampling frequency and the number of quantization bits a
  • a digital signal is generated, the number of quantization bits is expanded from a to c and output to the digital signal, and a second equalizer process is performed, and the first equalizer process or the second equalizer process is performed.
  • Performing a second delta-sigma modulation process for outputting the digital signal with the number of quantization bits expanded from a to c, the second delta-sigma modulation process, the delay process, and the second equalizer There is provided a computer program for executing the first addition processing for adding the output of the processing.
  • a new and improved signal processing apparatus, signal processing method, and computer program capable of suppressing external noise without deteriorating audio characteristics can be provided.
  • a general noise canceling system generates a signal that cancels noise collected by a noise detection microphone, and suppresses external noise by adding the signal to an audio signal.
  • the noise canceling system includes a feedforward method, a feedback method, and a method combining the feedforward method and the feedback method.
  • the feed-forward method is a method for performing signal processing for canceling an audio signal (external noise) collected by a microphone provided outside the housing of the headphone.
  • the feedback method is a method for performing signal processing for canceling an audio signal (internal noise) collected by a microphone provided inside the housing of the headphone.
  • Patent Document 1 discloses a technique relating to a noise canceling system that suppresses external noise by a feedforward method.
  • bit expansion by a bit expander is performed on an audio signal from a digital audio source in order to synthesize it with a noise canceling signal for canceling an audio signal collected by a microphone. This is to match the number of quantization bits of the noise canceling signal and the audio signal.
  • the noise canceling signal and the audio signal are combined, they are converted into an analog signal through a delta-sigma modulator and a low-pass filter, and the sound is mainly output from the headphones and earphones through the amplifier.
  • bit expansion by an equalizer is performed on an audio signal from a digital audio source in order to synthesize it with a noise canceling signal for canceling an audio signal collected by a microphone.
  • the noise canceling signal and the audio signal are combined, they are converted into an analog signal through a delta-sigma modulator and a low-pass filter, and the sound is mainly output from the headphones and earphones through the amplifier.
  • the quantization bit number is, for example, 16 bits.
  • the number of quantization bits of the audio signal is expanded to 16 bits for synthesis with the noise canceling signal.
  • the delta sigma modulator converts the quantization bit number into a 1-bit signal.
  • the present disclosure has intensively studied a noise canceling system that can suppress external noise without deteriorating the audio characteristics of the digital audio source.
  • the present disclosure has devised a noise canceling system capable of suppressing external noise without deteriorating the audio characteristics of the digital audio source, as will be described below.
  • First Embodiment (Feed Forward Method)> As a first embodiment, an example of a noise canceling system that does not deteriorate the audio characteristics of a digital audio source in a noise canceling system using a feedforward method will be described.
  • FIG. 1 is a diagram illustrating a configuration example of a noise canceling system according to the first embodiment of the present disclosure.
  • FIG. 1 a configuration example of the noise canceling system according to the first embodiment of the present disclosure will be described with reference to FIG.
  • the noise canceling system includes a microphone 111, an amplifier 112, an A / D converter unit 120, a noise canceling digital filter 130, and a delta sigma.
  • a modulator 132, an adder 134, a PWM (Pulse Width Modulation) conversion unit 136, an analog LPF (Low Pass Filter) 138, a power amplifier 140, and a headphone 150 are configured.
  • the headphone 150 shown in FIG. 1 includes drivers 151 and 152 and supports two-channel stereo by L (left) and R (right), but the configuration of the noise canceling system shown in FIG. , Corresponding to at least one of the L channel and the R channel.
  • the sampling frequency of the digital audio source in the noise canceling system shown in FIG. 1 is assumed to be 64 Fs (2.8224 MHz) and the number of quantization bits is 1 bit.
  • the digital audio source in the noise canceling system illustrated in FIG. 1 is a DSD audio source, the present disclosure is not limited to such an example.
  • the microphone 111 collects external sound (external noise) around the headphones 150 to be canceled.
  • the microphone 111 is actually provided outside the corresponding housing for each of the L and R channels on the headphone 150.
  • FIG. 1 it is assumed that a microphone 111 provided corresponding to either the L channel or the R channel is illustrated.
  • the amplifier 112 amplifies the external sound collected by the microphone 111 into an analog audio signal.
  • the A / D converter unit 120 converts the analog audio signal output from the amplifier 112 into a digital audio signal.
  • the A / D converter unit 120 includes a delta sigma modulator 121.
  • the delta-sigma modulator 121 converts the analog audio signal output from the amplifier 112 into a digital signal having the same sampling frequency (64 Fs) and quantization bit number (1 bit) as that of the digital audio source.
  • the sampling frequency and the number of quantization bits of a signal are expressed as [sampling frequency, number of quantization bits]. [64 Fs, 1 bit] indicates that the signal has a sampling frequency of 64 Fs and a quantization bit number of 1 bit.
  • the noise canceling digital filter 130 inputs a digital audio signal output from the A / D converter unit 120, that is, a digital audio signal obtained by collecting an external sound collected by the microphone 111.
  • the noise canceling digital filter 130 cancels external sound that can be heard by reaching the ear of the wearer of the headphone 150 corresponding to the driver 151 as a sound to be output from the driver 151 using the input digital audio signal.
  • An audio signal (cancellation audio signal) having a sounding action is generated.
  • an audio signal input to the noise canceling digital filter 130 that is, an audio signal obtained by collecting an external sound has an inverse characteristic and an antiphase. Signal.
  • characteristics that take into account transfer characteristics such as circuits and spaces in the noise canceling system are given.
  • the noise canceling digital filter 130 is configured as, for example, an FIR (Finite Impulse Response) filter.
  • the noise canceling digital filter 130 is configured as a filter having an input of [64 Fs, 1 bit] and an output of [64 Fs, 16 bits]. Therefore, the output of the noise canceling digital filter 130 is converted to multi-bits.
  • the delta-sigma modulator 132 converts the number of quantization bits in the [64Fs, 16-bit] digital signal output from the noise canceling digital filter 130 into 1 bit. That is, the delta-sigma modulator 132 generates a [64 Fs, 1 bit] digital signal from the [64 Fs, 16 bit] digital signal output from the noise canceling digital filter 130.
  • the adder 134 adds the signal of the digital audio source and the signal output from the delta sigma modulator 132. Since the signal after the addition by the adder 134 is an addition of two signals that can take two values of 0 and 1, it becomes a 2-bit signal that can take three values of 0, 1, and 2. That is, the adder 134 generates a [64 Fs, 2 bit] digital signal.
  • the noise canceling digital filter 130, the delta-sigma modulator 132, and the adder 134 can be provided in, for example, a DSP (Digital Signal Processor).
  • This DSP may be provided as one chip component, for example.
  • the PWM conversion unit 136 performs PWM modulation on the [64 Fs, 2 bit] digital signal output from the adder 134.
  • the analog LPF 138 receives the signal output from the PWM converter 136 and generates an analog audio signal.
  • the analog audio signal generated by the analog LPF 138 is input to the power amplifier 140.
  • the power amplifier 140 amplifies the input audio signal, and drives the driver 151 corresponding to one ear in the headphones 150 by the output.
  • the signal of the digital audio source does not pass through the delta sigma modulator that causes quantization noise. That is, the digital audio source signal is synthesized with the [64 Fs, 1 bit] cancellation audio signal as it is as a [64 Fs, 1 bit] digital signal, and further without passing through the delta-sigma modulator, the PWM converter 136 and the analog signal. It is converted into an analog audio signal through the LPF 138.
  • the noise canceling system delivers the sound of the digital audio source to the listener without deteriorating the audio characteristics of the digital audio source when suppressing external noise. I can do it.
  • FIG. 2 is a diagram illustrating a configuration example of a noise canceling system according to the second embodiment of the present disclosure.
  • a configuration example of the noise canceling system according to the second embodiment of the present disclosure will be described with reference to FIG.
  • the digital audio source in the noise canceling system illustrated in FIG. 2 is a DSD audio source, the present disclosure is not limited to such an example.
  • the signal from the digital audio source is not synthesized with the canceling audio signal as compared with the noise canceling system shown in FIG.
  • the input system to the driver 151 in the noise canceling system shown in FIG. 1 is represented by one system, the driver 151 actually has two positive and negative terminals. In the example shown in FIG. The terminal is grounded.
  • an analog signal based on the canceling audio signal is input to one terminal ( ⁇ terminal in the example of FIG. 2) of the driver 151, and the other terminal (FIG.
  • the analog signal based on the digital audio source is input to the + terminal in the example of 2. That is, in the noise canceling system shown in FIG. 2, the driver 151 has a BTL (Bridged Transformer Less) connection form.
  • BTL Bridged Transformer Less
  • the PWM conversion unit 136 performs PWM modulation.
  • the audio characteristics of the digital audio source are degraded when external noise is similarly suppressed by the BTL connection as shown in FIG. 2 instead of the synthesis by the adder 134.
  • the sound of the digital audio source can be successfully delivered to the listener.
  • FIG. 3 is a diagram illustrating a configuration example of a noise canceling system according to the third embodiment of the present disclosure.
  • a configuration example of the noise canceling system according to the third embodiment of the present disclosure will be described with reference to FIG.
  • the noise canceling system includes a microphone 211, an amplifier 212, an A / D converter unit 220, a noise canceling digital filter 230, and a delta sigma.
  • the headphone 260 shown in FIG. 3 includes drivers 261 and 262, and is compatible with 2-channel stereo by L (left) and R (right).
  • the configuration of the noise canceling system shown in FIG. Corresponding to at least one of the L channel and the R channel.
  • the digital audio source in the noise canceling system shown in FIG. 3 is assumed to be [64 Fs, 1 bit].
  • the digital audio source in the noise canceling system illustrated in FIG. 3 is a DSD audio source, but the present disclosure is not limited to such an example.
  • the microphone 211 collects the sound output from the driver 261 inside the casing of the headphones 260 to be canceled and the external sound that enters the casing.
  • the microphone 211 is actually provided in the corresponding housing for each of the L and R one-side channels of the headphones 260.
  • FIG. 3 it is assumed that a microphone 211 provided corresponding to one of the L channel and the R channel is illustrated.
  • the amplifier 212 amplifies the external sound collected by the microphone 211 into an analog audio signal.
  • the A / D converter unit 220 converts the analog audio signal output from the amplifier 212 into a digital audio signal.
  • the A / D converter unit 220 includes a delta sigma modulator 221.
  • the delta sigma modulator 221 converts the analog audio signal output from the amplifier 212 into a [64 Fs, 1 bit] digital signal that is the same as the digital audio source.
  • the noise canceling digital filter 230 collects the digital audio signal output from the A / D converter unit 220, that is, the internal sound of the housing on the driver 261 side of the headphone 260 collected by the microphone 211. Input a digital audio signal.
  • the noise canceling digital filter 230 cancels an external sound that can be heard by reaching the ear of the wearer of the headphones 260 corresponding to the driver 261 as a sound to be output from the driver 261 using the input digital audio signal.
  • An audio signal (cancellation audio signal) having a sounding action is generated.
  • the noise canceling digital filter 230 performs a process of giving a predetermined transfer function ⁇ for noise cancellation to the sound collected by the microphone 211.
  • the noise canceling digital filter 230 is configured as a filter having an input of [64 Fs, 1 bit] and an output of [64 Fs, 16 bits]. Therefore, the output of the noise canceling digital filter 230 is multi-bited.
  • the delta-sigma modulator 232 converts the number of quantization bits in the [64Fs, 16-bit] digital signal output from the noise canceling digital filter 230 into 1 bit. That is, the delta-sigma modulator 232 generates a [64 Fs, 1 bit] digital signal from the [64 Fs, 16 bit] digital signal output from the noise canceling digital filter 230.
  • the bit expander 234 converts the [64 Fs, 1 bit] digital signal output from the delta sigma modulator 232 into a [64 Fs, 3 bit] digital signal here. Specifically, the bit expander 234 converts the signal value to “001” (0.25) if the signal value is “1”, and converts it to “111” ( ⁇ 0.25) if it is “0”. To do.
  • the equalizer 241 gives a characteristic based on a transfer function of the coefficient ⁇ to the digital audio source.
  • the equalizer 241 converts the [64 Fs, 1 bit] digital signal into a [64 Fs, 16 bit] digital signal.
  • the delta sigma modulator 243 performs delta sigma modulation on the output of the equalizer 241 and converts the output into a [64Fs, 1 bit] digital signal.
  • the delay unit 242 performs predetermined delay processing on the signal from the digital audio source in accordance with the delay by the signal processing of the equalizer 241 and the delta sigma modulator 243.
  • the bit expander 244 converts the [64 Fs, 1 bit] digital signal output from the delta sigma modulator 243 into a [64 Fs, 3 bit] digital signal here. Specifically, the bit expander 244 converts the signal value to “001” (0.25) if the signal value is “1”, and converts it to “111” ( ⁇ 0.25) if it is “0”. To do.
  • the bit expander 244 converts the [64 Fs, 1 bit] digital signal output from the delay unit 242 into a [64 Fs, 3 bit] digital signal here. Specifically, the bit expander 245 similarly sets “001” (0.25) if the value of the signal is “1”, and sets “111” ( ⁇ 0.25) if it is “0”. , Convert each.
  • the adder 246 adds the outputs of the bit expanders 244 and 245.
  • the canceling audio signal output from the noise canceling digital filter 230 includes not only a component corresponding to the external sound but also a component that collects the sound of the digital audio source output from the driver 261. It is. That is, the characteristic corresponding to the transfer function represented by 1 / (1 + ⁇ ) is given to the sound component of the digital audio source. Therefore, a characteristic based on a transfer function of 1 + ⁇ which is 1 / (1 + ⁇ ) is given in advance to the signal of the digital audio source. Among them, the equalizer 241 gives a characteristic by a transfer function of ⁇ .
  • Addition of the signal by the adder 246 is equivalent to giving a characteristic with a transfer function of 1 + ⁇ to the digital audio source.
  • the signal after the addition by the adder 246 can take three values of three bits “010” (0.5), “000” (0), and “110” ( ⁇ 0.5).
  • the adder 247 adds the output of the bit expander 234 and the output of the adder 246.
  • the signals after addition by the adder 247 are 3-bit “011” (0.75), “001” (0.25), “111” ( ⁇ 0.25), “101” ( ⁇ 0.75). The following four values can be taken.
  • the noise canceling digital filter 230, the delta-sigma modulators 232 and 243, the bit expanders 234, 244 and 245, the equalizer 241, the delay unit 242, and the adders 246 and 247 may be provided in the DSP, for example.
  • This DSP may be provided as one chip component, for example.
  • the PWM conversion unit 248 performs PWM modulation on the [64 Fs, 3 bit] digital signal output from the adder 247.
  • the analog LPF 249 receives the signal output from the PWM conversion unit 248 and generates an analog audio signal.
  • the analog audio signal generated by the analog LPF 249 is input to the power amplifier 250.
  • the power amplifier 250 amplifies the input audio signal, and drives the driver 261 corresponding to one ear in the headphones 260 by the output.
  • the signal of the digital audio source that is not given the characteristic ⁇ due to the transfer function does not pass through the delta-sigma modulator that causes quantization noise. That is, the signal of the digital audio source that is not given the characteristic ⁇ by the transfer function is converted into an analog audio signal through the PWM conversion unit 248 and the analog LPF 249 without passing through the delta-sigma modulator.
  • the noise canceling system delivers the sound of the digital audio source well to the listener without deteriorating the audio characteristics of the digital audio source when suppressing external noise. I can do it.
  • Fourth Embodiment (Feedback Method + Feed Forward Method)> As a fourth embodiment, an example of a noise canceling system that does not deteriorate the audio characteristics of a digital audio source in a noise canceling system that combines a feedback method and a feedforward method will be described.
  • FIG. 4 is a diagram illustrating a configuration example of a noise canceling system according to the fourth embodiment of the present disclosure.
  • a configuration example of the noise canceling system according to the fourth embodiment of the present disclosure will be described with reference to FIG.
  • the digital audio source in the noise canceling system illustrated in FIG. 4 is a DSD audio source, the present disclosure is not limited to such an example.
  • the noise canceling system shown in FIG. 4 is a combination of the noise canceling system based on the feed forward method and the noise canceling system based on the feed forward method shown in FIG. That is, the noise canceling system shown in FIG. 4 is the same as the noise canceling system using the feedback method shown in FIG. 3, but a microphone 271, an amplifier 272, delta-sigma modulators 273 and 275, a noise canceling digital filter 274, and A bit expander 276 is added.
  • the microphone 271 collects external sound (external noise) around the headphones 260 to be canceled.
  • the microphone 271 is actually provided outside the corresponding housing for each of the L and R channels on the headphone 260.
  • FIG. 4 it is assumed that a microphone 271 provided corresponding to one of the L channel and the R channel is illustrated.
  • the amplifier 272 amplifies the external sound collected by the microphone 271 to obtain an analog audio signal.
  • the delta sigma modulator 273 converts the analog audio signal output from the amplifier 272 into a [64 Fs, 1 bit] digital signal that is the same as the digital audio source.
  • the noise canceling digital filter 274 inputs a digital audio signal output from the delta sigma modulator 273, that is, a digital audio signal obtained by collecting the external sound collected by the microphone 271.
  • the noise canceling digital filter 274 cancels the external sound that can be heard by reaching the ear of the wearer of the headphones 260 corresponding to the driver 261 as the sound to be output from the driver 261 using the input digital audio signal.
  • a canceling audio signal having the action of generating is generated.
  • the noise canceling digital filter 274 is configured as an FIR filter, for example.
  • the noise canceling digital filter 274 is configured as a filter having an input of [64 Fs, 1 bit] and an output of [64 Fs, 16 bits]. Accordingly, the output of the noise canceling digital filter 274 is converted into multi-bits.
  • the delta sigma modulator 275 converts the number of quantization bits in the [64 Fs, 16 bit] digital signal output from the noise canceling digital filter 274 into one bit. That is, the delta-sigma modulator 275 generates a [64 Fs, 1 bit] digital signal from the [64 Fs, 16 bit] digital signal output from the noise canceling digital filter 274.
  • the bit expander 276 converts the [64 Fs, 1 bit] digital signal output from the delta sigma modulator 275 into a [64 Fs, 4 bit] digital signal.
  • the bit expanders 234, 244, and 245 similarly convert a [64Fs, 1 bit] digital signal into a [64Fs, 4bit] digital signal. That is, each bit expander expands a digital signal having a quantization bit number of 1 bit to 4 bits in order to cope with addition of four digital signals.
  • the digital signal output from the bit expander 276 is added together with the output of the bit expander 234 and the output of the adder 246 in the adder 247.
  • the noise canceling system shown in FIG. 4 can further enhance the external noise suppression effect by combining a feedforward type noise canceling system and a feedback type noise canceling system.
  • the noise canceling system according to the fourth embodiment of the present disclosure delivers the sound of the digital audio source to the listener well without deteriorating the audio characteristics of the digital audio source when suppressing external noise. I can do it.
  • FIG. 5 is a diagram illustrating a configuration example of a noise canceling system according to the fifth embodiment of the present disclosure.
  • the configuration example of the noise canceling system according to the fifth embodiment of the present disclosure will be described with reference to FIG.
  • the digital audio source in the noise canceling system illustrated in FIG. 5 is a DSD audio source, the present disclosure is not limited to such an example.
  • the noise canceling system includes a microphone 311, an amplifier 312, delta-sigma modulators 313, 324, 325, and 332, a bit expander 314, 326, 327, 328, 333, equalizers 321, 322, delay unit 323, adders 329, 330, 334, 335, noise canceling digital filter 331, PWM converter 336, analog LPF 337, power An amplifier 338 and a headphone 350 are included.
  • the microphone 311 collects the sound output from the driver 351 inside the casing of the headphone 350 to be canceled and the external sound entering the inside of the casing.
  • the microphone 311 is actually provided inside the corresponding housing for each of the L and R channels on the headphone 350.
  • FIG. 5 it is assumed that a microphone 311 provided corresponding to either the L channel or the R channel is illustrated.
  • the amplifier 312 amplifies the external sound collected by the microphone 311 to obtain an analog audio signal.
  • the delta sigma modulator 313 converts the analog audio signal output from the amplifier 312 into a digital audio signal.
  • the delta sigma modulator 313 converts the analog audio signal output from the amplifier 312 into a [64 Fs, 1 bit] digital signal that is the same as the digital audio source.
  • the bit expander 314 converts the [64 Fs, 1 bit] digital signal output from the delta sigma modulator 313 into a [64 Fs, 3 bit] digital signal here. Specifically, the bit expander 314 converts the signal value to “001” (0.25) if the signal value is “1”, and converts it to “111” ( ⁇ 0.25) if it is “0”. To do.
  • the equalizer 321 is a processing block that gives a predetermined target characteristic on the front entry side to the audio source.
  • the equalizer 322 is a processing block that gives a predetermined target characteristic on the last insertion side to the audio source.
  • the equalizers 321 and 322 convert the [64 Fs, 1 bit] digital signal into a [64 Fs, 16 bit] digital signal here.
  • the delay unit 323 performs predetermined delay processing on the signal from the digital audio source in accordance with the delay by the signal processing of the equalizers 321 and 322 and the delta sigma modulators 324 and 325.
  • the equalizer target characteristic EQ1 on the first insertion side and the equalizer target characteristic EQ2 on the second insertion side are both approximately equal to a Mid Presence Filter (hereinafter referred to as MPF) and are generally adjusted for equalization.
  • MPF can develop the transfer function as “1 + EQ”, [64Fs, 1 bit] of the DSD format which is a digital audio source is used for processing on the “1” side and “EQ” side of the target characteristic “1 + EQ”. Branched and then synthesized. The path passing through the delay unit 323 corresponds to the former “1” processing.
  • the delta sigma modulator 324 converts the audio signal output from the equalizer 321 into a [64 Fs, 1 bit] digital signal that is the same as the digital audio source.
  • the delta sigma modulator 325 converts the audio signal output from the equalizer 321 into a [64 Fs, 1 bit] digital signal that is the same as the digital audio source.
  • the bit expanders 326, 327, and 328 respectively output the [64Fs, 1 bit] digital signal output by the delta sigma modulator 324, the delay unit 323, and the delta sigma modulator 325, in this case, the [64Fs, 3bit] digital signal. Convert to Specifically, the bit expanders 326, 327, and 328 are “001” (0.25) if the signal value is “1”, and “111” ( ⁇ 0.25) if the signal value is “0”. Respectively.
  • Adder 329 adds the outputs of bit expanders 326 and 328.
  • the target characteristic “1 + EQ” described above is achieved by adding the outputs of the bit expanders 326 and 328.
  • the signal after the addition by the adder 329 can take three values of three bits “010” (0.5), “000” (0), and “110” ( ⁇ 0.5).
  • the adder 330 adds the output of the bit expander 314 and the output of the adder 329.
  • the signal after addition by the adder 330 is 3-bit “011” (0.75), “001” (0.25), “111” ( ⁇ 0.25), “101” ( ⁇ 0.75). The following four values can be taken.
  • the noise canceling digital filter 331 includes a signal output from the adder 330, that is, a digital audio signal obtained by collecting the internal sound of the casing on the driver 351 side of the headphone 350 collected by the microphone 311. Input the signal.
  • the noise canceling digital filter 331 cancels an external sound that can be heard by reaching the ear of the wearer of the headphone 350 corresponding to the driver 351 as a sound to be output from the driver 351 by using the input digital audio signal.
  • An audio signal (cancellation audio signal) having a sounding action is generated.
  • the noise canceling digital filter 331 performs processing for giving a predetermined transfer function ⁇ for noise cancellation to the sound collected by the microphone 311. In this embodiment, it is assumed that ⁇ is variable.
  • the noise canceling digital filter 331 is configured as a filter having an input of [64 Fs, 3 bits] and an output of [64 Fs, 48 bits]. Therefore, the output of the noise canceling digital filter 331 is converted into multi-bits.
  • the delta-sigma modulator 332 converts the number of quantization bits in the [64Fs, 48-bit] digital signal output from the noise canceling digital filter 331 into 1 bit. That is, the delta sigma modulator 332 generates a [64 Fs, 1 bit] digital signal from the [64 Fs, 48 bit] digital signal output from the noise canceling digital filter 331.
  • the bit expander 333 converts the [64 Fs, 1 bit] digital signal output from the delta sigma modulator 332 into a [64 Fs, 3 bit] digital signal here. Specifically, the bit expander 314 converts the signal value to “001” (0.25) if the signal value is “1”, and converts it to “111” ( ⁇ 0.25) if it is “0”. To do.
  • Adder 334 adds the outputs of bit expanders 327 and 328. By adding the outputs of the bit expanders 327 and 328, the above target characteristic “1 + EQ” is achieved.
  • the signal after the addition by the adder 329 can take three values of three bits “010” (0.5), “000” (0), and “110” ( ⁇ 0.5).
  • the adder 335 adds the output of the bit expander 333 and the output of the adder 334.
  • the signal after addition by the adder 335 is 3-bit “011” (0.75), “001” (0.25), “111” ( ⁇ 0.25), “101” ( ⁇ 0.75). The following four values can be taken.
  • the cancellation digital filter 331 can be provided in a DSP, for example.
  • This DSP may be provided as one chip component, for example.
  • the PWM conversion unit 336 performs PWM modulation on the [64 Fs, 3 bit] digital signal output from the adder 335.
  • the analog LPF 337 receives the signal output from the PWM conversion unit 336 and generates an analog audio signal.
  • the analog audio signal generated by the analog LPF 337 is input to the power amplifier 338.
  • the power amplifier 338 amplifies the input audio signal, and drives the driver 351 corresponding to one ear in the headphone 350 by the output.
  • the signal path of the digital audio source in the noise canceling system shown in FIG. The signal of the digital audio source that is not given the characteristic ⁇ due to the transfer function (that is, the signal passing through the delay unit 323 and the adders 334 and 335) does not pass through the delta-sigma modulator that causes quantization noise. . That is, the signal of the digital audio source that is not given the characteristic ⁇ due to the transfer function is converted into an analog audio signal through the PWM converter 336 and the analog LPF 337 without passing through the delta-sigma modulator.
  • the noise canceling system delivers the sound of the digital audio source to the listener well without deteriorating the audio characteristics of the digital audio source when suppressing external noise. I can do it.
  • a noise canceling system can be provided.
  • An A / D converter that outputs a digital signal having a predetermined sampling frequency and a quantization bit number a, including a first delta-sigma modulator that performs a first delta-sigma modulation process on an input analog signal;
  • a filter unit that outputs a digital signal having the sampling frequency and the number of quantization bits b by passing a digital filter having a predetermined filter characteristic with respect to the output of the A / D converter;
  • a second delta-sigma modulator that performs a second delta-sigma modulation process on the output of the filter unit and outputs a digital signal having the sampling frequency and the number of quantization bits a;
  • An adder for adding the output of the second delta-sigma modulator and the input digital signal of the sampling frequency and the number of quantization bits a;
  • a signal processing apparatus comprising: (2) The signal processing apparatus according to (1), wherein the analog signal is a sound collected by a microphone provided at a predetermined position of a headphone.
  • the signal processing apparatus wherein the predetermined filter characteristic is a filter characteristic for performing a feedforward noise reduction process on the headphones.
  • the input digital signal is a DSD audio signal.
  • An A / D converter that outputs a digital signal having a predetermined sampling frequency and a quantization bit number a, including a first delta-sigma modulator that performs a first delta-sigma modulation process on an input analog signal;
  • a filter unit that outputs a digital signal having the sampling frequency and the number of quantization bits b by passing a digital filter having a predetermined filter characteristic with respect to the output of the A / D converter;
  • a second delta-sigma modulator that performs a second delta-sigma modulation process on the output of the filter unit and outputs a digital signal having the sampling frequency and the number of quantization bits a;
  • a first bit expander that expands the number of quantization bits from a to c for the output of the second delta-sigma modulator;
  • the predetermined filter characteristic is a filter characteristic for performing feedback-type noise reduction processing on the headphones.
  • a digital signal that has passed through a digital filter provided with a filter characteristic for performing a feedforward noise reduction process on the headphones is further added to the first adder.
  • An equalizer unit that equalizes the input digital signal to a predetermined target characteristic;
  • a third delta sigma modulator that performs a third delta sigma modulation process on the output of the equalizer unit and outputs a digital signal having the sampling frequency and the number of quantization bits a;
  • a delay unit that gives the input digital signal a delay equivalent to a processing delay in the equalizer unit and the third delta-sigma modulator;
  • a second bit expander that expands the number of quantization bits from a to c with respect to the output of the third delta-sigma modulator;
  • a third bit expander that expands the number of quantization bits from a to c with respect to the output of the delay unit;
  • a second adder that adds the outputs of the second bit expander and the third bit expander and outputs the sum to the first adder;
  • the signal processing device according to any one of (5) to (8), further including: (10) The signal processing apparatus according to any one of (5) to (9), wherein the input digital signal is
  • a first delta-sigma modulation process is performed on the input analog signal to generate a digital signal having a predetermined sampling frequency and a quantization bit number a, and the quantization bit number is changed from a to c for the digital signal.
  • a first delta-sigma modulation unit for expanding and outputting;
  • a first equalized signal is generated by equalizing the input digital signal having the sampling frequency and the number of quantization bits c to a first target characteristic, and a delta-sigma modulation process is performed on the first equalized signal.
  • a first equalizer unit that generates a digital signal having a predetermined sampling frequency and a quantization bit number a, extends the quantization bit number from a to c, and outputs the digital signal;
  • the input digital signal having the sampling frequency and the number of quantization bits c is equalized to a second target characteristic to generate a second equalized signal, and delta-sigma modulation processing is performed on the second equalized signal.
  • a second equalizer unit that generates a digital signal having a predetermined sampling frequency and a quantization bit number a, outputs the digital signal by expanding the quantization bit number from a to c, and A delay unit that applies a delay equivalent to the processing delay in the first equalizer unit or the second equalizer unit to the input digital signal, and expands the number of quantization bits from a to c and outputs the delay,
  • a first addition unit for adding outputs of the first delta-sigma modulation unit, the delay unit, and the first equalizer unit;
  • a filter unit that outputs a digital signal having the sampling frequency and the number of quantization bits b by passing a digital filter having a predetermined filter characteristic with respect to the output of the first addition unit; Delta sigma modulation processing is performed on the output of the filter unit to generate a digital signal having the sampling frequency and the number of quantization bits a, and the number of quantization bits is expanded from a to c for the digital signal and output.
  • a second delta-sigma modulator that A second adder that adds the outputs of the second delta-sigma modulator, the delay unit, and the second equalizer;
  • a signal processing apparatus comprising: (12) The signal processing apparatus according to (11), wherein the analog signal is a sound collected by a microphone provided at a predetermined position of a headphone. (13) The signal processing apparatus according to (12), wherein the predetermined filter characteristic is a filter characteristic for performing feedback-type noise reduction processing on the headphones. (14) The signal processing apparatus according to any one of (11) to (13), wherein the input digital signal is a DSD audio signal.
  • Delta sigma modulation processing is performed on the input analog signal to generate a digital signal having a predetermined sampling frequency and a quantization bit number a, and the quantization bit number is expanded from a to c for the digital signal.
  • a first equalized signal is generated by equalizing the input digital signal having the sampling frequency and the number of quantization bits c to a first target characteristic, and a delta-sigma modulation process is performed on the first equalized signal.
  • the input digital signal having the sampling frequency and the number of quantization bits c is equalized to a second target characteristic to generate a second equalized signal, and delta-sigma modulation processing is performed on the second equalized signal.
  • a first equalized signal is generated by equalizing the input digital signal having the sampling frequency and the number of quantization bits c to a first target characteristic, and a delta-sigma modulation process is performed on the first equalized signal.
  • a first equalizer process for generating a digital signal having a predetermined sampling frequency and a quantization bit number a, extending the quantization bit number from a to c and outputting the digital signal;
  • the input digital signal having the sampling frequency and the number of quantization bits c is equalized to a second target characteristic to generate a second equalized signal, and delta-sigma modulation processing is performed on the second equalized signal.
  • Microphone 112 Amplifier 134: Adder 140: Power amplifier 150: Headphone 151: Driver 152: Driver

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

【課題】オーディオ特性を劣化させずに外部ノイズを抑圧させることが可能な信号処理装置を提供する。 【解決手段】入力されたアナログ信号に対して第1デルタシグマ変調処理を行う第1デルタシグマ変調器を含む、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力するA/Dコンバータと、前記A/Dコンバータの出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、前記フィルタ部の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力する第2デルタシグマ変調器と、前記第2デルタシグマ変調器の出力と前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算する加算部と、を備える、信号処理装置が提供される。

Description

信号処理装置、信号処理方法及びコンピュータプログラム
 本開示は、信号処理装置、信号処理方法及びコンピュータプログラムに関する。
 ヘッドフォンやイヤフォンなどの音響再生装置によって聴取者がオーディオコンテンツを聴取する際に、外部ノイズを抑圧して遮音効果を高めるノイズキャンセリングシステムが実用化されている。一般的なノイズキャンセリングシステムは、ノイズ検出用のマイクロフォンで集音されたノイズを打ち消すような信号を生成し、オーディオ信号に加算することで外部ノイズを抑圧するものである(特許文献1、2等参照)。
特開2008-193421号公報 特開2009-33309号公報
 既存のノイズキャンセリングシステムにおけるオーディオ信号として、サンプリング周波数がメガヘルツオーダー(例えば2.8MHz)で、量子化ビット数が1ビットであるDSD(Direct Stream Digital)方式のオーディオ信号が使われた場合、量子化ノイズが付加されることでオーディオ特性の劣化が生じる。
 そこで、本開示では、オーディオ特性を劣化させずに外部ノイズを抑圧させることが可能な、新規かつ改良された信号処理装置、信号処理方法及びコンピュータプログラムを提案する。
 本開示によれば、入力されたアナログ信号に対して第1デルタシグマ変調処理を行う第1デルタシグマ変調器を含む、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力するA/Dコンバータと、前記A/Dコンバータの出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、前記フィルタ部の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力する第2デルタシグマ変調器と、前記第2デルタシグマ変調器の出力と前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算する加算部と、を備える、信号処理装置が提供される。
 また本開示によれば、入力されたアナログ信号に対して第1デルタシグマ変調処理を行う第1デルタシグマ変調器を含む、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力するA/Dコンバータと、前記A/Dコンバータの出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、前記フィルタ部の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力する第2デルタシグマ変調器と、前記第2デルタシグマ変調器の出力に対して量子化ビット数をaからcに拡張する第1ビット拡張器と、前記第1ビット拡張器の出力と前記サンプリング周波数及び量子化ビット数cの入力デジタル信号とを加算する第1加算部と、を備える、信号処理装置が提供される。
 また本開示によれば、入力されたアナログ信号に対して第1デルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第1デルタシグマ変調部と、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第1の目標特性に等化して第1の等化信号を生成し、前記第1の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第1イコライザ部と、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第2の目標特性に等化して第2の等化信号を生成し、前記第2の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第2イコライザ部と、前記第1イコライザ部または前記第2イコライザ部での処理遅延と同等の遅延を前記入力デジタル信号に与え、量子化ビット数をaからcに拡張して出力する遅延部と、前記第1デルタシグマ変調部、前記遅延部及び前記第1イコライザ部の出力を加算する第1加算部と、前記第1加算部の出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、前記フィルタ部の出力に対してデルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第2デルタシグマ変調部と、前記第2デルタシグマ変調部、前記遅延部及び前記第2イコライザ部の出力を加算する第2加算部と、を備える、信号処理装置が提供される。
 また本開示によれば、入力されたアナログ信号に対して第1デルタシグマ変調処理を行い、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、前記量子化ビット数bのデジタル信号に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、前記第2デルタシグマ変調処理の出力と、前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算することと、を含む、信号処理方法が提供される。
 また本開示によれば、入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、前記サンプリング周波数及び量子化ビット数bのデジタル信号の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、前記第2デルタシグマ変調処理の出力に対して量子化ビット数をaからcに拡張することと、量子化ビット数がcに拡張されたデジタル信号と、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号とを加算することと、を含む、信号処理方法が提供される。
 また本開示によれば、入力されたアナログ信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1デルタシグマ変調処理を行うことと、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第1の目標特性に等化して第1の等化信号を生成し、前記第1の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1イコライザ処理を行うことと、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第2の目標特性に等化して第2の等化信号を生成し、前記第2の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2イコライザ処理を行うことと、前記第1イコライザ処理または前記第2イコライザ処理での処理遅延と同等の遅延を前記入力デジタル信号に与え、量子化ビット数をaからcに拡張して出力する、遅延処理を行うことと、前記第1デルタシグマ変調処理、前記遅延処理及び前記第1イコライザ処理の出力を加算する、第1加算処理を行うことと、前記第1加算処理の出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力する、フィルタ処理を行うことと、前記フィルタ処理の出力に対してデルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2デルタシグマ変調処理を行うことと、前記第2デルタシグマ変調処理、前記遅延処理及び前記第2イコライザ処理の出力を加算する、第1加算処理を行うことと、を含む、信号処理方法が提供される。
 また本開示によれば、コンピュータに、入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、前記量子化ビット数bのデジタル信号に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、前記第2デルタシグマ変調処理の出力と、前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算することと、を実行させる、コンピュータプログラムが提供される。
 また本開示によれば、コンピュータに、入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、前記サンプリング周波数及び量子化ビット数bのデジタル信号の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、前記第2デルタシグマ変調処理の出力に対して量子化ビット数をaからcに拡張することと、量子化ビット数がcに拡張されたデジタル信号と、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号とを加算することと、を実行させる、コンピュータプログラムが提供される。
 また本開示によれば、コンピュータに、入力されたアナログ信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1デルタシグマ変調処理を行うことと、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第1の目標特性に等化して第1の等化信号を生成し、前記第1の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1イコライザ処理を行うことと、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第2の目標特性に等化して第2の等化信号を生成し、前記第2の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2イコライザ処理を行うことと、前記第1イコライザ処理または前記第2イコライザ処理での処理遅延と同等の遅延を前記入力デジタル信号に与え、量子化ビット数をaからcに拡張して出力する、遅延処理を行うことと、前記第1デルタシグマ変調処理、前記遅延処理及び前記第1イコライザ処理の出力を加算する、第1加算処理を行うことと、前記第1加算処理の出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力する、フィルタ処理を行うことと、前記フィルタ処理の出力に対してデルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2デルタシグマ変調処理を行うことと、前記第2デルタシグマ変調処理、前記遅延処理及び前記第2イコライザ処理の出力を加算する、第1加算処理を行うことと、を実行させる、コンピュータプログラムが提供される。
 以上説明したように本開示によれば、オーディオ特性を劣化させずに外部ノイズを抑圧させることが可能な、新規かつ改良された信号処理装置、信号処理方法及びコンピュータプログラムを提供することが出来る。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の第1の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。 本開示の第2の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。 本開示の第3の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。 本開示の第4の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。 本開示の第5の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.概要
 2.第1の実施の形態(フィードフォワード方式)
 3.第2の実施の形態(フィードフォワード方式)
 4.第3の実施の形態(フィードバック方式)
 5.第4の実施の形態(フィードバック方式+フィードフォワード方式)
 6.第5の実施の形態(フィードバック方式)
 7.まとめ
 <1.概要>
 本開示の実施の形態について詳細に説明する前に、本開示の実施の形態の概要を説明する。
 上述したように、一般的なノイズキャンセリングシステムは、ノイズ検出用のマイクロフォンで集音されたノイズを打ち消すような信号を生成し、オーディオ信号に加算することで外部ノイズを抑圧するものである。そして、ノイズキャンセリングシステムには、フィードフォワード方式、フィードバック方式、フィードフォワード方式とフィードバック方式とを組み合わせた方式がある。フィードフォワード方式は、ヘッドフォンの筐体の外側に設けられるマイクロフォンにより集音された音声信号(外部ノイズ)を打ち消すための信号処理を行う方式である。フィードバック方式は、ヘッドフォンの筐体の内側に設けられるマイクロフォンにより集音された音声信号(内部ノイズ)を打ち消すための信号処理を行う方式である。
 例えば上記特許文献1には、フィードフォワード方式により外部ノイズを抑圧するノイズキャンセリングシステムについての技術が開示されている。フィードフォワード方式では、マイクロフォンにより集音された音声信号をキャンセルするためのノイズキャンセリング信号と合成するために、デジタルオーディオソースからのオーディオ信号に対してビット拡張器によるビット拡張が行われる。これは、ノイズキャンセリング信号とオーディオ信号との量子化ビット数を合わせるためである。ノイズキャンセリング信号とオーディオ信号とが合成されると、デルタシグマ変調器、ローパスフィルタを介してアナログ信号に変換され、アンプを通じてヘッドフォンやイヤフォンから音が主力される。
 またフィードバック方式においても、マイクロフォンにより集音された音声信号をキャンセルするためのノイズキャンセリング信号と合成するために、デジタルオーディオソースからのオーディオ信号に対してイコライザによるビット拡張が行われる。ノイズキャンセリング信号とオーディオ信号とが合成されると、デルタシグマ変調器、ローパスフィルタを介してアナログ信号に変換され、アンプを通じてヘッドフォンやイヤフォンから音が主力される。
 ここで、オーディオ信号として、サンプリング周波数がメガヘルツオーダー(例えば2.8MHz)で、量子化ビット数が1ビットであるDSD方式のオーディオ信号が使われた場合、量子化ビット数が例えば16ビットであるノイズキャンセリング信号との合成のためにオーディオ信号の量子化ビット数が16ビットに拡張される。そして、ノイズキャンセリング信号とオーディオ信号とが合成されると、デルタシグマ変調器によって量子化ビット数が1ビットの信号に変換される。ここで、DSD方式のオーディオ信号の特性変化に着目すると、デルタシグマ変調器を通過することで量子化ノイズが付加されることは避けられず、結果としてオーディオ特性の劣化が生じてしまう。デルタシグマ変調器を通過することによるオーディオ特性の劣化は、フィードバック方式においても同様に生じる。
 そこで本件開示者は、上述の点に鑑み、デジタルオーディオソースのオーディオ特性を劣化させずに外部ノイズを抑圧させることが可能なノイズキャンセリングシステムについて鋭意検討を行った。その結果、本件開示者は、以下で説明するように、デジタルオーディオソースのオーディオ特性を劣化させずに外部ノイズを抑圧させることが可能なノイズキャンセリングシステムを考案するに至った。
 以上、本開示の実施の形態の概要について説明した。
 <2.第1の実施形態(フィードフォワード方式)>
 第1の実施形態として、フィードフォワード方式によるノイズキャンセリングシステムにおいて、デジタルオーディオソースのオーディオ特性を劣化させないノイズキャンセリングシステムの例を説明する。
 図1は、本開示の第1の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。以下、図1を用いて本開示の第1の実施形態に係るノイズキャンセリングシステムの構成例について説明する。
 図1に示したように、本開示の第1の実施形態に係るノイズキャンセリングシステムは、マイクロフォン111と、アンプ112と、A/Dコンバータ部120と、ノイズキャンセル用デジタルフィルタ130と、デルタシグマ変調器132と、加算器134と、PWM(Pulse Width Modulation;パルス幅変調)変換部136と、アナログLPF(Low Pass Filter)138と、パワーアンプ140と、ヘッドフォン150と、を含んで構成される。図1に示したヘッドフォン150は、ドライバ151、152を含み、L(左)、及びR(右)による2チャンネルステレオに対応したものであるが、図1に示したノイズキャンセリングシステムの構成は、LチャンネルまたはRチャンネルの少なくともいずれかに対応したものである。そして、図1に示したノイズキャンセリングシステムにおけるデジタルオーディオソースのサンプリング周波数は64Fs(2.8224MHz)、量子化ビット数が1ビットであるとする。図1に示したノイズキャンセリングシステムにおけるデジタルオーディオソースはDSD方式のオーディオソースであるとするが、本開示は係る例に限定されるものでは無い。
 マイクロフォン111は、キャンセル対象となるヘッドフォン150の周囲の外部音(外部ノイズ)を集音する。フィードフォワード方式のノイズキャンセリングシステムにおいては、マイクロフォン111は、実際にはヘッドフォン150のL、Rの片側チャンネル毎に、対応する筐体外部に設けられる。図1では、LチャンネルまたはRチャンネルのいずれか一方のチャンネルに対応して設けられているマイクロフォン111が図示されているものとする。
 アンプ112は、マイクロフォン111が集音した外部音を増幅させて、アナログのオーディオ信号とする。
 A/Dコンバータ部120は、アンプ112から出力されるアナログのオーディオ信号をデジタルのオーディオ信号に変換する。A/Dコンバータ部120は、デルタシグマ変調器121を含む。デルタシグマ変調器121は、アンプ112から出力されるアナログのオーディオ信号を、デジタルオーディオソースと同じサンプリング周波数(64Fs)及び量子化ビット数(1ビット)のデジタル信号に変換する。なお、以下の説明及び図中では、信号のサンプリング周波数と量子化ビット数を[サンプリング周波数,量子化ビット数]と表記する。[64Fs,1bit]とあれば、その信号はサンプリング周波数が64Fs、量子化ビット数が1ビットであることを表している。
 ノイズキャンセル用デジタルフィルタ130は、A/Dコンバータ部120から出力されるデジタルのオーディオ信号、すなわち、マイクロフォン111が集音した外部音を集音して得たデジタルのオーディオ信号を入力する。そしてノイズキャンセル用デジタルフィルタ130は、入力したデジタルのオーディオ信号を利用して、ドライバ151から出すべき音として、ドライバ151に対応するヘッドフォン150の装着者の耳に到達して聞こえ得る外部音をキャンセルする作用を持つ音のオーディオ信号(キャンセル用音声信号)を生成する。キャンセル用音声信号として最も簡単なものとしては、例えば、ノイズキャンセル用デジタルフィルタ130に入力されたオーディオ信号、すなわち、外部音を集音して得たオーディオ信号に対して逆特性、逆位相となる信号である。実際には、ノイズキャンセリングシステムの系の中における回路や空間などの伝達特性を考慮した特性が与えられる。
 ノイズキャンセル用デジタルフィルタ130は、例えばFIR(Finite Impulse Response)フィルタとして構成される。本実施形態では、ノイズキャンセル用デジタルフィルタ130は、入力が[64Fs,1bit]、出力が[64Fs,16bit]となるようなフィルタとして構成される。従って、ノイズキャンセル用デジタルフィルタ130の出力はマルチビット化される。
 デルタシグマ変調器132は、ノイズキャンセル用デジタルフィルタ130が出力する[64Fs,16bit]のデジタル信号における量子化ビット数を1ビットに変換する。すなわち、デルタシグマ変調器132はノイズキャンセル用デジタルフィルタ130が出力する[64Fs,16bit]のデジタル信号から、[64Fs,1bit]のデジタル信号を生成する。
 加算器134は、デジタルオーディオソースの信号と、デルタシグマ変調器132が出力する信号とを加算する。加算器134による加算後の信号は、0と1との2値を取り得る2つの信号同士の加算であることから、0、1、2の3つの値を取り得る2ビットの信号となる。すなわち加算器134は、[64Fs,2bit]のデジタル信号を生成する。
 ノイズキャンセル用デジタルフィルタ130、デルタシグマ変調器132、加算器134は、例えばDSP(Digital Signal Processor)に設けられ得る。このDSPは、例えば1つのチップ部品として提供されても良い。
 PWM変換部136は、加算器134が出力する[64Fs,2bit]のデジタル信号に対するPWM変調を行う。そしてアナログLPF138は、PWM変換部136が出力する信号を入力し、アナログのオーディオ信号を生成する。アナログLPF138が生成したアナログのオーディオ信号は、パワーアンプ140に入力される。パワーアンプ140は、入力されたオーディオ信号を増幅し、その出力により、ヘッドフォン150における一方の耳に対応するドライバ151を駆動する。
 ここで、図1に示したノイズキャンセリングシステムにおけるデジタルオーディオソースの信号パスに注目する。デジタルオーディオソースの信号は、量子化ノイズの要因となるデルタシグマ変調器を通っていない。すなわち、デジタルオーディオソースの信号は、[64Fs,1bit]のデジタル信号のまま、[64Fs,1bit]のキャンセル用音声信号と合成され、さらにデルタシグマ変調器を介すること無く、PWM変換部136及びアナログLPF138を通ってアナログのオーディオ信号に変換される。
 従って、本開示の第1の実施形態に係るノイズキャンセリングシステムは、外部ノイズを抑圧する際に、デジタルオーディオソースのオーディオ特性を劣化させずに、デジタルオーディオソースの音を良好に聴取者に届けることが出来る。
 <3.第2の実施形態(フィードフォワード方式)>
 第2の実施形態として、第1の実施形態と同様に、フィードフォワード方式によるノイズキャンセリングシステムにおいて、デジタルオーディオソースのオーディオ特性を劣化させないノイズキャンセリングシステムの例を説明する。
 図2は、本開示の第2の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。以下、図2を用いて本開示の第2の実施形態に係るノイズキャンセリングシステムの構成例について説明する。図2に示したノイズキャンセリングシステムにおけるデジタルオーディオソースはDSD方式のオーディオソースであるとするが、本開示は係る例に限定されるものでは無い。
 図2に示したノイズキャンセリングシステムは、図1に示したノイズキャンセリングシステムと比較すると、デジタルオーディオソースからの信号がキャンセル用音声信号と合成されていない。図1に示したノイズキャンセリングシステムにおけるドライバ151への入力系統は1系統で表していたが、実際には、ドライバ151には正負2つの端子があり、図1に示した例では、一方の端子は接地されている。一方、図2に示したノイズキャンセリングシステムでは、ドライバ151の一方の端子(図2の例では-端子)にキャンセル用音声信号が基になっているアナログ信号が入力され、他方の端子(図2の例では+端子)にデジタルオーディオソースが基になっているアナログ信号が入力されている。すなわち、図2に示したノイズキャンセリングシステムでは、ドライバ151がBTL(Bridged Transformer Less)接続の形態を有している。
 すなわち、図2に示したノイズキャンセリングシステムでは、PWM変換部136においてPWM変調が行われる。
 図1に示したノイズキャンセリングシステムにおける、加算器134による合成ではなく、図2に示したようなBTL接続によっても同様に、外部ノイズを抑圧する際に、デジタルオーディオソースのオーディオ特性を劣化させずに、デジタルオーディオソースの音を良好に聴取者に届けることが出来る。
 <4.第3の実施形態(フィードバック方式)>
 第3の実施形態として、フィードバック方式によるノイズキャンセリングシステムにおいて、デジタルオーディオソースのオーディオ特性を劣化させないノイズキャンセリングシステムの例を説明する。
 図3は、本開示の第3の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。以下、図3を用いて本開示の第3の実施形態に係るノイズキャンセリングシステムの構成例について説明する。
 図3に示したように、本開示の第1の実施形態に係るノイズキャンセリングシステムは、マイクロフォン211と、アンプ212と、A/Dコンバータ部220と、ノイズキャンセル用デジタルフィルタ230と、デルタシグマ変調器232、243と、ビット拡張器234、244、245と、イコライザ241と、遅延器242と、加算器246、247と、PWM変換部248と、アナログLPF249と、パワーアンプ250と、ヘッドフォン260と、を含んで構成される。図3に示したヘッドフォン260は、ドライバ261、262を含み、L(左)、及びR(右)による2チャンネルステレオに対応したものであるが、図3に示したノイズキャンセリングシステムの構成は、LチャンネルまたはRチャンネルの少なくともいずれかに対応したものである。そして、図3に示したノイズキャンセリングシステムにおけるデジタルオーディオソースは[64Fs,1bit]であるとする。図3に示したノイズキャンセリングシステムにおけるデジタルオーディオソースはDSD方式のオーディオソースであるとするが、本開示は係る例に限定されるものでは無い。
 マイクロフォン211は、キャンセル対象となるヘッドフォン260の筐体の内部における、ドライバ261が出力する音と、筐体の内部に侵入する外部音とを集音する。フィードバック方式のノイズキャンセリングシステムにおいては、マイクロフォン211は、実際にはヘッドフォン260のL、Rの片側チャンネル毎に、対応する筐体内部に設けられる。図3では、LチャンネルまたはRチャンネルのいずれか一方のチャンネルに対応して設けられているマイクロフォン211が図示されているものとする。
 アンプ212は、マイクロフォン211が集音した外部音を増幅させて、アナログのオーディオ信号とする。
 A/Dコンバータ部220は、アンプ212から出力されるアナログのオーディオ信号をデジタルのオーディオ信号に変換する。A/Dコンバータ部220は、デルタシグマ変調器221を含む。デルタシグマ変調器221は、アンプ212から出力されるアナログのオーディオ信号を、デジタルオーディオソースと同じ[64Fs,1bit]のデジタル信号に変換する。
 ノイズキャンセル用デジタルフィルタ230は、A/Dコンバータ部220から出力されるデジタルのオーディオ信号、すなわち、マイクロフォン211が集音したヘッドフォン260のドライバ261の側の筐体の内部音を集音して得たデジタルのオーディオ信号を入力する。そしてノイズキャンセル用デジタルフィルタ230は、入力したデジタルのオーディオ信号を利用して、ドライバ261から出すべき音として、ドライバ261に対応するヘッドフォン260の装着者の耳に到達して聞こえ得る外部音をキャンセルする作用を持つ音のオーディオ信号(キャンセル用音声信号)を生成する。具体的には、ノイズキャンセル用デジタルフィルタ230は、マイクロフォン211が集音した音に対し、ノイズキャンセルのための所定の伝達関数-βを与える処理を行う。
 本実施形態では、ノイズキャンセル用デジタルフィルタ230は、入力が[64Fs,1bit]、出力が[64Fs,16bit]となるようなフィルタとして構成される。従って、ノイズキャンセル用デジタルフィルタ230の出力はマルチビット化される。
 デルタシグマ変調器232は、ノイズキャンセル用デジタルフィルタ230が出力する[64Fs,16bit]のデジタル信号における量子化ビット数を1ビットに変換する。すなわち、デルタシグマ変調器232はノイズキャンセル用デジタルフィルタ230が出力する[64Fs,16bit]のデジタル信号から、[64Fs,1bit]のデジタル信号を生成する。
 ビット拡張器234は、デルタシグマ変調器232が出力する[64Fs,1bit]のデジタル信号を、ここでは[64Fs,3bit]のデジタル信号に変換する。具体的には、ビット拡張器234は、信号の値が「1」であれば「001」(0.25)に、「0」であれば「111」(-0.25)に、それぞれ変換する。
 イコライザ241は、デジタルオーディオソースに対して、係数βの伝達関数による特性を与えるものである。ここでは、イコライザ241は、[64Fs,1bit]のデジタル信号を、ここでは[64Fs,16bit]のデジタル信号に変換している。デルタシグマ変調器243は、イコライザ241の出力に対してデルタシグマ変調を行って、[64Fs,1bit]のデジタル信号に変換する。遅延器242は、デジタルオーディオソースからの信号に対し、イコライザ241及びデルタシグマ変調器243の信号処理による遅延に合わせた所定の遅延処理を行う。
 ビット拡張器244は、デルタシグマ変調器243が出力する[64Fs,1bit]のデジタル信号を、ここでは[64Fs,3bit]のデジタル信号に変換する。具体的には、ビット拡張器244は、信号の値が「1」であれば「001」(0.25)に、「0」であれば「111」(-0.25)に、それぞれ変換する。またビット拡張器244は、遅延器242が出力する[64Fs,1bit]のデジタル信号を、ここでは[64Fs,3bit]のデジタル信号に変換する。具体的には、ビット拡張器245は、同様に、信号の値が「1」であれば「001」(0.25)に、「0」であれば「111」(-0.25)に、それぞれ変換する。加算器246は、ビット拡張器244、245の出力を加算する。
 ここでイコライザ241が係数βの伝達関数による特性を与える理由を説明する。フィードバック方式の場合、ノイズキャンセル用デジタルフィルタ230から出力されるキャンセル用音声信号には、外部音に対応する成分だけで無く、ドライバ261から出力されたデジタルオーディオソースの音を集音した成分も含まれる。つまり、デジタルオーディオソースの音の成分に対して1/(1+β)で表される伝達関数に応じた特性が与えられている。そこで、予めデジタルオーディオソースの信号に対して1/(1+β)である1+βの伝達関数による特性を与えておく。イコライザ241は、そのうち、βの伝達関数による特性を与えるものである。加算器246によって信号が加算されることで、デジタルオーディオソースに対し、1+βの伝達関数による特性が与えられたのと等価となる。加算器246の加算後の信号は、3ビットの「010」(0.5)、「000」(0)、「110」(-0.5)の3つの値を取りうる。
 加算器247は、ビット拡張器234の出力と、加算器246の出力とを加算する。加算器247の加算後の信号は、3ビットの「011」(0.75)、「001」(0.25)、「111」(-0.25)、「101」(-0.75)の4つの値を取りうる。
 ノイズキャンセル用デジタルフィルタ230と、デルタシグマ変調器232、243と、ビット拡張器234、244、245と、イコライザ241と、遅延器242と、加算器246、247とは、例えばDSPに設けられ得る。このDSPは、例えば1つのチップ部品として提供されても良い。
 PWM変換部248は、加算器247が出力する[64Fs,3bit]のデジタル信号に対するPWM変調を行う。そしてアナログLPF249は、PWM変換部248が出力する信号を入力し、アナログのオーディオ信号を生成する。アナログLPF249が生成したアナログのオーディオ信号は、パワーアンプ250に入力される。パワーアンプ250は、入力されたオーディオ信号を増幅し、その出力により、ヘッドフォン260における一方の耳に対応するドライバ261を駆動する。
 ここで、図3に示したノイズキャンセリングシステムにおけるデジタルオーディオソースの信号パスに注目する。伝達関数による特性βが与えられていないデジタルオーディオソースの信号(遅延器242を介している信号)は、量子化ノイズの要因となるデルタシグマ変調器を通っていない。すなわち、伝達関数による特性βが与えられていないデジタルオーディオソースの信号は、デルタシグマ変調器を介すること無く、PWM変換部248及びアナログLPF249を通ってアナログのオーディオ信号に変換される。
 従って、本開示の第3の実施形態に係るノイズキャンセリングシステムは、外部ノイズを抑圧する際に、デジタルオーディオソースのオーディオ特性を劣化させずに、デジタルオーディオソースの音を良好に聴取者に届けることが出来る。
 <5.第4の実施形態(フィードバック方式+フィードフォワード方式)>
 第4の実施形態として、フィードバック方式とフィードフォワード方式とを組み合わせたノイズキャンセリングシステムにおいて、デジタルオーディオソースのオーディオ特性を劣化させないノイズキャンセリングシステムの例を説明する。
 図4は、本開示の第4の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。以下、図4を用いて本開示の第4の実施形態に係るノイズキャンセリングシステムの構成例について説明する。図4に示したノイズキャンセリングシステムにおけるデジタルオーディオソースはDSD方式のオーディオソースであるとするが、本開示は係る例に限定されるものでは無い。
 図4に示したノイズキャンセリングシステムは、図3に示したフィードバック方式によるノイズキャンセリングシステムに、フィードフォワード方式によるノイズキャンセリングシステムを組み合わせたものである。すなわち、図4に示したノイズキャンセリングシステムは、図3に示したフィードバック方式によるノイズキャンセリングシステムに、マイクロフォン271、アンプ272と、デルタシグマ変調器273、275、ノイズキャンセル用デジタルフィルタ274、及びビット拡張器276が追加された構成を有する。
 マイクロフォン271は、キャンセル対象となるヘッドフォン260の周囲の外部音(外部ノイズ)を集音する。フィードフォワード方式のノイズキャンセリングシステムにおいては、マイクロフォン271は、実際にはヘッドフォン260のL、Rの片側チャンネル毎に、対応する筐体外部に設けられる。図4では、LチャンネルまたはRチャンネルのいずれか一方のチャンネルに対応して設けられているマイクロフォン271が図示されているものとする。
 アンプ272は、マイクロフォン271が集音した外部音を増幅させて、アナログのオーディオ信号とする。デルタシグマ変調器273は、アンプ272から出力されるアナログのオーディオ信号を、デジタルオーディオソースと同じ[64Fs,1bit]のデジタル信号に変換する。
 ノイズキャンセル用デジタルフィルタ274は、デルタシグマ変調器273から出力されるデジタルのオーディオ信号、すなわち、マイクロフォン271が集音した外部音を集音して得たデジタルのオーディオ信号を入力する。そしてノイズキャンセル用デジタルフィルタ274は、入力したデジタルのオーディオ信号を利用して、ドライバ261から出すべき音として、ドライバ261に対応するヘッドフォン260の装着者の耳に到達して聞こえ得る外部音をキャンセルする作用を持つキャンセル用音声信号を生成する。ノイズキャンセル用デジタルフィルタ274は、例えばFIRフィルタとして構成される。本実施形態では、ノイズキャンセル用デジタルフィルタ274は、入力が[64Fs,1bit]、出力が[64Fs,16bit]となるようなフィルタとして構成される。従って、ノイズキャンセル用デジタルフィルタ274の出力はマルチビット化される。
 デルタシグマ変調器275は、ノイズキャンセル用デジタルフィルタ274が出力する[64Fs,16bit]のデジタル信号における量子化ビット数を1ビットに変換する。すなわち、デルタシグマ変調器275はノイズキャンセル用デジタルフィルタ274が出力する[64Fs,16bit]のデジタル信号から、[64Fs,1bit]のデジタル信号を生成する。
 ビット拡張器276は、デルタシグマ変調器275が出力する[64Fs,1bit]のデジタル信号を、ここでは[64Fs,4bit]のデジタル信号に変換する。本実施形態では、同様にビット拡張器234、244、245も、[64Fs,1bit]のデジタル信号を、[64Fs,4bit]のデジタル信号に変換する。すなわち、各ビット拡張器は、4つのデジタル信号の加算に対応するために、量子化ビット数が1ビットのデジタル信号を4ビットに拡張している。
 ビット拡張器276が出力するデジタル信号は、加算器247において、ビット拡張器234の出力と、加算器246の出力とともに加算される。
 図4に示したノイズキャンセリングシステムは、フィードフォワード方式によるノイズキャンセリングシステムと、フィードバック方式によるノイズキャンセリングシステムとが組み合わさっていることで、より外部ノイズの抑圧効果を高めることが出来る。そして本開示の第4の実施形態に係るノイズキャンセリングシステムは、外部ノイズを抑圧する際に、デジタルオーディオソースのオーディオ特性を劣化させずに、デジタルオーディオソースの音を良好に聴取者に届けることが出来る。
 <6.第5の実施形態(前後入れフィードバック方式)>
 フィードバック方式によるノイズキャンセリングシステムとして、ノイズキャンセルのための所定の伝達関数を与えるブロックの前後にオーディオ成分を加算することで外部ノイズを抑圧しながらオーディオ信号の品質劣化を抑える方式(前後入れフィードバック方式と称する)が知られている。前後入れフィードバック方式については、例えば特許文献2(特開2009-33309)に記載がある。
 本開示の第5の実施形態では、この前後入れフィードバック方式において外部ノイズを抑圧する際に、デジタルオーディオソースのオーディオ特性を劣化させないノイズキャンセリングシステムを説明する。
 図5は、本開示の第5の実施形態に係るノイズキャンセリングシステムの構成例を示す図である。以下、図5を用いて本開示の第5の実施形態に係るノイズキャンセリングシステムの構成例について説明する。図5に示したノイズキャンセリングシステムにおけるデジタルオーディオソースはDSD方式のオーディオソースであるとするが、本開示は係る例に限定されるものでは無い。
 図5に示したように、本開示の第5の実施形態に係るノイズキャンセリングシステムは、マイクロフォン311と、アンプ312と、デルタシグマ変調器313、324、325、332と、ビット拡張器314、326、327、328、333と、イコライザ321、322と、遅延器323は、加算器329、330、334、335と、ノイズキャンセル用デジタルフィルタ331と、PWM変換部336と、アナログLPF337と、パワーアンプ338と、ヘッドフォン350と、を含んで構成される。
 マイクロフォン311は、キャンセル対象となるヘッドフォン350の筐体の内部における、ドライバ351が出力する音と、筐体の内部に侵入する外部音とを集音する。フィードバック方式のノイズキャンセリングシステムにおいては、マイクロフォン311は、実際にはヘッドフォン350のL、Rの片側チャンネル毎に、対応する筐体内部に設けられる。図5では、LチャンネルまたはRチャンネルのいずれか一方のチャンネルに対応して設けられているマイクロフォン311が図示されているものとする。
 アンプ312は、マイクロフォン311が集音した外部音を増幅させて、アナログのオーディオ信号とする。
 デルタシグマ変調器313は、アンプ312から出力されるアナログのオーディオ信号をデジタルのオーディオ信号に変換する。デルタシグマ変調器313は、アンプ312から出力されるアナログのオーディオ信号を、デジタルオーディオソースと同じ[64Fs,1bit]のデジタル信号に変換する。
 ビット拡張器314は、デルタシグマ変調器313が出力する[64Fs,1bit]のデジタル信号を、ここでは[64Fs,3bit]のデジタル信号に変換する。具体的には、ビット拡張器314は、信号の値が「1」であれば「001」(0.25)に、「0」であれば「111」(-0.25)に、それぞれ変換する。
 イコライザ321は、前入れ側における所定の目標特性をオーディオソースに与える処理ブロックである。またイコライザ322は、後入れ側における所定の目標特性をオーディオソースに与える処理ブロックである。イコライザ321、322は、[64Fs,1bit]のデジタル信号を、ここでは[64Fs,16bit]のデジタル信号に変換している。遅延器323は、デジタルオーディオソースからの信号に対し、イコライザ321、322及びデルタシグマ変調器324、325の信号処理による遅延に合わせた所定の遅延処理を行う。
 ここで、前入れ側のイコライザ目標特性EQ1と後入れ側のイコライザ目標特性EQ2はどちらもおよそMid Presence Filter(以下、MPF)になり、イコライジング調整されるのが一般的である。MPFは伝達関数を“1+EQ”のように展開可能であるため、デジタルオーディオソースであるDSD形式の[64Fs,1bit]は、目標特性“1+EQ”の“1”側と“EQ”側の処理に分岐され、その後合成される。遅延器323を通るパスは、この前者の“1”側の処理に相当するものである。
 デルタシグマ変調器324は、イコライザ321から出力されるオーディオ信号を、デジタルオーディオソースと同じ[64Fs,1bit]のデジタル信号に変換する。デルタシグマ変調器325は、イコライザ321から出力されるオーディオ信号を、デジタルオーディオソースと同じ[64Fs,1bit]のデジタル信号に変換する。
 ビット拡張器326、327、328は、それぞれ、デルタシグマ変調器324、遅延器323、デルタシグマ変調器325が出力する[64Fs,1bit]のデジタル信号を、ここでは[64Fs,3bit]のデジタル信号に変換する。具体的には、ビット拡張器326、327、328は、信号の値が「1」であれば「001」(0.25)に、「0」であれば「111」(-0.25)に、それぞれ変換する。
 加算器329は、ビット拡張器326、328の出力を加算する。ビット拡張器326、328の出力が加算されることで上述の目標特性“1+EQ”が達成される。加算器329の加算後の信号は、3ビットの「010」(0.5)、「000」(0)、「110」(-0.5)の3つの値を取りうる。そして加算器330は、ビット拡張器314の出力と、加算器329の出力と、を加算する。加算器330の加算後の信号は、3ビットの「011」(0.75)、「001」(0.25)、「111」(-0.25)、「101」(-0.75)の4つの値を取りうる。
 ノイズキャンセル用デジタルフィルタ331は、加算器330が出力する信号、すなわち、マイクロフォン311が集音したヘッドフォン350のドライバ351の側の筐体の内部音を集音して得たデジタルのオーディオ信号が含まれる信号を入力する。そしてノイズキャンセル用デジタルフィルタ331は、入力したデジタルのオーディオ信号を利用して、ドライバ351から出すべき音として、ドライバ351に対応するヘッドフォン350の装着者の耳に到達して聞こえ得る外部音をキャンセルする作用を持つ音のオーディオ信号(キャンセル用音声信号)を生成する。具体的には、ノイズキャンセル用デジタルフィルタ331は、マイクロフォン311が集音した音に対し、ノイズキャンセルのための所定の伝達関数-βを与える処理を行う。本実施形態では、βは可変であるとする。
 本実施形態では、ノイズキャンセル用デジタルフィルタ331は、入力が[64Fs,3bit]、出力が[64Fs,48bit]となるようなフィルタとして構成される。従って、ノイズキャンセル用デジタルフィルタ331の出力はマルチビット化される。
 デルタシグマ変調器332は、ノイズキャンセル用デジタルフィルタ331が出力する[64Fs,48bit]のデジタル信号における量子化ビット数を1ビットに変換する。すなわち、デルタシグマ変調器332はノイズキャンセル用デジタルフィルタ331が出力する[64Fs,48bit]のデジタル信号から、[64Fs,1bit]のデジタル信号を生成する。
 ビット拡張器333は、デルタシグマ変調器332が出力する[64Fs,1bit]のデジタル信号を、ここでは[64Fs,3bit]のデジタル信号に変換する。具体的には、ビット拡張器314は、信号の値が「1」であれば「001」(0.25)に、「0」であれば「111」(-0.25)に、それぞれ変換する。
 加算器334は、ビット拡張器327、328の出力を加算する。ビット拡張器327、328の出力が加算されることで上述の目標特性“1+EQ”が達成される。加算器329の加算後の信号は、3ビットの「010」(0.5)、「000」(0)、「110」(-0.5)の3つの値を取りうる。そして加算器335は、ビット拡張器333の出力と、加算器334の出力と、を加算する。加算器335の加算後の信号は、3ビットの「011」(0.75)、「001」(0.25)、「111」(-0.25)、「101」(-0.75)の4つの値を取りうる。
 デルタシグマ変調器313、324、325、332と、ビット拡張器314、326、327、328、333と、イコライザ321、322と、遅延器323は、加算器329、330、334、335と、ノイズキャンセル用デジタルフィルタ331とは、例えばDSPに設けられ得る。このDSPは、例えば1つのチップ部品として提供されても良い。
 PWM変換部336は、加算器335が出力する[64Fs,3bit]のデジタル信号に対するPWM変調を行う。そしてアナログLPF337は、PWM変換部336が出力する信号を入力し、アナログのオーディオ信号を生成する。アナログLPF337が生成したアナログのオーディオ信号は、パワーアンプ338に入力される。パワーアンプ338は、入力されたオーディオ信号を増幅し、その出力により、ヘッドフォン350における一方の耳に対応するドライバ351を駆動する。
 ここで、図5に示したノイズキャンセリングシステムにおけるデジタルオーディオソースの信号パスに注目する。伝達関数による特性βが与えられていないデジタルオーディオソースの信号(すなわち、遅延器323、加算器334、335を介している信号)は、量子化ノイズの要因となるデルタシグマ変調器を通っていない。すなわち、伝達関数による特性βが与えられていないデジタルオーディオソースの信号は、デルタシグマ変調器を介すること無く、PWM変換部336及びアナログLPF337を通ってアナログのオーディオ信号に変換される。
 従って、本開示の第5の実施形態に係るノイズキャンセリングシステムは、外部ノイズを抑圧する際に、デジタルオーディオソースのオーディオ特性を劣化させずに、デジタルオーディオソースの音を良好に聴取者に届けることが出来る。
 <7.まとめ>
 以上説明したように本開示の実施の形態によれば、外部ノイズを抑圧する際に、デジタルオーディオソースのオーディオ特性を劣化させずに、デジタルオーディオソースの音を良好に聴取者に届けることが出来るノイズキャンセリングシステムを提供することが出来る。
 各装置に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した各装置の構成と同等の機能を発揮させるためのコンピュータプログラムの作成が可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供されることが可能である。また、機能ブロック図で示したそれぞれの機能ブロックをハードウェアで構成することで、一連の処理をハードウェアで実現することもできる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 入力されたアナログ信号に対して第1デルタシグマ変調処理を行う第1デルタシグマ変調器を含む、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力するA/Dコンバータと、
 前記A/Dコンバータの出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、
 前記フィルタ部の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力する第2デルタシグマ変調器と、
 前記第2デルタシグマ変調器の出力と前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算する加算部と、
を備える、信号処理装置。
(2)
 前記アナログ信号は、ヘッドフォンの所定位置に設けられるマイクロフォンで集音された音声である、前記(1)に記載の信号処理装置。
(3)
 前記所定のフィルタ特性は前記ヘッドフォンに対しフィードフォワード方式の騒音低減処理を実行するためのフィルタ特性である、前記(2)に記載の信号処理装置。
(4)
 前記入力デジタル信号は、DSD方式のオーディオ信号である、前記(1)~(3)のいずれかに記載の信号処理装置。
(5)
 入力されたアナログ信号に対して第1デルタシグマ変調処理を行う第1デルタシグマ変調器を含む、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力するA/Dコンバータと、
 前記A/Dコンバータの出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、
 前記フィルタ部の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力する第2デルタシグマ変調器と、
 前記第2デルタシグマ変調器の出力に対して量子化ビット数をaからcに拡張する第1ビット拡張器と、
 前記第1ビット拡張器の出力と前記サンプリング周波数及び量子化ビット数cの入力デジタル信号とを加算する第1加算部と、
を備える、信号処理装置。
(6)
 前記アナログ信号は、ヘッドフォンの所定位置に設けられるマイクロフォンで集音された音声である、前記(5)に記載の信号処理装置。
(7)
 前記所定のフィルタ特性は前記ヘッドフォンに対しフィードバック方式の騒音低減処理を実行するためのフィルタ特性である、前記(6)に記載の信号処理装置。
(8)
 前記第1加算部に、前記ヘッドフォンに対しフィードフォワード方式の騒音低減処理を実行するためのフィルタ特性が与えられたデジタルフィルタを通過させたデジタル信号がさらに加算される、前記(6)または(7)に記載の信号処理装置。
(9)
 前記入力デジタル信号に対して所定の目標特性に等化してイコライザ部と、
 前記イコライザ部の出力に対して第3デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力する第3デルタシグマ変調器と、
 前記イコライザ部及び前記第3デルタシグマ変調器での処理遅延と同等の遅延を前記入力デジタル信号に与える遅延部と、
 前記第3デルタシグマ変調器の出力に対して量子化ビット数をaからcに拡張する第2ビット拡張器と、
 前記遅延部の出力に対して量子化ビット数をaからcに拡張する第3ビット拡張器と、
 前記第2ビット拡張器と前記第3ビット拡張器の出力を加算して前記第1加算部に出力する第2加算器と、
をさらに備える、前記(5)~(8)のいずれかに記載の信号処理装置。
(10)
 前記入力デジタル信号は、DSD方式のオーディオ信号である、前記(5)~(9)のいずれかに記載の信号処理装置。
(11)
 入力されたアナログ信号に対して第1デルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第1デルタシグマ変調部と、
 前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第1の目標特性に等化して第1の等化信号を生成し、前記第1の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第1イコライザ部と、
 前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第2の目標特性に等化して第2の等化信号を生成し、前記第2の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第2イコライザ部と、
 前記第1イコライザ部または前記第2イコライザ部での処理遅延と同等の遅延を前記入力デジタル信号に与え、量子化ビット数をaからcに拡張して出力する遅延部と、
 前記第1デルタシグマ変調部、前記遅延部及び前記第1イコライザ部の出力を加算する第1加算部と、
 前記第1加算部の出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、
 前記フィルタ部の出力に対してデルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第2デルタシグマ変調部と、
 前記第2デルタシグマ変調部、前記遅延部及び前記第2イコライザ部の出力を加算する第2加算部と、
を備える、信号処理装置。
(12)
 前記アナログ信号は、ヘッドフォンの所定位置に設けられるマイクロフォンで集音された音声である、前記(11)に記載の信号処理装置。
(13)
 前記所定のフィルタ特性は前記ヘッドフォンに対しフィードバック方式の騒音低減処理を実行するためのフィルタ特性である、前記(12)に記載の信号処理装置。
(14)
 前記入力デジタル信号は、DSD方式のオーディオ信号である、前記(11)~(13)のいずれかに記載の信号処理装置。
(15)
 入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
 前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、
 前記量子化ビット数bのデジタル信号に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
 前記第2デルタシグマ変調処理の出力と、前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算することと、
を含む、信号処理方法。
(16)
 入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
 前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、
 前記サンプリング周波数及び量子化ビット数bのデジタル信号の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
 前記第2デルタシグマ変調処理の出力に対して量子化ビット数をaからcに拡張することと、
 量子化ビット数がcに拡張されたデジタル信号と、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号とを加算することと、
を含む、信号処理方法。
(17)
 入力されたアナログ信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1デルタシグマ変調処理を行うことと、
 前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第1の目標特性に等化して第1の等化信号を生成し、前記第1の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1イコライザ処理を行うことと、
 前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第2の目標特性に等化して第2の等化信号を生成し、前記第2の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2イコライザ処理を行うことと、
 前記第1イコライザ処理または前記第2イコライザ処理での処理遅延と同等の遅延を前記入力デジタル信号に与え、量子化ビット数をaからcに拡張して出力する、遅延処理を行うことと、
 前記第1デルタシグマ変調処理、前記遅延処理及び前記第1イコライザ処理の出力を加算する、第1加算処理を行うことと、
 前記第1加算処理の出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力する、フィルタ処理を行うことと、
 前記フィルタ処理の出力に対してデルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2デルタシグマ変調処理を行うことと、
 前記第2デルタシグマ変調処理、前記遅延処理及び前記第2イコライザ処理の出力を加算する、第1加算処理を行うことと、
を含む、信号処理方法。
(18)
 コンピュータに、
 入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
 前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、
 前記量子化ビット数bのデジタル信号に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
 前記第2デルタシグマ変調処理の出力と、前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算することと、
を実行させる、コンピュータプログラム。
(19)
 コンピュータに、
 入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
 前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、
 前記サンプリング周波数及び量子化ビット数bのデジタル信号の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
 前記第2デルタシグマ変調処理の出力に対して量子化ビット数をaからcに拡張することと、
 量子化ビット数がcに拡張されたデジタル信号と、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号とを加算することと、
を実行させる、コンピュータプログラム。
(20)
 コンピュータに、
 入力されたアナログ信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1デルタシグマ変調処理を行うことと、
 前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第1の目標特性に等化して第1の等化信号を生成し、前記第1の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1イコライザ処理を行うことと、
 前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第2の目標特性に等化して第2の等化信号を生成し、前記第2の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2イコライザ処理を行うことと、
 前記第1イコライザ処理または前記第2イコライザ処理での処理遅延と同等の遅延を前記入力デジタル信号に与え、量子化ビット数をaからcに拡張して出力する、遅延処理を行うことと、
 前記第1デルタシグマ変調処理、前記遅延処理及び前記第1イコライザ処理の出力を加算する、第1加算処理を行うことと、
 前記第1加算処理の出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力する、フィルタ処理を行うことと、
 前記フィルタ処理の出力に対してデルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2デルタシグマ変調処理を行うことと、
 前記第2デルタシグマ変調処理、前記遅延処理及び前記第2イコライザ処理の出力を加算する、第1加算処理を行うことと、
を実行させる、コンピュータプログラム。
111 :マイクロフォン
112 :アンプ
134 :加算器
140 :パワーアンプ
150 :ヘッドフォン
151 :ドライバ
152 :ドライバ

Claims (20)

  1.  入力されたアナログ信号に対して第1デルタシグマ変調処理を行う第1デルタシグマ変調器を含む、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力するA/Dコンバータと、
     前記A/Dコンバータの出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、
     前記フィルタ部の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力する第2デルタシグマ変調器と、
     前記第2デルタシグマ変調器の出力と前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算する加算部と、
    を備える、信号処理装置。
  2.  前記アナログ信号は、ヘッドフォンの所定位置に設けられるマイクロフォンで集音された音声である、請求項1に記載の信号処理装置。
  3.  前記所定のフィルタ特性は前記ヘッドフォンに対しフィードフォワード方式の騒音低減処理を実行するためのフィルタ特性である、請求項2に記載の信号処理装置。
  4.  前記入力デジタル信号は、DSD方式のオーディオ信号である、請求項1に記載の信号処理装置。
  5.  入力されたアナログ信号に対して第1デルタシグマ変調処理を行う第1デルタシグマ変調器を含む、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力するA/Dコンバータと、
     前記A/Dコンバータの出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、
     前記フィルタ部の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力する第2デルタシグマ変調器と、
     前記第2デルタシグマ変調器の出力に対して量子化ビット数をaからcに拡張する第1ビット拡張器と、
     前記第1ビット拡張器の出力と前記サンプリング周波数及び量子化ビット数cの入力デジタル信号とを加算する第1加算部と、
    を備える、信号処理装置。
  6.  前記アナログ信号は、ヘッドフォンの所定位置に設けられるマイクロフォンで集音された音声である、請求項5に記載の信号処理装置。
  7.  前記所定のフィルタ特性は前記ヘッドフォンに対しフィードバック方式の騒音低減処理を実行するためのフィルタ特性である、請求項6に記載の信号処理装置。
  8.  前記第1加算部に、前記ヘッドフォンに対しフィードフォワード方式の騒音低減処理を実行するためのフィルタ特性が与えられたデジタルフィルタを通過させたデジタル信号がさらに加算される、請求項6に記載の信号処理装置。
  9.  前記入力デジタル信号に対して所定の目標特性に等化してイコライザ部と、
     前記イコライザ部の出力に対して第3デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力する第3デルタシグマ変調器と、
     前記イコライザ部及び前記第3デルタシグマ変調器での処理遅延と同等の遅延を前記入力デジタル信号に与える遅延部と、
     前記第3デルタシグマ変調器の出力に対して量子化ビット数をaからcに拡張する第2ビット拡張器と、
     前記遅延部の出力に対して量子化ビット数をaからcに拡張する第3ビット拡張器と、
     前記第2ビット拡張器と前記第3ビット拡張器の出力を加算して前記第1加算部に出力する第2加算器と、
    をさらに備える、請求項5に記載の信号処理装置。
  10.  前記入力デジタル信号は、DSD方式のオーディオ信号である、請求項5に記載の信号処理装置。
  11.  入力されたアナログ信号に対して第1デルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第1デルタシグマ変調部と、
     前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第1の目標特性に等化して第1の等化信号を生成し、前記第1の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第1イコライザ部と、
     前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第2の目標特性に等化して第2の等化信号を生成し、前記第2の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第2イコライザ部と、
     前記第1イコライザ部または前記第2イコライザ部での処理遅延と同等の遅延を前記入力デジタル信号に与え、量子化ビット数をaからcに拡張して出力する遅延部と、
     前記第1デルタシグマ変調部、前記遅延部及び前記第1イコライザ部の出力を加算する第1加算部と、
     前記第1加算部の出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力するフィルタ部と、
     前記フィルタ部の出力に対してデルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する第2デルタシグマ変調部と、
     前記第2デルタシグマ変調部、前記遅延部及び前記第2イコライザ部の出力を加算する第2加算部と、
    を備える、信号処理装置。
  12.  前記アナログ信号は、ヘッドフォンの所定位置に設けられるマイクロフォンで集音された音声である、請求項11に記載の信号処理装置。
  13.  前記所定のフィルタ特性は前記ヘッドフォンに対しフィードバック方式の騒音低減処理を実行するためのフィルタ特性である、請求項12に記載の信号処理装置。
  14.  前記入力デジタル信号は、DSD方式のオーディオ信号である、請求項11に記載の信号処理装置。
  15.  入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
     前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、
     前記量子化ビット数bのデジタル信号に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
     前記第2デルタシグマ変調処理の出力と、前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算することと、
    を含む、信号処理方法。
  16.  入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
     前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、
     前記サンプリング周波数及び量子化ビット数bのデジタル信号の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
     前記第2デルタシグマ変調処理の出力に対して量子化ビット数をaからcに拡張することと、
     量子化ビット数がcに拡張されたデジタル信号と、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号とを加算することと、
    を含む、信号処理方法。
  17.  入力されたアナログ信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1デルタシグマ変調処理を行うことと、
     前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第1の目標特性に等化して第1の等化信号を生成し、前記第1の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1イコライザ処理を行うことと、
     前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第2の目標特性に等化して第2の等化信号を生成し、前記第2の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2イコライザ処理を行うことと、
     前記第1イコライザ処理または前記第2イコライザ処理での処理遅延と同等の遅延を前記入力デジタル信号に与え、量子化ビット数をaからcに拡張して出力する、遅延処理を行うことと、
     前記第1デルタシグマ変調処理、前記遅延処理及び前記第1イコライザ処理の出力を加算する、第1加算処理を行うことと、
     前記第1加算処理の出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力する、フィルタ処理を行うことと、
     前記フィルタ処理の出力に対してデルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2デルタシグマ変調処理を行うことと、
     前記第2デルタシグマ変調処理、前記遅延処理及び前記第2イコライザ処理の出力を加算する、第1加算処理を行うことと、
    を含む、信号処理方法。
  18.  コンピュータに、
     入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
     前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、
     前記量子化ビット数bのデジタル信号に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
     前記第2デルタシグマ変調処理の出力と、前記サンプリング周波数及び量子化ビット数aの入力デジタル信号とを加算することと、
    を実行させる、コンピュータプログラム。
  19.  コンピュータに、
     入力されたアナログ信号に対して第1デルタシグマ変調処理を行って所定のサンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
     前記所定のサンプリング周波数及び量子化ビット数aのデジタル信号に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力することと、
     前記サンプリング周波数及び量子化ビット数bのデジタル信号の出力に対して第2デルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を出力することと、
     前記第2デルタシグマ変調処理の出力に対して量子化ビット数をaからcに拡張することと、
     量子化ビット数がcに拡張されたデジタル信号と、前記サンプリング周波数及び量子化ビット数cの入力デジタル信号とを加算することと、
    を実行させる、コンピュータプログラム。
  20.  コンピュータに、
     入力されたアナログ信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1デルタシグマ変調処理を行うことと、
     前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第1の目標特性に等化して第1の等化信号を生成し、前記第1の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第1イコライザ処理を行うことと、
     前記サンプリング周波数及び量子化ビット数cの入力デジタル信号に対して第2の目標特性に等化して第2の等化信号を生成し、前記第2の等化信号に対してデルタシグマ変調処理を行って、所定のサンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2イコライザ処理を行うことと、
     前記第1イコライザ処理または前記第2イコライザ処理での処理遅延と同等の遅延を前記入力デジタル信号に与え、量子化ビット数をaからcに拡張して出力する、遅延処理を行うことと、
     前記第1デルタシグマ変調処理、前記遅延処理及び前記第1イコライザ処理の出力を加算する、第1加算処理を行うことと、
     前記第1加算処理の出力に対して所定のフィルタ特性が与えられたデジタルフィルタを通過させて、前記サンプリング周波数及び量子化ビット数bのデジタル信号を出力する、フィルタ処理を行うことと、
     前記フィルタ処理の出力に対してデルタシグマ変調処理を行って前記サンプリング周波数及び量子化ビット数aのデジタル信号を生成し、該デジタル信号に対して量子化ビット数をaからcに拡張して出力する、第2デルタシグマ変調処理を行うことと、
     前記第2デルタシグマ変調処理、前記遅延処理及び前記第2イコライザ処理の出力を加算する、第1加算処理を行うことと、
    を実行させる、コンピュータプログラム。
PCT/JP2017/044374 2017-01-31 2017-12-11 信号処理装置、信号処理方法及びコンピュータプログラム WO2018142770A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/480,381 US10896668B2 (en) 2017-01-31 2017-12-11 Signal processing apparatus, signal processing method, and computer program
KR1020197021004A KR20190113778A (ko) 2017-01-31 2017-12-11 신호 처리 장치, 신호 처리 방법 및 컴퓨터 프로그램
EP17894910.3A EP3579225A4 (en) 2017-01-31 2017-12-11 SIGNAL PROCESSING DEVICE, SIGNAL PROCESSING METHOD AND COMPUTER PROGRAM
CN201780084545.7A CN110226200A (zh) 2017-01-31 2017-12-11 信号处理装置、信号处理方法和计算机程序
JP2018565972A JP7020432B2 (ja) 2017-01-31 2017-12-11 信号処理装置、信号処理方法及びコンピュータプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-015807 2017-01-31
JP2017015807 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018142770A1 true WO2018142770A1 (ja) 2018-08-09

Family

ID=63039519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044374 WO2018142770A1 (ja) 2017-01-31 2017-12-11 信号処理装置、信号処理方法及びコンピュータプログラム

Country Status (6)

Country Link
US (1) US10896668B2 (ja)
EP (1) EP3579225A4 (ja)
JP (1) JP7020432B2 (ja)
KR (1) KR20190113778A (ja)
CN (1) CN110226200A (ja)
WO (1) WO2018142770A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069112A1 (ja) 2012-11-02 2014-05-08 ソニー株式会社 信号処理装置、信号処理方法
CN117526957B (zh) * 2024-01-04 2024-03-19 秦玄汉(苏州)信息科技有限公司 一种最优量化位数的模数转换器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193421A (ja) 2007-02-05 2008-08-21 Sony Corp 信号処理装置、信号処理方法
JP2009033309A (ja) 2007-07-25 2009-02-12 Sony Corp 信号処理装置、信号処理方法、プログラム、ノイズキャンセリングシステム
JP2010244045A (ja) * 2009-04-09 2010-10-28 Harman Internatl Industries Inc オーディオシステム出力に基づくアクティブノイズ制御システム

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8800745A (nl) 1988-03-24 1989-10-16 Augustinus Johannes Berkhout Werkwijze en inrichting voor het creeren van een variabele akoestiek in een ruimte.
JP2828543B2 (ja) * 1991-08-02 1998-11-25 シャープ株式会社 スピーカ駆動回路
JPH08272380A (ja) 1995-03-30 1996-10-18 Taimuuea:Kk 仮想3次元空間音響の再生方法および装置
ATE533145T1 (de) 1998-04-23 2011-11-15 Ind Res Ltd Einspuriges frühreflexions-verstärkersystem zur schallverstärkung
JP2000099061A (ja) 1998-09-25 2000-04-07 Sony Corp 効果音付加装置
JP3584800B2 (ja) 1999-08-17 2004-11-04 ヤマハ株式会社 音場再現方法およびその装置
JP2003323179A (ja) 2002-02-27 2003-11-14 Yamaha Corp インパルス応答測定方法、音場再生方法、インパルス応答測定装置および音場再生装置
US20080056517A1 (en) 2002-10-18 2008-03-06 The Regents Of The University Of California Dynamic binaural sound capture and reproduction in focued or frontal applications
JP4449670B2 (ja) 2004-09-14 2010-04-14 ノーリツ鋼機株式会社 写真処理装置
US7636448B2 (en) 2004-10-28 2009-12-22 Verax Technologies, Inc. System and method for generating sound events
JP4674505B2 (ja) 2005-08-01 2011-04-20 ソニー株式会社 音声信号処理方法、音場再現システム
JP4735108B2 (ja) 2005-08-01 2011-07-27 ソニー株式会社 音声信号処理方法、音場再現システム
JP4725234B2 (ja) 2005-08-05 2011-07-13 ソニー株式会社 音場再現方法、音声信号処理方法、音声信号処理装置
JP2007124023A (ja) 2005-10-25 2007-05-17 Sony Corp 音場再現方法、音声信号処理方法、音声信号処理装置
GB2446966B (en) * 2006-04-12 2010-07-07 Wolfson Microelectronics Plc Digital circuit arrangements for ambient noise-reduction
JP5439707B2 (ja) * 2007-03-02 2014-03-12 ソニー株式会社 信号処理装置、信号処理方法
US8094046B2 (en) * 2007-03-02 2012-01-10 Sony Corporation Signal processing apparatus and signal processing method
JP4873316B2 (ja) 2007-03-09 2012-02-08 株式会社国際電気通信基礎技術研究所 音響空間共有装置
DE102007031677B4 (de) 2007-07-06 2010-05-20 Sda Software Design Ahnert Gmbh Verfahren und Vorrichtung zum Ermitteln einer raumakustischen Impulsantwort in der Zeitdomäne
US8396226B2 (en) 2008-06-30 2013-03-12 Costellation Productions, Inc. Methods and systems for improved acoustic environment characterization
JP5092974B2 (ja) 2008-07-30 2012-12-05 富士通株式会社 伝達特性推定装置、雑音抑圧装置、伝達特性推定方法及びコンピュータプログラム
JP4775487B2 (ja) 2009-11-24 2011-09-21 ソニー株式会社 音声信号処理方法、音声信号処理装置
US8848935B1 (en) * 2009-12-14 2014-09-30 Audience, Inc. Low latency active noise cancellation system
JP4883197B2 (ja) 2010-02-15 2012-02-22 ソニー株式会社 音声信号処理方法、音場再現システム
US8767968B2 (en) 2010-10-13 2014-07-01 Microsoft Corporation System and method for high-precision 3-dimensional audio for augmented reality
EP2461323A1 (en) * 2010-12-01 2012-06-06 Dialog Semiconductor GmbH Reduced delay digital active noise cancellation
US20120155667A1 (en) * 2010-12-16 2012-06-21 Nair Vijayakumaran V Adaptive noise cancellation
US20120155666A1 (en) * 2010-12-16 2012-06-21 Nair Vijayakumaran V Adaptive noise cancellation
JP5168373B2 (ja) 2011-02-15 2013-03-21 ソニー株式会社 音声信号処理方法、音場再現システム
US9084068B2 (en) 2011-05-30 2015-07-14 Sony Corporation Sensor-based placement of sound in video recording
NL2006997C2 (en) 2011-06-24 2013-01-02 Bright Minds Holding B V Method and device for processing sound data.
WO2013054159A1 (en) 2011-10-14 2013-04-18 Nokia Corporation An audio scene mapping apparatus
EP2834995B1 (en) 2012-04-05 2019-08-28 Nokia Technologies Oy Flexible spatial audio capture apparatus
US9495591B2 (en) 2012-04-13 2016-11-15 Qualcomm Incorporated Object recognition using multi-modal matching scheme
JP6102923B2 (ja) 2012-07-27 2017-03-29 ソニー株式会社 情報処理システムおよび記憶媒体
US9264799B2 (en) 2012-10-04 2016-02-16 Siemens Aktiengesellschaft Method and apparatus for acoustic area monitoring by exploiting ultra large scale arrays of microphones
WO2014069112A1 (ja) 2012-11-02 2014-05-08 ソニー株式会社 信号処理装置、信号処理方法
EP2916567B1 (en) 2012-11-02 2020-02-19 Sony Corporation Signal processing device and signal processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193421A (ja) 2007-02-05 2008-08-21 Sony Corp 信号処理装置、信号処理方法
JP2009033309A (ja) 2007-07-25 2009-02-12 Sony Corp 信号処理装置、信号処理方法、プログラム、ノイズキャンセリングシステム
JP2010244045A (ja) * 2009-04-09 2010-10-28 Harman Internatl Industries Inc オーディオシステム出力に基づくアクティブノイズ制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579225A4

Also Published As

Publication number Publication date
US10896668B2 (en) 2021-01-19
CN110226200A (zh) 2019-09-10
KR20190113778A (ko) 2019-10-08
EP3579225A4 (en) 2020-02-19
JPWO2018142770A1 (ja) 2019-11-21
US20190385585A1 (en) 2019-12-19
EP3579225A1 (en) 2019-12-11
JP7020432B2 (ja) 2022-02-16

Similar Documents

Publication Publication Date Title
JP7163300B2 (ja) リアルタイム音響プロセッサ
US7592941B2 (en) Signal processing apparatus and signal processing method
US9245517B2 (en) Noise reduction audio reproducing device and noise reduction audio reproducing method
JP5090436B2 (ja) 変換ドメイン内で効率的なバイノーラルサウンド空間化を行う方法およびデバイス
JP5957810B2 (ja) 信号処理装置、信号処理方法
US20080107282A1 (en) Digital filter circuit, digital filter program and noise canceling system
US20100318205A1 (en) Signal processing apparatus and signal processing method
US20070223750A1 (en) Crosstalk cancellation system with sound quality preservation and parameter determining method thereof
JP2006303799A (ja) 音響信号再生装置
JP2013110682A (ja) 音響信号処理装置、音響信号処理方法、プログラム、および、記録媒体
WO2013181299A1 (en) Adaptive bass processing system
TWI690220B (zh) 用於空間音訊信號之串音處理之頻譜缺陷補償
WO2018142770A1 (ja) 信号処理装置、信号処理方法及びコンピュータプログラム
JP2000083300A (ja) サウンド信号ミキシング方法及び装置
JP6865885B2 (ja) サブバンド空間オーディオエンハンスメント
US7024008B2 (en) Acoustic quality enhancement via feedback and equalization for mobile multimedia systems
CN111492669B (zh) 用于相反朝向跨耳扬声器系统的串扰消除
WO2016059878A1 (ja) 信号処理装置、信号処理方法及びコンピュータプログラム
JP4402636B2 (ja) オーディオ装置
US10972123B1 (en) Signal processing structure
JP2008048324A (ja) パンニング自動調整装置及びパンニング自動調整方法
JP6460051B2 (ja) 信号処理装置、信号処理方法
JP2007235502A (ja) オーディオ通信システム
JP2007067463A (ja) オーディオ装置
JP3681105B2 (ja) データ処理方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565972

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021004

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017894910

Country of ref document: EP

Effective date: 20190902