WO2018142631A1 - 絶縁電源、及び電力変換装置 - Google Patents
絶縁電源、及び電力変換装置 Download PDFInfo
- Publication number
- WO2018142631A1 WO2018142631A1 PCT/JP2017/006754 JP2017006754W WO2018142631A1 WO 2018142631 A1 WO2018142631 A1 WO 2018142631A1 JP 2017006754 W JP2017006754 W JP 2017006754W WO 2018142631 A1 WO2018142631 A1 WO 2018142631A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- low
- power supply
- switching element
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
- H02M1/092—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the control signals being transmitted optically
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/161—Modifications for eliminating interference voltages or currents in field-effect transistor switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
- H02M1/096—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the power supply of the control circuit being connected in parallel to the main switching element
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/78—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
- H03K17/785—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0045—Full bridges, determining the direction of the current through the load
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0063—High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0081—Power supply means, e.g. to the switch driver
Definitions
- the present invention relates to an insulated power supply and a power conversion device including the insulated power supply, such as a DCDC converter and a DCAC inverter.
- a DC voltage from a DC power source as a main power source is changed to a DC voltage or Converted to AC voltage.
- the on / off operation of the switching element is performed by a drive circuit.
- a switching element on the high voltage side (high side) and a switching element on the low voltage side (low side) are driven by drive circuits having different reference voltages provided on the respective switching elements.
- Each drive circuit includes a power supply that applies a voltage to each drive circuit.
- the gate driver which is the high-side driving circuit, needs to apply a voltage higher than the source voltage of the high-side switching element to the gate, and the high-side side has a different reference voltage. It is necessary to prevent a short circuit between the drive circuit and the low-side drive circuit. Therefore, an insulating power source (floating power source) is provided as a power source for applying a voltage to the driving circuit on the high side in order to electrically insulate the high side from the low side.
- insulating power source floating power source
- Patent Document 1 discloses a configuration using a power drive transformer as an insulating power source on the high side.
- FIG. 13 shows a DCDC converter 110 using a step-down chopper circuit as an example of a power converter, and shows a configuration example in which an insulating transformer T-H is used as a high-side insulated power source 120H that drives the high-side high-side switching element S1. ing.
- the DCDC converter 110 includes a step-down chopper circuit in which a series-parallel connection circuit of a high-side switching element S1 and a low-side switching element S2 and an inductance L are connected in series to the DC power source 100, and the capacitor C connected in parallel is connected.
- the output voltage Vout is output to the load R using both ends as output ends.
- the high side includes a high side insulated power source 120H and a gate driver 130H that outputs a gate signal based on the output voltage of the high side insulated power source 120H.
- the high-side insulated power source 120H includes a high-side inverter INV-H, an insulating transformer T-H, a high-side rectifier RECT-H, and a smoothing capacitor Cs-Hout, and converts the DC voltage Vdrv-H1 from the ground. Output isolated DC voltage Vdrv-H2.
- the gate driver 130H includes a high side photoswitch PC-H driven by a gate signal GateH and a high side gate driver DRV-H.
- the high-side gate driver DRV-H performs high-side switching via the drive resistor Rg-H using the output voltage Vdrv-H2 of the high-side insulated power supply 120H as a drive voltage based on the output signal of the high-side photoswitch PC-H. Output to the gate of the element S1.
- the low side includes a low side insulated power source 120L and a gate driver 130L that outputs a gate signal based on the output of the low side insulated power source 120L.
- the low-side insulated power supply 120L includes a low-side inverter INV-L, a low-side insulated transformer T-L, a low-side rectifier RECT-L, and a smoothing capacitor Cs-Lout.
- the DC voltage Vdrv-L1 is converted and insulated from the ground.
- DC voltage Vdrv-L2 is output.
- the gate driver 130L includes a low-side photoswitch PC-L driven by a gate signal GateL and a low-side gate driver DRV-L.
- the low-side gate driver DRV-L uses the DC voltage Vdrv-L2 of the low-side insulated power supply 120L as a drive voltage based on the output signal of the low-side photoswitch PC-L, and drives the gate of the low-side switching element S2 via the drive resistor Rg-L. Output to.
- the high-side switching element S1 and the low-side switching element S2 are driven at a high frequency of, for example, several hundred kHz. Due to this higher frequency, a high-frequency displacement voltage Vs1-s is generated in the switching element.
- This high-frequency displacement voltage Vs1-s is applied to the insulation transformer T-H of the high-side insulation power source 120H as the displacement voltage of the source-side ground voltage of the high-side switching element.
- a leakage current flows through the parasitic capacitance Ct-H of the insulating transformer T-H due to the high-frequency displacement voltage Vs1-s.
- FIG. 14 (a) and 14 (b) show the leakage current due to the applied voltage and the high-frequency displacement voltage Vs1-s in the insulation transformer T-H of the high-side insulated power source 120H.
- the high-frequency displacement voltage Vs1-s applied to the insulating transformer T-H is added with a displacement voltage having an amplitude Vin with the low-side voltage VN as a reference voltage (FIG. 14 (a)). )
- a differential current accompanying a change in the high-frequency displacement voltage Vs1-s flows through the parasitic capacitance Ct-H of the insulating transformer T-H as a leakage current (FIG. 14B).
- FIGS. 14C and 14D show the applied voltage VN in the low-side insulated transformer TL of the low-side insulated power supply 120L and the leakage current due to the applied voltage VN.
- the low side there is no high frequency displacement voltage applied to the low side insulating transformer TL, and the low side voltage VN is added as it is (FIG. 14C). Therefore, when the reference voltages VP and VN are set to a high voltage and a low voltage obtained by full-wave rectification of the voltage with the neutral point grounded by the Y connection of the multiphase power supply, the parasitic capacitance of the low-side isolation transformer TL Since no high frequency displacement voltage is applied to Ct-L, almost no leakage current flows (FIG. 14 (d)).
- the frequency component of the voltage applied to the low-side isolation transformer TL is, for example, when the input power source is a three-phase commercial power source (50 Hz) grounded at a neutral point, the frequency of the reference voltage VN is 150 Hz.
- the leakage current of the parasitic capacitance Ct-L of about tens of pF can be almost ignored.
- the leakage current of the parasitic capacitance Ct-H of the insulation transformer T-H of the high-side insulation power source 120H causes the high-side switching element S1 to malfunction.
- An object of the present invention is to solve the above-mentioned conventional problems and to suppress a leakage current flowing in a parasitic capacitance of a high-side insulated power source caused by a high-frequency displacement voltage generated by a high-frequency operation of a switching element.
- the purpose is to prevent the application of displacement voltage to the insulation transformer TH.
- the purpose is to suppress malfunction of the switching element on the high side of the power converter.
- a leakage current flowing in a parasitic capacitance of an insulating transformer of a high-side insulated power supply due to a high-frequency signal generated by an on / off operation of a high-side switching element is Paying attention to the common mode current flowing in the same direction in the low voltage wiring, this common mode current is reduced by the common mode reactor.
- the common mode reactor can be regarded as a circuit configuration that bears the displacement voltage generated on the high side, thereby preventing the application of the displacement voltage to the isolation transformer TH and the leakage current flowing through the parasitic capacitance of the isolation transformer. Suppress.
- the present invention includes a form of a power conversion device equipped with this insulated power supply.
- the high side between the high side insulated power supply and the high side drive circuit is on the high side.
- the insulated power supply of the present invention controls the switching operation of the low-side switching element and the high-side insulated power supply that supplies the driving voltage applied to the high-side driving circuit that controls the switching operation of the high-side switching element via the insulating transformer.
- a common mode reactor is provided between the high-side insulated power supply and the high-side drive circuit. This common mode reactor bears all of the high frequency displacement voltage generated by the high frequency operation of the switching element.
- the high-side insulated power supply includes a high-side DC power supply, a high-side inverter that converts DC voltage of the high-side DC power supply into DC-AC, and an AC output of the high-side inverter.
- a high-side insulation transformer that converts voltage and a high-side rectifier that converts the alternating current output of the high-side insulation transformer to direct current are connected in series.
- the high-side drive circuit includes a high-side gate driver that controls the on / off operation of the high-side switching element, a high-side photo switch that controls the drive of the high-side gate driver, and noise that is input to the high-side photo switch.
- a high-side bypass capacitor to be removed is connected in series.
- the low-side insulated power supply includes a low-side DC power supply, a low-side inverter that converts the DC voltage of the low-side DC power supply into DC-AC, a low-side insulating transformer that converts the AC output of the low-side inverter into voltage, and an AC of the low-side insulated transformer.
- a low-side rectifier that converts the output to direct current is connected in series.
- the low-side drive circuit includes a low-side gate driver that controls the on / off operation of the low-side switching element, a low-side photo switch that controls the drive of the low-side gate driver, and a low-side bypass capacitor that removes noise input to the low-side photo switch. Are connected in series.
- Common mode reactors are provided on both the high-voltage side wiring and the low-voltage side wiring that connect the high-side insulated power supply and the high-side bypass capacitor of the high-side drive circuit.
- the common mode reactor has a configuration in which the high-voltage side wiring and the low-voltage side wiring of the high-side insulated power supply are wound around the common core in the same direction.
- the common mode reactor can be constituted by a choke coil in which two conductors are wound around one core in the same direction.
- a split winding configuration in which two conductors are separately wound around a core, or a parafilar winding in which two conductors are wound in parallel with a core It can be configured.
- the magnetic flux generated in the core of the common-mode reactor is synthesized, and the inductance increases due to the strengthening self-inductive action To do.
- This increase in inductance increases the electrical resistance against high-frequency common mode current, and acts to prevent passage of the common mode current.
- the leakage current flowing through the parasitic capacitance of the insulating transformer is suppressed by the common mode current passage blocking action.
- the common mode reactor is composed of a core independent of the inductance of the main circuit such as a chopper circuit.
- the core of the common mode reactor is independent from the core provided in the main circuit, the inductance value of the core of the common mode reactor is arbitrarily determined without depending on the core of the main circuit, and all the displacement voltages are set in the common mode. It can be set to be borne by the reactor.
- the form of the common mode reactor includes a configuration in which a damping resistor is connected in series to both the high-voltage side wiring and the low-voltage side wiring of the high-side insulated power supply.
- a damping resistor When the degree of coupling between the two coils constituting the common mode reactor is less than 1, leakage inductance occurs.
- This leakage inductance forms a resonance circuit together with a capacitor provided on the insulated power supply side and the drive circuit (gate driver).
- the damping resistor attenuates the resonance current generated by the resonance phenomenon between the leakage inductance of the two coils constituting the common mode reactor and the capacitor, thereby suppressing the resonance.
- the insulated power supply includes a configuration in which a bias power supply that magnetically resets the core of the common mode reactor is connected to the low voltage side of the high-side insulated power supply. This bias power source suppresses magnetic saturation of the core of the common mode reactor.
- the switching element that is turned on / off by the high-side insulated power supply generates a high-frequency displacement voltage Vs1-s by the on / off operation.
- the high-frequency displacement voltage Vs1-s is applied to a common mode reactor provided to reduce the common mode current.
- only the low frequency voltage is applied to the parasitic capacitance Ct-H of the insulation transformer provided in the high side insulation power supply.
- the reference potential of the high side isolated power supply is in a floating state to insulate from the low side isolated power supply. For this reason, the high-frequency displacement voltage Vs1-s applied to the common mode reactor is superimposed on the floating reference potential, and the magnetization state of the core of the common mode reactor that varies with the displacement voltage Vs1-s is the reference potential. Depends on.
- the bias power supply according to the present invention adjusts the potential of the high-frequency displacement voltage Vs1-s with respect to the reference potential of the high-side insulated power supply to balance the voltage and time products of the cores of the common mode reactor in the positive and negative directions. Resets to suppress core magnetic saturation.
- the bias voltage of the bias power supply is the output voltage of an output circuit such as a chopper circuit driven by an insulated power supply, whereby the reference voltage of the high-frequency displacement voltage Vs1-s applied to the common mode reactor is equal to the output voltage voltage. Adjust based on. By adjusting the reference voltage of the displacement voltage Vs1-s by the bias power source, a voltage time product having the opposite polarity and the same magnitude is applied to the common mode reactor, and a magnetic reset is performed.
- the bias voltage may be other forms using the voltage corresponding to the output voltage of the output circuit in addition to the form using the output voltage of the output circuit.
- the bias power supply may be a form using another power supply that outputs the same voltage as the output voltage of the output circuit, instead of using the output circuit itself as the bias power supply.
- This separate power supply is configured to generate the same voltage as the output voltage of the output circuit based on the duty ratio of the control signal for driving the switching element.
- a power converter provided with an insulated power supply of the present invention includes a DCDC converter form and a DCAC inverter form. Furthermore, the DCDC converter can be configured to use a step-down chopper circuit or a step-up chopper circuit as a chopper circuit that performs DCDC conversion.
- a DC / DC converter having a step-down chopper circuit constitutes a main circuit by a series-parallel connection circuit of a high-side switching element and a low-side switching element and a step-down chopper circuit in which an inductance is connected in series to a DC power supply.
- the isolated power source is a power source that drives the high-side drive circuit and the low-side drive circuit that drive the high-side switching element and the low-side switching element.
- the common mode is provided between the high-side insulated power supply and the high-side drive circuit. Equipped with a reactor.
- the output voltage of the step-down chopper circuit can be used as the bias voltage of the bias power supply.
- a DCDC converter having a boost chopper circuit constitutes a main circuit by a boost chopper circuit formed by serially connecting an inductance and a series-parallel connection circuit of a high-side switching element and a low-side switching element to a DC power supply.
- the isolated power source is a power source that drives the high-side drive circuit and the low-side drive circuit that drive the high-side switching element and the low-side switching element.
- the common mode is provided between the high-side insulated power supply and the high-side drive circuit. Equipped with a reactor.
- the input voltage of the boost chopper circuit can be used as the bias voltage of the bias power supply.
- the high side and the low side of the converter can be made into a multiphase configuration by interleaving with respect to one common insulated power source.
- the multi-phase configuration on the high side includes a plurality of high-side switching elements connected in parallel.
- the same voltage is applied to the plurality of high side switching elements from a common high-side insulated power supply via a common mode reactor.
- the DCAC inverter constitutes a main circuit with an inverter circuit composed of a bridge circuit of a high-side switching element and a low-side switching element, and drives a high-side driving circuit and a low-side switching element with respect to a DC power source. And an insulated power supply for supplying a DC voltage to the low-side drive circuit.
- the isolated power source is a power source that drives the high-side drive circuit and the low-side drive circuit that drive the high-side switching element and the low-side switching element.
- the common mode is provided between the high-side insulated power supply and the high-side drive circuit. Equipped with a reactor. One half of the input voltage of the main circuit of the inverter circuit can be used as the bias voltage of the bias power supply.
- the bridge circuit includes a plurality of switching elements connected in parallel to one common isolated power supply on the high side and the low side.
- the plurality of high-side switching elements are supplied with the same voltage via a common mode reactor from one common high-side insulated power supply.
- the present invention in the power conversion device in which the main circuit includes a plurality of high-side switching elements, it is possible to share the insulated power supply by using the common mode reactor and the bias power supply for the high-side circuit. .
- FIGS. 5 to 9 and FIG. 11 show a configuration example of a DCDC converter having a step-down chopper circuit as a main circuit
- FIG. 10 shows a configuration example of a DCDC converter having a step-up chopper circuit as a main circuit
- FIG. 11 shows a configuration example of a DCDC converter in which the main circuit of the step-down chopper circuit is multiphased by interleaving
- FIG. 12 shows a configuration example of a power converter of a DCAC inverter.
- FIG. 1 shows the structural example of the DCDC converter which uses a step-down chopper circuit as a main circuit.
- the DCDC converter 10 converts the input voltage Vin from the DC power source 6 by using the step-down chopper circuit 12 as a main circuit, and outputs an output voltage Vout.
- the step-down chopper circuit 12 includes a series-parallel circuit of a high-side switching element S1 and a low-side switching element S2, and a series-parallel circuit of an inductance L and a smoothing capacitor C, and supplies an output voltage Vout across the smoothing capacitor C to a load resistor R. To do.
- a high side insulating power source 2-H and a high side drive circuit (gate driver) 3-H are provided on the high side.
- a low side insulated power source 2-L and a low side drive circuit (gate driver) 3-L are provided as a configuration for controlling the switching operation of the low side switching element S2.
- the reference voltage of the high-side insulated power source 2-H and the reference voltage of the low-side insulated power source 2-L are different and are in an insulated state.
- the low side drive circuit (gate driver) 3-L is supplied with the drive voltage Vdrv-L2 from the low side insulated power supply 2-L, and the drive voltage Vdrv ⁇ is applied to the gate terminal of the low side switching element S2 based on the gate signal Gate2.
- L2 is applied to drive the low side switching element S2.
- the high side driving circuit (gate driver) 3-H is supplied with the driving voltage Vdrv-H2 from the high side insulating power source 2-H and receives the gate of the high side switching element S1 based on the gate signal Gate1.
- a drive voltage Vdrv-H2 is applied to the terminal to drive the high side switching element S1.
- a common mode reactor 4 is provided between the high side insulated power source 2-H and the high side drive circuit (gate driver) 3-H.
- a high frequency displacement voltage Vs1-s is generated.
- This high-frequency displacement voltage Vs1-s is obtained as a displacement voltage of the source-side ground voltage of the high-side switching element S1 in an insulation transformer TH (not shown in FIG. 1) provided in the high-side insulation power source 2-H.
- the voltage VN is applied in a superimposed manner. Due to the high-frequency displacement voltage Vs1-s, a minute leakage current flows through the parasitic capacitance CT-H of the insulation transformer T-H. The leakage current of the parasitic capacitance Ct-H of the insulation transformer T-H causes a malfunction of the high side switching element S1.
- the common mode reactor 4 provided on the high side bears a high-frequency displacement voltage Vs1-s generated by turning on / off the high-side switching element S1 at a high frequency, thereby insulating the high-side insulated power source 2-H.
- Vs1-s By preventing the displacement voltage Vs1-s from being applied to the parasitic capacitance Ct-H of the transformer T-H, the leakage current is reduced and the malfunction of the high-side switching element S1 is suppressed.
- the leakage current flowing in the parasitic capacitance of the high-side insulated power supply isolation transformer due to the high-frequency displacement voltage generated by the on / off operation of the high-side switching element is caused by This is a common mode current flowing in the same direction in the wiring.
- the common mode reactor 4 reduces the common mode current.
- the common mode reactor 4 includes a plurality of forms.
- FIGS. 1B, 1C, and 1D show a configuration example of a common mode reactor.
- the common mode reactor includes a common core and two windings wound around the common core in the same direction.
- Common mode reactors 4A, 4B, and 4C shown in FIGS. 1B, 1C, and 1D are provided with a high-voltage side wiring and a low-voltage side wiring of a high-side insulated power supply with respect to a common core (not shown).
- a winding structure of two conducting wires for example, a configuration of split winding in which two conducting wires are separately wound around the core, or a parafiler that winds two conducting wires in parallel with the core.
- a winding configuration can be adopted.
- the common mode current flows in the same direction with respect to the high-voltage side wiring and the low-voltage side wiring of the high-side insulated power supply, the magnetic flux generated in the core is synthesized, and the inductance increases due to the self-inductive action that reinforces. This increase in inductance increases the electrical resistance against high-frequency common mode current, and acts to prevent passage of the common mode current.
- the action of blocking the passage of the common mode current and the burden of the displacement voltage Vs1-s due to the common mode reactor prevent the displacement voltage from being applied to the parasitic capacitance of the insulation transformer, and the leakage flowing through the parasitic capacitance of the insulation transformer The current is suppressed.
- the common mode reactors 4A, 4B, and 4C are configured by a core independent of the inductance L provided in the main circuit such as a chopper circuit.
- a core independent of the inductance L provided in the main circuit such as a chopper circuit.
- the inductance of each core can be determined separately, and the cores of the common mode reactors 4A and 4B can be determined.
- the inductance can be arbitrarily set by reducing the wire diameter of the winding wound around and increasing the number of windings.
- the voltage time product (Bm) can also be set arbitrarily, the magnetic saturation of the core can also be suppressed.
- the common mode reactor 4A is configured by winding primary windings 4a and 4b around a common core (not shown) in the same direction.
- the common mode reactor 4B includes a secondary winding 4c that is short-circuited by a resistor 4d in addition to the primary windings 4a and 4b wound around a common core in the same manner as the common mode reactor 4A.
- the secondary winding 4c induces the common mode current of the primary windings 4a and 4b and is consumed by the resistor 4d.
- the common mode reactor 4C like the common mode reactor 4A, shorts the primary windings 4a and 4b by resistors 4e and 4f in addition to the primary windings 4a and 4b wound around the common core.
- the resistors 4e and 4f consume and reduce the common mode current of the primary windings 4a and 4b.
- the high-frequency displacement voltage applied to the low-side insulation transformer TL (not shown in FIG. 1) of the low-side insulation power source 2-L is applied only to the low-side voltage VN.
- the low frequency VN is included in the parasitic capacitance Ct-L of the low side isolation transformer TL. Since only is applied, the leakage current is small.
- the frequency component of the voltage applied to the low-side isolation transformer TL is, for example, when the input power source is a three-phase commercial power source (50 Hz) grounded at a neutral point, the frequency of the reference voltage VN is 150 Hz.
- the leakage current of the parasitic capacitance Ct-L of about tens of pF can be almost ignored.
- the low-side insulated power supply 2-L has the voltage VN as a reference voltage, while the high-side insulated power supply 2-H is in a floating state insulated from the low-side insulated power supply 2-L.
- the reference voltage of the high side insulated power source 2-H is determined based on the voltage at the source end of the high side switching element S1.
- the high side insulated power source 2-H includes a bias power source 5 connected to the low voltage side.
- the bias power source 5 adjusts the bias voltage of the high-frequency displacement voltage Vs1-s applied to the common mode reactor.
- the core of the common mode reactor is magnetically reset to suppress the magnetic saturation of the core. The magnetic reset of the core by the bias power source will be described in a later section.
- FIG. 2 shows a three-phase commercial power source (50 Hz) grounded at a neutral point, a rectifier that rectifies the AC voltage of the three-phase commercial power source and outputs a DC voltage, and a smoothing circuit.
- FIG. 2 shows the fluctuations of the voltage VP, the voltage VN at the negative voltage terminal, and the voltage VN at the output terminal (VN + Vout) as the voltage at each part of the power converter.
- FIG. 2 shows the fluctuation of the high-frequency displacement voltage Vs1-s.
- FIG. 2C shows voltage states of the voltages VP, VN + Vout, VN, and Vs1-s at an arbitrary time point in FIG. 2B.
- the voltage VN at the negative voltage terminal is a reference voltage on the low side of the power converter
- the voltage VP at the positive voltage terminal is a voltage (VN + Vin) obtained by adding the input voltage Vin to the reference voltage VN.
- the voltage at the output terminal of the power converter is (VN + Vout) obtained by adding the output voltage Vout to the reference voltage VN.
- VN + Vout The voltage at the output terminal of the power converter.
- the output voltage of the DC power source that rectifies the AC voltage of the three-phase commercial power source and outputs the DC voltage is 150 Hz when the frequency of each commercial power source is 50 Hz, and the frequency of the voltage VN and the voltage VP is 150 Hz. . In the case of S-phase grounding, the frequency of the voltage VN and the voltage VP is 50 Hz.
- a high-frequency displacement voltage Vs1-s generated when the high-side switching element S1 and the low-side switching element S2 are driven at a high frequency has the same amplitude value as the input voltage Vin, and is a voltage state added based on the reference voltage VN. expressed.
- Vdrv-H + Vs1-s Each voltage state of voltage (Vdrv-H + Vs1-s) is shown. Since the voltage of this gate driver signal needs to be higher than the voltage on the output side (source side) of the high side switching element S1, the reference voltage of the high side insulated power supply 2-H is set to Vs1-s.
- a voltage (Vdrv-H + VN + Vin) having a peak voltage (Vdrv-H + Vs1-s) obtained by adding the voltage Vdrv-H to the reference voltage Vs1-s is defined as a gate driver signal Vgate-H. Note that the amplitude of the voltage shown in FIG. 3 is schematically shown from the description, and does not indicate the actual amplitude of the voltage.
- the bias power source 5 magnetically resets the core of the common mode reactor and suppresses magnetic saturation of the core of the common mode reactor.
- the high-side switching element S1 that is turned on / off by the high-side insulated power source 2-H generates a high-frequency displacement voltage Vs1-s by the on / off operation.
- This high-frequency displacement voltage Vs1-s is applied to the common mode reactor.
- only the low frequency voltage is applied to the parasitic capacitance Ct-H of the insulating transformer provided in the high-side insulated power source 2-H.
- the reference potential of the high-side insulated power source 2-H is in a floating state to insulate from the low-side insulated power source 2-L. Therefore, the high-frequency displacement voltage Vs1-s applied to the common mode reactor is superimposed on the floating reference potential, and the magnetization state of the core of the common mode reactor, which varies with the displacement voltage Vs1-s, becomes the reference potential. It depends.
- the bias power source 5 adjusts the potential of the high-frequency displacement voltage Vs1-s with respect to the reference potential of the high-side insulated power source 2-H to balance the voltage-time product of the positive and negative directions of the core of the common mode reactor. A magnetic reset is performed to suppress magnetic saturation of the core.
- the bias voltage of the bias power source 5 is the output voltage of an output circuit such as a chopper circuit driven by an insulated power source, and thereby the reference potential of the high-frequency displacement voltage Vs1-s applied to the common mode reactor is used as the output voltage. Adjust based on. By adjusting the reference potential of the displacement voltage Vs1-s by the bias power source, a voltage time product having the opposite polarity and the same magnitude is applied to the common mode reactor.
- FIG. 4 is a schematic diagram for explaining the potential adjustment of the high-frequency displacement voltage Vs1-s by the bias power source 5. Note that the voltage amplitude and the voltage at each part shown in FIG. 4 are schematically shown from the description, and do not indicate the actual voltage amplitude or voltage state.
- FIG. 4A shows the potential state of the high-frequency displacement voltage Vs1-s applied to the common mode reactor.
- the bias voltage is 1 ⁇ 2 of the input voltage Vin as an example
- the variation of the displacement voltage Vs1-s is applied with a large voltage time product in the positive direction with respect to the common mode reactor. Therefore, the magnetic reset of the core is not performed.
- FIG. 4B shows a state in which the high-frequency displacement voltage Vs1-s applied to the common mode reactor is changed in potential based on the reference voltage VN by a bias power source. By this potential change, the reference potential of the common mode reactor becomes (VN + Vout). In FIG. 4B, (VN + Vout) is indicated by a thick broken line.
- the displacement voltage Vs1-s having a voltage-time product having the same area in both the positive and negative directions with respect to the reference potential (VN + Vout) is applied to the core of the common mode reactor.
- Duty is the duty ratio of the high-side switching element S1, and represents the time ratio during which the high-side switching element S1 is turned on for one cycle.
- the voltage of (Vin ⁇ Vout) is applied to the common mode reactor only during the duty period while the high-side switching element S1 is in the on state. While the side switching element S1 is in the ON state, the polarity of the voltage Vout is reversed and is applied only for a period of (1-Duty).
- the displacement voltage Vs1-s is applied to the common mode reactor in all, and only the low frequency voltage (VN + Vout) is applied to the parasitic capacitance Ct-H of the insulation transformer T-H of the high-side insulated power source 2-H.
- the voltage time product Bm-on applied to the core when the high-side switching element S1 is on Since the voltage time product Bm-off applied to the core in the off state of the high-side switching element S1 has the opposite polarity and the same magnitude, the core of the common mode reactor is magnetically reset.
- the parasitic capacitance Ct-H is a small capacitance of about several to several tens of pF, for example. Can be almost ignored.
- a capacitor constituting the resonance circuit there are a smoothing capacitor provided in the high-side insulated power source 2-H connected to the common mode reactors 4A and 4B, and a bypass capacitor provided in the driving circuit (gate driver) 3-H.
- the bypass capacitor has a filtering function that bypasses the AC component and prevents entry into the noise to the drive circuit (gate driver) 3-H.
- a capacitor having a large capacity such as an electric field capacitor is usually used as a smoothing capacitor provided after rectification of the high-side insulated power supply, so that it can be ignored as a capacitor constituting the resonance circuit.
- a bypass capacitor provided when a photocoupler is used for insulation in a drive circuit (gate driver) uses a capacitor having a small capacity such as a ceramic capacitor, and thus cannot be ignored as a capacitor constituting a resonance circuit.
- the common mode reactors 4A and 4B may have a configuration in which a damping resistor 7 (not shown in FIG. 1) is connected in series to both the high-voltage side wiring and the low-voltage side wiring of the high-side insulated power source 2-H. it can.
- the damping resistor 7 attenuates the resonance current generated by the resonance phenomenon between the leakage inductance Ls of the two windings 4a and 4b constituting the common mode reactors 4A and 4B and the capacitor, thereby suppressing the resonance.
- the Q value and the damping ratio ⁇ are expressed by the following equations (3) and (4), respectively.
- Q (1 / Rdamp) ⁇ (Ls / C) 1/2
- the damping resistance Rdamp can be selected, for example, by obtaining a value such that the damping ratio ⁇ exceeds a predetermined value.
- the damping resistance Rdamp can be expressed by the following equation (6).
- the first to third configuration examples shown in FIGS. 5 to 9 are configuration examples of the bias power source, and show an example of a DCDC converter having a step-down chopper circuit as a main circuit.
- the fourth configuration example shown in FIG. 10 is an example of a DCDC converter having a boost chopper circuit as a main circuit
- the fifth configuration example shown in FIG. 11 is an example in which the DCDC converter is an interleaved configuration, which is shown in FIG.
- the sixth configuration example is a configuration example of a DCAC inverter.
- FIG. 5 shows a schematic block
- FIG. 6 shows one configuration example.
- the DCDC converter 10A of the first configuration example includes the bias power source 5A of the first form as the bias power source having the configuration shown in FIG.
- the bias power source 5A has a configuration in which the high output end of the step-down chopper circuit 12 is connected to the low voltage side of the high side isolated power source 2-H. With this configuration, the step-down chopper is connected to the low voltage side of the high side isolated power source 2-H.
- the voltage (VN + Vout) at the output terminal on the high voltage side of the circuit 12 is applied, thereby setting the reference potential of the high side insulated power supply 2-H.
- the voltage (VN + Vout) at the output terminal on the high voltage side of the step-down chopper circuit 12 is a voltage obtained by superimposing the output voltage Vout applied to the load resistor R on the voltage VN at the negative voltage end of the step-down chopper circuit 12.
- FIG. 6 shows a circuit configuration of the schematic block shown in FIG.
- the DC power source 6 includes a three-phase power source grounded at a neutral point, a three-phase rectifier that converts three-phase AC to DC, and a smoothing circuit that includes a series-parallel circuit of a coil Lin and a capacitor Cin.
- a three-phase power source for example, a three-phase commercial power source of 50 Hz can be used.
- the frequency of the reference voltage VN obtained by the DC power source 6 is 150 Hz.
- the high-side insulated power source 2-H includes a high-side DC power source, a high-side inverter INV-H that converts the DC voltage Vdrv-H1 of the high-side DC power source into DC-AC, and an AC output of the high-side inverter INV-H.
- a high-side insulation transformer T-H that converts the voltage of the high-side and a high-side rectifier RECT-H that converts the AC output of the high-side insulation transformer T-H to DC are connected in series, and a smoothing capacitor Cs-Hout is connected in parallel. Configured.
- the high-side drive circuit 3-H includes a high-side gate driver DRV-H that controls the on / off operation of the high-side switching element S1, and a high-side photoswitch PC- that controls the drive of the high-side gate driver DRV-H. H and a high-side bypass capacitor Cs-Hin for removing noise input to the high-side photoswitch PC-H are connected in series.
- the output of the high side gate driver DRV-H is input to the gate of the high side switching element S1 via the resistor Rg-H.
- the low-side isolated power source 2-L is a low-side DC power source, a low-side inverter INV-L that converts DC voltage Vdrv-L1 of the low-side DC power source into DC-AC, and a low-side that converts AC output of the low-side inverter INV-L.
- An insulating transformer TL and a low-side rectifier RECT-L that converts the alternating current output of the low-side insulating transformer TL into direct current are connected in series, and a smoothing capacitor Cs-Lout is further connected in parallel.
- the low-side drive circuit 3-L includes a low-side gate driver DRV-L that controls the on / off operation of the low-side switching element S2, a low-side photoswitch PC-L that controls the drive of the low-side gate driver DRV-L, A low-side bypass capacitor Cs-Lin for removing noise input to the photoswitch PC-L is connected in series.
- the output of the low side gate driver DRV-L is input to the gate of the low side switching element S2 via the resistor Rg-L.
- the common mode reactor 4A is provided in the wiring between the high-side insulated power supply 2-H and the high-side drive circuit 3-H.
- the common mode reactor 4A includes a high voltage side wiring and a low voltage connecting the smoothing capacitor Cs-Hout on the high side insulated power supply 2-H side and the high side bypass capacitor Cs-Hin on the high side drive circuit 3-H side. It is comprised by the coil Lcom connected to both wiring of a side wiring.
- inductance Ls in FIG. 6 shows the leakage inductance of the common mode reactor 4A
- Rdamp is a damping resistor that suppresses resonance generated by the leakage inductance Ls.
- FIG. 7 shows a schematic block
- FIG. 8 shows one configuration example.
- the DCDC converter 10B of the second configuration example includes the bias power source 5B of the second form as the bias power source having the configuration shown in FIG.
- the bias power source 5B is configured to apply a low voltage to the high-side insulated power source 2-H by a separate power source.
- the voltage source Vc of the separate power source adds the output voltage Vout to the voltage VN at the negative voltage end of the step-down chopper circuit.
- VN + Vout the same voltage as the voltage (VN + Vout) at the high output end of the step-down chopper circuit 12 is set as the potential on the low voltage side of the high side insulated power supply 2-H.
- FIG. 8 shows a circuit configuration of the schematic block shown in FIG.
- the circuit configuration shown in FIG. 8 is a common configuration except that the bias power source 5A of the circuit configuration shown in FIG. 6 is changed to a bias power source 5B.
- description of parts common to the first configuration example shown in FIG. 6 is omitted, and only the bias power supply 5B is described.
- the bias power source 5B is configured by connecting a voltage source Vc to the low voltage side of the high side insulating power source 2-H.
- the voltage source Vc is set to the same voltage as the output voltage Vout of the main circuit.
- a voltage of (VN + Vout) is set on the low voltage side of the high side insulated power supply 2-H.
- the voltage of the voltage source Vc is set to (Vin ⁇ Duty). Therefore, the voltage of the voltage source Vc of the bias power source 5B can be set based on the known input voltage Vin and Duty.
- FIG. 9 shows a schematic block.
- the DCDC converter 10C of the third configuration example includes the bias power source 5C of the third form as the bias power source having the configuration shown in FIG.
- the bias power source 5C has a configuration in which the potential on the low voltage side of the high-side insulated power source 2-H is set by another power source. The same voltage as the output voltage Vout is generated based on the signals Gate1 and Gate2. With this configuration, the voltage (VN + Vout) at the high output end of the step-down chopper circuit 12 is set as the potential on the low voltage side of the high side insulated power supply 2-H.
- the bias power source 5C is configured by connecting the bias power source 5C between the low voltage side of the main circuit of the step-down chopper circuit and the low voltage side of the high side insulated power source 2-H.
- the bias power supply 5C includes a bias power supply circuit 5C1 and a control unit 5C2.
- the control unit 5C2 inputs a gate signal Gate1 for controlling on / off of the high side driving circuit 3-H, a gate signal Gate2 for controlling on / off of the low side driving circuit 3-L, and an input voltage Vin, and receives the gate signal.
- the duty ratio Duty is calculated from the gate 1 and the gate signal Gate2, and the same voltage as the output voltage Vout is generated by the calculation of (Vin ⁇ Duty) based on the obtained duty and the input voltage Vin.
- the bias power source 5C can constitute a voltage source Vc that outputs the same voltage as the output voltage Vout of the main circuit, and the voltage on the low voltage side of the high side insulated power source 2-H is a voltage of (VN + Vout). Is set.
- the voltage synchronized with the fluctuation of the gate signals Gate1 and Gate2 and the input voltage Vin can be set to the high-side insulated power supply 2-H.
- the fourth configuration example is an example in which a DCDC converter is configured using a step-up chopper circuit instead of the step-down chopper circuit as the main circuit of the power conversion device.
- FIG. 10A shows a schematic block diagram
- FIG. 10B shows the voltage relationship of each part.
- the DCDC converter 10D of the fourth configuration example includes a boost chopper circuit 13 as a main circuit of the power converter.
- the DCDC converter 10D converts the input voltage Vin from the DC power supply 6 using the boost chopper circuit 13 as a main circuit, and outputs a boosted output voltage Vout.
- the step-up chopper circuit 13 includes a series-parallel circuit of a high-side switching element S1 and a low-side switching element S2 between an inductance L and a smoothing capacitor C constituting a series-parallel circuit, and supplies an output voltage Vout to a load resistor R.
- a high-side configuration including a high-side insulated power supply 2-H, a high-side drive circuit 3-H, and a common mode reactor 4, a low-side insulated power supply 2-L, and a low-side drive circuit 3- Since the configuration on the low side consisting of L is common to the first to third configuration examples including the step-down chopper circuit, description of these configurations is omitted.
- the DCDC converter 10D of the fourth configuration example includes the bias power supply 5D of the fourth form.
- the bias power source 5D is configured to connect the input terminal on the low voltage side of the boost chopper circuit 13 to the low voltage side of the high side insulating power source 2-H.
- the voltage (VN + Vin) at the low input terminal of the step-up chopper circuit 13 is set as the potential on the low voltage side of the high side insulated power supply 2-H.
- Vdrv ⁇ H + VN + Vout Each voltage state of the voltage (Vdrv ⁇ H + VN + Vout) of the gate driver signal that drives the gate of the switching element S1 is shown.
- the reference voltage of the high side insulated power supply 2-H is set to Vs1-s.
- a voltage (Vdrv-H + VN + Vout) having a peak voltage (Vdrv-H + Vs1-s) obtained by adding the voltage Vdrv-H to the reference voltage Vs1-s is defined as a gate driver signal Vgate-H. Note that the amplitude of the voltage shown in FIG. 10B is schematically shown from the description, and does not indicate the actual amplitude of the voltage.
- the fifth configuration example is an example in which the main circuit of the power conversion device has a multiphase configuration by interleaving.
- a step-down chopper circuit is used as the main circuit, and a DCDC converter having a two-phase interleave configuration is shown.
- FIG. 11 shows a circuit example of the fifth configuration example.
- the DCDC converter 10E of the fifth configuration example forms a main circuit in two phases by interleaving of the power conversion device.
- the same number of common mode reactors as the number of interleaved phases are provided on the high side of each phase.
- the high-side insulated power source 2-H and the low-side insulated power source 2-L can be a single isolated power source common to each phase.
- two common mode reactors 4A-A and 4A-B and two high-side drive circuits 3- HA and 3-HB one phase is configured by the common mode reactor 4A-A and the high-side drive circuit 3-HA, and the other phase is configured by the common-mode reactor 4A-B and the high-side drive circuit 3-HB. It is composed.
- two low side drive circuits 3-LA and 3-LB are provided for one low side insulated power supply 2-L, and one phase is constituted by the low side drive circuit 3-LA.
- the other phase is constituted by the drive circuit 3-LB.
- the high-side drive circuit The voltage Vdrv-H2-A applied to the high-side bypass capacitor Cs-Hin-A of the 3-HA photocoupler and the high-side bypass capacitor Cs-Hin-B of the photocoupler of the high-side drive circuit 3-HB
- the applied voltage Vdrv-H2-B is the same voltage.
- This voltage is a gate voltage applied to the gates of the high-side switching elements S1-A and S1-B and affects the on-resistance of the switching elements.
- the gates applied to the gates of both switching elements Since the voltages are the same voltage, the current of each phase flowing through the main circuit of the multiphase interleave can be set to the same current value, and current imbalance can be prevented.
- multiphase interleaving an example of two-phase interleaving is shown as multiphase interleaving, but the number of interleaving phases is not limited to two, and it can also be applied to multiphase interleaving of three or more phases.
- DCDC converter 10E of the fifth configuration example an example of a DCDC step-down chopper converter is shown as the main circuit, but the present invention can also be applied to a converter in which the main circuit is a DCDC step-up chopper converter.
- the high-side and low-side sides of the converter can each have a multi-phase configuration for one common isolated power supply.
- the multi-phase configuration on the high side is parallel.
- a plurality of high-side switching elements connected are provided. The same voltage is applied to the plurality of high side switching elements from a common high-side insulated power supply via a common mode reactor. By making the voltage applied to each high-side switching element the same voltage, the on-resistance of each high-side switching element can be made uniform, and the output of each phase can be made equal.
- the sixth configuration example is an example in which the power conversion device is configured as a DCAC inverter, which converts the DC input voltage Vin into power and outputs the AC output voltage Vout to the output impedance RL.
- the configuration example of the DCAC inverter 11 shown in FIG. 12 includes two high-side drive circuits 3-HA and high-side drive circuits 3-HB on the high side, and two low-side drive circuits 3-LA and low-side on the low side.
- a bridge circuit is configured by the drive circuit 3-LB.
- the two high-side drive circuits 3-HA and 3HB are supplied with a voltage from one common high-side insulated power supply 2-H.
- the two low-side drive circuits 3-LA and 3LB are supplied with a voltage from one common low-side insulated power supply 2-L.
- a common mode reactor 4A is connected between the high side isolated power source 2-H and the high side drive circuit 3-HA, and the high side isolated power source 2-H and the high side drive circuit 3-HB are connected to each other. Is connected to the common mode reactor 4B.
- a bias power supply Vc is connected between the low voltage side of the high side isolated power supply 2-H and the low voltage side of the main circuit, and the voltage on the low voltage side of the high side isolated power supply 2-H is set to (VN + Vc). To do.
- the low voltage side of the low side insulated power supply 2-L is connected to the low voltage side of the main circuit, and the reference voltage of the low side insulated power supply 2-L is set to VN.
- the voltage of the bias power source Vc is selected as (Vin / 2).
- the high-side drive circuit 3-HA and the high-side drive circuit 3-HB that constitute the bridge circuit are applied with a voltage that is 1 ⁇ 2 of the input voltage Vin in each cycle, so the bias power supply Vc is (Vin / 2).
- the common mode reactors 4A and 4B can be appropriately magnetically reset.
- the DCAC inverter 11 in the high frequency band is selected by selecting the values of the inductance Lcom-A and the inductance Lcom-B of the common mode reactors 4A and 4B to be sufficiently large with respect to the output impedance RL of the DCAC inverter 11.
- the impedance of the high-side insulated power source 2-H can be set sufficiently larger than the output impedance of the DCAC inverter 11. Thereby, the influence which the high side insulated power supply 2-H has with respect to the output impedance seen from the DCAC inverter 11 can be reduced. This effect is due to a configuration in which the common mode reactor core is separated from the main circuit core independently and the inductance of the common mode reactor can be arbitrarily set.
- the bridge circuit includes a plurality of switching elements S1-A and S1-B connected in parallel to one common isolated power supply on the high side and the low side, respectively.
- S2-A and S2-B are provided.
- the same voltage is supplied to the plurality of high-side switching elements S1-A, S1-B from the common high-side insulated power supply 2-H via the common mode reactors 4A, 4B.
- the power conversion device of the present invention can be applied to the supply of high-frequency power to devices that use high frequencies such as manufacturing devices such as semiconductors and liquid crystal panels, vacuum vapor deposition devices, and heating / melting devices.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
Abstract
スイッチング素子の高周波動作で発生する高周波信号によって、ハイサイド絶縁電源の絶縁トランスの寄生容量に流れる漏れ電流を抑制する。ハイサイドスイッチング素子のオン/オフ動作で生じる高周波信号によってハイサイド絶縁電源の絶縁トランスの寄生容量に流れる漏れ電流は、コモンモード電流であることに着目し、このコモンモード電流をコモンモードリアクトルによって低減する。コモンモードリアクトルは、コモンモード電流をコモンモードリアクトルによって低減し、高周波信号をコモンモードリアクトルの負担させることによって、ハイサイド絶縁電源の絶縁トランスに高周波信号が印加されることを防ぎ、絶縁トランスの寄生容量に流れる漏れ電流を抑制し、さらに、絶縁トランスの寄生容量に流れる漏れ電流によって発生するハイサイド側のスイッチング素子の誤動作を低減する。
Description
本願発明は、絶縁電源、及びその絶縁電源を備えた、DCDCコンバータ及びDCACインバータ等の電力変換装置に関する。
チョッパ回路を用いた降圧チョッパ形DCDCコンバータ、昇圧チョッパ形DCDCコンバータ、DCACインバータ等の電力変換装置では、スイッチング素子のオン/オフの切り替え動作によって主電源である直流電源からの直流電圧を直流電圧あるいは交流電圧に変換している。スイッチング素子のオン/オフ動作は駆動回路によって行われる。
チョッパ回路を用いた電力変換装置では、高電圧側(ハイサイド)のスイッチング素子と低電圧側(ローサイド)のスイッチング素子を、それぞれのスイッチング素子に設けた基準電圧を異にする駆動回路によって駆動して電力変換を行っている。また、各駆動回路は、それぞれに電圧を印加する電源を備える。各スイッチング素子のスイッチング動作において、ハイサイド側の駆動回路であるゲートドライバは、ハイサイドスイッチング素子のソース電圧よりも高い電圧をゲートに印加する必要があり、また、基準電圧が異なるハイサイド側の駆動回路とローサイド側の駆動回路との間の短絡を防ぐ必要がある。そのため、ハイサイド側の駆動回路に電圧を印加する電源は、ハイサイド側とローサイド側とを電気的に絶縁するために絶縁電源(フローティング電源)が設けられている。
特許文献1には、ハイサイド側の絶縁電源としてパワードライブ変圧器を用いた構成が示されている。
図13は、電力変換装置の一例として降圧チョッパ回路によるDCDCコンバータ110を示し、ハイサイド側のハイサイドスイッチング素子S1を駆動するハイサイド絶縁電源120Hとして絶縁トランスT-Hを用いた構成例を示している。
DCDCコンバータ110は、直流電源100に対して、ハイサイドスイッチング素子S1とローサイドスイッチング素子S2の直並列接続回路と、インダクタンスLとを直列接続してなる降圧チョッパ回路を備え、並列接続したキャパシタCの両端を出力端として出力電圧Voutを負荷Rに出力する。
ハイサイド側は、ハイサイド絶縁電源120H、及びハイサイド絶縁電源120Hの出力電圧に基づいてゲート信号を出力するゲートドライバ130Hを備える。ハイサイド絶縁電源120Hは、ハイサイドインバータINV-Hと、絶縁トランスT-Hと、ハイサイド整流器RECT-Hと、平滑コンデンサCs-Houtとを備え、直流電圧Vdrv-H1を変換してグランドから絶縁した直流電圧Vdrv-H2を出力する。ゲートドライバ130Hは、ゲート信号GateHで駆動するハイサイドフォトスイッチPC-Hと、ハイサイドゲートドライバDRV-Hを備える。ハイサイドゲートドライバDRV-H は、ハイサイドフォトスイッチPC-Hの出力信号に基づいて、ハイサイド絶縁電源120Hの出力電圧Vdrv-H2を駆動電圧として、駆動抵抗Rg-Hを介してハイサイドスイッチング素子S1のゲートに出力する。
一方、ローサイド側は、ローサイド絶縁電源120L、及びローサイド絶縁電源120Lの出力に基づいてゲート信号を出力するゲートドライバ130Lを備える。ローサイド絶縁電源120Lは、ローサイドインバータINV-Lと、ローサイド絶縁トランスT-Lと、ローサイド整流器RECT-Lと、平滑コンデンサCs-Loutとを備え、直流電圧Vdrv-L1を変換してグランドから絶縁した直流電圧Vdrv-L2を出力する。ゲートドライバ130Lは、ゲート信号GateLで駆動するローサイドフォトスイッチPC-Lと、ローサイドゲートドライバDRV-Lを備える。ローサイドゲートドライバDRV-Lは、ローサイドフォトスイッチPC-Lの出力信号に基づいて、ローサイド絶縁電源120Lの直流電圧Vdrv-L2を駆動電圧として、駆動抵抗Rg-Lを介してローサイドスイッチング素子S2のゲートに出力する。
電力変換装置の応答を高速化するために、ハイサイドスイッチング素子S1,ローサイドスイッチング素子S2を例えば数百kHzの高周波で駆動することが行われる。この高周波化により、スイッチング素子には高周波の変位電圧Vs1-sが発生する。
この高周波の変位電圧Vs1-sは、ハイサイド絶縁電源120Hの絶縁トランスT-Hに対して、ハイサイドスイッチング素子のソース側対地電圧の変位電圧として印加される。絶縁トランスT-Hの寄生容量Ct-Hには、高周波の変位電圧Vs1-sによって漏れ電流が流れる。
図14(a),(b)は、ハイサイド絶縁電源120Hの絶縁トランスT-Hにおける印加電圧、及び高周波の変位電圧Vs1-sによる漏れ電流を示している。ハイサイド側において、絶縁トランスT-Hに印加される高周波の変位電圧Vs1-sは、ローサイド側の電圧VNを基準電圧として、振幅がVinの変位電圧が加算されているため(図14(a))、絶縁トランスT-Hの寄生容量Ct-Hには高周波の変位電圧Vs1-sの変化に伴う微分電流が漏れ電流として流れる(図14(b))。
一方、図14(c),(d)は、ローサイド絶縁電源120Lのローサイド絶縁トランスT-Lにおける印加電圧VNと、その印加電圧VNによる漏れ電流を示している。ローサイド側において、ローサイド絶縁トランスT-Lに印加される高周波の変位電圧は存在せず、ローサイド側の電圧VNがそのまま加算される(図14(c))。したがって、基準電圧VP及びVNを、多相電源のY字結線による中性点を接地した電圧を全波整流して得られる高電圧及び低電圧としたとき、ローサイド絶縁トランスT-Lの寄生容量Ct-Lには高周波の変位電圧が印加されないので、漏れ電流はほとんど流れない(図14(d))。ローサイド絶縁トランスT-Lに印加される電圧の周波数成分は、例えば入力電源が中性点接地された3相商用電源(50Hz)である場合には、基準電圧VNの周波数は150Hzであり、数~数十pF程度の寄生容量Ct-Lの漏電流はほぼ無視することができる。
したがって、ハイサイド絶縁電源120Hの絶縁トランスT-Hの寄生容量Ct-Hの漏れ電流は、ハイサイド側のハイサイドスイッチング素子S1を誤動作させる要因となる。
本発明は前記した従来の問題点を解決し、スイッチング素子の高周波動作で発生する高周波の変位電圧によって生じるハイサイド絶縁電源の寄生容量に流れる漏れ電流を抑制することを目的とする。
また、絶縁トランスT-Hへの変位電圧の印加を防ぐことを目的とする。
また、電力変換装置のハイサイド側のスイッチング素子の誤動作を抑制することを目的とする。
本発明は、ハイサイドスイッチング素子のオン/オフ動作で生じる高周波信号によってハイサイド絶縁電源の絶縁トランスの寄生容量に流れる漏れ電流は、ハイサイド絶縁電源とハイサイド駆動回路とを結ぶ高電圧配線と低電圧配線において同方向に流れるコモンモード電流であることに着目し、このコモンモード電流をコモンモードリアクトルによって低減する。
コモンモードリアクトルは、ハイサイド側に発生する変位電圧を負担する回路構成と見なすことができ、これによって、絶縁トランスT-Hへの変位電圧の印加を防ぎ、絶縁トランスの寄生容量に流れる漏れ電流を抑制する。
本発明は、絶縁電源の形態の他、この絶縁電源を備えた電力変換装置の形態を含み、何れの形態においても、ハイサイド側において、ハイサイド絶縁電源とハイサイド駆動回路との間の高電圧配線及び低電圧配線にコモンモードリアクトルを設けることによって、両配線を同方向に流れるコモンモード電流を低減し、これによって、ハイサイド絶縁電源の絶縁トランスの寄生容量に流れる漏れ電流を抑制し、さらに、絶縁トランスの寄生容量に流れる漏れ電流によって発生するハイサイド側のスイッチング素子の誤動作を低減する。
[絶縁電源]
本発明の絶縁電源は、ハイサイドスイッチング素子のスイッチング動作を制御するハイサイド駆動回路に印加する駆動電圧を、絶縁トランスを介して供給するハイサイド絶縁電源と、ローサイドスイッチング素子のスイッチング動作を制御するローサイド駆動回路に印加する駆動電圧を、絶縁トランスを介して供給するローサイド絶縁電源とを備える絶縁電源において、ハイサイド絶縁電源とハイサイド駆動回路との間にコモンモードリアクトルを備える。このコモンモードリアクトルは、スイッチング素子の高周波動作で発生する高周波の変位電圧を全て負担する。
本発明の絶縁電源は、ハイサイドスイッチング素子のスイッチング動作を制御するハイサイド駆動回路に印加する駆動電圧を、絶縁トランスを介して供給するハイサイド絶縁電源と、ローサイドスイッチング素子のスイッチング動作を制御するローサイド駆動回路に印加する駆動電圧を、絶縁トランスを介して供給するローサイド絶縁電源とを備える絶縁電源において、ハイサイド絶縁電源とハイサイド駆動回路との間にコモンモードリアクトルを備える。このコモンモードリアクトルは、スイッチング素子の高周波動作で発生する高周波の変位電圧を全て負担する。
本発明の絶縁電源が備える各構成において、ハイサイド絶縁電源は、ハイサイド直流電源と、このハイサイド直流電源の直流電圧を直流-交流変換するハイサイドインバータと、このハイサイドインバータの交流出力を電圧変換するハイサイド絶縁トランスと、このハイサイド絶縁トランスの交流出力を直流に変換するハイサイド整流器とを直列接続して備える。ハイサイド駆動回路は、ハイサイドスイッチング素子のオン/オフ動作を制御するハイサイドゲートドライバと、このハイサイドゲートドライバの駆動制御を行うハイサイドフォトスイッチと、このハイサイドフォトスイッチに入力するノイズを除去するハイサイドバイパスコンデンサとを直列接続して備える。
一方、ローサイド絶縁電源は、ローサイド直流電源と、このローサイド直流電源の直流電圧を直流-交流変換するローサイドインバータと、このローサイドインバータの交流出力を電圧変換するローサイド絶縁トランスと、このローサイド絶縁トランスの交流出力を直流に変換するローサイド整流器とを直列接続して備える。ローサイド駆動回路は、ローサイドスイッチング素子のオン/オフ動作を制御するローサイドゲートドライバと、このローサイドゲートドライバの駆動制御を行うローサイドフォトスイッチと、このローサイドフォトスイッチに入力するノイズを除去するローサイドバイパスコンデンサとを直列接続して備える。
コモンモードリアクトルは、ハイサイド絶縁電源とハイサイド駆動回路のハイサイドバイパスコンデンサとの間を接続する高電圧側配線及び低電圧側配線の両配線に設ける。
(コモンモードリアクトルの形態)
コモンモードリアクトルの一形態は、ハイサイド絶縁電源の高電圧側配線及び低電圧側配線を、共通コアに対して同方向に巻回した構成である。コモンモードリアクトルは、一つのコアに2本の導線を同じ方向に巻回したチョークコイルによって構成することができる。2本の導線の巻き線構造として、2本の導線をコアに対してそれぞれ分離して巻回する分割巻きの構成、あるいは2本の導線をコアに対して並列させて巻回するパラファイラ巻きの構成とすることができる。
コモンモードリアクトルの一形態は、ハイサイド絶縁電源の高電圧側配線及び低電圧側配線を、共通コアに対して同方向に巻回した構成である。コモンモードリアクトルは、一つのコアに2本の導線を同じ方向に巻回したチョークコイルによって構成することができる。2本の導線の巻き線構造として、2本の導線をコアに対してそれぞれ分離して巻回する分割巻きの構成、あるいは2本の導線をコアに対して並列させて巻回するパラファイラ巻きの構成とすることができる。
コモンモード電流は、ハイサイド絶縁電源の高電圧側配線及び低電圧側配線に対して同方向に流れるため、コモンモードリアクトルのコアに発生する磁束は合成されて強め合う自己誘導作用によってインダクタンスが増加する。このインダクタンスの増加によって高周波のコモンモード電流に対する電気抵抗が高まり、コモンモード電流の通過を阻止する作用が生じる。このコモンモード電流の通過阻止作用により、絶縁トランスの寄生容量に流れる漏れ電流は抑制される。
コモンモードリアクトルは、チョッパ回路等の主回路が備えるインダクタンスとは独立したコアで構成する。コモンモードリアクトルのコアと主回路のインダクタンスのコアとを共有させず独立した構成とすることによって、主回路の主電流によってコモンモードリアクトルのコアが磁気飽和することを避けることができる。これによって、コモンモードリアクトルのコアを小型化させることができる。
さらに、コモンモードリアクトルのコアは主回路が備えるコアと独立した構成であるため、コモンモードリアクトルのコアのインダクタンス値を主回路のコアに依存することなく任意に定め、変位電圧の全てをコモンモードリアクトルが負担するように設定することができる。
また、コモンモードリアクトルのコアに巻回する巻線の線径を細くし、巻線数を増やすことによって、電圧時間積(Bm)によるコアの磁気飽和を抑制することができる。
コモンモードリアクトルの形態は、ハイサイド絶縁電源の高電圧側配線及び低電圧側配線の両配線に対してダンピング抵抗を直列接続する構成を含む。コモンモードリアクトルを構成する2つのコイルの結合度が1未満である場合には漏れインダクタンスが生じる。この漏れインダクタンスは、絶縁電源側や駆動回路(ゲートドライバ)が備えるコンデンサと共に共振回路を構成する。ダンピング抵抗は、コモンモードリアクトルを構成する2つのコイルの漏れインダクタンスとコンデンサとの共振現象により生じる共振電流を減衰させて共振を抑制する。
(バイアス電源)
絶縁電源は、コモンモードリアクトルのコアを磁気リセットするバイアス電源をハイサイド絶縁電源の低電圧側に接続する構成を含む。このバイアス電源はコモンモードリアクトルのコアの磁気飽和を抑制する。
絶縁電源は、コモンモードリアクトルのコアを磁気リセットするバイアス電源をハイサイド絶縁電源の低電圧側に接続する構成を含む。このバイアス電源はコモンモードリアクトルのコアの磁気飽和を抑制する。
ハイサイド絶縁電源によってオン/オフ動作されるスイッチング素子は、そのオン/オフ動作によって高周波の変位電圧Vs1-sを発生する。この高周波の変位電圧Vs1-sは、コモンモード電流を低減するために設けたコモンモードリアクトルに印加される。一方、ハイサイド絶縁電源が備える絶縁トランスの寄生容量Ct-Hには低周波電圧のみが印加される。
ハイサイド絶縁電源の基準電位は、ローサイド絶縁電源と絶縁するために浮遊状態にある。そのため、コモンモードリアクトルに印加される高周波の変位電圧Vs1-sは浮遊状態の基準電位上に重畳されることになり、変位電圧Vs1-sによって変動するコモンモードリアクトルのコアの磁化状態は基準電位に左右される。
本発明のバイアス電源は、ハイサイド絶縁電源の基準電位に対する高周波の変位電圧Vs1-sの電位を調整することによって、コモンモードリアクトルのコアの正方向及び負方向の電圧時間積を平衡させて磁気リセットを行い、コアの磁気飽和を抑制する。
バイアス電源のバイアス電圧は、絶縁電源により駆動されるチョッパ回路等の出力回路の出力電圧とし、これによって、コモンモードリアクトルに印加される高周波の変位電圧Vs1-sの基準電圧を出力電圧の電圧分に基づいて調整する。バイアス電源によって、変位電圧Vs1-sの基準電圧を調整することによって、コモンモードリアクトルには極性が逆で大きさが同じ電圧時間積が印加され、磁気リセットが行われる。
バイアス電圧は上記した出力回路の出力電圧を用いる形態の他、出力回路の出力電圧に対応する電圧を用いる他の形態とすることができる。
バイアス電源は、出力回路自体をバイアス電源として用いる形態に代えて、出力回路の出力電圧と同電圧を出力する別電源を用いた形態としても良い。この別電源は、出力回路の出力電圧と同電圧を、スイッチング素子を駆動する制御信号のデューティー比に基づいて生成する構成である。
[電力変換装置]
本発明の絶縁電源を備える電力変換装置は、DCDCコンバータの形態、DCACインバータの形態を含む。さらに、DCDCコンバータは、DCDC変換を行うチョッパ回路として降圧チョッパ回路又は昇圧チョッパ回路を用いた構成とすることができる。
本発明の絶縁電源を備える電力変換装置は、DCDCコンバータの形態、DCACインバータの形態を含む。さらに、DCDCコンバータは、DCDC変換を行うチョッパ回路として降圧チョッパ回路又は昇圧チョッパ回路を用いた構成とすることができる。
(DCDC降圧チョッパコンバータの形態)
降圧チョッパ回路を備えたDCDCコンバータは、直流電源に対して、ハイサイドスイッチング素子とローサイドスイッチング素子との直並列接続回路と、インダクタンスとを直列接続してなる降圧チョッパ回路とによって主回路を構成し、ハイサイドスイッチング素子を駆動するハイサイド駆動回路、及びローサイドスイッチング素子を駆動するローサイド駆動回路に直流電圧を供給する絶縁電源を備える。
降圧チョッパ回路を備えたDCDCコンバータは、直流電源に対して、ハイサイドスイッチング素子とローサイドスイッチング素子との直並列接続回路と、インダクタンスとを直列接続してなる降圧チョッパ回路とによって主回路を構成し、ハイサイドスイッチング素子を駆動するハイサイド駆動回路、及びローサイドスイッチング素子を駆動するローサイド駆動回路に直流電圧を供給する絶縁電源を備える。
絶縁電源は、ハイサイドスイッチング素子及びローサイドスイッチング素子を駆動するハイサイド駆動回路及びローサイド駆動回路を駆動する電源であり、ハイサイド側において、ハイサイド絶縁電源とハイサイド駆動回路との間にコモンモードリアクトルを備える。バイアス電源のバイアス電圧として降圧チョッパ回路の出力電圧を用いることができる。
(DCDC昇圧チョッパコンバータの形態)
昇圧チョッパ回路を備えたDCDCコンバータは、直流電源に対して、インダクタンスと、ハイサイドスイッチング素子とローサイドスイッチング素子との直並列接続回路とを直列接続してなる昇圧チョッパ回路とによって主回路を構成し、ハイサイドスイッチング素子を駆動するハイサイド駆動回路、ローサイドスイッチング素子を駆動するローサイド駆動回路に直流電圧を供給する絶縁電源とを備える。
昇圧チョッパ回路を備えたDCDCコンバータは、直流電源に対して、インダクタンスと、ハイサイドスイッチング素子とローサイドスイッチング素子との直並列接続回路とを直列接続してなる昇圧チョッパ回路とによって主回路を構成し、ハイサイドスイッチング素子を駆動するハイサイド駆動回路、ローサイドスイッチング素子を駆動するローサイド駆動回路に直流電圧を供給する絶縁電源とを備える。
絶縁電源は、ハイサイドスイッチング素子及びローサイドスイッチング素子を駆動するハイサイド駆動回路及びローサイド駆動回路を駆動する電源であり、ハイサイド側において、ハイサイド絶縁電源とハイサイド駆動回路との間にコモンモードリアクトルを備える。バイアス電源のバイアス電圧として昇圧チョッパ回路の入力電圧を用いることができる。
DCDC降圧チョッパコンバータの形態、及びDCDC昇圧チョッパコンバータの形態において、コンバータのハイサイド側及びローサイド側はそれぞれ共通する1つの絶縁電源に対してインターリーブによって多相構成とすることができる。
この多相構成において、ハイサイド側の多相構成は並列接続された複数のハイサイドスイッチング素子を備える。これら複数のハイサイドスイッチング素子には、ハイサイド側の共通の1つの絶縁電源からコモンモードリアクトルを介して同一電圧が印加される。各ハイサイドスイッチング素子に印加する電圧を同一電圧とすることによって、各ハイサイドスイッチング素子のオン抵抗を均一化し、各相の出力を等しくすることができる。
(DCACインバータの形態)
DCACインバータは、直流電源に対して、ハイサイドスイッチング素子とローサイドスイッチング素子のブリッジ回路から成るインバータ回路によって主回路を構成し、ハイサイドスイッチング素子を駆動するハイサイド駆動回路、ローサイドスイッチング素子を駆動するローサイド駆動回路に直流電圧を供給する絶縁電源とを備える。
DCACインバータは、直流電源に対して、ハイサイドスイッチング素子とローサイドスイッチング素子のブリッジ回路から成るインバータ回路によって主回路を構成し、ハイサイドスイッチング素子を駆動するハイサイド駆動回路、ローサイドスイッチング素子を駆動するローサイド駆動回路に直流電圧を供給する絶縁電源とを備える。
絶縁電源は、ハイサイドスイッチング素子及びローサイドスイッチング素子を駆動するハイサイド駆動回路及びローサイド駆動回路を駆動する電源であり、ハイサイド側において、ハイサイド絶縁電源とハイサイド駆動回路との間にコモンモードリアクトルを備える。バイアス電源のバイアス電圧としてインバータ回路の主回路の入力電圧の1/2を用いることができる。
DCACインバータの形態において、ブリッジ回路は、ハイサイド側及びローサイド側において、それぞれ共通する1つの絶縁電源に対して複数の並列接続されたスイッチング素子を備える。これらの複数のハイサイドスイッチング素子には、ハイサイド側の共通の1つの絶縁電源からコモンモードリアクトルを介して同一電圧が供給される。各ハイサイドスイッチング素子に印加する電圧を同一電圧とすることによって、各ハイサイドスイッチング素子のオン抵抗を均一化し、出力電圧の変動を抑制するすることができる。
また、本発明によれば、主回路が複数のハイサイドスイッチング素子を備える電力変換装置において、ハイサイド側の回路にコモンモードリアクトルとバイアス電源を用いることによって、絶縁電源を共通化させることができる。
本発明の絶縁電源、及び電力変換装置について図1~図12を用いて説明する。以下、図1~4を用いて本発明の絶縁電源及び電力変換装置の概略構成、各部位の電圧状態、及び磁気リセットを説明し、図5~図10を用いてDCDCコンバータの電力変換装置の構成例について説明する。なお、図5~図9、図11は降圧チョッパ回路を主回路とするDCDCコンバータの構成例を示し、図10は昇圧チョッパ回路を主回路とするDCDCコンバータの構成例を示す。図11は降圧チョッパ回路の主回路をインターリーブにより多相としたDCDCコンバータの構成例を示し、図12はDCACインバータの電力変換装置の構成例を示している。
(本発明の絶縁電源、及び電力変換装置の概略構成)
はじめに、本発明の絶縁電源、及び電力変換装置の概略構成について図1を用いて説明する。なお、図1に示す電力変換装置は、降圧チョッパ回路を主回路とするDCDCコンバータの構成例を示している。
はじめに、本発明の絶縁電源、及び電力変換装置の概略構成について図1を用いて説明する。なお、図1に示す電力変換装置は、降圧チョッパ回路を主回路とするDCDCコンバータの構成例を示している。
DCDCコンバータ10は、降圧チョッパ回路12を主回路として直流電源6からの入力電圧Vinを電圧変換して出力電圧Voutを出力する。降圧チョッパ回路12はハイサイドスイッチング素子S1とローサイドスイッチング素子S2の直並列回路と、インダクタンスLと平滑コンデンサCの直並列回路とを備え、平滑コンデンサCの両端の出力電圧Voutを負荷抵抗Rに供給する。
ハイサイド側では、ハイサイドスイッチング素子S1のスイッチング動作を制御する構成として、ハイサイド絶縁電源2-Hとハイサイド駆動回路(ゲートドライバ)3-Hとを備える。一方、ローサイド側では、ローサイドスイッチング素子S2のスイッチング動作を制御する構成として、ローサイド絶縁電源2-Lとローサイド駆動回路(ゲートドライバ)3-Lとを備える。ハイサイド絶縁電源2-Hの基準電圧とローサイド絶縁電源2-Lの基準電圧は異なり互いに絶縁状態にある。
ローサイド側において、ローサイド駆動回路(ゲートドライバ)3-Lはローサイド絶縁電源2-Lから駆動電圧Vdrv-L2の供給を受け、ゲート信号Gate2に基づいてローサイドスイッチング素子S2のゲート端子に駆動電圧Vdrv-L2を印加して、ローサイドスイッチング素子S2を駆動する。
一方、ハイサイド側において、ハイサイド駆動回路(ゲートドライバ)3-Hはハイサイド絶縁電源2-Hから駆動電圧Vdrv-H2の供給を受け、ゲート信号Gate1に基づいてハイサイドスイッチング素子S1のゲート端子に駆動電圧Vdrv-H2を印加して、ハイサイドスイッチング素子S1を駆動する。ハイサイド側では、ハイサイド絶縁電源2-Hとハイサイド駆動回路(ゲートドライバ)3-Hとの間にコモンモードリアクトル4を備える。
ハイサイドスイッチング素子S1を高周波でオン/オフ動作させると、高周波の変位電圧Vs1-sが発生する。この高周波の変位電圧Vs1-sは、ハイサイド絶縁電源2-Hが備える絶縁トランスT-H(図1には示していない)において、ハイサイドスイッチング素子S1のソース側対地電圧の変位電圧として、電圧VNに重畳されて印加される。この高周波の変位電圧Vs1-sによって、絶縁トランスT-Hの寄生容量CT-Hに微少の漏れ電流が流れる。この絶縁トランスT-Hの寄生容量Ct-Hの漏れ電流は、ハイサイドスイッチング素子S1を誤動作させる要因となる。
ハイサイド側に備えるコモンモードリアクトル4は、ハイサイドスイッチング素子S1を高周波でオン/オフ動作させることによって発生する高周波の変位電圧Vs1-sを負担し、これによってハイサイド絶縁電源2-Hの絶縁トランスT-Hの寄生容量Ct-Hに変位電圧Vs1-sが印加されることを防止することによって漏れ電流を低減し、ハイサイドスイッチング素子S1の誤動作を抑制する。
ハイサイドスイッチング素子のオン/オフ動作で生じる高周波の変位電圧によってハイサイド絶縁電源の絶縁トランスの寄生容量に流れる漏れ電流は、ハイサイド絶縁電源とハイサイド駆動回路とを結ぶ高電圧配線と低電圧配線において同方向に流れるコモンモード電流である。コモンモードリアクトル4は、コモンモード電流を低減する。
コモンモードリアクトル4は、複数の形態を含む。図1(b)、(c)、(d)はコモンモードリアクトルの構成例を示している。
(コモンモードリアクトル)
コモンモードリアクトルは、共通コアとこの共通コアに対して同方向に巻回した2つの巻線とにより構成される。図1(b),(c),(d)に示すコモンモードリアクトル4A,4B,4Cは、共通コア(図示していない)に対してハイサイド絶縁電源の高電圧側配線及び低電圧側配線を同方向に巻回することで構成される。2本の導線の巻線構造として、例えば、2本の導線をコアに対してそれぞれ分離して巻回する分割巻きの構成、あるいは2本の導線をコアに対して並列させて巻回するパラファイラ巻きの構成とすることができる。
コモンモードリアクトルは、共通コアとこの共通コアに対して同方向に巻回した2つの巻線とにより構成される。図1(b),(c),(d)に示すコモンモードリアクトル4A,4B,4Cは、共通コア(図示していない)に対してハイサイド絶縁電源の高電圧側配線及び低電圧側配線を同方向に巻回することで構成される。2本の導線の巻線構造として、例えば、2本の導線をコアに対してそれぞれ分離して巻回する分割巻きの構成、あるいは2本の導線をコアに対して並列させて巻回するパラファイラ巻きの構成とすることができる。
コモンモード電流は、ハイサイド絶縁電源の高電圧側配線及び低電圧側配線に対して同方向に流れるため、コアに発生する磁束は合成されて強め合う自己誘導作用によってインダクタンスが増加する。このインダクタンスの増加によって高周波のコモンモード電流に対する電気抵抗が高まり、コモンモード電流の通過を阻止する作用が生じる。このコモンモード電流の通過を阻止する作用と、コモンモードリアクトルによる変位電圧Vs1-sの負担によって、絶縁トランスの寄生容量に変位電圧が印加されることを防止し、絶縁トランスの寄生容量に流れる漏れ電流は抑制される。
コモンモードリアクトル4A,4B,4Cは、チョッパ回路等の主回路が備えるインダクタンスLとは独立したコアで構成する。コモンモードリアクトル4A,4B,4Cのコア(図示していない)とチョッパ回路の主回路のインダクタンスLのコア(図示していない)とを共有させず独立した構成とすることによって、チョッパ回路の主回路の主電流によるコモンモードリアクトル4A,4B,4Cのコアの磁気飽和を避けることができる。これによって、コモンモードリアクトル4A,4B,4Cのコアを小型化させることができる。
また、コモンモードリアクトルのコアとチョッパ回路の主回路のインダクタンスLのコアとを独立した構成とすることで、各コアのインダクタンスをそれぞれ分離して定めることができ、コモンモードリアクトル4A,4Bのコアに巻回する巻線の線径を細くし、巻線数を増やすことによって、インダクタンスを任意に設定することができる。また、電圧時間積(Bm)も任意に設定することができるため、コアの磁気飽和を抑制することもできる。
コモンモードリアクトル4Aは、共通コア(図示していない)に1次巻線4a,4bを同方向に巻回して構成される。コモンモードリアクトル4Bは、コモンモードリアクトル4Aと同様に共通コアに巻回された1次巻線4a,4bに加えて、抵抗4dで短絡した2次巻線4cを備える。2次巻線4cは1次巻線4a,4bのコモンモード電流を誘起して、抵抗4dで消費させる。
コモンモードリアクトル4Cは、コモンモードリアクトル4Aと同様に共通コアに巻回された1次巻線4a,4bに加えて、各1次巻線4a,4bを抵抗4e、4fによって短絡させる。抵抗4e、4fは1次巻線4a,4bのコモンモード電流を消費して低減させる。
一方、ローサイド絶縁電源2-Lのローサイド絶縁トランスT-L(図1には示していない)に印加される高周波の変位電圧は、ローサイド側の電圧VNのみ印加される。電圧VP及びVNを、多相電源のY字結線による中性点を接地して得られる高電圧及び低電圧としたとき、ローサイド絶縁トランスT-Lの寄生容量Ct-Lには低周波のVNだけが印加されるので漏れ電流はわずかである。ローサイド絶縁トランスT-Lに印加される電圧の周波数成分は、例えば入力電源が中性点接地された3相商用電源(50Hz)である場合には、基準電圧VNの周波数は150Hzであり、数~数十pF程度の寄生容量Ct-Lの漏電流はほぼ無視することができる。
(バイアス電源)
ローサイド絶縁電源2-Lは電圧VNを基準電圧として有するのに対して、ハイサイド側のハイサイド絶縁電源2-Hはローサイド絶縁電源2-Lと絶縁された浮遊状態にある。ハイサイド絶縁電源2-Hの基準電圧は、ハイサイドスイッチング素子S1のソース端の電圧に基づいて定まる。
ローサイド絶縁電源2-Lは電圧VNを基準電圧として有するのに対して、ハイサイド側のハイサイド絶縁電源2-Hはローサイド絶縁電源2-Lと絶縁された浮遊状態にある。ハイサイド絶縁電源2-Hの基準電圧は、ハイサイドスイッチング素子S1のソース端の電圧に基づいて定まる。
本発明の電力変換装置1であるDCDCコンバータ10において、ハイサイド絶縁電源2-Hは、低電圧側に接続されたバイアス電源5を備える。バイアス電源5は、コモンモードリアクトルに印加する高周波の変位電圧Vs1-sのバイアス電圧を調整する。このバイアス電源5によるバイアス電圧の調整によって、コモンモードリアクトルのコアを磁気リセットし、コアの磁気飽和を抑制する。バイアス電源によるコアの磁気リセットについては後の項で説明する。
(電力変換装置に各部位の電圧状態)
次に、電力変換装置の各部位の電圧状態を図2、図3を用いて説明する。
図2は、直流電源として、中性点接地した3相商用電源(50Hz)と、3相商用電源の交流電圧を整流して直流電圧を出力する整流器及び平滑回路を備えたものを用い、直流電源で得られる直流電圧を電力変換装置の入力電圧Vinとする場合を示している。図2(a)は電力変換装置の各部位の電圧として、直流電源の正電圧端の電圧VP、負電圧端の電圧VN、及び出力端の電圧(VN+Vout)の各電圧の変動を示し、図2(b)は高周波の変位電圧Vs1-sの変動を示している。図2(c)は、図2(b)において任意の一時点における、各電圧VP,VN+Vout,VN,及びVs1-sの電圧状態を示している。
次に、電力変換装置の各部位の電圧状態を図2、図3を用いて説明する。
図2は、直流電源として、中性点接地した3相商用電源(50Hz)と、3相商用電源の交流電圧を整流して直流電圧を出力する整流器及び平滑回路を備えたものを用い、直流電源で得られる直流電圧を電力変換装置の入力電圧Vinとする場合を示している。図2(a)は電力変換装置の各部位の電圧として、直流電源の正電圧端の電圧VP、負電圧端の電圧VN、及び出力端の電圧(VN+Vout)の各電圧の変動を示し、図2(b)は高周波の変位電圧Vs1-sの変動を示している。図2(c)は、図2(b)において任意の一時点における、各電圧VP,VN+Vout,VN,及びVs1-sの電圧状態を示している。
直流電源の出力端の電圧の内、負電圧端の電圧VNは電力変換装置のローサイド側の基準電圧となり、正電圧端の電圧VPは基準電圧VNに入力電圧Vinを加算した電圧(VN+Vin)となる。
電力変換装置の出力端の電圧は、基準電圧VNに出力電圧Voutを加算した(VN+Vout)であり、電力変換装置の主回路が降圧チョッパ回路で構成される場合には、VP(=VN+Vin)>(VN+Vout)の関係がある。
3相商用電源の交流電圧を整流して直流電圧を出力する直流電源の出力電圧は、各商用電源の周波数が50Hzの場合には150Hzの周波数となり、電圧VN及び電圧VPの周波数は150Hzとなる。なお、S相接地の場合には、電圧VN及び電圧VPの周波数は50Hzとなる。
ハイサイドスイッチング素子S1及びローサイドスイッチング素子S2を高周波駆動した際に発生する高周波の変位電圧Vs1-sは、入力電圧Vinと同じ振幅値を有し、基準電圧VNをベースとして加算された電圧状態で表される。
図3は、負電圧端の電圧VNを基準電圧とした、正電圧端の電圧VP(=VN+Vin)、出力端の出力電圧(VN+Vout)、及びハイサイドスイッチング素子S1のゲートを駆動するゲートドライバ信号の電圧(Vdrv-H+Vs1-s)の各電圧状態を示している。このゲートドライバ信号の電圧は、ハイサイドスイッチング素子S1の出力側(ソース側)の電圧よりも高い電圧である必要があるため、ハイサイド絶縁電源2-Hの基準電圧をVs1-sに設定し、この基準電圧Vs1-sに電圧Vdrv-Hを加算した電圧(Vdrv-H+Vs1-s)をピーク電圧とする電圧(Vdrv-H+VN+Vin)をゲートドライバ信号Vgate-Hとする。なお、図3に示す電圧の振幅は説明の上から模式的に表したものであって、実際の電圧の振幅を示すものではない。
(磁気リセット)
コモンモードリアクトルの各形態において、バイアス電源5はコモンモードリアクトルのコアを磁気リセットして、コモンモードリアクトルのコアの磁気飽和を抑制する。
コモンモードリアクトルの各形態において、バイアス電源5はコモンモードリアクトルのコアを磁気リセットして、コモンモードリアクトルのコアの磁気飽和を抑制する。
ハイサイド絶縁電源2-Hによってオン/オフ動作されるハイサイドスイッチング素子S1は、そのオン/オフ動作によって高周波の変位電圧Vs1-sを発生する。この高周波の変位電圧Vs1-sはコモンモードリアクトルに印加される。一方、ハイサイド絶縁電源2-Hが備える絶縁トランスの寄生容量Ct-Hには低周波電圧のみが印加される。
ハイサイド絶縁電源2-Hの基準電位は、ローサイド絶縁電源2-Lと絶縁するために浮遊状態にある。そのため、コモンモードリアクトルに印加される高周波の変位電圧Vs1-sは浮遊状態の基準電位に重畳されることになり、変位電圧Vs1-sによって変動するコモンモードリアクトルのコアの磁化状態は基準電位に左右される。
バイアス電源5は、ハイサイド絶縁電源2-Hの基準電位に対する高周波の変位電圧Vs1-sの電位を調整することによって、コモンモードリアクトルのコアの正方向及び負方向の電圧時間積を平衡させて磁気リセットを行い、コアの磁気飽和を抑制する。
バイアス電源5のバイアス電圧は、絶縁電源により駆動されるチョッパ回路等の出力回路の出力電圧とし、これによって、コモンモードリアクトルに印加される高周波の変位電圧Vs1-sの基準の電位を出力電圧に基づいて調整する。バイアス電源によって、変位電圧Vs1-sの基準の電位を調整することによって、コモンモードリアクトルには極性が逆で大きさが同じ電圧時間積を印加される。
図4はバイアス電源5による高周波の変位電圧Vs1-sの電位調節を説明するための概略図である。なお、図4に示す電圧振幅及び各部位の電圧は説明の上から模式的に表したものであって、実際の電圧振幅又は電圧状態を示すものではない。
図4(a)はコモンモードリアクトルに印加される高周波の変位電圧Vs1-sの電位状態を示している。図4(a)に示す電位状態では、例としてバイアス電圧を入力電圧Vinの1/2としているため、変位電圧Vs1-sの変動がコモンモードリアクトルに対して正方向の電圧時間積が多く印加されるため、コアの磁気リセットは行われない。
図4(b)は、コモンモードリアクトルに印加される高周波の変位電圧Vs1-sを、バイアス電源によって基準電圧VNに基づいて電位変更した状態を示している。この電位変更によって、コモンモードリアクトルの基準の電位は(VN+Vout)となる。図4(b)では(VN+Vout)を太い破線で示している。
これによって、コモンモードリアクトルのコアには、基準の電位(VN+Vout)に対して正方向と負方向の両方向に同じ面積の電圧時間積の変位電圧Vs1-sが印加される。
電力変換装置の主回路が降圧チョッパ回路である場合には、降圧チョッパ回路の出力電圧Voutは、Vout=Vin×Dutyで表される。なお、Dutyはハイサイドスイッチング素子S1のデューティー比であり、一周期に対してハイサイドスイッチング素子S1をオン状態とする時間比を表している。
このDutyでハイサイドスイッチング素子S1の駆動を制御した場合には、コモンモードリアクトルには、ハイサイドスイッチング素子S1がオン状態の間では(Vin-Vout)の電圧がDutyの期間だけ印加され、ハイサイドスイッチング素子S1がオン状態の間ではVoutの電圧の極性が逆向きで(1-Duty)の期間だけ印加される。
この電圧印加の状態を電圧時間積Bmで表すと、ハイサイドスイッチング素子S1がオン状態の期間では、
Bm-on=(Vin-Vout)×Duty
=(Vin-Vin×Duty)×Duty
=Vin×(1-Duty)×Duty …(1)
となる。
Bm-on=(Vin-Vout)×Duty
=(Vin-Vin×Duty)×Duty
=Vin×(1-Duty)×Duty …(1)
となる。
一方、ハイサイドスイッチング素子S1がオフ状態の期間では、
Bm-off=(-Vout×(1-Duty))
=-Vin×(1-Duty)× Duty …(2)
となる。
Bm-off=(-Vout×(1-Duty))
=-Vin×(1-Duty)× Duty …(2)
となる。
変位電圧Vs1-sは全でコモンモードリアクトルに印加され、ハイサイド絶縁電源2-Hの絶縁トランスT-Hの寄生容量Ct-Hには(VN+Vout)の低周波数電圧のみが印加される。
コモンモードリアクトルに印加される変位電圧Vs1-sについて、上記式(1)、(2)に示す様に、ハイサイドスイッチング素子S1がオン状態でコアに印加される電圧時間積Bm-onと、ハイサイドスイッチング素子S1がオフ状態でコアに印加される電圧時間積Bm-offは極性が逆方向で大きさが同じであるため、コモンモードリアクトルのコアは磁気リセットされる。
一方、絶縁トランスT-Hの寄生容量Ct-Hに印加される(VN+Vout)の低周波数の電圧による漏れ電流については、寄生容量Ct-Hが例えば数~数十pF程度の小容量であるため、ほぼ無視することができる。
(ハイサイド絶縁電源の共振現象の抑制)
次に、ハイサイド絶縁電源に生じる共振現象を抑制する構成について説明する。コモンモードリアクトル4A,4Bを構成する2つの巻線4a,4bの結合度が1未満である場合には漏れインダクタンスLs(図1には示していない)が生じる。この漏れインダクタンスLsは、ハイサイド絶縁電源2-H及び駆動回路(ゲートドライバ)3-Hが備えるコンデンサと共に共振回路を構成する。
次に、ハイサイド絶縁電源に生じる共振現象を抑制する構成について説明する。コモンモードリアクトル4A,4Bを構成する2つの巻線4a,4bの結合度が1未満である場合には漏れインダクタンスLs(図1には示していない)が生じる。この漏れインダクタンスLsは、ハイサイド絶縁電源2-H及び駆動回路(ゲートドライバ)3-Hが備えるコンデンサと共に共振回路を構成する。
共振回路を構成するコンデンサとして、コモンモードリアクトル4A,4Bに接続されるハイサイド絶縁電源2-Hが備える平滑コンデンサや、駆動回路(ゲートドライバ)3-Hが備えるバイパスコンデンサがある。バイパスコンデンサは、交流成分をバイパスして駆動回路(ゲートドライバ)3-Hへのノイズ分に侵入を阻止するフィルタリングの作用を奏する。
なお、これらのコンデンサにおいて、通常、ハイサイド絶縁電源の整流後に設ける平滑コンデンサとして、電界コンデンサ等の容量の大きなコンデンサを使用するため、共振回路を構成するコンデンサとしては無視することができる。一方、駆動回路(ゲートドライバ)において絶縁のためにフォトカプラを用いる場合に設けるバイパスコンデンサは、セラミックコンデンサ等の容量の小さなコンデンサを用いるため、共振回路を構成するコンデンサとして無視できない。
コモンモードリアクトル4A,4Bは、ハイサイド絶縁電源2-Hの高電圧側配線及び低電圧側配線の両配線にダンピング抵抗7(図1には示していない)を直列接続する構成とすることができる。ダンピング抵抗7は、コモンモードリアクトル4A,4Bを構成する2つの巻線4a,4bの漏れインダクタンスLsとコンデンサとの共振現象により生じる共振電流を減衰させて共振を抑制する。
漏れインダクタンスLs、コンデンサC、及びダンピング抵抗Rdampの直列回路において、Q値及び減衰比ζはそれぞれ以下の式(3),(4)で表される。
Q=(1/Rdamp)×(Ls/C)1/2 …(3)
ζ=1/2Q=(Rdamp/2)×(C/Ls)1/2 …(4)
ここで、ダンピング抵抗Rdampは、例えば減衰比ζが予め定めた所定値を超えるような値を求めることで選定することができる。
Q=(1/Rdamp)×(Ls/C)1/2 …(3)
ζ=1/2Q=(Rdamp/2)×(C/Ls)1/2 …(4)
ここで、ダンピング抵抗Rdampは、例えば減衰比ζが予め定めた所定値を超えるような値を求めることで選定することができる。
ここで、平滑コンデンサは共振に寄与しないとし、共振回路を構成するコンデンサとして駆動回路(ゲートドライバ)のフォトカプラをバイパスするバイパスコンデンサCs-inのみであるとした場合には、減衰比ζは以下の式(5)で表される。
ζ=1/2Q=(Rdamp/2)×(Cs-in/Ls)1/2 …(5)
ζ=1/2Q=(Rdamp/2)×(Cs-in/Ls)1/2 …(5)
減衰値ζの所定値としてζkを定めた場合には、ダンピング抵抗Rdampは以下の式(6)で表すことができる。
Rdamp>2ζk×(Ls/Cs-in)1/2 …(6)
Rdamp>2ζk×(Ls/Cs-in)1/2 …(6)
以下、本発明の絶縁電源及び電力変換装置の構成例(第1の構成例~第6の構成例)について、図5~図12を用いて説明する。図5~図9に示す第1~第3の構成例はバイアス電源の形態例であり、降圧チョッパ回路を主回路とするDCDCコンバータの例について示している。図10に示す第4の構成例は昇圧チョッパ回路を主回路とするDCDCコンバータの例であり、図11に示す第5の構成例はDCDCコンバータをインターリーブ構成とする例であり、図12に示す第6の構成例はDCACインバータの構成例である。
(第1の構成例)
第1の構成例は、ハイサイド絶縁電源に対する電圧の印加を第1の形態のバイアス電源5Aによって行う。図5は概略ブロックを示し、図6は一構成例を示している。
第1の構成例は、ハイサイド絶縁電源に対する電圧の印加を第1の形態のバイアス電源5Aによって行う。図5は概略ブロックを示し、図6は一構成例を示している。
第1の構成例のDCDCコンバータ10Aは、図1で示した構成のバイアス電源として第1の形態のバイアス電源5Aを備える。バイアス電源5Aは、降圧チョッパ回路12の高出力端をハイサイド絶縁電源2-Hの低電圧側に接続する構成であり、この構成によって、ハイサイド絶縁電源2-Hの低電圧側に降圧チョッパ回路12の高電圧側の出力端の電圧(VN+Vout)を印加し、これによってハイサイド絶縁電源2-Hの基準電位を設定する。
なお、降圧チョッパ回路12の高電圧側の出力端の電圧(VN+Vout)は、降圧チョッパ回路12の負電圧端の電圧VNに負荷抵抗Rに印加される出力電圧Voutを重畳した電圧である。
図6は、図5に示される概略ブロックの一回路構成を示している。
直流電源6は、中性点接地した3相電源と、3相交流を直流に変換する3相整流器と、コイルLinとコンデンサCinの直並列回路からなる平滑回路とから構成される。3相電源は、例えば50Hzの3相商用電源を用いることができる。50Hzの3相商用電源を用いた場合には、直流電源6による得られる基準電圧VNの周波数は150Hzとなる。
直流電源6は、中性点接地した3相電源と、3相交流を直流に変換する3相整流器と、コイルLinとコンデンサCinの直並列回路からなる平滑回路とから構成される。3相電源は、例えば50Hzの3相商用電源を用いることができる。50Hzの3相商用電源を用いた場合には、直流電源6による得られる基準電圧VNの周波数は150Hzとなる。
ハイサイド絶縁電源2-Hは、ハイサイド直流電源と、このハイサイド直流電源の直流電圧Vdrv-H1を直流-交流変換するハイサイドインバータINV-Hと、このハイサイドインバータINV-Hの交流出力を電圧変換するハイサイド絶縁トランスT-Hと、このハイサイド絶縁トランスT-Hの交流出力を直流に変換するハイサイド整流器RECT-Hとを直列接続し、更に平滑コンデンサCs-Houtを並列接続して構成される。
ハイサイド駆動回路3-Hは、ハイサイドスイッチング素子S1のオン/オフ動作を制御するハイサイドゲートドライバDRV-Hと、このハイサイドゲートドライバDRV-Hの駆動制御を行うハイサイドフォトスイッチPC-Hと、このハイサイドフォトスイッチPC-Hに入力するノイズを除去するハイサイドバイパスコンデンサCs-Hinとを直列接続して備える。ハイサイドゲートドライバDRV-Hの出力は抵抗Rg-Hを介してハイサイドスイッチング素子S1のゲートに入力される。
ローサイド絶縁電源2-Lは、ローサイド直流電源と、このローサイド直流電源の直流電圧Vdrv-L1を直流-交流変換するローサイドインバータINV-Lと、このローサイドインバータINV-Lの交流出力を電圧変換するローサイド絶縁トランスT-Lと、このローサイド絶縁トランスT-Lの交流出力を直流に変換するローサイド整流器RECT-Lとを直列接続し、更に、平滑コンデンサCs-Loutを並列接続して構成される。
ローサイド駆動回路3-Lは、ローサイドスイッチング素子S2のオン/オフ動作を制御するローサイドゲートドライバDRV-Lと、このローサイドゲートドライバDRV-Lの駆動制御を行うローサイドフォトスイッチPC-Lと、このローサイドフォトスイッチPC-Lに入力するノイズを除去するローサイドバイパスコンデンサCs-Linとを直列接続して備える。ローサイドゲートドライバDRV-Lの出力は抵抗Rg-Lを介してローサイドスイッチング素子S2のゲートに入力される。
ハイサイド絶縁電源2-Hとハイサイド駆動回路3-Hとの間の配線には、コモンモードリアクトル4Aが設けられる。コモンモードリアクトル4Aは、ハイサイド絶縁電源2-H側の平滑コンデンサCs-Houtとハイサイド駆動回路3-H側のハイサイドバイパスコンデンサCs-Hinとの間を接続する高電圧側配線及び低電圧側配線の両配線に接続されるコイルLcomにより構成される。
なお、図6中のインダクタンスLsはコモンモードリアクトル4Aの漏れインダクタンスを示し、Rdampは漏れインダクタンスLsにより発生する共振を抑制するダンピング抵抗である。
(第2の構成例)
第2の構成例は、ハイサイド絶縁電源に対する電圧の印加を第2の形態のバイアス電源によって行う。図7は概略ブロックを示し、図8は一構成例を示している。
第2の構成例は、ハイサイド絶縁電源に対する電圧の印加を第2の形態のバイアス電源によって行う。図7は概略ブロックを示し、図8は一構成例を示している。
第2の構成例のDCDCコンバータ10Bは、図1で示した構成のバイアス電源として第2の形態のバイアス電源5Bを備える。バイアス電源5Bは、ハイサイド絶縁電源2-Hへの低電圧に印加を別電源により行う構成であり、別電源の電圧源Vcは降圧チョッパ回路の負電圧端の電圧VNに出力電圧Voutを加算した電圧(VN+Vout)と同電圧に設定する。この構成によって、ハイサイド絶縁電源2-Hの低電圧側の電位として降圧チョッパ回路12の高出力端の電圧(VN+Vout)と同じ電圧が設定される。
図8は、図7に示される概略ブロックの一回路構成を示している。図8に示す回路構成は、図6に示した回路構成のバイアス電源5Aをバイアス電源5Bに変更する以外は共通の構成である。以下では、図6に示した第1の構成例と共通する部分の説明は省略し、バイアス電源5Bのみを説明する。
バイアス電源5Bは、ハイサイド絶縁電源2-Hの低電圧側に電圧源Vcを接続して構成される。電圧源Vcは、主回路の出力電圧Voutと同電圧に設定する。これによって、ハイサイド絶縁電源2-Hの低電圧側には(VN+Vout)の電圧が設定される。主回路である降圧チョッパ回路12の入力電圧をVinとし、ハイサイドスイッチング素子S1のデューティー比をDutyとしたときには、電圧源Vcの電圧は(Vin×Duty)に設定する。したがって、バイアス電源5Bの電圧源Vcの電圧の設定は、既知の入力電圧Vin及びDutyに基づいて行うことができる。
(第3の構成例)
第3の構成例は、ハイサイド絶縁電源に対する電圧の印加を第3の形態のバイアス電源によって行う。図9は概略ブロックを示している。
第3の構成例は、ハイサイド絶縁電源に対する電圧の印加を第3の形態のバイアス電源によって行う。図9は概略ブロックを示している。
第3の構成例のDCDCコンバータ10Cは、図1で示した構成のバイアス電源として第3の形態のバイアス電源5Cを備える。バイアス電源5Cは、第2の形態のバイアス電源5Bと同様に、ハイサイド絶縁電源2-Hの低電圧側の電位の設定を別電源によって行う構成であり、別電源の電圧源Vcは、ゲート信号Gate1及びGate2に基づいて出力電圧Voutと同電圧を生成する。この構成によって、ハイサイド絶縁電源2-Hの低電圧側の電位として降圧チョッパ回路12の高出力端の電圧(VN+Vout)を設定する。
バイアス電源5Cは、降圧チョッパ回路の主回路の低電圧側とハイサイド絶縁電源2-Hの低電圧側との間にバイアス電源5Cを接続して構成される。バイアス電源5Cは、バイアス電源回路5C1と制御部5C2を備える。制御部5C2は、ハイサイド駆動回路3-Hのオン/オフを制御するゲート信号Gate1とローサイド駆動回路3-Lのオン/オフを制御するゲート信号Gate2、及び入力電圧Vinを入力し、ゲート信号Gate1とゲート信号Gate2からデューティー比Dutyを算出し、得られたDutyと入力電圧Vinに基づいて(Vin×Duty)の演算によって出力電圧Voutと同電圧を生成する。これによって、バイアス電源5Cは、主回路の出力電圧Voutと同電圧を出力する電圧源Vcを構成することができ、ハイサイド絶縁電源2-Hの低電圧側の電位には(VN+Vout)の電圧が設定される。
バイアス電源5Cの構成によれば、ゲート信号Gate1及びGate2、並びに入力電圧Vinの変動に同期した電圧をハイサイド絶縁電源2-Hに設定することができる。
(第4の構成例)
第4の構成例は、電力変換装置の主回路として降圧チョッパ回路に代えて昇圧チョッパ回路を用いてDCDCコンバータを構成する例である。図10(a)は概略ブロック図を示し、図10(b)は各部位の電圧関係を示している。
第4の構成例は、電力変換装置の主回路として降圧チョッパ回路に代えて昇圧チョッパ回路を用いてDCDCコンバータを構成する例である。図10(a)は概略ブロック図を示し、図10(b)は各部位の電圧関係を示している。
第4の構成例のDCDCコンバータ10Dは電力変換装置の主回路として昇圧チョッパ回路13を備える。DCDCコンバータ10Dは、昇圧チョッパ回路13を主回路として直流電源6からの入力電圧Vinを変換し昇圧した出力電圧Voutを出力する。昇圧チョッパ回路13は、直並列回路を構成するインダクタンスLと平滑コンデンサCとの間にハイサイドスイッチング素子S1とローサイドスイッチング素子S2の直並列回路を備え、出力電圧Voutを負荷抵抗Rに供給する。
第4の構成例において、ハイサイド絶縁電源2-H、ハイサイド駆動回路3-H、及びコモンモードリアクトル4からなるハイサイド側の構成、及びローサイド絶縁電源2-L、及びローサイド駆動回路3-Lからなるローサイド側の構成は、降圧チョッパ回路を備えた第1の構成例~第3の構成例と共通であるため、これらの構成についての説明は省略する。
第4の構成例のDCDCコンバータ10Dは、第4の形態のバイアス電源5Dを備える。バイアス電源5Dは、昇圧チョッパ回路13の低電圧側である入力端をハイサイド絶縁電源2-Hの低電圧側に接続する構成である。この構成によって、ハイサイド絶縁電源2-Hの低電圧側の電位として昇圧チョッパ回路13の低入力端の電圧(VN+Vin)が設定される。
図10(b)は、主回路の負電圧端の電圧VNを基準電圧とし、主回路の入力端の正電圧VP(=VN+Vin)、主回路の出力端の出力電圧(VN+Vout)、及びハイサイドスイッチング素子S1のゲートを駆動するゲートドライバ信号の電圧(Vdrv-H+VN+Vout)の各電圧状態を示している。
このゲートドライバ信号の電圧は、ハイサイドスイッチング素子S1の入力側(ソース側)の電圧よりも高い電圧である必要があるため、ハイサイド絶縁電源2-Hの基準電圧をVs1-sに設定し、この基準電圧Vs1-sに電圧Vdrv-Hを加算した電圧(Vdrv-H+Vs1-s)をピーク電圧とする電圧(Vdrv-H+VN+Vout)をゲートドライバ信号Vgate-Hとする。なお、図10(b)に示す電圧の振幅は説明の上から模式的に表したものであって、実際の電圧の振幅を示すものではない。
(第5の構成例)
第5の構成例は、電力変換装置の主回路をインターリーブにより多相構成とする例である。なお、ここでは、主回路として降圧チョッパ回路を用い、2相のインターリーブの構成としたDCDCコンバータを構成する例を示している。図11は第5の構成例の回路例を示している。
第5の構成例は、電力変換装置の主回路をインターリーブにより多相構成とする例である。なお、ここでは、主回路として降圧チョッパ回路を用い、2相のインターリーブの構成としたDCDCコンバータを構成する例を示している。図11は第5の構成例の回路例を示している。
第5の構成例のDCDCコンバータ10Eは電力変換装置のインターリーブにより2相に主回路を構成している。
この多相構成では、インターリーブの相数分と同数のコモンモードリアクトルを各相のハイサイド側に設ける。ハイサイド絶縁電源2-H及びローサイド絶縁電源2-Lは、各相に共通の1個の絶縁電源とすることができる。
図11に示す構成例は、ハイサイド側において、1個のハイサイド絶縁電源2-Hに対して2個のコモンモードリアクトル4A-A及び4A-Bと、2個のハイサイド駆動回路3-HA及び3-HBとを備え、コモンモードリアクトル4A-Aとハイサイド駆動回路3-HAで一方の相を構成し、コモンモードリアクトル4A-Bとハイサイド駆動回路3-HBで他方の相を構成している。
一方、ローサイド側においては、1個のローサイド絶縁電源2-Lに対して2個のローサイド駆動回路3-LA及び3-LBを備え、ローサイド駆動回路3-LAで一方の相を構成し、ローサイド駆動回路3-LBで他方の相を構成している。
このインターリーブ構成の電力変換装置において、第1の構成例で示した単相の電力変換装置で設定したコモンモードリアクトルのコイルLcom及びダンピング抵抗Rdampと同じ値を選定した場合には、ハイサイド駆動回路3-HAのフォトカプラのハイサイドバイパスコンデンサCs-Hin-Aに印加される電圧Vdrv-H2-Aと、ハイサイド駆動回路3-HBのフォトカプラのハイサイドバイパスコンデンサCs-Hin-Bに印加される電圧Vdrv-H2-Bは同電圧となる。この電圧は、ハイサイドスイッチング素子S1-A、S1-Bのゲートに印加されるゲート電圧となり、スイッチング素子のオン抵抗に影響するが、本構成によれば両スイッチング素子のゲートに印加されるゲート電圧は同電圧であるため、多相インターリーブの主回路に流れる各相の電流を同じ電流値とすることができ、電流の不平衡を防止することができる。
ここでは、多相インターリーブとして2相のインターリーブの例を示しているが、インターリーブの相数は2相に限定されれるものではなく、3相以上の多相インターリーブについても適用することができる。
第5の構成例のDCDCコンバータ10Eでは、主回路としてDCDC降圧チョッパコンバータの例を示しているが、主回路をDCDC昇圧チョッパコンバータとするコンバータについても適用することができる。
これらの多相インターリーブにおいて、コンバータのハイサイド側及びローサイド側はそれぞれ共通する1つの絶縁電源に対して多相構成とすることができ、この多相構成において、ハイサイド側の多相構成は並列接続された複数のハイサイドスイッチング素子を備える。これら複数のハイサイドスイッチング素子には、ハイサイド側の共通の1つの絶縁電源からコモンモードリアクトルを介して同一電圧が印加される。各ハイサイドスイッチング素子に印加する電圧を同一電圧とすることによって、各ハイサイドスイッチング素子のオン抵抗を均一化し、各相の出力を等しくすることができる。
(第6の構成例)
第6の構成例は、電力変換装置をDCACインバータとして構成する例であり、直流の入力電圧Vinを電力変換して出力インピーダンスRLに交流の出力電圧Voutを出力する。図12に示すDCACインバータ11の構成例は、ハイサイド側の2個のハイサイド駆動回路3-HA及びハイサイド駆動回路3-HBと、ローサイド側の2個のローサイド駆動回路3-LA及びローサイド駆動回路3-LBとによってブリッジ回路を構成する。2個のハイサイド駆動回路3-HA及び3HBには、共通する1個のハイサイド絶縁電源2-Hから電圧を供給する。一方、2個のローサイド駆動回路3-LA及び3LBには、共通する1個のローサイド絶縁電源2-Lから電圧を供給する。
第6の構成例は、電力変換装置をDCACインバータとして構成する例であり、直流の入力電圧Vinを電力変換して出力インピーダンスRLに交流の出力電圧Voutを出力する。図12に示すDCACインバータ11の構成例は、ハイサイド側の2個のハイサイド駆動回路3-HA及びハイサイド駆動回路3-HBと、ローサイド側の2個のローサイド駆動回路3-LA及びローサイド駆動回路3-LBとによってブリッジ回路を構成する。2個のハイサイド駆動回路3-HA及び3HBには、共通する1個のハイサイド絶縁電源2-Hから電圧を供給する。一方、2個のローサイド駆動回路3-LA及び3LBには、共通する1個のローサイド絶縁電源2-Lから電圧を供給する。
また、ハイサイド側では、ハイサイド絶縁電源2-Hとハイサイド駆動回路3-HAとの間にコモンモードリアクトル4Aを接続し、ハイサイド絶縁電源2-Hとハイサイド駆動回路3-HBとの間にコモンモードリアクトル4Bを接続する。
ハイサイド絶縁電源2-Hの低電圧側と主回路の低電圧側との間にはバイアス電源Vcを接続して、ハイサイド絶縁電源2-Hの低電圧側の電圧を(VN+Vc)に設定する。一方、ローサイド絶縁電源2-Lの低電圧側と主回路の低電圧側とを接続して、ローサイド絶縁電源2-Lの基準電圧をVNに設定する。
ここで、バイアス電源Vcの電圧を(Vin/2)に選定する。ブリッジ回路を構成するハイサイド駆動回路3-HA及びハイサイド駆動回路3-HBには、各サイクルにおいて入力電圧Vinの1/2の電圧が印加されるため、バイアス電源Vcを(Vin/2)に選定することによって、コモンモードリアクトル4A、4Bを適切に磁気リセットすることができる。
なお、コモンモードリアクトル4A,4BのインダクタンスLcom-A及びインダクタンスLcom-Bの値を、DCACインバータ11の出力インピーダンスRLに対して十分に大きな値に選定することによって、高周波帯域においては、DCACインバータ11から見たときのハイサイド絶縁電源2-Hのインピーダンスは、DCACインバータ11の出力インピーダンスより十分に大きく設定することができる。これにより、DCACインバータ11から見た出力インピーダンスに対してハイサイド絶縁電源2-Hが及ぼす影響を低減することができる。この効果は、コモンモードリアクトルのコアを主回路のコアと分離し独立して、コモンモードリアクトルのインダクタンスを任意に設定自在する構成に因るものである。
第6構成例に示すDCACインバータの形態において、ブリッジ回路は、ハイサイド側及びローサイド側において、それぞれ共通する1つの絶縁電源に対して複数の並列接続されたスイッチング素子S1-A,S1-B、S2-A,S2-Bを備える。これらの複数のハイサイドスイッチング素子S1-A,S1-Bには、ハイサイド側の共通の1つの絶縁電源2-Hからコモンモードリアクトル4A,4Bを介して同一電圧が供給される。各ハイサイドスイッチング素子S1-A,S1-Bに印加する電圧を同一電圧とすることによって、各ハイサイドスイッチング素子S1-A,S1-Bのオン抵抗を均一化し、DCACインバータの出力電圧の変動を抑制することができる。
なお、上記実施の形態及び変形例における記述は、本発明に係る電源装置の一例であり、本発明は各実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
本発明の電力変換装置は、半導体や液晶パネル等の製造装置、真空蒸着装置、加熱・溶融装置等の高周波を使用する装置に対する高周波電力の供給に適用することができる。
1 電力変換装置
2-H ハイサイド絶縁電源
2-L ローサイド絶縁電源
3-H,3-HA,3-HB ハイサイド駆動回路
3-L,3-LA,3-LB ローサイド駆動回路
4,4A,4B,4C,4A-A,4A-B コモンモードリアクトル
4a,4b,4c 巻線
4d 抵抗
4f,4h コンデンサ
5,5A,5B,5C,5D バイアス電源
5C1 バイアス電源回路
5C2 制御部
6 直流電源
7 ダンピング抵抗
10,10A,10B,10C,10D,10E DCDCコンバータ
11 DCACインバータ
12 降圧チョッパ回路
13 昇圧チョッパ回路
100 直流電源
110 DCDCコンバータ電源
120H ハイサイド絶縁電源
120L ローサイド絶縁電源
130H,130L ゲートドライバ
C 平滑コンデンサ
Cin コンデンサ
Cs-in バイパスコンデンサ
Cs-Hin,Cs-Hin-A,Cs-Hin-B ハイサイドバイパスコンデンサ
Cs-Hout,Cs-Lout 平滑コンデンサ
Cs-Lin ローサイドバイパスコンデンサ
Ct-H,Ct-L 寄生容量
DRV-H ハイサイドゲートドライバ
DRV-L ローサイドゲートドライバ
GateH,GateL,Gate1,Gate2 ゲート信号
INV-H ハイサイドインバータ
INV-L ローサイドインバータ
L,Lcom-A,Lcom-B,Ls インダクタンス
Lcom,Lin コイル
PC フォトスイッチ
PC-H ハイサイドフォトスイッチ
PC-L ローサイドフォトスイッチ
R 負荷抵抗
RG-H 駆動抵抗
RG-L 駆動抵抗
Rdamp ダンピング抵抗
Rg-H,Rg-L 抵抗
RECT-H ハイサイド整流器
RECT-L ローサイド整流器
RL 出力インピーダンス
S1,S1-A,S1-B ハイサイドスイッチング素子
S2 ローサイドスイッチング素子
T-H ハイサイド絶縁トランス
T-L ローサイド絶縁トランス
Vdrv-H1,Vdrv-L1 直流電圧
Vdrv-H2,Vdrv-L2 直流電圧(駆動電圧)
Vgate-H ゲートドライバ信号
VN 基準電圧
VP 基準電圧
Vc 電圧源、バイアス電源
Vin 入力電圧
Vout 出力電圧
Vs1-s 変位電圧
2-H ハイサイド絶縁電源
2-L ローサイド絶縁電源
3-H,3-HA,3-HB ハイサイド駆動回路
3-L,3-LA,3-LB ローサイド駆動回路
4,4A,4B,4C,4A-A,4A-B コモンモードリアクトル
4a,4b,4c 巻線
4d 抵抗
4f,4h コンデンサ
5,5A,5B,5C,5D バイアス電源
5C1 バイアス電源回路
5C2 制御部
6 直流電源
7 ダンピング抵抗
10,10A,10B,10C,10D,10E DCDCコンバータ
11 DCACインバータ
12 降圧チョッパ回路
13 昇圧チョッパ回路
100 直流電源
110 DCDCコンバータ電源
120H ハイサイド絶縁電源
120L ローサイド絶縁電源
130H,130L ゲートドライバ
C 平滑コンデンサ
Cin コンデンサ
Cs-in バイパスコンデンサ
Cs-Hin,Cs-Hin-A,Cs-Hin-B ハイサイドバイパスコンデンサ
Cs-Hout,Cs-Lout 平滑コンデンサ
Cs-Lin ローサイドバイパスコンデンサ
Ct-H,Ct-L 寄生容量
DRV-H ハイサイドゲートドライバ
DRV-L ローサイドゲートドライバ
GateH,GateL,Gate1,Gate2 ゲート信号
INV-H ハイサイドインバータ
INV-L ローサイドインバータ
L,Lcom-A,Lcom-B,Ls インダクタンス
Lcom,Lin コイル
PC フォトスイッチ
PC-H ハイサイドフォトスイッチ
PC-L ローサイドフォトスイッチ
R 負荷抵抗
RG-H 駆動抵抗
RG-L 駆動抵抗
Rdamp ダンピング抵抗
Rg-H,Rg-L 抵抗
RECT-H ハイサイド整流器
RECT-L ローサイド整流器
RL 出力インピーダンス
S1,S1-A,S1-B ハイサイドスイッチング素子
S2 ローサイドスイッチング素子
T-H ハイサイド絶縁トランス
T-L ローサイド絶縁トランス
Vdrv-H1,Vdrv-L1 直流電圧
Vdrv-H2,Vdrv-L2 直流電圧(駆動電圧)
Vgate-H ゲートドライバ信号
VN 基準電圧
VP 基準電圧
Vc 電圧源、バイアス電源
Vin 入力電圧
Vout 出力電圧
Vs1-s 変位電圧
Claims (15)
- ハイサイドスイッチング素子のスイッチング動作を制御するハイサイド駆動回路に駆動電圧を絶縁トランスを介して供給するハイサイド絶縁電源と、ローサイドスイッチング素子のスイッチング動作を制御する絶縁トランスを介してローサイド駆動回路に駆動電圧を供給するローサイド絶縁電源とを備える絶縁電源において、
前記ハイサイド絶縁電源は、前記ハイサイド駆動回路との間にコモンモードリアクトルを備えることを特徴とする、絶縁電源。 - 前記ハイサイド絶縁電源は、ハイサイド直流電源と、当該ハイサイド直流電源の直流電圧を直流-交流変換するハイサイドインバータと、当該ハイサイドインバータの交流出力を電圧変換するハイサイド絶縁トランスと、当該ハイサイド絶縁トランスの交流出力を直流に変換するハイサイド整流器とを直列接続して備え、
前記ハイサイド駆動回路は、前記ハイサイドスイッチング素子のオン/オフ動作を制御するハイサイドゲートドライバと、当該ハイサイドゲートドライバの駆動制御を行うハイサイドフォトスイッチと、当該ハイサイドフォトスイッチに入力するノイズを除去するハイサイドバイパスコンデンサとを直列接続して備え、
前記ローサイド絶縁電源は、ローサイド直流電源と、当該ローサイド直流電源の直流電圧を直流-交流変換するローサイドインバータと、当該ローサイドインバータの交流出力を電圧変換するローサイド絶縁トランスと、当該ローサイド絶縁トランスの交流出力を直流に変換するローサイド整流器とを直列接続して備え、
前記ローサイド駆動回路は、前記ローサイドスイッチング素子のオン/オフ動作を制御するローサイドゲートドライバと、当該ローサイドゲートドライバの駆動制御を行うローサイドフォトスイッチと、当該ローサイドフォトスイッチに入力するノイズを除去するローサイドバイパスコンデンサとを直列接続して備え、
前記コモンモードリアクトルは、前記ハイサイド絶縁電源と前記ハイサイド駆動回路のハイサイドバイパスコンデンサとの間を接続する高電圧側配線及び低電圧側配線の両配線に設けることを特徴とする、請求項1に記載の絶縁電源。 - 前記コモンモードリアクトルは、共通コアに対して、前記ハイサイド絶縁電源の高電圧側配線及び低電圧側配線を同方向に巻回したことを特徴とする請求項1又は2に記載の絶縁電源。
- 前記コモンモードリアクトルに直列接続したダンピング抵抗を備えることを特徴とする請求項3に記載の絶縁電源。
- 前記コモンモードリアクトルの共通コアと、前記ハイサイド駆動回路及びローサイド駆動回路による駆動制御される回路が備えるコイルのコアとは互いに分離し独立していることを特徴とする、請求項3又は4に記載の絶縁電源。
- 前記ハイサイド絶縁電源の低電圧側に接続したバイアス電源を備えることを特徴とする請求項1から5の何れか一つに記載の絶縁電源。
- 前記バイアス電源のバイアス電圧は、前記ハイサイド駆動回路により駆動される出力回路の出力電圧であることを特徴とする請求項6に記載の絶縁電源。
- 直流電源に対して、ハイサイドスイッチング素子とローサイドスイッチング素子との直並列接続回路と、インダクタンスとを直列接続してなる降圧チョッパ回路と、
前記請求項1から7に何れか一つに記載の絶縁電源を備え、
DCDCコンバータを構成する電力変換装置であって、
前記絶縁電源は、
前記ハイサイドスイッチング素子及びローサイドスイッチング素子を駆動するハイサイド駆動回路及びローサイド駆動回路を駆動する電源であることを特徴とする電力変換装置。 - 前記バイアス電源のバイアス電圧は当該降圧チョッパ回路の出力電圧であることを特徴とする請求項8に記載の電力変換装置。
- 直流電源に対して、インダクタンスと、ハイサイドスイッチング素子とローサイドスイッチング素子との直並列接続回路とを直列接続してなる昇圧チョッパ回路と、
前記請求項1から7に何れか一つに記載の絶縁電源を備え、
DCDCコンバータを構成する電力変換装置であって、
前記絶縁電源は、
前記ハイサイドスイッチング素子及びローサイドスイッチング素子を駆動するハイサイド駆動回路及びローサイド駆動回路を駆動する電源であることを特徴とする電力変換装置。 - 前記バイアス電源のバイアス電圧は当該昇圧チョッパ回路の入力電圧であることを特徴とする請求項10に記載の電力変換装置。
- ハイサイド側及びローサイド側は、それぞれ共通する1つの絶縁電源に対してインターリーブにより多相構成を備え、
ハイサイド側の多相構成は並列接続された複数のハイサイドスイッチング素子を備え、当該複数のハイサイドスイッチング素子に印加される電圧は、前記ハイサイド側の共通の1つの絶縁電源から前記コモンモードリアクトルを介して供給される同一電圧であることを特徴とする請求項8から11の何れか一つに記載の電力変換装置。 - 直流電源に対して、ハイサイドスイッチング素子とローサイドスイッチング素子のブリッジ回路から成るDCACインバータを構成する電力変換装置において、
請求項1から7に何れか一つに記載の絶縁電源を備え、
前記絶縁電源のハイサイド駆動回路及びローサイド駆動回路は、前記ハイサイドスイッチング素子及びローサイドスイッチング素子を駆動することを特徴とする電力変換装置。 - 前記絶縁電源は前記ハイサイド絶縁電源の低電圧側に接続したバイアス電源を備え、当該バイアス電源のバイアス電圧は前記DCACインバータの入力電圧の1/2であることを特徴とする請求項13に記載の電力変換装置。
- 前記ブリッジ回路は、ハイサイド側及びローサイド側において、それぞれ共通する1つの絶縁電源に対して複数の並列接続されたスイッチング素子を備え、
当該複数のハイサイドスイッチング素子に印加される電圧は、前記ハイサイド側の共通の1つの絶縁電源から前記コモンモードリアクトルを介して供給される同一電圧であることを特徴とする請求項13又は14に記載の電力変換装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17894958T PL3550704T3 (pl) | 2017-02-06 | 2017-02-23 | Izolowane źródło zasilania i urządzenie do przekształcania mocy |
KR1020197017436A KR102294894B1 (ko) | 2017-02-06 | 2017-02-23 | 절연 전원 및 전력 변환 장치 |
EP17894958.2A EP3550704B1 (en) | 2017-02-06 | 2017-02-23 | Insulated power source and power conversion device |
CN201780085653.6A CN110268613B (zh) | 2017-02-06 | 2017-02-23 | 绝缘电源以及电力变换装置 |
US16/475,180 US10992217B2 (en) | 2017-02-06 | 2017-02-23 | Insulated power source and power conversion device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-019865 | 2017-02-06 | ||
JP2017019865A JP6784607B2 (ja) | 2017-02-06 | 2017-02-06 | 絶縁電源、及び電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018142631A1 true WO2018142631A1 (ja) | 2018-08-09 |
Family
ID=63039484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/006754 WO2018142631A1 (ja) | 2017-02-06 | 2017-02-23 | 絶縁電源、及び電力変換装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10992217B2 (ja) |
EP (1) | EP3550704B1 (ja) |
JP (1) | JP6784607B2 (ja) |
KR (1) | KR102294894B1 (ja) |
CN (1) | CN110268613B (ja) |
PL (1) | PL3550704T3 (ja) |
TW (1) | TWI731953B (ja) |
WO (1) | WO2018142631A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3758228A1 (en) * | 2019-06-25 | 2020-12-30 | EnerSys Delaware Inc. | Electrical power switching circuits |
US20230268858A1 (en) * | 2022-02-23 | 2023-08-24 | Hamilton Sundstrand Corporation | Parasitic immune isolated drive |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2565297B (en) * | 2017-08-07 | 2020-09-02 | Murata Manufacturing Co | An adjustable power supply device for supplying power to a power switch control device |
KR102542941B1 (ko) * | 2018-06-08 | 2023-06-14 | 현대자동차주식회사 | 저주파 누설전류를 감소시킬 수 있는 충전 장치 |
KR102659238B1 (ko) | 2018-12-12 | 2024-04-18 | 현대자동차주식회사 | 저주파 누설전류를 감소시킬 수 있는 충전 장치 |
KR102657323B1 (ko) | 2018-12-12 | 2024-04-12 | 현대자동차주식회사 | 저주파 누설전류를 감소시킬 수 있는 충전 장치 |
JP2021164289A (ja) | 2020-03-31 | 2021-10-11 | 株式会社京三製作所 | D級フルブリッジ増幅器のドライバ装置 |
CN115413397A (zh) * | 2020-04-17 | 2022-11-29 | 株式会社村田制作所 | 隔离式栅极驱动器 |
CN112491252A (zh) * | 2020-12-30 | 2021-03-12 | 深圳市永联科技股份有限公司 | 一种提升sic mosfet可靠性的驱动方法及电路 |
EP4037187A1 (en) * | 2021-01-29 | 2022-08-03 | ABB Schweiz AG | Semiconductor unit with asymmetrically arranged common mode chokes on gate driver input side |
CN113391170B (zh) * | 2021-05-26 | 2022-10-18 | 上海电力大学 | 一种逆变器驱动电机的端部绝缘状态在线监测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833315A (ja) * | 1994-07-08 | 1996-02-02 | Toshiba Corp | 負荷駆動装置 |
JP2006187138A (ja) | 2004-12-28 | 2006-07-13 | Tamura Seisakusho Co Ltd | ハイサイド駆動回路 |
JP2010119177A (ja) * | 2008-11-12 | 2010-05-27 | Rohm Co Ltd | マルチフェーズ型dc/dcコンバータ |
US20100164601A1 (en) * | 2008-12-23 | 2010-07-01 | Infineon Technologies Ag | Control circuit for a power semiconductor assembly and power semiconductor assembly |
JP2010525772A (ja) * | 2007-04-16 | 2010-07-22 | ルノー・エス・アー・エス | 特にハイブリッド車両のための電気エネルギー交換システム |
JP2010284027A (ja) * | 2009-06-05 | 2010-12-16 | Mitsubishi Electric Corp | 高周波交流電源装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1358709A2 (en) * | 2001-02-06 | 2003-11-05 | Harman International Industries, Inc. | Half-bridge gate driver circuit |
US7068005B2 (en) * | 2004-08-30 | 2006-06-27 | Hamilton Sundstrand Corporation | Motor drive with damper |
US8324875B2 (en) | 2008-10-30 | 2012-12-04 | Rohm Co., Ltd. | Multiphase DC/DC converter with output phases deviated from or aligned with each other and driven with fixed on time |
US9793889B2 (en) * | 2011-03-15 | 2017-10-17 | Infineon Technologies Ag | Semiconductor device including a circuit to compensate for parasitic inductance |
CN107155389B (zh) | 2014-12-03 | 2019-12-13 | 日产自动车株式会社 | 电力变换装置 |
JP6370279B2 (ja) * | 2015-09-09 | 2018-08-08 | 三菱電機株式会社 | ブートストラップ補償回路およびパワーモジュール |
-
2017
- 2017-02-06 JP JP2017019865A patent/JP6784607B2/ja active Active
- 2017-02-23 CN CN201780085653.6A patent/CN110268613B/zh active Active
- 2017-02-23 EP EP17894958.2A patent/EP3550704B1/en active Active
- 2017-02-23 PL PL17894958T patent/PL3550704T3/pl unknown
- 2017-02-23 KR KR1020197017436A patent/KR102294894B1/ko active IP Right Grant
- 2017-02-23 US US16/475,180 patent/US10992217B2/en active Active
- 2017-02-23 WO PCT/JP2017/006754 patent/WO2018142631A1/ja unknown
- 2017-03-28 TW TW106110349A patent/TWI731953B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833315A (ja) * | 1994-07-08 | 1996-02-02 | Toshiba Corp | 負荷駆動装置 |
JP2006187138A (ja) | 2004-12-28 | 2006-07-13 | Tamura Seisakusho Co Ltd | ハイサイド駆動回路 |
JP2010525772A (ja) * | 2007-04-16 | 2010-07-22 | ルノー・エス・アー・エス | 特にハイブリッド車両のための電気エネルギー交換システム |
JP2010119177A (ja) * | 2008-11-12 | 2010-05-27 | Rohm Co Ltd | マルチフェーズ型dc/dcコンバータ |
US20100164601A1 (en) * | 2008-12-23 | 2010-07-01 | Infineon Technologies Ag | Control circuit for a power semiconductor assembly and power semiconductor assembly |
JP2010284027A (ja) * | 2009-06-05 | 2010-12-16 | Mitsubishi Electric Corp | 高周波交流電源装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3550704A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3758228A1 (en) * | 2019-06-25 | 2020-12-30 | EnerSys Delaware Inc. | Electrical power switching circuits |
US20230268858A1 (en) * | 2022-02-23 | 2023-08-24 | Hamilton Sundstrand Corporation | Parasitic immune isolated drive |
US11990898B2 (en) * | 2022-02-23 | 2024-05-21 | Hamilton Sundstrand Corporation | Parasitic immune isolated drive |
Also Published As
Publication number | Publication date |
---|---|
KR102294894B1 (ko) | 2021-08-26 |
TWI731953B (zh) | 2021-07-01 |
PL3550704T3 (pl) | 2022-05-30 |
US10992217B2 (en) | 2021-04-27 |
EP3550704A4 (en) | 2020-07-15 |
US20190341847A1 (en) | 2019-11-07 |
KR20190080944A (ko) | 2019-07-08 |
CN110268613B (zh) | 2021-12-31 |
CN110268613A (zh) | 2019-09-20 |
EP3550704B1 (en) | 2022-03-30 |
JP6784607B2 (ja) | 2020-11-11 |
EP3550704A1 (en) | 2019-10-09 |
JP2018129891A (ja) | 2018-08-16 |
TW201830842A (zh) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6784607B2 (ja) | 絶縁電源、及び電力変換装置 | |
TWI454028B (zh) | System interconnection converter | |
CN103782355B (zh) | 集成磁性元件 | |
US8737097B1 (en) | Electronically isolated method for an auto transformer 12-pulse rectification scheme suitable for use with variable frequency drives | |
RU2558945C2 (ru) | Сверхвысокоэффективный переключающий инвертор мощности и усилитель мощности | |
US7724549B2 (en) | Integrated power conditioning system and housing for delivering operational power to a motor | |
US7277302B2 (en) | 12-pulse converter including a filter choke incorporated in the rectifier | |
EP2639952B1 (en) | Power converter and integrated DC choke therefor | |
US6617814B1 (en) | Integrated DC link choke and method for suppressing common-mode voltage in a motor drive | |
US7132812B1 (en) | Integrated DC link choke and method for suppressing common-mode voltage in a motor drive | |
JP5134631B2 (ja) | ほとんど完全に誘導性の負荷を制御する方法と該方法を適用する装置 | |
US10224819B2 (en) | Ripple canceling in power conversions circuits | |
KR20010052513A (ko) | 솔리드 스테이트 변압기 | |
CN106374772B (zh) | 梯度放大器的串联补偿电路及核磁共振成像设备 | |
JPH07250471A (ja) | 三相正弦波入力スイッチング電源回路 | |
WO2018095797A1 (en) | A dual active bridge dc-dc converter comprising current balancing | |
CN105723603A (zh) | 高频串联ac调压器 | |
US6987372B1 (en) | Integrated DC link choke and method for suppressing common-mode voltage in a motor drive | |
WO2018199228A1 (ja) | 電源回路 | |
US11863085B2 (en) | Converter assembly | |
US11095202B1 (en) | Method and apparatus for common-mode voltage cancellation | |
US6081435A (en) | Cross-conduction limiting circuit, method of operation thereof and DC/DC converter employing the same | |
US11114932B1 (en) | Method and apparatus for reduction of ripple current | |
WO2020105169A1 (ja) | 電力変換装置 | |
JPH0638523A (ja) | 2石フォワードコンバータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17894958 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197017436 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017894958 Country of ref document: EP Effective date: 20190705 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |