WO2018139379A1 - 成形体及びその製造方法 - Google Patents

成形体及びその製造方法 Download PDF

Info

Publication number
WO2018139379A1
WO2018139379A1 PCT/JP2018/001682 JP2018001682W WO2018139379A1 WO 2018139379 A1 WO2018139379 A1 WO 2018139379A1 JP 2018001682 W JP2018001682 W JP 2018001682W WO 2018139379 A1 WO2018139379 A1 WO 2018139379A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
polyolefin resin
polyamide
polyolefin
Prior art date
Application number
PCT/JP2018/001682
Other languages
English (en)
French (fr)
Inventor
恵介 加藤
Original Assignee
トヨタ紡織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ紡織株式会社 filed Critical トヨタ紡織株式会社
Priority to CN201880003248.XA priority Critical patent/CN109642057B/zh
Priority to KR1020197022745A priority patent/KR102593410B1/ko
Priority to JP2018564538A priority patent/JP6984616B2/ja
Priority to BR112019012903-0A priority patent/BR112019012903B1/pt
Priority to RU2019126940A priority patent/RU2744249C2/ru
Priority to SG11201906420UA priority patent/SG11201906420UA/en
Priority to EP18744528.3A priority patent/EP3575360B1/en
Priority to US16/480,067 priority patent/US11091616B2/en
Priority to ES18744528T priority patent/ES2949310T3/es
Publication of WO2018139379A1 publication Critical patent/WO2018139379A1/ja
Priority to JP2021189528A priority patent/JP7331908B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2423/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer

Definitions

  • the present invention relates to a molded body and a manufacturing method thereof. More specifically, the present invention relates to a molded article having excellent impact resistance and a method for producing the same.
  • Patent Document 1 discloses a polymer alloy (thermoplastic resin) of a polyamide resin and a polyolefin resin obtained by using a modified elastomer having a reactive group capable of reacting with a polyamide resin as a compatibilizing agent. Composition).
  • Patent Document 2 discloses that a plant-derived polyamide resin can be used as a polyamide resin in a polymer alloy including a polyamide resin and a polyolefin resin.
  • Patent Document 3 a polymer alloy containing a polyamide resin and a polyolefin resin has a continuous phase, a dispersed phase dispersed in the continuous phase, and a finely dispersed phase further dispersed in the dispersed phase.
  • a polymer alloy having a resin phase separation structure is disclosed.
  • Patent Document 4 discloses a polymer alloy having excellent impact resistance by first melt-mixing a polyamide resin and a compatibilizer and then further melt-mixing the obtained mixed resin and polyolefin resin. It is disclosed that it can be obtained.
  • Patent Documents 1-4 described above the production and use of these polymer alloys alone have been studied. However, the use of such polymer alloys for other resins has been studied. Not.
  • the present invention has been made in view of the above circumstances, and provides a molded article excellent in impact resistance obtained by blending an impact resistant resin containing a polyamide resin and a polyolefin resin into a polyolefin resin, and a method for producing the same.
  • the purpose is to provide.
  • the invention according to claim 1 is a molded body obtained by molding a thermoplastic resin, A continuous phase (A) comprising a first polyolefin resin and a second polyolefin resin; A dispersed phase (B) comprising a polyamide resin and a modified elastomer dispersed in the continuous phase (A),
  • the dispersed phase (B) consists of a melt-kneaded product of the polyamide resin and the modified elastomer,
  • the modified elastomer is an elastomer having a reactive group for the polyamide resin,
  • the elastomer is an olefin thermoplastic elastomer having a skeleton of a copolymer of ethylene or propylene and an ⁇ -olefin having 3 to 8 carbon atoms, or a styrene thermoplastic elastomer having a styrene skeleton,
  • the molded body according to claim 2 is the molded body according to claim 1, wherein the thermoplastic resin includes the second polyolefin resin, the polyamide resin, and the impact-resistant resin including the modified elastomer, It is a gist that it is a mixture of 1 polyolefin resin.
  • the molded article according to claim 3 is the molded article according to claim 1 or 2, wherein the polyamide resin is 10 mass% or more and 80 mass% when the total of the polyamide resin and the modified elastomer is 100 mass%. The gist is that it is not more than mass%.
  • the molded body according to claim 4 is the molded body according to any one of claims 1 to 3, wherein the dispersed phase (B) includes the continuous phase (B 1 ) containing the polyamide resin and the continuous body. And having a finely dispersed phase (B 2 ) containing a modified elastomer dispersed in the phase (B 1 ).
  • a summary of the molded body according to claim 5 is the molded body according to any one of claims 1 to 4, wherein the polyamide resin is polyamide 6.
  • the molded product according to claim 6 is the molded product according to claim 5, wherein the second polyolefin resin has a number average molecular weight of 300,000 or more.
  • the molded article according to claim 7 is the molded article according to any one of claims 1 to 6, wherein the first polyolefin resin is a block copolymer polyolefin resin having a dispersed phase of an ethylene block, The gist is that at least a part of the ethylene block is aggregated at an interface between the continuous phase (A) and the dispersed phase (B).
  • the manufacturing method according to claim 8 is a manufacturing method of the molded body according to claim 1, Molding to obtain a molded body raw material by mixing an impact resistant resin obtained by melt-kneading the polyamide resin and the modified elastomer, and the second polyolefin resin, and the first polyolefin resin.
  • the manufacturing method according to claim 9 is the manufacturing method of the molded body according to claim 8, wherein the impact-resistant resin includes a continuous phase (C) containing the second polyolefin resin and the continuous phase (C). Having a dispersed phase (B) containing the polyamide resin and the modified elastomer dispersed therein, The dispersed phase (B) has a continuous phase (B 1 ) containing a polyamide resin and a finely dispersed phase (B 2 ) containing the modified elastomer dispersed in the continuous phase (B 1 ).
  • the manufacturing method according to claim 10 is the manufacturing method of the molded body according to claim 8 or 9, wherein the first polyolefin resin is a block copolymerized polyolefin resin having a dispersed phase of an ethylene block. And
  • the molded body of the present invention excellent impact resistance characteristics can be obtained.
  • the thermoplastic resin is a mixture of the first polyolefin resin and the impact resistant resin containing the second polyolefin resin
  • the polyamide resin and the modified elastomer particularly excellent impact resistance characteristics can be obtained.
  • the total of the polyamide resin and the modified elastomer is 100% by mass, the specific phase structure can be obtained more stably when the polyamide resin is 10% by mass or more and 80% by mass or less.
  • the molded product can exhibit high impact resistance.
  • the dispersed phase (B) has a continuous phase (B 1 ) containing a polyamide resin and a finely dispersed phase (B 2 ) containing a modified elastomer dispersed in the continuous phase (B 1 ), multiple Thus, a molded article having more excellent impact resistance can be obtained.
  • the polyamide resin is polyamide 6, the tensile elastic modulus derived from the first polyolefin resin can be sufficiently retained, and the impact resistance of the molded body can be improved.
  • the polyamide resin is polyamide 6 and the number average molecular weight of the second polyolefin resin is 300,000 or more, particularly excellent impact resistance characteristics can be obtained.
  • the first polyolefin resin is a block copolymer polyolefin resin having a dispersed phase of an ethylene block, and at least a part of the ethylene block is aggregated at the interface between the continuous phase (A) and the dispersed phase (B) In other words, a molded body having a multiple phase structure and more excellent impact resistance can be obtained.
  • the continuous phase (A) containing the first polyolefin resin and the second polyolefin resin, and the dispersed phase containing the polyamide resin and the modified elastomer dispersed in the continuous phase (A) ( B) can be obtained with certainty.
  • the impact-resistant resin has a continuous phase (C) containing the second polyolefin resin, and a dispersed phase (B) containing a polyamide resin and a modified elastomer dispersed in the continuous phase (C).
  • (B) has a continuous phase (B 1 ) containing a polyamide resin and a finely dispersed phase (B 2 ) containing a modified elastomer dispersed in the continuous phase (B 1 ), multiple phases It is possible to reliably obtain a molded article having excellent impact resistance and having a structure.
  • the first polyolefin resin is a block copolymerized polyolefin resin having an ethylene block dispersed phase, at least a part of the ethylene block is aggregated at the interface between the continuous phase (A) and the dispersed phase (B).
  • the molded product of the present invention is a molded product obtained by molding a thermoplastic resin, A continuous phase (A) comprising a first polyolefin resin and a second polyolefin resin; A dispersed phase (B) comprising a polyamide resin and a modified elastomer dispersed in the continuous phase (A),
  • the dispersed phase (B) consists of a melt-kneaded product of the polyamide resin and the modified elastomer,
  • the modified elastomer is an elastomer having a reactive group for the polyamide resin,
  • the elastomer is an olefin thermoplastic elastomer having a skeleton of a copolymer of ethylene or propylene and an ⁇ -olefin having 3 to 8 carbon atoms, or a styrene thermoplastic elastomer having a styrene skeleton,
  • first polyolefin resin (hereinafter also simply referred to as “first polyolefin”) is an olefin homopolymer and / or a copolymer of olefins. It is a polymer. This first polyolefin resin is a component contained in the continuous phase (A) together with the second polyolefin resin in the molded article.
  • the olefin constituting the first polyolefin is not particularly limited, but ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1 -Hexene, 1-octene and the like. These may use only 1 type and may use 2 or more types together. That is, examples of the polyolefin resin include polyethylene resin, polypropylene resin, poly 1-butene, poly 1-hexene, poly 4-methyl-1-pentene, and the like. These polymers may be used alone or in combination of two or more. That is, the polyolefin resin may be a mixture of the above polymers.
  • polyethylene resin examples include ethylene homopolymers and copolymers of ethylene and other olefins. Examples of the latter include ethylene / 1-butene copolymer, ethylene / 1-hexene copolymer, ethylene / 1-octene copolymer, ethylene / 4-methyl-1-pentene copolymer, etc. 50% or more of the total number of structural units is a unit derived from ethylene).
  • polypropylene resin examples include propylene homopolymers and copolymers of propylene and other olefins.
  • the other olefins constituting the copolymer of propylene and other olefins the aforementioned various olefins (however, excluding propylene) can be mentioned.
  • ethylene and 1-butene are preferred. That is, a propylene / ethylene copolymer and a propylene / 1-butene copolymer are preferable.
  • the copolymer of propylene and other olefins may be a random copolymer or a block copolymer.
  • a block copolymer is preferable from the viewpoint of excellent impact resistance.
  • a propylene / ethylene block copolymer in which the other olefin is ethylene is preferable.
  • This propylene / ethylene block copolymer is a block copolymerized polypropylene having an ethylene block as a dispersed phase. That is, it is a polypropylene resin in which homopolypropylene is used as a continuous phase and a dispersed phase containing polyethylene is present in the continuous phase.
  • Such a block copolymer polypropylene having an ethylene block as a dispersed phase is also referred to as, for example, an impact copolymer, a polypropylene impact copolymer, a heterophasic polypropylene, a heterophasic block polypropylene, or the like.
  • This block copolymer polypropylene is preferable from the viewpoint of excellent impact resistance.
  • the copolymer of propylene and other olefins is a unit in which 50% or more of the total number of structural units is derived from propylene.
  • the number average molecular weight of the first polyolefin resin is not particularly limited, but can be, for example, 10,000 or more and 500,000 or less, preferably 100,000 or more and 450,000 or less, and more preferably 200,000 or more and 400,000 or less. More preferred. Furthermore, for example, when the number average molecular weight of the second polyolefin resin described later is 300,000 or more, the number average molecular weight of the first polyolefin resin can be 150,000 or more and less than 300,000. When the number average molecular weight of the second polyolefin resin is 350,000 or more, the number average molecular weight of the first polyolefin resin can be 150,000 or more and less than 350,000.
  • the number average molecular weight of 1st polyolefin resin is a number average molecular weight of polystyrene conversion by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the first polyolefin resin is a polyolefin that does not have an affinity for the polyamide resin described later, and does not have a reactive group that can react with the polyamide resin. In this respect, it differs from the olefinic component as the modified elastomer described later.
  • second polyolefin resin (hereinafter also simply referred to as “second polyolefin”) is an olefin homopolymer and / or an olefin copolymer.
  • the second polyolefin resin is a component included in the continuous phase (A) together with the first polyolefin resin in the molded article.
  • the olefin which comprises 2nd polyolefin is not specifically limited, The olefin similar to the case of 1st polyolefin can be illustrated.
  • the first polyolefin and the second polyolefin may be the same resin or different resins.
  • the first polyolefin and the second polyolefin are different resins, for example, either one of the first polyolefin and the second polyolefin is a block copolymer polyolefin resin (block copolymer) having a dispersed phase of an ethylene block. And the other is a non-block copolymer polyolefin resin.
  • the form in which the first polyolefin is a block copolymer polypropylene resin having an ethylene block dispersed phase and the second polyolefin is a non-block copolymer polyolefin resin is preferable from the viewpoint of impact resistance. Further, homopolypropylene resin is preferable as the non-block copolymerized polyolefin resin.
  • the non-block copolymerized polyolefin resin referred to here means a copolymerized polyolefin resin that does not have an ethylene block dispersed phase. Therefore, the block copolymer polyolefin resin which does not have the dispersed phase of an ethylene block shall be contained in a non-block copolymer polyolefin resin in this specification.
  • the molded product is a first polypropylene.
  • a continuous phase (A) formed of a homopolypropylene comprising a resin and a second polypropylene resin, a dispersed phase (B) containing a polyamide resin and a modified elastomer dispersed in the continuous phase (A), and a first polypropylene A dispersed phase (B ′) composed of an ethylene block constituting the resin.
  • B ′ a first polypropylene A dispersed phase composed of an ethylene block constituting the resin.
  • at least a part of the ethylene block is aggregated at the interface between the continuous phase (A) and the dispersed phase (B).
  • the number average molecular weight of the second polyolefin resin is not particularly limited, but can be, for example, 10,000 or more (usually 700,000 or less), preferably 100,000 or more, more preferably 200,000. That's it.
  • the number average molecular weight of 2nd polyolefin resin is a number average molecular weight of polystyrene conversion by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the number average molecular weight of the second polyolefin resin can be 300,000 or more (usually 700,000 or less), preferably 310,000 or more. 350,000 or more, more preferably 370,000 or more, still more preferably 400,000 or more, particularly preferably 450,000 or more, more particularly preferably 470,000 or more, 500,000 or more is particularly preferred.
  • the impact resistance of the molded product can be improved while sufficiently maintaining the tensile modulus of the first polyolefin resin.
  • the upper limit of the number average molecular weight can be set to 700,000 or less as described above, can be further set to 650,000 or less, and can be further set to 600,000 or less.
  • the MFR (melt flow rate) of the second polyolefin resin is not particularly limited.
  • the molecular weight (including the number average molecular weight) of the polyolefin resin and MFR show a proportional relationship.
  • the MFR of the second polyolefin resin is preferably 25 g / 10 min or less.
  • the minimum of MFR is not specifically limited, For example, it can be set as 1 g / 10min or more.
  • the MFR is preferably 22 g / 10 min or less, more preferably 19 g / 10 min or less, still more preferably 16 g / 10 min or less, still more preferably 13 g / 10 min or less, particularly preferably 10 g / 10 min or less, and more preferably 9 g / 10 min or less. Particularly preferred is 8 g / 10 min or less.
  • the MFR of the second polyolefin resin is measured under the conditions of a temperature of 230 ° C. and a load of 21.18 N (2.16 kgf) in accordance with JIS K7210.
  • the second polyolefin resin is a polyolefin that does not have an affinity for a polyamide resin, which will be described later, and does not have a reactive group that can react with the polyamide resin. In this respect, it differs from the olefinic component as the modified elastomer described later.
  • polyamide resin is a polymer having a chain skeleton obtained by polymerizing a plurality of monomers via amide bonds (—NH—CO—). This polyamide resin is a component contained in the dispersed phase (B) together with the modified elastomer in the molded article.
  • Monomers constituting the polyamide resin include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, paraaminomethylbenzoic acid, and lactams such as ⁇ -caprolactam, undecane lactam, and ⁇ -lauryllactam. Etc. These may use only 1 type and may use 2 or more types together.
  • the polyamide resin can also be obtained by copolymerization of a diamine and a dicarboxylic acid.
  • the diamine as a monomer includes ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, , 9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, 1,15-diaminopentadecane, 1, 16-diaminohexadecane, 1,17-diaminoheptadecane, 1,18-diaminooctadecane, 1,19-dia
  • dicarboxylic acids as monomers include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassic acid, Aliphatic dicarboxylic acids such as tetradecanedioic acid, pentadecanedioic acid, octadecanedioic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid Etc. These may use only 1 type and may use 2 or more types together.
  • polyamide resin polyamide 6, polyamide 66, polyamide 11, polyamide 610, polyamide 612, polyamide 614, polyamide 12, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, polyamide 1012, polyamide 10T, polyamide MXD6, polyamide 6T / 66, polyamide 6T / 6I, polyamide 6T / 6I / 66, polyamide 6T / 2M-5T, polyamide 9T / 2M-8T, and the like.
  • These polyamides may be used alone or in combination of two or more.
  • a plant-derived polyamide resin can be used among the above-mentioned various polyamide resins.
  • the plant-derived polyamide resin is a resin that uses a monomer obtained from a plant-derived component such as vegetable oil, and is therefore desirable from the viewpoint of environmental protection (particularly from the viewpoint of carbon neutral).
  • Examples of plant-derived polyamide resins include polyamide 11 (hereinafter also simply referred to as “PA11”), polyamide 610 (hereinafter also simply referred to as “PA610”), polyamide 612 (hereinafter also simply referred to as “PA612”), polyamide 614 (hereinafter referred to as “PA612”).
  • PA614 Polyamide 1010
  • PA1012 polyamide 1012
  • PA10T polyamide 10T
  • PA11 has a structure in which a monomer having 11 carbon atoms is bonded through an amide bond.
  • aminoundecanoic acid made from castor oil can be used as a monomer.
  • the structural unit derived from a monomer having 11 carbon atoms is preferably 50% or more of all structural units in PA11, and may be 100%.
  • PA 610 has a structure in which a monomer having 6 carbon atoms and a monomer having 10 carbon atoms are bonded through an amide bond.
  • sebacic acid derived from castor oil can be used as a monomer.
  • the structural unit derived from the monomer having 6 carbon atoms and the structural unit derived from the monomer having 10 carbon atoms are 50% or more of the total structural units in PA610. It is preferable that it may be 100%.
  • PA 1010 has a structure in which a diamine having 10 carbon atoms and a dicarboxylic acid having 10 carbon atoms are copolymerized.
  • 1,10-decanediamine (decamethylenediamine) and sebacic acid made from castor oil can be used as monomers.
  • the total of the structural unit derived from the diamine having 10 carbon atoms and the structural unit derived from the dicarboxylic acid having 10 carbon atoms is 50% or more of all the structural units in the PA 1010. Preferably, it may be 100%.
  • PA 614 has a structure in which a monomer having 6 carbon atoms and a monomer having 14 carbon atoms are bonded via an amide bond.
  • a plant-derived dicarboxylic acid having 14 carbon atoms can be used as a monomer.
  • the structural unit derived from the monomer having 6 carbon atoms and the structural unit derived from the monomer having 14 carbon atoms have a total of 50% of all the structural units in PA614. The above is preferable, and may be 100%.
  • PA10T has a structure in which a diamine having 10 carbon atoms and terephthalic acid are bonded via an amide bond.
  • 1,10-decanediamine (decamethylenediamine) using castor oil as a raw material can be used as a monomer.
  • These structural units derived from diamine having 10 carbon atoms and structural units derived from terephthalic acid preferably have a total of 50% or more of all structural units in PA10T, 100% It may be.
  • PA11 is superior to the other four plant-derived polyamide resins in terms of low water absorption, low specific gravity, and high planting degree.
  • Polyamide 610 is inferior to PA 11 in terms of water absorption, chemical resistance, and impact strength, but is superior in terms of heat resistance (melting point) and rigidity (strength). Furthermore, since it has low water absorption and good dimensional stability compared to polyamide 6 and polyamide 66, it can be used as an alternative to polyamide 6 and polyamide 66.
  • Polyamide 1010 is superior to PA11 in terms of heat resistance and rigidity. Furthermore, the degree of planting is equivalent to that of PA11, and can be used for parts that require more durability. Since polyamide 10T includes an aromatic ring in the molecular skeleton, it has a higher melting point and higher rigidity than polyamide 1010. Therefore, it can be used in harsh environments (heat-resistant part, strength input part).
  • the tensile elastic modulus derived from the first polyolefin resin can be sufficiently retained, and the impact resistance of the molded body can be improved. Further, compared to the case of using other polyamides such as the above-mentioned polyamide 11, it is possible to obtain a molded product having a performance (particularly, tensile modulus) equal to or higher with a relatively small content ratio, which is advantageous in terms of cost. It becomes.
  • the “modified elastomer” is an elastomer having a reactive group with respect to a polyamide resin. That is, the elastomer is provided with a reactive group capable of reacting with the polyamide resin.
  • This modified elastomer is a component contained in the dispersed phase (B) together with the polyamide resin in the molded article.
  • this modified elastomer is preferably a component having affinity for the second polyolefin resin. That is, it is preferably a component having a compatibilizing action on the polyamide resin and the second polyolefin resin. In other words, it is preferably a compatibilizer between the polyamide resin and the second polyolefin resin.
  • the elastomer (that is, the skeleton resin constituting the skeleton of the modified elastomer) is a copolymer of ethylene or propylene and an ⁇ -olefin having 3 to 8 carbon atoms (that is, ethylene and an ⁇ -olefin having 3 to 8 carbon atoms). Or a copolymer of propylene and an ⁇ -olefin having 4 to 8 carbon atoms) as a skeleton, or a styrene thermoplastic elastomer having a styrene skeleton. These may be used alone or in combination of two or more.
  • Examples of the ⁇ -olefin having 3 to 8 carbon atoms include propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene and 1-hexene. 1-octene and the like.
  • Examples of the copolymer of ethylene and an ⁇ -olefin having 3 to 8 carbon atoms include ethylene / propylene copolymer (EPR), ethylene / 1-butene copolymer (EBR), ethylene / 1-pentene copolymer, And ethylene / 1-octene copolymer (EOR).
  • Examples of the copolymer of propylene and ⁇ -olefin having 4 to 8 carbon atoms include propylene / 1-butene copolymer (PBR), propylene / 1-pentene copolymer, propylene / 1-octene copolymer. (POR). These may use only 1 type and may use 2 or more types together.
  • examples of the styrenic thermoplastic elastomer include a block copolymer of a styrene compound and a conjugated diene compound, and a hydrogenated product thereof.
  • examples of the styrene compound include styrene, ⁇ -methyl styrene, p-methyl styrene, alkyl styrene such as pt-butyl styrene, p-methoxy styrene, vinyl naphthalene, and the like. These may use only 1 type and may use 2 or more types together.
  • conjugated diene compound examples include butadiene, isoprene, piperylene, methylpentadiene, phenylbutadiene, 3,4-dimethyl-1,3-hexadiene, 4,5-diethyl-1,3-octadiene, and the like. These may use only 1 type and may use 2 or more types together.
  • styrene-based thermoplastic elastomers include styrene-butadiene-styrene copolymer (SBS), styrene-isoprene-styrene copolymer (SIS), styrene-ethylene / butylene-styrene copolymer (SEBS), styrene- And ethylene / propylene-styrene copolymer (SEPS). These may use only 1 type and may use 2 or more types together. Of these, SEBS is preferred.
  • the reactive groups for the polyamide resin include acid anhydride groups (—CO—O—OC—), carboxyl groups (—COOH), and epoxy groups ⁇ —C 2 O.
  • the amount of modification of the modified elastomer is not limited, and the modified elastomer may have one or more reactive groups in one molecule. Further, the modified elastomer preferably has 1 or more and 50 or less reactive groups in one molecule, more preferably 3 or more and 30 or less, and particularly preferably 5 or more and 20 or less.
  • modified elastomer examples include, for example, polymers using various monomers capable of introducing reactive groups as raw material monomers (modified products obtained by polymerization using a monomer capable of introducing reactive groups as part of the raw material monomers). Elastomers), oxidative degradation products of polymers containing skeletal resins (modified elastomers with reactive groups formed by oxidative degradation), graft polymers of organic acids to skeletal resins (reactive groups are introduced by graft polymerization of organic acids) Modified elastomers). These may use only 1 type and may use 2 or more types together.
  • Examples of the monomer capable of introducing a reactive group include a monomer having a polymerizable unsaturated bond and an acid anhydride group, a monomer having a polymerizable unsaturated bond and a carboxyl group, and a polymerizable unsaturated bond.
  • Examples thereof include monomers having an epoxy group.
  • acid anhydrides such as maleic anhydride, itaconic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, butenyl succinic anhydride, and maleic acid, itaconic acid And carboxylic acids such as fumaric acid, acrylic acid and methacrylic acid. These may be used alone or in combination of two or more. Of these compounds, acid anhydrides are preferred, maleic anhydride and itaconic anhydride are more preferred, and maleic anhydride is particularly preferred.
  • the molecular weight of the modified elastomer is not particularly limited, but the weight average molecular weight is preferably from 10,000 to 500,000, more preferably from 35,000 to 500,000, more preferably from 35,000 to 300,000. 000 or less is particularly preferable.
  • the weight average molecular weight is measured by GPC method (standard polystyrene conversion).
  • thermoplastic resins In addition to the first polyolefin resin, the second polyolefin resin, the polyamide resin, and the modified elastomer, other thermoplastic resins, flame retardants, flame retardant aids, fillers, and colorants are included in the molded body. Various additives such as antibacterial agents and antistatic agents can be blended. These may use only 1 type and may use 2 or more types together.
  • thermoplastic resins examples include polyester resins (polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polybutylene succinate, polyethylene succinate, polylactic acid) and the like. These may use only 1 type and may use 2 or more types together.
  • flame retardants include halogen flame retardants (halogenated aromatic compounds), phosphorus flame retardants (nitrogen-containing phosphate compounds, phosphate esters, etc.), nitrogen flame retardants (guanidine, triazine, melamine, and derivatives thereof) Etc.), inorganic flame retardants (metal hydroxides, etc.), boron flame retardants, silicone flame retardants, sulfur flame retardants, red phosphorus flame retardants and the like.
  • flame retardant aid examples include various antimony compounds, metal compounds containing zinc, metal compounds containing bismuth, magnesium hydroxide, and clay silicates. These may use only 1 type and may use 2 or more types together.
  • Fillers include glass components (glass fibers, glass beads, glass flakes, etc.), silica, inorganic fibers (glass fibers, alumina fibers, carbon fibers), graphite, silicate compounds (calcium silicate, aluminum silicate, kaolin, talc, clay) Etc.), metal oxides (iron oxide, titanium oxide, zinc oxide, antimony oxide, alumina, etc.), carbonates and sulfates of metals such as calcium, magnesium, zinc, organic fibers (aromatic polyester fibers, aromatic polyamide fibers) , Fluororesin fiber, polyimide fiber, vegetable fiber, etc.). These may use only 1 type and may use 2 or more types together. Examples of the colorant include pigments and dyes. These may use only 1 type and may use 2 or more types together.
  • phase structure In the molded product, the first polyolefin resin and the second polyolefin resin form a continuous phase (A). Further, the polyamide resin and the modified elastomer form a dispersed phase (B). The dispersed phase (B) is dispersed in the continuous phase (A).
  • This phase structure can be obtained by molding a thermoplastic resin, which is a mixture of an impact resistant resin containing the second polyolefin resin, polyamide resin and modified elastomer, and the first polyolefin resin.
  • the polyamide resin forms a continuous phase (B 1 ) in the dispersed phase (B)
  • the polyamide resin and at least the modified elastomer among the modified elastomers can form the finely dispersed phase (B 2 ) in the dispersed phase (B).
  • a dispersed phase (B) further has a multiple phase structure having a finely dispersed phase (B 2 )
  • a molded body having more excellent impact resistance can be obtained.
  • the first polyolefin resin is a block copolymer polyolefin resin having a dispersed phase of an ethylene block
  • at least a part of the ethylene block constituting the block copolymer polyolefin resin is converted into a continuous phase. It can be aggregated at the interface between (A) and the dispersed phase (B). Also when it has such a phase structure, it can be set as the molded object which had the more outstanding impact resistance.
  • the size of the dispersed phase (B) contained in the continuous phase (A) of the molded product is not particularly limited, but the average diameter (average particle diameter) is preferably 10,000 nm or less, more preferably 50 nm.
  • the thickness is 8000 nm or less, more preferably 100 nm or more and 4000 nm or less.
  • the average diameter of the dispersed phase (B) is an average value (nm) of the maximum lengths of 50 randomly selected dispersed phases (B) in an image obtained using an electron microscope.
  • the size of the finely dispersed phase (B 2 ) contained in the dispersed phase (B) of the molded article is not particularly limited, but the average diameter (average particle diameter) is preferably 5 nm or more and 1000 nm or less, More preferably, they are 5 nm or more and 600 nm or less, More preferably, they are 10 nm or more and 400 nm or less, Especially preferably, they are 15 nm or more and 350 nm or less.
  • the average diameter of the finely dispersed phase (B 2) is an image obtained with an electron microscope, the maximum length of the average value of 100 fine dispersion phase randomly selected (B 2) with (nm) is there.
  • the content ratio of the first polyolefin resin and the second polyolefin resin is not particularly limited, but when the total of the first polyolefin resin and the second polyolefin resin is 100% by mass, the content ratio of the second polyolefin resin is 80% by mass or less.
  • the content of the second polyolefin resin can be further 1% by weight or more and 70% by weight or less, further 1% by weight or more and 60% by weight or less, and further 3% by weight or more and 40% by weight or less. It can be set to mass% or less, further can be set to 5 mass% or more and 30 mass% or less, and further can be set to 10 mass% or more and 25 mass% or less.
  • the content ratio of the polyamide resin can be 10% by mass or more and 80% by mass or less. In this range, it is possible to obtain a molded article having excellent impact resistance and excellent rigidity.
  • This ratio is preferably 12% by mass or more and 78% by mass or less, more preferably 14% by mass or more and 75% by mass or less, still more preferably 25% by mass or more and 73% by mass or less, and further more preferably 30% by mass or more and 71% by mass or less.
  • 34 mass% or more and 68 mass% or less are especially preferable, and 40 mass% or more and 64 mass% or less are more preferable.
  • the polyamide resin and the modified elastomer can be dispersed smaller as the dispersed phase (B) in the continuous phase (A). Furthermore, the specific gravity of a molded object can be reduced by reducing the usage-amount of a polyamide resin with large specific gravity. Thereby, it is possible to obtain a molded body having excellent impact resistance and rigidity while being lightweight. Furthermore, since the content of the polyamide resin can be reduced while sufficiently maintaining such mechanical characteristics, it is possible to obtain a calm appearance while suppressing the gloss of the surface of the molded body. Therefore, it can be applied to directly visible exterior materials and interior materials, and can exhibit excellent design properties.
  • the content of the polyamide resin may be 10% by mass or more and 80% by mass or less when the total of the polyamide resin and the modified elastomer is 100% by mass. 12 mass% or more and 68 mass% or less are preferable, 14 mass% or more and 65 mass% or less are more preferable, 16 mass% or more and 63 mass% or less are still more preferable, 18 mass% or more and 61 mass% or less are still more preferable, 20 mass% or more and 58 mass% or less are especially preferable, and 25 mass% or more and 54 mass% or less are more especially preferable. In this range, it is possible to obtain a molded article having excellent impact resistance and excellent rigidity.
  • the polyamide resin and the modified elastomer can be dispersed in the continuous phase (A) smaller as the dispersed phase (B). Furthermore, the specific gravity of a molded object can be reduced by reducing the usage-amount of a polyamide resin with large specific gravity. Thereby, it is possible to obtain a molded body having excellent impact resistance and rigidity while being lightweight. In addition, the tensile modulus derived from the first polyolefin resin can be sufficiently retained, and the impact resistance of the molded body can be improved.
  • the tensile elastic modulus derived from the first polyolefin resin is sufficiently maintained at a relatively small content ratio, and excellent in impact resistance, as compared with the case where other polyamides such as the above-mentioned polyamide 11 are used.
  • a molded body can be obtained.
  • the content of the polyamide resin may be 0.5% by mass to 30% by mass. It can. This ratio is preferably 1% by mass or more and 22% by mass or less, and more preferably 2% by mass or more and 15% by mass or less.
  • the content of the modified elastomer may be 0.5% by mass to 30% by mass. it can. In this range, it is possible to obtain a molded article having excellent impact resistance and excellent rigidity.
  • This ratio is preferably 1% by mass or more and 22% by mass or less, and more preferably 2% by mass or more and 15% by mass or less.
  • the specific gravity of the molded body is not particularly limited, but can usually be 1.05 or less.
  • the specific gravity is such that the polyamide resin content in the molded product is 1% by mass or more and 40% by mass or less, the polypropylene resin content is 50% by mass or more and 75% by mass or less, and maleic anhydride-modified olefin-based thermoplastic.
  • the content of the elastomer is 5% by mass or more and 30% by mass or less, the content can be particularly 0.89 or more and 1.05 or less, and further can be 0.92 or more and 0.98 or less. That is, even if this molded object has specific gravity equivalent to a polyethylene resin and a polypropylene resin, it can obtain the impact resistance and rigidity far superior to these resin.
  • the shape, size, thickness and the like of the molded body are not particularly limited, and the use is not particularly limited.
  • This molded body is used as various articles used for vehicles such as automobiles, railway vehicles (general vehicles), aircraft bodies (general aircraft), ships / hulls (general hulls), bicycles (general vehicles), and the like.
  • automobile parts include exterior parts, interior parts, engine parts, electrical parts, and the like.
  • automotive exterior parts include roof rails, fenders, fender liners, garnishes, bumpers, door panels, roof panels, hood panels, trunk lids, fuel lids, door mirror stays, spoilers, hood louvers, wheel covers, wheel caps.
  • Automotive interior parts include door trim base materials (FR, RR, BACK), pockets, armrests, switch bases, decorative panels, ornament panels, EA materials, speaker grills, quarter trim base materials, etc .; pillars Garnish; Cowl side garnish (Cowl side trim); Seat parts such as shield, back board, dynamic damper, side airbag peripheral parts; center cluster, register, center box (door), grab door, cup holder, airbag periphery Instrument panel parts such as parts; Center console; Overhead console; Sun visor; Deck board (luggage board); Under tray; Package tray; High-mount stop lamp cover; CRS cover ; Seat side garnish; scuff plate; room lamp; assist grip; safety belt parts; register blade; washer lever; knob of the window regulator handle; window regulator handle passing light lever, and the like.
  • Automotive engine parts include alternator terminals, alternator connectors, IC regulators, light meter potentiometer bases, exhaust gas valves, fuel pipes, cooling pipes, brake pipes, wiper pipes, exhaust pipes, intake pipes, hoses, tubes, Air intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air Flow meter, brake pad wear sensor, brake piston, solenoid bobbin, engine oil filter, ignition device case, Click control lever, and the like.
  • Automotive electrical components include battery peripherals, air conditioning thermo studs, heating and hot air flow control valves, radiator motor brush holders, water pump impellers, turbine vanes, wiper motor related parts, distributors, starter switches, starter relays , Wire harness for transmission, window washer nozzle, air conditioner panel switch board, coil for fuel electromagnetic valve, wire harness connector, SMJ connector, PCB connector, door grommet connector, fuse connector, etc., horn terminal, electrical component insulation Plate, step motor rotor, lamp socket, lamp reflector, lamp housing, cleaner case, filter Case, power train, and the like.
  • the molded body is used as various articles in non-vehicle applications other than the above-described vehicles. That is, for example, industrial and industrial materials such as ropes, spunbonds, polishing brushes, industrial brushes, filters, transport containers, trays, transport carts, and other general materials; Connector, coil, sensor, LED lamp, socket, resistor, relay case, small switch, coil bobbin, capacitor, variable capacitor case, optical pickup, oscillator, various terminal boards, transformer, plug, printed circuit board, tuner, speaker, microphone Electronic components such as headphones, small motors, small transmission gears, magnetic head bases, power modules, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related parts; Electric equipment such as generators, motors, transformers, current transformers, voltage regulators, rectifiers, inverters, relays, power contacts, switches, breakers, knife switches, other pole rods, electrical component cabinets;
  • industrial and industrial materials such as ropes, spunbonds, polishing brushes, industrial brushes, filters,
  • Industrial robot housing nursing robot housing, drone (flying object flying remotely, flying object flying autonomously) housing, VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio / LD parts, CD / DVD parts, lighting parts, refrigerator parts, washing machine parts, air conditioner parts, typewriter / word processor parts , Office computer parts, PCs, game machines, tablet terminals, mobile phones, smartphones, telephones and related parts, facsimile parts, copier parts, cleaning / cleaning equipment, motor parts, etc.
  • Optics and precision instruments such as cameras, watches, microscopes, binoculars, telescopes and glasses; Storage trays for food trays, storage boxes, storage trays, suitcases, helmets, water bottles, bottles, etc. Daily necessities such as food containers and lids (such as glass bottles), daily necessities;
  • Machine / general machinery / parts such as mower casing, cover, power tool casing, cover, various clips
  • Sporting goods such as tennis racket strings, skis / boards, protectors (baseball, soccer, motor sports), shoes, shoe soles (sole, soles for sports shoes), outdoor / climbing equipment
  • Furniture-related items such as costume cases, tables, chairs, shoe boxes, kitchen utensils, toilet utensils, bathing utensils
  • Medical-related products such as mouthpieces, medical devices, and pharmaceutical containers
  • Clothing-related items such as shoes, Agricultural equipment, agricultural equipment, plant pots, fishing equipment
  • the manufacturing method of the molded body of the present invention is the above-described manufacturing method of the molded body, and includes a molded body raw material preparation step and a molding step. According to this method, since a necessary impact-resistant resin is formed in advance and then mixed with the first polyolefin and molded, the thermal history of the first polyolefin can be suppressed. That is, for the polyamide resin, the modified elastomer, and the second polyolefin resin, a heat history corresponding to the number of times of melt kneading is accumulated, but for the first polyolefin resin, only one heat load at the time of molding is applied. Thus, a molded body can be obtained. And also by such a manufacturing method, the molded object which has the above-mentioned continuous phase (A) and disperse phase (B) can be obtained.
  • the above-mentioned “molded body raw material preparation step” includes mixing an impact-resistant resin obtained by melt-kneading a melt-kneaded product of a polyamide resin and a modified elastomer, and a second polyolefin resin, and the first polyolefin resin.
  • This is a step of obtaining a molded body raw material.
  • this impact-resistant resin is blended with the first polyolefin resin to obtain a molded body raw material. That is, for example, a molded body raw material can be obtained by dry blending a pellet made of an impact-resistant resin obtained in advance and a pellet made of a first polyolefin resin.
  • the above melt-kneaded product is a thermoplastic resin composition obtained by melt-kneading a polyamide resin and a modified elastomer.
  • the types of polyamide resins and modified elastomers that can be used at this time are as described above.
  • both resins are melt-kneaded so that the blending ratio of the polyamide resin is 10% by mass or more and 80% by mass or less when the total of the polyamide resin and the modified elastomer is 100% by mass. Obtainable.
  • an impact resistant resin in which the polyamide resin is dispersed in the second polyolefin resin can be obtained.
  • the dispersed phase (B) has a continuous phase (B 1 ) containing a polyamide resin and a finely dispersed phase (B 2 ) containing a modified elastomer dispersed in the continuous phase (B 1 ).
  • a phase structure can be obtained.
  • This ratio is preferably 12% by mass or more and 78% by mass or less, more preferably 14% by mass or more and 75% by mass or less, still more preferably 25% by mass or more and 73% by mass or less, and further more preferably 30% by mass or more and 71% by mass or less.
  • 34 mass% or more and 68 mass% or less are especially preferable, and 40 mass% or more and 64 mass% or less are more preferable.
  • the total of the polyamide resin and the modified elastomer is 100% by mass, from the viewpoint of making a high polyamide resin type impact resistant resin having a polyamide resin content of 50% by mass or more, 50% by mass to 80% by mass. It can be made into the mass% or less.
  • the melt-kneaded product has a polyamide resin blending ratio of 10% by mass to 80% by mass when the total of the polyamide resin and the modified elastomer is 100% by mass. % Or less.
  • This proportion is preferably 12% by mass to 68% by mass, more preferably 14% by mass to 65% by mass, still more preferably 16% by mass to 63% by mass, and still more preferably 18% by mass to 61% by mass. It is preferably 20% by mass or more and 58% by mass or less, more preferably 25% by mass or more and 54% by mass or less.
  • the kneading method for obtaining the melt-kneaded product is not particularly limited. It can be performed using a kneader. These apparatuses may use only 1 type and may use 2 or more types together. Moreover, when using 2 or more types, you may drive
  • the kneading temperature for obtaining the melt-kneaded product is not particularly limited as long as it is a temperature at which melt-kneading can be performed, and can be appropriately adjusted depending on the type of each component.
  • the kneading temperature can be 190 to 350 ° C., preferably 200 to 330 ° C., more preferably 205 to 310 ° C.
  • the above-mentioned impact resistant resin is a thermoplastic resin composition obtained by melt-kneading the second polyolefin resin and the above-described melt-kneaded product.
  • the kind of the second polyolefin resin that can be used at this time is as described above.
  • This thermal shock resin is, when the total of the second polyolefin resin and the above melt-kneaded product is 100% by mass, the blending ratio of the second polyolefin resin is 20% by mass to 75% by mass, Both resins can be obtained by melt-kneading. Thereby, the polyamide resin can be dispersed in the second polyolefin resin.
  • the dispersed phase (B) has a continuous phase (B 1 ) containing a polyamide resin and a finely dispersed phase (B 2 ) containing a modified elastomer dispersed in the continuous phase (B 1 ).
  • a phase structure can be obtained. This proportion is preferably 25% by mass or more and 70% by mass or less, and more preferably 35% by mass or more and 65% by mass or less.
  • the kneading method for obtaining the impact resistant resin is not particularly limited, and examples thereof include the same apparatus, operating method, and kneading temperature as those for obtaining the aforementioned melt-kneaded product.
  • the content ratio of the polyamide resin when the total of the second polyolefin resin and the polyamide resin is 100% by mass can be 60% by mass or less (usually 1% by mass or more). This proportion is preferably 5% by mass to 55% by mass, more preferably 15% by mass to 53% by mass, further preferably 19% by mass to 50% by mass, and further preferably 21% by mass to 48% by mass. Preferably, 23 mass% or more and 46 mass% or less are especially preferable, 25 mass% or more and 44 mass% or less are more especially preferable, and 28 mass% or more and 43 mass% or less are especially preferable.
  • the content ratio of the polyamide resin when the total of the second polyolefin resin and the polyamide resin is 100% by mass is 60% by mass or less (usually 1% by mass or more). 5 mass% or more and 45 mass% or less are preferable, 7 mass% or more and 43 mass% or less are more preferable, 9 mass% or more and 40 mass% or less are still more preferable, 11 mass% or more and 38 mass% or less are 11 mass% or less. Still more preferably, 13 mass% or more and 36 mass% or less are especially preferable, 15 mass% or more and 34 mass% or less are more preferable, and 18 mass% or more and 33 mass% or less are especially preferable.
  • the content of the polyamide resin can be 1% by mass to 60% by mass. This proportion is preferably 3% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 45% by mass or less, still more preferably 7% by mass or more and 40% by mass or less, and further more preferably 9% by mass or more and 35% by mass or less. Preferably, 12 mass% or more and 30 mass% or less are especially preferable.
  • the content of the modified elastomer when the total of the second polyolefin resin, the polyamide resin, and the modified elastomer is 100% by mass can be 1% by mass or more and 70% by mass or less. This ratio is preferably 2% by mass to 65% by mass, more preferably 3% by mass to 60% by mass, still more preferably 5% by mass to 55% by mass, and even more preferably 7% by mass to 50% by mass. Preferably, 13 mass% or more and 47 mass% or less are especially preferable, and 17 mass% or more and 45 mass% or less are especially preferable.
  • the molded body raw material is a mixture of thermoplastic resins obtained by mixing the first polyolefin resin and the impact resistant resin.
  • the types of the first polyolefin resin that can be used at this time are as described above.
  • the blending ratio of the first polyolefin resin is 20% by mass or more and 99.5% by mass or less. Further, both resins can be obtained by mixing. Thereby, the molded object raw material which suppressed the load of the heat history with respect to 1st polyolefin resin can be obtained.
  • the blending ratio of the first polyolefin resin can be 30 parts by mass or more and 99 parts by mass or less, more preferably 40 parts by mass or more and 98 parts by mass or less, and further 45 parts by mass or more and 97 parts by mass. Part mass or less, further 52 parts by mass or more and 96 parts by mass or less, and further 55 parts by mass or more and 95 parts by mass or less.
  • the molded product obtained by this method includes, in addition to the first polyolefin resin, the second polyolefin resin, the polyamide resin and the modified elastomer, a flame retardant, a flame retardant aid, a filler, a colorant, an antibacterial agent.
  • Various additives such as an agent and an antistatic agent can be contained. When these additives are added to the molded article, an impact-resistant resin can be used as a carrier for supporting these additives.
  • the “molding step” is a step of forming a molded body raw material obtained in the molded body raw material preparation step to obtain a molded body.
  • any molding method may be used and is not particularly limited.
  • the molding methods include injection molding, extrusion molding (sheet extrusion, profile extrusion), T-die molding, blow molding, injection blow molding, inflation molding, hollow molding, vacuum molding, compression molding, press molding, stamping molding, transfer molding. Etc. are exemplified. These may use only 1 type and may use 2 or more types together.
  • thermoplastic resin Comprising: It disperse
  • a dispersed phase (B) comprising a polyamide resin and a modified elastomer, wherein the dispersed phase (B) comprises a melt-kneaded product of the polyamide resin and the modified elastomer, and the modified elastomer comprises the polyamide resin.
  • the elastomer is an olefin thermoplastic elastomer having a skeleton of a copolymer of ethylene or propylene and an ⁇ -olefin having 3 to 8 carbon atoms, or a styrene skeleton having a styrene skeleton.
  • the total of the continuous phase (A) and the dispersed phase (B) is 100% by mass, it is a thermoplastic elastomer.
  • the dispersed phase (B) is 70% by mass or less and the total of the first polyolefin resin and the second polyolefin resin is 100% by mass, the second polyolefin resin is 80% by mass or less.
  • a shaped body can be obtained.
  • this molded body can obtain characteristics that are remarkably excellent in impact resistance while sufficiently maintaining the rigidity inherent to the first polyolefin. Furthermore, compared with the case where all polyolefin is mix
  • Second polyolefin resin polypropylene resin (No. 1), homopolymer, manufactured by Prime Polymer Co., Ltd., “Prime Polypro F113G”, number average molecular weight 520,000, melting point 160 ° C., MFR 3 g / 10 min
  • Example 1-5 Production of Molded Body of Example 1-5
  • the molded body contains 80% by mass of the first polyolefin and 20% by mass of the impact-resistant resin.
  • Example 1 a molded body (Example 2) containing 75% by mass of first polyolefin and 25% by mass of impact resin, 70% by mass of first polyolefin, and 30% by mass of impact resin
  • Molded bodies (Example 5) each containing an impact resistant resin at a ratio of 60% by mass were produced by the following procedure.
  • the impact-resistant resin pellets obtained in [1-1] (2) above and the following first polyolefin resin pellets were dry-blended to obtain molded body raw materials.
  • the obtained molded body raw material is put into a hopper of an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., 40 ton injection molding machine), and a test piece for measuring physical properties under injection conditions of a set temperature of 210 ° C. and a mold temperature of 60 ° C. Was injection molded.
  • First polyolefin resin block copolymer polyolefin resin having a dispersed phase of ethylene block, manufactured by Sun Allomer Co., Ltd., product name “YS559N”, melting point 165 ° C.
  • molded body of comparative example 1 The following polyolefin resin (same as the first polyolefin resin in the molded body of the example) was injected into an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd.). , A 40-ton injection molding machine), and a test piece for measuring physical properties was injection-molded under injection conditions of a set temperature of 210 ° C. and a mold temperature of 60 ° C.
  • First polyolefin resin block copolymer polyolefin resin having a dispersed phase of ethylene block, manufactured by Sun Allomer Co., Ltd., product name “YS559N”, melting point 165 ° C.
  • Dispersed phase 2 containing dispersed polyamide resin and modified elastomer 2 [dispersed phase (B)], continuous phase 3 containing polyamide resin [continuous phase (B 1 )], modified elastomer dispersed in continuous phase (B 1 )
  • a finely dispersed phase 4 [finely dispersed phase (B 2 )]
  • an aggregated phase 5 [aggregated phase] in which the ethylene block of the first polyolefin resin is aggregated at the interface between the continuous phase (A) and the dispersed phase (B) (D)] are recognized.
  • the agglomerated phase (D) includes not only the ethylene block in the first polyolefin resin but also a modified elastomer. The results concerning the phase structure are also shown in Table 1.
  • Second polyolefin resin polypropylene resin (No. 1), homopolymer, manufactured by Prime Polymer Co., Ltd., “Prime Polypro F113G”, number average molecular weight 520,000, melting point 160 ° C., MFR 3 g / 10 min
  • Example 6 When the total molded body obtained is 100% by mass, the molded body includes 80% by mass of the first polyolefin and 20% by mass of the impact-resistant resin.
  • Example 6 a molded body (Example 7) containing 60% by mass of first polyolefin and 40% by mass of impact resin, 40% by mass of first polyolefin, and 60% by mass of impact resin
  • the impact resistant resin obtained in the above [2-1] (2) and the following first polyolefin resin pellets were dry blended to obtain a molded body raw material.
  • the obtained molded body raw material is put into a hopper of an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., 40 ton injection molding machine), and a test piece for measuring physical properties under injection conditions of a set temperature of 210 ° C. and a mold temperature of 60 ° C. Was injection molded.
  • First polyolefin resin block copolymer polyolefin resin having a dispersed phase of ethylene block, manufactured by Sun Allomer Co., Ltd., product name “YS559N”, melting point 165 ° C.
  • Polyamide resin Polyamide 11, manufactured by Arkema, product name “Rilsan BMN O”, weight average molecular weight 18,000, melting point 189 ° C.
  • Second polyolefin resin Polypropylene resin (No. 2), homopolymer, manufactured by Nippon Polypro Co., Ltd., product name “Novatech MA1B”, number average molecular weight 312,000, melting point 165 ° C., MFR 21 g / 10 min
  • Example 10-13 Molded body containing 90% by mass of first polyolefin and 10% by mass of impact-resistant resin when the total molded body obtained is 100% by mass.
  • Example 10 80% by mass of the first polyolefin and a molded product (Example 11) containing 20% by mass of the impact resin, 70% by mass of the first polyolefin, and 30% by mass of the impact resin
  • a molded body (Example 12) contained in a proportion and a molded body (Example 13) containing 60% by mass of the first polyolefin and 40% by mass of the impact-resistant resin were produced by the following procedures.
  • the impact resistant resin obtained in the above [2-2] (2) and the following first polyolefin resin pellets were dry blended to obtain a molded body raw material.
  • the obtained molded body raw material is put into a hopper of an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., 40 ton injection molding machine), and a test piece for measuring physical properties under injection conditions of a set temperature of 210 ° C. and a mold temperature of 60 ° C. Was injection molded.
  • First polyolefin resin block copolymer polyolefin resin having a dispersed phase of ethylene block, manufactured by Sun Allomer Co., Ltd., product name “YS559N”, melting point 165 ° C.
  • a molded body material obtained by dry blending pellets of impact resistant resin and pellets of the first polyolefin resin is molded to obtain a molded body.
  • Pellets obtained by melt-kneading the impact resin pellets and the first polyolefin resin pellets can be used as raw materials for the molded body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

ポリアミド樹脂とポリオレフィン樹脂とを含んだ耐衝撃樹脂をポリオレフィン樹脂に配合して得られる耐衝撃性に優れた成形体及びその製造方法を提供することを目的として、本成形体は、第1及び第2ポリオレフィン樹脂を含む連続相と、ポリアミド樹脂及び変性エラストマーを含む分散相とを有し、分散相はポリアミド樹脂と変性エラストマーとの溶融混練物からなり、変性エラストマーは、ポリアミド樹脂に対する反応性基を有するエラストマーであり、エラストマーは、エチレン若しくはプロピレンと炭素数3~8のα-オレフィンとの共重合体を骨格としたオレフィン系熱可塑性エラストマー、又は、スチレン骨格を有するスチレン系熱可塑性エラストマーであり、連続相と分散相との合計を100質量%とした場合に分散相が70質量%以下であり、第1及び第2ポリオレフィン樹脂の合計100質量%に対して第2ポリオレフィン樹脂が80質量%以下である。

Description

成形体及びその製造方法
 本発明は、成形体及びその製造方法に関する。更に詳しくは、本発明は、耐衝撃特性に優れた成形体及びその製造方法に関する。
 従来、異種の樹脂を混合して各々の樹脂が単独で発揮できる特性を超える混合樹脂を得ようとする工夫がなされており、例えば、ポリアミド樹脂とポリオレフィン樹脂とを併用して混合樹脂における特性を改良しようとする技術が、本発明者らによる下記特許文献1-4において知られている。
特開2013-147645号公報 特開2013-147646号公報 特開2013-147647号公報 特開2013-147648号公報
 上記特許文献1には、相容化剤として、ポリアミド樹脂と反応し得る反応性基が付与された変性エラストマーを利用することによって得られた、ポリアミド樹脂とポリオレフィン樹脂とのポリマーアロイ(熱可塑性樹脂組成物)が開示されている。
 上記特許文献2には、ポリアミド樹脂とポリオレフィン樹脂とを含むポリマーアロイにおいて、ポリアミド樹脂として、植物由来ポリアミド樹脂を利用できることが開示されている。
 上記特許文献3には、ポリアミド樹脂とポリオレフィン樹脂とを含むポリマーアロイにおいて、連続相とその連続相内に分散された分散相と、その分散相の中に更に分散された微分散相を有した樹脂相分離構造を有するポリマーアロイが開示されている。
 上記特許文献4には、ポリアミド樹脂と相容化剤とを、まず、溶融混合したのち、得られた混合樹脂とポリオレフィン樹脂とを更に溶融混合することにより、耐衝撃性に優れたポリマーアロイが得られることが開示されている。
 しかしながら、上記特許文献1-4には、これらのポリマーアロイを単独で製造及び利用することについては検討されているが、このようなポリマーアロイを、他の樹脂に対して利用することに関して検討されていない。
 本発明は、上記実情に鑑みてなされたものであり、ポリアミド樹脂とポリオレフィン樹脂とを含んだ耐衝撃樹脂を、ポリオレフィン樹脂に配合して得られる耐衝撃性に優れた成形体及びその製造方法を提供することを目的とする。
 本発明は以下の通りである。
 上記問題を解決するために、請求項1に記載の発明は、熱可塑性樹脂を成形した成形体であって、
 第1のポリオレフィン樹脂及び第2のポリオレフィン樹脂を含む連続相(A)と、
 前記連続相(A)中に分散されたポリアミド樹脂及び変性エラストマーを含む分散相(B)と、を有し、
 前記分散相(B)は、前記ポリアミド樹脂と前記変性エラストマーとの溶融混練物からなり、
 前記変性エラストマーは、前記ポリアミド樹脂に対する反応性基を有するエラストマーであり、
 前記エラストマーは、エチレン若しくはプロピレンと炭素数3~8のα-オレフィンとの共重合体を骨格としたオレフィン系熱可塑性エラストマー、又は、スチレン骨格を有するスチレン系熱可塑性エラストマーであり、
 前記連続相(A)と前記分散相(B)との合計を100質量%とした場合に、前記分散相(B)が70質量%以下であり、
 前記第1のポリオレフィン樹脂と第2のポリオレフィン樹脂との合計を100質量%とした場合に、前記第2のポリオレフィン樹脂が80質量%以下であることを要旨とする。
 請求項2に記載の成形体は、請求項1に記載の成形体において、前記熱可塑性樹脂は、前記第2のポリオレフィン樹脂、前記ポリアミド樹脂及び前記変性エラストマーを含んだ耐衝撃樹脂と、前記第1のポリオレフィン樹脂と、の混合物であることを要旨とする。
 請求項3に記載の成形体は、請求項1又は2に記載の成形体において、前記ポリアミド樹脂と前記変性エラストマーとの合計を100質量%とした場合に、前記ポリアミド樹脂は10質量%以上80質量%以下であることを要旨とする。
 請求項4に記載の成形体は、請求項1乃至3のうちのいずれかに記載の成形体において、前記分散相(B)は、前記ポリアミド樹脂を含む連続相(B)と、前記連続相(B)中に分散された変性エラストマーを含む微分散相(B)と、を有することを要旨とする。
 請求項5に記載の成形体は、請求項1乃至4のうちのいずれかに記載の成形体において、前記ポリアミド樹脂は、ポリアミド6であることを要旨とする。
 請求項6に記載の成形体は、請求項5に記載の成形体において、前記第2のポリオレフィン樹脂は、数平均分子量が300,000以上であることを要旨とする。
 請求項7に記載の成形体は、請求項1乃至6のうちのいずれかに記載の成形体において、前記第1のポリオレフィン樹脂は、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂であり、
 前記エチレンブロックの少なくとも一部が、前記連続相(A)と前記分散相(B)との界面に凝集されていることを要旨とする。
 請求項8に記載の製造方法は、請求項1に記載の成形体の製造方法であって、
 前記ポリアミド樹脂及び前記変性エラストマーの溶融混練物、並びに、前記第2のポリオレフィン樹脂、を溶融混練してなる耐衝撃樹脂と、前記第1のポリオレフィン樹脂と、を混合して成形体原料を得る成形体原料調製工程と、
 前記成形体原料を成形して前記成形体を得る成形工程と、を備えることを要旨とする。
 請求項9に記載の製造方法は、請求項8に記載の成形体の製造方法において、前記耐衝撃樹脂は、前記第2のポリオレフィン樹脂を含む連続相(C)と、前記連続相(C)中に分散された、前記ポリアミド樹脂及び前記変性エラストマーを含む分散相(B)と、を有し、
 前記分散相(B)は、ポリアミド樹脂を含む連続相(B)と、前記連続相(B)中に分散された前記変性エラストマーを含む微分散相(B)と、を有することを要旨とする。
 請求項10に記載の製造方法は、請求項8又は9に記載の成形体の製造方法において、前記第1のポリオレフィン樹脂は、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂であることを要旨とする。
 本発明の成形体によれば、優れた耐衝撃特性を得ることができる。
 熱可塑性樹脂が、第2のポリオレフィン樹脂、ポリアミド樹脂及び変性エラストマーを含んだ耐衝撃樹脂と、第1のポリオレフィン樹脂と、の混合物である場合には、特に優れた耐衝撃特性を得ることができる。
 ポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、ポリアミド樹脂が10質量%以上80質量%以下である場合には、特定の相構造をより安定して得ることができるため、優れた耐衝撃性を発揮できる成形体とすることができる。
 分散相(B)が、ポリアミド樹脂を含む連続相(B)と、連続相(B)中に分散された変性エラストマーを含む微分散相(B)と、を有する場合には、多重の相構造となり、より優れた耐衝撃性を有した成形体とすることができる。
 ポリアミド樹脂が、ポリアミド6である場合は、第1ポリオレフィン樹脂に由来する引張弾性率を十分に保持することができ、且つ成形体の耐衝撃性を向上することができる。

 ポリアミド樹脂がポリアミド6であり、更に、第2のポリオレフィン樹脂の数平均分子量が300,000以上である場合には、とりわけ優れた耐衝撃特性を得ることができる。
 第1のポリオレフィン樹脂は、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂であり、エチレンブロックの少なくとも一部が、連続相(A)と分散相(B)との界面に凝集されている場合には、多重の相構造となり、より優れた耐衝撃性を有した成形体とすることができる。
 本発明の製造方法によれば、第1のポリオレフィン樹脂及び第2のポリオレフィン樹脂を含む連続相(A)と、この連続相(A)中に分散されたポリアミド樹脂及び変性エラストマーを含む分散相(B)と、を有する本発明の成形体を確実に得ることができる。
 耐衝撃樹脂が、第2のポリオレフィン樹脂を含む連続相(C)と、連続相(C)中に分散された、ポリアミド樹脂及び変性エラストマーを含む分散相(B)と、を有し、分散相(B)が、ポリアミド樹脂を含む連続相(B)と、連続相(B)中に分散された変性エラストマーを含む微分散相(B)と、を有する場合には、多重の相構造となった優れた耐衝撃性を有する成形体を確実に得ることができる。
 第1のポリオレフィン樹脂が、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂である場合には、エチレンブロックの少なくとも一部が、連続相(A)と分散相(B)との界面に凝集された多重の相構造を有する成形体を確実に得ることができる。即ち、特に優れた耐衝撃性を有する成形体を確実に得ることができる。
実施例の評価用試験片を構成する樹脂組成物の相構造を説明するための模式図である。 実施例[PA6(No.1)系、PA6(No.2)系、及びPA11系]の各評価用試験片における引張弾性率と耐強化樹脂の添加量の相関を示すグラフである。
 ここで示される事項は例示的なもの及び本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。
 本発明の成形体は、熱可塑性樹脂を成形した成形体であって、
 第1のポリオレフィン樹脂及び第2のポリオレフィン樹脂を含む連続相(A)と、
 前記連続相(A)中に分散されたポリアミド樹脂及び変性エラストマーを含む分散相(B)と、を有し、
 前記分散相(B)は、前記ポリアミド樹脂と前記変性エラストマーとの溶融混練物からなり、
 前記変性エラストマーは、前記ポリアミド樹脂に対する反応性基を有するエラストマーであり、
 前記エラストマーは、エチレン若しくはプロピレンと炭素数3~8のα-オレフィンとの共重合体を骨格としたオレフィン系熱可塑性エラストマー、又は、スチレン骨格を有するスチレン系熱可塑性エラストマーであり、
 前記連続相(A)と前記分散相(B)との合計を100質量%とした場合に、前記分散相(B)が70質量%以下であり、
 前記第1のポリオレフィン樹脂と第2のポリオレフィン樹脂との合計を100質量%とした場合に、前記第2のポリオレフィン樹脂が80質量%以下であることを特徴とする。
[1]各成分について
 (1)第1のポリオレフィン樹脂について
 上記「第1のポリオレフィン樹脂」(以下、単に「第1ポリオレフィン」ともいう)は、オレフィンの単独重合体、及び/又は、オレフィンの共重合体である。この第1のポリオレフィン樹脂は、本成形体では、連続相(A)に第2のポリオレフィン樹脂とともに含まれる成分である。
 第1ポリオレフィンを構成するオレフィンは特に限定されないが、エチレン、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 即ち、ポリオレフィン樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ1-ブテン、ポリ1-ヘキセン、ポリ4-メチル-1-ペンテン等が挙げられる。これら重合体は1種のみで用いてもよく、2種以上を併用してもよい。即ち、ポリオレフィン樹脂は上記重合体の混合物であっても良い。
 上記ポリエチレン樹脂としては、エチレン単独重合体、及び、エチレンと他のオレフィンとの共重合体が挙げられる。後者としては、エチレン・1-ブテン共重合体、エチレン・1-へキセン共重合体、エチレン・1-オクテン共重合体、エチレン・4-メチル-1-ペンテン共重合体等が挙げられる(但し、全構成単位数のうちの50%以上がエチレンに由来する単位である)。
 また、ポリプロピレン樹脂としては、プロピレン単独重合体、及び、プロピレンと他のオレフィンとの共重合体が挙げられる。
 一方、プロピレンと他のオレフィンとの共重合体を構成するは、他のオレフィンとしては、前述の各種オレフィン(但し、プロピレンを除く)が挙げられる。このうち、エチレン及び1-ブテン等が好ましい。即ち、プロピレン・エチレン共重合体、プロピレン・1-ブテン共重合体が好ましい。
 また、プロピレンと他のオレフィンとの共重合体は、ランダム共重合体であってもよく、ブロック共重合体であってもよい。これらのうちでは、耐衝撃性に優れるという観点からブロック共重合体が好ましい。とりわけ、他のオレフィンがエチレンであるプロピレン・エチレンブロック共重合体であることが好ましい。このプロピレン・エチレンブロック共重合体は、エチレンブロックを分散相として有するブロック共重合ポリプロピレンである。即ち、ホモポリプロピレンを連続相として、この連続相内にポリエチレンを含んだ分散相が存在するポリプロピレン樹脂である。このようなエチレンブロックを分散相として有するブロック共重合ポリプロピレンは、例えば、インパクトコポリマー、ポリプロピレンインパクトコポリマー、ヘテロファジックポリプロピレン、ヘテロファジックブロックポリプロピレン等とも称される。このブロック共重合ポリプロピレンは、耐衝撃性に優れるという観点において好ましい。
 尚、プロピレンと他のオレフィンとの共重合体は、全構成単位数のうちの50%以上がプロピレンに由来する単位である。
 第1ポリオレフィン樹脂の数平均分子量は特に限定されないが、例えば、10,000以上500,000以下とすることができ、100,000以上450,000以下が好ましく、200,000以上400,000以下がより好ましい。
 更に、例えば、後述する第2ポリオレフィン樹脂の数平均分子量が300,000以上である場合には、第1ポリオレフィン樹脂の数平均分子量は150,000以上300,000未満にすることができる。また、第2ポリオレフィン樹脂の数平均分子量が350,000以上である場合には、第1ポリオレフィン樹脂の数平均分子量は150,000以上350,000未満にすることができる。
 尚、第1ポリオレフィン樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算の数平均分子量である。また、本発明においては、第1ポリオレフィン樹脂としてホモポリマーを用いる場合、上述の数平均分子量の各数値範囲は、各々重量平均分子量の数値範囲へ読み換えることができる。
 また、第1ポリオレフィン樹脂は、後述するポリアミド樹脂に対して親和性を有さないポリオレフィンであり、且つ、ポリアミド樹脂に対して反応し得る反応性基も有さないポリオレフィンである。この点において、後述する変性エラストマーとしてのオレフィン系成分とは異なっている。
 (2)第2のポリオレフィン樹脂について
 上記「第2のポリオレフィン樹脂」(以下、単に「第2ポリオレフィン」ともいう)は、オレフィンの単独重合体、及び/又は、オレフィンの共重合体である。この第2のポリオレフィン樹脂は、本成形体では、連続相(A)に第1のポリオレフィン樹脂とともに含まれる成分である。
 第2ポリオレフィンを構成するオレフィンは特に限定されず、第1ポリオレフィンの場合と同様のオレフィンを例示できる。
 第1ポリオレフィンと第2ポリオレフィンとは、同じ樹脂であってもよく、異なる樹脂であってもよい。
 第1ポリオレフィンと第2ポリオレフィンとが異なる樹脂である場合としては、例えば、第1ポリオレフィン及び第2ポリオレフィンのうちのいずれか一方が、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂(ブロック共重合ポリプロピレン樹脂等)であり、他方が非ブロック共重合ポリオレフィン樹脂である場合が挙げられる。
 これらのうちでは、第1ポリオレフィンが、エチレンブロックの分散相を有するブロック共重合ポリプロピレン樹脂であり、第2ポリオレフィンが非ブロック共重合ポリオレフィン樹脂である形態が、耐衝撃性の観点から好ましい。更に、非ブロック共重合ポリオレフィン樹脂としては、ホモポリプロピレン樹脂が好ましい。
 尚、ここでいう非ブロック共重合ポリオレフィン樹脂は、エチレンブロックの分散相を有さない共重合ポリオレフィン樹脂を意味する。従って、エチレンブロックの分散相を有さないブロック共重合ポリオレフィン樹脂は、本明細書では、非ブロック共重合ポリオレフィン樹脂に含まれるものとする。
 上述のうち、第1ポリオレフィンが、エチレンブロックの分散相を有するブロック共重合ポリプロピレン樹脂であり、第2ポリオレフィンが非ブロック共重合ポリプロピレン樹脂である形態を用いた場合、本成形体は、第1ポリプロピレン樹脂及び第2ポリプロピレン樹脂を構成したホモポリプロピレンによって形成された連続相(A)と、この連続相(A)中に分散されたポリアミド樹脂及び変性エラストマーを含む分散相(B)と、第1ポリプロピレン樹脂を構成したエチレンブロックからなる分散相(B’)とを有することとなる。加えて、エチレンブロックの少なくとも一部は、連続相(A)と分散相(B)との界面に凝集される。これによって、特に優れた耐衝撃性を発揮させることができる。
 第2ポリオレフィン樹脂の数平均分子量は特に限定されないが、例えば、10,000以上(通常、700,000以下)とすることができ、100,000以上であることが好ましく、より好ましくは200,000以上である。
 尚、第2ポリオレフィン樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算の数平均分子量である。また、本発明においては、第2ポリオレフィン樹脂としてホモポリマーを用いる場合、上述の数平均分子量の各数値範囲は、各々重量平均分子量の数値範囲へ読み換えることができる。
 また、後述のポリアミドが、ポリアミド6である場合には、この第2ポリオレフィン樹脂の数平均分子量は、300,000以上(通常、700,000以下)とすることができ、310,000以上が好ましく、350,000以上がより好ましく、370,000以上が更に好ましく、400,000以上がより更に好ましく、450,000以上が特に好ましく、470,000以上がより特に好ましく、
500,000以上がとりわけ好ましい。
 この場合、第1のポリオレフィン樹脂の引張弾性率を十分に保持しつつ、成形体の耐衝撃性を向上することができる。
 尚、数平均分子量の上限値は、例えば、上述のように700,000以下とすることができ、更に650,000以下とすることができ、更に600,000以下とすることができる。
 また、第2ポリオレフィン樹脂のMFR(メルトフローレート)は、特に限定されない。通常、ポリオレフィン樹脂の分子量(数平均分子量を含む)とMFRとは比例関係を示す。例えば、第2ポリオレフィン樹脂のMFRは、25g/10min以下であることが好ましい。MFRの下限は特に限定されないが、例えば、1g/10min以上とすることができる。このMFRは、22g/10min以下が好ましく、19g/10min以下がより好ましく、16g/10min以下が更に好ましく、13g/10min以下がより更に好ましく、10g/10min以下が特に好ましく、9g/10min以下がより特に好ましく、8g/10min以下がとりわけ好ましい。
 第2ポリオレフィン樹脂のMFRは、JIS K7210に準拠し、温度230℃且つ荷重21.18N(2.16kgf)の条件で測定される。
 尚、第2ポリオレフィン樹脂は、後述するポリアミド樹脂に対して親和性を有さないポリオレフィンであり、且つ、ポリアミド樹脂に対して反応し得る反応性基も有さないポリオレフィンである。この点において、後述する変性エラストマーとしてのオレフィン系成分とは異なっている。
 (3)ポリアミド樹脂について
 上記「ポリアミド樹脂」は、アミド結合(-NH-CO-)を介して複数の単量体が重合されてなる鎖状骨格を有する重合体である。このポリアミド樹脂は、本成形体では、分散相(B)に変性エラストマーとともに含まれる成分である。
 ポリアミド樹脂を構成する単量体としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-カプロラクタム、ウンデカンラクタム、ω-ラウリルラクタムなどのラクタムなどが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 更に、ポリアミド樹脂は、ジアミンとジカルボン酸との共重合により得ることもできる。この場合、単量体としてのジアミンには、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,13-ジアミノトリデカン、1,14-ジアミノテトラデカン、1,15-ジアミノペンタデカン、1,16-ジアミノヘキサデカン、1,17-ジアミノヘプタデカン、1,18-ジアミノオクタデカン、1,19-ジアミノノナデカン、1,20-ジアミノエイコサン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタン等の脂肪族ジアミン、シクロヘキサンジアミン、ビス-(4-アミノシクロヘキシル)メタン等の脂環式ジアミン、キシリレンジアミン(p-フェニレンジアミン及びm-フェニレンジアミンなど)等の芳香族ジアミンなどが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 更に、単量体としてのジカルボン酸には、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシリン酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸のような脂肪族ジカルボン酸、シクロヘキサンジカルボン酸のような脂環式ジカルボン酸、フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸のような芳香族ジカルボン酸などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 即ち、ポリアミド樹脂としては、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド610、ポリアミド612、ポリアミド614、ポリアミド12、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10T、ポリアミドMXD6、ポリアミド6T/66、ポリアミド6T/6I、ポリアミド6T/6I/66、ポリアミド6T/2M-5T、ポリアミド9T/2M-8T等が挙げられる。これらのポリアミドは、1種のみを用いてもよいし2種以上を併用してもよい。
 また、本発明では、上述の各種ポリアミド樹脂のうち、植物由来ポリアミド樹脂を用いることができる。植物由来ポリアミド樹脂は、植物油等の植物に由来する成分から得られた単量体を用いる樹脂であるため、環境保護の観点(特にカーボンニュートラルの観点)から望ましい。
 植物由来ポリアミド樹脂としては、ポリアミド11(以下、単に「PA11」ともいう)、ポリアミド610(以下、単に「PA610」ともいう)、ポリアミド612(以下、単に「PA612」ともいう)、ポリアミド614(以下、単に「PA614」ともいう)、ポリアミド1010(以下、単に「PA1010」ともいう)、ポリアミド1012(以下、単に「PA1012」ともいう)、ポリアミド10T(以下、単に「PA10T」ともいう)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 上記のうち、PA11は、炭素原子数11である単量体がアミド結合を介して結合された構造を有する。PA11には、単量体として、ヒマシ油を原料とするアミノウンデカン酸を用いることができる。炭素原子数が11である単量体に由来する構成単位は、PA11内において全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 PA610は、炭素原子数6である単量体と、炭素原子数10である単量体と、がアミド結合を介して結合された構造を有する。PA610には、単量体として、ヒマシ油を原料とするセバシン酸を用いることができる。炭素原子数6である単量体に由来する構成単位と、炭素原子数10である単量体に由来する構成単位とは、PA610内においてその合計が、全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 PA1010は、炭素原子数10であるジアミンと、炭素原子数10であるジカルボン酸と、が共重合された構造を有する。PA1010には、単量体として、ヒマシ油を原料とする1,10-デカンジアミン(デカメチレンジアミン)及びセバシン酸を用いることができる。これらの炭素原子数10であるジアミンに由来する構成単位と、炭素原子数10であるジカルボン酸に由来する構成単位とは、PA1010内においてその合計が、全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 PA614は、炭素原子数6である単量体と、炭素原子数14である単量体と、がアミド結合を介して結合された構造を有する。PA614には、単量体として、植物由来であり炭素原子数14のジカルボン酸を用いることができる。これらの炭素原子数6である単量体に由来する構成単位と、炭素原子数14である単量体に由来する構成単位とは、PA614内においてその合計が、全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 PA10Tは、炭素原子数10であるジアミンと、テレフタル酸と、がアミド結合を介して結合された構造を有する。PA10Tには、単量体として、ヒマシ油を原料とする1,10-デカンジアミン(デカメチレンジアミン)を用いることができる。これらの炭素原子数10であるジアミンに由来する構成単位と、テレフタル酸に由来する構成単位とは、PA10T内においてその合計が、全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 上記5種の植物由来ポリアミド樹脂のなかでも、PA11は、他の4種の植物由来ポリアミド樹脂に対し、低吸水性、低比重及び植物化度の高さの観点においてより優れている。
 ポリアミド610は、吸水率、耐薬品性、及び衝撃強度の点ではPA11よりも劣るが、耐熱性(融点)及び剛性(強度)の観点において優れている。更には、ポリアミド6やポリアミド66と比べ、低吸水性で寸法安定性が良いため、ポリアミド6やポリアミド66の代替材として使用することができる。
 ポリアミド1010は、PA11に比べて、耐熱性及び剛性の観点において優れている。更には、植物化度もPA11と同等であり、より耐久性の必要な部位に使用することができる。
 ポリアミド10Tは、分子骨格に芳香環を含むため、ポリアミド1010に比べて、より融点が高く高剛性である。そのため、過酷環境下での使用(耐熱部位、強度入力部位)が可能である。
 また、本発明では、上述の各種ポリアミド樹脂のうち、ポリアミド6を用いた形態とすることができる。
 この場合、第1ポリオレフィン樹脂に由来する引張弾性率を十分に保持することができ、且つ成形体の耐衝撃性を向上することができる。また、上述のポリアミド11等の他のポリアミドを用いる場合よりも、相対的に少ない含有割合で、性能(特に、引張弾性率)が同等以上の成形体を得ることができ、コスト的にも有利となる。
 (4)変性エラストマーについて
 上記「変性エラストマー」は、ポリアミド樹脂に対する反応性基を有するエラストマーである。即ち、ポリアミド樹脂と反応し得る反応性基が付与されたエラストマーである。この変性エラストマーは、本成形体では、分散相(B)に、ポリアミド樹脂とともに含まれる成分である。
 更に、この変性エラストマーは、第2ポリオレフィン樹脂に対して親和性を有する成分であることが好ましい。即ち、ポリアミド樹脂と第2ポリオレフィン樹脂とに対する相容化作用を有する成分であることが好ましい。更に換言すれば、ポリアミド樹脂と第2ポリオレフィン樹脂との相容化剤であることが好ましい。
 上記エラストマー(即ち、変性エラストマーの骨格を構成する骨格樹脂)は、エチレン若しくはプロピレンと炭素数3~8のα-オレフィンとの共重合体(即ち、エチレンと炭素数3~8のα-オレフィンとの共重合体、及び、プロピレンと炭素数4~8のα-オレフィンとの共重合体)を骨格としたオレフィン系熱可塑性エラストマー、又は、スチレン骨格を有するスチレン系熱可塑性エラストマーである。これらは1種のみ用いられていてもよいし、2種以上が併用されていてもよい。
 上記炭素数3~8のα-オレフィンとしては、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等が挙げられる。
 エチレンと炭素数3~8のα-オレフィンとの共重合体としては、エチレン・プロピレン共重合体(EPR)、エチレン・1-ブテン共重合体(EBR)、エチレン・1-ペンテン共重合体、エチレン・1-オクテン共重合体(EOR)等が挙げられる。
 また、プロピレンと炭素数4~8のα-オレフィンとの共重合体としては、プロピレン・1-ブテン共重合体(PBR)、プロピレン・1-ペンテン共重合体、プロピレン・1-オクテン共重合体(POR)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 一方、スチレン系熱可塑性エラストマーとしては、スチレン系化合物と共役ジエン化合物とのブロック共重合体、及びその水添体が挙げられる。
 上記スチレン系化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン等のアルキルスチレン、p-メトキシスチレン、ビニルナフタレン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 上記共役ジエン化合物としては、ブタジエン、イソプレン、ピペリレン、メチルペンタジエン、フェニルブタジエン、3,4-ジメチル-1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 即ち、スチレン系熱可塑性エラストマーとしては、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン/ブチレン-スチレン共重合体(SEBS)、スチレン-エチレン/プロピレン-スチレン共重合体(SEPS)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。これらのなかでも、SEBSが好ましい。
 また、ポリアミド樹脂に対する反応性基(上記エラストマーに付与される反応性基)としては、酸無水物基(-CO-O-OC-)、カルボキシル基(-COOH)及びエポキシ基{-CO(2つの炭素原子と1つの酸素原子とからなる三員環構造)}、オキサゾリン基(-CNO)及びイソシアネート基(-NCO)等が挙げられる。これらは1種のみ付与されていてもよいし、2種以上付与されていてもよい。
 尚、変性エラストマーの変性量は限定されず、変性エラストマーは1分子中に1以上の反応性基を有すればよい。更に、変性エラストマーは1分子中に1以上50以下の反応性基を有することが好ましく、3以上30以下がより好ましく、5以上20以下が特に好ましい。
 変性エラストマーとしては、例えば、反応性基を導入できる各種単量体を原料モノマーとして用いた重合体(反応性基を導入できる単量体を原料モノマーの一部に用いた重合により得られた変性エラストマー)、骨格樹脂を含む重合体の酸化分解物(酸化分解により反応性基が形成された変性エラストマー)、骨格樹脂に対する有機酸のグラフト重合物(有機酸のグラフト重合により反応性基が導入された変性エラストマー)などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 反応性基を導入できる単量体としては、重合性不飽和結合と酸無水物基とを有する単量体、重合性不飽和結合とカルボキシル基とを有する単量体、重合性不飽和結合とエポキシ基とを有する単量体などが挙げられる。
 具体的には、無水マレイン酸、無水イタコン酸、無水コハク酸、無水グルタル酸、無水アジピン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ブテニル無水コハク酸等の酸無水物、及びマレイン酸、イタコン酸、フマル酸、アクリル酸、メタクリル酸等のカルボン酸が挙げられる。これらは1種のみ用いてもよく2種以上を併用してもよい。これらの化合物のうちでは、酸無水物が好ましく、無水マレイン酸及び無水イタコン酸がより好ましく、無水マレイン酸が特に好ましい。
 変性エラストマーの分子量は特に限定されないが、重量平均分子量が、10,000以上500,000以下であることが好ましく、35,000以上500,000以下であることがより好ましく、35,000以上300,000以下であることが特に好ましい。尚、重量平均分子量はGPC法(標準ポリスチレン換算)により測定される。
 (5)他の成分について
 本成形体には、第1ポリオレフィン樹脂、第2ポリオレフィン樹脂、ポリアミド樹脂及び変性エラストマー以外に、他の熱可塑性樹脂、難燃剤、難燃助剤、充填剤、着色剤、抗菌剤、帯電防止剤等の各種添加剤を配合できる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 他の熱可塑性樹脂としては、ポリエステル系樹脂(ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 難燃剤としては、ハロゲン系難燃剤(ハロゲン化芳香族化合物)、リン系難燃剤(窒素含有リン酸塩化合物、リン酸エステル等)、窒素系難燃剤(グアニジン、トリアジン、メラミン、及びこれらの誘導体等)、無機系難燃剤(金属水酸化物等)、ホウ素系難燃剤、シリコーン系難燃剤、硫黄系難燃剤、赤リン系難燃剤等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 難燃助剤としては、各種アンチモン化合物、亜鉛を含む金属化合物、ビスマスを含む金属化合物、水酸化マグネシウム、粘土質珪酸塩等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 充填剤としては、ガラス成分(ガラス繊維、ガラスビーズ、ガラスフレーク等)、シリカ、無機繊維(ガラス繊維、アルミナ繊維、カーボン繊維)、黒鉛、珪酸化合物(珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー等)、金属酸化物(酸化鉄、酸化チタン、酸化亜鉛、酸化アンチモン、アルミナ等)、カルシウム、マグネシウム、亜鉛等の金属の炭酸塩及び硫酸塩、有機繊維(芳香族ポリエステル繊維、芳香族ポリアミド繊維、フッ素樹脂繊維、ポリイミド繊維、植物性繊維等)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 着色剤としては、顔料及び染料等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 (6)相構造について
 本成形体では、第1ポリオレフィン樹脂及び第2のポリオレフィン樹脂が連続相(A)を形成している。また、ポリアミド樹脂及び変性エラストマーが分散相(B)を形成している。そして、分散相(B)は、連続相(A)中に分散されている。この相構造は、第2のポリオレフィン樹脂、ポリアミド樹脂及び変性エラストマーを含んだ耐衝撃樹脂と、第1のポリオレフィン樹脂と、の混合物である熱可塑性樹脂を成形することによって得ることができる。
 更に、本成形体では、分散相(B)を構成しているポリアミド樹脂及び変性エラストマーのうち、ポリアミド樹脂が、分散相(B)内で連続相(B)を形成し、且つ、ポリアミド樹脂及び変性エラストマーのうちの少なくとも変性エラストマーが、分散相(B)内で微分散相(B)を形成することができる。このような分散相(B)内に、更に、微分散相(B)を有する多重の相構造を有する場合には、より優れた耐衝撃性を有した成形体とすることができる。
 また、本成形体では、第1のポリオレフィン樹脂が、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂である場合には、ブロック共重合ポリオレフィン樹脂を構成するエチレンブロックの少なくとも一部を、連続相(A)と分散相(B)との界面に凝集させることができる。このような相構造を有する場合にも、より優れた耐衝撃性を有した成形体とすることができる。
 本成形体の連続相(A)内に含まれた分散相(B)の大きさは特に限定されないが、その平均径(平均粒子径)は、10000nm以下であることが好ましく、より好ましくは50nm以上8000nm以下、更に好ましくは100nm以上4000nm以下である。この分散相(B)の平均径は、電子顕微鏡を用いて得られる画像において、無作為に選択された50個の分散相(B)の最大長さの平均値(nm)である。
 本成形体の分散相(B)内に含まれた微分散相(B)の大きさは特に限定されないが、その平均径(平均粒子径)は、5nm以上1000nm以下であることが好ましく、より好ましくは5nm以上600nm以下、更に好ましくは10nm以上400nm以下、特に好ましくは15nm以上350nm以下である。この微分散相(B)の平均径は、電子顕微鏡を用いて得られる画像において、無作為に選択された100個の微分散相(B)の最大長さの平均値(nm)である。
 (7)配合割合について
 本成形体において、連続相(A)と分散相(B)との合計を100質量%とした場合に、分散相(B)は70質量%以下である。即ち、通常、第1ポリオレフィン樹脂と第2ポリオレフィン樹脂との合計量をWとし、ポリアミド樹脂と変性エラストマーとの合計量をWとした場合に、WとWとの合計を100質量%とすると、Wの割合は70質量%以下である。この範囲では、優れた耐衝撃性、剛性及び成形性をバランスよく得ることができる。この割合は、0.5質量%以上50質量%以下が好ましく、2質量%以上48質量%以下がより好ましく、4質量%以上45質量%以下が特に好ましい。
 更に、第1ポリオレフィン樹脂及び第2ポリオレフィン樹脂の含有割合は特に限定されないが、第1ポリオレフィン樹脂と第2ポリオレフィン樹脂との合計を100質量%とした場合に、第2のポリオレフィン樹脂の含有割合は80質量%以下である。この第2のポリオレフィン樹脂の含有量は、更に、1質量%以上70質量%以下とすることができ、更には1質量%以上60質量%以下とすることができ、更には3質量%以上40質量%以下とすることができ、更には5質量%以上30質量%以下とすることができ、更には10質量%以上25質量%以下とすることができる。
 加えて、ポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、ポリアミド樹脂の含有割合は、10質量%以上80質量%以下とすることができる。この範囲では、優れた耐衝撃特性とともに、優れた剛性を有する成形体を得ることができる。この割合は、12質量%以上78質量%以下が好ましく、14質量%以上75質量%以下がより好ましく、25質量%以上73質量%以下が更に好ましく、30質量%以上71質量%以下がより更に好ましく、34質量%以上68質量%以下が特に好ましく、40質量%以上64質量%以下がより特に好ましい。この範囲では、連続相(A)内に、ポリアミド樹脂及び変性エラストマーを、分散相(B)としてより小さく分散させることができる。更に、比重の大きなポリアミド樹脂の使用量を減じて成形体の比重を低下させることができる。これにより、軽量でありながら、優れた耐衝撃特性及び剛性を有する成形体を得ることができる。
 更に、このような機械的特性を十分に維持しながら、ポリアミド樹脂の含有量を減じることができることにより、成形体の表面の艶を抑えて落ち着いた外観を得ることができる。従って、直接視認される外装材や内装材への適用ができ、優れた意匠性を発揮できる。
 また、上記ポリアミドが、ポリアミド6である場合には、ポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、ポリアミド樹脂の含有割合は、10質量%以上80質量%以下とすることができ、12質量%以上68質量%以下が好ましく、14質量%以上65質量%以下がより好ましく、16質量%以上63質量%以下が更に好ましく、18質量%以上61質量%以下がより更に好ましく、20質量%以上58質量%以下が特に好ましく、25質量%以上54質量%以下がより特に好ましい。
 この範囲では、優れた耐衝撃特性とともに、優れた剛性を有する成形体を得ることができる。また、連続相(A)内に、ポリアミド樹脂及び変性エラストマーを、分散相(B)としてより小さく分散させることができる。更に、比重の大きなポリアミド樹脂の使用量を減じて成形体の比重を低下させることができる。これにより、軽量でありながら、優れた耐衝撃特性及び剛性を有する成形体を得ることができる。また、第1ポリオレフィン樹脂に由来する引張弾性率を十分に保持することができ、且つ成形体の耐衝撃性を向上することができる。更には、上述のポリアミド11等の他のポリアミドを用いる場合よりも、相対的に少ない含有割合で、第1ポリオレフィン樹脂に由来する引張弾性率が十分に保持されており、且つ耐衝撃性に優れる成形体を得ることができる。
 また、第1ポリオレフィン樹脂、第2ポリオレフィン樹脂、ポリアミド樹脂、及び、変性エラストマーの合計を100質量%とした場合におけるポリアミド樹脂の含有量は、0.5質量%以上30質量%以下とすることができる。この割合は、1質量%以上22質量%以下が好ましく、2質量%以上15質量%以下がより好ましい。
 更に、第1ポリオレフィン樹脂、第2ポリオレフィン樹脂、ポリアミド樹脂、及び、変性エラストマーの合計を100質量%とした場合における変性エラストマーの含有量は、0.5質量%以上30質量%以下とすることができる。この範囲では、優れた耐衝撃特性とともに、優れた剛性を有する成形体を得ることができる。この割合は、1質量%以上22質量%以下が好ましく、2質量%以上15質量%以下がより好ましい。
 本成形体の比重は特に限定されないが、通常、1.05以下とすることができる。この比重は、本成形体におけるポリアミド樹脂の含有量が1質量%以上40質量%以下、ポリプロピレン樹脂の含有量が50質量%以上75質量%以下、且つ、無水マレイン酸変性されたオレフィン系熱可塑性エラストマーの含有量が5質量%以上30質量%以下である場合に、特に0.89以上1.05以下とすることができ、更には0.92以上0.98以下とすることができる。即ち、本成形体は、ポリエチレン樹脂及びポリプロピレン樹脂と同等の比重であっても、これらの樹脂よりも格段に優れた耐衝撃性及び剛性を得ることができる。
 (8)成形体の種類について
 本成形体の形状、大きさ及び厚さ等も特に限定されず、その用途も特に限定されない。
 本成形体は、自動車、鉄道車両(車両全般)、航空機機体(機体全般)、船舶・船体(船体全般)、自転車(車体全般)等の乗物に利用される各種用品等として用いられる。
 このうち自動車用品としては、外装部品、内装部品、エンジン部品、電装部品等が挙げられる。具体的には、自動車用の外装部品としては、ルーフレール、フェンダー、フェンダーライナー、ガーニッシュ、バンパー、ドアパネル、ルーフパネル、フードパネル、トランクリッド、フューエルリッド、ドアミラーステー、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、グリルエプロンカバーフレーム、ランプベゼル、ドアハンドル(プルハンドル)、ドアモール、リアフィニッシャー、ワイパー、エンジンアンダーカバー、フロアーアンダーカバー、ロッカーモール、カウルルーバー、カウル(自動二輪車)等が挙げられる。
 自動車用の内装部品としては、ドアトリム基材(FR、RR、BACK)、ポケット、アームレスト、スイッチベース、加飾パネル、オーナメントパネル、EA材、スピーカーグリル、クォータートリム基材等のトリム系部品;ピラーガーニッシュ;カウルサイドガーニッシュ(カウルサイドトリム);シールド、背裏ボード、ダイナミックダンパー、サイドエアバッグ周辺部品等のシート系部品;センタークラスター、レジスター、センターボックス(ドア)、グラブドア、カップホルダー、エアバッグ周辺部品等のインストルメントパネル系部品;センターコンソール;オーバヘッドコンソール;サンバイザー;デッキボード(ラゲージボード)、アンダートレイ;パッケージトレイ;ハイマウントストップランプカバー;CRSカバー;シートサイドガーニッシュ;スカッフプレート;ルームランプ;アシストグリップ;安全ベルト部品;レジスターブレード;ウォッシャーレバー;ウインドレギュレーターハンドル;ウインドレギュレーターハンドルのノブ;パッシングライトレバー等が挙げられる。
 自動車用のエンジン部品としては、オルタネータターミナル、オルタネータコネクタ、ICレギュレータ、ライトディヤ用ポテンシォメータベース、排気ガスバルブ、燃料パイプ、冷却パイプ、ブレーキパイプ、ワイパーパイプ、排気パイプ、吸気パイプ、ホース、チューブ、エアインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレタメインボディー、キャブレタスペーサ、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパッドウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、トルクコントロールレバー等が挙げられる。
 自動車用の電装部品としては、電池周辺部品、エアコン用サーモスタッド、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースイッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ワイヤーハーネスコネクター、SMJコネクター、PCBコネクター、ドアグロメットコネクター、ヒューズ用コネクター等の各種コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、クリーナーケース、フィルターケース、パワートレーン等が挙げられる。
 更に、本成形体は、上述の乗物以外の非乗物用途においても各種用品等として用いられる。即ち、例えば、ロープ、スパンボンド、研磨ブラシ、工業ブラシ、フィルター、運搬用コンテナ、トレイ、運搬用台車、その他一般資材等の工業・産業資材;
 コネクター、コイル、センサー、LEDランプ、ソケット、抵抗器、リレーケース、小型スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モータ、小型変速ギヤ、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピュータ関連部品等の電子部品;
 発電機、電動機、変圧器、変流器、電圧調整器、整流器、インバーター、継電器、電力用接点、開閉器、遮断機、ナイフスイッチ、他極ロッド、電気部品キャビネット等の電気機器;
 産業用ロボットの筐体、介護用ロボットの筐体、ドローン(遠隔操作によって飛行する飛行物体、自律的に飛行する飛行物体)の筐体、
 VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・LD部品、CD・DVD部品、照明部品、冷蔵庫部品、洗濯機部品、エアコン部品、タイプライター・ワープロ部品、オフィスコンピューター部品、PC、ゲーム機、タブレット端末、携帯電話、スマートフォン、電話機及び関連部品、ファクシミリ部品、複写機部品、掃除・洗浄機器、モーター部品等の家電・事務製品;
 カメラ、時計、顕微鏡、双眼鏡、望遠鏡、メガネ等の光学、精密機器;
 食品トレイ、収納ボックス、収納トレイ、アタッシュケース、スーツケース、ヘルメット、水筒、瓶等の収納ケース、洗面用具、筆記用具、文房具、本立て、スキンケア器具、用具、食器、洗濯用具、掃除用具、衣料ハンガー、食品容器、開閉蓋(ガラス瓶等)等の日用品、生活用品;
 おもちゃ等の娯楽品;
 草刈り機の筐体、カバー、電動工具の筐体、カバー、各種クリップ等の工作・一般機械・部品;
 テニスラケットストリング、スキー板・ボード、プロテクタ(野球、サッカー、モータスポーツ)、シューズ、シューズソール(靴底、スポーツシューズ用ソール)、アウトドア・登山用具等のスポーツ用品;
 衣装ケース、テーブル、椅子(チェアー)、シューズボックス、台所用具、トイレ用具、入浴用具等の家具関係用品;
 内外壁・屋根、断熱材、ドア・扉関連部品、窓材関連部品、床材関連部品、免震・制振部品、雨戸、雨どい、上水・下水関係部品(ライフライン関連)、駐車ガレージ、ガス・電気関係部品(ライフライン関連)、土木関係部品、信号機器、道路標識、パイロン、センターポール、ガードレール(ガードワイヤ)、工事用器材等の住宅、土木関係用品;
 マウスピース、医療機器、医薬品容器等の医療関係用品;
 靴等の衣料関係用品、
 農機具、農耕用具、植木鉢(プランタ)、漁具、養殖関係器具、林業具等の農業・林業・水産業関係用品;などが挙げられる。
 更に、各種ペレット形状に成形されたペレットも挙げられる。
[2]製造方法について
 本発明の成形体の製造方法は、前述の成形体の製造方法であって、成形体原料調製工程と、成形工程と、を備えることを特徴とする。
 本方法によれば、予め必要な耐衝撃樹脂を形成したうえで、第1ポリオレフィンと混合して成形するため、第1ポリオレフィンに対する熱履歴を抑制することができる。即ち、ポリアミド樹脂、変性エラストマー及び第2ポリオレフィン樹脂に対しては、溶融混練する回数に応じた熱履歴が蓄積されるものの、第1ポリオレフィン樹脂に対しては、成形時の1回のみの熱負荷によって、成形体を得ることができる。そして、このような製造方法によっても、前述の連続相(A)と分散相(B)とを有した成形体を得ることができる。
 上記「成形体原料調製工程」は、ポリアミド樹脂及び変性エラストマーの溶融混練物、並びに、第2のポリオレフィン樹脂、を溶融混練してなる耐衝撃樹脂と、第1のポリオレフィン樹脂と、を混合して成形体原料を得る工程である。
 本方法では、予め耐衝撃樹脂を得たうえで、この耐衝撃樹脂を、第1ポリオレフィン樹脂に配合することによって、成形体原料を得ている。即ち、例えば、予め得られた耐衝撃樹脂からなるペレットと、第1ポリオレフィン樹脂からなるペレットと、をドライブレンドすることによって成形体原料を得ることができる。
 上述の溶融混練物は、ポリアミド樹脂と変性エラストマーとの溶融混練によって得られる熱可塑性樹脂組成物である。この際に利用できるポリアミド樹脂及び変性エラストマーの各々の種類等については前述の通りである。
 この溶融混練物は、ポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、ポリアミド樹脂の配合割合が、10質量%以上80質量%以下となるように、両樹脂を溶融混練して得ることができる。これにより、溶融混練物と第2のポリオレフィン樹脂と混合した際に、第2ポリオレフィン樹脂中にポリアミド樹脂を分散させた耐衝撃樹脂を得ることができる。即ち、耐衝撃樹脂中で、第2ポリオレフィン樹脂を含む連続相(C)を形成し、この連続相(C)中にポリアミド樹脂及び変性エラストマーを含む分散相(B)を分散させた相構造を得ることができる。更には、分散相(B)が、ポリアミド樹脂を含む連続相(B)と、連続相(B)中に分散された変性エラストマーを含む微分散相(B)と、を有する多重の相構造を得ることができる。
 この割合は、12質量%以上78質量%以下が好ましく、14質量%以上75質量%以下がより好ましく、25質量%以上73質量%以下が更に好ましく、30質量%以上71質量%以下がより更に好ましく、34質量%以上68質量%以下が特に好ましく、40質量%以上64質量%以下がより特に好ましい。この範囲では、第2ポリオレフィン樹脂中にポリアミド樹脂をより小さく分散させた耐衝撃樹脂を得ることができる。
 尚、ポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、ポリアミド樹脂の含有割合を50質量%以上とした高ポリアミド樹脂タイプの耐衝撃樹脂にするという観点では、50質量%以上80質量%以下とすることができる。
 また、上記ポリアミドが、ポリアミド6である場合には、この溶融混練物は、ポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、ポリアミド樹脂の配合割合が、10質量%以上80質量%以下とすることができる。この割合は、12質量%以上68質量%以下が好ましく、14質量%以上65質量%以下がより好ましく、16質量%以上63質量%以下が更に好ましく、18質量%以上61質量%以下がより更に好ましく、20質量%以上58質量%以下が特に好ましく、25質量%以上54質量%以下がより特に好ましい。この範囲では、第2ポリオレフィン樹脂中にポリアミド樹脂をより小さく分散させた耐衝撃樹脂を得ることができる。
 溶融混練物を得る際の混練方法は特に限定されないが、例えば、押出機(一軸スクリュー押出機及び二軸混練押出機等)、ニーダ及びミキサ(高速流動式ミキサ、バドルミキサ、リボンミキサ等)等の混練装置を用いて行うことができる。これらの装置は1種のみを用いてもよく2種以上を併用してもよい。また、2種以上を用いる場合には連続的に運転してもよく、回分的に(バッチ式で)運転してもよい。また、各成分は一括して混合してもよしい、複数回に分けて添加投入(多段配合)して混合してもよい。
 更に、溶融混練物を得る際の混練温度は特に限定されず、溶融混練を行うことができる温度であればよく、各成分の種類により適宜調整することができる。特に、いずれもの樹脂が溶融された状態で混練されることが好ましい。具体的には、この混練温度は、190~350℃とすることができ、好ましくは200~330℃、更に好ましくは205~310℃である。
 上述の耐衝撃樹脂は、第2ポリオレフィン樹脂と上述の溶融混練物との溶融混練によって得られる熱可塑性樹脂組成物である。この際に利用できる第2ポリオレフィン樹脂の種類等については前述の通りである。
 この耐熱衝撃樹脂は、第2ポリオレフィン樹脂と上述の溶融混練物との合計を100質量%とした場合に、第2ポリオレフィン樹脂の配合割合が、20質量%以上75質量%以下となるように、両樹脂を溶融混練して得ることができる。これにより、第2ポリオレフィン樹脂中にポリアミド樹脂を分散させることができる。即ち、耐衝撃樹脂中で、第2ポリオレフィン樹脂を含む連続相(C)を形成し、この連続相(C)中にポリアミド樹脂及び変性エラストマーを含む分散相(B)を分散させた相構造を得ることができる。更には、分散相(B)が、ポリアミド樹脂を含む連続相(B)と、連続相(B)中に分散された変性エラストマーを含む微分散相(B)と、を有する多重の相構造を得ることができる。
 この割合は、25質量%以上70質量%以下が好ましく、35質量%以上65質量%以下がより好ましい。この範囲では、第2ポリオレフィン樹脂中にポリアミド樹脂をより小さく分散させた耐衝撃樹脂を得ることができる。
 耐衝撃樹脂を得る際の混練方法は特に限定されず、前述の溶融混練物を得る場合と同様の装置、運転方法、混練温度を挙げることができる。
 また、第2ポリオレフィン樹脂及びポリアミド樹脂の合計を100質量%とした場合におけるポリアミド樹脂の含有割合は、60質量%以下(通常、1質量%以上)とすることができる。この割合は、5質量%以上55質量%以下が好ましく、15質量%以上53質量%以下がより好ましく、19質量%以上50質量%以下が更に好ましく、21質量%以上48質量%以下がより更に好ましく、23質量%以上46質量%以下が特に好ましく、25質量%以上44質量%以下がより特に好ましく、28質量%以上43質量%以下がとりわけ好ましい。
 また、上記ポリアミドが、ポリアミド6である場合には、第2ポリオレフィン樹脂及びポリアミド樹脂の合計を100質量%とした場合におけるポリアミド樹脂の含有割合は、60質量%以下(通常、1質量%以上)とすることができ、5質量%以上45質量%以下が好ましく、7質量%以上43質量%以下がより好ましく、9質量%以上40質量%以下が更に好ましく、11質量%以上38質量%以下がより更に好ましく、13質量%以上36質量%以下が特に好ましく、15質量%以上34質量%以下がより特に好ましく、18質量%以上33質量%以下がとりわけ好ましい。
 更に、第2ポリオレフィン樹脂、ポリアミド樹脂、及び、変性エラストマーの合計を100質量%とした場合におけるポリアミド樹脂の含有量は、1質量%以上60質量%以下とすることができる。この割合は、3質量%以上50質量%以下が好ましく、5質量%以上45質量%以下がより好ましく、7質量%以上40質量%以下が更に好ましく、9質量%以上35質量%以下がより更に好ましく、12質量%以上30質量%以下が特に好ましい。
 また、第2ポリオレフィン樹脂、ポリアミド樹脂、及び、変性エラストマーの合計を100質量%とした場合における変性エラストマーの含有量は、1質量%以上70質量%以下とすることができる。この割合は、2質量%以上65質量%以下が好ましく、3質量%以上60質量%以下がより好ましく、5質量%以上55質量%以下が更に好ましく、7質量%以上50質量%以下がより更に好ましく、13質量%以上47質量%以下が特に好ましく、17質量%以上45質量%以下がとりわけ好ましい。
 上述の成形体原料は、第1ポリオレフィン樹脂と上述の耐衝撃樹脂とを混合して得られる熱可塑性樹脂の混合物である。この際に利用できる第1ポリオレフィン樹脂の種類等については前述の通りである。
 この成形体原料は、第1ポリオレフィン樹脂と上述の耐衝撃樹脂との合計を100質量%とした場合に、第1ポリオレフィン樹脂の配合割合が、20質量%以上99.5質量%以下となるように、両樹脂を混合して得ることができる。これにより、第1ポリオレフィン樹脂に対する熱履歴の負荷を抑制した成形体原料を得ることができる。
 特に、上記第1ポリオレフィン樹脂の配合割合は、30質量部以上99質量部以下とすることができ、更には40質量部以上98質量部以下とすることができ、更には45質量部以上97質量部以下とすることができ、更には52質量部以上96質量部以下とすることができ、更には55質量部以上95質量部以下とすることができる。
 また、前述のように、本方法により得られる成形体には、第1ポリオレフィン樹脂、第2ポリオレフィン樹脂、ポリアミド樹脂及び変性エラストマー以外に、難燃剤、難燃助剤、充填剤、着色剤、抗菌剤、帯電防止剤等の各種の添加剤を含有できる。これらの添加剤を成形体に添加する場合、これらの添加剤を担持する担体として、耐衝撃樹脂を用いることができる。
 上記「成形工程」は、成形体原料調製工程で得られた成形体原料を成形して成形体を得る工程である。
 この成形工程では、どのような成形方法を用いてよく特に限定されない。成形方法としては、射出成形、押出成形(シート押出、異形押出)、Tダイ成形、ブロー成形、射出ブロー成形、インフレーション成形、中空成形、真空成形、圧縮成形、プレス成形、スタンピングモールド成形、トランスファ成形等が例示される。これらは1種のみを用いてもよく2種以上を併用してもよい。
 尚、本方法によれば、熱可塑性樹脂を成形した成形体であって、第1のポリオレフィン樹脂及び第2のポリオレフィン樹脂を含む連続相(A)と、前記連続相(A)中に分散されたポリアミド樹脂及び変性エラストマーを含む分散相(B)と、を有し、前記分散相(B)は、前記ポリアミド樹脂と前記変性エラストマーとの溶融混練物からなり、前記変性エラストマーは、前記ポリアミド樹脂に対する反応性基を有するエラストマーであり、前記エラストマーは、エチレン若しくはプロピレンと炭素数3~8のα-オレフィンとの共重合体を骨格としたオレフィン系熱可塑性エラストマー、又は、スチレン骨格を有するスチレン系熱可塑性エラストマーであり、前記連続相(A)と前記分散相(B)との合計を100質量%とした場合に、前記分散相(B)が70質量%以下であり、前記第1のポリオレフィン樹脂と第2のポリオレフィン樹脂との合計を100質量%とした場合に、前記第2のポリオレフィン樹脂が80質量%以下である成形体を、得ることができる。
 この成形体は、上述の方法によって、第1ポリオレフィンが元来有する剛性を十分に維持しながら、耐衝撃性には著しく優れた特性を得ることができる。更に、すべてのポリオレフィンを当初から配合する場合に比べて、ポリオレフィンの一部を第1ポリオレフィン樹脂として配合することによって、第1ポリオレフィン樹脂に対する熱履歴が抑制された成形体とすることができる。即ち、前記第2のポリオレフィン樹脂、前記ポリアミド樹脂及び前記変性エラストマーを含んだ耐衝撃樹脂と、前記第1のポリオレフィン樹脂と、の混合物を成形してなる成形体を得ることができる。
 但し、本願出願時において、第1ポリオレフィン樹脂に対する熱履歴が、第2ポリオレフィン樹脂に対する熱履歴よりも小さいという特性を直接特定することは不可能である。また、仮にできるとしても、現在の分析技術をもってしても、特許出願の性質上、迅速性等を必要とすることに鑑みて、このような特性を特定する作業を行うことに著しく過大な経済的支出や時間を要するものであり、非実際的事情が存在する。
 以下、実施例により本発明を具体的に説明する。
[1-1]評価用成形体の製造
 <1>耐衝撃樹脂
 得られる耐衝撃樹脂の全体を100質量%とした場合に、第2ポリオレフィンが55質量%、ポリアミド樹脂が15質量%、変性エラストマーが30質量%の割合で含まれる耐衝撃樹脂を以下の手順で調製した。
 (1)溶融混合物の調製
 下記ポリアミド樹脂のペレットと下記変性エラストマーのペレットとをドライブレンドした後、二軸溶融混練押出機(株式会社テクノベル製、スクリュー径15mm、L/D=59)に投入し、混練温度210℃、押出速度2.0kg/時間、スクリュー回転数200回転/分の条件で溶融混練を行い、ペレタイザーを介して、溶融混練物のペレットを得た。
 ・ポリアミド樹脂:ポリアミド6(No.1)、BASF社製、品名「ウルトラミッド B3S」、重量平均分子量18,000、融点220℃
 ・変性エラストマー:無水マレイン酸変性エチレン・ブテン共重合体(変性EBR)、三井化学株式会社製、品名「タフマー MH7020」、MFR(230℃)=1.5g/10分
 (2)耐衝撃樹脂の調製
 上記(1)で得られた溶融混合物のペレットと、下記第2ポリオレフィン樹脂のペレットと、をドライブレンドした後、二軸溶融混練押出機(株式会社テクノベル製、スクリュー径15mm、L/D=59)に投入し、混練温度210℃、押出速度2.0kg/時間、スクリュー回転数200回転/分の条件で混合を行い、ペレタイザーを介して、耐衝撃樹脂のペレットを得た。
 ・第2ポリオレフィン樹脂:ポリプロピレン樹脂(No.1)、ホモポリマー、プライムポリマー社製、品名「プライムポリプロ F113G」、数平均分子量520,000、融点160℃、MFR3g/10min
 <2>実施例1-5の成形体の作製
 得られる成形体の全体を100質量%とした場合に、第1ポリオレフィンが80質量%、耐衝撃樹脂が20質量%の割合で含まれる成形体(実施例1)、第1ポリオレフィンが75質量%、耐衝撃樹脂が25質量%の割合で含まれる成形体(実施例2)、第1ポリオレフィンが70質量%、耐衝撃樹脂が30質量%の割合で含まれる成形体(実施例3)、第1ポリオレフィンが60質量%、耐衝撃樹脂が40質量%の割合で含まれる成形体(実施例4)、及び、第1ポリオレフィンが40質量%、耐衝撃樹脂が60質量%の割合で含まれる成形体(実施例5)を各々以下の手順で作製した。
 上記[1-1](2)で得られた耐衝撃樹脂のペレットと、下記第1ポリオレフィン樹脂のペレットと、をドライブレンドして、成形体原料を得た。得られた成形体原料を、射出成形機(日精樹脂工業株式会社製、40トン射出成形機)のホッパーに投入し、設定温度210℃、金型温度60℃の射出条件で物性測定用試験片を射出成形した。
 ・第1ポリオレフィン樹脂:エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂、サンアロマー株式会社製、品名「YS559N」、融点165℃
 <3>比較例の成形体の作製
 (1)比較例1の成形体の作製
 下記ポリオレフィン樹脂(実施例の成形体における第1ポリオレフィン樹脂と同じ)を、射出成形機(日精樹脂工業株式会社製、40トン射出成形機)のホッパーに投入し、設定温度210℃、金型温度60℃の射出条件で物性測定用試験片を射出成形した。
 ・第1ポリオレフィン樹脂:エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂、サンアロマー株式会社製、品名「YS559N」、融点165℃
 (2)比較例2-3の成形体の作製
 従来より耐衝撃性付与を目的として利用されている下記耐衝撃性付与剤のペレットと、下記ポリオレフィン樹脂のペレットと、をドライブレンドして得た成形体原料を、射出成形機(日精樹脂工業株式会社製、40トン射出成形機)のホッパーに投入し、設定温度210℃、金型温度60℃の射出条件で物性測定用試験片を射出成形した。
 ・ポリオレフィン樹脂:エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂、サンアロマー株式会社製、品名「YS559N」、融点165℃
 ・耐衝撃付与剤:三井化学株式会社製、品名「タフマー DF810」
[1-2]評価用成形体の評価
 (1)シャルピー衝撃強度の測定
 上記[1-1]で得られた実施例1~5及び比較例1~3の各評価用試験片を用いて、JIS K7111-1に準拠してシャルピー衝撃強度の測定を行った。その結果を表1に示す。尚、このシャルピー衝撃強度の測定では、ノッチ(タイプA)を有する試験片を用い、温度23℃において、エッジワイズ試験法による衝撃の測定を行った。
 (2)モルフォルジー観察
 上記(1)のシャルピー衝撃強度測定に供した実施例1~5の各試験片から切り出した試料を、樹脂包埋する。その後、ダイヤモンドナイフ装着のウルトラミクロトームにてトリミング・断面作製を行い、金属酸化物による蒸気染色を施す。得られた染色後の断面から採取した超薄切片試料を、透過型電子顕微鏡(TEM、株式会社日立ハイテクノロジーズ製、型式「HT7700」)を用いて観察することにより、相構造を確認する。その結果を表1に示した。
 その結果、実施例1~5においては、図1の模式図に示すように、第1ポリオレフィン樹脂及び第2ポリオレフィン樹脂を含む連続相1[連続相(A)]、連続相(A)中に分散されたポリアミド樹脂及び変性エラストマーを含む分散相2[分散相(B)]、ポリアミド樹脂を含む連続相3[連続相(B)]、連続相(B)中に分散された変性エラストマーを含む微分散相4[微分散相(B)]、第1ポリオレフィン樹脂が有したエチレンブロックが連続相(A)と分散相(B)との界面に凝集された凝集相5[凝集相(D)]、が各々認められる。尚、凝集相(D)は、第1ポリオレフィン樹脂中のエチレンブロックのみでなく、変性エラストマーを含む。
 また、相構造に関する結果は、表1にも併記した。
 (3)引張弾性率の測定
 上記[1-1]で得られた実施例1~5及び比較例1~3の各評価用試験片を用いて、JIS K7161に準拠して引張弾性率の測定を行った。その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
[1-3]効果
 表1の結果から、耐衝撃樹脂を用いて得られた実施例1~5の成形体は、比較例1の第1ポリオレフィン樹脂により構成された成形体よりも著しく高いシャルピー衝撃強度を示しており、優れた耐衝撃性を有していることが確認できた。更には、耐衝撃樹脂の添加による引張弾性率の低下は極めて低く抑えられており、剛性が十分に保持されていることが確認できた。
 また、耐衝撃樹脂を用いたことによる上記効果は、従来の添加材を用いた比較例2及び3の結果との比較からも明かであった。
 更に、上述したように、図1の結果から、本成形体では、連続相1[連続相(A)]と分散相2[分散相(B)]とが形成されていることが分かる。更に、分散相(B)内には、微分散相4[微分散相(B)]が形成されていることが分かる。加えて、第1ポリオレフィン樹脂として、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂を用いることで、エチレンブロック(EPR)の少なくとも一部が、連続相(A)と分散相(B)との界面に凝集されていることが分かる(凝集相5参照)。このような凝集によって、より優れた耐衝撃性が得られているものと考えられる。
[2-1]評価用成形体の製造(実施例6~9)
 <1>耐衝撃樹脂
 実施例6~9で用いられる耐衝撃樹脂においては、得られる耐衝撃樹脂の全体を100質量%とした場合に、第2ポリオレフィンが55質量%、ポリアミド樹脂が15質量%、変性エラストマーが30質量%の割合で含まれる耐衝撃樹脂を以下の手順で調製した。
 (1)溶融混合物の調製
 下記ポリアミド樹脂のペレットと下記変性エラストマーのペレットとをドライブレンドした後、二軸溶融混練押出機(株式会社テクノベル製、スクリュー径15mm、L/D=59)に投入し、混練温度210℃、押出速度2.0kg/時間、スクリュー回転数200回転/分の条件で溶融混練を行い、ペレタイザーを介して、溶融混練物のペレットを得た。
 ・ポリアミド樹脂:ポリアミド6(No.2)、宇部興産株式会社製、品名「1010X1」、重量平均分子量20,000、融点215℃
 ・変性エラストマー:無水マレイン酸変性エチレン・ブテン共重合体(変性EBR)、三井化学株式会社製、品名「タフマー MH7020」、MFR(230℃)=1.5g/10分
 (2)耐衝撃樹脂の調製
 上記(1)で得られた溶融混合物のペレットと、下記第2ポリオレフィン樹脂のペレットと、をドライブレンドした後、二軸溶融混練押出機(株式会社テクノベル製、スクリュー径15mm、L/D=59)に投入し、混練温度210℃、押出速度2.0kg/時間、スクリュー回転数200回転/分の条件で混合を行い、ペレタイザーを介して、耐衝撃樹脂(ペレット形状)を得た。
 ・第2ポリオレフィン樹脂:ポリプロピレン樹脂(No.1)、ホモポリマー、プライムポリマー社製、品名「プライムポリプロ F113G」、数平均分子量520,000、融点160℃、MFR3g/10min
 <2>実施例6-9の成形体の作製
 得られる成形体の全体を100質量%とした場合に、第1ポリオレフィンが80質量%、耐衝撃樹脂が20質量%の割合で含まれる成形体(実施例6)、第1ポリオレフィンが60質量%、耐衝撃樹脂が40質量%の割合で含まれる成形体(実施例7)、第1ポリオレフィンが40質量%、耐衝撃樹脂が60質量%の割合で含まれる成形体(実施例8)、及び、第1ポリオレフィンが20質量%、耐衝撃樹脂が80質量%の割合で含まれる成形体(実施例9)を各々以下の手順で作製した。
 上記[2-1](2)で得られた耐衝撃樹脂と、下記第1ポリオレフィン樹脂のペレットと、をドライブレンドして、成形体原料を得た。得られた成形体原料を、射出成形機(日精樹脂工業株式会社製、40トン射出成形機)のホッパーに投入し、設定温度210℃、金型温度60℃の射出条件で物性測定用試験片を射出成形した。
 ・第1ポリオレフィン樹脂:エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂、サンアロマー株式会社製、品名「YS559N」、融点165℃
[2-2]評価用成形体の製造(実施例10~13)
 <1>耐衝撃樹脂
 実施例10~13で用いられる耐衝撃樹脂においては、得られる耐衝撃樹脂の全体を100質量%とした場合に、第2ポリオレフィンが55質量%、ポリアミド樹脂が25質量%、変性エラストマーが20質量%の割合で含まれる耐衝撃樹脂を以下の手順で調製した。
 (1)溶融混合物の調製
 下記ポリアミド樹脂のペレットと下記変性エラストマーのペレットとをドライブレンドした後、二軸溶融混練押出機(株式会社テクノベル製、スクリュー径15mm、L/D=59)に投入し、混練温度210℃、押出速度2.0kg/時間、スクリュー回転数200回転/分の条件で溶融混練を行い、ペレタイザーを介して、溶融混練物のペレットを得た。
 ・ポリアミド樹脂:ポリアミド11、アルケマ社製、品名「リルサン BMN O」、重量平均分子量18,000、融点189℃
 ・変性エラストマー:無水マレイン酸変性エチレン・ブテン共重合体(変性EBR)、三井化学株式会社製、品名「タフマー MH7020」、MFR(230℃)=1.5g/10分
 (2)耐衝撃樹脂の調製
 上記(1)で得られた溶融混合物のペレットと、下記第2ポリオレフィン樹脂のペレットと、をドライブレンドした後、二軸溶融混練押出機(株式会社テクノベル製、スクリュー径15mm、L/D=59)に投入し、混練温度210℃、押出速度2.0kg/時間、スクリュー回転数200回転/分の条件で混合を行い、ペレタイザーを介して、耐衝撃樹脂(ペレット形状)を得た。
 ・第2ポリオレフィン樹脂:ポリプロピレン樹脂(No.2)、ホモポリマー、日本ポリプロ株式会社製、品名「ノバテック MA1B」、数平均分子量312,000、融点165℃、MFR21g/10min
 <2>実施例10-13の成形体の作製
 得られる成形体の全体を100質量%とした場合に、第1ポリオレフィンが90質量%、耐衝撃樹脂が10質量%の割合で含まれる成形体(実施例10)、第1ポリオレフィンが80質量%、耐衝撃樹脂が20質量%の割合で含まれる成形体(実施例11)、第1ポリオレフィンが70質量%、耐衝撃樹脂が30質量%の割合で含まれる成形体(実施例12)、及び、第1ポリオレフィンが60質量%、耐衝撃樹脂が40質量%の割合で含まれる成形体(実施例13)を各々以下の手順で作製した。
 上記[2-2](2)で得られた耐衝撃樹脂と、下記第1ポリオレフィン樹脂のペレットと、をドライブレンドして、成形体原料を得た。得られた成形体原料を、射出成形機(日精樹脂工業株式会社製、40トン射出成形機)のホッパーに投入し、設定温度210℃、金型温度60℃の射出条件で物性測定用試験片を射出成形した。
 ・第1ポリオレフィン樹脂:エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂、サンアロマー株式会社製、品名「YS559N」、融点165℃
[2-3]評価用成形体の評価
 (1)引張弾性率の測定
 上記[2-1]及び[2-2]で得られた実施例6~13の各評価用試験片を用いて、JIS K7161に準拠して引張弾性率の測定を行った。その結果を表2に示した。
 また、実施例1~5[PA6(No.1)系の耐衝撃樹脂]、実施例6~9[PA6(No.2)系の耐衝撃樹脂]、及び実施例10~13[PA11系の耐衝撃樹脂]の各評価用試験片における引張弾性率と耐衝撃樹脂の添加量の相関を示すグラフを図2に示した。
 (2)モルフォルジー観察
 上記(1)の引張弾性率測定に供した実施例6~13の各試験片から切り出した試料を、樹脂包埋した。その後、ダイヤモンドナイフ装着のウルトラミクロトームにてトリミング・断面作製を行い、金属酸化物による蒸気染色を施した。得られた染色後の断面から採取した超薄切片試料を、透過型電子顕微鏡(TEM、株式会社日立ハイテクノロジーズ製、型式「HT7700」)を用いて観察することにより、相構造を確認した。その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
[2-4]効果
 表2の結果から、上述の実施例1~5とは異なるポリアミドを用いた耐衝撃樹脂を添加して得られた実施例6~13の成形体においても、上述の実施例1~5及び比較例1と比較して、引張弾性率の低下は極めて低く抑えられており、剛性が十分に保持されていることが確認できた。
 また、図2の結果から、ポリアミド樹脂としてPA6を含む耐衝撃樹脂を用いて得られた成形体[PA6(No.1)系(実施例1~5)、PA6(No.2)系(実施例6~9)]は、ポリアミド樹脂としてPA11を含む耐衝撃樹脂を用いて得られた成形体[PA11系(実施例10~13)]よりも、高剛性が保たれることが確認できた。尚、この傾向は、耐衝撃樹脂の添加量が低い範囲においてより顕著であった。
 この結果から、ポリアミドとして、ポリアミド6を用いる場合には、ポリアミド11を用いる場合よりも、相対的に少ない含有割合で、第1ポリオレフィン樹脂に由来する引張弾性率が十分に保持されており、且つ耐衝撃性に優れる成形体が得られることが分かった。
 尚、本発明においては、上記の具体的な実施例に記載されたものに限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。
 即ち、例えば、上述の実施例では、耐衝撃樹脂のペレットと第1ポリオレフィン樹脂のペレットとをドライブレンドして得られた成形体原料を成形して成形体を得ているが、当然ながら、耐衝撃樹脂のペレットと第1ポリオレフィン樹脂のペレットとを溶融混練して得られたペレットを成形体原料として利用することができる。
 前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述及び図示において使用された文言は、限定的な文言ではなく説明的及び例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲又は精神から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料及び実施例を参照したが、本発明をここに掲げる開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。
 1;連続相(A)、
 2;分散相(B)、
 3;連続相(B)、
 4;微分散相(B)、
 5;凝集相(D)。

Claims (10)

  1.  熱可塑性樹脂を成形した成形体であって、
     第1のポリオレフィン樹脂及び第2のポリオレフィン樹脂を含む連続相(A)と、
     前記連続相(A)中に分散されたポリアミド樹脂及び変性エラストマーを含む分散相(B)と、を有し、
     前記分散相(B)は、前記ポリアミド樹脂と前記変性エラストマーとの溶融混練物からなり、
     前記変性エラストマーは、前記ポリアミド樹脂に対する反応性基を有するエラストマーであり、
     前記エラストマーは、エチレン若しくはプロピレンと炭素数3~8のα-オレフィンとの共重合体を骨格としたオレフィン系熱可塑性エラストマー、又は、スチレン骨格を有するスチレン系熱可塑性エラストマーであり、
     前記連続相(A)と前記分散相(B)との合計を100質量%とした場合に、前記分散相(B)が70質量%以下であり、
     前記第1のポリオレフィン樹脂と第2のポリオレフィン樹脂との合計を100質量%とした場合に、前記第2のポリオレフィン樹脂が80質量%以下であることを特徴とする成形体。
  2.  前記熱可塑性樹脂は、前記第2のポリオレフィン樹脂、前記ポリアミド樹脂及び前記変性エラストマーを含んだ耐衝撃樹脂と、前記第1のポリオレフィン樹脂と、の混合物である請求項1に記載の成形体。
  3.  前記ポリアミド樹脂と前記変性エラストマーとの合計を100質量%とした場合に、前記ポリアミド樹脂は10質量%以上80質量%以下である請求項1又は2に記載の成形体。
  4.  前記分散相(B)は、前記ポリアミド樹脂を含む連続相(B)と、前記連続相(B)中に分散された変性エラストマーを含む微分散相(B)と、を有する請求項1乃至3のうちのいずれかに記載の成形体。
  5.  前記ポリアミド樹脂は、ポリアミド6である請求項1乃至4のうちのいずれかに記載の成形体。
  6.  前記第2のポリオレフィン樹脂は、数平均分子量が300,000以上である請求項5に記載の成形体。
  7.  前記第1のポリオレフィン樹脂は、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂であり、
     前記エチレンブロックの少なくとも一部が、前記連続相(A)と前記分散相(B)との界面に凝集されている請求項1乃至6のうちのいずれかに記載の成形体。
  8.  請求項1に記載の成形体の製造方法であって、
     前記ポリアミド樹脂及び前記変性エラストマーの溶融混練物、並びに、前記第2のポリオレフィン樹脂、を溶融混練してなる耐衝撃樹脂と、前記第1のポリオレフィン樹脂と、を混合して成形体原料を得る成形体原料調製工程と、
     前記成形体原料を成形して前記成形体を得る成形工程と、を備えることを特徴とする成形体の製造方法。
  9.  前記耐衝撃樹脂は、前記第2のポリオレフィン樹脂を含む連続相(C)と、前記連続相(C)中に分散された、前記ポリアミド樹脂及び前記変性エラストマーを含む分散相(B)と、を有し、
     前記分散相(B)は、ポリアミド樹脂を含む連続相(B)と、前記連続相(B)中に分散された前記変性エラストマーを含む微分散相(B)と、を有する請求項8に記載の成形体の製造方法。
  10.  前記第1のポリオレフィン樹脂は、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂である請求項8又は9に記載の成形体の製造方法。
PCT/JP2018/001682 2017-01-30 2018-01-19 成形体及びその製造方法 WO2018139379A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201880003248.XA CN109642057B (zh) 2017-01-30 2018-01-19 成型体和其制造方法
KR1020197022745A KR102593410B1 (ko) 2017-01-30 2018-01-19 성형체 및 그 제조방법
JP2018564538A JP6984616B2 (ja) 2017-01-30 2018-01-19 成形体及びその製造方法
BR112019012903-0A BR112019012903B1 (pt) 2017-01-30 2018-01-19 Corpo moldado e seu método de produção
RU2019126940A RU2744249C2 (ru) 2017-01-30 2018-01-19 Формованное изделие и способ его получения
SG11201906420UA SG11201906420UA (en) 2017-01-30 2018-01-19 Molded body and production method thereof
EP18744528.3A EP3575360B1 (en) 2017-01-30 2018-01-19 Molded body and production method thereof
US16/480,067 US11091616B2 (en) 2017-01-30 2018-01-19 Molded body and production method thereof
ES18744528T ES2949310T3 (es) 2017-01-30 2018-01-19 Cuerpo moldeado y método de producción del mismo
JP2021189528A JP7331908B2 (ja) 2017-01-30 2021-11-22 成形体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014822 2017-01-30
JP2017-014822 2017-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/480,067 Continuation US11091616B2 (en) 2017-01-30 2018-01-19 Molded body and production method thereof

Publications (1)

Publication Number Publication Date
WO2018139379A1 true WO2018139379A1 (ja) 2018-08-02

Family

ID=62979335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001682 WO2018139379A1 (ja) 2017-01-30 2018-01-19 成形体及びその製造方法

Country Status (9)

Country Link
US (1) US11091616B2 (ja)
EP (1) EP3575360B1 (ja)
JP (2) JP6984616B2 (ja)
KR (1) KR102593410B1 (ja)
CN (1) CN109642057B (ja)
ES (1) ES2949310T3 (ja)
RU (1) RU2744249C2 (ja)
SG (1) SG11201906420UA (ja)
WO (1) WO2018139379A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145013A1 (ja) * 2019-01-09 2020-07-16 トヨタ紡織株式会社 振動吸収材
WO2020152964A1 (ja) * 2019-01-24 2020-07-30 トヨタ紡織株式会社 熱可塑性樹脂組成物及びその製造方法、成形体及びその製造方法、並びに改質剤及び改質方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6512288B2 (ja) * 2015-12-01 2019-05-15 トヨタ紡織株式会社 成形体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094763A1 (ja) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 熱可塑性樹脂組成物及びその製造方法並びに成形体
WO2013094764A1 (ja) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 熱可塑性樹脂組成物及びその製造方法
JP2013147648A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法
JP2013147645A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147646A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 植物由来ポリアミド樹脂を用いた熱可塑性樹脂組成物及び成形体
WO2017094738A1 (ja) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 改質剤及びその使用方法、改質剤の製造方法並びに添加材用担体
WO2017094737A1 (ja) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 成形体及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496969A (ja) * 1990-08-10 1992-03-30 Tonen Chem Corp 熱可塑性樹脂組成物
JPH0632977A (ja) * 1992-07-10 1994-02-08 Tonen Chem Corp 耐溶剤性容器
EP0683210B1 (en) * 1994-05-20 1999-08-25 Ube Industries, Ltd. Resin composite containing polyamide matrix and polyolefin grains dispersed therein
US7022769B2 (en) 2003-07-15 2006-04-04 Freudenberg-Nok General Partnership Dynamic vulcanization of fluorocarbon elastomers
RU2425073C2 (ru) * 2007-01-18 2011-07-27 Дзе Йокогама Раббер Ко., Лтд. Композиция на основе полиамидной смолы, обладающая превосходной способностью к растяжению и усталостью при изгибе, и ее применение для пневматической шины и рукава
EP2222515B1 (en) * 2007-12-20 2011-07-13 DSM IP Assets B.V. Air bag container
RU2409604C2 (ru) * 2008-08-25 2011-01-20 Государственное научное учреждение "Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси" Полиамидная композиция
JP4930629B2 (ja) 2010-08-27 2012-05-16 横浜ゴム株式会社 熱可塑性樹脂組成物
CN103415569B (zh) * 2011-03-08 2015-11-25 三菱瓦斯化学株式会社 聚乙烯系结构体
EP2791239B1 (en) * 2011-12-14 2017-12-06 Dow Global Technologies LLC Functionalized block composite and crystalline block composite compositions as compatibilizers
JP5798595B2 (ja) 2012-06-22 2015-10-21 株式会社豊田中央研究所 樹脂組成物
CN107148445B (zh) * 2014-11-13 2021-01-01 三井化学株式会社 碳纤维增强树脂组合物及由其得到的成型品
BR112019001128A2 (pt) 2016-07-28 2019-04-30 Toyota Boshoku Kabushiki Kaisha composição de resina termoplástico, método produção da mesma, e corpo moldado

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094763A1 (ja) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 熱可塑性樹脂組成物及びその製造方法並びに成形体
WO2013094764A1 (ja) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 熱可塑性樹脂組成物及びその製造方法
JP2013147648A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法
JP2013147647A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147645A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147646A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 植物由来ポリアミド樹脂を用いた熱可塑性樹脂組成物及び成形体
WO2017094738A1 (ja) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 改質剤及びその使用方法、改質剤の製造方法並びに添加材用担体
WO2017094737A1 (ja) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 成形体及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145013A1 (ja) * 2019-01-09 2020-07-16 トヨタ紡織株式会社 振動吸収材
CN113272181A (zh) * 2019-01-09 2021-08-17 丰田纺织株式会社 振动吸收材料
JPWO2020145013A1 (ja) * 2019-01-09 2021-11-18 トヨタ紡織株式会社 振動吸収材
JP7384176B2 (ja) 2019-01-09 2023-11-21 トヨタ紡織株式会社 振動吸収材
DE112019006611B4 (de) 2019-01-09 2023-12-07 Toyota Boshoku Kabushiki Kaisha Verwendung eines Materials als schwingungsabsorbierendes Material
CN113272181B (zh) * 2019-01-09 2024-02-02 丰田纺织株式会社 振动吸收材料
WO2020152964A1 (ja) * 2019-01-24 2020-07-30 トヨタ紡織株式会社 熱可塑性樹脂組成物及びその製造方法、成形体及びその製造方法、並びに改質剤及び改質方法
CN113260668A (zh) * 2019-01-24 2021-08-13 丰田纺织株式会社 热塑性树脂组合物和其制造方法、成型体和其制造方法、以及改质剂和改质方法
DE112019006741T5 (de) 2019-01-24 2021-10-21 Toyota Boshoku Kabushiki Kaisha Thermoplastische Harzzusammensetzung und Verfahren zur Herstellung davon, Formkörper und Verfahren zur Herstellung davon, sowie Modifizierungsmittel und Modifizierungsverfahren
JPWO2020152964A1 (ja) * 2019-01-24 2021-11-25 トヨタ紡織株式会社 熱可塑性樹脂組成物及びその製造方法、成形体及びその製造方法、並びに改質剤及び改質方法
DE112019006741B4 (de) 2019-01-24 2023-06-22 Toyota Boshoku Kabushiki Kaisha Verwendung eines Modifizierungsmittels

Also Published As

Publication number Publication date
US20190382569A1 (en) 2019-12-19
JP7331908B2 (ja) 2023-08-23
ES2949310T3 (es) 2023-09-27
BR112019012903A2 (pt) 2019-12-03
CN109642057A (zh) 2019-04-16
RU2019126940A (ru) 2021-03-01
CN109642057B (zh) 2022-01-04
JP6984616B2 (ja) 2021-12-22
EP3575360A4 (en) 2020-06-24
US11091616B2 (en) 2021-08-17
JPWO2018139379A1 (ja) 2019-11-14
EP3575360A1 (en) 2019-12-04
SG11201906420UA (en) 2019-08-27
KR102593410B1 (ko) 2023-10-25
KR20190112276A (ko) 2019-10-04
RU2744249C2 (ru) 2021-03-04
RU2019126940A3 (ja) 2021-03-01
JP2022022260A (ja) 2022-02-03
EP3575360B1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
JP6406445B2 (ja) ドライブレンド用改質剤及びその使用方法
JP6870690B2 (ja) 成形体及びその製造方法
JP7331908B2 (ja) 成形体及びその製造方法
JP6927236B2 (ja) 改質剤及びその使用方法、改質剤の製造方法並びに添加材用担体
JP7172141B2 (ja) 成形体の製造方法、ポリオレフィンの改質方法及び改質樹脂の再利用方法
US20230174754A1 (en) Thermoplastic resin composition, and modifier
US20230212376A1 (en) Thermoplastic resin composition and modifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564538

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 122022020031

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019012903

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197022745

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018744528

Country of ref document: EP

Effective date: 20190830

ENP Entry into the national phase

Ref document number: 112019012903

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190621