WO2018139312A1 - レーザ加工機 - Google Patents

レーザ加工機 Download PDF

Info

Publication number
WO2018139312A1
WO2018139312A1 PCT/JP2018/001209 JP2018001209W WO2018139312A1 WO 2018139312 A1 WO2018139312 A1 WO 2018139312A1 JP 2018001209 W JP2018001209 W JP 2018001209W WO 2018139312 A1 WO2018139312 A1 WO 2018139312A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser processing
nozzle
processing head
reflection mirror
optical axis
Prior art date
Application number
PCT/JP2018/001209
Other languages
English (en)
French (fr)
Inventor
宏則 冨永
渡辺 篤志
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2018139312A1 publication Critical patent/WO2018139312A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment

Definitions

  • the present invention relates to a laser processing machine that performs laser processing (laser cutting processing) of a workpiece by irradiating the workpiece with laser light from above.
  • a laser processing machine includes a processing table that supports a workpiece, and a hollow cylindrical laser processing head that is provided above the processing table and optically connected to a laser oscillator.
  • the laser processing head has a nozzle that irradiates a laser beam while ejecting an assist gas from above so that the nozzle can be attached to and detached from the tip (lower end).
  • the laser processing machine has a function of aligning an origin position that is a reference for laser processing with an origin position that is a reference for punching when laser processing a punched workpiece.
  • the laser processing machine includes an image pickup unit for picking up an image of a reference hole formed in a punched work from above (see Patent Document 1 below).
  • a nozzle inspection device is fixedly provided outside the processing area on the processing table. At the time of inspection, it is necessary to move the laser processing head out of the processing area. In addition, it is necessary to provide a dedicated camera for inspection of the nozzle, a ring light, a lifting mechanism for the nozzle inspection apparatus, and the like. Further, in the nozzle inspection apparatus, a camera is installed upward below the nozzle in order to image the tip of the laser processing head from below. For this reason, a dedicated cover for preventing foreign matter such as dross and spatter from entering the camera is also required.
  • the special cover When the special cover is opened, when the nozzle inspection device is moved up and down, or when taking an image with the camera, there is a camera below the nozzle, so if the foreign matter attached to the nozzle falls on the camera lens, the camera May cause damage to the lens, or may cause a failure of the cover mechanism or the lifting mechanism. In such a case, the shape of the nozzle cannot be correctly inspected.
  • nozzle inspection processing installation of nozzles with nozzle diameters different from the specified nozzle diameter, damage to the periphery of the nozzle holes, It is desired that the foreign matter such as spatter adheres efficiently.
  • a feature of the present invention is a laser processing machine, which is provided on a laser processing head having a nozzle detachably attached to a front end portion thereof, and a side portion of the laser processing head, and whose imaging optical axis is irradiated by the laser processing head.
  • a laser processing machine comprising: an imaging unit that captures an image from above that is offset in a horizontal direction with respect to an optical axis; and a reflection mirror that reflects an image of a tip portion of the laser processing head toward the imaging unit.
  • the image of the front end portion of the laser processing head can be reflected by the reflecting mirror toward the imaging unit, and the image of the front end portion of the laser processing head can be captured by the imaging unit. Therefore, it is possible to efficiently perform the nozzle inspection process while preventing damage or failure of the imaging unit or the like.
  • FIG. 1 is a plan view (a cross-sectional view taken along line II in FIG. 2) of a combined processing machine (laser processing machine) according to the embodiment.
  • FIG. 2 is a front view of the multi-task machine.
  • 3 is an enlarged front view taken along line III-III in FIG.
  • FIG. 4 is an enlarged front view when the nozzle is replaced.
  • FIG. 5 is a front view showing a main part of the multi-task machine.
  • FIG. 6 is a block diagram of the multi-task machine.
  • 7 (a) to 7 (c) are images taken by the laser processing head, FIG. 7 (a) shows a normal state of the nozzle, and FIG. 7 (b) shows that the periphery of the nozzle hole is damaged.
  • FIG. 7C shows a state in which foreign matter has adhered to the nozzle tip surface.
  • FIG. 8 is a flowchart showing a nozzle diameter registration process.
  • FIG. 9 is a flowchart showing a nozzle inspection process.
  • the “X-axis direction” is one in the horizontal direction, and in the present embodiment is the left-right direction.
  • the “Y-axis direction” is a horizontal direction orthogonal to the X-axis direction, and is a front-rear direction in the embodiment.
  • FF indicates the forward direction
  • FR indicates the backward direction
  • L indicates the left direction
  • R indicates the right direction
  • U indicates the upward direction
  • D indicates the downward direction.
  • the multi-task machine 1 performs laser processing (laser cutting processing) on a plate-shaped workpiece (sheet metal) W and performs punch processing (punching processing and molding processing). Including).
  • the composite processing machine 1 includes a processing machine main body (processing machine base) 3.
  • the processing machine body 3 includes a bridge-type base frame 9 having an upper frame 5 and a lower frame 7 opposed to each other vertically, and support frames (side frames) 11 provided on both sides of the lower frame 7 in the front-rear direction. Have.
  • the processing machine main body 3 includes a processing table 13 that supports the workpiece W at an appropriate position.
  • a brush B is attached to the upper surface of the processing table 13.
  • the center fixing table 15 that is a part of the processing table 13 has a shooter table 21 for discharging a product (not shown) or a remaining material (not shown) separated from the work W to the outside. Yes.
  • the shuter table 21 can swing up and down around a swing center 21s at its base end (left end), and can be switched between a horizontal posture (FIG. 3) and a horizontal tilted posture (FIG. 4) by the swing. It is configured.
  • the lower frame 7 includes a swing cylinder (swing actuator) 23 that swings the shooter table 21 up and down on the left side.
  • the shooter table 21 is formed with a laser opening 25 through which laser light and assist gas pass, and the laser opening 25 extends in the Y-axis direction.
  • the multi-task machine 1 includes a carriage base 27, a carriage 29, a plurality of clampers 31, a plurality of punch dies [punch tools] 33, and an upper turret [upper turret]. 35, a plurality of die molds [die tools] 37, a lower turret 39, a ram 41, and a striker 43.
  • the structures of the carriage base 27 and the carriage 29 are already known as shown in Patent Document 1 and the like, and detailed description thereof will be omitted.
  • the carriage 29 With the end portion of the workpiece W clamped by the plurality of clampers 31, the carriage 29 is moved in the X-axis direction, and the carriage base 27 is moved in the Y-axis direction. Can move in the axial direction.
  • the workpiece W is moved to the punching position PA and positioned.
  • the workpiece W can be punched by hitting the punch die 33 indexed to the punching position PA with the striker 43.
  • the multi-tasking machine 1 includes a Y-axis slider 45, a hollow cylindrical laser processing head 47, and a fiber laser oscillator 49.
  • the laser processing head 47 has a nozzle 51 for irradiating a laser beam while jetting an assist gas from above at the tip (lower end). Note that the configurations of the Y-axis slider 45, the laser processing head 47, and the like are already known as shown in Patent Document 1 and the like, and detailed descriptions thereof are omitted.
  • the laser processing head 47 is moved by moving the carriage 29 in the X-axis direction and moving the laser processing head 47 in the Y-axis direction with the end portion of the workpiece W after punching being clamped by the plurality of clampers 31.
  • the workpiece W is moved relative to an irradiation optical axis [irradiation optical axis] (irradiation position) 47a and positioned.
  • the work W can be laser processed (laser cutting process) by irradiating laser light while ejecting an assist gas from the laser processing head 47 and moving the work W.
  • the laser processing head 47 integrally has an image pickup unit [imaging unit] (image pickup unit [imager]) 53 for picking up an image of a reference hole (not shown) formed in the workpiece W after punching from above. I have. A specific configuration of the imaging unit 53 will be described below.
  • the laser processing head 47 is integrally provided with a cylindrical imaging case 55 on the side thereof.
  • the lower part of the imaging case 55 is open.
  • the imaging case 55 includes a camera 57 that captures an imaging target from below to above.
  • the camera 57 has an image sensor (CCD [Charge-Coupled Device] or CMOS [Complementary Metal-Oxide Semiconductor]).
  • An imaging optical axis (imaging optical axis) (imaging position) 57 a of the camera 57 (imaging unit 53) is offset only in the Y-axis direction with respect to an irradiation optical axis (irradiation position) 47 a of the laser processing head 47.
  • the imaging case 55 includes a ring light (illumination source) 59 that irradiates illumination light (from the upper side including the reference hole) from above.
  • a ring light (illumination source) 59 that irradiates illumination light (from the upper side including the reference hole) from above.
  • the imaging optical axis 57a may be offset only in the X-axis direction, or may be offset in both the X-axis direction and the Y-axis direction.
  • the base frame 9 is provided with a nozzle replacement mechanism 61 for replacing the nozzle 51 at the rear part thereof.
  • a nozzle replacement mechanism 61 for replacing the nozzle 51 at the rear part thereof.
  • the base frame 9 includes a lift base [elevator base] 63 that can move up and down [movable upward and downward] (movable in the vertical direction) extending in the Y-axis direction. Yes.
  • the base frame 9 includes a pair of lifting cylinders (lifting actuators) [a pair of elevator cylinders (an elevator actuator)] 65 that moves the lifting platform 63 up and down.
  • the pair of lifting cylinders 65 are separated in the Y-axis direction.
  • the lift 63 has a slide plate 67 on its upper surface that is movable in the Y-axis direction extending in the Y-axis direction.
  • the elevator 63 has a Y-axis cylinder (not shown) for moving the slide plate 67 in the Y-axis direction at an appropriate position.
  • the lifting platform 63 is indirectly provided at the rear portion of the base frame 9 via the pair of lifting cylinders 65, but may be directly provided at the rear portion of the base frame 9.
  • a nozzle rack 69 that houses a plurality of nozzles 51 is provided on the upper surface of the slide plate 67.
  • a plurality of holding holes (holding portions) 71 that hold the nozzles 51 are provided on the upper surface of the nozzle rack 69.
  • the plurality of holding holes 71 are arranged in the Y-axis direction.
  • the nozzle rack 69 is integrated with the slide plate 67 in the Y-axis direction between the setup area [setup ⁇ area] SA behind the center fixing table 15 and the nozzle exchange area CA above the rear part of the inclined shooter table 21. Move to.
  • the nozzle rack 69 passes under the carriage base 27 in the Y-axis direction so that an arbitrary holding hole 71 is vertically opposed to the tip of the laser processing head 47 located in the nozzle exchange area CA. It is movable.
  • the setup area SA is an area for an operator to perform an operation of setting the nozzle 51 in the holding hole 71 of the nozzle rack 69.
  • the nozzle replacement area CA is an area for automatically replacing the nozzle 51 with respect to the tip of the laser processing head 47.
  • the shooter table 21 is switched from the horizontal posture to the inclined posture, and then the Y-axis cylinder is driven to move the nozzle rack 69 from the setup area SA to the nozzle replacement area CA.
  • the empty holding hole 71 of the nozzle rack 69 is vertically opposed to the tip of the laser processing head 47 located in the nozzle exchange area CA.
  • the pair of elevating cylinders 65 are driven to raise the nozzle rack 69 integrally with the elevating platform 63, and the empty holding holes 71 of the nozzle rack 69 hold (accommodate) the nozzles 51.
  • the nozzle rack 69 is lowered integrally with the lifting platform 63 by driving the pair of lifting cylinders 65, and the nozzle 51 is detached from the tip of the laser processing head 47.
  • the detached nozzle 51 is accommodated in the holding hole 71 of the nozzle rack 69.
  • the laser processing head 47 is moved in the Y-axis direction so that the predetermined holding hole 71 of the nozzle rack 69 is vertically opposed to the tip of the laser processing head 47.
  • the pair of elevating cylinders 65 is driven to raise the nozzle rack 69 integrally with the elevating platform 63, and the plug of the nozzle 51 is inserted (connected) to the tip of the laser processing head 47.
  • the nozzle rack 69 is lowered integrally with the lifting platform 63 by driving the pair of lifting cylinders 65, and the nozzle 51 is mounted on the tip of the laser processing head 47.
  • the mounted nozzle 51 is separated from the holding hole 71 of the nozzle rack 69.
  • the nozzle rack 69 is integrally provided with a support arm 73 extending in the Y-axis direction at the front end (front end).
  • the support arm 73 can be relatively positioned at a position below the tip of the laser processing head 47.
  • a first reflecting mirror that reflects light emitted from the tip of the laser processing head 47 (or reflected light of illumination light from the ring light 59) at a right angle is provided at the base end portion (rear end portion) of the support arm 73.
  • 75 is provided.
  • a second reflection mirror 77 that reflects the reflected light from the first reflection mirror 75 at a right angle toward the camera 57 (imaging unit 53) is provided at the tip (front end) of the support arm 73.
  • the first reflection mirror 75 and the second reflection mirror 77 that are separated from each other in the Y-axis direction are provided at the tip of the nozzle rack 69 via the support arm 73.
  • the reflection optical axis 77 a of the second reflection mirror 77 is reflected light of the first reflection mirror 75. It is offset only in the Y-axis direction with respect to the shaft 75a.
  • the offset amount ⁇ of the reflected light axis 77a of the second reflecting mirror 77 with respect to the reflected light axis 75a of the first reflecting mirror 75 is the same as the offset amount ⁇ of the imaging light axis 57a of the camera 57 with respect to the irradiation light axis 47a of the laser processing head 47. It is.
  • first reflection mirror 75 and the second reflection mirror 77 are opposed to each other in the Y-axis direction (horizontal direction) and are inclined at 45 degrees opposite to each other with respect to the horizontal direction. Therefore, the first reflection mirror 75 and the second reflection mirror 77 can reflect the image of the tip of the laser processing head 47 toward the camera 57.
  • the reflected light axis 77a of the second reflecting mirror 77 relative to the reflected light axis 75a of the first reflecting mirror 75 may be offset in the X-axis direction, or may be offset in both the X-axis direction and the Y-axis direction. (Naturally, it matches the offset of the imaging optical axis 57a with respect to the irradiation optical axis 47a).
  • the multi-task machine 1 includes a shooter table 21 (a swing cylinder 23), a carriage base 27, a carriage 29, an upper turret 35, a lower turret 39, a ram 41, and a Y-axis slider 45. And a control device 79 that controls operations of the laser processing head 47, the imaging unit 53, the nozzle replacement mechanism 61, and the like based on a processing program.
  • the control device 79 includes one or a plurality of computers, a memory for storing machining programs, workpiece information, mold information, and the like, and a CPU (Central Processing Unit) that interprets and executes the processing programs. It has.
  • the workpiece information includes the dimensions and materials of each workpiece W
  • the mold information includes the shapes and dimensions of each mold (punch mold 33 and die mold 37).
  • the CPU of the control device 79 functions as a nozzle diameter acquisition unit [nozzle diameter triever] 83, a nozzle diameter registration unit [nozzle diameter register] 85, and a normality determination unit [normality determiner] 87.
  • the normality determination unit 87 includes a mounting determination unit [installationinstalldeterminer] 89, a perfect circle determination unit [precise circularity determiner] 91, a nozzle diameter determination unit [nozzle diameter determiner] 93, and an adhesion determination unit [deposition determiner] 95. It is configured. A specific configuration of the nozzle diameter acquisition unit 83 and the like described above will be described below.
  • the nozzle diameter acquisition unit 83 attaches the nozzle 51 held in the holding hole 71 of the nozzle rack 69 to the distal end portion of the laser processing head 47 and then based on the captured image (image data) of the camera 57 under a predetermined condition.
  • the nozzle diameter of the nozzle 51 (the diameter of the nozzle hole 51h shown in FIG. 7A) is obtained by calculation.
  • the nozzle diameter acquisition unit 83 detects the nozzle diameter of the nozzle 51 a plurality of times while changing the angle and position based on the captured image of the camera 57, and calculates the average value of the detection results (detection values). Is calculated as the nozzle diameter.
  • the predetermined condition mentioned above is that the reflected light axis 75a of the first reflecting mirror 75 is matched with the irradiation light axis 47a of the laser processing head 47, and the reflected light axis 77a of the second reflecting mirror 77 is set to the imaging optical axis of the camera 57. This is that the tip of the laser processing head 47 is imaged from above with the camera 57 in a state matched with 57a.
  • the nozzle diameter registration unit 85 is configured to register the acquired nozzle diameter of the nozzle 51 in association with the holding hole 71 of the nozzle rack 69. Specifically, the nozzle diameter registration unit 85 registers the acquired nozzle diameter of the nozzle 51 in the memory of the control device 79 in association with the holding information (position information) of the holding hole 71 of the nozzle rack 69.
  • the normality determination unit 87 determines whether or not the normal nozzle 51 having the specified nozzle diameter is attached to the tip of the laser processing head 47 based on the captured image of the camera 57 under the predetermined conditions described above. It is configured as follows. The determination process of the normality determination unit 87 is executed based on the determination processes of the mounting determination unit 89, the perfect circle determination unit 91, the nozzle diameter determination unit 93, and the adhesion determination unit 95.
  • the mounting determination unit 89 is configured to determine whether or not the nozzle 51 is mounted at the tip of the laser processing head 47 based on the captured image of the camera 57 under the predetermined conditions described above. Specifically, the mounting determination unit 89 determines whether a portion corresponding to the nozzle hole 51 h or a portion corresponding to the outer contour of the nozzle 51 exists in the captured image from the camera 57.
  • the perfect circle determination unit 91 determines whether the nozzle hole 51h is a perfect circle based on the image captured by the camera 57. Is configured to do. Specifically, the perfect circle determination unit 91 calculates the position of the center of gravity of the nozzle hole 51h based on the image captured by the camera 57, and sets the distance from the position of the center of gravity to the peripheral edge of the nozzle hole 51h of the nozzle 51 at different angles.
  • the detection is performed a plurality of times at the position, and it is determined whether or not the plurality of detection results (detection values) are the same (if the plurality of detection values are the same, the nozzle hole 51h is determined to be a perfect circle).
  • the nozzle diameter determination unit 93 is configured to determine whether or not the nozzle diameter of the nozzle 51 is the designated nozzle diameter when it is determined that the nozzle hole 51h is a perfect circle.
  • the nozzle diameter determination unit 93 uses the normal nozzle reference image (not shown) stored in the memory of the control device 79 to change the nozzle diameter of the nozzle 51 in the captured image to the nozzle diameter of the normal nozzle (designated nozzle diameter). ) May be determined by pattern matching (if the nozzle diameters match, it is determined that the nozzle diameter is designated). In this case, the determination process of the perfect circle determination unit 91 is unnecessary, and the perfect circle determination unit 91 may be omitted.
  • the adhesion determination unit 95 When it is determined that the nozzle diameter of the nozzle 51 is the specified nozzle diameter, the adhesion determination unit 95 is shown in FIG. 7C such as sputter around the nozzle hole 51h based on the captured image of the camera 57. Thus, it is configured to determine whether or not the foreign matter F is attached. Specifically, the adhesion determination unit 95 determines whether or not the contrast difference value between the portion corresponding to the tip surface of the nozzle 51 and the portion corresponding to the nozzle hole 51h in the captured image is lower than the normal value. (If it is lowered, it is determined that the foreign substance F is attached).
  • the adhesion determination unit 95 determines whether or not there is a contrast difference between a portion corresponding to the front end surface of the nozzle 51 in the captured image and a portion corresponding to the front end surface of the nozzle 51 in the reference image of the normal nozzle described above. (If there is a contrast difference, it is determined that the foreign matter F is attached).
  • the reflected light axis 75 a of the first reflecting mirror 75 is made to coincide with the irradiation light axis 47 a of the laser processing head 47, and the reflected light axis 77 a of the second reflecting mirror 77 is set to the imaging light of the camera 57. It is made to correspond with the axis
  • the image of the tip of the laser processing head 47 is reflected to the camera 57 by the first reflecting mirror 75 and the second reflecting mirror 77.
  • an image of the tip of the laser processing head 47 can be reliably captured by the camera 57 (imaging unit 53).
  • FIG. 7A shows the nozzle 51 in a normal state.
  • FIG. 7B shows a state where the periphery of the nozzle hole 51 h of the nozzle 51 is damaged.
  • FIG. 7C shows a state in which the foreign matter F adheres to the tip surface of the nozzle 51.
  • the nozzle 51 is mounted at the tip of the laser processing head 47 by the nozzle replacement mechanism 61 and the nozzle 51 mounted is separated from the predetermined holding hole 71 of the nozzle rack 69 (step S101).
  • the reflected optical axis 75a of the first reflecting mirror 75 is made to coincide with the irradiation optical axis 47a of the laser processing head 47, and the reflected optical axis 77a of the second reflecting mirror 77 is made to coincide with the imaging optical axis 57a of the camera 57.
  • the camera 57 images the tip of the laser processing head 47 from above (via the first reflection mirror 75 and the second reflection mirror 77) (step S102).
  • the nozzle diameter acquisition unit 83 calculates and acquires the nozzle diameter of the nozzle 51 (the diameter of the nozzle hole 51h) based on the captured image (image data) of the camera 57 (step S103).
  • the nozzle diameter registration unit 85 registers the acquired nozzle diameter in association with the predetermined holding hole 71 of the nozzle rack 69 (step S104).
  • the nozzle 51 is separated from the tip of the laser processing head 47 by the nozzle replacement mechanism 61 and the like, and the detached nozzle 51 is returned to the empty predetermined holding hole 71 of the nozzle rack 69 (step S105).
  • step S105 the CPU of the control device 79 determines whether the nozzle diameters of all the nozzles 51 housed in the nozzle rack 69 have been registered (step S106). If the nozzle diameters of all the nozzles 51 stored in the nozzle rack 69 are not registered (No in step S106), the process returns to step S101, and the nozzle diameter registration process for the nozzles 51 is continued. On the other hand, when the nozzle diameters of all the nozzles 51 accommodated in the nozzle rack 69 are registered (Yes in step S106), the nozzle diameter registration process of the nozzles 51 is ended.
  • the tip of the laser processing head 47 is imaged from above (via the first reflection mirror 75 and the second reflection mirror 77) by the camera 57 (step S201).
  • the attachment determination unit 89 determines whether or not the nozzle 51 is attached to the tip portion of the laser processing head 47 based on the captured image of the camera 57 (step S202).
  • step S202 If it is determined that the nozzle 51 is not attached to the tip of the laser processing head 47 (No in step S202), the nozzle 51 is attached to the tip of the laser processing head 47 by the nozzle replacement mechanism 61 or the like (step S203). ). After step S203, the inspection process of the nozzle 51 is terminated.
  • the perfect circle determination unit 91 determines the nozzle hole of the nozzle 51 based on the captured image of the camera 57. It is determined whether 51h is a perfect circle (step S204). When it is determined that the nozzle hole 51h is not a perfect circle due to damage to the peripheral edge of the nozzle hole 51h (No in step S204), the nozzle 51 is replaced with the tip of the laser processing head 47 by the nozzle replacement mechanism 61 or the like. (Step 203). After step S203, the inspection process of the nozzle 51 is terminated.
  • the nozzle diameter determination unit 93 determines whether or not the nozzle diameter of the nozzle 51 is the designated nozzle diameter (step S205). When it is determined that the nozzle diameter of the nozzle 51 is not the designated nozzle diameter (No in step S205), the nozzle 51 is exchanged for the tip of the laser processing head 47 by the nozzle exchange mechanism 61 or the like (step 203). After step S203, the inspection process of the nozzle 51 is terminated.
  • the adhesion determination unit 95 adheres foreign matter around the nozzle hole 51h based on the captured image of the camera 57. It is determined whether or not (step S206). If it is determined that no foreign matter has adhered to the periphery of the nozzle hole 51h (No in step S206), the inspection process for the nozzle 51 is terminated. On the other hand, when it is determined that foreign matter is attached around the nozzle hole 51h (Yes in step S206), the CPU of the control device 79 generates an alarm for cleaning the nozzle 51 (step S207). Instead of generating an alarm, the nozzle 51 may be replaced with the tip of the laser processing head 47 by the nozzle replacement mechanism 61 or the like.
  • the inspection process of the nozzle 51 including the replacement of the nozzle 51 is performed without moving the laser processing head 47 outside the processing area on the processing table 13. It can be done efficiently.
  • the camera 57 Since the camera 57 is installed downward and is provided at a position offset from the nozzle 51, dross, spatter, etc. adhering to the tip surface of the nozzle 51 do not fall on the camera 57, and the camera 57 is damaged. And prevent breakdown. Even if dross, spatter, or the like falls from the tip surface of the nozzle 51, it falls directly to the intermediate portion of the support arm 73 or is supported along the inclination of the first reflecting mirror 75 (or the second reflecting mirror 77). It falls to the middle part of the arm 73. Accordingly, the imaging of the camera 57 is not affected at all, and the tip of the laser processing head 47 can be accurately imaged.
  • the registration process of the nozzle diameter of the nozzle 51 can be automatically performed using the imaging unit 53, it is possible to reduce the labor of the registration process by the user relating to the multi-function machine 1 as much as possible. it can.
  • the present invention may be applied to a laser processing machine that does not have a punch press function, rather than a combined processing machine.
  • the imaging unit 53 may be configured to be swingable about a horizontal swing axis so that the tilt angle of the imaging unit 53 with respect to the vertical direction can be changed.
  • the second reflection mirror 77 can be omitted by changing the inclination angle of the imaging unit 53 with respect to the vertical direction to, for example, 30 degrees and setting the inclination angle of the first reflection mirror 75 with respect to the horizontal direction to, for example, 30 degrees.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Punching Or Piercing (AREA)

Abstract

レーザ加工機のレーザ加工ヘッドは、上方から撮像するカメラ(撮像ユニット)を一体的にその側部に備えている。レーザ加工機のノズルラックの先端には、レーザ加工ヘッドの先端部から入射される光を直角に反射する第1反射ミラーが一体的に設けられている。また、ノズルラックの先端には、第1反射ミラーによって反射された光をカメラ(撮像ユニット)に向けて直角に反射する第2反射ミラーが一体的に設けられている。

Description

レーザ加工機
 本発明は、ワーク[workpiece]に向けて上方からレーザ光を照射することでワークをレーザ加工(レーザ切断加工)するレーザ加工機[laser processing machine]に関する。
 一般に、レーザ加工機は、ワークを支持する加工テーブルと、加工テーブルの上方に設けられると共にレーザ発振器に光学的に接続された中空筒状のレーザ加工ヘッドと、を具備している。レーザ加工ヘッドは、上方からアシストガスを噴射しつつレーザ光を照射するノズルを、その先端部(下端部)に着脱可能に有している。
 近年、パンチ加工済みのワークにレーザ加工する際にレーザ加工の基準となる原点位置をパンチ加工の基準となる原点位置に合わせる機能を有するレーザ加工機が開発されている。そのレーザ加工機は、パンチ加工済みのワークに形成された基準穴を上方から撮像する撮像ユニットをレーザ加工ヘッドの側部に備えている(下記特許文献1)。
 また、指定のノズル径と異なるノズル径のノズルがレーザ加工ヘッドの先端部に装着されている場合、ノズルのノズル孔の周縁に損傷がある場合、又はノズルの先端面にドロスやスパッタ等の異物が付着した場合等には、ワークの切断不良を招くことになる。そのため、加工テーブル上の加工領域外に設けられたノズル検査装置のカメラでノズル先端を撮像して、ノズルの不良を検出する技術がある(下記特許文献2)。
日本国特開2015-226933号公報 日本国特開2005-334922号公報
 しかし、特許文献2に開示された技術では、加工テーブル上の加工領域外にノズル検査装置が固定的に設けられる。検査時にはレーザ加工ヘッドを加工領域外に移動させる必要がある。また、ノズル検査用のカメラやリングライト、ノズル検査装置の昇降機構等を専用に設ける必要がある。更に、ノズル検査装置では、レーザ加工ヘッドの先端部を下方から撮像するためにノズルの下方にカメラが上向きに設置される。このため、ドロスやスパッタ等の異物のカメラ内への侵入を防止するための専用カバーも必要となる。また、専用カバーを開いたとき、ノズル検査装置を昇降させるとき、又は、カメラで撮像するときには、ノズルの下方にカメラが存在するので、ノズルに付着した異物がカメラのレンズ上に落下すると、カメラのレンズが損傷したり、カバー機構や昇降機構の故障を誘発したりすることがある。このような場合は、ノズルの形状を正しく検査できない。
 そのため、専用のノズル検査装置を用いることなく、カメラ等の損傷や故障を防止しつつ、ノズルの点検処理(指定のノズル径と異なるノズル径のノズルの装着や、ノズル孔の周縁の損傷や、スパッタ等の異物の付着など)を効率よく行うことが望まれている。
 本発明の特徴は、レーザ加工機であって、先端部にノズルを着脱可能に有したレーザ加工ヘッドと、前記レーザ加工ヘッドの側部に設けられ、その撮像光軸が前記レーザ加工ヘッドの照射光軸に対して水平方向にオフセットされた、上方から撮像する撮像ユニットと、前記レーザ加工ヘッドの先端部の画像を前記撮像ユニットに向けて反射する反射ミラーと、を備えているレーザ加工機を提供する。
 上記特徴によれば、反射ミラーによってレーザ加工ヘッドの先端部の画像を撮像ユニットに向けて反射させて、撮像ユニットによってレーザ加工ヘッドの先端部の画像を撮像できる。従って、撮像ユニット等の損傷や故障を防止しつつ、ノズルの点検処理を効率よく行うことができる。
図1は、実施形態に係る複合加工機(レーザ加工機)の平面図(図2中のI-I線に沿った断面図)である。 図2は、上記複合加工機の正面図である。 図3は、図1中のIII-III線に沿った拡大正面図である。 図4は、ノズルの交換時の拡大正面図である。 図5は、上記複合加工機の要部を示す正面図である。 図6は、上記複合加工機のブロック図である。 図7(a)~図7(c)はレーザ加工ヘッドの撮像画像であり、図7(a)はノズルが正常な状態を示しており、図7(b)はノズル孔の周縁に損傷がある状態を示しており、図7(c)はノズル先端面に異物が付着した状態を示している。 図8は、ノズル径の登録処理を示すフローチャートである。 図9は、ノズルの点検処理を示すフローチャートである。
 実施形態に係るレーザ加工機について図1~図9を参照しつつ説明する。
 なお、「X軸方向」とは、水平方向の1つであり、本実施形態では左右方向である。「Y軸方向」とは、X軸方向に直交する水平方向であり、実施形態では前後方向である。また、図面中、「FF」は前方向、「FR」は後方向、「L」は左方向、「R」は右方向、「U」は上方向、「D」は下方向をそれぞれ指している。
 図1及び図2に示されるように、実施形態に係る複合加工機1は、板状のワーク(板金)Wをレーザ加工(レーザ切断加工)すると共に、及びパンチ加工(打ち抜き加工及び成形加工を含む)する。複合加工機1は、加工機本体(加工機ベース)3を具備している。加工機本体3は、上下に対向された上部フレーム5と下部フレーム7を有するブリッジ型のベースフレーム9と、下部フレーム7の前後方向の両側にそれぞれ設けられた支持フレーム(サイドフレーム)11とを有している。
 図1、図3及び図4に示されるように、加工機本体3は、その適宜位置に、ワークWを支持する加工テーブル13を備えている。加工テーブル13の上面にはブラシBが取り付けられている。加工テーブル13の一部であるセンタ固定テーブル15は、ワークWから分離された製品(図示省略)又は残材(図示省略)を外部に排出するためのシュータテーブル21をその左部に有している。シュータテーブル21は、その基端(左端)の揺動中心21s回りに上下に揺動可能であり、その揺動によって水平姿勢(図3)と水平に対する傾斜姿勢(図4)とに切換可能に構成されている。また、下部フレーム7は、シュータテーブル21を上下に揺動させる揺動シリンダ(揺動アクチュエータ)23をその左側に備えている。更に、シュータテーブル21には、レーザ光及びアシストガスを通過させるためのレーザ開口部25が形成されており、レーザ開口部25はY軸方向に延びている。
 図1及び図2に示されるように、複合加工機1は、キャレッジベース27と、キャレッジ29と、複数のクランパ31と、複数のパンチ金型[punch tools]33と、上部タレット[upper turret]35と、複数のダイ金型[die tools]37と、下部タレット[lower turret]39と、ラム41と、ストライカ43とを具備している。なお、キャレッジベース27及びキャレッジ29等の構成は、上記特許文献1等に示されるように既に公知であり、それらの詳細な説明は省略する。
 ワークWの端部を複数のクランパ31によってクランプした状態で、キャレッジ29をX軸方向に移動させ、かつ、キャレッジベース27をY軸方向に移動させることで、ワークWをX軸方向及びY軸方向に移動できる。ワークWをパンチ加工位置PAに移動して、位置決めする。パンチ加工位置PAに割り出されたパンチ金型33をストライカ43によって打圧することで、ワークWをパンチ加工できる。
 複合加工機1は、Y軸スライダ45と、中空筒状のレーザ加工ヘッド47と、ファイバレーザ発振器49とを具備している。レーザ加工ヘッド47は、上方からアシストガスを噴射しながらレーザ光を照射するノズル51をその先端部(下端部)に有している。なお、Y軸スライダ45及びレーザ加工ヘッド47等の構成は、上記特許文献1等に示されるように既に公知であり、それらの詳細な説明は省略する。
 パンチ加工後のワークWの端部を複数のクランパ31によってクランプした状態で、キャレッジ29をX軸方向に移動させ、かつ、レーザ加工ヘッド47をY軸方向に移動させることで、レーザ加工ヘッド47の照射光軸[irradiation optical axis](照射位置)47aにワークWを相対的に移動して、位置決めする。レーザ加工ヘッド47からアシストガスを噴射しつつレーザ光を照射し、ワークWを移動させてワークWをレーザ加工(レーザ切断加工)できる。
 レーザ加工ヘッド47は、パンチ加工後のワークWに形成された基準穴(図示省略)等を上方から撮像する撮像ユニット[imaging unit](撮像部[imager])53をその側部に一体的に備えている。撮像ユニット53の具体的な構成について以下に説明する。
 図2及び図5に示されるように、レーザ加工ヘッド47は、筒状の撮像ケース55をその側部に一体的に備えている。撮像ケース55の下部は、開放されている。また、撮像ケース55は、上方から下方の撮像対象を撮像するカメラ57をその内部に備えている。カメラ57は、撮像素子(CCD[Charge-Coupled Device]又はCMOS[Complementary Metal-Oxide Semiconductor])を有している。カメラ57(撮像ユニット53)の撮像光軸[imaging optical axis](撮像位置)57aは、レーザ加工ヘッド47の照射光軸(照射位置)47aに対してY軸方向にのみオフセットされている。更に、撮像ケース55は、上方から照明光を(基準穴を含む周辺に)照射するリングライト(照明源[illumination source])59をその下部に備えている。なお、撮像光軸57aは、X軸方向にのみオフセットされてもよく、X軸方向及びY軸方向の両方向にオフセットされてもよい。
 ベースフレーム9は、ノズル51の交換を行うためのノズル交換機構61をその後部に備えている。ノズル交換機構61の具体的な構成について以下に説明する。
 図3及び図4に示されるように、ベースフレーム9は、Y軸方向に延びる昇降可能[movable upward and downward](上下方向に移動可能)な昇降台[elevator base]63をその後部に備えている。ベースフレーム9は、昇降台63を昇降させる一対の昇降シリンダ(昇降アクチュエータ)[a pair of elevator cylinders (an elevator actuator)]65を昇降台63の下方に備えている。一対の昇降シリンダ65は、Y軸方向に離隔されている。また、昇降台63は、Y軸方向に延びるY軸方向に移動可能なスライドプレート67をその上面に備えている。昇降台63は、スライドプレート67をY軸方向に移動させるためのY軸シリンダ(図示省略)をその適宜位置に備えている。なお、昇降台63は、一対の昇降シリンダ65を介してベースフレーム9の後部に間接的に設けられたが、ベースフレーム9の後部に直接設けられてもよい。
 スライドプレート67の上面には、複数のノズル51を収納するノズルラック69が設けられている。ノズルラック69の上面には、ノズル51を保持する複数の保持孔(保持部)71が設けられている。複数の保持孔71は、Y軸方向に並べられている。ノズルラック69は、センタ固定テーブル15の後方の段取り領域[setup area]SAと傾斜姿勢のシュータテーブル21の後部の上方のノズル交換領域CAとの間で、スライドプレート67と一体的にY軸方向に移動する。換言すれば、ノズルラック69は、任意の保持孔71をノズル交換領域CAに位置するレーザ加工ヘッド47の先端部に上下に対向させるように、キャレッジベース27の下方を通ってY軸方向に移動可能である。段取り領域SAとは、作業者がノズル51をノズルラック69の保持孔71にセットする作業を行うための領域である。ノズル交換領域CAとは、レーザ加工ヘッド47の先端部に対して自動的にノズル51の交換するための領域である。
 上述した構成によって、シュータテーブル21を水平姿勢から傾斜姿勢に切り替えた後に、Y軸シリンダを駆動してノズルラック69を段取り領域SAからノズル交換領域CAに移動させる。ノズルラック69の空の保持孔71をノズル交換領域CAに位置されたレーザ加工ヘッド47の先端部に上下に対向させる。次に、一対の昇降シリンダ65を駆動してノズルラック69を昇降台63と一体的に上昇させ、ノズルラック69の空の保持孔71がノズル51を保持(収容)する。そして、一対の昇降シリンダ65を駆動してノズルラック69を昇降台63と一体的に下降させ、レーザ加工ヘッド47の先端部からノズル51が離脱される。離脱されたノズル51は、ノズルラック69の保持孔71に収納される。
 レーザ加工ヘッド47をY軸方向に移動させて、ノズルラック69の所定の保持孔71をレーザ加工ヘッド47の先端部に上下に対向させる。次に、一対の昇降シリンダ65を駆動してノズルラック69を昇降台63と一体的に上昇させ、レーザ加工ヘッド47の先端部にノズル51のプラグを挿入(接続)する。そして、一対の昇降シリンダ65を駆動してノズルラック69を昇降台63と一体的に下降させ、レーザ加工ヘッド47の先端部にノズル51を装着する。装着されたノズル51は、ノズルラック69の保持孔71から分離される。
 図5に示されるように、ノズルラック69は、Y軸方向に延びる支持アーム73をその先端(前端)に一体的に備えている。支持アーム73は、レーザ加工ヘッド47の先端の下方位置に相対的に位置決め可能である。また、支持アーム73の基端部(後端部)には、レーザ加工ヘッド47の先端から出射された光(又は、リングライト59からの照明光の反射光)を直角に反射する第1反射ミラー75が設けられている。更に、支持アーム73の先端部(前端部)には、第1反射ミラー75からの反射光をカメラ57(撮像ユニット53)に向けて直角に反射する第2反射ミラー77が設けられている。換言すれば、ノズルラック69の先端には、Y軸方向に離隔された第1反射ミラー75及び第2反射ミラー77が、支持アーム73を介して設けられている。
 第2反射ミラー77の設置位置が第1反射ミラー75の設置位置に対してY軸方向にのみオフセットされているので、第2反射ミラー77の反射光軸77aは第1反射ミラー75の反射光軸75aに対してY軸方向にのみオフセットされている。第1反射ミラー75の反射光軸75aに対する第2反射ミラー77の反射光軸77aのオフセット量δは、レーザ加工ヘッド47の照射光軸47aに対するカメラ57の撮像光軸57aのオフセット量λと同じである。また、第1反射ミラー75及び第2反射ミラー77は、Y軸方向(水平方向)に対向し、かつ、水平方向に対して互いに反対側に45度傾斜している。従って、第1反射ミラー75及び第2反射ミラー77は、レーザ加工ヘッド47の先端部の画像をカメラ57に向けて反射することができる。なお、第1反射ミラー75の反射光軸75aに対する第2反射ミラー77の反射光軸77aは、X軸方向にオフセットされてもよく、X軸方向及びY軸方向の両方向にオフセットされてもよい(当然、照射光軸47aに対する撮像光軸57aのオフセットに一致される)。
 図1及び図6に示されるように、複合加工機1は、シュータテーブル21(揺動シリンダ23)、キャレッジベース27、キャレッジ29、上部タレット35、下部タレット39、ラム41、Y軸スライダ45、レーザ加工ヘッド47、撮像ユニット53、及び、ノズル交換機構61等の動作を加工プログラムに基づいて制御する制御装置[controller]79を具備している。また、制御装置79は、1つ又は複数のコンピュータによって構成されており、加工プログラム・ワーク情報・金型情報等を記憶するメモリ、及び、加工プログラムを解釈して実行するCPU(Central Processing Unit)を備えている。ワーク情報には各ワークWの寸法・材質等が含まれており、金型情報には各金型(パンチ金型33及びダイ金型37)の形状・寸法等が含まれている。
 制御装置79のCPUは、ノズル径取得部[nozzle diameter retriever]83、ノズル径登録部[nozzle diameter register]85、及び、正常判定部[normality determiner]87として機能する。また、正常判定部87は、装着判定部[installation determiner]89、真円判定部[precise circularity determiner]91、ノズル径判定部[nozzle diameter determiner]93、及び、付着判定部[deposition determiner]95で構成されている。上述したノズル径取得部83等の具体的な構成について以下に説明する。
 ノズル径取得部83は、ノズルラック69の保持孔71に保持されたノズル51をレーザ加工ヘッド47の先端部に装着した後に、所定条件下で、カメラ57の撮像画像(画像データ)に基づいて、ノズル51のノズル径(図7(a)に示されるノズル孔51hの直径)を演算によって取得するように構成されている。具体的には、ノズル径取得部83は、カメラ57の撮像画像に基づいて、ノズル51のノズル径を角度・位置を変えて複数回検出し、検出結果(検出値)の平均値をノズル51のノズル径として演算する。上述した所定条件とは、第1反射ミラー75の反射光軸75aをレーザ加工ヘッド47の照射光軸47aに一致させ、かつ、第2反射ミラー77の反射光軸77aをカメラ57の撮像光軸57aに一致させた状態で、カメラ57でレーザ加工ヘッド47の先端部を上方から撮像したことである。
 ノズル径登録部85は、取得されたノズル51のノズル径をノズルラック69の保持孔71に対応させて登録するように構成されている。具体的には、ノズル径登録部85は、取得されたノズル51のノズル径をノズルラック69の保持孔71の保持情報(位置情報)に対応させて制御装置79のメモリに登録する。
 正常判定部87は、上述した所定条件下で、カメラ57の撮像画像に基づいて、レーザ加工ヘッド47の先端部に指定されたノズル径の正常なノズル51が装着されているか否かについて判定するように構成されている。また、正常判定部87の判定処理は、装着判定部89、真円判定部91、ノズル径判定部93、及び、付着判定部95の判定処理に基づいて実行される。
 装着判定部89は、上述した所定条件下で、カメラ57の撮像画像に基づいて、レーザ加工ヘッド47の先端部にノズル51が装着されているか否か判定するように構成されている。具体的には、装着判定部89は、カメラ57からの撮像画像にノズル孔51hに相当する部位又はノズル51の外輪郭に相当する部位が存在しているか否か判定する。
 真円判定部91は、レーザ加工ヘッド47の先端部にノズル51が装着されていると判定された場合に、カメラ57の撮像画像に基づいて、ノズル孔51hが真円であるか否か判定するように構成されている。具体的には、真円判定部91は、カメラ57の撮像画像に基づいて、ノズル孔51hの重心位置を演算し、その重心位置からノズル51のノズル孔51hの周縁までの距離を異なる角度・位置において複数回検出し、複数の検出結果(検出値)が同じであるか否かを判定する(複数の検出値が同じである場合、ノズル孔51hは真円であると判定される)。
 ノズル径判定部93は、ノズル孔51hが真円であると判定された場合に、ノズル51のノズル径が指定されたノズル径である否か判定するように構成されている。なお、ノズル径判定部93は、制御装置79のメモリに記憶された正常ノズルの参照画像(図示省略)を用いて、撮像画像中のノズル51のノズル径が正常ノズルのノズル径(指定ノズル径)と一致しているか否かをパターンマッチングによって判定してもよい(ノズル径が一致する場合、指定されたノズル径であると判定される)。この場合には真円判定部91の判定処理は不要であり、真円判定部91を省略してもよい。
 付着判定部95は、ノズル51のノズル径が指定ノズル径であると判定された場合に、カメラ57の撮像画像に基づいて、ノズル孔51hの周辺にスパッタ等の図7(c)に示されるように異物Fが付着しているか否か判定するように構成されている。具体的には、付着判定部95は、撮像画像中のノズル51の先端面に相当する部位とノズル孔51hに相当する部位とのコントラスト差の値が正常値よりも低下しているか否か判定する(低下している場合、異物Fが付着していると判定される)。なお、付着判定部95は、撮像画像中のノズル51の先端面に相当する部位と上述した正常ノズルの参照画像中のノズル51の先端面に相当する部分との間にコントラスト差があるか否かを判定してもよい(コントラスト差がある場合、異物Fが付着していると判定される)。
 続いて、実施形態の第1動作として、第1反射ミラー75及び第2反射ミラー77に関する動作について説明する。
 図5に示されるように、第1反射ミラー75の反射光軸75aをレーザ加工ヘッド47の照射光軸47aに一致させ、かつ、第2反射ミラー77の反射光軸77aをカメラ57の撮像光軸57aに一致させる。すると、レーザ加工ヘッド47から出射される光は、第1反射ミラー75によって直角に反射される。そして、第1反射ミラー75によって反射された光は、第2反射ミラー77によってカメラ57に向けて直角に反射される。換言すれば、第1反射ミラー75及び第2反射ミラー77によってレーザ加工ヘッド47の先端部の画像が、カメラ57へと反射される。この結果、図7(a)~図7(c)に示されるように、カメラ57(撮像ユニット53)によってレーザ加工ヘッド47の先端部の画像を確実に撮像することができる。
 なお、図7(a)は、ノズル51が正常な状態を示している。図7(b)は、ノズル51のノズル孔51hの周縁に損傷がある状態を示している。図7(c)は、ノズル51の先端面に異物Fが付着した状態を示している。
 続いて、実施形態の第2動作として、ノズル51のノズル径の登録処理について図8のフローチャートを参照しつつ説明する。
 ノズル交換機構61等によってレーザ加工ヘッド47の先端部にノズル51が装着され、ノズルラック69の所定の保持孔71から装着されたノズル51が分離される(ステップS101)。そして、第1反射ミラー75の反射光軸75aをレーザ加工ヘッド47の照射光軸47aに一致させ、かつ、第2反射ミラー77の反射光軸77aをカメラ57の撮像光軸57aに一致させた状態で、カメラ57によってレーザ加工ヘッド47の先端部を(第1反射ミラー75及び第2反射ミラー77を介して)上方から撮像する(ステップS102)。
 ステップS102の処理の後、ノズル径取得部83は、カメラ57の撮像画像(画像データ)に基づいて、ノズル51のノズル径(ノズル孔51hの直径)を演算して取得する(ステップS103)。ノズル径登録部85は、取得されたノズル径をノズルラック69の所定の保持孔71に対応させて登録する(ステップS104)。次いで、ノズル交換機構61等によってノズル51がレーザ加工ヘッド47の先端部から離脱され、離脱されたノズル51はノズルラック69の空の所定の保持孔71に戻される(ステップS105)。
 ステップS105の処理の後、制御装置79のCPUは、ノズルラック69に収納された全ノズル51のノズル径を登録したか否か判断する(ステップS106)。そして、ノズルラック69に収納された全ノズル51のノズル径が登録されていない場合(ステップS106でNo)、ステップS101に戻って、ノズル51のノズル径の登録処理が続行される。一方、ノズルラック69に収納された全ノズル51のノズル径を登録されている場合(ステップS106でYes)、ノズル51のノズル径の登録処理は終了される。
 続いて、実施形態の第3動作として、ノズル51の点検処理について図9のフローチャートを参照して説明する。
 第1反射ミラー75の反射光軸75aをレーザ加工ヘッド47の照射光軸47aに一致させ、かつ、第2反射ミラー77の反射光軸77aをカメラ57の撮像光軸57aに一致させた状態で、カメラ57によってレーザ加工ヘッド47の先端部を(第1反射ミラー75及び第2反射ミラー77を介して)上方から撮像する(ステップS201)。装着判定部89は、カメラ57の撮像画像に基づいて、レーザ加工ヘッド47の先端部にノズル51が装着されているか否か判定する(ステップS202)。レーザ加工ヘッド47の先端部にノズル51が装着されていないと判定された場合(ステップS202でNo)、ノズル交換機構61等によってレーザ加工ヘッド47の先端部にノズル51が装着される(ステップS203)。ステップS203の後、ノズル51の点検処理は終了される。
 一方、レーザ加工ヘッド47の先端部にノズル51が装着されていると判定された場合(ステップS202でYes)、真円判定部91が、カメラ57の撮像画像に基づいて、ノズル51のノズル孔51hが真円であるか否か判定する(ステップS204)。ノズル孔51hの周縁の損傷等によりノズル孔51hが真円でないと判定された場合(ステップS204でNo)、ノズル交換機構61等によってレーザ加工ヘッド47の先端部に対してノズル51の交換が行なわれる(ステップ203)。ステップS203の後、ノズル51の点検処理は終了される。
 一方、ノズル孔51hが真円であると判定された場合(ステップS204でYes)、ノズル径判定部93が、ノズル51のノズル径が指定ノズル径である否か判定する(ステップS205)。ノズル51のノズル径が指定ノズル径でないと判定された場合(ステップS205でNo)、ノズル交換機構61等によってレーザ加工ヘッド47の先端部に対してノズル51の交換が行なわれる(ステップ203)。ステップS203の後、ノズル51の点検処理は終了される。
 一方、ノズル51のノズル径が指定ノズル径であると判定された場合(ステップS205でYes)、付着判定部95が、カメラ57の撮像画像に基づいて、ノズル孔51hの周辺に異物が付着しているか否か判定する(ステップS206)。ノズル孔51hの周辺に異物が付着してないと判定された場合(ステップS206でNo)には、ノズル51の点検処理は終了される。一方、ノズル孔51hの周辺に異物が付着していると判定された場合(ステップS206でYes)、制御装置79のCPUは、ノズル51の清掃を行うためのアラームを発生する(ステップS207)。なお、アラームの発生の代わりに、ノズル交換機構61等によってレーザ加工ヘッド47の先端部に対してノズル51の交換が行なわれてもよい。
 上記実施形態によれば、撮像ユニット53を具備する複合加工機1において、レーザ加工ヘッド47を加工テーブル13上の加工領域外に移動させることなく、ノズル51の交換を含むノズル51の点検処理を効率良く行うことができる。
 カメラ57は下向きに設置され、かつ、ノズル51とはオフセットした位置に設けられているので、ノズル51の先端面に付着したドロスやスパッタ等がカメラ57に落下することはなく、カメラ57の損傷や故障を防止できる。また、ノズル51の先端面からドロスやスパッタ等が落下しても、支持アーム73の中間部に直接落下するか、第1反射ミラー75(又は、第2反射ミラー77)の傾斜に沿って支持アーム73の中間部に落下する。従って、カメラ57の撮像は全く影響を受けず、レーザ加工ヘッド47の先端部を正確に撮像できる。
 また、上記実施形態によれば、撮像ユニット53を利用してノズル51のノズル径の登録処理を自動的に行うことができるので、複合加工機1に関する人手による登録処理の手間を極力減らすことができる。
 日本国特許出願第2017-11103号(2017年1月25日出願)の全ての内容は、ここに参照されることで本明細書に援用される。本発明の実施形態を参照することで上述のように本発明が説明されたが、本発明は上述した実施形態に限定されるものではない。本発明の範囲は、請求の範囲に照らして決定される。
 例えば、本発明は、複合加工機ではなく、パンチプレスの機能を有しないレーザ加工機に適用されてもよい。また、撮像ユニット53の垂直方向に対する傾斜角を変更できるように、撮像ユニット53が水平な揺動軸心回りに揺動可能に構成されてもよい。この場合、撮像ユニット53の垂直方向に対する傾斜角を例えば30度に変更して、第1反射ミラー75の水平方向に対する傾斜角を例えば30度にすることにより、第2反射ミラー77を省略できる。

Claims (8)

  1.  レーザ加工機であって、
     先端部にノズルを着脱可能に有したレーザ加工ヘッドと、
     前記レーザ加工ヘッドの側部に設けられ、その撮像光軸が前記レーザ加工ヘッドの照射光軸に対して水平方向にオフセットされた、上方から撮像する撮像ユニットと、
     前記レーザ加工ヘッドの先端部の画像を前記撮像ユニットに向けて反射する反射ミラーと、を備えているレーザ加工機。
  2.  請求項1に記載のレーザ加工機であって、
     前記反射ミラーが、前記レーザ加工ヘッドの先端部から出射される光を直角に反射する第1反射ミラーと、前記第1反射ミラーによって反射された光を前記撮像ユニットに向けて直角に反射する第2反射ミラーと、を備えている、レーザ加工機。
  3.  請求項2に記載のレーザ加工機であって、
     前記第1反射ミラー及び前記第2反射ミラーが、互いに対向し、かつ、水平方向に対して互いに反対方向に傾斜されており、
     前記第1反射ミラーの設置位置に対する前記第2反射ミラーの設置位置のオフセット量が、前記レーザ加工ヘッドの前記照射光軸に対する前記撮像ユニットの前記撮像光軸のオフセット量と同じである、レーザ加工機。
  4.  請求項2又は請求項3に記載のレーザ加工機であって、
     前記第1反射ミラー及び前記第2反射ミラーを備えた支持アームが、前記レーザ加工ヘッドの前記先端部の下方に相対的に位置決め可能に設けられている、レーザ加工機。
  5.  請求項1に記載のレーザ加工機であって、
     前記撮像ユニットが、垂直方向に対する傾斜角を変更できるように、水平な揺動軸心回りに揺動可能に構成されている、レーザ加工機。
  6.  請求項1~5の何れか一項に記載のレーザ加工機であって、
     複数のノズルをそれぞれ保持する複数の保持部を有するノズルラックをさらに備えており、
     前記ノズルラックが、支持アームをその先端に備え、かつ、前記複数の保持部のうちの任意の保持部を前記レーザ加工ヘッドの先端部と上下に対向させるように、前記レーザ加工ヘッドに対して相対的に水平移動可能に構成され、
     前記反射ミラーが、前記支持アームに設けられている、レーザ加工機。
  7.  請求項1~6の何れか一項に記載のレーザ加工機であって、
     前記第1反射ミラーの反射光軸を前記レーザ加工ヘッドの前記照射光軸に一致させ、かつ、前記第2反射ミラーの反射光軸を前記撮像ユニットの前記撮像光軸に一致させた状態で、前記撮像ユニットによって前記レーザ加工ヘッドの前記先端部を上方から撮像したことを条件として、前記撮像ユニットの撮像画像に基づいて、前記レーザ加工ヘッドの前記先端部に指定ノズル径を有する正常なノズルが装着されているか否か判定する正常判定部をさらに備えている、レーザ加工機。
  8.  請求項6に記載のレーザ加工機であって、
     前記ノズルが前記レーザ加工ヘッドの前記先端部に装着され、前記第1反射ミラーの前記反射光軸を前記レーザ加工ヘッドの前記照射光軸に一致させ、かつ、前記第2反射ミラーの出射光軸を前記撮像ユニットの撮像光軸にそれぞれ一致させた状態で、前記撮像ユニットによって前記レーザ加工ヘッドの前記先端部を上方から撮像したことを条件として、前記撮像ユニットの撮像画像に基づいて、前記ノズルのノズル径を取得するノズル径取得部と、
     取得された前記ノズル径を前記ノズルラックの前記保持部に対応させて登録するノズル径登録部と、をさらに備えている、レーザ加工機。
PCT/JP2018/001209 2017-01-25 2018-01-17 レーザ加工機 WO2018139312A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-011103 2017-01-25
JP2017011103A JP6431937B2 (ja) 2017-01-25 2017-01-25 レーザ加工機

Publications (1)

Publication Number Publication Date
WO2018139312A1 true WO2018139312A1 (ja) 2018-08-02

Family

ID=62978299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001209 WO2018139312A1 (ja) 2017-01-25 2018-01-17 レーザ加工機

Country Status (2)

Country Link
JP (1) JP6431937B2 (ja)
WO (1) WO2018139312A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968126B2 (ja) * 2019-06-26 2021-11-17 株式会社アマダ レーザ加工機の設定方法及びレーザ加工機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455082A (ja) * 1990-06-25 1992-02-21 Amada Co Ltd レーザ加工機
JP2008309590A (ja) * 2007-06-13 2008-12-25 Mitsubishi Electric Corp ノズル検査装置およびノズル検査方法
WO2013057935A1 (ja) * 2011-10-17 2013-04-25 株式会社 東芝 レーザ照射装置及びレーザ照射ヘッドの健全性診断方法
JP2015013297A (ja) * 2013-07-04 2015-01-22 三菱電機株式会社 レーザ加工機および、レーザ加工機の調整方法
WO2016093053A1 (ja) * 2014-12-08 2016-06-16 村田機械株式会社 レーザ加工機及びノズル装着方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811310B2 (ja) * 1986-08-06 1996-02-07 株式会社アマダ 複合式レーザ加工機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455082A (ja) * 1990-06-25 1992-02-21 Amada Co Ltd レーザ加工機
JP2008309590A (ja) * 2007-06-13 2008-12-25 Mitsubishi Electric Corp ノズル検査装置およびノズル検査方法
WO2013057935A1 (ja) * 2011-10-17 2013-04-25 株式会社 東芝 レーザ照射装置及びレーザ照射ヘッドの健全性診断方法
JP2015013297A (ja) * 2013-07-04 2015-01-22 三菱電機株式会社 レーザ加工機および、レーザ加工機の調整方法
WO2016093053A1 (ja) * 2014-12-08 2016-06-16 村田機械株式会社 レーザ加工機及びノズル装着方法

Also Published As

Publication number Publication date
JP6431937B2 (ja) 2018-11-28
JP2018118279A (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6412185B2 (ja) 工作機械システム
CN112955270B (zh) 层叠造形装置
EP1600247B1 (en) Nozzle checker for laser beam machine
JP6872974B2 (ja) 工具検査装置、加工機械、加工機械の工具検査方法
US20120234805A1 (en) Welding head and method for joining a workpiece
JP2019030917A (ja) 加工屑検出装置および工作機械
JP3761657B2 (ja) レーザ加工方法および装置
CN106024709B (zh) 晶片的分割方法
WO2018066576A1 (ja) 外観検査方法
JP2009082984A (ja) レーザ切断のためのデバイスおよび方法
US20160236351A1 (en) Robot system and robot control method for adjusting position of coolant nozzle
KR20150092320A (ko) 삼차원 레이저 가공기
JP6588704B2 (ja) 工具刃先の検出方法及び装置並びに工具補正値の設定装置
JP2006054464A (ja) ワイヤボンダ及び当該ワイヤボンダの動作方法
WO2018139312A1 (ja) レーザ加工機
JP4694675B2 (ja) 切削装置の撮像機構
JP2004243383A (ja) レーザ加工装置及びレーザ加工方法
JP4320601B2 (ja) ワーク位置決め装置および該装置を備えた加工機
WO2009093349A1 (ja) 外観検査装置
JP6818509B2 (ja) レーザ加工位置の撮像方法及びレーザ加工装置
JP6712881B2 (ja) ワーク加工装置
JP3063677B2 (ja) レーザ加工装置及びレーザ加工方法
CN110014373B (zh) 射流除锈控制方法
JP4469436B2 (ja) Yagレーザ加工機のティーチング方法及びその装置
JP6785214B2 (ja) 検査装置、および検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744737

Country of ref document: EP

Kind code of ref document: A1