WO2018138807A1 - モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ - Google Patents
モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ Download PDFInfo
- Publication number
- WO2018138807A1 WO2018138807A1 PCT/JP2017/002575 JP2017002575W WO2018138807A1 WO 2018138807 A1 WO2018138807 A1 WO 2018138807A1 JP 2017002575 W JP2017002575 W JP 2017002575W WO 2018138807 A1 WO2018138807 A1 WO 2018138807A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- motor
- voltage
- position sensor
- control unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/26—Arrangements for controlling single phase motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/06—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
- H02P7/18—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
- H02P7/24—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
- H02P7/28—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
- H02P7/285—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
- H02P7/29—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
Definitions
- the present invention relates to a motor drive device that drives a single-phase motor, an electric blower, a vacuum cleaner, and a hand dryer equipped with a single-phase motor that is driven by the motor drive device.
- a single-phase motor has the following advantages compared to a three-phase motor having three phases.
- a device using a single-phase motor can be made smaller than a device using a three-phase motor.
- the single-phase inverter When driving a single-phase motor with a single-phase inverter, the single-phase inverter is required to reduce harmonic components of the current flowing through the single-phase motor.
- Patent Document 1 discloses a pulse width modulation (PWM) control that controls a current supplied to a single-phase motor to a sine wave by controlling a voltage supplied to the single-phase motor in order to reduce harmonic components. Techniques to do this are disclosed.
- the current flowing through the single-phase motor may be simply referred to as “motor current”.
- Patent Document 2 discloses a method of switching output voltage pulses in response to switching of position sensor signals.
- Patent Document 3 discloses that in a control drive device of a three-phase sensorless DC brushless motor, the delay angle of the energization phase is changed according to the power consumption value obtained by detecting the direct current.
- JP 2012-257457 A Japanese Patent No. 5524925 Japanese Patent No. 3183071
- Patent Documents 1, 2, and 3 have a problem that a method for suppressing variations in driving rotational speed due to such a phase difference is not disclosed.
- the present invention has been made in view of the above, and is a motor drive that can suppress variation in the rotational speed of a drive caused by a position sensor position shift even when a single-phase motor driven by power supplied from a battery is used.
- the object is to obtain a device.
- a motor driving apparatus that drives a single-phase motor using a battery as a power source, and includes a plurality of switching elements, and includes a single-phase motor.
- a single-phase inverter that applies an AC voltage to a single-phase motor
- a position sensor that is attached to a single-phase motor, detects a rotor rotational position of the single-phase motor and outputs a rotational position detection signal, a voltage command and a rotational position detection signal
- a control unit that performs pulse width modulation control of the plurality of switching elements.
- the control unit includes a phase adjustment angle for adjusting a phase difference between the rotational position detection signal and the output voltage of the single-phase inverter, and a single-phase
- the advance angle adjustment width corresponding to the range of variation in the position of the position sensor attached to the motor is set, and the control unit uses the phase adjustment angle and the advance angle adjustment width to calculate the voltage command. Setting the advanced phase with respect to a specific rotation speed.
- the motor driving device has an effect that it is possible to suppress variations in the rotational speed of the drive caused by the positional deviation of the position sensor even when a single-phase motor driven by electric power supplied from a battery is used.
- FIG. 4 The block diagram which shows the structure of the motor drive system containing the motor drive device which concerns on embodiment Circuit diagram of single-phase inverter shown in FIG.
- the figure shown in detail of the carrier comparison part and carrier generation part which are shown in FIG. 4 is a time chart showing waveform examples of the positive voltage command, the negative voltage command, the PWM signal, and the motor applied voltage shown in FIG.
- the figure which shows the change of the inverter output voltage according to the modulation factor The figure which shows the function structure for calculating the advance angle phase input into the carrier production
- the figure which shows an example of the calculation method of advance angle phase The 1st figure which shows the positional relationship of a position sensor, a stator, and a rotor.
- the 2nd figure which shows the positional relationship of a position sensor, a stator, and a rotor.
- FIG. 1 is a block diagram showing a configuration of a motor drive system including a motor drive device according to an embodiment.
- a motor driving system 1 shown in FIG. 1 supplies a single-phase motor 12, a motor driving device 2 that drives the single-phase motor 12 by supplying AC power to the single-phase motor 12, and supplies DC power to the motor driving device 2.
- a power source 10 that is a DC power source, a voltage sensor 20 that detects a DC voltage V dc output from the power source 10 to the motor drive device 2, and a rotor rotational position that is a rotational position of the rotor 12 a built in the single-phase motor 12.
- the position sensor 21 to detect is provided.
- the single-phase motor 12 is used as a rotating electric machine that rotates an electric blower (not shown), and the electric blower and the single-phase motor 12 are mounted on devices such as a vacuum cleaner and a hand dryer.
- the voltage sensor 20 detects the DC voltage V dc , but the detection target of the voltage sensor 20 is not limited to the DC voltage V dc output from the power supply 10, and the output of the motor driving device 2. It may be an inverter output voltage that is a voltage. “Inverter output voltage” has the same meaning as “motor applied voltage” described later.
- the motor drive device 2 is connected to the single-phase motor 12 and converts the analog data that is the DC voltage V dc detected by the voltage sensor 20 and the single-phase inverter 11 that applies an AC voltage to the single-phase motor 12 into digital data. And an analog-digital converter 30.
- the motor drive device 2 performs switching in the single-phase inverter 11 based on the control unit 25 that generates the PWM signals Q1, Q2, Q3, and Q4, and the PWM signals Q1, Q2, Q3, and Q4 output from the control unit 25.
- a drive signal generator 32 that generates a drive signal for driving the element.
- the control unit 25 includes a DC voltage converted by the analog-digital converter 30, a position sensor signal 21a that is a rotational position detection signal output from the position sensor 21, and a rotational speed command value output from a device (not shown).
- PWM signals Q1, Q2, Q3, and Q4 are generated based on a certain rotation speed command.
- the position sensor signal 21 a is a binary digital signal that changes according to the direction of the magnetic flux generated in the rotor 12 a and is input to the control unit 25.
- the control unit 25 includes a processor 31, a carrier generation unit 33, and a memory 34.
- the processor 31 generates PWM signals Q1, Q2, Q3, and Q4 by PWM control.
- the processor 31 is a processing unit that performs various calculations related to PWM control and advance angle control.
- the function of the carrier comparison unit 38, the function of the rotation speed calculation unit 42, and the function of the advance phase calculation unit 44 described later are realized by the processor 31.
- the processor 31 may be called a CPU (Central Processing Unit), a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
- the memory 34 stores a program read by the processor 31.
- the memory 34 is used as a work area when the processor 31 performs arithmetic processing.
- the memory 34 is generally a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Programmable ROM), or an EEPROM (Electrically EPROM). Details of the configuration of the carrier generation unit 33 will be described later.
- the drive signal generation unit 32 converts the PWM signals Q1, Q2, Q3, and Q4 output from the processor 31 into drive signals for driving the single-phase inverter 11, and outputs the drive signals to the single-phase inverter 11.
- the single phase motor 12 is a brushless motor.
- a plurality of permanent magnets (not shown) are arranged in the circumferential direction on the rotor 12 a of the single-phase motor 12.
- the plurality of permanent magnets are arranged so that the magnetization direction is alternately reversed in the circumferential direction, and form a plurality of magnetic poles of the rotor 12a.
- a winding (not shown) is wound around the stator 12 b of the single-phase motor 12.
- the alternating current flowing through the winding corresponds to the “motor current” described above.
- the number of magnetic poles of the rotor 12a is four, but the number of magnetic poles of the rotor 12a may be other than four.
- FIG. 2 is a circuit configuration diagram of the single-phase inverter shown in FIG.
- the single-phase inverter 11 has a plurality of switching elements 51, 52, 53, and 54 that are bridge-connected.
- Each of the two switching elements 51 and 53 located on the high potential side is referred to as an upper arm switching element.
- Each of the two switching elements 52 and 54 located on the low potential side is referred to as a lower arm switching element.
- the connection end of the switching element 51 and the switching element 52 and the connection end of the switching element 53 and the switching element 54 constitute an AC end in the bridge circuit, and the single-phase motor 12 is connected to these AC ends.
- Each of the plurality of switching elements 51, 52, 53, 54 is a metal oxide semiconductor field effect transistor MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). MOSFET is an example of FET (Field-Effect Transistor).
- a body diode 51a connected in parallel between the drain and source of the switching element 51 is formed.
- a body diode 52a connected in parallel between the drain and source of the switching element 52 is formed.
- a body diode 53a connected in parallel between the drain and source of the switching element 53 is formed.
- the switching element 54 is formed with a body diode 54 a connected in parallel between the drain and source of the switching element 54.
- Each of the plurality of body diodes 51a, 52a, 53a, 54a is a parasitic diode formed inside the MOSFET, and is used as a freewheeling diode.
- At least one of the plurality of switching elements 51, 52, 53, and 54 is not limited to a MOSFET formed of a silicon-based material, but is formed of a wide band gap semiconductor such as silicon carbide, a gallium nitride-based material, or diamond.
- a MOSFET may be used.
- wide band gap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide band gap semiconductor for at least one of the plurality of switching elements 51, 52, 53, and 54, the withstand voltage and allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element Can be miniaturized.
- wide bandgap semiconductors have high heat resistance, so it is possible to reduce the size of the heat dissipation part to dissipate the heat generated in the semiconductor module, and simplify the heat dissipation structure that dissipates the heat generated in the semiconductor module. Is possible.
- FIG. 3 is a diagram showing a functional configuration for generating a PWM signal.
- FIG. 4 is a diagram showing details of the carrier comparison unit and the carrier generation unit shown in FIG. As described above, the function of generating the PWM signals Q1, Q2, Q3, and Q4 can be realized by the carrier generation unit 33 and the carrier comparison unit 38 illustrated in FIG.
- an advance angle phase ⁇ v and a reference phase ⁇ e that are used to generate a voltage command V m described later are input to the carrier comparison unit 38.
- the reference phase ⁇ e is a phase obtained by converting the rotor mechanical angle ⁇ m that is an angle from the reference position of the rotor 12a into an electrical angle.
- “advance angle phase” represents “advance angle”, which is the “advance angle” of the voltage command, in terms of phase.
- the “advance angle” here is a phase difference between a motor applied voltage applied to the stator winding by the single-phase inverter 11 and a motor induced voltage induced in a stator winding (not shown).
- the “advance angle” takes a positive value when the motor applied voltage is ahead of the motor induced voltage.
- the carrier comparison unit 38 includes the carrier generated by the carrier generation unit 33, the DC voltage V dc, and the voltage amplitude that is the amplitude value of the voltage command V m. Command V * is input.
- the carrier comparison unit 38 generates PWM signals Q1, Q2, Q3, and Q4 based on the carrier, the advance angle phase ⁇ v , the reference phase ⁇ e , the DC voltage V dc, and the voltage amplitude command V *.
- the carrier generation unit 33 is set with a carrier frequency f C [Hz], which is a carrier frequency.
- the arrowheads of the carrier frequency f C as an example of a carrier wave, a triangular wave carrier up and down between "0" and "1" is shown. Note that the PWM control of the single-phase inverter 11, there are a synchronous PWM control and the asynchronous PWM control, when the asynchronous PWM control, it is not necessary to synchronize the carrier to advance the phase theta v.
- the carrier comparison unit 38 includes an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38d, a multiplication unit 38f, an addition unit 38e, a comparison unit 38g, a comparison unit 38h, and an output inversion unit. 38i and an output inverting unit 38j.
- the absolute value calculator 38a calculates the absolute value
- is divided by the DC voltage V dc detected by the voltage sensor 20.
- the power supply 10 is a battery
- the battery voltage fluctuates, but by dividing the absolute value
- the multiplier unit 38c the sine of the reference phase theta e and advanced phase theta v is calculated, the sine value of the computed advanced phase theta v is multiplied by the output from the divider 38b.
- the voltage command V m that is the output of the multiplication unit 38c is multiplied by 1 ⁇ 2.
- the adder 38e 1 ⁇ 2 is added to the output of the multiplier 38d.
- the multiplier 38f multiplies the output of the adder 38e by -1.
- the output of the multiplier 38f is input to the comparator 38h as a negative voltage command V m2 for driving the two switching elements 52 and 54 of the lower arm.
- the output of the comparison unit 38g becomes the PWM signal Q1 to the switching element 51, and the output of the output inversion unit 38i obtained by inverting the output of the comparison unit 38g becomes the PWM signal Q2 to the switching element 52.
- the output of the comparison unit 38h is a PWM signal Q3 to the switching element 53, and the output of the output inversion unit 38j obtained by inverting the output of the comparison unit 38h is the PWM signal Q4 to the switching element 54.
- the switching element 51 and the switching element 52 are not simultaneously turned on by the output inverting part 38i, and the switching element 53 and the switching element 54 are not simultaneously turned on by the output inverting part 38j.
- FIG. 5 is a time chart showing examples of waveforms of the positive side voltage command, the negative side voltage command, the PWM signal, and the motor applied voltage shown in FIG.
- the waveform of the voltage command V m1 output from the adder 38e the waveform of the voltage command V m2 output from the multiplier 38f, and the waveforms of the PWM signals Q1, Q2, Q3, and Q4
- the waveform of the motor applied voltage is shown.
- PWM signals Q1, Q2, Q3, and Q4 are generated by using voltage commands V m1 and V m2 .
- bipolar modulation that outputs a voltage pulse that changes at a positive or negative potential, and changes at three potentials every half cycle of the power supply.
- a voltage pulse that is, unipolar modulation that outputs a voltage pulse that changes to a positive potential, a negative potential, and a zero potential.
- the waveform shown in FIG. 5 is due to unipolar modulation. Any modulation method may be used for the motor drive device 2 according to the embodiment. In applications where it is necessary to control the motor current waveform to a sine wave, it is preferable to employ unipolar modulation with a lower harmonic content than bipolar modulation.
- FIG. 6 is a diagram showing changes in the inverter output voltage according to the modulation rate.
- the lower part of FIG. 6 shows the voltage command V m , the carrier, and the inverter output voltage when the modulation factor is 2.0.
- the voltage command V m1 is compared with the carrier in the comparison unit 38g, and the voltage command V m2 is compared with the carrier in the comparison unit 38h.
- voltage command Vm1,2 is larger than the carrier, the switching element of single-phase inverter 11 is turned on, and when voltage command Vm1,2 is smaller than the carrier, the switching element of single-phase inverter 11 is turned off. .
- the PWM output inverter output voltage is applied to the single-phase motor 12.
- the modulation rate there are various modulation rate definitions.
- the ratio between the voltage amplitude command V * and the amplitude of the triangular wave carrier that is, “voltage amplitude command V * / triangular wave carrier amplitude” is defined as the modulation rate.
- the upper part of FIG. 6 shows a waveform when the modulation rate is 1.0, but the same waveform is obtained when the modulation rate is less than 1.0.
- the inverter output voltage is generated according to the frequency of the triangular wave carrier, and therefore, the inverter output voltage also outputs a voltage pulse corresponding to the carrier frequency.
- the modulation factor exceeds 1.0
- the waveforms are as shown in the middle and lower parts of FIG.
- the modulation rate exceeds 1.0 it is called “overmodulation”, and the region where the modulation rate exceeds 1.0 is called “overmodulation region”.
- the overmodulation region since the voltage command V m exceeds the carrier amplitude, there is a section in which an inverter drive signal cannot be generated according to the carrier frequency.
- the inverter output voltage is fixed to a positive power supply voltage or a negative power supply voltage, the inverter output voltage can obtain a larger output voltage than when the modulation factor is 1.
- the battery has an internal impedance as a structure, and the battery output voltage varies greatly according to the current output from the battery. Specifically, it is known that when a current of 20 [A] flows in a battery of 20 [V], the battery output voltage is reduced to approximately 19.5 [V]. Further, when the above-described modulation factor is in the region of 1 or more, there is a problem that the output voltage cannot be accurately obtained with respect to the voltage command because the output voltage pulse decreases. Furthermore, since the battery current becomes a pulsating current due to the influence of switching by the inverter, it is known that the voltage output from the battery also pulsates. To solve these problems, it is possible to suppress both variations in the voltage supplied from the battery to the inverter and variations in the voltage output from the inverter by sequentially changing the advance angle without making it constant.
- FIG. 7 is a diagram illustrating a functional configuration for calculating the advance phase input to the carrier generation unit and the carrier comparison unit illustrated in FIGS. 3 and 4.
- Functions for calculating the advance phase theta v can be realized by the rotation speed calculating portion 42 and the advanced angle phase calculation section 44 as shown in FIG.
- Rotation speed calculation unit 42 calculates the rotation speed ⁇ of the single-phase motor 12 based on the further is the angle rotor mechanical angle theta m the reference phase in terms of electrical angle from the reference position of the rotor 12a ⁇ e is calculated.
- the advance phase calculation unit 44 calculates the advance phase ⁇ v based on the information about the rotation speed ⁇ and the reference phase ⁇ e calculated by the rotation speed calculation unit 42.
- FIG. 8 is a diagram illustrating an example of a method for calculating the advance phase.
- the horizontal axis in FIG. 8 is the rotational speed
- the vertical axis in FIG. 8 is the advance phase.
- Advanced angle phase theta v may be determined using a function advanced phase theta v increases with increasing rotational speed N.
- the advance phase ⁇ v is determined by a linear function, but the present invention is not limited to this, and the advance phase ⁇ v increases as the rotational speed increases.
- a function other than the following linear function may be used.
- the advance angle adjustment width ⁇ del indicates a variation range of the attachment position of the position sensor 21.
- FIG. 9 is a first diagram showing a positional relationship among the position sensor, the stator, and the rotor.
- FIG. 10 is a second diagram illustrating the positional relationship among the position sensor, the stator, and the rotor.
- the center line CL is a line passing through the center between the two teeth 12b1 adjacent to the rotation direction D1 of the rotor 12a and the center axis AX of the rotor 12a.
- the position sensor 21 shown in FIG. 9 is arranged between the two teeth 12b1, and the center of the position sensor 21 in the rotation direction D1 coincides with the center line CL.
- the position sensor 21 shown in FIG. 10 is disposed between the two teeth 12b1, and the center of the position sensor 21 in the rotation direction D1 is shifted from the center line CL.
- phase calculation is performed on the assumption that the position sensor 21 is arranged so that the center between adjacent teeth 12b1 and the center of the position sensor 21 coincide.
- the position sensor 21 is fixed at a position where the center of the position sensor 21 is shifted from the center between the adjacent teeth 12b1. Therefore, a phase shift, that is, a phase difference occurs between the position sensor signal 21a and the induced voltage due to the position shift amount. If it is known in advance that the center of the position sensor 21 is deviated from the center between the adjacent teeth 12b1, the phase is calculated in consideration of the deviation amount.
- FIG. 11 is a diagram showing a position sensor signal and a motor induced voltage.
- the waveform of the dotted motor-induced voltage is obtained when the position sensor 21 is arranged so that the center between the adjacent teeth 12b1 and the center of the position sensor 21 coincide with each other. It is a waveform when it does not occur.
- the solid-line motor-induced voltage waveform is obtained when the position sensor 21 is arranged so that the center between adjacent teeth 12b1 and the center of the position sensor 21 are shifted, that is, a positional shift occurs. It is a waveform when it is.
- a case where no positional deviation occurs is denoted as “no positional deviation”
- a case where a positional deviation occurs is denoted as “positional deviation”.
- the edge of the position sensor signal 21a coincides with the zero cross point of the motor induced voltage, and the phase difference becomes zero. Note that the edge of the position sensor signal 21a indicates the rise time of the signal or the fall time of the signal. However, when the position sensor 21 is displaced, the edge of the position sensor signal 21a does not coincide with the zero cross point of the motor induced voltage, and a phase difference occurs between the position sensor signal and the motor induced voltage.
- the degree of influence on the motor control due to the positional deviation of the position sensor 21 varies depending on the rotor diameter of the rotor 12a provided in the single-phase motor 12 to be controlled and the number of magnetic poles included in the rotor 12a. To do. The smaller the rotor diameter, the greater the change in phase according to the distance of the arc on the outer peripheral surface of the rotor. Further, as the number of magnetic poles increases, the electrical angle change rate during one rotation of the rotor 12a increases. Therefore, the phase difference increases as the rotor diameter decreases and the number of magnetic poles of the magnet increases.
- the phase difference between the induced voltage and the position sensor signal 21a due to the positional deviation causes a phase difference different from the actual phase even if the advance phase with respect to the rotation speed set in the motor control is given.
- a voltage is applied to the motor.
- voltages are applied at different phases, there arises a problem that the rotational speed does not increase to a specific value.
- the position sensor 21 is displaced by using a method in which the phase is changed in the range of the advance angle adjustment width ⁇ del and is fixed at the phase at which the rotational speed is set in advance. Even when it occurs, a specific rotational speed can be obtained.
- the maximum value of the positional deviation of the position sensor 21 is set as the advance angle adjustment width ⁇ del. can do.
- the maximum value of the advance angle adjustment width ⁇ del is not set as described above, in the motor control, since the rotation speed is attempted to be higher than the maximum value of the advance angle adjustment width ⁇ del, the control may fail. Therefore, stable control can be realized by determining the advance angle adjustment width ⁇ del in advance.
- FIG. 12 is a flowchart for explaining the operation for determining the advance phase.
- the control unit 25 calculates the number of rotations determined according to the time between the edges of the position sensor 21 (S1).
- the control unit 25 compares the calculated rotational speed with the set target rotational speed (S2).
- the control unit 25 updates the phase adjustment angle ⁇ adj by adding a predetermined phase adjustment angle ⁇ adj to the phase adjustment angle ⁇ adj ( S3).
- step S2 If the current rotational speed exceeds the target rotational speed (step S2, No), the control unit 25 updates the phase adjustment angle ⁇ adj by subtracting the phase adjustment angle ⁇ adj from the phase adjustment angle ⁇ adj (S4).
- the control unit 25 compares the phase adjustment angle ⁇ adj with the advance angle adjustment width ⁇ del (S5).
- the control unit 25 advances the phase adjustment angle ⁇ adj to advance so that the phase adjustment angle ⁇ adj does not become larger than the advance angle adjustment width ⁇ del.
- the adjusted width Derutashitadel adds the phase adjustment angle ⁇ adj obtained in S3 or S4 in the advance phase ⁇ v (S7). Thereby, the control unit 25 derives a final voltage command V m (S8).
- step S5 If the phase adjustment angle ⁇ adj is less than the advance adjustment range Derutashitadel (step S5, No), the control unit 25 executes the processing of S7, the deriving the final voltage command V m (S8).
- control example of the present embodiment is limited to control in which the rotational speed follows the target rotational speed.
- Sarezu may be a control for adjusting the advance phase theta v so as to obtain the maximum speed.
- the rotor position cannot be directly detected, and a method of estimating the rotor rotational position from the motor current is generally used. In this case, since an error between the estimated rotor rotational position and the actual rotor rotational position occurs, it is known to adjust the advance angle by motor control.
- the position sensor signal can be read directly, so that the position between the magnetic poles can be grasped. Since it becomes easy to grasp the rotor rotation position, in the DC brushless motor with a position sensor, there are few cases where the correction due to the variation in the mounting position of the position sensor 21 is performed by motor control. By correcting the advance angle with the DC brushless motor with position sensor, the influence on the motor control due to the variation in the mounting position of the position sensor 21 is suppressed, and high-precision control according to the rotor position can be realized. .
- the control unit 25 reduces the phase adjustment angle ⁇ adj because the influence of the rotational speed variation due to the advance phase becomes large. Further, when the battery voltage decreases, the maximum output power decreases due to the limitation of the discharge current. Therefore, the control unit 25 can shorten the time until the maximum rotation speed is reached by increasing the phase adjustment angle ⁇ adj when the battery voltage decreases.
- FIG. 13 is a diagram illustrating the relationship among the position sensor signal, the rotor mechanical angle, the reference phase, and the voltage command.
- the lowermost portion of FIG. 13, the rotor mechanical angle theta m when the rotor 12a is rotated in the clockwise direction is 0 °, 45 °, 90 °
- the single-phase motor 12 is 135 ° and 180 ° are shown.
- Four magnets are provided on the rotor 12 a of the single-phase motor 12.
- Four teeth 12b1 are provided on the outer periphery of the rotor 12a.
- the control unit 25 If the rotor 12a is rotated clockwise, the control unit 25, the position sensor signal 21a corresponding to the rotor mechanical angle theta m is detected, it converted to an electrical angle in accordance with the detected position sensor signals 21a the reference phase theta e is calculated.
- a sinusoidal voltage command V m having the same phase as the reference phase ⁇ e is output.
- the amplitude of the voltage command V m at this time is determined based on the voltage amplitude command V * as described above.
- a component of the advance angle phase ⁇ v from the reference phase ⁇ e that is, a sine wave voltage command V m advanced by ⁇ / 4 is output.
- FIG. 14 is a diagram showing a time change of the voltage amplitude command.
- the voltage amplitude command V * is an operation mode that changes stepwise according to time t, as shown. Specifically, first, a constant first voltage V 1 set in advance is applied at the time of startup, and a constant second voltage V 2 greater than the first voltage V 1 is applied during steady operation after acceleration. . Further, at the time of acceleration is changed from the first voltages V 1 to the second voltage V 2, to raise the voltage amplitude command V * as acceleration rate set in advance is obtained. That is, in the present embodiment, the voltage amplitude command V * is controlled to be constant during startup and during steady operation. At the time of start-up, the time ⁇ 1 for applying the first voltage V1 can be set to an arbitrary time in consideration of the stabilization time of the control system.
- the above effect is effective for an application where the load varies depending on the contact area between the suction port of the vacuum cleaner and the floor, such as a vacuum cleaner.
- an overcurrent may flow through the motor.
- the reason why the overcurrent flows is that the current fluctuates abruptly in order to keep the rotation speed constant when the load fluctuates. More specifically, when the rotational speed constant control is performed when the state is changed from the “light load” state, that is, the “load torque is small state” to the “heavy load state”, that is, the “load torque is large state”, This is because the motor output torque must be increased in order to maintain the same rotation speed, and the amount of change in motor current increases.
- the voltage amplitude command V * is controlled to be constant during steady operation.
- the voltage amplitude command V * is constant, the voltage amplitude command V * is not changed when the load becomes heavy, and therefore the motor rotation speed decreases as the load torque increases.
- the load torque increases with an increase in the number of rotations of the blades, which is the load of the motor, and also increases with an increase in the diameter of the air passage.
- the diameter of the air passage represents the size of the suction port when an electric vacuum cleaner is taken as an example.
- the diameter of the air passage is wide, if nothing is in contact with the suction port, a force for sucking in the wind is required, so that the load torque when the blades are rotating at the same rotational speed is increased.
- the diameter of the air passage is narrow, when the suction port is in contact with something and is blocked, the force for sucking in the wind is no longer necessary, so the load torque when the blades are rotating at the same rotation speed is small. Become.
- the voltage command is made constant regardless of the change in the suction port closing state, that is, regardless of the load torque, and according to the increase in the rotational speed. It suffices to increase the advance phase theta v is a lead angle of the voltage command Te. By controlling in this way, stable driving is possible in a wide rotational speed range. Further, by providing the advance angle adjustment width, it is possible to suppress the influence on the driving rotational speed even when the position sensor 21 is displaced.
- FIG. 15 is a first diagram showing a motor current path according to the polarity of the inverter output voltage.
- FIG. 16 is a second diagram showing a motor current path according to the polarity of the inverter output voltage.
- FIG. 17 is a third diagram showing the path of the motor current depending on the polarity of the inverter output voltage.
- the current flows into the single-phase motor 12 through the channel of the switching element 51, which is the upper arm of the first phase, as shown by the thick solid line (a) in FIG. It flows out of the single-phase motor 12 through the channel of the switching element 54 which is a two-phase lower arm. Further, when the polarity of the inverter output voltage is negative, the current flows into the single-phase motor 12 through the channel of the switching element 53 which is the upper arm of the second phase, as shown by the thick broken line (b) in FIG. And flows out of the single-phase motor 12 through the channel of the switching element 52 which is the lower arm of the first phase.
- the conduction loss is smaller when a current is passed through a MOSFET channel than when a current is passed in the forward direction of a diode. Therefore, in the present embodiment, in the return mode in which the return current flows, the MOSFET on the side having the body diode is controlled to be turned on in order to reduce the current flowing through the body diode.
- the switching element 52 is controlled to be turned on at the timing when the reflux current shown by the thick solid line (c) in FIG. 16 flows. If controlled in this way, as indicated by a thick solid line (e) in FIG. 17, most of the reflux current flows through the channel side of the switching element 52 having a small resistance value. Thereby, the semiconductor loss in the switching element 52 is reduced. Further, at the timing when the return current indicated by the thick broken line (d) in FIG. 16 flows, the switching element 51 is controlled to be on. If controlled in this way, as shown by a thick broken line (f) in FIG. 17, most of the reflux current flows through the channel side of the switching element 51 having a small resistance value. Thereby, the semiconductor loss in the switching element 51 is reduced.
- the loss of the switching element can be reduced by turning on the MOSFET on the side having the body diode at the timing when the reflux current flows through the body diode.
- the structure of the MOSFET is made a surface mount type so that heat can be radiated on the substrate, and if necessary, part or all of the switching element is formed of a wide band gap semiconductor, so that the MOSFET generates heat only on the substrate.
- the structure which suppresses is realized. Note that if heat can be radiated only by the substrate, a heat sink is unnecessary, which contributes to the miniaturization of the inverter and can lead to the miniaturization of the product.
- the air passage is a portion that generates an air flow, such as an electric blower, or an air flow passage generated by the electric blower.
- FIG. 18 is a configuration diagram of a vacuum cleaner provided with the motor drive device according to the embodiment.
- the vacuum cleaner 61 includes a battery 67 that is a DC power source, the motor driving device 2 shown in FIG. 1, the electric blower 64 that is driven by the single-phase motor 12 shown in FIG. 1, a dust collection chamber 65, and a sensor. 68, a suction port 63, an extension pipe 62, and an operation unit 66.
- the battery 67 corresponds to the power supply 10 shown in FIG.
- the user who uses the vacuum cleaner 61 has the operation unit 66 and operates the vacuum cleaner 61.
- the motor driving device 2 of the electric vacuum cleaner 61 drives the electric blower 64 using the battery 67 as a power source.
- the electric blower 64 is driven, dust is sucked from the suction port body 63, and the sucked dust is collected in the dust collecting chamber 65 via the extension pipe 62.
- the electric vacuum cleaner 61 is a product whose motor rotation speed varies from 0 [rpm] to 100,000 [rpm].
- the control method according to the above-described embodiment is suitable.
- constant voltage amplitude command V * by changing the advanced angle phase theta v in accordance with the rotational speed, it is possible while expanding the rotational speed drive range from a low speed to a high speed rotation region, corresponding to the sudden load change.
- the motor current can be controlled to a sine wave by PWM control, high-efficiency driving can be achieved, so that the operation time can be extended.
- a product equipped with a small motor such as the electric vacuum cleaner 61 is greatly affected by the phase difference due to variations in the mounting position of the position sensor 21, and greatly affects the control. Therefore, generally, the amount of displacement of the position sensor 21 is measured in advance in manufacturing, and the vacuum cleaner 61 performs control in consideration of the amount of displacement of the position sensor 21.
- the manufacturing cost increases because a process of measuring the positional deviation amount of the position sensor 21 occurs in the manufacturing process. Therefore, it is possible to improve the product quality at low cost by realizing motor control that suppresses the influence of the position sensor position shift without measuring the position shift amount of the position sensor 21.
- the vacuum cleaner 61 according to the embodiment can be reduced in size and weight by reducing the heat dissipation parts described above. Furthermore, since the vacuum cleaner 61 does not require a current sensor for detecting current and does not require a high-speed analog-digital converter, the cost can be reduced.
- FIG. 19 is a configuration diagram of a hand dryer provided with the motor drive device according to the embodiment.
- the hand dryer 90 includes a motor drive device 2, a casing 91, a hand detection sensor 92, a water receiver 93, a drain container 94, a cover 96, a sensor 97, an intake port 98, and an electric blower 95.
- the sensor 97 is either a gyro sensor or a human sensor.
- the water is blown off by the air blow by the electric blower 95, and the blown water is collected by the water receiver 93. After that, it is stored in the drain container 94.
- the hand dryer 90 is a product in which the motor speed fluctuates from 0 [rpm] to 100,000 [rpm], similarly to the electric vacuum cleaner 61 shown in FIG. For this reason, also in the hand dryer 90, the control method which concerns on embodiment mentioned above is suitable, and the effect similar to the vacuum cleaner 61 can be acquired.
- FIG. 20 is a diagram for explaining the modulation control in the motor driving apparatus according to the embodiment.
- the relationship between the rotational speed and the modulation rate is shown.
- a waveform of the inverter output voltage when the modulation rate is 1 or less and a waveform of the inverter output voltage when the modulation rate exceeds 1 are shown.
- the load torque of the rotating body increases as the number of rotations increases. For this reason, it is necessary to increase the motor output torque as the rotational speed increases.
- the motor output torque increases in proportion to the motor current, and the inverter output voltage needs to be increased to increase the motor current. Therefore, the number of revolutions can be increased by increasing the modulation rate and increasing the inverter output voltage.
- region between said (A) and said (B) is a gray zone, and depending on a use, it may be contained in a low-speed rotation area, and may be included in a high-speed rotation area.
- the modulation rate is set to a value larger than 1.
- the modulation factor above 1
- the increase in switching loss can be suppressed by increasing the inverter output voltage and reducing the number of switching operations performed by the switching elements in the inverter.
- the modulation rate exceeds 1, the motor output voltage increases, but since the number of switching times decreases, there is a concern about current distortion.
- the reactance component of the motor increases and di / dt, which is a change component of the motor current, decreases. Therefore, current distortion is smaller than in the low speed rotation range, and the influence on waveform distortion is small.
- the modulation rate is set to a value larger than 1 and control is performed to reduce the number of switching pulses. By this control, an increase in switching loss can be suppressed and higher efficiency can be achieved.
- the control unit 25 is set with a first rotation speed that determines the boundary between the low-speed rotation region and the high-speed rotation region, and the control unit 25 is configured when the rotation speed of the motor or the load is equal to or lower than the first rotation speed.
- the modulation rate is set to 1 or less, and when the rotational speed of the motor or load exceeds the first rotational speed, the modulation rate may be set to exceed 1.
- the motor driving device 2 is applicable to general electric equipment in which a motor is mounted. can do.
- Electrical equipment equipped with motors is incinerator, crusher, dryer, dust collector, printing machine, cleaning machine, confectionery machine, tea making machine, woodworking machine, plastic extruder, cardboard machine, packaging machine, hot air generator, object It is a device equipped with an electric blower, such as transportation, dust absorption, general air supply / exhaust, or OA equipment.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
モータ駆動装置(2)は、単相モータ(12)に交流電圧を印加する単相インバータ11と、単相モータ(12)に取り付けられ、単相モータ(12)のロータ回転位置を検出して回転位置検出信号である位置センサ信号(21a)を出力する位置センサ21と、電圧指令と回転位置検出信号である位置センサ信号(21a)とに基づいて、複数のスイッチング素子をパルス幅変調制御する制御部(25)とを備え、制御部(25)には、回転位置検出信号である位置センサ信号(21a)と単相インバータ(11)の出力電圧との位相差を調整するための位相調整角と、単相モータ(12)への位置センサ(21)の取り付け位置のばらつき範囲に相当する進角調整幅とが設定され、制御部(25)は、位相調整角と進角調整幅とを用いて、電圧指令の演算に用いられ特定の回転数に対する進角位相を設定する。
Description
本発明は、単相モータを駆動するモータ駆動装置、モータ駆動装置によって駆動される単相モータを搭載した電動送風機、電気掃除機及びハンドドライヤに関する。
単相モータには、相数が3つの三相モータと比較して以下の利点がある。
(1)三相モータには三相インバータを用いる必要があるのに対し、単相モータには、三相インバータよりも構成が簡素化された単相インバータを用いればよい。
(2)フルブリッジインバータを用いた三相インバータは6つのスイッチング素子が必要であるのに対し、単相モータは、フルブリッジインバータを用いたとしても、4つのスイッチング素子で構成できる。
(3)上記(1)及び(2)の特徴により、単相モータを用いた装置は、三相モータを用いた装置に比べて、小型化が可能である。
(1)三相モータには三相インバータを用いる必要があるのに対し、単相モータには、三相インバータよりも構成が簡素化された単相インバータを用いればよい。
(2)フルブリッジインバータを用いた三相インバータは6つのスイッチング素子が必要であるのに対し、単相モータは、フルブリッジインバータを用いたとしても、4つのスイッチング素子で構成できる。
(3)上記(1)及び(2)の特徴により、単相モータを用いた装置は、三相モータを用いた装置に比べて、小型化が可能である。
単相モータを単相インバータで駆動する場合、単相インバータには、単相モータに流れる電流の高調波成分を低減することが求められる。
特許文献1には、高調波成分を低減するため、単相モータに供給する電圧を制御することによって、単相モータに流す電流を正弦波に制御するパルス幅変調(Pulse Width Moduration:PWM)制御する技術が開示されている。単相モータに流れる電流は、以下では単に「モータ電流」と称する場合がある。
特許文献2には、位置センサ信号の切り替わりに応じて出力電圧パルスを切り替える方法が開示されている。
特許文献3には、三相のセンサレスDCブラシレスモータの制御駆動装置において、直流電流を検出して得た消費電力の値に応じて、通電位相の遅延角度を変化させることが開示されている。
しかしながら電気掃除機に搭載されるモータのように、小径でありかつ高速回転が要求されるモータを駆動するモータ駆動装置では、位置センサの取り付け位置にずれが生じた場合、位置センサ信号とモータ誘起電圧との間に位相差が生じてしまい、駆動回転数にばらつきが発生する。特許文献1,2,3には、このような位相差に起因した駆動回転数のばらつきを抑制する方法が開示されていないといった課題があった。
本発明は、上記に鑑みてなされたものであって、バッテリから供給される電力で駆動する単相モータを使用する場合でも位置センサの位置ずれに起因した駆動回転数のばらつきを抑制できるモータ駆動装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係るモータ駆動装置は、バッテリを電源として単相モータを駆動するモータ駆動装置であって、複数のスイッチング素子を備え、単相モータに交流電圧を印加する単相インバータと、単相モータに取り付けられ、単相モータのロータ回転位置を検出して回転位置検出信号を出力する位置センサと、電圧指令と回転位置検出信号とに基づいて、複数のスイッチング素子をパルス幅変調制御する制御部とを備え、制御部には、回転位置検出信号と単相インバータの出力電圧との位相差を調整するための位相調整角と、単相モータへの位置センサの取り付け位置のばらつき範囲に相当する進角調整幅とが設定され、制御部は、位相調整角と進角調整幅とを用いて、電圧指令の演算に用いられ特定の回転数に対する進角位相を設定する。
本発明に係るモータ駆動装置は、バッテリから供給される電力で駆動する単相モータを使用する場合でも位置センサの位置ずれに起因した駆動回転数のばらつきを抑制できる、という効果を奏する。
以下に、本発明の実施の形態に係るモータ駆動装置、電動送風機、電気掃除機及びハンドドライヤを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
図1は実施の形態に係るモータ駆動装置を含むモータ駆動システムの構成を示すブロック図である。図1に示すモータ駆動システム1は、単相モータ12と、単相モータ12に交流電力を供給して単相モータ12を駆動するモータ駆動装置2と、モータ駆動装置2に直流電力を供給する直流電源である電源10と、電源10からモータ駆動装置2に出力される直流電圧Vdcを検出する電圧センサ20と、単相モータ12に内蔵されるロータ12aの回転位置であるロータ回転位置を検出する位置センサ21とを備える。
図1は実施の形態に係るモータ駆動装置を含むモータ駆動システムの構成を示すブロック図である。図1に示すモータ駆動システム1は、単相モータ12と、単相モータ12に交流電力を供給して単相モータ12を駆動するモータ駆動装置2と、モータ駆動装置2に直流電力を供給する直流電源である電源10と、電源10からモータ駆動装置2に出力される直流電圧Vdcを検出する電圧センサ20と、単相モータ12に内蔵されるロータ12aの回転位置であるロータ回転位置を検出する位置センサ21とを備える。
単相モータ12は不図示の電動送風機を回転させる回転電機として利用され、当該電動送風機及び単相モータ12は、電気掃除機及びハンドドライヤといった装置に搭載される。
なお本実施の形態では電圧センサ20が直流電圧Vdcを検出しているが、電圧センサ20の検出対象は、電源10から出力される直流電圧Vdcに限定されず、モータ駆動装置2の出力電圧であるインバータ出力電圧でもよい。「インバータ出力電圧」は後述する「モータ印加電圧」と同義である。
モータ駆動装置2は、単相モータ12に接続され、単相モータ12に交流電圧を印加する単相インバータ11と、電圧センサ20により検出された直流電圧Vdcであるアナログデータをディジタルデータに変換するアナログディジタル変換器30とを備える。
またモータ駆動装置2は、PWM信号Q1,Q2,Q3,Q4を生成する制御部25と、制御部25から出力されたPWM信号Q1,Q2,Q3,Q4に基づいて単相インバータ11内のスイッチング素子を駆動するための駆動信号を生成する駆動信号生成部32と、を備える。制御部25は、アナログディジタル変換器30で変換された直流電圧と、位置センサ21から出力された回転位置検出信号である位置センサ信号21aと、図示しない装置から出力される回転速度の指令値である回転数指令とに基づいて、PWM信号Q1,Q2,Q3,Q4を生成する。位置センサ信号21aは、ロータ12aで発生する磁束の方向に応じて変化する二値のディジタル信号であり、制御部25に入力される。
制御部25は、プロセッサ31、キャリア生成部33及びメモリ34を有する。プロセッサ31は、PWM制御によりPWM信号Q1,Q2,Q3,Q4を生成する。
プロセッサ31は、PWM制御及び進角制御に関する各種演算を行う処理部である。後述するキャリア比較部38の機能と、回転速度算出部42の機能と、進角位相算出部44の機能は、プロセッサ31によって実現される。プロセッサ31は、CPU(Central Processing Unit)、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)と称されるものでもよい。
メモリ34には、プロセッサ31によって読みとられるプログラムが保存される。メモリ34は、プロセッサ31が演算処理を行う際の作業領域として使用される。メモリ34は、RAM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリが一般的である。キャリア生成部33の構成の詳細は後述する。
駆動信号生成部32は、プロセッサ31から出力されたPWM信号Q1,Q2,Q3,Q4を、単相インバータ11を駆動するための駆動信号に変換して、単相インバータ11に出力する。
単相モータ12はブラシレスモータである。単相モータ12のロータ12aには、図示しない複数個の永久磁石が周方向に配列されている。これらの複数個の永久磁石は、着磁方向が周方向に交互に反転するように配置され、ロータ12aの複数個の磁極を形成する。単相モータ12のステータ12bには図示しない巻線が巻まかれている。当該巻線に流れる交流電流が前述した「モータ電流」に相当する。本実施の形態ではロータ12aの磁極数が4極とされるが、ロータ12aの磁極数は4極以外でもよい。
図2は図1に示す単相インバータの回路構成図である。単相インバータ11は、ブリッジ接続された複数のスイッチング素子51,52,53,54を有する。高電位側に位置する2つのスイッチング素子51,53のそれぞれは、上アームのスイッチング素子と称される。低電位側に位置する2つのスイッチング素子52,54のそれぞれは、下アームのスイッチング素子と称される。スイッチング素子51とスイッチング素子52との接続端、及びスイッチング素子53とスイッチング素子54との接続端は、ブリッジ回路における交流端を構成し、これらの交流端には単相モータ12が接続される。
複数のスイッチング素子51,52,53,54のそれぞれは、金属酸化膜半導体電界効果型トランジスタであるMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が使用される。MOSFETはFET(Field-Effect Transistor)の一例である。
スイッチング素子51には、スイッチング素子51のドレインとソースとの間に並列接続されるボディダイオード51aが形成される。スイッチング素子52には、スイッチング素子52のドレインとソースとの間に並列接続されるボディダイオード52aが形成される。スイッチング素子53には、スイッチング素子53のドレインとソースとの間に並列接続されるボディダイオード53aが形成される。スイッチング素子54には、スイッチング素子54のドレインとソースとの間に並列接続されるボディダイオード54aが形成される。複数のボディダイオード51a,52a,53a,54aのそれぞれは、MOSFETの内部に形成される寄生ダイオードであり、還流ダイオードとして使用される。
複数のスイッチング素子51,52,53,54の内の少なくとも一つは、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったワイドバンドギャップ半導体により形成されたMOSFETでもよい。
一般的にワイドバンドギャップ半導体はシリコン半導体に比べて耐電圧および耐熱性が高い。そのため、複数のスイッチング素子51,52,53,54の内の少なくとも一つにワイドバンドギャップ半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。またワイドバンドギャップ半導体は、耐熱性も高いため、半導体モジュールで発生した熱を放熱するための放熱部の小型化が可能であり、また半導体モジュールで発生した熱を放熱する放熱構造の簡素化が可能である。
図3はPWM信号を生成するための機能構成を示す図である。図4は図3に示すキャリア比較部及びキャリア生成部の詳細に示す図である。前述したように、PWM信号Q1,Q2,Q3,Q4を生成する機能は、図3に示すキャリア生成部33及びキャリア比較部38によって実現できる。
図3においてキャリア比較部38には、後述する電圧指令Vmを生成するときに用いる進角制御された進角位相θvと基準位相θeとが入力される。基準位相θeは、ロータ12aの基準位置からの角度であるロータ機械角θmを電気角に換算した位相である。ここで、「進角位相」とは、電圧指令の「進み角」である「進角」を位相で表したものである。また、ここでいう「進み角」とは、単相インバータ11がステータ巻線に印加するモータ印加電圧と、図示しないステータ巻線に誘起されるモータ誘起電圧との間の位相差である。なお、モータ印加電圧がモータ誘起電圧よりも進んでいるときに「進み角」は正の値をとる。
またキャリア比較部38には、進角位相θv及び基準位相θe以外にも、キャリア生成部33で生成されたキャリアと、直流電圧Vdcと、電圧指令Vmの振幅値である電圧振幅指令V*とが入力される。キャリア比較部38は、キャリア、進角位相θv、基準位相θe、直流電圧Vdc及び電圧振幅指令V*に基づいて、PWM信号Q1,Q2,Q3,Q4を生成する。
キャリア生成部33には、キャリアの周波数であるキャリア周波数fC[Hz]が設定される。キャリア周波数fCの矢印の先には、キャリア波形の一例として、“0”と“1”との間を上下する三角波キャリアが示される。なお単相インバータ11のPWM制御には、同期PWM制御と非同期PWM制御とがあるが、非同期PWM制御の場合、進角位相θvにキャリアを同期させる必要はない。
キャリア比較部38は、図4に示すように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38d、乗算部38f、加算部38e、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。
絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧センサ20で検出された直流電圧Vdcによって除算される。電源10がバッテリである場合、バッテリ電圧が変動するが、絶対値|V*|を直流電圧Vdcで除算することにより、バッテリ電圧の低下によってモータ印加電圧が低下しないように、変調率を増加させることができる。
乗算部38cでは、基準位相θe及び進角位相θvの正弦値が演算され、演算された進角位相θvの正弦値が除算部38bの出力に乗算される。乗算部38dでは、乗算部38cの出力である電圧指令Vmに1/2が乗算される。加算部38eでは、乗算部38dの出力に1/2が加算される。乗算部38fでは、加算部38eの出力に-1が乗算される。ここで、加算部38eの出力は、複数のスイッチング素子51,52,53,54の内、上アームの2つのスイッチング素子51,53を駆動するための正側の電圧指令Vmとして比較部38gに入力され、乗算部38fの出力は、下アームの2つのスイッチング素子52,54を駆動するための負側の電圧指令Vm2として比較部38hに入力される。
比較部38gの出力はスイッチング素子51へのPWM信号Q1となり、比較部38gの出力を反転した出力反転部38iの出力はスイッチング素子52へのPWM信号Q2となる。同様に、比較部38hの出力はスイッチング素子53へのPWM信号Q3となり、比較部38hの出力を反転した出力反転部38jの出力はスイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンすることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンすることはない。
図5は図4に示される正側の電圧指令と、負側の電圧指令と、PWM信号と、モータ印加電圧とのそれぞれの波形例を示すタイムチャートである。図5には上から順に、加算部38eから出力される電圧指令Vm1の波形と、乗算部38fから出力される電圧指令Vm2の波形と、PWM信号Q1,Q2,Q3,Q4の波形と、モータ印加電圧の波形とが示される。電圧指令Vm1,Vm2を使用することによりPWM信号Q1,Q2,Q3,Q4が生成される。図1に示されるモータ駆動装置2は、PWM信号Q1,Q2,Q3,Q4を使用して単相インバータ11内の複数のスイッチング素子51,52,53,54を制御することにより、図5に示されるようなモータ印加電圧、すなわちPWM制御された電圧パルスを、単相モータ12に印加する。
ところでPWM信号Q1,Q2,Q3,Q4を生成する際に使用する変調方式としては、正又は負の電位で変化する電圧パルスを出力するバイポーラ変調と、電源半周期ごとに3つの電位で変化する電圧パルス、すなわち正の電位と負の電位と零の電位とに変化する電圧パルスを出力するユニポーラ変調とが知られている。図5に示した波形はユニポーラ変調によるものである。実施の形態に係るモータ駆動装置2には何れの変調方式を用いてもよい。なお、モータ電流波形をより正弦波に制御する必要がある用途では、バイポーラ変調よりも、高調波含有率が少ないユニポーラ変調を採用することが好ましい。
図6は変調率に応じたインバータ出力電圧の変化を示す図である。図6の上段部には、変調率=1.0である場合の電圧指令Vmとキャリアとインバータ出力電圧とが示される。図6の中段部には、変調率=1.2である場合の電圧指令Vmとキャリアとインバータ出力電圧とが示される。図6の下段部には、変調率=2.0である場合の電圧指令Vmとキャリアとインバータ出力電圧とが示される。
図4で説明したように、電圧指令Vm1は比較部38gにおいてキャリアと比較され、電圧指令Vm2は比較部38hにおいてキャリアと比較される。電圧指令Vm1,2がキャリアよりも大きいときは、単相インバータ11のスイッチング素子がオンとなり、電圧指令Vm1,2がキャリアよりも小さいときは、単相インバータ11のスイッチング素子がオフとなる。このため図4に示すようにPWM制御されたインバータ出力電圧が単相モータ12に印加される。
変調率の定義は種々なものが存在するが、ここでは、電圧振幅指令V*と三角波キャリアの振幅との比率、すなわち「電圧振幅指令V*/三角波キャリア振幅」を変調率と定義する。図6の上段部には、変調率=1.0の場合の波形が示されるが、変調率が1.0未満の場合も同様な波形となる。変調率が1.0未満の場合、三角波キャリアの周波数に応じてインバータ出力電圧が生成されるため、インバータ出力電圧もキャリア周波数に応じた電圧パルスが出力される。
一方、変調率が1.0を超える場合、図6の中段部及び下段部に示すような波形となる。なお、変調率が1.0を超える場合は「過変調」と称され、変調率が1.0を超える領域は「過変調領域」と称される。過変調領域では、電圧指令Vmがキャリアの振幅を超えるため、キャリア周波数に応じてインバータ駆動信号を生成することができない区間が発生する。この区間では、インバータ出力電圧は、正の電源電圧又は負の電源電圧に固定されるため、インバータ出力電圧は変調率1のときに比べ、大きな出力電圧を得ることができる。
ここで図1に示す電源10にバッテリが用いられている場合の問題点を説明する。バッテリは構造として内部インピーダンスを有しており、バッテリ出力電圧は、バッテリから出力される電流に応じて大きく変化する。具体的には、20[V]のバッテリにおいて、20[A]の電流を流した場合、バッテリ出力電圧はおよそ19.5[V]まで低下することが知られている。また前述した変調率が1以上の領域の場合、出力電圧パルスが少なくなることで、電圧指令に対して出力電圧が正確に得られないという問題が生じる。さらに、インバータによるスイッチングの影響により、バッテリ電流は脈動した電流となるため、バッテリから出力される電圧も脈動することが知られている。それらの問題に対して、進角を一定とすることなく逐次変化させることによって、バッテリからインバータに供給される電圧のばらつきと、インバータが出力する電圧のばらつきとの両方を抑制することができる。
次に本実施の形態における進角制御について説明する。図7は図3及び図4に示したキャリア生成部及びキャリア比較部へ入力される進角位相を算出するための機能構成を示す図である。進角位相θvを算出するための機能は、図7に示すように回転速度算出部42及び進角位相算出部44によって実現できる。
回転速度算出部42は、位置センサ信号21aに基づいて単相モータ12の回転速度ωを算出し、さらにロータ12aの基準位置からの角度であるロータ機械角θmを電気角に換算した基準位相θeを算出する。進角位相算出部44は、回転速度算出部42が算出した回転速度ω及び基準位相θeの情報に基づいて、進角位相θvを算出する。
図8は進角位相の算出方法の一例を示す図である。図8の横軸は回転数であり、図8の縦軸は進角位相である。進角位相θvは、図8に示すように、回転数Nの増加に対して進角位相θvが増加する関数を用いて決定することができる。図8の例では、1次の線形関数により進角位相θvを決定しているが、これに限らず、回転数の増加に応じて進角位相θvが大きくなる関係であれば、1次の線形関数以外の関数を用いてもよい。進角調整幅Δθdelは、位置センサ21の取り付け位置のばらつき範囲を示す。
図9は位置センサとステータとロータとの位置関係を示す第1の図である。図10は位置センサとステータとロータとの位置関係を示す第2の図である。
図9及び図10には、複数のティース12b1と、複数のティース12b1の中央に配置されるロータ12aと、位置センサ21とが示される。中心線CLは、ロータ12aの回転方向D1に隣接する2つのティース12b1の間の中心と、ロータ12aの中心軸AXとを通る線である。
図9に示される位置センサ21は2つのティース12b1の間に配置され、位置センサ21の回転方向D1における中心は中心線CLと一致する。図10に示される位置センサ21は2つのティース12b1の間に配置され、位置センサ21の回転方向D1における中心は中心線CLからずれている。
一般的にモータ制御では、隣接するティース12b1の間の中心と位置センサ21の中心とが一致するように位置センサ21が配置されていることを想定して、位相演算が行われる。ただし実際の単相モータ12の組み立て工程では、位置センサ21の中心が隣接するティース12b1の間の中心からずれた位置で、位置センサ21が固定される。そのため、この位置のずれ量によって、位置センサ信号21aと誘起電圧との間には、位相のずれ、すなわち位相差が発生する。なお位置センサ21の中心が、隣接するティース12b1の間の中心からずれていることが予め分かっている場合、そのずれ量が考慮されて位相の算出が行われる。
図11は位置センサ信号とモータ誘起電圧とを示す図である。点線のモータ誘起電圧の波形は、図9に示すように、隣接するティース12b1の間の中心と位置センサ21の中心とが一致するように位置センサ21が配置されている場合、すなわち位置ずれが生じていない場合の波形である。実線のモータ誘起電圧の波形は、図10に示すように、隣接するティース12b1の間の中心と位置センサ21の中心とがずれるように位置センサ21が配置されている場合、すなわち位置ずれが生じている場合の波形である。図11では、位置ずれが生じていない場合を「位置ずれなし」と表記され、位置ずれが生じている場合を「位置ずれ」と表記される。
位置ずれが生じていない場合、位置センサ信号21aのエッジとモータ誘起電圧のゼロクロス点とは一致し、位相差が0となる。なお位置センサ信号21aのエッジは、信号の立ち上がり時点又は信号の立ち下がり時点を示す。ところが位置センサ21の位置ずれが生じている場合、位置センサ信号21aのエッジとモータ誘起電圧のゼロクロス点とは一致せず、位置センサ信号とモータ誘起電圧との間に位相差が生じる。
位置センサ21の位置ずれに起因するモータ制御への影響は、制御対象である単相モータ12に設けられたロータ12aのロータ径と、ロータ12aが備える磁極数とに応じて、その度合いが変化する。ロータ径が小さくなるほど、ロータ外周面の円弧の距離に応じた位相の変化が大きい。また磁極数が多くなるほど、ロータ12aの1回転中の電気角変化率が大きくなる。そのためロータ径が小さく、かつ、磁石の磁極数が多くなるほど、位相差が大きくなる。
上記より、位置ずれに起因して誘起電圧と位置センサ信号21aとの位相差が発生することで、モータ制御上設定された回転数に対する進角位相を与えられても、実際とは異なる位相でモータに電圧が印加される。異なる位相で電圧を印加された場合、回転数が特定の値まで増加しないといった問題が発生する。
ここで、特定の回転数に到達しない場合、位相を進角調整幅Δθdelの範囲で変化させ、予め設定した回転数になる位相で固定させるという方法を用いることにより、位置センサ21の位置ずれが発生したときでも、特定の回転数を得ることができる。
また、予め複数のモータを利用して、複数のモータのそれぞれの誘起電圧と位置センサ信号21aとの位相差を把握することによって、位置センサ21の位置ずれの最大値を進角調整幅Δθdelとすることができる。このように進角調整幅Δθdelの最大値を設定しない場合、モータ制御では、回転数を進角調整幅Δθdelの最大値よりも上げようとするため、制御が破綻するおそれが有る。従って進角調整幅Δθdelを予め決定することにより、安定した制御を実現できる。
図12は進角位相を決定するための動作を説明するフローチャートである。制御部25は、位置センサ21のエッジ間の時間に応じて決定される回転数を演算する(S1)。制御部25は、演算された回転数と設定された目標回転数と比較する(S2)。
現在の回転数が目標回転数以下の場合(ステップS2,Yes)、制御部25は、位相調整角θadjに予め決められた位相調整角Δθadjを加算することにより、位相調整角θadjを更新する(S3)。
現在の回転数が目標回転数を超えている場合(ステップS2,No)、制御部25は、位相調整角θadjから位相調整角Δθadjを差し引くことにより、位相調整角θadjを更新する(S4)。
次に制御部25は、位相調整角θadjと進角調整幅Δθdelを比較する(S5)。位相調整角θadjが進角調整幅Δθdel以上の場合(ステップS5,Yes)、制御部25は、位相調整角θadjが進角調整幅Δθdelよりも大きくならないようするため、位相調整角θadjを進角調整幅Δθdelに固定(S6)し、S3又はS4で求められた位相調整角θadjを進角位相θvに加算する(S7)。これにより制御部25は、最終的な電圧指令Vmを導出する(S8)。
位相調整角θadjが進角調整幅Δθdel未満の場合(ステップS5,No)、制御部25は、S7の処理を実行して、最終的な電圧指令Vmを導出する(S8)。
これらの進角位相θvの設定により、現在の回転数が目標回転数よりも低い場合には位相を進めることで回転数を大きくし、現在の回転数が目標回転数よりも高い場合には位相を遅らせることで回転数を小さくすることができる。
本実施の形態では回転数が目標回転数に追従するような制御をする場合の例を説明したが、本実施の形態の制御例は、回転数が目標回転数に追従するような制御に限定されず、最大回転数を得るように進角位相θvを調整する制御でもよい。
三相のセンサレスDCブラシレスモータにおいては、ロータの位置を直接検出することができず、モータ電流からロータ回転位置を推定する方式が一般的に用いられている。この場合、推定されたロータ回転位置と実際のロータ回転位置との誤差が発生するため、モータ制御で進角を調整することは公知である。
一方、位置センサ付DCブラシレスモータでは、位置センサ信号を直接読むことができるため、磁極間の位置把握が可能となる。ロータ回転位置を把握することが容易となるため、位置センサ付DCブラシレスモータでは、位置センサ21の取り付け位置のばらつきに起因する補正を、モータ制御で実施する事例は少ない。位置センサ付DCブラシレスモータで進角補正をすることによって、位置センサ21の取り付け位置のばらつきに起因するモータ制御への影響が抑制され、ロータ位置に応じた高精度な制御を実現することができる。
バッテリ電圧が満充電に近い状態であるとき、バッテリから出力可能な電力も大きいため、インバータによって、バッテリから最大に近い状態で電力を取り出そうとした場合、変調率が1を超えて、出力電圧誤差が大きくなる。その状態においては、制御部25は、進角位相による回転数変動の影響が大きくなるため、位相調整角θadjを小さくする。また、バッテリ電圧が低下した場合、放電電流の制限により最大出力電力が低下してしまう。そこで制御部25は、バッテリ電圧が低下した場合には位相調整角θadjを大きくすることで、最大回転数になるまでの時間を早くすることができる。
図13は位置センサ信号と、ロータ機械角と、基準位相と、電圧指令との関係を示す図である。図13の最下段部には、ロータ12aが時計方向に回転したときのロータ機械角θmが0°、45°、90°、135°及び180°である単相モータ12が示される。単相モータ12のロータ12aには4つの磁石が設けられている。ロータ12aの外周に4つのティース12b1が設けられている。ロータ12aが時計方向に回転した場合、制御部25では、ロータ機械角θmに応じた位置センサ信号21aが検出され、検出された位置センサ信号21aに応じて電気角に換算された基準位相θeが算出される。
図13の中段部に「例1」として示される電圧指令Vmは、進角位相θv=0の場合の電圧指令である。進角位相θv=0の場合、基準位相θeと同相の正弦波状の電圧指令Vmが出力される。このときの電圧指令Vmの振幅は、前述した電圧振幅指令V*に基づいて決定される。
図13の中段部に「例2」として示される電圧指令Vmは、進角位相θv=π/4の場合の電圧指令である。進角位相θv=π/4の場合、基準位相θeから進角位相θvの成分、すなわちπ/4進めた正弦波状の電圧指令Vmが出力される。
次に、電圧振幅指令V*の与え方について説明する。図14は電圧振幅指令の時間変化を示す図である。本実施の形態において、電圧振幅指令V*は、図示のように、時間tに応じて段階的に変化する動作態様とする。具体的に説明すると、まず、起動時には予め設定した一定の第1電圧V1が与えられ、加速後の定常運転時には、第1電圧V1よりも大きな一定の第2電圧V2が与えらる。また、第1電圧V1から第2電圧V2に変化させる加速時には、予め設定した加速レートが得られるように電圧振幅指令V*を上昇させる。すなわち、本実施の形態では、起動時及び定常運転時には、電圧振幅指令V*を一定とするように制御している。なお、起動時において、第1電圧V1を与える時間τ1は制御系の安定時間を考慮した任意の時間を設定することができる。
次に、電圧振幅指令V*が一定であることの効果について説明する。定常運転時において、電圧振幅指令V*を一定に制御することにより、以下の効果が得られる。
(1)負荷が急変した場合においても位置センサ信号21aから検出された位相を元に、一定の電圧指令を出力できる。
(2)回転数が変動した場合においても電圧指令に影響が及ばないため、出力電圧を安定に保つことができる。
(2)回転数が変動した場合においても電圧指令に影響が及ばないため、出力電圧を安定に保つことができる。
上記の効果は、電気掃除機のように、電気掃除機の吸込口と床面との接触面積に応じて負荷が変動するアプリケーションの場合に有効である。
一般的な電動送風機で実施されている回転数一定制御では、モータに過電流が流れる場合がある。過電流が流れる理由は、負荷変動の際に回転数を一定に保とうとするため、電流が急激に変動するからである。より詳細に説明すると、「負荷が軽い状態」すなわち「負荷トルクが小さい状態」から、「負荷が重い状態」すなわち「負荷トルクが大きい状態」に遷移した際に回転数一定制御を行うと、同一回転数を維持しようしてモータ出力トルクを大きくしなければならず、モータ電流の変化量が大きくなるからである。
一方、本実施の形態の制御では、前述したように、定常運転時において、電圧振幅指令V*を一定とする制御を行っている。ここで、電圧振幅指令V*を一定とする場合、負荷が重くなった際には、電圧振幅指令V*は変化させないので、負荷トルクが大きくなった分、モータ回転数は低下する。この制御により、モータ電流の急峻な変化と過電流とを防止できるので、安定して回転する電動送風機及び電機掃除機を実現することができる。
なお、電動送風機の場合、負荷トルクは、モータの負荷である羽根の回転数の増加によって増加すると共に、風路の径が広くなることでも増加する。風路の径とは、電機掃除機を例とした場合、吸込口の広さを表している。風路の径が広いとき、吸込口に何も接触していない場合、風を吸い込む力が必要となるため、同一回転数で羽根が回転している際の負荷トルクは大きくなる。一方、風路の径が狭いとき、吸込口が何かと接触して塞がれている状態では、風を吸い込む力が必要なくなるため、同一回転数で羽根が回転している際の負荷トルクは小さくなる。
次に、進角制御による効果について説明する。まず、回転数の増加に応じて進角位相θvを増加させるようにすれば、回転数範囲を広げることができる。進角位相θvを0とした場合には、モータ印加電圧とモータ誘起電圧とが釣り合う所で回転数が飽和する。回転数を更に増加させるためには、進角位相θvを進め、電機子反作用によるステータに発生させる磁束を弱めることでモータ誘起電圧を抑制し、回転数を増加させる。よって、進角位相θvを回転数に応じて選択することで、広い回転数領域を得ることができる。
次に、進角制御に進角調整幅Δθdelを設けることによる効果について説明する。まず、進角調整幅Δθdelを設けることで、製造時に位置センサ21の位置ずれが生じた場合においても、安定して特定の回転数を得ることができる。また、位置センサ固有の感度の特性ずれが発生した場合においても特定の回転数を得ることができる。よって、製造工程上で位置センサ21の取り付け位置のばらつきを無くすように調整するためのコストの発生を抑制できる。
本実施の形態による進角制御御を電気掃除機に適用する場合には、吸込口の塞ぎ状態の変化によらず、すなわち負荷トルクに関係なく、電圧指令を一定とし、回転速度の増加に応じて電圧指令の進み角である進角位相θvを増加させるようにすればよい。このように制御すれば、広い回転速度範囲において安定した駆動が可能となる。また、進角調整幅を設けることにより、位置センサ21の位置ずれが発生した場合においても駆動回転数に与える影響を抑制することができる。
次に、本実施の形態における損失低減手法について説明する。図15はインバータ出力電圧の極性によるモータ電流の経路を示す第1の図である。図16はインバータ出力電圧の極性によるモータ電流の経路を示す第2の図である。図17はインバータ出力電圧の極性によるモータ電流の経路を示す第3の図である。
インバータ出力電圧の極性が正の場合、図15の太実線(a)で示すように、電流は、第1相の上アームであるスイッチング素子51のチャネルを通って単相モータ12に流れ込み、第2相の下アームであるスイッチング素子54のチャネルを通って単相モータ12から流れ出す。また、インバータ出力電圧の極性が負の場合、図15の太破線(b)で示すように、電流は、第2相の上アームであるスイッチング素子53のチャネルを通って単相モータ12に流れ込み、第1相の下アームであるスイッチング素子52のチャネルを通って単相モータ12から流れ出す。
次に、インバータ出力電圧が零、すなわち単相インバータ11から零電圧が出力された場合の電流経路について説明する。正のインバータ出力電圧が生成された後にインバータ出力電圧が零になると、図16の太実線(c)で示すように、電源側からは電流が流れず、単相インバータ11と単相モータ12との間で電流が行き来する還流モードとなる。このとき、単相モータ12に直前に流れている電流の向きは変わらないため、単相モータ12から流れ出した電流は、第2相の下アームであるスイッチング素子54のチャネルと、第1相の下アームであるスイッチング素子52のボディダイオード52aとを通って単相モータ12に戻る。なお、負のインバータ出力電圧が生成された後にインバータ出力電圧が零になる場合は、直前に流れていた電流の向きが逆であるため、図16の太破線(d)で示すように、還流電流の向きは逆となる。具体的に説明すると、単相モータ12から流れ出した電流は、第1相の上アームであるスイッチング素子51のボディダイオード51aと、第2相の上アームであるスイッチング素子53のチャネルとを通って単相モータ12に戻る。
上記の説明の通り、単相モータ12と単相インバータ11との間で電流が還流する還流モードでは、第1相及び第2相の内の何れか一方の相ではボディダイオードに電流が流れる。一般的に、ダイオードの順方向に電流を流すことに比べ、MOSFETのチャネルに電流を流した方が、導通損失が小さくなることが知られている。そこで、本実施の形態では、還流電流が流れる還流モードにおいて、ボディダイオードに流れる通流電流を小さくすべく、当該ボディダイオードを有する側のMOSFETがオンに制御される。
還流モードにおいて、図16の太実線(c)で示す還流電流が流れるタイミングでは、スイッチング素子52がオンに制御される。このように制御すれば、図17の太実線(e)で示すように、還流電流の多くは抵抗値の小さいスイッチング素子52のチャネル側を流れる。これにより、スイッチング素子52での半導体損失が低減される。また、図16の太破線(d)で示す還流電流が流れるタイミングでは、スイッチング素子51がオンに制御される。このように制御すれば、図17の太破線(f)で示すように、還流電流の多くは抵抗値の小さいスイッチング素子51のチャネル側を流れる。これにより、スイッチング素子51での半導体損失が低減される。
前述のように、ボディダイオードに還流電流が流れるタイミングにおいて、当該ボディダイオードを有する側のMOSFETがオンに制御されることにより、スイッチング素子の損失を低減することができる。このため、MOSFETの形状を表面実装タイプにして基板にて放熱可能な構造とし、また、要すればスイッチング素子の一部又は全部をワイドバンドギャップ半導体で形成することにより、基板のみでMOSFETの発熱を抑制する構造を実現する。なお、基板のみで放熱が可能であれば、ヒートシンクが不要となるため、インバータの小型化に寄与し、製品の小型化にも繋げることができる。
前述の放熱方法に加え、基板を風路に設置することで、更なる放熱効果をも得ることができる。ここで、風路とは、電動送風機のように空気の流れを発生させる部位又は電動送風機が発生する風流の通路である。基板を風路に設置することにより、電動送風機が発生する風によって基板上の半導体素子を放熱できるので、半導体素子の発熱を大幅に抑制することができる。
次に、実施の形態に係るモータ駆動装置の適用例について説明する。図18は実施の形態に係るモータ駆動装置を備えた電気掃除機の構成図である。電気掃除機61は、直流電源であるバッテリ67と、図1に示されるモータ駆動装置2と、図1に示される単相モータ12により駆動される電動送風機64と、集塵室65と、センサ68と、吸込口体63と、延長管62と、操作部66とを備える。バッテリ67は図1に示す電源10に相当する。
電気掃除機61を使用するユーザは、操作部66を持ち、電気掃除機61を操作する。電気掃除機61のモータ駆動装置2は、バッテリ67を電源として電動送風機64を駆動する。電動送風機64が駆動することにより、吸込口体63からごみの吸込みが行われ、吸込まれたごみは、延長管62を介して集塵室65へ集められる。
電気掃除機61は、モータ回転数が0[rpm]から10万[rpm]まで変動する製品である。このようも単相モータ12が高速回転する製品を駆動する際には、前述した実施の形態に係る制御手法が好適である。電圧振幅指令V*を一定とし、回転速度に応じて進角位相θvを変更することで、低速から高速回転領域まで回転数駆動範囲を広げつつ、負荷急変に対応することができる。また、PWM制御によってモータ電流を正弦波に制御することで高効率な駆動ができるため、運転時間の長時間化が望める。
また電気掃除機61のように小型モータを搭載した製品は、位置センサ21の取り付け位置のばらつきによる位相差の影響が大きく、制御に大きな影響を与えてしまう。そのため、一般的には製造上で予め位置センサ21の位置のずれ量が測定され、電気掃除機61では位置センサ21の位置のずれ量を考慮した制御が実施される。ただし、この場合、製造工程で位置センサ21の位置ずれ量を測定する工程が発生するため、製造コストが増大するといった課題がある。そのため、位置センサ21の位置ずれ量を測定することなく、位置センサの位置ずれによる影響を抑制するモータ制御を実現することで、安価で製品品質の向上を図ることができる。
また実施の形態に係る電気掃除機61は、前述した放熱部品の削減により小型化及び軽量化することができる。さらに電気掃除機61は、電流を検出する電流センサが必要なく、高速なアナログディジタル変換器も必要ないことから、コストを抑制することができる。
図19は実施の形態に係るモータ駆動装置を備えたハンドドライヤの構成図である。ハンドドライヤ90は、モータ駆動装置2と、ケーシング91と、手検知センサ92と、水受け部93と、ドレン容器94と、カバー96と、センサ97と、吸気口98と、電動送風機95とを備える。ここで、センサ97は、ジャイロセンサ及び人感センサの何れかである。ハンドドライヤ90では、水受け部93の上部にある手挿入部99に手が挿入されることにより、電動送風機95による送風で水が吹き飛ばされ、吹き飛ばされた水は、水受け部93で集められた後、ドレン容器94に溜められる。
ハンドドライヤ90は、図18に示す電気掃除機61と同様に、モータ回転数が0[rpm]から10万[rpm]まで変動する製品である。このため、ハンドドライヤ90においても、前述した実施の形態に係る制御手法が好適であり、電気掃除機61と同様な効果を得ることができる。
図20は実施の形態に係るモータ駆動装置における変調制御を説明するための図である。同図の左側には、回転数と変調率の関係が示される。また同図の右側には、変調率が1以下のときのインバータ出力電圧の波形と、変調率が1を超えるときのインバータ出力電圧の波形とが示される。一般的に、回転数の増加に伴い回転体の負荷トルクは大きくなる。このため、回転数の増加に伴いモータ出力トルクを増加させる必要がある。また、一般的にモータ出力トルクはモータ電流に比例して増加し、モータ電流の増加にはインバータ出力電圧の増加が必要である。よって、変調率を上げてインバータ出力電圧を増加させることで、回転数を増加させることができる。
次に、本実施の形態における回転数制御について説明する。なお、以下の説明では、負荷として電動送風機を想定し、電動送風機の運転域を以下の通り区分する。
(A)低速回転域(低回転数領域):0[rpm]から10万[rpm]
(B)高速回転域(高回転数領域):10万[rpm]以上
(A)低速回転域(低回転数領域):0[rpm]から10万[rpm]
(B)高速回転域(高回転数領域):10万[rpm]以上
なお、上記(A)と上記(B)に挟まれた領域はグレーゾーンであり、用途に応じて、低速回転域に含まれる場合もあれば、高速回転域に含まれる場合もある。
まず、低速回転域での制御について説明する。低速回転域では変調率を1以下としてPWM制御される。なお、変調率を1以下とすることで、モータ電流を正弦波に制御し、モータの高効率化を図ることができる。なお、低速回転域と高速回転域とで同じキャリア周波数で動作させた場合、キャリア周波数は高速回転域に合わせたキャリア周波数となるため、低速回転域ではPWMパルスが必要以上に多くなる傾向にある。このため、低速回転域ではキャリア周波数を低下させ、スイッチング損失を低下させる手法を用いてもよい。また、回転数に同期させてキャリア周波数を可変させることで、回転数に応じてパルス数が変化しないように制御してもよい。
次に、高速回転域での制御について説明する。高速回転域では、変調率が1より大きな値に設定される。変調率を1より大きくすることで、インバータ出力電圧を増加させつつ、インバータ内のスイッチング素子が行うスイッチング回数を低減させることで、スイッチング損失の増加を抑えることができる。ここで、変調率が1を超えることによって、モータ出力電圧は増加するが、スイッチング回数が低下するため、電流の歪が懸念される。しかしながら、高速回転中においては、モータのリアクタンス成分が大きくなり、モータ電流の変化成分であるdi/dtが小さくなるため、低速回転域に比べて電流歪は小さくなり、波形の歪に対する影響は小さくなる。よって、高速回転域では、変調率を1より大きな値に設定し、スイッチングパルス数を低減させる制御を行う。この制御により、スイッチング損失の増加を抑制し、高効率化を図ることができる。
なお、上記の通り、低速回転域と高速回転域の境界は曖昧である。このため、制御部25には、低速回転域と高速回転域との境界を決める第1回転速度が設定され、制御部25は、モータ又は負荷の回転速度が第1回転速度以下の場合には変調率を1以下に設定し、モータ又は負荷の回転速度が第1回転速度を超えた場合には1を超える変調率に設定するように制御すればよい。
以上の説明の通り、本実施の形態では、電気掃除機61及びハンドドライヤ90にモータ駆動装置2を適用した構成例を説明したが、モータ駆動装置2は、モータが搭載された電気機器一般に適用することができる。モータが搭載された電気機器は、焼却炉、粉砕機、乾燥機、集塵機、印刷機械、クリーニング機械、製菓機械、製茶機械、木工機械、プラスチック押出機、ダンボール機械、包装機械、熱風発生機、物体輸送、吸塵用、一般送排風、又はOA機器といった、電動送風機を備えた機器である。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 モータ駆動システム、2 モータ駆動装置、10 電源、11 単相インバータ、12 単相モータ、12a ロータ、12b ステータ、12b1 ティース、20 電圧センサ、21 位置センサ、21a 位置センサ信号、25 制御部、30 アナログディジタル変換器、31 プロセッサ、32 駆動信号生成部、33 キャリア生成部、34 メモリ、38 キャリア比較部、38a 絶対値演算部、38b 除算部、38c,38d,38f 乗算部、38e 加算部、38g,38h 比較部、38i,38j 出力反転部、42 回転速度算出部、44 進角位相算出部、51,52,53,54 スイッチング素子、51a,52a,53a,54a ボディダイオード、61 電気掃除機、62 延長管、63 吸込口体、64 電動送風機、65 集塵室、66 操作部、67 バッテリ、68 センサ、90 ハンドドライヤ、91 ケーシング、92 手検知センサ、93 水受け部、94 ドレン容器、95 電動送風機、96 カバー、97 センサ、98 吸気口、99 手挿入部。
Claims (13)
- バッテリを電源として単相モータを駆動するモータ駆動装置であって、
複数のスイッチング素子を備え、前記単相モータに交流電圧を印加する単相インバータと、
前記単相モータに取り付けられ、前記単相モータのロータ回転位置を検出して回転位置検出信号を出力する位置センサと、
電圧指令と前記回転位置検出信号とに基づいて、複数の前記スイッチング素子をパルス幅変調制御する制御部と
を備え、
前記制御部には、前記回転位置検出信号と前記単相インバータの出力電圧との位相差を調整するための位相調整角と、前記単相モータへの前記位置センサの取り付け位置のばらつき範囲に相当する進角調整幅とが設定され、
前記制御部は、前記位相調整角と前記進角調整幅とを用いて、前記電圧指令の演算に用いられ特定の回転数に対する進角位相を設定するモータ駆動装置。 - 前記制御部は、前記進角位相を、前記進角調整幅内に設定する請求項1に記載のモータ駆動装置。
- 複数の前記スイッチング素子は金属酸化膜半導体電界効果型トランジスタであり、
前記制御部は、前記単相インバータに還流電流が流れるタイミングでは、前記還流電流がボディダイオードに流れる前記金属酸化膜半導体電界効果型トランジスタをオンに制御する請求項1に記載のモータ駆動装置。 - 前記制御部は、前記パルス幅変調制御を行うためのパルス幅変調信号を、ユニポーラ変調によって生成する請求項1から3の何れか一項に記載のモータ駆動装置。
- 起動時には、前記電圧指令の振幅である電圧振幅指令に予め設定した一定の第1電圧を付与し、
加速後の定常運転時には、第1電圧よりも大きな一定の第2電圧を付与する請求項1から4の何れか一項に記載のモータ駆動装置。 - 前記制御部は、低速回転域と高速回転域の境界を決める第1回転速度を設定し、
前記単相モータの回転速度が前記第1回転速度以下の場合には、前記パルス幅変調制御の変調率を1以下に設定し、前記回転速度が前記第1回転速度を超えた場合には、前記変調率を、1を超える値に設定する請求項1から4の何れか一項に記載のモータ駆動装置。 - 複数の前記スイッチング素子の内の少なくとも一つはワイドバンドギャップ半導体で形成されている請求項1から6の何れか一項に記載のモータ駆動装置。
- 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム又はダイヤモンドである請求項7に記載のモータ駆動装置。
- 請求項1から8の何れか1項に記載のモータ駆動装置を備えた電動送風機。
- 請求項9に記載の電動送風機を備えた電気掃除機。
- 複数の前記スイッチング素子が搭載されている基板が、前記電動送風機が発生する風流の通路に設置されている請求項10に記載の電気掃除機。
- 請求項9に記載の電動送風機を備えたハンドドライヤ。
- 複数の前記スイッチング素子が搭載されている基板が、前記電動送風機が発生する風流の通路に設置されている請求項12に記載のハンドドライヤ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/002575 WO2018138807A1 (ja) | 2017-01-25 | 2017-01-25 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
JP2018563993A JP6671516B2 (ja) | 2017-01-25 | 2017-01-25 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/002575 WO2018138807A1 (ja) | 2017-01-25 | 2017-01-25 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018138807A1 true WO2018138807A1 (ja) | 2018-08-02 |
Family
ID=62979206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002575 WO2018138807A1 (ja) | 2017-01-25 | 2017-01-25 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6671516B2 (ja) |
WO (1) | WO2018138807A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6616055B1 (ja) * | 2019-03-28 | 2019-12-04 | 三菱電機株式会社 | モータ駆動装置、電気掃除機及び手乾燥機 |
JP6739691B1 (ja) * | 2019-08-23 | 2020-08-12 | 三菱電機株式会社 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
WO2020208785A1 (ja) * | 2019-04-11 | 2020-10-15 | 三菱電機株式会社 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
EP3832879A1 (en) * | 2019-12-03 | 2021-06-09 | Melexis Bulgaria Ltd. | Control of a single coil bldc motor |
CN113647011A (zh) * | 2019-04-11 | 2021-11-12 | 三菱电机株式会社 | 马达驱动装置、电动鼓风机、电动吸尘器以及干手器 |
WO2022151775A1 (zh) * | 2021-01-14 | 2022-07-21 | 珠海格力电器股份有限公司 | 电机的控制方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10234199A (ja) * | 1997-02-18 | 1998-09-02 | Hitachi Ltd | 電力変換装置 |
WO2008026319A1 (fr) * | 2006-08-30 | 2008-03-06 | Rohm Co., Ltd. | Circuit de commande de moteur, procédé de commande, unité de moteur et dispositif électronique utilisant l'unité de moteur |
JP2010246386A (ja) * | 2009-04-04 | 2010-10-28 | Dyson Technology Ltd | 一定電力の電気システム |
JP2011135641A (ja) * | 2009-12-22 | 2011-07-07 | Denso Corp | モータ制御装置 |
JP2011223772A (ja) * | 2010-04-12 | 2011-11-04 | Mitsubishi Electric Corp | 電力変換装置 |
JP2013031922A (ja) * | 2009-12-07 | 2013-02-14 | Max Co Ltd | 充電工具 |
JP2014176220A (ja) * | 2013-03-11 | 2014-09-22 | Mitsubishi Electric Corp | 電動機の電気角調整方法および軸振動検査方法 |
-
2017
- 2017-01-25 WO PCT/JP2017/002575 patent/WO2018138807A1/ja active Application Filing
- 2017-01-25 JP JP2018563993A patent/JP6671516B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10234199A (ja) * | 1997-02-18 | 1998-09-02 | Hitachi Ltd | 電力変換装置 |
WO2008026319A1 (fr) * | 2006-08-30 | 2008-03-06 | Rohm Co., Ltd. | Circuit de commande de moteur, procédé de commande, unité de moteur et dispositif électronique utilisant l'unité de moteur |
JP2010246386A (ja) * | 2009-04-04 | 2010-10-28 | Dyson Technology Ltd | 一定電力の電気システム |
JP2013031922A (ja) * | 2009-12-07 | 2013-02-14 | Max Co Ltd | 充電工具 |
JP2011135641A (ja) * | 2009-12-22 | 2011-07-07 | Denso Corp | モータ制御装置 |
JP2011223772A (ja) * | 2010-04-12 | 2011-11-04 | Mitsubishi Electric Corp | 電力変換装置 |
JP2014176220A (ja) * | 2013-03-11 | 2014-09-22 | Mitsubishi Electric Corp | 電動機の電気角調整方法および軸振動検査方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6616055B1 (ja) * | 2019-03-28 | 2019-12-04 | 三菱電機株式会社 | モータ駆動装置、電気掃除機及び手乾燥機 |
WO2020194754A1 (ja) * | 2019-03-28 | 2020-10-01 | 三菱電機株式会社 | モータ駆動装置、電気掃除機及び手乾燥機 |
WO2020208785A1 (ja) * | 2019-04-11 | 2020-10-15 | 三菱電機株式会社 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
CN113647011A (zh) * | 2019-04-11 | 2021-11-12 | 三菱电机株式会社 | 马达驱动装置、电动鼓风机、电动吸尘器以及干手器 |
JPWO2020208785A1 (ja) * | 2019-04-11 | 2021-12-02 | 三菱電機株式会社 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
JP7150150B2 (ja) | 2019-04-11 | 2022-10-07 | 三菱電機株式会社 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
JP6739691B1 (ja) * | 2019-08-23 | 2020-08-12 | 三菱電機株式会社 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
WO2021038665A1 (ja) * | 2019-08-23 | 2021-03-04 | 三菱電機株式会社 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
EP3832879A1 (en) * | 2019-12-03 | 2021-06-09 | Melexis Bulgaria Ltd. | Control of a single coil bldc motor |
US11515823B2 (en) | 2019-12-03 | 2022-11-29 | Melexis Bulgaria Ltd | Control of a single coil BLDC motor |
WO2022151775A1 (zh) * | 2021-01-14 | 2022-07-21 | 珠海格力电器股份有限公司 | 电机的控制方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018138807A1 (ja) | 2019-04-11 |
JP6671516B2 (ja) | 2020-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6671516B2 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
JP6644159B2 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤー | |
WO2018229874A1 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
WO2019180972A1 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
WO2019180971A1 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
JP6847195B2 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤー | |
JP7237198B2 (ja) | モータ駆動装置、電気掃除機及び手乾燥機 | |
JP7237197B2 (ja) | モータ駆動装置、電気掃除機及び手乾燥機 | |
JP7150151B2 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
JP7076637B2 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
JP6925497B2 (ja) | 電気掃除機 | |
JP7150150B2 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
WO2019180969A1 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
JP7462788B2 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
JP6616055B1 (ja) | モータ駆動装置、電気掃除機及び手乾燥機 | |
WO2022085049A1 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
WO2022085050A1 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
WO2019180968A1 (ja) | モータ駆動装置、電気掃除機及び手乾燥機 | |
WO2019180967A1 (ja) | モータ駆動装置、電気掃除機及び手乾燥機 | |
WO2023181181A1 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
WO2019180970A1 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
JP7150152B2 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018563993 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17893741 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17893741 Country of ref document: EP Kind code of ref document: A1 |