WO2018137494A1 - 具有短发射衰减时间的直接单重态捕获有机分子及其在光电器件中的应用 - Google Patents

具有短发射衰减时间的直接单重态捕获有机分子及其在光电器件中的应用 Download PDF

Info

Publication number
WO2018137494A1
WO2018137494A1 PCT/CN2018/072034 CN2018072034W WO2018137494A1 WO 2018137494 A1 WO2018137494 A1 WO 2018137494A1 CN 2018072034 W CN2018072034 W CN 2018072034W WO 2018137494 A1 WO2018137494 A1 WO 2018137494A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
photovoltaic device
organic
molecule
Prior art date
Application number
PCT/CN2018/072034
Other languages
English (en)
French (fr)
Inventor
耶尔森哈特穆特
马塔兰加-波帕瑞萨
切尔维涅茨拉法尔
Original Assignee
四川知本快车创新科技研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102017101432.2A external-priority patent/DE102017101432B4/de
Priority claimed from EP17170682.3A external-priority patent/EP3401381B1/de
Application filed by 四川知本快车创新科技研究院有限公司 filed Critical 四川知本快车创新科技研究院有限公司
Priority to US16/341,875 priority Critical patent/US11404645B2/en
Priority to KR1020197012681A priority patent/KR102216794B1/ko
Priority to JP2019537245A priority patent/JP6901168B2/ja
Priority to CN201880003877.2A priority patent/CN109804046B/zh
Publication of WO2018137494A1 publication Critical patent/WO2018137494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/625Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing at least one aromatic ring having 7 or more carbon atoms, e.g. azulene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to organic molecules and the use of such organic molecules in optoelectronic devices.
  • the organic molecule has a donor unit and a acceptor unit joined by two organic non-conjugated bridges with reduced superconjugation. Therefore, the triplet-single-state energy gap can reach several meV. This makes it possible to utilize 100% exciton in an OLED with a short emission decay time.
  • This new mechanism is a direct singlet capture and is particularly suitable for use in optoelectronic devices.
  • Single-state capture effect with strong temperature-dependent thermal activation delayed fluorescence (TADF) known in the prior art (by a large energy gap ⁇ E( 1 CT- 3 CT) several hundred cm -1 (tens MeV) is caused by the inter-system transition between the 3 CT and 1 CT states with almost equal energy in the direct singlet capture effect, and the ⁇ E( 1 CT- 3 CT) value is 10 cm -1 (0.12meV).
  • TADF temperature-dependent thermal activation delayed fluorescence
  • luminescent molecules for optoelectronic applications, they are required to have as short an emission decay time as possible, and should also have a high emission quantum efficiency ⁇ PL .
  • the emission decay time is short, which reduces the likelihood of chemical reaction (decomposition) of the excited emitter molecules.
  • purely organic emitter molecules i.e. molecules not metal complexes
  • such applications including during transmission electron lowest excited triplet state T 1 is occupied important.
  • r 1 and r 2 are electronic coordinates, and r 12 is a distance between electron 1 and electron 2.
  • ⁇ D is the wave function of HOMO (the highest occupied molecular orbital).
  • HOMO the highest occupied molecular orbital
  • ⁇ ⁇ represents LUMO (the lowest unoccupied molecular orbital), which mainly passes through the molecule.
  • the receptor part A stretches. It can be seen from equation (1) that if the product ⁇ D (r 1 ) ⁇ ⁇ *(r 2 ) of the wave function becomes small, ⁇ E(S 1 - T 1 ) becomes small.
  • the flexibility of the donor moiety relative to the acceptor moiety can be reduced by chemically hardening one or both bridges. This can increase the emission quantum efficiency and reduce the heterogeneity of the ⁇ E(S 1 -T 1 ) value of the emitter molecules in the matrix.
  • the superconjugation existing in the non-conjugated small chemical group is reduced by substitution (known to those skilled in the art). This further reduces the extent to which HOMO enters the receptor region and the LUMO enters the donor region.
  • the molecules of the invention are typically present in the optoelectronic device along with other molecules, for example, other small molecules or doped polymers deposited.
  • these molecules are referred to as matrix or matrix materials.
  • the molecules of the invention may also be dissolved, and the solvent is the matrix.
  • the energy levels of the molecules of the invention added, doped or dissolved in these matrix materials/environments are affected by the manner in which the matrix polarity is different. This property is further explained below.
  • Formula Ia and Formula Ib show the structural mode of an organic molecule according to the invention with two organic bridges between the donor and acceptor fragments.
  • the spatial superposition of HOMO (mainly on the donor) and LUMO (mainly on the acceptor) can be significantly reduced, and the superconjugation is further reduced by replacing one bridge or two bridges.
  • HOMO mainly on the donor
  • LUMO mainly on the acceptor
  • the emission quantum efficiency it is possible to improve the emission quantum efficiency and reduce the emission half width.
  • the latter is very meaningful in many cases for obtaining a defined luminescent color (color purity), such as luminescence in an OLED.
  • the long-lived tail of the emission attenuation curve is further reduced.
  • Formula Ia and Formula Ib represents a structural mode of an organic molecule according to the invention consisting of an aromatic or heteroaromatic donor fragment D, D1, D2 and one through two or four non-conjugated bridges An aromatic or heteroaromatic acceptor fragment A linked to B1, B2, B3 and B4.
  • the aromatic or heteroaromatic molecular moiety is replaced by an electron donating or electron withdrawing substituent, thereby becoming a donor or acceptor.
  • the embodiment will be given below.
  • the bridges are chosen such that they reduce the apparent overlap of donor-HOMO and acceptor-LUMO.
  • Bridges B2 and/or B3 may, for example, have aromatic or heteroaromatic units. These bridges have reduced superconjugation compared to the prior art. This results in a substantially smaller energy difference ⁇ E ( 1 CT- 3 CT), as will be further explained below.
  • HOMO ⁇ The transition energy of LUMO is located in the visible area. Fragments D and A each have a sufficiently high donor strength or receptor strength.
  • the energy levels of HOMO and LUMO can be described by the intensity of the action of electrons (for the donor) or electron withdrawance (for the acceptor). (These terms are well known to those skilled in the art and will be further described in the specific examples below.)
  • the corresponding energy difference is determined by the individual molecule.
  • the energy difference can be calculated by quantum mechanics, for example using a commercially available TD-DFT program (for example with the Gaussian 09 program) or a freely available version of NWChem (eg version 6.1), CC2 method (TURBOMOLE GmbH, Düsseldorf) or CAS Method (complete live method).
  • TD-DFT program for example with the Gaussian 09 program
  • NWChem eg version 6.1
  • CC2 method TURBOMOLE GmbH, Düsseldorf
  • CAS Method complete live method.
  • the emission decay time ⁇ (300K) should be less than 2 ⁇ s, preferably less than 1 ⁇ s.
  • SBK molecular energy state
  • SOC intersystem hop
  • adjacent local triplet states 3 LE localized excitation
  • ISC intersystem crossing
  • the spin-orbit coupling enhancement based on the quantum mechanics mixing between these states and the 3 LE state increases the ISC rate between the 1 CT state and the 3 CT state.
  • the target molecule is determined using known computer programs or quantum mechanical methods such as the Gaussian 09 or CC2 method. The closer the energy between these states is, the more effective the mixing is.
  • Mutual energy offset can be achieved by altering the donor strength and/or receptor strength and changing the electron donating substitution of the donor and/or changing the electron withdrawing of the acceptor.
  • Energy shifting can also be achieved by more than one electron donating and/or electron withdrawing substitution.
  • a matrix of suitable polarity can be used in one embodiment of the invention.
  • the 1 CT and 3 CT states can be energy shifted (as long as the desired, in the case where the organic molecules do not have the desired state sequence), such that the 1,3 CT state is below or Slightly higher than the 3 LE state.
  • the polarity of the matrix can be described by the dielectric constant ⁇ . (Values can be found in the corresponding literature table).
  • the effect of polarity can also be obtained by the above computer program.
  • the organic molecules according to the present invention are designed such that the 1 CT and 3 CT states are lower than the 3 LE state, for example, less than 1500 cm -1 ( ⁇ 190 mV) or better than 500 cm -1 ( ⁇ 63 meV), more preferably less than 100 cm - 1 ( ⁇ 12meV).
  • Energy positions of 3 LEs slightly below 1 CT and 3 CT states eg 50 cm -1 , ⁇ 6 meV
  • the corresponding energy difference can be determined by quantum theory TD-DFT calculation.
  • it can be experimentally determined whether the local 3 LE state is lower in energy than the 1,3 CT state, and thus a low temperature emission spectrum (for example, at 77 K or 10 K) is recorded. In this case, the launch is structured so that the vibrating satellite structure can be resolved.
  • the emission decay time of the transmitted 3 LE state is in the range of ms to s, which is significantly longer than the 1 CT decay time ( ⁇ 2 ⁇ s).
  • the 1 CT decay time ⁇ 2 ⁇ s.
  • the chemical bridge between the donor and acceptor fragments of the organic molecule not only has the effect of enhancing the rigidity of the molecule, but surprisingly also increases the emission quantum efficiency ⁇ PL .
  • the molecule according to the invention (optionally with a matrix having polarity, the polarity is described by the dielectric constant, the range 2.4 ⁇ ⁇ ⁇ 5.0) shows an effective ISC, and 1 CT and 3 CT states
  • the energy difference ⁇ E ( 1 CT - 3 CT) is very small, ⁇ E ( 1 CT - 3 CT) is less than 20 cm -1 (2.5 meV), better than 10 cm -1 ( ⁇ 1.2 meV), TADF emission without time delay And only 1 CT fluorescence. Its value is less than 2 ⁇ s to less than 500 ns, and the apparent lifetime is shorter than the value of the TADF emitter known in the prior art.
  • the organic molecules according to the present invention if desired, together with the matrix as a composition or combination, used as an emitter in an OLED, can capture all singlet and triplet excitons in a single charge transfer state, ie in one The time window within the fluorescence decay time range. That is, it is a "direct singlet capture effect.”
  • the emitter-matrix combination according to the invention therefore exhibits only a short fluorescence decay time, which is for example only a few hundred nanoseconds to 1 or 2 microseconds. This fluorescence is a 1 CT-single-state fluorescence with almost equal energy 3 CT-state equilibrium.
  • the molecular structure of the emitter materials of the formulae Ia and Ib according to the invention is further illustrated by means of the formulae IIa to IIe.
  • a polar substrate i.e., a substrate having a dielectric constant (polarity) of, for example, 2.4 ⁇ ⁇ ⁇ 4.5
  • an organic molecule according to the present invention can further improve the direct singlet capture effect (reduced by 1) CT fluorescence decay time).
  • the basic structure of the organic molecules of the formulae IIa to IIe according to the invention is 2,3:6,7-dibenzocycloheptane.
  • the electronic properties of the aromatic ring system are regulated by appropriate substitutions as shown herein, and thus, the molecular moiety substituted by R1 to R4 becomes the donor moiety D of the formulae Ia and Ib, or is substituted by R1 to R4 and R1' to R4'
  • the molecular moiety becomes the donor moiety D1 and D2 of the formulae Ia and Ib, and the molecular moiety substituted by R5 to R8 and by R5 and R6 becomes the acceptor moiety A.
  • the methylene and ethylene substituted by Q1 to Q6 of 2,3:6,7-dibenzocycloheptane represent bridges B1 and B2,2,3:6,7-dibenzocyclohept of formula I
  • the methylene and ethylene substituted by Q1' to Q6' of the alkane represent bridges B3 and B4 of formula I.
  • Q1, Q2, Q1' and Q2' are each independently H, alkyl, alkenyl, alkynyl, cycloalkyl or aryl.
  • Q3 to Q6 and Q3' to Q6' are independently H, alkyl, alkenyl, alkynyl, cycloalkyl or aryl
  • An alkyl group is a linear (unbranched) or branched (C 1 -C 10 )-alkyl group having from 1 to 10 carbon atoms in the main hydrocarbon chain (eg, methyl, ethyl, n-propyl) Base, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, etc.,
  • the alkenyl group is a linear or branched (C 1 -C 10 )-alkenyl group having from 1 to 10 carbon atoms in the main hydrocarbon chain (for example, propen-2-yl, n-buten-2-yl, N-buten-3-yl),
  • An alkynyl group is a linear or branched (C 1 -C 10 )-alkynyl group having from 1 to 10 carbon atoms in the main hydrocarbon chain (for example, propen-2-yl, n-buten-2-yl, N-buten-3-yl),
  • a cycloalkyl group is a (C 3 -C 7 )-cycloalkyl group having from 3 to 7 ring carbon atoms, and
  • the aryl group is a 5- or 6-membered aromatic or heteroaromatic group such as benzene, thiophene, furan, imidazole, pyrrole, diazole, triazole, tetrazole, oxazole and the like.
  • Main hydrocarbon chain is understood herein to mean the longest chain of a branched or non-linear alkyl, alkenyl or alkynyl group.
  • Each of the groups Q1 to Q6 and Q1' to Q6' may be unsubstituted independently of each other or may be substituted by one or more of F, Cl, Br, alkoxy, thioalkyl, amine, silane, phosphine, boron Alkaned or aryl substituted.
  • the groups Q1 and Q2, the groups Q3 and Q4, the groups Q5 and Q6, the groups Q1' and Q2', the groups Q3' and Q4' and the groups Q5' and Q6' can be chemically bonded to each other to form an additional group Ring system.
  • R1 to R4 and R1' to R4' are each independently H, alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, thioalkyl, amine, phosphine, silane, borane, fluorine, chlorine, Bromine or a group Akr as defined below by means of formula III, wherein at least one position of R1 to R4 in formula IIa is Akr, at least one position of R1 to R4 and at least one of R1' to R4' in formulae IIb to IIe The location is Akr.
  • Alkyl is a straight or branched (C 1 -C 10 ) alkyl group (eg methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, etc.) , which has 1 to 10 carbon atoms in the main hydrocarbon chain,
  • Alkenyl is a straight or branched (C 1 -C 10 )-alkenyl group (for example, propen-2-yl, n-buten-2-yl, n-buten-3-yl) which is in the main hydrocarbon chain Has 1 to 10 carbon atoms,
  • An alkynyl group is a straight or branched (C 1 -C 10 )-alkynyl group (for example, propen-2-yl, n-buten-2-yl, n-buten-3-yl) having a main hydrocarbon chain 1 to 10 carbon atoms,
  • a cycloalkyl group is a (C 3 -C 7 )-cycloalkyl group having from 3 to 7 ring carbon atoms, and
  • the aryl group is a 5-membered or 6-membered cyclic aromatic or heteroaromatic group such as benzene, thiophene, furan, imidazole, pyrrole, diazole, triazole, tetrazole, oxazole and the like.
  • Substituted alkoxy, thioalkyl, amine, phosphine, silane and borane are alkoxy O-R', thioalkyl S-R', amine NR'R", phosphino PR'R ", silyl group SiR'R"R”" and borane BR'R", wherein R', R' and 'R'" independently of each other represent a straight or branched (C 1 -C 10 )-alkyl group , (C 1 -C 10 )-alkenyl, (C 1 -C 10 )-alkynyl, (C 3 -C 7 )-cycloalkyl or 5-membered or 6-membered cyclic aromatic or heteroaromatic group .
  • the group Akr consists of one structure of the formula IIIa and the formula IIIb:
  • R9 to R16 and R9' to R16' are independently of each other H, (C 1 -C 10 )-alkyl, (C 1 -C 10 ) -alkenyl, (C 1 -C 10 )-alkynyl, (C 3 -C 7 )-cycloalkyl, amine NR'R", phosphino PR'R", silyl SiR'R"R'" And a borane BR'R", a fluorine, a chlorine, a bromine or an aryl group, wherein the residues R', R" and R'" are independently of each other a straight or branched (C 1 -C 10 )-alkyl group, (C 1 -C 10 )-alkenyl, (C 1 -C 10 )-alkynyl, (C 3 -C 7 )-cycloalkyl or 5-membered or 6-
  • Q7, Q8, Q7' and Q8' are defined as Q1 to Q6 and Q1' to Q6', and may be connected to each other to form another ring system.
  • R5 to R8 are independently of each other H, CH 3 , CN, COR', CO (OR'), CO (NR'R"), SO 2 R', SO 2 (OR'), SOR', CF 3 , CF 2 R ', wherein R' is as defined above, at least one group other than H or CH 3.
  • two adjacent groups selected from R5, R6, R7 and R8 may be chemically linked to each other. This attachment, which affects the hardening of the molecular structure, increases the quantum efficiency of emission as is known to those skilled in the art.
  • hydrogen atoms in one, several or all positions of the molecules according to the formulae IIa to IIe according to the invention may be replaced by deuterium.
  • the molecules according to the invention have a structure according to formulas IVa to IVd.
  • R16 to R23 and R16' to R23' are as defined for R9 to R16 and R9' to R16'.
  • the organic molecule according to the invention has a structure according to formula V.
  • Q9 and Q10 are defined as Q1 to Q8 and Q1' to Q8', and may be connected to each other to form another ring system.
  • the organic molecule according to the invention has a structure according to formula VI.
  • Q9' and Q10' are defined as Q1 to Q10 and Q1' to Q8', and may be connected to each other to form another ring system.
  • the organic molecules according to the invention have a structure according to formula VII to XVI.
  • Figure 1 Schematic diagram illustrating the energy levels of a thermally activated delayed fluorescence (TADF) process.
  • TADF thermally activated delayed fluorescence
  • k B T represents thermal energy having a Boltzmann constant k B and an absolute temperature T.
  • the figure shows a radiation TADF process and low temperature T 1 of the observed radiation and non-radiation state (the wavy line shown) during passivation.
  • the spontaneous S 1 ⁇ S 0 fluorescence process is not indicated in the figure.
  • the graph shows the red shift of the emission spectrum as the polarity of the solvent (quantified by the dielectric constant ⁇ ) increases.
  • Figure 3 The isosurface of the leading edge orbital of the molecule of the example 1 (see Example 1), HOMO: left, LUMO: right electronic ground state S 0 geometry optimization.
  • Figure 4 Perspective view of the example molecule 1 generated by X-ray structure measurement.
  • the single crystal used for structural analysis was slowly diffused into a saturated dichloromethane solution of 1 by hexane.
  • Figure 8 Emission spectrum of the example molecule 1 (c ⁇ 10% by weight) in a solid TADF matrix (see text).
  • Excitation: 310 nm (cw-LED). Temperature T 300K.
  • Figure 9 Emission spectra (normalized spectra) of the different temperatures of the example molecule 1 (c ⁇ 10% by weight) in a solid TADF matrix (see text).
  • the emission spectrum changes little with cooling.
  • the decay time is extended from 530ns (300K) to ⁇ 1 ⁇ s (10K).
  • the radiance changes little during cooling.
  • Figure 10 Energy level diagram for illustrating the emission behavior of Example Molecular 1 in a polar substrate such as diethyl ether or a solid TADF matrix as described above.
  • the local 3 LE state is higher in energy than the 1,3 CT state.
  • These states can have quantum mechanical mixing, the 3 LE state and the 1 CT state are mixed by spin-orbit coupling (SOC), and the two triplet states can be integrated by conformational interaction (CI).
  • SOC spin-orbit coupling
  • CI conformational interaction
  • ISC intersystem transition
  • Figure 11 Example frontier orbital isosurface embodiment 2 molecules (see Example 2), HOMO: the LUMO left: the electronic ground state S 0 to the right geometry optimization.
  • the energy difference between the singlet-CT state and the triplet-CT state is calculated to be 5 cm -1 (0.6 meV) (S 0 geometry).
  • Figure 12 Example frontier orbital isosurface embodiment 3 molecules (see Example 3), HOMO: left, LUMO: the electronic ground state S 0 to the right geometry optimization.
  • the energy difference between the singlet-CT state and the triplet-CT state is calculated to be 5 cm -1 (0.6 meV) (S 0 geometry).
  • Figure 13 Other examples of organic molecules according to the invention suitable for optoelectronic device applications.
  • the organic molecule according to the invention may be part of the composition or in combination with a matrix material, which may be synthesized using known catalytic coupling reactions (eg Suzuki coupling reaction, Buchwald-Hartwig cross-coupling reaction) molecule.
  • a matrix material which may be synthesized using known catalytic coupling reactions (eg Suzuki coupling reaction, Buchwald-Hartwig cross-coupling reaction) molecule.
  • the organic molecule (emitter molecule) has an energy difference ⁇ E ( 1 CT- 3 CT) of less than 20 cm -1 (2.5 meV), more preferably less than 10 cm -1 ( ⁇ 1.2 meV) between charge transfer states.
  • ⁇ E 1 CT- 3 CT
  • C 1 - substituted (one or more) of the bridge B2 or B3 is significantly reduced through the presence of ultra-conjugated bridge achieved.
  • the structural pattern shown here illustrates this:
  • the emitter molecules are in a solid matrix (eg in an OLED) and are therefore an emissive layer.
  • the polarity of the matrix is selected such that the local 3 LE state is energetically higher than the 1,3 CT state, for example, less than 1500 cm -1 ( ⁇ 190 mV) or better than 500 cm-1 ( ⁇ 63 meV), and still better than 100cm -1 ( ⁇ 12meV).
  • the 3 LE state can be as low as 1.3 cm -1 ( ⁇ 6 meV) below the 1.3 CT state.
  • the polarity of the substrate to be selected is represented by a dielectric constant ⁇ , for example, in the range of 2.2 ⁇ ⁇ ⁇ 5.0.
  • the embodiment molecule 1 is an emitter according to the invention suitable for use in photovoltaic devices, such as OLEDs.
  • Figure 4 shows the molecular structure determined by the X-ray structure. Additional structural data is summarized in Tables 1 and 2.
  • Example Molecule 1 can be sublimed in a vacuum (temperature 250 ° C, pressure 6 ⁇ 10 -5 mbar), and can also be dissolved in many organic solvents, such as in dichloromethane (CH 2 Cl 2 ), toluene, tetrahydrofuran (THF) , acetone, dimethylformamide (DMF), acetonitrile, ethanol, methanol, xylene or benzene. Good solubility in chloroform also makes it possible, for example, to dope in polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • the photoluminescence quantum efficiency ⁇ PL is very high.
  • ⁇ PL 65%.
  • the decay time of Example 1 was only 420 ns.
  • the short decay time is significant for OLED applications because the roll-off effect known to those skilled in the art is less important for emitters with decay times shorter than prior art (about 5 ⁇ s) TADF decay time, but devices Increased stability.
  • the DFT calculation (Fig. 3) shows that the example molecule 1 has a charge transfer (CT) transition. This transition is affected by the environment (matrix or solvent) in the vicinity of the emitter. Figure 2 illustrates this behavior. As the polarity of the matrix increases, the transmitted 1 CT singlet state has a red shift. When the dielectric constant ⁇ is taken as a parameter in calculation, the TD-DFT calculation also obtains corresponding results.
  • CT charge transfer
  • the effect of matrix polarity was also shown when studying Example 1 dissolved in ether.
  • This emission involves a fluorescence that is balanced with a 3 CT state of approximately equal energy. Further explanation is as follows. Quantum mechanical calculations also confirm this interpretation.
  • the emission process involves triplet phosphorescence.
  • the decay time of 980 ns is also shorter than the shortest TADF cooling time measured so far.
  • the described transmission process does not have TADF emissions. This involves the fluorescence of a 1 CT-single state balanced with an approximately equal energy 3 CT state. When used in an OLED, all triplet and singlet excitons will be captured. This important feature will be discussed in detail below.
  • Figure 8 shows the emission behavior of Example 1 doped in a polar matrix (form ⁇ value approximately equal to 4.4) having a higher energy 1,3 CT state and a smaller single than the embodiment molecule 1. Heavy-triplet energy gap.
  • the substrate is a TADF emitter whose emission properties are not critical here.
  • the structural formula of the matrix substance is;
  • the emission spectrum of the emitter-matrix combination/composition is shown in FIG.
  • Such emission decay time of 530ns has also relates to a phosphor and a single 1 CT 3 CT nearly equal energy state of the state of the counterweight.
  • the emission behavior of the example molecule 1 of the example in a polar environment such as diethyl ether or the solid TADF matrix in question is illustrated in Figure 10 by means of an energy level diagram.
  • the low temperature measurement shows that the local 3 LE state is higher in energy than the 1,3 CT state.
  • the low temperature measurement shows that the local 3 LE state energy is higher than the 1 CT state.
  • SOC spin-orbit coupling
  • CI conformational interaction
  • composition according to the invention (emitter molecules in a polar matrix) in an OLED will result in singlet excitons occupying the CT-single state and triplet excitons occupying the CT-triplet state. Since the occupation of the two CT states of the fast ISC process is in equilibrium and the instantaneous 1 CT ⁇ S 0 fluorescence is much faster than the spin-off 3 CT ⁇ S 0 phosphorescence, 1 CT-single state and almost equal energy can be observed. 3 CT state balanced fluorescence. This means that all excitation processes can result in direct occupancy and emission of the CT singlet state. That is, there is a "direct singlet capture". Accordingly, the present invention provides an organic illuminant molecule for a photovoltaic device, and an adjustment method which makes the emission decay time significantly shorter (for example, a coefficient of five to ten) as compared with the prior art.
  • Example molecule 2 is an organic molecule in accordance with the present invention.
  • Example 2 The following reaction scheme illustrates the chemical synthesis of Example 2 starting from a commercially available reactant.
  • Example Molecule 3 is an organic molecule in accordance with the present invention.
  • Example Molecule 4 is an organic molecule in accordance with the present invention.
  • Example 4 The following reaction scheme illustrates the chemical synthesis of Example 4 starting from a commercially available reactant.
  • the example molecule 5 is an organic molecule according to the invention.
  • Example 5 The following reaction scheme illustrates the chemical synthesis of Example 5 starting from a commercially available reactant.
  • the example molecule 6 is an organic molecule according to the invention.
  • Figure 13 shows other molecules in accordance with embodiments of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供一种有机发射体分子以及具有所述有机发射体分子的光电器件。所述有机分子激发后基本等能量的电荷转移三重态(3CT)的松弛和系间窜跃进程导致了直接快速的电荷转移单重态( 1CT)占据和发射,从而发生 1CT→S 0荧光,而不需要热激活。

Description

具有短发射衰减时间的直接单重态捕获有机分子及其在光电器件中的应用 技术领域
本发明涉及有机分子以及该有机分子在光电器件中的应用。所述的有机分子具有通过两个有机非共轭桥连接的给体单元和受体单元,所述桥具有减少的超共轭。因此三重态-单重态-能隙可以达到几meV。这使得具有发射衰减时间短的OLED中的100%激子利用成为可能。这种新机制为直接的单重态捕获,特别适合于应用于光电器件中。与现有技术已知的具有强烈的温度依赖的热激活延迟荧光(TADF)的“单重态捕获效应“(由较大能隙ΔE( 1CT- 3CT)几百cm -1(几十meV)引起)相对的是,在直接单重态捕获效应中发生了几乎等能量的 3CT和 1CT态之间的系间窜跃,ΔE( 1CT- 3CT)值为10cm -1级别(0.12meV)。在这些分子中, 1CT态占据过程进行的非常快,因此 1CT态的发射衰减时间比显示TADF的分子特别地快5至10倍。
发明背景
对于光电应用的发光分子(=发射体分子),要求它们具有尽可能短的发射衰减时间,此外还应当具有高的发射量子效率φ PL。例如为了获得长的OLED器件寿命,发射衰减时间短是重要的,其降低了激发态的发射体分子的化学反应(分解)可能性。此外,对于纯有机发射体分子,即不是金属复合物的分子,的这类应用,在发射过程中包括最低激发三重态T 1的电子占据是重要的。通过设定T 1态与其上方的单重态S 1之间足够小的能量差ΔE(S 1-T 1),在室温下能够热激活延迟荧光(TADF)(图1),可以满足所述的要求。该过程对于本领域技术人员是已知的(参见例如,C.A.Parker,C.G.Hatchard;Trans.Faraday,Royal Society of Chem.1961,57,1894),也被称为根据E型的升频,在曙红时首次发现。结果是可以实现有效TADF,即长寿命三重态参与时,发光(=发射)衰减时间τ(TADF)相对于磷光衰减时间τ(Τ 1)呈几个数量级的减小。此外,在许多情况下都可以实现发射量子效率φ PL显著提高,原因在于竞争快速返回占有过程T 1→k BT→S 1,减少了T 1态的非辐射过程(图1中示出)。
从现有技术中已知的是,许多具有在给体(D)片段和受体(A)片段之间分子内电荷转移(CT)跃迁的分子,均可能发生TADF。然而,迄今为止所获得的能量差ΔE(S 1-T 1)仍然明显过大,因此,许多应用所期望的光物理特性,比如没有长的衰减尾迹的短衰减,仍旧没能实现。然而,迄今为止所获得的能量差ΔE( 1CT- 3CT)仍然明显过大,因此,许多应用所期望的光物理特性,比如没有长的衰减时间尾迹的短衰减时间,仍旧没能实现,按现有技术,所述的长的衰减时间尾迹可达到ms范围。
发明内容
令人惊讶的是,现在已经能够找到一种方法(分子结构原理),它有助于针对性地减少能量差ΔE(S 1-T 1)以提供相应的纯的有机分子。根据方程式(1),该能量差与量子力学交换积分近似成正比,
ΔE(S 1-T 1)≈const.<ΨD(r 1)ΨΑ*(r 2)|r 12 -1|ΨD(r 2)ΨΑ*(r 1)>         (1)
其中,r 1和r 2为电子坐标,r 12为电子1和电子2之间的距离。Ψ D是HOMO的波函数(最高占有分子轨道),对于本发明类型的分子,HOMO主要通过分子的给体部分D伸展,而Ψ Α*代表LUMO(最低未占分子轨道),其主要通过分子的受体部分A伸展。基于方程式(1)可以看出,如果波函数的乘积Ψ D(r 1Α*(r 2)变小时,ΔE(S 1-T 1)变小。对于各种具有分子内CT跃迁的分子,这个要求是达不到的,因为波函数Ψ D(r 1)以及Ψ Α*(r 2)的空间扩张使得重叠过于明显,因此导致ΔE(S 1-T 1)值过大。根据本发明,提出了显著减少波函数叠加的分子结构。这是通过一种分子结构来实现的,在该分子结构中,非共轭的,小的化学基团(桥)分隔了给体分子部分或受体分子部分。因此HOMO扩张到受体区域和LUMO扩张到给体区域均明显减少了。此外,通过化学硬化一个或两个桥可以降低给体部分相对于受体部分的灵活性。这可以增加发射量子效率并减小基质中发射体分子的ΔE(S 1-T 1)值的不均一性。
在波函数重叠极其少的本发明分子中,通过取代而减少非共轭小化学基团(桥)中存在的超共轭(对于本领域技术人员是已知的)。这进一步降低了HOMO进入受体区域和LUMO进入给体区域的程度。
本发明的分子通常与其他分子一起存在于光电子器件中,例如,沉积的其他小分子或掺杂的聚合物中。在这里,这些分子被称为基质或基质材料。本发明的分子也可以被溶解,则溶剂为基质。加入,掺杂或溶解在这些基质材料/环境中的本发明分子的能级受到基质极性不同方式的影响。下面会进一步解释这种性质。
式Ia和式Ib示出了根据本发明的有机分子的结构模式,在给体和受体片段之间具有两个有机桥。通过适当选择这些桥,可以显著降低HOMO(主要位于给体上)和LUMO(主要位于受体上)的空间叠加,而且通过取代一个桥或两个桥,进一步减少超共轭。为了不使电子基态S 0与激发态S 1之间的跃迁概率变得太小,所剩余的轨道轻微重叠是有意义的。[R.Czerwieniec et al.,Coord.Chem.Rev.2016,325,2-26]另外,双桥接可以增强分子的刚性。因此可实现提高发射量子效率以及减小发射半峰宽。后者在很多情况下对于获得确定的发光颜色(色纯度),例如在OLED中的发光,是非常有意义的。此外也进一步减少了发射衰减曲线的长寿命尾部。
式Ia和式Ib:表示根据本发明的有机分子的结构模式,该有机分子由一个芳香族的或者杂芳香族的给体片段D,D1,D2和一个通过两个或四个非共轭桥B1,B2,B3和B4连接的芳香族的或者杂芳香族的受体片段A构成。所述的芳香族或杂芳香族分子部分被给电子或吸电子取代基取代,由此成为给体或受体。下面会给出实施例。所述的桥是这样选择,即它们减少了给体-HOMO和受体-LUMO的明显重叠。桥B2和/或B3例如可以具有芳香族或杂芳香族单元。与现有技术相比,这些桥具有降低了超共轭。这导致了基本上较小的能差ΔE( 1CT- 3CT),如下将进一步阐述。
Figure PCTCN2018072034-appb-000001
对于要求小的ΔE(S 1–T 1)值的光电应用,还重要的是,位于给体上的HOMO和位于受体上的LUMO之间的能隙大约为1.8-3.3eV,因此HOMO→LUMO的跃迁能量位于可视区。片段D和A各自具有足够高的给体强度或受体强度。HOMO和LUMO的能级可以通过给电子(对于给体)或吸电子(对于受体)作用强度来描述。(这些术语是本领域技术人员熟知的,在下面具体的实施例中将进一步描述。)
在本发明的分子中,能量差ΔE(S 1–T 1)(=ΔE( 1CT- 3CT))小于20cm -1(2.5meV),更好是小于10cm -1(≈1.2meV)。因此,与室温下的热能k BT=210cm -1相比,单重态电荷转移态和三重态电荷转移态基本上是等能量的。下面将给出关于分子结构的详细说明。相应的能差值由个体分子决定。可通过量子力学计算得到能差值,例如使用商业上可获得的TD-DFT程序(例如用Gaussian 09程序)或免费获得的NWChem版本(例如版本6.1),CC2方法(TURBOMOLE GmbH,Karlsruhe)或CAS方法(完整活态方法)。(参见例如D.I.Lyakh,M.Musiaz,V.F.Lotrich,R.J.Bartlett,Chem.Rev.2012,112,182-243和P.G.Szalay,T.Muller,G.Gidofalvi,H.Lischka,R.Shepard,Chem.Rev.2012,112,108-181)下面给出了实施例。
对于许多应用,发射衰减时间τ(300K)应当小于2μs,最好小于1μs。为了达到这点,除了设定一个小的ΔE( 1CT- 3CT)值外,还有意义的是,增加 3CT态和更高的分子能量态之间的自旋-轨道-耦合(SBK,SOC)作用,以获得更大的系间窜跃(ISC)速率。对此适合的是,例如用卤素Cl,Br和/或I取代给体片段D和/或受体片段A和/或两桥中的一个桥。
对于本发明的分子,通过位于给体D和/或受体A和/或一个或两桥上与CT态能量非常接近的相邻的局域三重态 3LE(LE=局域激发的),也可以实现系间窜跃(ISC)速率的提高。基于这些状态之间与 3LE 态的的量子力学混合的自旋轨道耦合增强使 1CT态和 3CT态之间的ISC速率提高。使用已知的计算机程序或量子力学方法(例如Gaussian 09或CC2方法)确定目标分子。这些状态之间的能量越接近,则混合越有效。通过改变给体强度和/或受体强度以及改变给体的给电子取代和/或改变受体的吸电子取代可以实现相互的能量偏移。也可以通过一个以上的给电子的和/或吸电子的取代来实现能量偏移。特别有意义的是在本发明的一个实施方式中可以使用具有合适极性的基质。因此,与 3LE态相反的是, 1CT和 3CT态可以能量偏移(只要是所期望的,在有机分子不具有期望的状态顺序的情况时),使得 1,3CT态低于或稍微高于 3LE态。基质的极性可以用介电常数ε来描述。(数值可以在相应的文献表中找到)。极性的影响也可以通过上述计算机程序来获得。
基质极性的影响,例如溶剂,将借助图2进行解释。在该图中,示出了随溶剂的极性增加(由介电常数ε量化)的发射光谱红移。下文描述根据本发明的分子(实施例分子1)的发射结果。
根据本发明的有机分子是这样设计,使 1CT和 3CT态低于 3LE态,例如,小于1500cm -1(≈190mV)或更好小于500cm -1(≈63meV),更好小于100cm -1(≈12meV)。略低于 1CT和 3CT态(例如50cm -1,≈6meV)的 3LE的能量位置也是可能的。相应的能量差可以通过量子理论TD-DFT计算来确定。此外,可以通过实验确定局域 3LE态是否在能量上低于 1,3CT态,因此记录了低温发射光谱(例如,在77K或10K)。在这种情况下,发射结构化,从而可以分辨振动卫星结构。另外,发射的 3LE态的发射衰减时间在ms到s的范围内,明显长于 1CT衰减时间(<2μs)。相反的情况下,有半宽值为几千cm -1和短的衰减时间的宽的CT光谱。
有机分子的给体和受体片段之间的化学桥不仅具有-增强分子刚性的作用,而且令人惊讶地也使得发射量子效率φ PL增加。
此外,这些桥强烈限制了有机分子的给体分子片段D相对于受体分子片段A的自由运动。因此,在聚合物基质中加入的给定的发射体分子的ΔE( 1CT- 3CT)值的变化,即这个值的不均匀性,受到极大的限制,从而显著减少了现有技术中经常出现的长寿命“衰减尾部”区域中的长发射衰减时间。此外,通过减小发射带的半宽改善了发射的色纯度。
令人惊讶地,根据本发明的分子(任选地与具有极性的基质,极性由介电常数描述,范围2.4≤ε≤5.0)表现出有效的ISC,并且 1CT与 3CT态之间的能量差ΔE( 1CT- 3CT)非常小,ΔE( 1CT- 3CT)小于20cm -1(2.5meV),更好小于10cm -1(≈1.2meV),没有时间延迟的TADF发射,而只有 1CT荧光。其值小于2μs至小于500ns,明显寿命短于现有技术已知的TADF发射体的值。根据本发明的有机分子,如果需要的话,与基质一起作为组合物或组合,用在OLED中作为发射体,可以在单电荷转移状态时捕获所有的单重态和三重态激子,即在一个荧光衰减时间范围内的时间窗口。也就是说,它是“直接的单重态捕获效应”。因此根据本发明的发射体-基质组合只表现出短的荧光衰减时间,该时间例如只有几百纳秒至1或2微秒。该荧光是一种 1CT-单重态的与几乎等能量的 3CT-态平衡的荧光。与现有技术中已知的具有高度温度依赖性的热激活延迟荧光(TADF)(由在几百cm -1范围内的较大能量差ΔE( 1CT- 3CT)引起)的单重态捕获效应不同的是,在“直接单重态捕获效应”时, ISC发生在几乎等能量的 3CT-态和 1CT-态之间。在这些分子中,任选与基质组合, 1CT态占据过程快速实现,使 1CT态的发射衰减时间比表现TADF的分子特别地短五至十倍。
根据式Ia和Ib的分子结构说明
借助式IIa至IIe进一步说明根据本发明的式Ia和Ib的发射体材料的分子结构。在组合物中,同时使用极性基质,即具有例如2.4≤ε≤4.5介电常数(极性)的基质和根据本发明的有机分子可以进一步改善直接的单重态捕获效应(减短了 1CT荧光衰减时间)。
Figure PCTCN2018072034-appb-000002
根据本发明的式IIa至IIe的有机分子的基本结构为2,3:6,7-二苯并环庚烷。通过在此所示的适当取代,调控芳环体系的电子性质,因此,被R1至R4取代的分子部分成为式Ia和Ib的给体部分D,或被R1至R4和R1`至R4`取代的分子部分成为式Ia和Ib的给体部分D1和D2,被R5至R8以及被R5和R6所取代的分子部分成为受体部分A。2,3:6,7-二苯并环庚烷的被Q1至Q6取代的亚甲基和亚乙基代表式I的桥B1和B2,2,3:6,7-二苯并环庚烷的被Q1`至Q6`取代的亚甲基和亚乙基代表式I的桥B3和B4。
Q1,Q2,Q1`和Q2`彼此独立地为H,烷基,烯基,炔基,环烷基或芳基。Q3至Q6和Q3`至Q6`彼此独立地为H,烷基,烯基,炔基,环烷基或芳基
其中:
烷基为直链(非支链的)或支链的(C 1-C 10)-烷基,其在主烃链中有1到10个碳原子(例如,甲基,乙基,正丙基,异丙基,正丁基,异丁基,叔丁基,正戊基等),
烯基为直链或支链的(C 1-C 10)-烯基,其在主烃链中有1到10个碳原子(例如,丙烯-2-基,正丁烯-2-基, 正丁烯-3-基),
炔基是直链或支链的(C 1-C 10)-炔基,其在主烃链中有1到10个碳原子(例如,丙烯-2-基,正丁烯-2-基,正丁烯-3-基),
环烷基是(C 3-C 7)-环烷基,其具有3-7个环碳原子,和
芳基是5元或6元芳香族或杂芳香族基团,例如苯,噻吩,呋喃,咪唑,吡咯,二唑,三唑,四唑,恶唑等。
“主烃链”在此理解为支链或非直链的烷基,烯基或炔基的最长链。
每个基团Q1至Q6和Q1`至Q6`可以彼此独立地为未取代的,或者被一个或多个F,Cl,Br,烷氧基,硫代烷基,胺,硅烷,膦,硼烷或芳基取代。
基团Q1和Q2,基团Q3和Q4,基团Q5和Q6,基团Q1`和Q2`,基团Q3`和Q4`以及基团Q5`和Q6`可以相互化学连接,从而形成另外的环体系。
给体部分:
R1至R4和R1`至R4`彼此独立地为H,烷基,烯基,炔基,环烷基,烷氧基,硫代烷基,胺,膦,硅烷,硼烷,氟,氯,溴或下面借助式III定义的基团Akr,其中,在式IIa中至少R1至R4的一个位置是Akr,在式IIb至IIe中至少R1至R4的一个位置和至少R1`至R4`的一个位置是Akr。
其中:
烷基是直链或支链(C 1-C 10)烷基(例如甲基,乙基,正丙基,异丙基,正丁基,异丁基,叔丁基,正戊基等),其在主烃链中有1到10个碳原子,
烯基是直链或支链(C 1-C 10)-烯基(例如,丙烯-2-基,正丁烯-2-基,正丁烯-3-基),其在主烃链中具有1至10个碳原子,
炔基是直链或支链(C 1-C 10)-炔基(例如丙烯-2-基,正丁烯-2-基,正丁烯-3-基),其在主烃链中具有1至10个碳原子,
环烷基是(C 3-C 7)-环烷基,其具有3-7个环碳原子,和
芳基是5元环或6元环芳香族或杂芳香族基团,例如苯,噻吩,呋喃,咪唑,吡咯,二唑,三唑,四唑,恶唑等。
取代基烷氧基,硫代烷基,胺,膦,硅烷和硼烷分别是烷氧基O-R',硫代烷基S-R',胺基N-R′R″,膦基P-R′R″,硅烷基SiR′R″R″′和硼烷基BR′R″,其中R',R'和'R″′彼此独立地表示直链或支链(C 1-C 10)-烷基,(C 1-C 10)-烯基,(C 1-C 10)-炔基,(C 3-C 7)-环烷基或者5元环或6元环芳香族或杂芳香族基团。
基团Akr由式IIIa和式IIIb的一个结构组成:
Figure PCTCN2018072034-appb-000003
其中:
#标记位置,Akr基团通过该位置与分子的其余部分连接,R9至R16和R9′至R16′彼此独立地为H,(C 1-C 10)-烷基,(C 1-C 10)-烯基,(C 1-C 10)-炔基,(C 3-C 7)-环烷基,胺基N-R′R″,膦基P-R′R″,硅烷基SiR′R″R″′和硼烷基BR′R″,氟,氯,溴或芳基,其中残基R′,R″和R″′彼此独立地为直链或支链(C 1-C 10)-烷基,(C 1-C 10)-烯基,(C 1-C 10)-炔基,(C 3-C 7)-环烷基或者5元环或6元环芳香族或杂芳香族基团;
Q7,Q8,Q7′和Q8′定义如Q1至Q6和Q1′至Q6′,并且可以相互连接,从而形成另外一个环系。
受体部分:
R5至R8彼此独立地为H,CH 3,CN,COR',CO(OR'),CO(NR′R″),SO 2R′,SO 2(OR′),SOR′,CF 3,CF 2R′,其中R′定义如上。至少一个基团不是H或CH 3
此外,式IIa中优选至少两个选自R5,R6,R7和R8的取代基不是H和CH 3
在根据本发明的分子的一个实施方式中,两个相邻的选自R5,R6,R7和R8的基团可以相互化学连接。这种影响分子结构硬化的连接,如本领域技术人员已知那样,会提高发射量子效率。
在根据本发明的分子的一个实施方式中,例如为了提高发射量子效率,可以用氘代替根据本发明的式IIa至IIe的分子的一个,多个或所有位置中的氢原子。
在另一实施方式中,根据本发明的分子具有根据式IVa至IVd的结构。
Figure PCTCN2018072034-appb-000004
Figure PCTCN2018072034-appb-000005
在式IIa至IIe下解释了取代基R1至R8,R1′至R8′,Q3至Q6和Q3′至Q6′,在式IIIa和IIIb下解释了取代基R9至R16和Q7至Q8。
R16至R23和R16′至R23′定义如R9至R16和R9′至R16′。
在另一优选实施方式中,根据本发明的有机分子具有根据式V的结构。
Figure PCTCN2018072034-appb-000006
在式IIa至IIe,III,IIIb和IVa至IVd下解释了取代基R1至R23和Q1至Q8。
Q9和Q10定义如Q1至Q8和Q1′至Q8′,并且可以相互连接,从而形成另一个环系。
在另一优选的实施方式中,根据本发明的有机分子具有根据式VI的结构。
Figure PCTCN2018072034-appb-000007
在式IIa至IIe,III,IIIb,IVa至IVd和V下解释了取代基R1至R23,R1′至R23′,Q3至Q10和Q3′ bis Q8′。
Q9′和Q10′定义如Q1至Q10和Q1′至Q8′,并且可以相互连接,从而形成另一个环系。
在另外的优选实施方式中,根据本发明的有机分子具有根据式VII至XVI的结构。
Figure PCTCN2018072034-appb-000008
Figure PCTCN2018072034-appb-000009
在此适用上面提及的定义。
附图说明
图1:说明热激活延迟荧光(TADF)过程的能级示意图。k BT表示具有波尔兹曼常数k B和绝对温度T的热能。该图显示了辐射TADF过程以及低温可观察到的T 1态的辐射和非辐射(波浪线示出)钝化过程。图中没有标示自发的S 1→S 0荧光过程。
图2:T=300K,溶剂极性对溶解的实施例分子1的 1CT发射的能量位置的影响。该图显示,随溶剂极性(由介电常数ε定量)增加的发射光谱的红移。
图3:实施例分子1的前沿轨道的等值面(参见实施例1),HOMO:左边,LUMO:右边电子基态S 0几何结构优化。计算方法:DFT和TD-DFT,函数:B3LYP,基组:6-31G(d,p),计算软件:Gaussian09。计算得到,单重态-CT态和三重态-CT态之间的能量差为7cm -1(T 1-几何结构)。该值表明,实施例1为应用于光电器件的良好发射体。
图4:实施例分子1的透视图,其由X射线结构测定生成。用于结构分析的单晶通过己烷的缓慢扩散进入到1的饱和二氯甲烷溶液中。
图5:溶解在甲苯中的实施例物质1的发射光谱和激发光谱(c≈10 -5M)。通入氮气120分钟除去溶液中残余氧气。除气之后,发射量子效率为Φ PL=65%。激发310nm,检测468nm。
图6:溶解在甲苯中且氮气吹扫的实施例分子1的TADF衰减时间(T=300K,c≈10 -5M)。激发310nm,脉冲持续时间10ns。测量值τ=420ns为最短TADF衰减时间,明显短于迄今为止测得的最短TADF衰减时间。
图7:(a)乙醚中的实施例分子1(c≈10 -5M)的发射光谱。该发射为一种与 3CT-态平衡的 1CT荧光,衰减时间为τ=960ns(b)测量前用氮气吹扫样品约120分钟。激发:光谱(a):310nm(cw-LED);衰减曲线(b):310nm(LED脉冲)。温度T=300K。
图8:固态TADF基质(参见正文)中的实施例分子1(c≈10重量%)的发射光谱。该发射为一种与 3CT-态平衡的荧光,衰减时间为τ=530ns。对样品仔细地除气。激发:310nm(cw-LED)。温度T=300K。
图9:固态TADF基质(参见正文)中的实施例分子1(c≈10重量%)的不同温度的发射光谱(标准化的光谱)。发射光谱随冷却的变化很小。衰减时间从530ns(300K)延长到≈1μs(10K)。在冷却时辐射率变化很小。
图10:用于说明在极性基质如乙醚或上述的固态TADF基质中的实施例分子1的发射行为的能级图。局域 3LE态在能量上高于 1,3CT态。这些状态可以具有量子力学混合, 3LE态与 1CT态通过自旋-轨道耦合(SOC)混合,而两个三重态可以通过构象相互作用(CI)整合。这导致了, 1CT态和 3CT态之间快速的系间窜跃(ISC)。结果是,在低温下也只是观察到与 3CT态平衡的 1CT荧光,既没观察到 3CT磷光也没观察到TADF。
图11:实施例分子2的前沿轨道等值面(参见实施例2),HOMO:左边LUMO:右边电子基态S 0几何结构优化。计算方式:DFT和TD-DFT,函数:B3LYP,基组:6-31G(d,p),计算软件:Gaussian09。计算得到单重态-CT态和三重态-CT态之间的能差为5cm -1(0.6meV)(S 0几何结构)。
图12:实施例分子3的前沿轨道等值面(参见实施例3),HOMO:左边,LUMO:右边电子基态S 0几何结构优化。计算方式:DFT和TD-DFT,函数:B3LYP,基组:6-31G(d,p),计算软件:Gaussian09。计算得到单重态-CT态和三重态-CT态之间的能差为5cm -1(0.6meV)(S 0几何结构)。
图13:其他的适合光电器件应用的根据本发明的有机分子的实施例。
具体实施方式
实施例
根据本发明的有机分子可以是组合物的一部分或者是与基质材料的组合,可以采用已知的催化偶联反应(例如Suzuki偶联反应,Buchwald-Hartwig交叉偶联反应)合成根据本发明的有机分子。
所述有机分子(发射体分子)具有在电荷转移状态之间小于20cm -1(2.5meV),更好小于10cm -1(≈1.2meV)的能量差ΔE( 1CT- 3CT)。与现有技术相比,这种小的能量差是通过在C 1-桥B2或B3处的取代(一个或多个)显著减少了经过桥存在的超共轭而实现的。在此示出的结构模式说明了这点:
Figure PCTCN2018072034-appb-000010
其中
#标示位置,通过该位置桥B2或B3的碳原子或螺碳原子与式Ia或Ib分子的给体片段或受体片段连接。此外适用,Q1,Q2,Q1'和Q2'≠H。
发射体分子在固态基质中(例如在OLED中),因此为发射层。这样选择基质的极性,使局域 3LE态在能量上高于 1,3CT态,例如,小于1500cm -1(≈190mV)或更好小于500cm-1(≈63meV),还更好小于100cm -1(≈12meV)。另一方面, 3LE态可以低于 1.3CT态多达50cm -1(≈6meV)。要选择的基质极性,用介电常数ε来表示,例如可以在2.2≤ε≤5.0的范围内。
实施例1
Figure PCTCN2018072034-appb-000011
下面将更详细地讨论实施例1中所示的根据本发明的分子。
从图3所示的前沿轨道可以看出,HOMO和LUMO位于所述分子的明显不同的空间区域中。可以预料到,最低三重态与其上方的单重态之间的间隙小。在TD-DFT计算(函数B3LYP,以及函数MO6)范围内的实施例分子1的计算表明,优化的三重态几何结构的能量差为ΔE( 1CT- 3CT)=7cm -1(0.87meV)。因此,实施例分子1是适合应用于光电器件,如OLED中的根据本发明的发射体。
下面的反应示意图阐明了始于市售反应物的实施例分子1的化学合成:
Figure PCTCN2018072034-appb-000012
反应物和反应条件:
(1)9,9-二甲基-9,10-二氢吖啶,Pd(CH 3COO) 2,P[(C(CH 3) 3] 3,(CH 3) 3CONa,90℃,19小时
(2)Zn(CN) 2,1,1′-(二苯基膦基)二茂铁,1,1′-(二苯基膦基)二茂铁二氯化钯(II)二氯甲烷复合物,N-甲基-2-吡咯烷酮,180℃,12小时
化学分析:
1H NMR(300MHz,CDCl3,δ):7.71(d,J=7.5Hz,2H),7.66(s,1H),7.34(q,J=7.5Hz,6H),7.22(d,J=7.5Hz,1H),7.11(d,J=7.5Hz,2H),6.92(d,J=7.5Hz,1H),6.80(t,J=9Hz,3H),6.71(t,J=7.5Hz,2H),6.32(d,J=3Hz,1H),5.72(d,J=7.5Hz,2H),3.48(d,J=3.6Hz,4H),1.53(s,6H). 13C NMR(75MHz,CDCl3,δ):156.35,148.69,148.36,140.53,130.07,129.22,128.59,126.07,124.79,124.67,121.51,120.43,113.66,66.47,38.13,36.73,35.82,30.49.MS(HR-ES-MS=高分辨电喷雾质谱)m/z:C 44H 31N 3计算:601.2518;测量:601.3514.C 44H 31N 3计算:C,87.82; H,5.19;N,6.98,测量:C,87.48;H,5.41;N,6.60.
晶体结构:
图4显示了由X射线结构测定得到的分子结构。其它的结构数据总结于表1和2中。
表1 根据实施例1的分子的X射线结构数据
Figure PCTCN2018072034-appb-000013
Figure PCTCN2018072034-appb-000014
表2 实施例分子1的原子坐标
Figure PCTCN2018072034-appb-000015
和位移参数
Figure PCTCN2018072034-appb-000016
Figure PCTCN2018072034-appb-000017
Figure PCTCN2018072034-appb-000018
实施例分子1可以真空升华(温度250℃,压力6×10 -5毫巴),并且也可以溶解在许多有机溶剂中,例如在二氯甲烷(CH 2Cl 2),甲苯,四氢呋喃(THF),丙酮,二甲基甲酰胺(DMF),乙腈,乙醇,甲醇,二甲苯或苯中。在氯仿中的良好溶解度也使得例如在聚甲基丙烯酸甲酯(PMMA)中掺杂成为可能。
光物理测量
溶解在甲苯中的实施例分子1,介电常数ε=2.4(T=300K),在468nm的蓝色处显示了最大的发射(T=300K)。(图5)光致发光量子效率Φ PL非常高。对于氮气吹扫的溶液,Φ PL=65%。实施例1的衰减时间仅为420ns。(图6)衰减时间短对于OLED应用意义重大,因为对于衰减时间比现有技术(大约5μs)TADF衰减时间更短的发射体,本领域技术人员熟知的滚降效应并不太重要,但器件稳定性增加。
DFT计算(图3)显示,实施例分子1具有电荷转移(CT)跃迁。这种跃迁受发射器附近环境(基质或溶剂)影响。图2说明了这种行为。随着基质极性的增加,发射的 1CT单重态有红移。当在计算上把介电常数ε作为参数考虑时,TD-DFT计算也得到了相应的结果。
当研究溶于乙醚中的实施例1时,也显示了基质极性的影响。该基质具有ε=4.3,比甲苯高。对于氮气吹扫的溶液,发射(T=300K)在515nm处具有红移的最大值(图7a),发射量子效率Φ PL大约为70%:衰减时间测定为τ=960ns(图7b)从给定的值可以得到相应的辐射率为k r=Φ PL/τ=7.3x10 5s -1。该发射涉及一个与近似等能量的 3CT态平衡的荧光。进一步的解释如下。量子力学计算也证实了这种解释。对于电子S 01CT跃迁,TD-DFT计算结果(对于 1CT几何结构)的振荡强度f=0.00115。当使用文献[N.Turro,Modern Molecular Photochemistry,The Benjamin/Cummings Publ.,Menlo Park,Calif.1978,Seite 87]所给出的近似和发射的能量位置(图7a),由此可估计跃迁的辐射率。这一估计得到瞬时荧光的辐射率k r=6.5x 10 5s -1,参照简单的近似,这与实验确定的辐射率是相对良好一致的。由于液态溶液中存在的发射体衰减时间少于1μs和高的发射量子效率,排除了另一种解释,即该发射过程涉及三重态的磷光。同样的,980ns的衰减时间也比迄今为止测得的最短的TADF冷却时间短。然而,所描述的发射过程没有TADF发射。这涉及到 1CT-单重态的与近似等能量的 3CT态平衡的荧光。在OLED中使用时,将捕获所有三重态和单重态激 子。这个重要的特征将在下面详细讨论。
图8示出了在极性基质(形式ε值约等于4.4)中掺杂的实施例物质1的发射行为,其具有比实施例分子1位于较高能量的 1,3CT态和小的单重态-三重态能隙。所述基质为TADF发射体,它的发射性质在此并不重要。所述基质物质的结构式是;
Figure PCTCN2018072034-appb-000019
在图8中示出了该发射体-基质组合/组合物的发射光谱。具有530ns衰减时间的这种发射也涉及到 1CT单重态的与几乎等能量的 3CT态平衡的的荧光。
图9比较了不同温度(T=300K,150K和10K)的实施例分子1的发射光谱。除了轻微的频谱偏移之外,整个温度范围内都没有变化,正如体所预期的那样,与TADF发射不同(TADF发射的冻结)。发射的辐射率也没有明显的变化。这些测量结果表明,在整个温度范围内,发射机理保持不变,正如 1CT单重态的与近似等能量的 3CT态平衡的荧光所预期的那样。
图10中借助能级图说明了在极性环境如乙醚或所讨论的固态TADF基质中的实施例分子1的发射行为。低温测量显示局域 3LE态在能量上高于 1,3CT态。低温测量显示,局域 3LE态能量上高于 1CT态。通过SOC(自旋-轨道耦合)和构象相互作用(CI)机制, 3LE态与CT态的量子力学混合是有可能的。此外,由于单重态--CT态和三重态-CT态具有相似的势能面,因此影响ISC速率的Franck-Condon因子很大。(这个术语是本领域技术人员已知的。)由于这些性质,预计在 1CT态和 3CT态之间将出现快速的ISC。在这种情况下,“快速”意味着ISC过程比瞬时荧光更快。事实上,即使在低温(例如T=10K)下,例如在TADF基质中的实施例分子1,并没有观察到 3CT磷光。
在OLED中应用根据本发明的组合物(极性基质中的发射体分子)时,将导致单重态激子占据CT-单重态和三重态激子占据CT-三重态。由于快速ISC过程的两个CT态的占据处于平衡以及瞬时 1CT→S 0荧光比自旋禁 3CT→S 0磷光快的多,可以观察到 1CT-单重态的与几乎等能量的 3CT态平衡的荧光。这意味着所有的激发过程可以导致CT单重态的直接占据和发射。也就是说,有一个“直接的单重态捕获”。因此,本发明提供了一种用于光电器件的有机发光体分子,以及一种调整方法,该方法使发射衰减时间与现有技术相比明显变短(例如,五至十的系数)。
实施例2
Figure PCTCN2018072034-appb-000020
图11中所示的前沿轨道表明,HOMO和LUMO位于分子的明显不同的空间区域中。可以预料到,最低三重态-CT态与其上方的单重态-CT态之间的间隙非常小。在TD-DFT计算(函数B3LYP,基组6-31G(d,p))范围内,对实施例分子2的计算表明,优化的单重态几何结构的能差为ΔE( 1CT- 3CT)=5cm -1(0.6meV)。因此,实施例分子2为根据本发明的有机分子。
下面的反应示意图说明了始于市售反应物的实施例分子2的化学合成。
Figure PCTCN2018072034-appb-000021
反应物和反应条件:
(a)9,9-二甲基-9,10-二氢吖啶,Pd(CH 3COO) 2,P[(C(CH 3) 3] 3,(CH 3) 3CONa,90℃,19小时
(b)Zn(CN) 2,1,1′-(二苯基膦基)二茂铁,1,1′-(二苯基膦基)二茂铁二氯化钯(II)二氯甲烷复合物,N-甲基-2-吡咯烷酮,180℃,12小时
实施例3
Figure PCTCN2018072034-appb-000022
图12中所示的前沿轨道表明,HOMO和LUMO位于分子的明显不同的空间区域中。可以预料到,最低三重态-CT态与其上方的单重态-CT态之间的间隙小。在TD-DFT计算(函数B3LYP,基组6-31G(d,p))范围内,对实施例分子3的计算表明,优化的单重态几何结构的能差为ΔE( 1CT- 3CT)=5cm -1(0.6meV)。因此,实施例分子3为根据本发明的有机分子。
下面的反应示意图说明了始于市售反应物的实施例分子3的化学合成。
Figure PCTCN2018072034-appb-000023
反应物和反应条件:
(a)9,9-二甲基-9,10-二氢吖啶,Pd(CH 3COO) 2,P[(C(CH 3) 3] 3,(CH 3) 3CONa,90℃,19小时
(b)Zn(CN) 2,1,1′-(二苯基膦基)二茂铁,1,1′-(二苯基膦基)二茂铁二氯化钯(II)二氯甲烷复合物,N-甲基-2-吡咯烷酮,180℃,12小时
实施例4
Figure PCTCN2018072034-appb-000024
在TD-DFT计算(函数B3LYP,基组6-31G(d,p))范围内,对实施例分子4的计算表明,优化的单重态几何结构的能差为ΔE( 1CT- 3CT)=8cm -1(1meV)。因此,实施例分子4为根据本发明的有机分子。
下面的反应示意图说明了始于市售反应物的实施例分子4的化学合成。
Figure PCTCN2018072034-appb-000025
反应物和反应条件:
(a)9,9-二甲基-9,10-二氢吖啶,Pd(CH 3COO) 2,P[(C(CH 3) 3] 3,(CH 3) 3CONa,90℃,19小时
(b)Zn(CN) 2,1,1′-(二苯基膦基)二茂铁,1,1′-(二苯基膦基)二茂铁二氯化钯(II)二氯甲烷复合物,N-甲基-2-吡咯烷酮,180℃,12小时
实施例5
Figure PCTCN2018072034-appb-000026
在TD-DFT计算(函数B3LYP,基组6-31G(d,p))范围内,对实施例分子5的计算表明,优化的三重态几何结构的能差为ΔE( 1CT- 3CT)=9cm -1(1.1meV)。因此,实施例分子5为根据本发明的有机分子。
下面的反应示意图说明了始于市售反应物的实施例分子5的化学合成。
Figure PCTCN2018072034-appb-000027
反应物和反应条件:
(a)9,9-二甲基-9,10-二氢吖啶,Pd(CH 3COO) 2,P[(C(CH 3) 3] 3,(CH 3) 3CONa,90℃,19小时
(b)Zn(CN) 2,1,1′-(二苯基膦基)二茂铁,1,1′-(二苯基膦基)二茂铁二氯化钯(II)二氯甲烷复合物,N-甲基-2-吡咯烷酮,180℃,12小时
实施例6
Figure PCTCN2018072034-appb-000028
在TD-DFT计算(函数B3LYP,基组6-31G(d,p))范围内,对实施例分子6的计算表明,优化的三重态几何结构的能差为ΔE( 1CT- 3CT)=12cm -1(1.5meV)。因此,实施例分子6为根据本发明的有机分子。
下面的反应示意图说明了始于市售反应物的实施例分子6的化学合成。
Figure PCTCN2018072034-appb-000029
反应物和反应条件:
(a)9,9-二甲基-9,10-二氢吖啶,Pd(CH 3COO) 2,P[(C(CH 3) 3] 3,(CH 3) 3CONa,90℃,19小时
(b)Zn(CN) 2,1,1′-(二苯基膦基)二茂铁,1,1′-(二苯基膦基)二茂铁二氯化钯(II)二氯甲烷复合物,N-甲基-2-吡咯烷酮,180℃,12小时
图13示出了其它的根据本发明的实施例分子

Claims (16)

  1. 一种光电器件,其中在有机分子激发后产生了有机分子的电荷转移三重态( 3CT)的直接快速的松弛和系间窜跃进程以占据基本上等能量的电荷转移单重态( 1CT),从而发生 1CT→S 0荧光,而不需要热激活,其中S 0表示电子基态。
  2. 根据权利要求1所述的光电器件,其中,与显示热激活延迟荧光(TADF)的分子相比,所述的直接快速占据CT单重态导致所述的CT-单重态的衰减时间要快5至10倍。
  3. 根据权利要求1或2所述的光电器件,其中,所述有机分子的发射衰减时间低于2μs,特别是低于1μs或低于500ns。
  4. 根据权利要求1至3所述的光电器件,其中,所述发生的发射不是TADF发射。
  5. 根据权利要求1至4所述的光电器件,其中,所述 1CT荧光是一种 1CT-单重态的与基本等能量的电荷转移三重态( 3CT)平衡的荧光。
  6. 根据权利要求1至5所述的光电器件,其中,所述有机分子具有根据式Ia或Ib的结构或者由根据式Ia或Ib的结构组成,
    Figure PCTCN2018072034-appb-100001
    具有一个芳香族或杂芳香族给体片段D,D1,D2和一个通过两个或四个非共轭桥B1,B2,B3和B4连接的芳香族或杂芳香族受体片段A,其中,所述芳香族或杂芳香族分子部分(给体或受体)被给电子或吸电子的取代基所取代,其中这样选择所述的桥B1,B2,B3,B4,使它们阻碍给体HOMO与受体LUMO的显著重叠。
  7. 根据权利要求6所述的光电器件,其中,所述有机分子具有根据下列所示式之一的结构或者由一个这类的结构组成,
    Figure PCTCN2018072034-appb-100002
    其中,所述的2,3:6,7-二苯并环庚烷基本结构是这样取代,使得所述芳香族环体系的电子性质这样改变,即被R1至R4取代的分子部分成为所述的式Ia和Ib的给体部分D,或被R1至R4和R1`至R4`取代的分子部分成为所述的式Ia和Ib的给体部分D1和D2,被R5至R8所取代的分子部分成为受体部分A,其中,所述的2,3:6,7-二苯并环庚烷的被Q1至Q6取代的亚甲基和亚乙基代表所述的式Ia的桥B1和B2,所述的2,3:6,7-二苯并环庚烷的被Q1至Q6和Q1`至Q6`取代的亚甲基和亚乙基代表式Ib的桥B1或B2和B3或B4,
    具有
    Q1,Q2,Q1`和Q2`彼此独立地选自烷基,烯基,炔基,环烷基和芳基;Q3至Q6和Q3`至Q6``彼此独立地选自H,烷基,烯基,炔基,环烷基和芳基;
    其中:
    烷基为直链(非支链的)或支链的(C 1-C 10)-烷基,其在主烃链中具有1到10个碳原子,
    烯基为直链或支链的(C 1-C 10)-烯基,其在主烃链中具有1到10个碳原子,
    炔基是直链或支链的(C 1-C 10)-炔基,其在主烃链中具有1到10个碳原子,
    环烷基是(C 3-C 7)-环烷基,其具有3-7个环碳原子,和
    芳基是5元或6元环芳香族或杂芳香族基团,其中,“主烃链”在此理解为支链或非直链的烷基,烯基或炔基的最长链;
    其中,每个基团Q1至Q6和Q1`至Q6`可以彼此独立地为未取代的,或者被一个或多个F,Cl,Br,烷氧基,硫代烷基,胺,硅烷,膦,硼烷或芳基取代;
    所述基团Q1和Q2,所述基团Q3和Q4,所述基团Q5和Q6,所述基团Q1`和Q2`,所述基团Q3`和Q4`以及所述基团Q5`和Q6`任选相互化学连接,从而形成另外的环体系。
    给体部分:
    R1至R4和R1`至R4`彼此独立地选自H,烷基,烯基,炔基,环烷基,烷氧基,硫代烷基,胺,膦,硅烷,硼烷,氟,氯,溴和所述的下面借助式III定义的基团Akr,其中,在所述式IIa中至少R1至R4的一个位置是Akr,在所述式IIb至IIe中至少R1至R4的一个位置和至少R1`至R4`的一个位置是Akr。
    其中:
    烷基是直链或支链(C 1-C 10)-烷基,其在主烃链中具有1到10个碳原子,
    烯基是直链或支链(C 1-C 10)-烯基,其在主烃链中具有1至10个碳原子,
    炔基是直链或支链(C 1-C 10)-炔基,其在主烃链中具有1至10个碳原子,
    环烷基是(C 3-C 7)-环烷基,其具有3-7个环碳原子,和
    芳基是一个5元环或6元环芳香族或杂芳香族基团,
    其中,所述取代基烷氧基,硫代烷基,胺,膦,硅烷和硼烷分别是烷氧基O-R',硫代烷基S-R',胺基N-R′R″,膦基P-R′R″,硅烷基SiR′R″R″′和硼烷基BR′R″,其中R',R'和'R″′彼此独立地表示直链或支链(C 1-C 10)-烷基,(C 1-C 10)-烯基,(C 1-C 10)-炔基,(C 3-C 7)-环烷基或者5元环或6元环芳香族或杂芳香族基团;
    其中,所述基团Akr具有所述式IIIa和IIIb的一个结构或由所述式IIIa和IIIb的一个结构组成:
    Figure PCTCN2018072034-appb-100003
    其中:
    #标记位置,所述的Akr基团通过该位置与所述分子的其余部分连接,R9至R16和R9′至R16′彼此独立地为H,(C 1-C 10)-烷基,(C 1-C 10)-烯基,(C 1-C 10)-炔基,(C 3-C 7)-环烷基,烷氧基OR′,胺基N-R′R″,膦基P-R′R″,硅烷基SiR′R″R″′和硼烷基BR′R″,氟,氯,溴或芳基,其中所述残基R′,R″和R″′彼此独立地为直链或支链(C 1-C 10)-烷基,(C 1-C 10)-烯基,(C 1-C 10)-炔基,(C 3-C 7)-环烷基或者5元环或6元环芳香族或杂芳香族基团;
    Q7,Q8,Q7′和Q8′定义如Q1至Q6和Q1′至Q6′,并且可以相互连接,从而形成另外一个环系。
    受体部分:
    R5至R8彼此独立地为H,CH 3,CN,COR',CO(OR'),CO(NR′R″),SO 2R′,SO 2(OR′),SOR′,CF 3,CF 2R′, 其中R′和R″彼此独立地表示直链或支链(C 1-C 10)-烷基,(C 1-C 10)-烯基,(C 1-C 10)-炔基,(C 3-C 7)-环烷基或者5元环或6元环芳香族或杂芳香族基团,以及至少一个基团不是H或CH 3,其中任选地在所述式IIa中至少两个选自R5,R6,R7和R8的取代基不是H和CH 3
    这意味着R5至R8也可以同样是Akr,其中任选地选自R5,R6,R7和R8的两个相邻的取代基相互化学连接。
  8. 根据权利要求7所述的光电器件,其中所述有机分子具有一个根据式IVa至IVd的结构或者由一个根据式IVa至IVd的结构组成,
    Figure PCTCN2018072034-appb-100004
    其中,在所述式IIa至IIe下说明了所述的取代基R1至R8,R1′至R8′,Q3至Q6和Q3′至Q6′和在所述式IIIa和IIIb下说明了R9至R16和Q7至Q8,
    其中R16至R23和R16′至R23′定义如R9至R16和R9′至R16′。
  9. 根据权利要求7所述的光电器件,其中所述有机分子具有一个根据式V的结构或者由一个根据式V的结构组成
    Figure PCTCN2018072034-appb-100005
    其中,在所述式IIa至IIe,III,IIIb和IVa至IVd下说明了所述取代基R1至R23和Q3至Q8,Q9和Q10定义如Q1至Q8和Q1′至Q8′,并且任选地相互连接,从而形成另外一个环体系。
  10. 根据权利要求7所述的光电器件,其中所述有机分子具有一个根据式VI的结构或者由一个根据式V的结构组成
    Figure PCTCN2018072034-appb-100006
    其中,所述取代基R1至R23,,R1′至R23′,Q3至Q10以及Q3′至Q8′在所述式IIa至IIe,III,IIIb和IVa至IVd下进行说明,和其中Q9′和Q10′定义如Q1至Q10和Q1′至Q8′,并且任选地相互连接,从而形成另外一个环体系。
  11. 根据权利要求7所述的光电器件,其中所述有机分子具有一个根据式VII至XVI的结构或者由一个根据式VII至XVI的结构组成
    Figure PCTCN2018072034-appb-100007
    Figure PCTCN2018072034-appb-100008
    其中所述取代基如前面所定义。
  12. 根据权利要求6所述的光电器件,其中在所述有机分子的一个,多个或所有位置上的氢原子均被氘替代。
  13. 有机分子,具有根据选自式Ia,式Ib,式IIa,式IIb,式IIc,式IId,式IIe,式IIIa,式IIIb,式IVa,式IVa,式IVa,式IVa,式V,式VI,式VII,式VIII,式IX,式X,式XI,式XII,式XIII,式XIV,式XV和式XVI的一个结构或由该结构组成,特别是其中,前面提及的式的有机分子的一个,几个或所有位置中的氢原子被氘替代。
  14. 根据权利要求13的所述有机分子用于发光的应用,特别是在光电器件的发射体层中。
  15. 制备光电器件的方法,其中使用了根据权利要求1所述的有机分子。
  16. 根据权利要求1至12所述的光电器件,根据权利要求13所述的有机分子,根据权利要求14所述的应用,根据权利要求15所述的方法,其中所述光电器件选自有机发光二极管(OLED),发光电化学电池(LEEC或LEC),OLED传感器,特别是对外没有密封屏蔽的气体和蒸汽传感器,光学温度传感器,有机太阳能电池(OSC),有机场效应晶体管,有机激光器,有机二极管,有机光电二极管和“降频转换”系统。
PCT/CN2018/072034 2017-01-25 2018-01-10 具有短发射衰减时间的直接单重态捕获有机分子及其在光电器件中的应用 WO2018137494A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/341,875 US11404645B2 (en) 2017-01-25 2018-01-10 Direct singlet capture organic molecules with short emission decay time and application thereof in optoelectronic devices
KR1020197012681A KR102216794B1 (ko) 2017-01-25 2018-01-10 짧은 방출 감쇠 시간을 갖는 직접적인 단일항 수집을 위한 유기 분자 및 광전자 장치에서의 이의 응용
JP2019537245A JP6901168B2 (ja) 2017-01-25 2018-01-10 短い発光減衰時間で単重捕集を直接に得るための有機分子を有する光電製品
CN201880003877.2A CN109804046B (zh) 2017-01-25 2018-01-10 具有短发射衰减时间的直接单重态捕获有机分子及其在光电器件中的应用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102017101432.2A DE102017101432B4 (de) 2017-01-25 2017-01-25 Organische Donator-Akzeptor-Moleküle für eine effektive thermisch aktivierte verzögerte Fluoreszenz mit kleiner Energielücke, Verwendung der Moleküle zur Emission von Licht, sowie opto-elektronische Vorrichtungen und deren Herstellung
DE102017101432.2 2017-01-25
EP17170682.3 2017-05-11
EP17170682.3A EP3401381B1 (de) 2017-05-11 2017-05-11 Organische moleküle für direktes singulett-harvesting mit kurzer emissionsabklingzeit zur verwendung in opto-elektronischen vorrichtungen

Publications (1)

Publication Number Publication Date
WO2018137494A1 true WO2018137494A1 (zh) 2018-08-02

Family

ID=62978785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072034 WO2018137494A1 (zh) 2017-01-25 2018-01-10 具有短发射衰减时间的直接单重态捕获有机分子及其在光电器件中的应用

Country Status (6)

Country Link
US (1) US11404645B2 (zh)
JP (2) JP6901168B2 (zh)
KR (1) KR102216794B1 (zh)
CN (1) CN109804046B (zh)
TW (1) TWI676670B (zh)
WO (1) WO2018137494A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265399A (zh) * 2018-08-09 2019-01-25 石家庄诚志永华显示材料有限公司 化合物、有机电致发光器件
CN109627215A (zh) * 2019-01-09 2019-04-16 京东方科技集团股份有限公司 一种荧光材料、荧光材料的制备方法、显示面板和显示装置
CN112321644A (zh) * 2019-12-24 2021-02-05 广东聚华印刷显示技术有限公司 螺式二苯并环庚烯膦氧类化合物及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024149A (ja) * 2008-07-16 2010-02-04 Toyo Ink Mfg Co Ltd 7員環構造を有する化合物およびその用途
WO2016102413A1 (en) * 2014-12-22 2016-06-30 Solvay Sa Process for the manufacture of spirodibenzosuberane compounds
WO2017017205A1 (de) * 2015-07-30 2017-02-02 Hartmut Yersin Organische moleküle mit zwei nicht-konjugierten brücken zwischen donator und akzeptor für eine effektive thermisch aktivierte verzögerte fluoreszenz zur anwendung in opto-elektronischen vorrichtungen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133112B (zh) * 2014-03-27 2019-05-14 九州有机光材股份有限公司 发光材料、有机发光元件及化合物
JP2016036025A (ja) * 2014-07-31 2016-03-17 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及びπ共役系化合物
CN104803896B (zh) * 2015-04-28 2017-07-28 深圳市华星光电技术有限公司 含有二(苯砜基)苯结构的共轭化合物及其制备方法和应用
KR102573815B1 (ko) 2016-05-09 2023-09-04 삼성디스플레이 주식회사 다환 화합물 및 이를 포함하는 유기 전계 발광 소자
CN106946870B (zh) 2017-02-15 2019-11-05 中节能万润股份有限公司 一种oled材料的制备方法及其应用
CN106977446A (zh) 2017-03-29 2017-07-25 江苏三月光电科技有限公司 一种以三苯并环庚烯酮为核心的化合物及其在oled器件上的应用
KR102169374B1 (ko) 2017-10-13 2020-10-23 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광 소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024149A (ja) * 2008-07-16 2010-02-04 Toyo Ink Mfg Co Ltd 7員環構造を有する化合物およびその用途
WO2016102413A1 (en) * 2014-12-22 2016-06-30 Solvay Sa Process for the manufacture of spirodibenzosuberane compounds
WO2017017205A1 (de) * 2015-07-30 2017-02-02 Hartmut Yersin Organische moleküle mit zwei nicht-konjugierten brücken zwischen donator und akzeptor für eine effektive thermisch aktivierte verzögerte fluoreszenz zur anwendung in opto-elektronischen vorrichtungen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265399A (zh) * 2018-08-09 2019-01-25 石家庄诚志永华显示材料有限公司 化合物、有机电致发光器件
CN109265399B (zh) * 2018-08-09 2022-05-13 石家庄诚志永华显示材料有限公司 化合物、有机电致发光器件
CN109627215A (zh) * 2019-01-09 2019-04-16 京东方科技集团股份有限公司 一种荧光材料、荧光材料的制备方法、显示面板和显示装置
CN112321644A (zh) * 2019-12-24 2021-02-05 广东聚华印刷显示技术有限公司 螺式二苯并环庚烯膦氧类化合物及其应用

Also Published As

Publication number Publication date
JP2021050203A (ja) 2021-04-01
JP7181637B2 (ja) 2022-12-01
CN109804046B (zh) 2022-11-25
CN109804046A (zh) 2019-05-24
US20190245151A1 (en) 2019-08-08
TWI676670B (zh) 2019-11-11
KR102216794B1 (ko) 2021-02-17
US11404645B2 (en) 2022-08-02
KR20190082772A (ko) 2019-07-10
JP2020510986A (ja) 2020-04-09
TW201827566A (zh) 2018-08-01
JP6901168B2 (ja) 2021-07-14

Similar Documents

Publication Publication Date Title
JP6530318B2 (ja) 発光材料、有機発光素子および化合物
JP6861644B2 (ja) 発光デバイス及び化合物
JP5679496B2 (ja) 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP6493220B2 (ja) 発光材料、有機発光素子および化合物
KR102082528B1 (ko) 유기 발광 소자 그리고 그것에 사용하는 발광 재료 및 화합물
JP6526625B2 (ja) 発光材料、有機発光素子および化合物
JP6430370B2 (ja) 発光材料、有機発光素子および化合物
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP6674542B2 (ja) 供与体と受容体との間に2つの非共役ブリッジを有する光電変換デバイス用の熱活性化遅延蛍光有機分子
WO2015137244A1 (ja) 発光材料、有機発光素子および化合物
JP7028176B2 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
KR20150108899A (ko) 발광 재료 및 그것을 사용한 유기 발광 소자
JP2015129240A (ja) 発光材料、有機発光素子および化合物
JP7181637B2 (ja) 短い発光減衰時間で単重捕集を直接に得るための有機分子及びその有機分子を利用する光電製品の製造工程
WO2019004254A1 (ja) 発光材料、化合物、遅延蛍光体および発光素子
JP6783059B2 (ja) 化合物、キャリア輸送材料および有機発光素子
JP7214142B2 (ja) 一重項分裂材料、三重項増感剤、化合物および薄膜
Zhu et al. Synthesis of asymmetric biphenyl derivatives for optoelectronic applications
TWI594476B (zh) 螢光有機發光材料及有機電激發光裝置
JP2015164989A (ja) リン光材料、化合物、蓄光塗料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197012681

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019537245

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18745390

Country of ref document: EP

Kind code of ref document: A1