WO2018137336A1 - 氮化镓基发光二极管及其制作方法 - Google Patents

氮化镓基发光二极管及其制作方法 Download PDF

Info

Publication number
WO2018137336A1
WO2018137336A1 PCT/CN2017/097843 CN2017097843W WO2018137336A1 WO 2018137336 A1 WO2018137336 A1 WO 2018137336A1 CN 2017097843 W CN2017097843 W CN 2017097843W WO 2018137336 A1 WO2018137336 A1 WO 2018137336A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
emitting diode
light emitting
gallium nitride
Prior art date
Application number
PCT/CN2017/097843
Other languages
English (en)
French (fr)
Inventor
陈秉扬
张中英
罗云明
黄文嘉
陈福全
叶孟欣
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Publication of WO2018137336A1 publication Critical patent/WO2018137336A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Definitions

  • the present invention relates to the field of semiconductor illumination, and in particular to a gallium nitride based light emitting diode and a manufacturing method thereof
  • Gallium-based light-emitting diodes have been widely used in various light sources such as backlights, illumination, lamps, and decoration due to their high efficiency. Further improving the luminous efficiency of LED is still the focus of current industry development. The luminous efficiency is mainly determined by two factors. The first one is the radiation recombination efficiency of electron holes in the active region, that is, the internal quantum efficiency; the second is light. Extraction efficiency. Techniques for improving both of these efficiencies have been widely reported. In terms of improving internal quantum efficiency, such as quantum well band design, improving crystal quality, and improving hole injection efficiency of p-type nitride layer.
  • the luminous efficiency affecting the gallium nitride-based LED is an electronic overflow condition, which has been widely discussed and proposed in the reported literature.
  • the present invention provides a gallium nitride based light emitting diode and a method for fabricating the same, adding an AlInN/InGaN superlattice structure layer between an active layer and a p-type material, and controlling the condition of the growth process to reduce V
  • the sidewall thickness at the type of defect enables the efficiency of injecting holes from the V-type defect and reduces the electron overflow. High luminous efficiency of light-emitting diodes.
  • the technical solution of the present invention is: a gallium nitride based light emitting diode, which in turn comprises: an n-type nitride layer, an active layer, Al xl In (1 — xl) N/In x2 G a (1 — 2 ⁇ super a lattice layer electron blocking layer having a V-type defect and a planar region connecting the V-type defects, and a p-type nitride layer, the Al xl In (1 _ xl) N/In x2 Ga (1 _ x2) an N-electron barrier layer is formed in the planar region and extends toward the V-type defect sidewall region, and when an injection current ⁇ causes holes to be injected from the V-type defect into the active layer, and electron blocking is performed in the planar region It stays in the active layer.
  • n-type nitride layer is formed only in the planar region.
  • the p-type nitride layer is formed in the planar region and extends to fill the V-type defect into the V-type defect region.
  • the equivalent energy gap width Eg of the Al : ln (! _ xl) N/In x2 Ga (1 — X3 ⁇ 4 N superlattice layer electron blocking layer is greater than 3.4 eV
  • the Al ln ( i_ x i) N / In x2 Ga (1 - X3 ⁇ 4 N electron blocking layer 0.8 ⁇ xl ⁇ l, 0 ⁇ x2 ⁇ 0.2.
  • the thickness of the Al : ln ⁇ — xl) N is 0.5 to 5 nm.
  • the In x2 Ga (1 — x 2 ) N has a thickness of 0.5 to 5 nm.
  • the Al: ln (i_ x i) N / In x2 Ga - log (1 x2) N superlattice layer is 2 ⁇ n ⁇ 20.
  • the Al : ln (1 _ xl) N / In x2 Ga (1 - X3 ⁇ 4 N electron blocking layer formed at the V-type defect sidewall has a thickness of less than 1 nm.
  • the present invention provides a method for fabricating a gallium nitride based light emitting diode, comprising the steps of: (1) forming an n-type nitride layer; (2) forming an active over the n-type nitride layer.
  • the growth temperature of the electronic barrier layer of the superlattice layer is 800-950°, and the growth temperature of the superlattice layer is 8:41 1 1 1 ⁇ 1 ⁇ /111 ! ⁇ 1 _ !4 ⁇ C.
  • the condition for controlling growth in the step (3) is such that Al xl I n(1 _ xl )N/I nx2 G ao _ x3 ⁇ 4 N electrons
  • the barrier layer is formed to a thickness of less than 1 nm at the sidewall of the V-type defect.
  • the present invention has at least the following beneficial effects:
  • the V-type defect sidewall of the Al uIn d ⁇ N/In ⁇ Ga d ⁇ N superlattice layer has a lower ratio of thickness to the C surface, that is, Al xl In (1) _ xl) N/In x2 Ga (1 — X3 ⁇ 4 N superlattice electron blocking layer has a thin V-shaped defect sidewall thickness at the same C-plane thickness , which brings the advantage of increasing the hole from the V-type defect The ability to inject MQW to increase the efficiency of radiation recombination.
  • FIG. 1 is a cross-sectional view showing the structure of a conventional light emitting diode.
  • FIG. 2 is a schematic view of a C-side energy band of the light-emitting diode shown in FIG. 1.
  • FIG. 3 is a schematic view of a side energy band of a V-type defect of the light emitting diode shown in FIG. 1.
  • FIG. 4 is a cross-sectional view showing the structure of a light emitting diode according to a first preferred embodiment of the present invention.
  • FIG. 5 is a schematic view of a C-plane energy band of the light emitting diode shown in FIG. 4.
  • FIG. 6 is a side energy band diagram of a V-type defect of the light emitting diode shown in FIG. 4.
  • [0031] 110 a buffer layer
  • 120 an n-type nitride layer
  • 130 InGaN/GaN superlattice structure
  • FIG. 1 shows a conventional structure of a gallium nitride-based light emitting diode, which in turn comprises: a growth substrate 100, a buffer layer 110, an n-type gallium nitride layer 120, an InGaN/GaN superlattice structure 130, a multi-quantum a well active layer 140 layer, a p-type AlGaN/InGaN electron blocking layer 150, and a p-type gallium nitride layer 160, wherein the multiple quantum well active layer 140 has a series of series V-type defects and a planar region connecting the V-type defects (C -plane).
  • FIG. 2 and 3 respectively show a C-plane energy band diagram and a V-pit sidewall energy band diagram of the LED shown in FIG. 1, in which a hole mainly passes through The V-type defect is implanted into the active layer, and the hole injection efficiency of the C-plane is very low.
  • FIG. 4 shows a gallium nitride based light emitting diode according to a first preferred embodiment of the present invention, comprising: a growth substrate 100, a buffer layer 110, an n-type gallium nitride layer 120, and an InGaN.
  • the multi-quantum well active layer 140 having a series of V-shaped defects and the connecting surface region of the V-shaped defects (C-plane), n-type nitride layer is formed only in the planar region, Al xl in (1 - xl ) N/In x2 Ga ( 2 ⁇ superlattice electron blocking layer 150 is formed in the planar region and extends toward the V-shaped defect sidewall region.
  • the growth substrate 100 is selected to include, but is not limited to, sapphire, aluminum nitride, gallium nitride, silicon, silicon carbide, and the surface structure thereof may be a planar structure or a patterned structure; the buffer layer 110 may be a single layer.
  • the structure or the multilayer structure may be made of A1N or GaN or a combination thereof, and the thickness thereof may be 20 to 50 nm, preferably including a low temperature GaN buffer layer of 10 to 40 nm, and a three-dimensional non-discrete nitridation of 1 to 2 ⁇ m thick.
  • the InGaN/GaN superlattice structure 130 is the stress buffer layer of the multiple quantum well active layer 150, With 15-30 cycles, the thickness of InGaN is 1-3 nm in each cycle, and the thickness of GaN is 2-10 nm; the active layer 140 has 5-15 cycles of InGaN/GaN multiple quantum wells, and InGaN in each cycle The thickness is 2 ⁇ 4 nm, the thickness of GaN is 5 ⁇ 15 nm; Al xl In (1 _ xl) N/In x2 Ga (1 - X3 ⁇ 4 N superlattice electron blocking layer 150 is located in the active layer 140 and the p-type nitride layer 160 Between the ⁇ ⁇ ⁇ ⁇
  • the thickness of the single layer on the C plane is 0.5 ⁇ 5nm
  • the logarithm of the superlattice is 2 ⁇ n ⁇ 20
  • the thickness of the N-superlattice in the V-type defect sidewall region is within 1 nm
  • Al xl In (1 _ xl) N includes u-type, n-type and p-type
  • In x2 G a (1 - x2) N contains u-type , n-type and p-type
  • p-type gallium nitride layer 160 has a thickness of 30-60 nm
  • its cumbersome depth is 1x10 17 ⁇ 5x10 18 cm -3 .
  • FIG. 5 and FIG. 6 respectively show the C-plane energy band diagram and the energy band diagram of the V-type defect side surface of the light emitting diode shown in FIG. 4.
  • the operation is under forward bias, and under the forward bias, the equivalent energy gap of the Al xl In (1 — xl )N/In x2 Ga u— X3 ⁇ 4 N superlattice layer is wider, so The effect of electronic blocking on the conduction band is better, avoiding electron overflow to the P-type region and improving the radiation recombination efficiency; compared with Fig.
  • the electron blocking layer of the present embodiment has a thin V-type defect sidewall thickness at the same C-plane thickness , which brings the advantage of improving the ability of holes to be injected into the MQW from the V-type defect, thereby improving Radiation recombination efficiency.
  • the barrier at the V-type defect is low, ⁇ 1 ⁇ 1 ⁇ ⁇ — ⁇ ⁇ / ⁇ ⁇ 2 Ga (1 — ⁇ 3 ⁇ 4 ⁇ superlattice layer on the V-type defect side
  • the thinner wall can further improve the hole injection effect, and the injected holes can migrate laterally in the quantum well, eliminating the influence of low hole injection efficiency at the C face; in addition, in the C face region due to Al xl In (1 _ Xl ) N/In x2 Ga (1 — X3 ⁇ 4 N superlattice has a wider equivalent energy gap, better electron blocking effect, lowers electron overflow, and improves radiation recombination efficiency, compared with the LED structure shown in Fig. 1. In comparison, the brightness of the LED chip using the structure described in this embodiment can be increased by 3-5%.
  • the sapphire pattern substrate is placed in metal organic chemical vapor deposition (MOCVD) to raise the temperature to 1000-120 0 degrees, treated under a hydrogen atmosphere, and then cooled to 500-600 ° C, and ammonia gas and top three are introduced.
  • MOCVD metal organic chemical vapor deposition
  • the thickness of the C surface is 0.5 to 5 nm, and the logarithm of the superlattice is 2 ⁇ n ⁇ 20; p type Al d Ga (1 - ⁇ - d ) N is grown as the p type nitride layer 160 at 800 to 1050 ° C, Where 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.2 ; finally, a heavy p-type contact layer was grown at 800-1050 °C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种氮化镓基发光二极管及其制作方法,其中结构依次包括:n型氮化物层(120)、有源层(140)、Al x1In (1-x1)N/In x2Ga (1-x2)N超晶格电子阻挡层(150)和p型氮化物层(160),所述有源层(140)表面上具有V型缺陷和连接所述V型缺陷的平面区,所述Al x1In (1-x1)N/In x2Ga (1-x2)N电子阻挡层(150)形成于平面区并向所述V型缺陷侧壁区延伸,当注入电流时促使空穴从V型缺陷处注入有源层(140),并在平面区将电子阻挡使其停留在有源层(140)。

Description

氮化镓基发光二极管及其制作方法 技术领域
[0001] 本发明属于半导体照明领域, 具体涉及一种氮化镓基发光二极管及其制作方法
背景技术
[0002] 氮化镓基发光二极管 (Light Emitting Diodem, 简称 LED) 由于其高效的发光 效率, 目前已经广泛的应用在背光、 照明、 车灯、 装饰等各个光源领域。 进一 步提高 LED的发光效率仍然是当前行业发展的重点, 发光效率主要由两个因素决 定, 第一种是电子空穴在有源区的辐射复合效率, 即内量子效率; 第二种是光 的萃取效率。 关于提高这两种效率的技术已经有广泛的报道。 在提高内量子效 率方面, 如量子阱能带设计、 改善晶体质量、 提高 p型氮化物层之空穴注入效率 等。
[0003] 空穴注入一直是氮化镓基 LED的瓶颈因素, 一方面由于 p型惨杂元素 Mg在 GaN 中的激活能偏高, 导致其激活效率低; 另一方面由于空穴的有效质量偏大, 导 致其迁移率偏低。 近年来 LED结构利用量子阱区域的 V型缺陷, 大大提高了空穴 的注入效率。 但在非 V型缺陷区域 (C-plane)也有一定的空穴注入, 而在此区域空 穴的注入效率较差。 因此如何加强在 V型缺陷区域之空穴注入为提升 LED效率关 键之一。
[0004] 再者, 影响氮化镓基 LED的发光效率为电子溢流状况, 这在已报导文献中也广 泛的讨论并提出解决方案。
技术问题
问题的解决方案
技术解决方案
[0005] 本发明提供了一种氮化镓基发光二极管及其制作方法, 在有源层及 p型材料之 间加入 AlInN/InGaN超晶格结构层, 并通过生长工艺的条件控制, 降低 V型缺陷 处的侧壁厚度, 实现了加强空穴从 V型缺陷处注入之效率, 并降低电子溢流, 提 高发光二极管的发光效率。
[0006] 本发明的技术方案为: 氮化镓基发光二极管, 依次包括: n型氮化物层、 有源 层、 AlxlIn(1xl)N/Inx2Ga(12^超晶格层电子阻挡层和 p型氮化物层, 所述有源层 表面上具有 V型缺陷和连接所述 V型缺陷的平面区, 所述 Al xlIn (1_xl)N/In x2Ga (1_x2) N电子阻挡层形成于平面区并向所述 V型缺陷侧壁区延伸, 当注入电流吋促使空 穴从 V型缺陷处注入有源层, 并在平面区将电子阻挡使其停留在有源层。
[0007] 进一步地, 所述 n型氮化物层仅形于所述平面区。
[0008] 进一步地, 所述 p型氮化物层形成于所述平面区并向所述 V型缺陷区延伸填充所 述 V型缺陷。
[0009] 优选地, 所述 Al: ln (! _xl)N/In x2Ga (1N超晶格层电子阻挡层的等效能隙宽 Eg大 于 3.4eV
[0010] 优选地, 所述 Al: ln (i_xi)N/In x2Ga (1N电子阻挡层中 0.8<xl≤l, 0≤x2<0.2。
[0011] 优选地, 所述 Al: ln σxl)N的厚度为 0.5~5nm。
[0012] 优选地, 所述 In x2Ga (1x2)N厚度为 0.5~5nm。
[0013] 优选地, 所述 Al: ln (i_xi)N/In x2Ga (1x2)N超晶格层的对数为 2≤n≤20。
[0014] 优选地, 所述 Al: ln (1_xl)N/In x2Ga (1N电子阻挡层在 V型缺陷侧壁处形成之厚 度小于 lnm。
[0015] 本发明同吋提供了一种氮化镓基发光二极管的制作方法, 包括步骤: (1) 形 成 n型氮化物层; (2) 在所述 n型氮化物层之上形成有源层, 其表面上具有 V型 缺陷和连接所述 V型缺陷的平面区; (3) 在有源层上形成 Al xlIn (1_xl)N/In x2Ga u—2^超晶格层电子阻挡层, 其是 0.8<xl≤l, 0<x2<0.2; (4) 在所述 Al χ1Ιη σxl) N/Inx2Ga(1Χ¾Ν超晶格层电子阻挡层上形成 ρ型氮化物层; 其中, 所述 AlxlIn(1χ1) N/Inx2Ga(1Χ¾Ν电子阻挡层形成于平面区并向所述 V型缺陷侧壁区延伸, 当注入 电流吋促使空穴从 V型缺陷处注入有源层, 并在平面区将电子阻挡使其停留在有 源层。
[0016] 优选地, 所述步骤 (3) 中所述八1!41111^1^/111!^^1_!4^超晶格层电子阻挡层的 生长温度为 800-950°C。
[0017] 优选地, 所述步骤 (3) 中控制生长的条件, 使得 AlxlIn(1_xl)N/Inx2Gao_N电子 阻挡层在 V型缺陷侧壁处形成之厚度小于 lnm。
发明的有益效果
有益效果
[0018] 本发明至少具备以下有益效果:
[0019] 第一、 操作在顺向偏压下, 八1 !41111 ^1^/111 !420^1_!42^等效能隙较宽, 因此在导 带电子阻挡之效果较佳, 避免电子溢流至 P型区, 提高辐射复合效率;
[0020] 第二、 操作在顺向偏压下, Al uIn d^N/In ^Ga d^N超晶格层之 V型缺陷侧壁 对 C面厚度比例较低, 即 Al xlIn (1_xl)N/In x2Ga (1N超晶格电子阻挡层在相同 C面厚 度吋具有较薄之 V型缺陷侧壁厚度, 所带来之优势为提高空穴由 V型缺陷处注入 MQW之能力, 藉此提高辐射复合效率。
[0021] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0022] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0023] 图 1为现有的一种发光二极管的结构剖视图。
[0024] 图 2为图 1所示发光二极管的 C面能带示意图。
[0025] 图 3为图 1所示发光二极管的 V型缺陷的侧面能带示意图。
[0026] 图 4为本发明实第一个较佳实施例之一种发光二极管的结构剖视图。
[0027] 图 5为图 4所示发光二极管的 C-plane能带示意图。
[0028] 图 6为图 4所示发光二极管的 V型缺陷的侧面能带示意图。
[0029] 图中标号表示如下:
[0030] 100: 生长衬底;
[0031] 110: 缓冲层;
[0032] 120: n型氮化物层; [0033] 130: InGaN/GaN超晶格结构
[0034] 140: 有源层;
[0035] 150: Al xlIn (1_xl)N/In x2Ga 0x2)N超晶格电子阻挡层;
[0036] 160: p型氮化物层。
本发明的实施方式
[0037] 下面结合示意图对本发明的发光二极管及其制作方法进行详细的描述, 借此对 本发明如何应用技术手段来解决技术问题, 并达成技术效果的实现过程能充分 理解并据以实施。 需要说明的是, 只要不构成冲突, 本发明中的各个实施例以 及各实施例中的各个特征可以相互结合, 所形成的技术方案均在本发明的保护 范围之内。
[0038] 图 1显示了一种传统结构的氮化镓基发光二极管, 依次包括: 生长衬底 100, 缓 冲层 110、 n型氮化镓层 120、 InGaN/GaN超晶格结构 130、 多量子阱有源层 140层 、 p型 AlGaN/InGaN电子阻挡层 150和 p型氮化镓层 160, 其中多量子阱有源层 140 具有一列系列 V型缺陷及连接该 V型缺陷的平面区 (C-plane) 。 图 2和图 3分别显 示了图 1所示发光二极管的 C面 (C-plane) 能带示意图和 V型缺陷侧壁 (V-pit sidewall) 能带示意图, 在该结构中, 空穴主要通过 V型缺陷注入有源层, 而 C面 的空穴注入效率非常低下。
[0039] 图 4显示了本发明第一个较佳实施例之一种氮化镓基发光二极管, 自下而上包 括: 生长衬底 100, 缓冲层 110、 n型氮化镓层 120、 InGaN/GaN超晶格结构 130、 多量子阱有源层 140层、 Al xlIn (1_xl)N/In x2Ga (1x2)N超晶格电子阻挡层 150和 p型氮 化镓层 160, 其中多量子阱有源层 140具有一列系列 V型缺陷及连接该 V型缺陷的 平面区 (C-plane) , n型氮化物层仅形成于平面区, Al xlIn (1xl)N/In x2Ga ( 2^超 晶格电子阻挡层 150形成于平面区并向所述 V型缺陷侧壁区延伸。
[0040] 具体地, 生长衬底 100选取包括但不限于蓝宝石、 氮化铝、 氮化镓、 硅、 碳化 硅, 其表面结构可为平面结构或图案化图结构; 缓冲层 110可为单层结构或多层 结构, 其材料可选用 A1N或 GaN或其组合, 其厚度可为 20~50nm, 较佳的可包括 1 0~40nm低温 GaN缓冲层、 1~2μηι厚的三维非惨杂氮化镓层和 1-2μηι厚的二维氮化 镓层; n型氮化镓层 120的厚度 1.5~4μηι, η型惨杂浓度为 1x10 17~lxl0 ¾m 3 ; InGaN/GaN超晶格结构 130为多量子阱有源层 150的应力缓冲层, 具有 15-30个 周期, 每个周期内 InGaN的厚度为 l~3nm, GaN厚度为 2~10nm; 有源层 140具有 5 -15个周期的 InGaN/GaN多量子阱, 每个周期内 InGaN的厚度为 2~4nm, GaN厚度 为 5~15nm; Al xlIn (1_xl)N/In x2Ga (1N超晶格电子阻挡层 150位于有源层 140与 p型 氮化物层 160之间, 其中 ^ ^^^^的^组分取值为 0.8<xl≤l, 其在 C面的单层 厚度为 0.5~5nm, In x2Ga (1N的 In组分取值为
0<x2<0.2, 其在 C面的单层厚度为 0.5~5nm, 超晶格之对数为 2≤n≤20, 整个 Al xl In (! _xl)N/In x2Ga (1_N超晶格在 V型缺陷侧壁区的厚度 Ws2为 lnm以内, Al xlIn (1_xl) N包含 u型、 n型及 p型, In x2Ga (1x2)N包含 u型、 n型及 p型; p型氮化镓层 160的厚 度为 30-60nm, 其惨杂深度为惨杂浓度为 1x10 17~5xl0 18cm -3
[0041] 图 5和图 6分别显示了图 4所示发光二极管的 C-plane能带图和 V型缺陷侧面的能 带图。 和图 2对比, 操作在顺向偏压下, 操作在顺向偏压下, Al xlIn (1xl)N/In x2Ga u— N超晶格层的等效能隙较宽, 因此在导带电子阻挡之效果较佳, 避免电子溢 流至 P型区, 提高辐射复合效率; 和图 3对比, 操作在顺向偏压下, Α1 χ1Ιη (1χυ N/In x2Ga (1N超晶格层之 V型缺陷侧壁对 C面厚度比例较低 (Ws2/Wc2 <
WslAVcl) , 即本实施例之电子阻挡层在相同 C面厚度吋具有较薄之 V型缺陷侧壁 厚度, 所带来之优势为提高空穴由 V型缺陷处注入 MQW之能力, 藉此提高辐射 复合效率。
[0042] 本实施例之氮化镓基发光二极管中, 因 V型缺陷处的势垒低, Α1 χ1Ιη σχυΝ/Ιη χ2 Ga (1Χ¾Ν超晶格层在 V型缺陷侧壁较薄, 可进一步提高空穴注入效果, 且注入的 空穴能在量子阱中横向迁移, 消除了 C面处空穴注入效率低下的影响; 另外在 C 面区域因 Al xlIn (1_xl)N/In x2Ga (1N超晶格等效能隙较宽, 电子阻挡的效果较佳, 降低电子溢流, 也提高了辐射复合效率, 与图 1所示的发光二极管结构相比, 采 用本实施例所述结构的 LED芯片亮度可提升 3-5%。
[0043] 下面以蓝宝石衬底为例, 对图 4所示的发光二极管之制作方法进行简单说明。
[0044] 首先将蓝宝石图形衬底放入金属有机化学气相沉积 (MOCVD)中升温至 1000-120 0度, 在氢气氛围下处理, 接着降温至 500-600°C, 通入氨气和三甲基镓, 生长 10 ~40nm的低温缓冲层, 然后关闭三甲基镓; 升温至 1000-1100°C进行退火处理 1~5 分钟, 然后通入三甲基镓, 生长 1~2微米厚度的非惨杂氮化镓; 继续升温至 1050- 1150度, 生长 1~2微米厚的非惨杂氮化镓; 降温至 1030~1130°C, 生长 1.5~4微米 厚的氮化镓, 通入甲硅烷进行惨杂, 构成 n型氮化物层 120; 降温至 800~950°C, 生长 100~400nm之量子阱缓冲层, 通入甲硅烷进行惨杂; 降温至 750-900°C, 生 长 5~15个周期的 InGaN/GaN多量子阱作为有源层 140; 升温至 800-950°C, 在多量 子阱之后生长 Al aIn bGa (1_a_b)N之覆盖层, 0≤a<0.2, 0≤b<0.2; 至 800-950°C之间 生长 [Al xlIn (! _xl)N/In x2Ga (1x2)N]*n超晶格电子阻挡层, 其中 Al xlIn (1xl)N在 C面的 厚度为 0.5~5nm, In x2Ga (1
在 C面的厚度为 0.5~5nm, 超晶格之对数 2≤n≤20; 在 800~1050°C生长 p型 Al d Ga (1εd)N作为 p型氮化物层 160, 其中 0≤c<0.2, 0<d<0.2; 最后在在 800-1050°C生 长重惨杂 p型接触层。
[0045] 在上述方面中, 通过控制 [Al xlIn (1_xl)N/In x2Ga (1N]*n超晶格的生长温度及厚 度, 使得其在在 V型缺陷侧壁处形成之厚度 Ws2小于 lnm。
[0046] 尽管已经描述本发明的示例性实施例, 但是理解的是, 本发明不应限于这些示 例性实施例而是本领域的技术人员能够在如下文的权利要求所要求的本发明的 精神和范围内进行各种变化和修改。

Claims

权利要求书
氮化镓基发光二极管, 依次包括: n型氮化物层、 有源层、 Α1 χ1Ιη (1χ N/In x2Ga (12^超晶格层电子阻挡层和 ρ型氮化物层, 其特征在于: 所 述有源层表面上具有 V型缺陷和连接所述 V型缺陷的平面区, 所述 A1 xlIn (1_xl)N/In x2Ga (1N电子阻挡层形成于平面区并向所述 V型缺陷侧 壁区延伸, 当注入电流吋促使空穴从 V型缺陷处注入有源层, 并在平 面区将电子阻挡使其停留在有源层。
根据权利要求 1所述的氮化镓基发光二极管, 其特征在于: 所述 n型氮 化物层仅形于所述平面区。
根据权利要求 1所述的氮化镓基发光二极管, 其特征在于: 所述 p型氮 化物层形成于所述平面区并向所述 V型缺陷区延伸填充所述 V型缺陷 根据权利要求 1所述的氮化镓基发光二极管, 其特征在于: 所述 Al xl In (1_xl)N/In x2Ga (1N超晶格层电子阻挡层的等效能隙宽 Eg大于 3.4eV
[权利要求 5] 根据权利要求 1所述的氮化镓基发光二极管, 其特征在于: 0.8<xl≤l , 0≤x2<0.2。
[权利要求 6] 根据权利要求 1所述的氮化镓基发光二极管, 其特征在于: 所述 Al xl
In (1xl)N的厚度为 0.5~5nm。
[权利要求 7] 根据权利要求 1所述的氮化镓基发光二极管, 其特征在于: 所述 In x2
Ga σx2)N厚度为 0.5~5nm。
[权利要求 8] 根据权利要求 1所述的氮化镓基发光二极管, 其特征在于: 所述 Al xl
In (1_xl)N/In x2Ga (1x2)N超晶格层的对数为 2≤n≤20。
[权利要求 9] 根据权利要求 1所述的氮化镓基发光二极管, 其特征在于: 所述 Al xl
In (i— xi)N/In x2Ga (1x2)
N电子阻挡层在 V型缺陷侧壁处形成之厚度小于 lnm。
[权利要求 10] 氮化镓基发光二极管的制作方法, 包括步骤:
(1) 形成 n型氮化物层; (2) 在所述 n型氮化物层之上形成有源层, 其表面上具有 V型缺陷和 连接所述 V型缺陷的平面区;
(3) 在有源层上形成 Al xlIn (1_xl)N/In x2Ga (1x2)N超晶格层电子阻挡层 , 其是 0.8<xl≤l, 0<x2<0.2;
(4) 在所述 Al xlIn (1_xl)N/In x2Ga (1χ2)Ν超晶格层电子阻挡层上形成 ρ型 氮化物层;
其中, 所述 Al χ1Ιη (! _xl)N/In x2Ga (1N电子阻挡层形成于平面区并向所 述 V型缺陷侧壁区延伸, 当注入电流吋促使空穴从 V型缺陷处注入有 源层, 并在平面区将电子阻挡使其停留在有源层。
[权利要求 11] 根据权利要求 10所述的氮化镓基发光二极管的制作方法, 其特征在于 : 所述步骤 (3) 中所述 Al xlIn (1— ^N/In Ga d— N超晶格层电子阻挡 层的生长温度为 800-950°C。
[权利要求 12] 根据权利要求 10所述的氮化镓基发光二极管的制作方法, 其特征在于 : 所述步骤 (3) 中控制生长的条件, 使得 Al xlIn (1— ^N/In ^Ga d— x2)N 电子阻挡层在 V型缺陷侧壁处形成之厚度小于 lnm。
PCT/CN2017/097843 2017-01-24 2017-08-17 氮化镓基发光二极管及其制作方法 WO2018137336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710053683.0A CN106848011B (zh) 2017-01-24 2017-01-24 氮化镓基发光二极管及其制作方法
CN201710053683.0 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018137336A1 true WO2018137336A1 (zh) 2018-08-02

Family

ID=59120475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097843 WO2018137336A1 (zh) 2017-01-24 2017-08-17 氮化镓基发光二极管及其制作方法

Country Status (2)

Country Link
CN (1) CN106848011B (zh)
WO (1) WO2018137336A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848011B (zh) * 2017-01-24 2018-11-02 厦门三安光电有限公司 氮化镓基发光二极管及其制作方法
CN108110103B (zh) * 2017-12-29 2020-02-18 厦门三安光电有限公司 一种发光二极管
CN108281520A (zh) * 2018-01-22 2018-07-13 映瑞光电科技(上海)有限公司 一种GaN基LED外延结构及其制备方法
CN115881865B (zh) * 2023-03-03 2023-05-12 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管
CN116504895B (zh) * 2023-06-29 2023-09-05 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、led

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189664A (ja) * 1984-10-09 1986-05-07 Fujitsu Ltd 半導体装置の製造方法
CN101640236A (zh) * 2008-07-29 2010-02-03 先进开发光电股份有限公司 组合式电子阻挡层发光元件
CN102148300A (zh) * 2011-03-17 2011-08-10 中国科学院半导体研究所 一种紫外led的制作方法
CN104659171A (zh) * 2015-01-21 2015-05-27 西安神光皓瑞光电科技有限公司 一种光电器件的电子阻挡层结构
CN105742423A (zh) * 2015-11-30 2016-07-06 厦门市三安光电科技有限公司 发光二极管及其制作方法
CN106848011A (zh) * 2017-01-24 2017-06-13 厦门三安光电有限公司 氮化镓基发光二极管及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762241A (zh) * 2016-04-28 2016-07-13 厦门乾照光电股份有限公司 一种增强注入型的发光二极管的外延结构制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189664A (ja) * 1984-10-09 1986-05-07 Fujitsu Ltd 半導体装置の製造方法
CN101640236A (zh) * 2008-07-29 2010-02-03 先进开发光电股份有限公司 组合式电子阻挡层发光元件
CN102148300A (zh) * 2011-03-17 2011-08-10 中国科学院半导体研究所 一种紫外led的制作方法
CN104659171A (zh) * 2015-01-21 2015-05-27 西安神光皓瑞光电科技有限公司 一种光电器件的电子阻挡层结构
CN105742423A (zh) * 2015-11-30 2016-07-06 厦门市三安光电科技有限公司 发光二极管及其制作方法
CN106848011A (zh) * 2017-01-24 2017-06-13 厦门三安光电有限公司 氮化镓基发光二极管及其制作方法

Also Published As

Publication number Publication date
CN106848011A (zh) 2017-06-13
CN106848011B (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2018137336A1 (zh) 氮化镓基发光二极管及其制作方法
WO2017071400A1 (zh) 发光二极管及其制作方法
TWI451591B (zh) 以氮化物為主之發光裝置
CN109786529B (zh) 一种氮化镓基发光二极管外延片及其制作方法
US20090121214A1 (en) Iii-nitride semiconductor light-emitting device and manufacturing method thereof
CN103811601B (zh) 一种以蓝宝石衬底为基板的GaN基LED多阶缓冲层生长方法
CN102664145A (zh) 采用金属有机化合物气相外延技术生长非对称电子储蓄层高亮度发光二极管的方法
WO2015085803A1 (zh) 氮化物发光二极管及其制备方法
CN109192825B (zh) 一种发光二极管外延片及其制造方法
CN102064254A (zh) 高质量氮化镓系发光二极管
CN108831974B (zh) 一种发光二极管外延片及其制造方法
CN108461592A (zh) 一种发光二极管外延片及其制造方法
CN110265514B (zh) 发光二极管外延片的生长方法及发光二极管外延片
CN102709424A (zh) 一种提高发光二极管发光效率的方法
CN106972085A (zh) 一种发光二极管外延片及其制造方法
CN106159048A (zh) 一种发光二极管外延片及其生长方法
WO2016112766A1 (zh) 氮化物发光二极管
WO2021128810A1 (zh) 一种发光二极管及其制作方法
CN103400914A (zh) 一种提高氮化镓基电流扩展的外延结构及其生长方法
CN103178178A (zh) 一种提高氮化镓基发光二极管电子迁移率的结构及其生产方法
CN116598396A (zh) 发光二极管外延片及其制备方法、led
CN115810696A (zh) 基于硅基缓冲层的发光二极管外延片及其制备方法
CN109346568B (zh) 一种发光二极管外延片及其制备方法
CN105742423A (zh) 发光二极管及其制作方法
CN117476827B (zh) 一种低接触电阻的发光二极管的外延片及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893916

Country of ref document: EP

Kind code of ref document: A1