WO2015085803A1 - 氮化物发光二极管及其制备方法 - Google Patents

氮化物发光二极管及其制备方法 Download PDF

Info

Publication number
WO2015085803A1
WO2015085803A1 PCT/CN2014/086720 CN2014086720W WO2015085803A1 WO 2015085803 A1 WO2015085803 A1 WO 2015085803A1 CN 2014086720 W CN2014086720 W CN 2014086720W WO 2015085803 A1 WO2015085803 A1 WO 2015085803A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
light emitting
emitting diode
gan
quantum well
Prior art date
Application number
PCT/CN2014/086720
Other languages
English (en)
French (fr)
Inventor
陈沙沙
张东炎
刘晓峰
王良均
王笃祥
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2015085803A1 publication Critical patent/WO2015085803A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to the field of semiconductor optoelectronic device fabrication, and more particularly to a technique for preparing a nitride semiconductor LED.
  • GaN-based light-emitting diodes are widely used in daily life. Compared with traditional light sources, LEDs have long life, high luminous efficiency, low energy consumption and small size, which is an important trend in the development of modern lighting.
  • LED luminous efficiency is one of the most important indicators to measure the quality of LED devices.
  • the multi-quantum well (MQW) structure is the key to achieve efficient illumination.
  • Conventional GaN-based LEDs generally use InGaN/GaN structures. As shown in Figure 1, the GaN-based epitaxial layers grown along the C-plane on sapphire and silicon carbide substrates exhibit spontaneous and piezoelectric polarization, resulting in quantum wells and quantum barriers. The energy band is severely bent, the carrier trapping ability is greatly reduced, the injection efficiency is lowered, and the radiation recombination efficiency is lowered.
  • a commonly used method is to add an electron blocking layer after the light emitting layer. At present, how to improve the composite efficiency of MQW is the main technical bottleneck faced by GaN-based LEDs.
  • an object of the present invention is to provide a light emitting diode having a high recombination efficiency active region and a method of fabricating the same, and performing an Al x In 1-xy Ga y N/GaN quantum well on an active region and a conventional method.
  • the segmented combined growth of InGaN/GaN quantum wells can reduce the polarization electric field, improve the recombination efficiency of electrons and holes, enhance the antistatic ability of LED devices, and improve the luminous efficiency of LEDs.
  • the technical solution of the present invention is: a light emitting diode having a high recombination efficiency active region, comprising: an n-type nitride layer and a p-type nitride layer, and an active region between the two, wherein the active region
  • the region includes a first quantum well adjacent to the n-type nitride layer, and a well layer of Al x In 1-xy Ga y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x ⁇ y, x + y ⁇ 1).
  • an n-type nitride layer or a p-type nitride layer is formed on the substrate, and of course, it can be lining as needed. Inserting a low temperature buffer layer between the bottom and the n-type nitride layer, inserting an undoped nitride layer between the buffer layer and the n-type nitride layer, and inserting an electron blocking layer between the active region and the p-type nitride layer. A highly doped p-type nitride layer is overlaid on the p-type nitride layer.
  • the light-emitting diode of the present invention has a constant total logarithm of a multiple quantum well (MQW) that maintains an active region, wherein the first quantum well includes M pairs of Al x In 1-xy Ga y compared to an active region of a conventional structure. N/GaN quantum wells (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x ⁇ y, x+y ⁇ 1), the second quantum well includes N pairs of InGaN/GaN quantum wells, wherein the range of M and N is satisfied 5 ⁇ M + N ⁇ 30, 2 ⁇ M ⁇ 7.
  • MQW multiple quantum well
  • the number of periods M of the Al x In 1-xy Ga y N/GaN quantum well may be 2-7, and the period thickness is to
  • the In and Al components of the Al x In 1-xy Ga y N well are fixed or in an inverted V-shaped, trapezoidal, or sinusoidal gradient form along the growth direction; the InGaN/GaN
  • the number of cycles of the quantum well N is 3 to 23, and the period thickness is to between.
  • the minimum band gap width of the Al x In 1-xy Ga y N well is greater than the band gap width of the InGaN well.
  • the Al x In 1-xy Ga y N well has a band gap width of 2.9 to 3.4 eV
  • the InGaN well has a band gap width of 2.3 to 2.8 eV.
  • the Al x In 1-xy Ga y N/GaN quantum well period thickness is smaller than the periodic thickness of the InGaN/GaN quantum well.
  • the InGaN/GaN quantum well period thickness is The Al x In 1-xy Ga y N/GaN quantum well period thickness is 30% to 70% of the InGaN/GaN quantum well.
  • a method of fabricating the foregoing nitride light emitting diode comprising the steps of: providing a substrate; forming an n-type nitride layer on the substrate; forming an active region over the n-type nitride layer; A p-type nitride layer is formed over the region; wherein the formed active region comprises a front M pair of Al x In 1-xy Ga y N/GaN quantum wells and a back N pair of InGaN/GaN quantum wells.
  • the growth time of the front M pair of Al x In 1-xy Ga y N/GaN quantum wells is smaller than the growth time of the back N pairs of InGaN/GaN quantum wells.
  • the growth temperature of the Al x In 1-xy Ga y N well in the front M pair of Al x In 1-xy Ga y N/GaN quantum wells is between 750 ° C and 820 ° C, and the growth temperature of the GaN barrier Between 820 ° C and 900 ° C; the growth temperature of the post-N pair InGaN/GaN quantum well in the InGaN well is between 700 ° C and 800 ° C, and the growth temperature of the GaN barrier is between 820 ° C and 900 ° C.
  • a method for preparing a light emitting diode having a high recombination efficiency active region includes the steps of: (1) first annealing the substrate in a hydrogen atmosphere for 1 to 20 minutes, and cleaning the surface of the substrate at a temperature of 1000 ° C to 1200 Between °C, then nitriding treatment; (2) reduce the temperature to between 400 ° C and 650 ° C, grow a low temperature buffer layer of 10 ⁇ 35nm thick, growth pressure between 400 and 600 torr; (3) low temperature buffer layer After the growth is completed, it is annealed in situ between 900 ° C and 1200 ° C for 3 minutes to 10 minutes; (4) after annealing, the temperature is raised to between 900 ° C and 1200 ° C, and the growth thickness is a non-doped nitride layer of 0.5 ⁇ m to 5 ⁇ m with a growth pressure of between 100 torr and 600 torr; (5) a Si-doped n-type nitrid
  • the growth of the InGaN/GaN quantum well is over. Thereafter, the temperature is raised to between 850 ° C and 1050 ° C to grow a p-type electron blocking layer having a thickness between 10 nm and 100 nm, and the growth pressure is between 50 torr and 200 torr; (9) after the growth of the p-type electron blocking layer is completed.
  • a p-type nitride layer having a thickness between 50 nm and 200 nm is grown at a growth temperature between 850 ° C and 1050 ° C and a growth pressure between 50 torr and 200 torr; (10) after the growth of the p-type nitride layer is completed, the growth thickness is A highly doped p-type nitride layer between 0.1 nm and 20 nm with a growth temperature between 700 ° C and 1000 ° C and a growth pressure between 50 torr and 200 torr; (11) after the epitaxial growth is completed, at a temperature of 400 ° C Between 520 ° C, the epitaxial wafer is annealed in a pure nitrogen atmosphere for 5 to 20 minutes. Finally, the epitaxial wafer is cleaned, and p and n electrodes are fabricated by semiconductor processing such as photolithography and etching to obtain an LED chip.
  • Advantages of the present invention include at least that the n-type layer electrons decay at a rate as they pass through the Al x In 1-xy Ga y N/GaN quantum well, thereby reducing the probability of electrons entering the p-type layer through the electron blocking layer (EBL).
  • EBL electron blocking layer
  • the LED After the external current is turned on, the LED generates a high two-dimensional electron gas density at the interface of Al x In 1-xy Ga y N/GaN, which can increase the electrons when passing the front M to the quantum well.
  • the lateral expansion of the electrons and the uniformity of the current distribution reduce the current congestion, reduce the turn-on voltage, buffer the impact of static electricity on the light-emitting diodes, increase the photoelectric conversion rate, and make the heat source distribution and the light-emitting intensity more uniform.
  • the thickness of the Al x In 1-xy Ga y N/GaN quantum well is thinner than that of the InGaN/GaN quantum well, reducing the Auger recombination, improving the recombination efficiency, and additionally M to Al x In 1-xy Ga y N/GaN
  • the quantum well has a small cycle thickness, which can shorten the growth time, increase productivity, and reduce costs.
  • the combination of the Al x In 1-xy Ga y N/GaN quantum well and the InGaN/GaN quantum well greatly reduces the stress of the conventional InGaN/GaN quantum well, so that the spatial separation of the electron hole wave function is obtained. Relieve, the luminous efficiency of the LED is improved.
  • 1 is a cross-sectional view of a conventional light emitting diode.
  • Example 2 is a cross-sectional view of a nitride light emitting diode prepared in Example 1.
  • Example 3 is a cross-sectional view of a nitride light emitting diode prepared in Example 2.
  • Embodiment 4 is a quantum well structure energy band diagram of the nitride light emitting diode disclosed in Embodiment 3.
  • 102, 202, 302 a low temperature buffer layer
  • 104, 204, 304 n-type GaN layer
  • 205a, 305a pre-M pairs of Al x In 1-xy Ga y N/GaN quantum wells
  • 205b, 305b a post-N pair of InGaN/GaN quantum wells
  • 106, 206, 306 p-type electron blocking layer
  • 107, 207, 307 p-type GaN layer
  • a nitride light emitting diode includes: a sapphire substrate 201, a low temperature buffer layer 202, an undoped GaN layer 203, an n-type GaN layer 204, an active region 205, a p-type electron blocking layer 206, and a p-type.
  • a GaN layer 207, a p-type highly doped GaN contact layer 208, a p-electrode 209, and an n-electrode 210 The following is a detailed description in conjunction with the preparation method.
  • a low temperature buffer layer 202 is grown on the sapphire substrate 201, followed by growth of an undoped GaN layer 203 having a thickness of 1 ⁇ m, and then an n-type having a Si doping concentration of 1.5 ⁇ 10 19 cm -3 is formed on the undoped GaN layer 203.
  • a GaN layer 204 followed by growth of a multi-quantum well active region 205, followed by growth of a p-type Al 0.15 Ga 0.85 N layer as a p-type electron blocking layer 206, a p-type GaN layer 207 having a Mg doping concentration of 5 ⁇ 10 19 cm -3 , and
  • the p-type highly doped GaN contact layer 208 is annealed for 5 to 20 minutes in a pure nitrogen atmosphere at a temperature between 400 ° C and 520 ° C after epitaxial growth. Finally, the epitaxial wafer is cleaned, and the p-electrode 209 and the n-electrode 210 are formed by a semiconductor processing process such as photolithography and etching to obtain an LED chip.
  • the nitride light emitting diode includes: a sapphire substrate 301, a low temperature buffer layer 302, an undoped GaN layer 303, an n-type GaN layer 304, an active region 305, a p-type electron blocking layer 306, and a p-type.
  • the Al composition x of the Al x In 1-xy Ga y N/GaN multiple quantum well 305a of 4 cycles is 0.025, 0.05, 0.075 and 0.1 in order from bottom to top, and accordingly, the In component 1-xy The values are 0.04, 0.08, 0.12 and 0.16 from bottom to top.
  • the difference from the foregoing embodiment is that the quantum well band design of the present embodiment is different, and the band gap width (E g ) of the Al x In 1-xy Ga y N well is the minimum. Greater than the band gap width of the InGaN well.
  • the Al x In 1-xy Ga y N well has a band gap width of 2.9 to 3.4 eV
  • the InGaN well has a band gap width of 2.3 to 2.8 eV.
  • the band gap width (E g ) of the Al x In 1-xy Ga y N well> the band gap width (E g ) of the InGaN well Since the band gap width (E g ) of the Al x In 1-xy Ga y N well> the band gap width (E g ) of the InGaN well, the light generated by the post-epitaxially grown InGaN well is prevented from being epitaxially grown by Al x In 1 The -xy Ga y N well is absorbed to cause a decrease in efficiency; in addition, the shallower Al x In 1-xy Ga y N well has a better blocking effect on the reflowed electrons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Led Devices (AREA)

Abstract

一种氮化物发光二极管及其制备方法,其结构至少包括:衬底(201)、n型氮化物层(204)、有源区(205)、p型氮化物层(207)。其中,所述有源区(205)包括M对Al xIn 1-x-yGa yN/GaN量子阱和N对InGaN/GaN量子阱,改善了电子回流和极化效应,增加量子阱区的复合效率和界面处的二维电子气密度,提升发光二极管的光电转换效率;同时,增强了LED对静电的耐受能力,改善了LED的电学性能。

Description

氮化物发光二极管及其制备方法
本申请要求于2013年12月11日提交中国专利局、申请号为201310665895.6、发明名称为“氮化物发光二极管及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体光电器件制备领域,尤其涉及氮化物半导体LED的制备技术。
背景技术
GaN基发光二极管在日常生活中被广泛的应用,与传统光源相比,LED具有寿命长,光效高,能耗低,体积小的优良特性,是现代照明发展的一个重要趋势。
LED发光效率是衡量LED器件好坏至关重要的指标之一,其中多量子阱(MQW)结构是实现高效发光的关键。传统GaN基LED普遍使用InGaN/GaN结构,如图1所示,在蓝宝石和碳化硅衬底上沿C面生长的GaN基外延层存在自发极化和压电极化,致使量子阱和量子垒的能带产生严重弯曲,大大降低了对载流子的俘获能力,注入效率变低,辐射复合效率降低。另外,为了降低电子过冲,普遍采用的方法是在发光层之后加入电子阻挡层。目前,如何提高MQW的复合效率是GaN基LED面临的主要技术瓶颈。
发明内容
针对上述存在的问题,本发明的目的在于:提供一种具有高复合效率有源区的发光二极管及其制备方法,对有源区进行AlxIn1-x-yGayN/GaN量子阱和常规InGaN/GaN量子阱的分段式组合生长,可以降低极化电场,提升电子和空穴的复合效率,增强LED器件的抗静电能力,提升发光二极管发光效率。
本发明的技术方案为:具有高复合效率有源区的发光二极管,包括:n型氮化物层和p型氮化物层,及其位于两者之间的有源区,其中,所述有源区包括第一量子阱和第二量子阱,所述第一量子阱邻近所述n型氮化物层,其阱层为AlxIn1-x-yGayN(0<x<1,0<y<1,x≤y,x+y<1)。
一般来说,n型氮化物层或p型氮化物层形成于衬底之上,当然,还可以根据需要在衬 底与n型氮化物层之间插入低温缓冲层,在缓冲层与n型氮化物层之间插入非掺杂氮化物层,在有源区与p型氮化层之间插入电子阻挡层,在p型氮化层上覆盖高掺杂p型氮化层。
与常规结构的有源区相比,本发明所述发光二极管通过保持有源区的多量子阱(MQW)总对数不变,其中第一量子阱包括M对AlxIn1-x-yGayN/GaN量子阱(0<x<1,0<y<1,x≤y,x+y<1),第二量子阱包括N对InGaN/GaN量子阱,其中M、N取值范围满足5≤M+N≤30,2≤M≤7。
具体地,所述AlxIn1-x-yGayN/GaN量子阱的周期数M可为2~7个,周期厚度在
Figure PCTCN2014086720-appb-000001
Figure PCTCN2014086720-appb-000002
之间;所述AlxIn1-x-yGayN阱的In和Al组分是固定的,或者是沿着生长方向呈倒立V型渐变、梯形渐变或者正弦曲线渐变形式;所述InGaN/GaN量子阱的周期数N为3~23个,周期厚度在
Figure PCTCN2014086720-appb-000003
Figure PCTCN2014086720-appb-000004
之间。
优选的,所述AlxIn1-x-yGayN阱的带隙宽度最小值大于InGaN阱的带隙宽度。在一些实施例中,所述AlxIn1-x-yGayN阱的带隙宽度为2.9~3.4eV,所述InGaN阱的带隙宽度为2.3~2.8eV。
优选的,所述AlxIn1-x-yGayN/GaN量子阱周期厚度小于InGaN/GaN量子阱的周期厚度。在一些实施例中,所述InGaN/GaN量子阱周期厚度为
Figure PCTCN2014086720-appb-000005
AlxIn1-x-yGayN/GaN量子阱周期厚度为InGaN/GaN量子阱的30%~70%。
前述氮化物发光二极管的制备方法,包括步骤:提供一衬底;在所述衬底上形成n型氮化物层;在所述n型氮化层之上形成有源区;在所述有源区之上形成p型氮化物层;其中,所述形成的有源区包括前M对AlxIn1-x-yGayN/GaN量子阱和后N对InGaN/GaN量子阱。
优选的,所述前M对AlxIn1-x-yGayN/GaN量子阱的生长时间小于后N对InGaN/GaN量子阱的生长时间。在一些实施例中,前M对AlxIn1-x-yGayN/GaN量子阱中AlxIn1-x-yGayN阱的生长温度在750℃至820℃之间,GaN垒的生长温度在820℃至900℃之间;后N对InGaN/GaN量子阱中InGaN阱的生长温度为700℃至800℃之间,GaN垒的生长温度在820℃至900℃之间。
具体地,一种具有高复合效率有源区的发光二极管的制备方法,包括步骤:(1)首先将衬底在氢气环境中退火1~20分钟,清洁衬底表面,温度在1000℃~1200℃之间,然后进行氮化处理;(2)将温度下降至400℃与650℃之间,生长10~35nm厚的低温缓冲层,生长压力在400至600torr之间;(3)低温缓冲层生长结束后,在900℃~1200℃之间对其进行原位退火处理,时间在3分钟至10分钟之间;(4)退火之后,温度升至900℃~1200℃ 之间,生长厚度为0.5μm至5μm的非掺杂氮化物层,生长压力在100torr至600torr之间;(5)非掺杂GaN层生长结束后,生长厚度在0.5~3μm厚的掺Si的n型氮化物层,生长温度在1050℃~1100℃之间,生长压力在100torr至600torr之间,Si的掺杂浓度在1×1017cm-3~2×1019cm-3之间;(6)n型氮化物层生长结束后,开始生长2~7个周期的AlxIn1-x-yGayN/GaN(0<x<1,0<y<1,x≤y,x+y<1)量子阱,周期厚度在
Figure PCTCN2014086720-appb-000006
Figure PCTCN2014086720-appb-000007
之间,AlxIn1-x-yGayN阱的生长温度在750℃至820℃之间,GaN垒的生长温度在820℃至900℃之间,生长压力在100torr至600torr之间;(7)AlxIn1-x-yGayN/GaN量子阱生长结束后,开始生长常规InGaN/GaN量子阱,周期数为3至23个,周期厚度在
Figure PCTCN2014086720-appb-000008
Figure PCTCN2014086720-appb-000009
之间,InGaN阱的生长温度在700℃至800℃之间,GaN垒的生长温度在820℃至900℃之间,生长压力在100torr至600torr之间;(8)InGaN/GaN量子阱生长结束后,将温度升至850℃至1050℃之间,生长厚度为10nm至100nm之间的p型电子阻挡层,生长压力在50torr至200torr之间;(9)p型电子阻挡层生长结束后,生长厚度为50nm至200nm之间的p型氮化物层,生长温度在850℃至1050℃之间,生长压力在50torr至200torr之间;(10)p型氮化物层生长结束后,生长厚度为0.1nm至20nm之间的高掺杂p型氮化物层,其生长温度在700℃至1000℃之间,生长压力在50torr至200torr之间;(11)外延生长结束后,在温度为400℃至520℃之间,纯氮气环境中对外延片退火5~20分钟;最后对外延片进行清洗,通过光刻和刻蚀等半导体加工工艺制作p和n电极,制得发光二极管芯片。
本发明的优点至少包括:n型层电子在经过AlxIn1-x-yGayN/GaN量子阱时速率会有所衰减,从而减小电子通过电子阻挡层(EBL)进入p型层的概率,改善器件性能;同时也可以将电子阻挡层弹回的电子限制在MQW中参与发光,减小电子回流,以克服在大电流下载流子密度过高,电子溢出量子阱导致发光效率下降的问题。
进一步地,所述发光二极管接通外部电流后,在AlxIn1-x-yGayN/GaN界面处产生较高的二维电子气密度,可以使电子在经过前M对量子阱时,增加电子的横向扩展和电流分布的均匀性,减小电流拥堵,降低开启电压,缓冲静电对发光二极管的冲击,提高光电转换率,使热源分布和发光强度更加均匀。
进一步地,AlxIn1-x-yGayN/GaN量子阱的厚度薄于InGaN/GaN量子阱,减小俄歇复合,提升复合效率,另外M对AlxIn1-x-yGayN/GaN量子阱周期厚度较小,可以缩短生长时间,提升产能,降低成本。
进一步地,AlxIn1-x-yGayN/GaN量子阱与InGaN/GaN量子阱的组合,大大降低了传统 InGaN/GaN量子阱的应力,使得电子空穴波函数在空间上的分离现象得到缓解,LED的发光效率得到提升。
附图说明
附图用来提供对本发明进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1为传统的发光二极管剖视图。
图2为实施例1制备的氮化物发光二极管剖视图。
图3为实施例2制备的氮化物发光二极管剖视图。
图4为实施例3所公开的氮化物发光二极管的量子阱结构能带图。
图中各标号表示:
101、201、301:衬底;
102、202、302:低温缓冲层;
103、203、303:非掺杂GaN层;
104、204、304:n型GaN层;
105、205、305:量子阱;
205a、305a:前M对AlxIn1-x-yGayN/GaN量子阱;
205b、305b:后N对InGaN/GaN量子阱;
106、206、306:p型电子阻挡层;
107、207、307:p型GaN层;
108、208、308:p型高掺GaN接触层;
109、209、309:p电极;
110、210、310:n电极。
具体实施方式
为使本发明更易于理解其实质性特点及其所具有的实用性,下面便结合附图对本发明若干具体实施例作进一步的详细说明。但以下关于实施例的描述及说明对本发明保护范围不构成任何限制。
实施例1
如图2所示,氮化物发光二极管,包括:蓝宝石衬底201、低温缓冲层202、非掺杂GaN层203、n型GaN层204、有源区205、p型电子阻挡层206、p型GaN层207、p型高掺GaN接触层208、p电极209和n电极210。下面结合制备方法进行详细说明。
首先在蓝宝石衬底201上生长低温缓冲层202,接着生长厚度为1μm的非掺杂GaN层203,然后在非掺杂GaN层203上形成Si掺浓度为1.5×1019cm-3的n型GaN层204,接着生长多量子阱有源区205,然后生长p型Al0.15Ga0.85N层作为p型电子阻挡层206、Mg掺浓度为5×1019cm-3的p型GaN层207和p型高掺GaN接触层208,外延生长结束后,在温度为400℃至520℃之间,在纯氮气环境中对外延片退火5~20分钟。最后对外延片进行清洗,通过光刻和刻蚀等半导体加工工艺制作p电极209和n电极210,制得发光二极管芯片。
其中,在生长多量子阱有源区205时,首先生长4个周期的AlxIn1-x-yGayN/GaN多量子阱205a,使用N2作为载气,生长压力为200torr,AlxIn1-x-yGayN阱的生长温度为820℃,厚度为
Figure PCTCN2014086720-appb-000010
Al组分x取值为0.10,y取值为0.74,则In组分1-x-y=0.16;GaN垒的生长温度为880℃,厚度为
Figure PCTCN2014086720-appb-000011
Al0.10In0.16Ga0.74N/GaN量子阱生长结束后,接着生长8个周期的InGaN/GaN量子阱205b,使用N2作为载气,生长压力为200torr,InGaN阱的生长温度为770℃,厚度为
Figure PCTCN2014086720-appb-000012
In组分为0.2,GaN垒的生长温度为880℃,厚度为
Figure PCTCN2014086720-appb-000013
实施例2
本实施例与实施例1的区别在于:有源区的前M对Al0.10In0.16Ga0.74N/GaN量子阱中Al组分和In组分是渐变的。如图3所示,氮化物发光二极管,包括:蓝宝石衬底301、低温缓冲层302、非掺杂GaN层303、n型GaN层304、有源区305、p型电子阻挡层306、p型GaN层307、p型高掺GaN接触层308、p电极309和n电极310。其中,4个周期的AlxIn1-x-yGayN/GaN多量子阱305a中Al组分x取值从下至上依次为0.025,0.05,0.075和0.1,相应地,In组分1-x-y取值从下至上依次为0.04,0.08,0.12和0.16。
实施例3
如图4所示,与前述实施例相比,不同之处在于:本实施例的量子阱能带设计有差异,AlxIn1-x-yGayN阱的带隙宽度(Eg)最小值大于InGaN阱的带隙宽度。具体地,AlxIn1-x-yGayN阱的带隙宽度为2.9~3.4eV,InGaN阱的带隙宽度为2.3~2.8eV。由于AlxIn1-x-yGayN阱的带隙宽度(Eg)>InGaN阱的带隙宽度(Eg),避免后外延生长的InGaN阱产生的光被先外延 生长的AlxIn1-x-yGayN阱所吸收而导致效率降低;此外,较浅的AlxIn1-x-yGayN阱对回流电子的阻挡效果会更佳。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (17)

  1. 氮化物发光二极管,包括:n型氮化物层和p型氮化物层,及其位于两者之间的有源区,其中,所述有源区包括第一量子阱和第二量子阱,所述第一量子阱邻近所述n型氮化物层,其阱层为AlxIn1-x-yGayN(0<x<1,0<y<1)。
  2. 根据权利要求1所述的氮化物发光二极管,其特征在于:所述AlxIn1-x-yGayN阱的x和y取值范围满x≤y,x+y<1。
  3. 根据权利要求1所述的氮化物发光二极管,其特征在于:所述第一量子阱包括M对AlxIn1-x-yGayN/GaN量子阱(0<x<1,0<y<1),第二量子阱包括N对InGaN/GaN量子阱。
  4. 根据权利要求3所述的氮化物发光二极管,其特征在于:所述M、N取值范围满足2≤M≤7,5≤M+N≤30。
  5. 根据权利要求1或3所述的氮化物发光二极管,其特征在于:所述AlxIn1-x-yGayN阱的In和Al组分是固定的,或者是沿着生长方向呈倒立V型渐变、梯形渐变或者正弦曲线渐变形式。
  6. 根据权利要求3所述的氮化物发光二极管,其特征在于:所述AlxIn1-x-yGayN/GaN量子阱周期厚度小于InGaN/GaN量子阱的周期厚度。
  7. 根据权利要求6所述的氮化物发光二极管,其特征在于:所述InGaN/GaN量子阱周期厚度为
    Figure PCTCN2014086720-appb-100001
    AlxIn1-x-yGayN/GaN量子阱周期厚度为InGaN/GaN量子阱的30%~70%。
  8. 根据权利要求3所述的氮化物发光二极管,其特征在于:所述AlxIn1-x-yGayN阱的带隙宽度最小值大于所述InGaN阱的带隙宽度。
  9. 根据权利要求3或8所述的氮化物发光二极管,其特征在于:所述AlxIn1-x-yGayN阱的带隙宽度为2.9~3.4eV,所述InGaN阱的带隙宽度为2.3~2.8eV。
  10. 氮化物发光二极管的制备方法,包括依次外延生长n型氮化物层、有源区和p型氮化物层,其特征在于:所述形成的有源区包括第一量子阱和第二量子阱,所述第一量子阱邻近所述n型氮化物层,其阱层为AlxIn1-x-yGayN(0<x<1,0<y<1)。
  11. 根据权利要求10所述的氮化物发光二极管的制备方法,其特征在于:所述AlxIn1-x-yGayN阱的x和y取值范围满x≤y,x+y<1。
  12. 根据权利要求10所述的氮化物发光二极管的制备方法,其特征在于:所述形成的第一量子阱包括M对AlxIn1-x-yGayN/GaN量子阱(0<x<1,0<y<1),第二量子阱包括N对InGaN/GaN量子阱。
  13. 根据权利要求12所述的氮化物发光二极管的制备方法,其特征在于:所述M、N取值范围满足2≤M≤7,5≤M+N≤30。
  14. 根据权利要求12所述的氮化物发光二极管的制备方法,其特征在于:所述M对AlxIn1-x-yGayN/GaN量子阱的生长时间小于N对InGaN/GaN量子阱的生长时间。
  15. 根据权利要求12所述的氮化物发光二极管的制备方法,其特征在于:所述AlxIn1-x-yGayN阱的生长温度高于InGaN阱的生长温度。
  16. 根据权利要求12所述的氮化物发光二极管的制备方法,其特征在于:所述M对AlxIn1-x-yGayN/GaN量子阱中AlxIn1-x-yGayN阱的生长温度在750℃至820℃之间,GaN垒的生长温度在820℃至900℃之间。
  17. 根据权利要求12所述的氮化物发光二极管的制备方法,其特征在于:所述N对InGaN/GaN量子阱中InGaN阱的生长温度为700℃至800℃之间,GaN垒的生长温度在820℃至900℃之间。
PCT/CN2014/086720 2013-12-11 2014-09-17 氮化物发光二极管及其制备方法 WO2015085803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310665895.6A CN103647009A (zh) 2013-12-11 2013-12-11 氮化物发光二极管及其制备方法
CN201310665895.6 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015085803A1 true WO2015085803A1 (zh) 2015-06-18

Family

ID=50252201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086720 WO2015085803A1 (zh) 2013-12-11 2014-09-17 氮化物发光二极管及其制备方法

Country Status (2)

Country Link
CN (1) CN103647009A (zh)
WO (1) WO2015085803A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281520A (zh) * 2018-01-22 2018-07-13 映瑞光电科技(上海)有限公司 一种GaN基LED外延结构及其制备方法
CN115020558A (zh) * 2022-08-05 2022-09-06 江西兆驰半导体有限公司 一种高复合效率的发光二极管外延片及其制备方法
CN117637944A (zh) * 2024-01-25 2024-03-01 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法、led芯片

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647009A (zh) * 2013-12-11 2014-03-19 天津三安光电有限公司 氮化物发光二极管及其制备方法
CN106206869B (zh) * 2016-07-25 2018-11-06 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片的生长方法
CN106098871B (zh) * 2016-07-25 2019-01-29 华灿光电(浙江)有限公司 一种发光二极管外延片的制备方法
CN106229397B (zh) * 2016-07-25 2019-05-14 华灿光电(浙江)有限公司 一种发光二极管外延片的生长方法
CN109256444B (zh) * 2018-07-25 2020-07-07 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制备方法
JP2023008449A (ja) * 2021-07-06 2023-01-19 日機装株式会社 窒化物半導体発光素子
CN116387425B (zh) * 2023-05-26 2023-08-11 中诚华隆计算机技术有限公司 一种多量子阱led外延结构、led芯片及其制备方法
CN117810324B (zh) * 2024-02-29 2024-05-24 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127376A (zh) * 2006-08-15 2008-02-20 中国科学院物理研究所 低极化效应的氮化镓基发光二极管用外延材料及制法
WO2008056632A1 (fr) * 2006-11-07 2008-05-15 Rohm Co., Ltd. Élément électroluminescent semi-conducteur gan
CN101877381A (zh) * 2009-04-28 2010-11-03 Lg伊诺特有限公司 发光器件和发光器件封装
CN103022286A (zh) * 2011-09-27 2013-04-03 大连美明外延片科技有限公司 一种级联GaN基LED外延片及其制备方法
CN103647009A (zh) * 2013-12-11 2014-03-19 天津三安光电有限公司 氮化物发光二极管及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127376A (zh) * 2006-08-15 2008-02-20 中国科学院物理研究所 低极化效应的氮化镓基发光二极管用外延材料及制法
WO2008056632A1 (fr) * 2006-11-07 2008-05-15 Rohm Co., Ltd. Élément électroluminescent semi-conducteur gan
CN101877381A (zh) * 2009-04-28 2010-11-03 Lg伊诺特有限公司 发光器件和发光器件封装
CN103022286A (zh) * 2011-09-27 2013-04-03 大连美明外延片科技有限公司 一种级联GaN基LED外延片及其制备方法
CN103647009A (zh) * 2013-12-11 2014-03-19 天津三安光电有限公司 氮化物发光二极管及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281520A (zh) * 2018-01-22 2018-07-13 映瑞光电科技(上海)有限公司 一种GaN基LED外延结构及其制备方法
CN115020558A (zh) * 2022-08-05 2022-09-06 江西兆驰半导体有限公司 一种高复合效率的发光二极管外延片及其制备方法
CN115020558B (zh) * 2022-08-05 2022-10-21 江西兆驰半导体有限公司 一种高复合效率的发光二极管外延片及其制备方法
CN117637944A (zh) * 2024-01-25 2024-03-01 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法、led芯片
CN117637944B (zh) * 2024-01-25 2024-04-02 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法、led芯片

Also Published As

Publication number Publication date
CN103647009A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2015085803A1 (zh) 氮化物发光二极管及其制备方法
TWI688120B (zh) 氮化物半導體發光元件
TWI529962B (zh) 氮化物半導體發光元件及其製造方法
JP7228176B2 (ja) Iii族窒化物半導体発光素子
TWI535055B (zh) 氮化物半導體結構及半導體發光元件
JP2008244307A (ja) 半導体発光素子および窒化物半導体発光素子
US10381511B2 (en) Nitride semiconductor structure and semiconductor light emitting device including the same
TW201421733A (zh) 氮化物半導體結構及半導體發光元件
WO2016002419A1 (ja) 窒化物半導体発光素子
WO2015176532A1 (zh) 一种氮化物发光二极管组件的制备方法
JP2019054023A (ja) Iii族窒化物半導体発光素子とその製造方法
WO2016065884A1 (zh) 发光二极管
CN108305922B (zh) 氮化物半导体结构及半导体发光元件
CN107833956B (zh) 氮化物半导体结构及半导体发光元件
CN113013301B (zh) 氮化物发光二极管
WO2022156047A1 (zh) 一种半导体外延结构及其制作方法、led芯片
TWI568022B (zh) 半導體堆疊結構
TWI610460B (zh) 氮化物半導體結構
KR20130094451A (ko) 질화물 반도체 발광소자 및 그 제조방법
TWI570954B (zh) 氮化物半導體結構及半導體發光元件
US20230361245A1 (en) Semiconductor epitaxy structure, manufacturing method thereof, and led chip
KR101046109B1 (ko) 질화물 반도체 소자
KR101025565B1 (ko) 발광 소자
TWI508326B (zh) 氮化物半導體結構及半導體發光元件
TWI637531B (zh) 氮化物半導體結構及半導體發光元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870500

Country of ref document: EP

Kind code of ref document: A1