WO2018137155A1 - 一种光接收机 - Google Patents

一种光接收机 Download PDF

Info

Publication number
WO2018137155A1
WO2018137155A1 PCT/CN2017/072513 CN2017072513W WO2018137155A1 WO 2018137155 A1 WO2018137155 A1 WO 2018137155A1 CN 2017072513 W CN2017072513 W CN 2017072513W WO 2018137155 A1 WO2018137155 A1 WO 2018137155A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
voltage signal
differential voltage
signal
sampling
Prior art date
Application number
PCT/CN2017/072513
Other languages
English (en)
French (fr)
Inventor
付生猛
熊宇
满江伟
王成艳
曾小飞
曾理
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202110761244.1A priority Critical patent/CN113718181B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21191784.4A priority patent/EP3998718A1/en
Priority to ES17894304T priority patent/ES2894263T3/es
Priority to KR1020197023778A priority patent/KR102193071B1/ko
Priority to CN201780083389.2A priority patent/CN110785949B/zh
Priority to JP2019539951A priority patent/JP6920446B2/ja
Priority to PT178943049T priority patent/PT3567756T/pt
Priority to PCT/CN2017/072513 priority patent/WO2018137155A1/zh
Priority to EP17894304.9A priority patent/EP3567756B1/en
Publication of WO2018137155A1 publication Critical patent/WO2018137155A1/zh
Priority to US16/520,029 priority patent/US10887677B2/en
Priority to US16/952,912 priority patent/US11228823B2/en
Priority to US17/548,793 priority patent/US11750956B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6931Automatic gain control of the preamplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/695Arrangements for optimizing the decision element in the receiver, e.g. by using automatic threshold control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0071Provisions for the electrical-optical layer interface

Definitions

  • the present application relates to the field of optical communications, and more particularly to an optical receiver having a high frequency peak gain.
  • 10G Passive Optical Network (PON) technology and products are ready to be completed and enter the scale deployment stage.
  • 10G PON the cost of Optical Network Unit (ONU) will become a mass deployment in the future.
  • a key issue, reducing costs is a key requirement for 10G PON.
  • the Bi-directional Optical Sub-Assembly On Board (BOB) technology widely used in the Gigabit Passive Optical Network (GPON) can be used in 10G PON to reduce the cost of packaging.
  • the cost of the device itself is the key to further cost reduction.
  • the 10G Avalanche Photo-Detector is the highest-speed optical device, which accounts for the highest cost. Therefore, reducing the cost of APD is the key to reducing the cost of ONU in 10G PON.
  • the embodiment of the present application provides an optical receiver that uses a low-speed APD to receive a high-speed signal, and solves the problem that the cost of the entire device is too high due to the high cost of the high-speed APD.
  • an optical receiver comprising: a photodetector, a transimpedance amplifying circuit, a single-ended-differential converter, an I/O interface and a controller, the photodetector for receiving the received light Converting a signal into a current signal, wherein a bandwidth of the photodetector is lower than a bandwidth requirement of the system transmission; the transimpedance amplifying circuit is configured to receive the current signal and the first control signal according to the first control signal Performing a transimpedance gain on the current signal to obtain a voltage signal, wherein a frequency response value of the current signal in the first bandwidth is higher than a frequency response value in a bandwidth of the photodetector, in the first bandwidth Any one of the frequencies is not lower than an upper limit cutoff frequency of the photodetector; the single-ended-differential converter is configured to convert the voltage signal into a differential voltage signal, and send the differential voltage signal to the I And a controller, wherein the I/O interface
  • the optical receiver provided by the embodiment of the present application uses a photodetector having a bandwidth lower than the transmission bandwidth requirement of the system, thereby greatly reducing the cost of the optical receiver; and the use of the transimpedance amplifying circuit compensates for the deterioration of the received signal caused by insufficient bandwidth. In the case of ensuring the quality of the received signal, the purpose of reducing the cost of the device is achieved.
  • the controller is specifically configured to perform a multiple sampling process, and each time the sampling process is performed, performing the following process: sending a control signal to the a transimpedance amplifying circuit; sampling the received upper and lower levels of the differential voltage signal to obtain a value of the sampling point; and changing the control signal according to a preset amount of change; the controller is performing the After the multiple sampling process, the method is specifically configured to: corresponding to the sampling point with the largest median value of the plurality of sampling points obtained by the multiple sampling process The control signal is used as the second control signal.
  • the controller is specifically configured to perform multiple detection processes, and each time the detection process is performed, performing the following process: sending a control signal to the a transimpedance amplifying circuit; detecting energy of the differential voltage signal higher than the first frequency and lower than the first frequency by a first frequency, respectively, to obtain an energy difference, wherein the first frequency is 0.28/ Tb, the Tb is a duration of each bit of the differential voltage signal; the control signal is changed according to a preset amount of change; after the controller performs the multiple sampling process, specifically: The control signal corresponding to the energy difference with the smallest median value of the plurality of energy differences obtained by the multiple detection process is used as the second control signal.
  • the above two embodiments are two implementation manners for the controller to filter the optimal control signal, and the optimal control signal allows the transimpedance amplifying circuit to perform optimal compensation for the photodetector itself, and cross-resistance amplification
  • the gain compensation of the circuit is implemented inside the transimpedance amplifier circuit without introducing additional noise.
  • the optical receiver further includes an equalizer, where the equalizer is configured to receive the differential voltage signal and the third control signal, according to The third control signal is used to gain the differential voltage signal, and the differential voltage signal after the gain is sent to the controller and the I/O interface, wherein the frequency response of the differential voltage signal in the second bandwidth a value higher than a frequency response value within the first bandwidth, any of the second bandwidth being higher than any of the first bandwidths; the controller further for The voltage signal generates a fourth control signal, and the fourth control signal is sent to the equalizer, wherein the fourth control signal is used to control gain on the differential voltage signal.
  • the embodiment of the present application expands the compensation range of the photodetector by using the equalizer, and can perform gain compensation on a higher frequency point than the transimpedance amplifying circuit.
  • the controller is specifically configured to perform multiple first sampling processing, each time the first sampling processing The following process is performed: sending a control signal to the transimpedance amplifying circuit; sampling the upper and lower levels of the received differential voltage signal to obtain a value of the sampling point; and controlling the control according to a preset amount of change The signal is changed; after the performing the plurality of first sampling processes, the controller is specifically configured to: use, as the control signal corresponding to the sampling point with the largest median value of the plurality of sampling points obtained by the plurality of first sampling processes The second control signal;
  • the controller After transmitting the second control signal to the transimpedance amplifying circuit, the controller further performs a plurality of second sampling processes. Each time the second sampling process, the following process is performed: sending a control signal to The equalizer; sampling the received upper and lower levels of the differential voltage signal to obtain a value of the sampling point; and changing the control signal according to a preset change amount; the controller is performing the After the second sampling process is performed a plurality of times, the control signal corresponding to the sampling point having the largest value among the plurality of sampling points obtained by the plurality of second sampling processes is used as the fourth control signal.
  • the controller is specifically configured to perform multiple first detection processing, each time the first detection processing The following process is performed: transmitting a control signal to the transimpedance amplifying circuit; detecting, by the first frequency, energy of the differential voltage signal higher than the first frequency and lower than the first frequency, respectively, to obtain energy a difference, wherein the first frequency is 0.28/Tb, and the Tb is a duration of each bit of the differential voltage signal; the control signal is changed according to a preset amount of change; the controller is After performing the plurality of first detection processes, Specifically, the control signal corresponding to the energy difference of the plurality of energy differences obtained by the plurality of first detection processes is used as the second control signal;
  • the controller After transmitting the second control signal to the transimpedance amplifying circuit, the controller further performs a plurality of second detecting processes. Each time the second detecting process, the following process is performed: sending a control signal to The equalizer; detecting energy of the differential voltage signal higher than the first frequency and lower than the first frequency by a first frequency, respectively, to obtain an energy difference, wherein the first frequency is 0.28/ Tb, the Tb is a duration of each bit of the differential voltage signal; the control signal is changed according to a preset change amount; after the controller performs the multiple times of the second detection process, specifically And a control signal corresponding to the energy difference with the smallest median value of the plurality of energy differences obtained by the plurality of second detection processes is used as the fourth control signal.
  • the optical receiver includes an equalizer
  • the controller filters the optimal control signals in two ways.
  • the transimpedance amplifying circuit is used for gain compensation without introducing additional noise; if the gain compensation is insufficient,
  • the equalizer is used for gain compensation to achieve optimal compensation with minimal noise cost.
  • an optical receiver comprising: a photodetector, a first transimpedance amplifying circuit, a single-ended-differential converter, an equalizer, an I/O interface, and a controller; and the photodetector is configured to Converting the received optical signal into a current signal, wherein the bandwidth of the photodetector is lower than a bandwidth requirement of the system transmission; the first transimpedance amplifying circuit is configured to receive the current signal, and the current signal Performing a transimpedance gain to obtain a voltage signal; the single-ended-differential converter for converting the electrical voltage signal into a differential voltage signal, and transmitting the differential voltage signal to the equalizer; the equalizer, And receiving the differential voltage signal and the first control signal, performing gain on the differential voltage signal according to the first control signal, and transmitting the differential voltage signal after the gain to the I/O interface and the controller The frequency response value of the differential voltage signal in the first bandwidth is higher than the frequency response value in the photodete
  • the equalizer is used to implement gain compensation for high-frequency points, and the equalizer is used to compensate the photodetector by using the equalization compensation range. effect.
  • the advantage is that the compensation range of the photodetector is larger, and the disadvantage is that the high-frequency point gain is completely compensated by the equalizer to introduce more noise.
  • the controller is specifically configured to perform a multiple sampling process, and each time the sampling process is performed, performing the following process: sending a control signal to the An equalizer that samples the upper and lower levels of the received differential voltage signal to obtain a value of the sampling point; and changes the control signal according to a preset amount of change; the controller performs the multiple times After the sampling process, the control signal corresponding to the sampling point having the largest value among the plurality of sampling points obtained by the multiple sampling processing is used as the second control signal.
  • the controller is specifically configured to perform multiple detection processes, and each time the detection process is performed, performing the following process: sending a control signal to the An equalizer that detects energy of the differential voltage signal higher than the first frequency and lower than the first frequency by a first frequency, to obtain an energy difference, wherein the first frequency is 0.28/Tb, The Tb is a differential voltage signal a duration of each bit; changing the control signal according to a preset amount of change; after the controller performs the multiple sampling process, specifically for: obtaining the multiple detection process A control signal corresponding to the energy difference having the smallest median value of the plurality of energy differences is used as the second control signal.
  • a receiving method comprising: converting, by a photodetector, a received optical signal into a current signal by a photodetector, wherein a bandwidth of the photodetector is lower than a bandwidth requirement of the system transmission;
  • the receiver performs a transimpedance gain on the current signal according to the first control signal to obtain a voltage signal, wherein a frequency response value of the current signal in the first bandwidth is higher than a frequency response value in a bandwidth of the photodetector And any one of the first bandwidths is not lower than an upper limit cutoff frequency of the photodetector;
  • the optical receiver converts the voltage signal into a differential voltage signal, and generates a second according to the differential voltage signal a control signal, wherein the second control signal is for controlling a transimpedance gain of the current signal.
  • the generating the second control signal according to the differential voltage signal includes: performing multiple sampling processing, and processing the multiple sampling And obtaining, as the second control signal, a control signal corresponding to a sampling point having the largest value among the plurality of sampling points, wherein each time the sampling processing is performed, performing the following process: performing a transimpedance gain on the current signal according to the control signal Obtaining the voltage signal, converting the voltage signal into the differential voltage signal; sampling upper and lower levels of the differential voltage signal to obtain a value of a sampling point; and controlling the control according to a preset amount of change The signal changes.
  • the generating the second control signal according to the differential voltage signal includes: performing multiple detection processing, and performing the multiple detection processing And obtaining, as the second control signal, a control signal corresponding to the energy difference with the smallest median value of the plurality of energy differences, wherein each time the detection process is performed, performing the following process: performing transimpedance gain on the current signal according to the control signal Obtaining the voltage signal, converting the voltage signal into the differential voltage signal; detecting, by the first frequency, energy of the differential voltage signal higher than the first frequency and lower than the first frequency Obtaining an energy difference, wherein the first frequency is 0.28/Tb, and the Tb is a duration of each bit of the differential voltage signal; the control signal is changed according to a preset amount of change.
  • the method further includes: performing, according to the third control signal, The differential voltage signal is subjected to a gain, wherein a frequency response value of the differential voltage signal in the second bandwidth is higher than a frequency response value in the first bandwidth, and any one of the second bandwidths is higher than Determining any one of the first bandwidths; after generating the second control signal, the method further comprising: generating a fourth control signal according to the differential voltage signal after the gain, wherein the fourth control signal is used to control the pair The differential voltage signal performs a gain.
  • the generating the second control signal according to the differential voltage signal includes: performing the first multiple times a sampling process, the control signal corresponding to the sampling point having the largest value among the plurality of sampling points obtained by the plurality of first sampling processes is used as the second control signal, wherein each time the first sampling process is performed, the following is performed a process: performing a transimpedance gain on the current signal according to a control signal, obtaining the voltage signal, converting the voltage signal into the differential voltage signal, sampling an upper and lower level of the differential voltage signal, and obtaining a sampling point a value of the control signal according to a preset amount of change; the generating according to the differential voltage signal
  • the fourth control signal specifically includes: performing a plurality of second sampling processes, and using, as the fourth control signal, a control signal corresponding to a sampling point having a largest value among the plurality of sampling points obtained by the plurality of second sampling processes, wherein And each time in the second sampling process, performing
  • the generating the second control signal according to the differential voltage signal includes: performing the first multiple times a detection process, wherein a control signal corresponding to an energy difference having a smallest median value of the plurality of energy differences obtained by the plurality of first detection processes is used as the second control signal, wherein each time the first detection process is performed, the following is performed a process: performing a transimpedance gain on the current signal according to a control signal, obtaining the voltage signal, converting the voltage signal into the differential voltage signal, sampling an upper and lower level of the differential voltage signal, and obtaining a sampling point The value of the control signal is changed according to the preset amount of change; the generating the fourth control signal according to the differential voltage signal, specifically comprising: performing a plurality of second detection processes, the multiple a control signal corresponding to the energy difference with the smallest median value of the plurality of energy differences obtained by the two sampling processes as the fourth control signal, wherein each time in the second detection process
  • the embodiment of the foregoing third aspect is a receiving method corresponding to the optical receiver of the first aspect, and the beneficial effects are consistent with the first aspect, and details are not described herein again.
  • a receiving method wherein an optical receiver converts a received optical signal into a current signal by a photodetector, wherein a bandwidth of the photodetector is lower than a bandwidth requirement of the system transmission; the optical receiver Performing a transimpedance gain on the current signal to obtain a voltage signal, and converting the voltage signal into a differential voltage signal; and the optical receiver performs gain on the differential voltage signal according to the first control signal to obtain a gain a differential voltage signal, wherein the differential voltage signal has a frequency response value in the first bandwidth that is higher than a frequency response value within the photodetector bandwidth, and any one of the first bandwidths is higher than the An upper limit cutoff frequency of the photodetector; the optical receiver generates a second control signal according to the differential voltage signal after the gain, wherein the second control signal is used to control gain of the differential voltage signal.
  • the generating the second control signal according to the differential voltage signal after the gaining specifically: performing multiple sampling processing, a control signal corresponding to the sample point having the largest value among the plurality of sample points obtained by the subsampling process is used as the second control signal, wherein each time the sample process is performed, the following process is performed: the differential voltage signal is according to the control signal Performing a gain to obtain the differential voltage signal after the gain; sampling the upper and lower levels of the differential voltage signal after the gain to obtain a value of the sampling point; and changing the control signal according to a preset amount of change.
  • the generating the second control signal according to the differential voltage signal after the gaining specifically: performing multiple detection processing, The control signal corresponding to the energy difference with the smallest median value of the plurality of energy differences obtained by the secondary detection process is used as the second control signal, wherein each time the detection process is performed, the following process is performed: the differential voltage signal is according to the control signal And performing a gain to obtain a differential voltage signal after the gain; detecting, by the first frequency, energy of the differential voltage signal higher than the first frequency and the gain lower than the first frequency, An energy difference is obtained, wherein the first frequency is 0.28/Tb, and the Tb is a duration of each bit of the differential voltage signal; the control signal is changed according to a preset amount of change.
  • the embodiment of the fourth aspect is a receiving method corresponding to the optical receiver of the second aspect, and the beneficial effects are consistent with the second aspect, and details are not described herein again.
  • a transimpedance amplifying circuit includes: a fixed resistor, a first triode, a second triode, a varistor circuit, and an output port, wherein the fixed resistor includes two ports, one of which is grounded, Another port is connected to the emitter of the first transistor; the base of the first transistor is for receiving an input signal, the collector of the first transistor and the emitter of the second transistor Connected; a base of the second transistor is configured to receive a bias voltage signal, and a collector of the second transistor is coupled to a first port of the varistor circuit, wherein the bias voltage signal For adjusting a gain to the input signal; the output port is located on a connection line between a collector of the second transistor and a first port of the varistor circuit; the varistor circuit includes three The second port of the varistor circuit is configured to receive a control signal, and the third port is grounded, wherein the control signal is used to control the resistance of the varistor circuit.
  • the optical receiver provided by the embodiment of the present application uses a photodetector having a bandwidth lower than the transmission bandwidth requirement of the system to greatly reduce the cost of the optical receiver; and the use of the transimpedance amplifying circuit compensates for the insufficient bandwidth.
  • the received signal is degraded, and the device cost is reduced in the case of ensuring the quality of the received signal.
  • Figure 1 is a schematic structural view of a 10G PON system
  • FIG. 2 is a schematic structural diagram of an optical receiver according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a transimpedance amplifying circuit according to another embodiment of the present application.
  • FIG. 4 is a frequency response graph of a transimpedance amplifying circuit according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of gain compensation of a high-frequency point of a photodetector by a transimpedance amplifying circuit according to another embodiment of the present application;
  • Figure 6 is a schematic diagram of under-compensation, optimal compensation, and over-compensation
  • FIG. 7 is a schematic structural diagram of an optical receiver according to another embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a receiving method according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an optical receiver according to another embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a receiving method according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an optical receiver according to another embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a 10G PON system to which an ONU or an Optical Line Terminal (OLT) having an optical receiver according to an embodiment of the present application is applicable.
  • the 10G PON system 100 includes at least one OLT 110, a plurality of ONUs 120, and an optical distribution network 130 (Optical Distribution) Network, ODN).
  • the OLT 110 is connected to the plurality of ONUs 120 in a point-to-multipoint manner through the ODN 130.
  • the direction from the OLT 110 to the ONU 120 is defined as the downlink direction, and the direction from the ONU 120 to the OLT 110 is the uplink direction.
  • An embodiment of the present application provides an optical receiver 200, which can be applied to an ONU of a 10G PON system or a higher rate PON system, as shown in FIG. 2, including: a photodetector 201, a transimpedance amplifying circuit 202, and a single-ended a differential converter 203, an I/O interface 204 and a controller 205,
  • the photodetector 201 is configured to convert the received optical signal into a current signal, wherein the bandwidth of the photodetector 201 is lower than the bandwidth requirement of the system transmission.
  • the photodetector 201 has the highest cost in the optical receiver 200.
  • the low-bandwidth photodetector 201 can greatly reduce the device cost, and accordingly, there is a problem that the signal of the high-frequency portion cannot be detected.
  • the transimpedance amplifying circuit 202 is configured to receive the current signal and the first control signal, and perform a transimpedance gain on the current signal according to the first control signal to obtain a voltage signal, wherein the frequency response value of the current signal in the first bandwidth is higher than The frequency response value within the bandwidth of the photodetector 201, any of the first bandwidths being not lower than the upper cutoff frequency of the photodetector 201.
  • the transimpedance amplifying circuit 202 can be an under-damped transimpedance amplifying circuit.
  • the present application provides a possible implementation manner.
  • the structure is as shown in FIG. 3, including: a fixed resistor 301, a first triode 302, a second transistor 303, a varistor circuit 304 and an output port 305,
  • the fixed resistor 301 includes two ports, one of which is connected to the ground, and the other of which is connected to the emitter of the first transistor 302.
  • the base of the first transistor 302 is used to receive an input signal, and the first transistor 302 is set.
  • the electrode is connected to the emitter of the second transistor 303; the base of the second transistor 303 is for receiving a bias voltage signal, and the collector of the second transistor 303 is connected to the first port of the varistor circuit 304,
  • the bias voltage signal is used to adjust the gain of the input signal;
  • the output port 305 is located on the connection line between the collector of the second transistor 303 and the first port of the varistor circuit 304;
  • the varistor circuit 304 includes three
  • the second port of the varistor circuit 304 is for receiving a control signal, and the third port is grounded, wherein the control signal is used to control the resistance of the varistor circuit 304.
  • 3041 in FIG. 3 provides a specific implementation of a varistor circuit, and there are many similar implementations, which are not limited in this application.
  • the embodiment of the present application acts to change the damping factor of the transimpedance amplifying circuit 202 by adjusting the resistance value of the variable resistance circuit 304.
  • the spectral response curve is shown in Fig. 4.
  • the ⁇ in Fig. 4 is the damping factor, and the high frequency point here refers to the frequency point higher than the upper limit cutoff frequency of the photodetector 201.
  • the first bandwidth position of the transimpedance amplifying circuit 202 can be controlled. This application does not limit this; in addition, the damping factor cannot be too small, because the damping factor is smaller, the system oscillates. The more unstable it is. Due to the limitation of the magnitude of the damping factor, the transimpedance amplifying circuit 202 has a range of additional gain values for the high frequency point. As shown in FIG. 5, the solid line indicates the frequency response curve of the photodetector 201, and the dotted line portion is the joint frequency response curve of the transimpedance amplifying circuit 202 and the photodetector 201, for example, at the a position, compensation is required.
  • the difference does not exceed the additional gain range of the transimpedance amplifying circuit 202 for the high frequency point, and can be compensated by the transimpedance amplifying circuit 202; at the b position, the difference that needs to be compensated exceeds the transimpedance amplification
  • the additional gain range of the path 202 to the high frequency signal cannot be fully compensated by the transimpedance amplifying circuit 202 alone, and the next level of compensation will be required.
  • the single-ended-differential converter 203 is configured to convert the voltage signal into a differential voltage signal, and send the differential voltage signal to the I/O interface 204 and the controller 205.
  • the I/O interface 204 is for outputting a differential voltage signal.
  • the controller 205 is configured to generate a second control signal according to the differential voltage signal, and send the second control signal to the transimpedance amplifying circuit 202, wherein the second control signal is used to control the transimpedance gain of the current signal.
  • the signal processing process of the optical receiver 200 is as follows:
  • the optical signal detected by the optical receiver 200 is first photoelectrically detected by the photodetector 201 to generate a current signal, which is converted into a voltage signal by the transimpedance amplifying circuit 202.
  • the transimpedance amplifying circuit can provide a first-order high-frequency gain, and the gain is implemented in the transimpedance amplifying circuit 202. As shown in FIG. 3, by adjusting the resistance of the varistor circuit 304, a peak gain is generated at the gain frequency point. The lack of bandwidth of the photodetector 201 is compensated (i.e., higher gain is provided at high frequency points within the passband of the transimpedance amplifier circuit 202).
  • the gain is implemented in the transimpedance amplifying circuit 202, no additional noise is introduced, and noise-free gain compensation can be realized for the high-frequency point, wherein the high-frequency point here is also higher than the upper limit of the photodetector 201.
  • the frequency of the frequency is also higher than the upper limit of the photodetector 201.
  • the signal subjected to the gain compensation by the transimpedance amplifying circuit 202 is converted into a differential signal by the single-ended-differential converter 203, and the differential signal is output through the I/O interface 204.
  • controller 205 is configured to adaptively generate the second control signal, and control the transimpedance amplifying circuit 202 to perform a transimpedance gain on the received current signal, so that the transimpedance amplifying circuit 202 performs the most current phase of the photodetector 201.
  • Good compensation in which the three possibilities of compensation, under-compensation, optimal compensation and over-compensation are shown in Fig. 6.
  • the second control signal for causing the transimpedance amplifying circuit 202 to perform the best compensation at the current stage is mainly generated in the following two ways:
  • the controller 205 performs a plurality of sampling processes, and each time the sampling process, the following process is performed:
  • the controller 205 sends a control signal to the transimpedance amplification circuit 202;
  • the transimpedance amplifying circuit 202 generates a transimpedance gain determined by the control signal for the current signal to obtain a voltage signal; the voltage signal passes through the single-ended-differential converter 203 to obtain a differential voltage signal.
  • the controller 205 samples the upper and lower levels of the received differential voltage signal to obtain a value of the sampling point
  • controller 205 then changes the control signal according to the preset amount of change.
  • each sampling process is for signals after different transimpedance gains, and different sampling points are obtained. From the sampling points, the control signal corresponding to the sampling point is allowed to be the largest.
  • the amplifying circuit 202 performs the optimum compensation at this stage.
  • the controller 205 is specifically configured to: use the control signal corresponding to the sampling point having the largest value among the plurality of sampling points obtained by the multiple sampling process as the second control signal.
  • the controller 205 performs a plurality of detection processes, and each time the detection process is performed, the following process is performed:
  • the controller 205 sends a control signal to the transimpedance amplification circuit 202;
  • the transimpedance amplifying circuit 202 generates a transimpedance gain determined by the control signal for the current signal.
  • a voltage signal is obtained; the voltage signal passes through a single-ended-differential converter 203 to obtain a differential voltage signal.
  • the controller 205 detects the energy of the differential voltage signal higher than the first frequency and lower than the first frequency by using the first frequency as a boundary, and obtains an energy difference, wherein the first frequency is 0.28/Tb, and Tb is The duration of each bit of the received differential voltage signal;
  • controller 205 changes the control signal according to the preset amount of change.
  • each detection process is directed to signals after different transimpedance gains, and different energy differences are obtained. From these energy differences, the smallest value is selected, and the control signal corresponding to the energy difference can make the transimpedance
  • the amplifying circuit 202 performs the optimum compensation at this stage.
  • the controller 205 is specifically configured to use, as the second control signal, a control signal corresponding to the energy difference having the smallest median value of the plurality of energy differences obtained by the multiple detection process.
  • the second control signal can filter the second control signal at regular intervals. Since the execution time of the above selection process is short relative to the interval time, the transmission of the service is not affected. In addition, since the compensation effect of the transimpedance amplifying circuit 202 changes as the environment changes, and the environmental change (for example, temperature) is a slowly changing process, it may be based only on the currently executed control signal. The control signal is changed several times in a relatively small range, and the optimum control signal is selected by one of the above methods (1) and (2), which can effectively reduce the execution time of the selection process.
  • the optical receiver 200 further includes an equalizer 206.
  • the equalizer 206 is configured to receive the differential voltage signal and the third control signal, and perform gain on the differential voltage signal according to the third control signal.
  • the differential voltage signal after the gain is sent to the controller and the I/O interface, wherein the frequency response value of the differential voltage signal in the second bandwidth is higher than the frequency response value in the first bandwidth, and any of the second bandwidths Higher than any of the first bandwidths.
  • the controller 205 is further configured to generate a fourth control signal according to the differential voltage signal, and send the fourth control signal to the equalizer 206, wherein the fourth control signal is used to control the gain of the differential voltage signal.
  • the differential voltage signal output by the single-ended-differential converter 203 will first pass through the equalizer 206. If the gain compensation has an optimized space, the equalizer 206 further performs the differential voltage signal. Gain, if optimal, the equalizer 206 does not process the signal, which is equivalent to a transmission circuit.
  • controller 205 is configured to adaptively generate a fourth control signal, and control the equalizer 206 to gain the received differential voltage signal, so that the equalizer 206 optimally compensates the photodetector 201; wherein the equalizer 206 Can be an analog equalizer or a digital equalizer.
  • the second control signal for optimally compensating the transimpedance amplifying circuit 202 and the fourth control signal for optimally compensating the equalizer 206 are mainly implemented in the following two ways:
  • the controller 205 performs a plurality of first sampling processes, and each time the first sampling process, the following process is performed:
  • the controller 205 sends a control signal to the transimpedance amplification circuit 202;
  • the controller 205 samples the upper and lower levels of the received differential voltage signal to obtain a value of the sampling point
  • the controller 205 changes the control signal according to the preset amount of change.
  • the controller 205 After performing the plurality of first sampling processes, the controller 205 uses the control signal corresponding to the sampling point having the largest value among the plurality of sampling points obtained by the plurality of first sampling processes as the second control signal.
  • the controller 205 After transmitting the second control signal to the transimpedance amplification circuit 202, the controller 205 also performs the number of times Two sampling processing, each time the second sampling processing, the following process is performed:
  • the controller 205 sends a control signal to the equalizer 206;
  • the controller 205 samples the upper and lower levels of the received differential voltage signal to obtain a value of the sampling point
  • the controller 205 changes the control signal according to the preset amount of change.
  • the controller 205 After performing the plurality of second sampling processes, the controller 205 uses the control signal corresponding to the sampling point having the largest value among the plurality of sampling points obtained by the plurality of second sampling processes as the fourth control signal.
  • the controller 205 performs a plurality of first detection processes, and each time the first detection process, the following process is performed:
  • the controller 205 sends a control signal to the transimpedance amplification circuit 202;
  • the controller 205 detects the energy of the differential voltage signal higher than the first frequency and lower than the first frequency by using the first frequency as a boundary, and obtains an energy difference, wherein the first frequency is 0.28/Tb, and Tb is a differential voltage signal. The duration of each bit;
  • the controller 205 changes the control signal according to the preset amount of change.
  • the controller 205 After performing the plurality of first detection processes, the controller 205 uses the control signal corresponding to the energy difference of the plurality of energy differences obtained by the plurality of first detection processes as the second control signal.
  • the controller 205 After transmitting the second control signal to the transimpedance amplification circuit 202, the controller 205 also performs a plurality of second detection processes, and each time the second detection process, the following process is performed:
  • the controller 205 sends a control signal to the equalizer
  • the controller 205 detects, by the first frequency, energy of the differential voltage signal higher than the first frequency and lower than the first frequency, respectively, to obtain an energy difference, wherein the first frequency is 0.28/Tb, Tb is the duration of each bit in the differential voltage signal;
  • the controller 205 changes the control signal according to a preset amount of change.
  • the controller 205 After performing the plurality of second detection processes, the controller 205 uses the control signal corresponding to the energy difference having the smallest median value of the plurality of energy differences obtained by the plurality of second detection processes as the fourth control signal.
  • the equalizer 206 does not gain the differential voltage signal, the obtained sample point value is the largest or the energy difference is the smallest, indicating that the transimpedance amplifying circuit 202 has optimally compensated the photodetector 201 without equalization.
  • the timer 206 functions; otherwise, it indicates that the equalizer 206 is required to function.
  • the equalizer 206 since the gain compensation of the transimpedance amplifying circuit 202 is implemented inside the transimpedance amplifying circuit 202, no additional noise is introduced, and the equalizer 206 introduces additional noise when compensating, so the transimpedance amplifying circuit 202 is preferentially adjusted. .
  • the equalizer 206 has the advantage of a large compensation range. Compared with the transimpedance amplifying circuit 202, a higher frequency point can be compensated. If the transimpedance amplifying circuit 202 cannot achieve optimal compensation, the equalizer 206 can further compensate. Achieve optimal compensation.
  • the second control signal and the fourth control signal can filter the second control signal and the fourth control signal at intervals, and since the time of execution of the above selection process is short relative to the interval time, the transmission of the service is not affected.
  • the compensation effect of the transimpedance amplifying circuit 202 and the equalizer 206 changes as the environment changes, and the environmental change (for example, temperature) is a slowly changing process, it is also possible to control only the currently executed control signal.
  • the control signal is changed several times in a relatively small range, and one of the above methods (1) and (2) is selected to select the optimal control signal, which can effectively reduce the execution time of the selection process.
  • FIG. 8 Another embodiment of the present application provides a receiving method, as shown in FIG. 8, including:
  • the optical receiver converts the received optical signal into a current signal through a photodetector, wherein The bandwidth of the detector is lower than the bandwidth requirement of the system transmission;
  • the optical receiver performs a transimpedance gain on the current signal according to the first control signal to obtain a voltage signal, wherein the frequency response value of the current signal in the first bandwidth is higher than the frequency response value in the bandwidth of the photodetector, first Any frequency in the bandwidth is not lower than the upper cutoff frequency of the electrical detector;
  • the optical receiver converts the voltage signal into a differential voltage signal, and generates a second control signal according to the differential voltage signal, wherein the second control signal is used to control the transimpedance gain of the current signal.
  • the optical receiver generates a second control signal according to the differential voltage signal, as follows:
  • each sampling process performs the following process:
  • the current signal is subjected to a transimpedance gain to obtain a voltage signal, and the voltage signal is converted into a differential voltage signal; the upper and lower levels of the differential voltage signal are sampled to obtain a sample point value; and the control is performed according to a preset change amount.
  • the signal changes.
  • the energy of the voltage signal is obtained, wherein the first frequency is 0.28/Tb, and Tb is the duration of each bit of the differential voltage signal; the control signal is changed according to a preset amount of change.
  • the above two schemes all change the control signal, so that the received signals are in different states, and compare these states to select a relatively optimal control signal.
  • the method further includes: performing a gain on the differential voltage signal according to the third control signal, wherein the frequency response value of the differential voltage signal in the second bandwidth Above a frequency response value within the first bandwidth, any of the second bandwidths is higher than any of the first bandwidths.
  • the method further includes: generating a fourth control signal according to the differential voltage signal after the gain, wherein the fourth control signal is used to control gain on the differential voltage signal.
  • the optical receiver generates a second control signal and a fourth control signal according to the differential voltage signal, as follows:
  • the current signal is subjected to a transimpedance gain to obtain a voltage signal, and the voltage signal is converted into a differential voltage signal; the upper and lower levels of the differential voltage signal are sampled to obtain a sample point value; and the control is performed according to a preset change amount.
  • the signal changes;
  • the optical receiver After generating the second control signal, the optical receiver performs a plurality of second sampling processes, and the control signal corresponding to the sampling point having the largest value among the plurality of sampling points obtained by the plurality of second sampling processes is used as the fourth control signal, wherein In each second sampling process, the following process is performed:
  • the optical receiver After generating the second control signal, the optical receiver performs a plurality of second detection processes, and the control signal corresponding to the energy difference of the plurality of energy differences obtained by the plurality of second sampling processes is used as the fourth control a signal, wherein, in each of the second detection processes, performing the following process: performing gain on the differential voltage signal according to the control signal to obtain a differential voltage signal after the gain; and detecting the higher than the first frequency Deriving an energy difference between the first frequency and the energy of the differential voltage signal lower than the first frequency, wherein the first frequency is 0.28/Tb, and Tb is a duration of each bit of the differential voltage signal; The control signal is changed by a preset amount of change.
  • the embodiment of the present application is a method embodiment corresponding to the previous device embodiment.
  • the implementation principle and the obtained effect have been described in the previous embodiments, and the embodiments of the present application are not described herein again.
  • the photodetector 901 includes a first transimpedance amplifying circuit 902.
  • the photodetector 901 is configured to convert the received optical signal into a current signal, wherein the bandwidth of the photodetector 801 is lower than the bandwidth requirement of the system transmission.
  • the photodetector 901 has the highest cost in the optical receiver 900.
  • the low-bandwidth photodetector 901 can greatly reduce the device cost, and accordingly, there is a problem that the signal of the high-frequency portion cannot be detected.
  • the first transimpedance amplifying circuit 902 is configured to receive a current signal, and perform a transimpedance gain on the current signal to obtain a voltage signal.
  • a single-ended-differential converter 903 is configured to convert the voltage signal into a differential voltage signal and transmit the differential voltage signal to the equalizer 904.
  • the equalizer 904 is configured to receive the differential voltage signal and the first control signal, perform a gain on the differential voltage signal according to the first control signal, and send the differential voltage signal after the gain to the I/O interface 905 and the controller 906, where the difference
  • the frequency response of the voltage signal within the first bandwidth is higher than the frequency response within the bandwidth of the photodetector 901, any of the first bandwidth being higher than the upper cutoff frequency of the photodetector 901.
  • the equalizer 904 can be an analog equalizer or a digital equalizer.
  • the I/0 interface 905 is configured to output a differential voltage signal after the gain.
  • the controller 906 is configured to generate a second control signal according to the differential voltage signal after the gain, and send the second control signal to the equalizer 904, wherein the second control signal is used to control the gain of the differential voltage signal.
  • the equalizer 904 is used to implement the gain compensation for the high frequency point, and the equalizer 904 is used to compensate the large range, so that the equalizer 904 compensates the photodetector 901 to achieve the optimal effect.
  • the advantage is that the compensation range for the photodetector 901 is larger, and the disadvantage is that the high-frequency point gain is completely compensated by the equalizer to introduce more noise.
  • the second control signal for causing the equalizer 904 to perform the best compensation at the current stage of the photodetector 901 is mainly implemented in the following two ways:
  • the controller 906 performs a plurality of sampling processes, and each time the sampling process is performed, the following process is performed:
  • controller 906 sends a control signal to the equalizer 904;
  • the equalizer 904 generates a gain determined by the control signal for the differential voltage signal to obtain a differential voltage signal after the gain.
  • controller 906 samples the upper and lower levels of the differential voltage signal after the gain to obtain the value of the sampling point
  • controller 906 then changes the control signal according to the preset amount of change.
  • each sampling process is directed to signals after different gains, and different sampling points are obtained. From the sampling points, the control signal corresponding to the sampling point is selected by the equalizer 804. Optimal compensation.
  • the controller 906 is specifically configured to: use the control signal corresponding to the sampling point with the largest value among the plurality of sampling points obtained by the multiple sampling process as the second control signal.
  • the controller 906 performs a plurality of detection processes, and each time the detection process is performed, the following process is performed:
  • controller 906 sends a control signal to the equalizer 904;
  • the equalizer 904 generates a gain determined by the control signal for the differential voltage signal to obtain a differential voltage signal after the gain.
  • the controller 906 detects the energy of the differential voltage signal higher than the first frequency and lower than the first frequency by using the first frequency as a boundary, and obtains an energy difference, wherein the first frequency is 0.28/Tb, and Tb is The duration of each bit of the differential voltage signal;
  • controller 906 changes the control signal according to the preset amount of change.
  • each detection process is directed to signals after different gains, and different energy differences are obtained, and the control signal corresponding to the energy difference is selected by the equalizer 804. Optimal compensation.
  • the controller 906 is specifically configured to use, as the second control signal, a control signal corresponding to the energy difference having the smallest median value of the plurality of energy differences obtained by the multiple detection process.
  • FIG. 10 Another embodiment of the present application provides a receiving method, as shown in FIG. 10, including:
  • the optical receiver converts the received optical signal into a current signal by using a photodetector, wherein a bandwidth of the photodetector is lower than a bandwidth requirement of the system transmission;
  • the optical receiver performs a transimpedance gain on the current signal to obtain a voltage signal, and converts the voltage signal into a differential voltage signal;
  • the optical receiver performs gain on the differential voltage signal according to the first control signal to obtain a differential voltage signal after the gain, wherein the frequency response value of the differential voltage signal in the first bandwidth is higher than the frequency in the photodetector bandwidth. a response value, any one of the first bandwidths being higher than an upper limit cutoff frequency of the photodetector;
  • the optical receiver generates a second control signal according to the differential voltage signal after the gain, where the second control signal is used to control gain on the differential voltage signal.
  • a method for generating a control signal with relatively best compensation effect is mainly implemented in the following two types:
  • each sampling process performs the following process:
  • control methods in the foregoing embodiments are all adaptive feedback control modes.
  • the present application provides various possible implementation manners, and any similar control schemes should fall within the protection scope of the present application.
  • the adjustment equalization gain can also be implemented by programmable analog or digital control.
  • the optical receiver using this scheme can include the device shown in FIG. 2, FIG. 7 or FIG. Any of the optical receivers includes similar devices, wherein the functions of the photodetector, the transimpedance amplifying circuit, the single-ended-differential converter, the equalizer, and the IO port are the same as those of the previous embodiment, the only difference being that the controller There is no need to receive the differential voltage signal, so the differential voltage signal will not be sampled or detected.
  • the corresponding relationship between the external environment and the control signal is estimated, for example, temperature and control. The relationship of the signals directly selects the corresponding control signal according to the external temperature value;
  • FIG. 11 shows a schematic structural view of the optical receiver including the same device as the optical receiver shown in FIG. 2 for reference.
  • the relationship between the change of the external environment and the control signal may be pre-stored in the controller or may be stored in another driving device, and the driving device controls the controller to work, and can also be printed out by the operator.
  • the controller is controlled according to the corresponding relationship, which is not limited in this application.
  • the optical receiver uses a photodetector having a bandwidth lower than the transmission bandwidth requirement of the system to greatly reduce the cost of the optical receiver; and compensates for the use of the transimpedance amplifying circuit and/or the equalizer.
  • the received signal is degraded due to insufficient bandwidth, and the device cost is reduced in the case of ensuring the quality of the received signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Communication System (AREA)
  • Amplifiers (AREA)
  • Dc Digital Transmission (AREA)

Abstract

一种光接收机(200),包括:光电探测器(201),跨阻放大电路(202),单端-差分转换器(203),I/O接口(204)和控制器(205)。光电探测器(201)用于将接收到的光信号转化成电流信号,其带宽低于系统传输的带宽需求;跨阻放大电路(202)用于接收电流信号和第一控制信号,根据第一控制信号对电流信号进行跨阻增益,得到电压信号,电流信号在任意频率不低于光电探测器(201)的上限截止频率的第一带宽内的频率响应值高于在光电探测器(201)带宽内的频率响应值;单端-差分转换器(203)用于将电压信号转成差分电压信号;I/0接口(204)用于输出差分电压信号;控制器(205)用于根据差分电压信号,产生用于控制对电流信号进行跨阻增益的第二控制信号。该光接收机在保证接收信号质量的情况下,实现了降低成本的目的。

Description

一种光接收机 技术领域
本申请涉及光通信领域,尤其涉及一种具有高频峰值增益的光接收机。
背景技术
10G无源光网络(Passive Optical Network,PON)技术和产品已经准备完成并进入规模布放阶段,在10G PON中,光网络单元(Optical Network Unit,ONU)的成本问题成为未来能否海量布放的一个关键问题,降低成本是10G PON的一个关键需求。而吉比特无源光网络(Gigabit Passive Optical Network,GPON)中广泛采用的在板双向光组件(Bi-directional Optical Sub-Assembly On Board,BOB)技术可以沿用到10G PON中来降低封装成本,因此,器件自身的成本成为了进一步降成本的关键。
在10G PON的ONU中,10G雪崩光电二极管(Avalanche Photo-Detector,APD)是最高速率的光器件,所占成本比重也最高,因此,降低APD的成本成为降低10G PON中ONU成本的关键。
发明内容
本申请实施例提供一种光接收机,采用低速APD来接收高速信号,解决了由于高速APD成本过高,导致整个器件成本过高的问题。
第一方面,提供一种光接收机,包括:光电探测器,跨阻放大电路,单端-差分转换器,I/O接口和控制器,所述光电探测器,用于将接收到的光信号转化成电流信号,其中,所述光电探测器的带宽低于系统传输的带宽需求;所述跨阻放大电路,用于接收所述电流信号和第一控制信号,根据所述第一控制信号对所述电流信号进行跨阻增益,得到电压信号,其中,所述电流信号在第一带宽内的频率响应值高于在所述光电探测器带宽内的频率响应值,所述第一带宽中的任一频率不低于所述光电探测器的上限截止频率;所述单端-差分转换器,用于将所述电压信号转成差分电压信号,将所述差分电压信号发送给所述I/0接口和所述控制器;所述I/0接口,用于输出所述差分电压信号;所述控制器,用于根据所述差分电压信号,产生第二控制信号,将所述第二控制信号发送给所述跨阻放大电路,其中,所述第二控制信号用于控制对所述电流信号进行跨阻增益。
本申请实施例提供的光接收机,采用带宽低于系统传输带宽要求的光电探测器,大幅降低光接收机的成本;并通过跨阻放大电路的运用,弥补了带宽不足造成的接收信号劣化,在保证接收信号质量的情况下,实现降低器件成本的目的。
结合第一方面,在第一方面的第一种可能的实现方式中,所述控制器具体用于执行多次采样处理,每次所述采样处理中,执行以下过程:发送控制信号给所述跨阻放大电路;对接收到的所述差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变;所述控制器在执行所述多次采样处理之后,具体用于:将所述多次采样处理得到的多个采样点中值最大的采样点对应 的控制信号作为所述第二控制信号。
结合第一方面,在第一方面的第二种可能的实现方式中,所述控制器具体用于执行多次检测处理,每次所述检测处理中,执行以下过程:发送控制信号给所述跨阻放大电路;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为差分电压信号每个比特的持续时间;根据预设的改变量,对所述控制信号进行改变;所述控制器在执行所述多次采样处理之后,具体用于:将所述多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号。
上面两个实施例,是控制器筛选最优控制信号的两种实现方式,该最优控制信号可以让跨阻放大电路对光电探测器进行它本身可以实现的最优的补偿,而且跨阻放大电路的增益补偿是在跨阻放大电路内部实现的,不会引入额外噪声。
结合第一方面,在第一方面的第三种可能的实现方式中,所述光接收机还包括均衡器,所述均衡器,用于接收所述差分电压信号和第三控制信号,根据所述第三控制信号对所述差分电压信号进行增益,将增益后的差分电压信号发送给所述控制器和所述I/O接口,其中,所述差分电压信号在第二带宽内的频率响应值高于在所述第一带宽内的频率响应值,所述第二带宽中的任一频率高于所述第一带宽中的任一频率;所述控制器,还用于根据所述差分电压信号,产生第四控制信号,将所述第四控制信号发送给所述均衡器,其中,所述第四控制信号用于控制对所述差分电压信号进行增益。
本申请实施例通过均衡器的使用,扩大了对光电探测器的补偿范围,相对于跨阻放大电路,可以对更高的频点进行增益补偿。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述控制器具体用于执行多次第一采样处理,每次所述第一采样处理中,执行以下过程:发送控制信号给所述跨阻放大电路;对接收到的所述差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变;所述控制器在执行所述多次第一采样处理之后,具体用于:将所述多次第一采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号;
所述控制器在将所述第二控制信号发送给所述跨阻放大电路之后,还会执行多次第二采样处理,每次所述第二采样处理中,执行以下过程:发送控制信号给所述均衡器;对接收到的所述差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变;所述控制器在执行所述多次第二采样处理之后,具体用于:将所述多次第二采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第四控制信号。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,所述控制器具体用于执行多次第一检测处理,每次所述第一检测处理中,执行以下过程:发送控制信号给所述跨阻放大电路;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为所述差分电压信号每个比特的持续时间;根据预设的改变量,对所述控制信号进行改变;所述控制器在执行所述多次第一检测处理之后, 具体用于:将所述多次第一检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号;
所述控制器在将所述第二控制信号发送给所述跨阻放大电路之后,还会执行多次第二检测处理,每次所述第二检测处理中,执行以下过程:发送控制信号给所述均衡器;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为所述差分电压信号每个比特的持续时间;根据预设的改变量,对所述控制信号进行改变;所述控制器在执行所述多次第二检测处理之后,具体用于:将所述多次第二检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第四控制信号。
上面两个实施例是在光接收机包含了均衡器的基础上,控制器筛选最优控制信号的两种方式,先采用跨阻放大电路进行增益补偿,不引入额外噪声;如果增益补偿不够,再采用均衡器进行增益补偿,以最小的噪声代价,实现最优的补偿效果。
第二方面,提供一种光接收机,包括:光电探测器,第一跨阻放大电路,单端-差分转换器,均衡器,I/O接口和控制器;所述光电探测器,用于将接收到的光信号转化成电流信号,其中,所述光电探测器的带宽低于系统传输的带宽需求;所述第一跨阻放大电路,用于接收所述电流信号,对所述电流信号进行跨阻增益,得到电压信号;所述单端-差分转换器,用于将电所述压信号转成差分电压信号,将所述差分电压信号发送给所述均衡器;所述均衡器,用于接收所述差分电压信号和第一控制信号,根据所述第一控制信号对所述差分电压信号进行增益,将增益后的差分电压信号发送给所述I/O接口和所述控制器,其中,所述差分电压信号在第一带宽内的频率响应值高于在所述光电探测器带宽内的频率响应值,所述第一带宽中的任一频率高于所述光电探测器的上限截止频率;所述I/0接口,用于输出所述增益后的差分电压信号;所述控制器,用于根据所述增益后的差分电压信号,产生第二控制信号,将所述第二控制信号发送给所述均衡器,其中,所述第二控制信号用于控制对所述差分电压信号进行增益。
在本申请实施例中,采用所述均衡器来实现对高频点的增益补偿,利用所述均衡器补偿范围大的特点,让所述均衡器对所述光电探测器进行补偿,达到最优效果。相比第一方面提出的实施例,优点是对所述光电探测器的补偿范围更大,缺点是高频点增益完全由均衡器进行补偿而引入更多噪声。
结合第二方面,在第二方面的第一种可能的实现方式中,所述控制器具体用于执行多次采样处理,每次所述采样处理中,执行以下过程:发送控制信号给所述均衡器;对接收到的所述差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变;所述控制器在执行所述多次采样处理之后,具体用于:将所述多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号。
结合第二方面,在第二方面的第二种可能的实现方式中,所述控制器具体用于执行多次检测处理,每次所述检测处理中,执行以下过程:发送控制信号给所述均衡器;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为差分电压信 号每个比特的持续时间;根据预设的改变量,对所述控制信号进行改变;所述控制器在执行所述多次采样处理之后,具体用于:将所述多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号。
第三方面,提供一种接收方法,包括:光接收机通过光电探测器将接收到的光信号转化成电流信号,其中,所述光电探测器的带宽低于系统传输的带宽需求;所述光接收机根据第一控制信号对所述电流信号进行跨阻增益,得到电压信号,其中,所述电流信号在第一带宽内的频率响应值高于在所述光电探测器带宽内的频率响应值,所述第一带宽中的任一频率不低于所述光电探测器的上限截止频率;所述光接收机将所述电压信号转成差分电压信号,根据所述差分电压信号,产生第二控制信号,其中,所述第二控制信号用于控制对所述电流信号进行跨阻增益。
结合第三方面,在第三方面的第一种可能的实现方式中,所述根据所述差分电压信号,产生第二控制信号,具体包括:执行多次采样处理,将所述多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号,其中,每次所述采样处理中,执行以下过程:根据控制信号对所述电流信号进行跨阻增益,得到所述电压信号,将所述电压信号转成所述差分电压信号;对所述差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变。
结合第三方面,在第三方面的第二种可能的实现方式中,所述根据所述差分电压信号,产生第二控制信号,具体包括:执行多次检测处理,将所述多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号,其中,每次所述检测处理中,执行以下过程:根据控制信号对所述电流信号进行跨阻增益,得到所述电压信号,将所述电压信号转成所述差分电压信号;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为差分电压信号每个比特的持续时间;根据预设的改变量,对所述控制信号进行改变。
结合第三方面,在第三方面的第三种可能的实现方式中,在所述光接收机将所述电压信号转成差分电压信号之后,所述方法还包括:根据第三控制信号对所述差分电压信号进行增益,其中,所述差分电压信号在第二带宽内的频率响应值高于在所述第一带宽内的频率响应值,所述第二带宽中的任一频率高于所述第一带宽中的任一频率;在产生第二控制信号之后,所述方法还包括:根据增益后的差分电压信号,产生第四控制信号,其中,所述第四控制信号用于控制对所述差分电压信号进行增益。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述根据所述差分电压信号,产生第二控制信号,具体包括:执行多次第一采样处理,将所述多次第一采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号,其中,每次所述第一采样处理中,执行以下过程:根据控制信号对所述电流信号进行跨阻增益,得到所述电压信号,将所述电压信号转成所述差分电压信号;对所述差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变;所述根据所述差分电压信号,产生 第四控制信号,具体包括:执行多次第二采样处理,将所述多次第二采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第四控制信号,其中,每次所述第二采样处理中,执行以下过程:根据控制信号对所述差分电压信号进行增益,得到增益后的差分电压信号;对所述增益后的差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变。
结合第三方面的第三种可能的实现方式,在第三方面的第五种可能的实现方式中,所述根据所述差分电压信号,产生第二控制信号,具体包括:执行多次第一检测处理,将所述多次第一检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号,其中,每次所述第一检测处理中,执行以下过程:根据控制信号对所述电流信号进行跨阻增益,得到所述电压信号,将所述电压信号转成所述差分电压信号;对所述差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变;所述根据所述差分电压信号,产生第四控制信号,具体包括:执行多次第二检测处理,将所述多次第二采样处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第四控制信号,其中,每次所述第二检测处理中,执行以下过程:根据控制信号对所述差分电压信号进行增益,得到增益后的差分电压信号;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为所述差分电压信号每个比特的持续时间;根据预设的改变量,对所述控制信号进行改变。
上述第三方面的实施例,是与第一方面的光接收机相对应的接收方法,有益效果与第一方面一致,在此不再赘述。
第四方面,提供一种接收方法,光接收机通过光电探测器将接收到的光信号转化成电流信号,其中,所述光电探测器的带宽低于系统传输的带宽需求;所述光接收机对所述电流信号进行跨阻增益,得到电压信号,将所述电压信号转成差分电压信号;所述光接收机根据所述第一控制信号,对所述差分电压信号进行增益,得到增益后的差分电压信号,其中,所述差分电压信号在第一带宽内的频率响应值高于在所述光电探测器带宽内的频率响应值,所述第一带宽中的任一频率高于所述光电探测器的上限截止频率;所述光接收机根据所述增益后的差分电压信号,产生第二控制信号,其中,所述第二控制信号用于控制对所述差分电压信号进行增益。
结合第四方面,在第四方面的第一种可能的实现方式中,所述根据所述增益后的差分电压信号,产生第二控制信号,具体包括:执行多次采样处理,将所述多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号,其中,每次所述采样处理中,执行以下过程:根据控制信号对所述差分电压信号进行增益,得到所述增益后的差分电压信号;对所述增益后的差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变。
结合第四方面,在第四方面的第二种可能的实现方式中,所述根据所述增益后的差分电压信号,产生第二控制信号,具体包括:执行多次检测处理,将所述多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号,其中,每次所述检测处理中,执行以下过程:根据控制信号对所述差分电压信 号进行增益,得到所述增益后的差分电压信号;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的所述增益后的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为差分电压信号每个比特的持续时间;根据预设的改变量,对所述控制信号进行改变。
上述第四方面的实施例,是与第二方面的光接收机相对应的接收方法,有益效果与第二方面一致,在此不再赘述。
第五方面,提供一种跨阻放大电路,包括:固定电阻,第一三极管,第二三极管,变阻电路和输出端口,所述固定电阻包括两个端口,其中一个端口接地,另一个端口连接第一三极管的发射极;所述第一三极管的基极用于接收输入信号,所述第一三极管的集电极与所述第二三极管的发射极相连;所述第二三极管的基极用于接收偏置电压信号,所述第二三极管的集电极与所述变阻电路的第一端口相连,其中,所述偏置电压信号用于调整对所述输入信号的增益;所述输出端口位于所述第二三极管的集电极与所述变阻电路的第一端口之间的连接线上;所述变阻电路包括三个端口,所述变阻电路的第二端口用于接收控制信号,第三端口接地,其中,所述控制信号用于控制变阻电路的阻值。
综上所述,本申请实施例提供的光接收机,采用带宽低于系统传输带宽要求的光电探测器,大幅降低光接收机的成本;并通过跨阻放大电路的运用,弥补了带宽不足造成的接收信号劣化,在保证接收信号质量的情况下,实现降低器件成本的目的。
附图说明
图1为10G PON系统的结构示意图;
图2为本申请实施例提供的光接收机的结构示意图;
图3为本申请另一实施例提供的跨阻放大电路的结构示意图;
图4为本申请另一实施例提供的跨阻放大电路的频率响应曲线图;
图5为本申请另一实施例提供的跨阻放大电路对光电探测器的高频点进行增益补偿的示意图;
图6分别为欠补偿、最佳补偿和过补偿的示意图;
图7为本申请另一实施例提供的光接收机的结构示意图;
图8为本申请另一实施例提供的接收方法流程图;
图9为本申请另一实施例提供的光接收机的结构示意图;
图10为本申请另一实施例提供的接收方法流程图;
图11为本申请另一实施例提供的光接收机的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
请参阅图1,其为具有本申请实施例提供的光接收机的ONU或(Optical Line Terminal,OLT)可以适用的10G PON系统的结构示意图。10G PON系统100包括至少一个OLT 110、多个ONU 120和一个光分配网络130(Optical Distribution  Network,ODN)。其中,OLT 110通过ODN 130以点到多点的形式连接到多个ONU 120。其中,从OLT 110到ONU 120的方向定义为下行方向,而从ONU 120到OLT 110的方向为上行方向。
本申请一实施例提供一种光接收机200,可以应用于10G PON系统或更高速率PON系统的ONU中,如图2所示,包括:光电探测器201,跨阻放大电路202,单端-差分转换器203,I/O接口204和控制器205,
光电探测器201,用于将接收到的光信号转化成电流信号,其中,光电探测器201的带宽低于系统传输的带宽需求。
具体的,光电探测器201在光接收机200中占的成本比重最高,采用低带宽的光电探测器201可以大幅度降低器件成本,相应地,会存在高频部分的信号无法探测的问题。
跨阻放大电路202,用于接收电流信号和第一控制信号,根据第一控制信号对电流信号进行跨阻增益,得到电压信号,其中,电流信号在第一带宽内的频率响应值高于在光电探测器201带宽内的频率响应值,第一带宽中的任一频率不低于光电探测器201的上限截止频率。
可选地,跨阻放大电路202可以为欠阻尼跨阻放大电路,本申请提供了一种可能的实现方式,其结构如图3所示,包括:固定电阻301,第一三极管302,第二三极管303,变阻电路304和输出端口305,
固定电阻301包括两个端口,其中一个端口接地,另一个端口连接第一三极管302的发射极;第一三极管302的基极用于接收输入信号,第一三极管302的集电极与第二三极管303的发射极相连;第二三极管303的基极用于接收偏置电压信号,第二三极管303的集电极与变阻电路304的第一端口相连,其中,偏置电压信号用于调整对输入信号的增益;输出端口305位于第二三极管303的集电极与变阻电路304的第一端口之间的连接线上;变阻电路304包括三个端口,变阻电路304的第二端口用于接收控制信号,第三端口接地,其中,控制信号用于控制变阻电路304的阻值。
应理解,图3中的3041给出了一种变阻电路的具体实现方案,还有很多种类似的实现方案,本申请对此不做限定。
本申请实施例通过调节变阻电路304的阻值,起到改变跨阻放大电路202的阻尼因子的作用,阻尼因子越小,对高频点的额外增益越大;该跨阻放大电路202的频谱响应曲线如图4所示,图4中的ζ即为阻尼因子,这里的高频点指的是高于光电探测器201的上限截止频率的频点。
需要说明的是,采用现有的技术方案,可以控制跨阻放大电路202的第一带宽位置,本申请对此不做限定;另外,阻尼因子不能太小,因为阻尼因子越小,系统的振荡越不稳定。由于阻尼因子大小的限制,跨阻放大电路202对高频点的额外增益值有个范围。如图5所示,实线表示光电探测器201的频率响应曲线,再加上虚线部分则为跨阻放大电路202和光电探测器201的联合频率响应曲线,例如,在a位置,需要补偿的差值没有超过跨阻放大电路202对高频点的额外增益范围,则可以通过跨阻放大电路202进行补偿;在b位置,需要补偿的差值超过了跨阻放大电 路202对高频信号的额外增益范围,单独通过跨阻放大电路202无法补偿完全,此时会需要下一级的补偿。
单端-差分转换器203,用于将电压信号转成差分电压信号,将差分电压信号发送给I/0接口204和控制器205。
I/0接口204,用于输出差分电压信号。
控制器205,用于根据差分电压信号,产生第二控制信号,将第二控制信号发送给跨阻放大电路202,其中,第二控制信号用于控制对该电流信号进行跨阻增益。
具体的,该光接收机200的信号处理过程如下:
光接收机200检测的光信号,首先通过光电探测器201进行光电检测,生成电流信号,该电流信号经过跨阻放大电路202转换成电压信号。该跨阻放大电路能提供一级高频增益,该增益在跨阻放大电路202内实现完成,如图3所示,通过调节变阻电路304的阻值,使得在增益频率点产生峰值增益来补偿光电探测器201带宽的不足(即在跨阻放大电路202的通带范围内的高频点处提供更高的增益)。由于该增益在跨阻放大电路202内实现完成,并不引入额外的噪声,可以对高频点实现无噪声的增益补偿,其中,这里的高频点也是指高于光电探测器201的上限截止频率的频点。
经过跨阻放大电路202进行增益补偿的信号,由单端-差分转换器203转换为差分信号,该差分信号通过I/O接口204输出。
进一步地,控制器205用于自适应地产生第二控制信号,控制跨阻放大电路202对接收到的电流信号进行跨阻增益,让跨阻放大电路202对光电探测器201进行现阶段的最佳补偿,其中,补偿的三种可能性,欠补偿、最佳补偿和过补偿如图6所示。
可选地,产生让跨阻放大电路202进行现阶段最佳补偿的第二控制信号,主要有以下两种方式:
(1)控制器205执行多次采样处理,每次采样处理中,执行以下过程:
首先,控制器205发送控制信号给跨阻放大电路202;
此时,跨阻放大电路202会对电流信号产生一个由该控制信号决定的跨阻增益,得到电压信号;该电压信号经过单端-差分转换器203,得到差分电压信号。
其次,控制器205对接收到的差分电压信号的上下电平进行采样,得到采样点的值;
最后,控制器205再根据预设的改变量,对控制信号进行改变。
也就是说,每次采样处理针对的都是经过不同跨阻增益之后的信号,得到不同的采样点,从这些采样点中选出值最大的,该采样点对应的控制信号即可让跨阻放大电路202进行现阶段最优的补偿。
因此,控制器205在执行多次采样处理之后,具体用于:将该多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为第二控制信号。
(2)控制器205执行多次检测处理,每次检测处理中,执行以下过程:
首先,控制器205发送控制信号给跨阻放大电路202;
此时,跨阻放大电路202会对电流信号产生一个由该控制信号决定的跨阻增益, 得到电压信号;该电压信号经过单端-差分转换器203,得到差分电压信号。
其次,控制器205以第一频率为界,分别检测高于该第一频率和低于该第一频率的差分电压信号的能量,得到能量差,其中,第一频率为0.28/Tb,Tb为接收的差分电压信号的每个比特的持续时间;
最后,控制器205根据预设的改变量,对控制信号进行改变。
也就是说,每次检测处理针对的都是经过不同跨阻增益之后的信号,得到不同的能量差,从这些能量差中选出值最小的,该能量差对应的控制信号即可以让跨阻放大电路202进行现阶段最优的补偿。
因此,控制器205在执行多次检测处理之后,具体用于:将该多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为第二控制信号。
应理解,我们可以每隔一段时间对第二控制信号进行筛选,由于上述的选择过程执行的时间相对于间隔时间来说很短,故不会影响业务的传输。另外,由于跨阻放大电路202的补偿效果是随着环境变化而发生变化的,而环境变化(例如,温度)是一个缓变的过程,故也可以只在当前执行的控制信号的基础上,在一个比较小的范围内改变几次控制信号,通过上述方法(1)和(2)中的一个来选择其中最优的控制信号,这样可以有效降低选择过程的执行时间。
可选地,该光接收机200还包括均衡器206,如图7所示,该均衡器206用于接收差分电压信号和第三控制信号,根据第三控制信号对差分电压信号进行增益,将增益后的差分电压信号发送给控制器和I/O接口,其中,差分电压信号在第二带宽内的频率响应值高于在第一带宽内的频率响应值,第二带宽中的任一频率高于第一带宽中的任一频率。
此时,控制器205还用于根据差分电压信号,产生第四控制信号,将第四控制信号发送给均衡器206,其中,第四控制信号用于控制对差分电压信号进行增益。
具体的,在申请实施例中,单端-差分转换器203输出的差分电压信号,将先经过均衡器206,如果增益补偿还有优化的空间,均衡器206就对该差分电压信号进行进一步地增益,如果已经达到最优,则均衡器206就不对信号进行处理,相当于一段传输电路。
进一步地,控制器205用于自适应地产生第四控制信号,控制均衡器206对接收到的差分电压信号进行增益,让均衡器206对光电探测器201进行最优补偿;其中,均衡器206可以为模拟均衡器或数字均衡器。
可选地,产生让该跨阻放大电路202进行最佳补偿的第二控制信号和让均衡器206进行最佳补偿的第四控制信号,主要有以下两种方式:
(1)控制器205执行多次第一采样处理,每次第一采样处理中,执行以下过程:
控制器205发送控制信号给跨阻放大电路202;
控制器205对接收到的差分电压信号的上下电平进行采样,得到采样点的值;
控制器205根据预设的改变量,对控制信号进行改变。
在执行该多次第一采样处理之后,控制器205将该多次第一采样处理得到的多个采样点中值最大的采样点对应的控制信号作为第二控制信号。
在将第二控制信号发送给跨阻放大电路202之后,控制器205还会执行多次第 二采样处理,每次第二采样处理中,执行以下过程:
控制器205发送控制信号给均衡器206;
控制器205对接收到的差分电压信号的上下电平进行采样,得到采样点的值;
控制器205根据预设的改变量,对控制信号进行改变。
在执行该多次第二采样处理之后,控制器205将该多次第二采样处理得到的多个采样点中值最大的采样点对应的控制信号作为第四控制信号。
(2)控制器205执行多次第一检测处理,每次第一检测处理中,执行以下过程:
控制器205发送控制信号给跨阻放大电路202;
控制器205以第一频率为界,分别检测高于第一频率和低于第一频率的差分电压信号的能量,得到能量差,其中,第一频率为0.28/Tb,Tb为差分电压信号中每个比特的持续时间;
控制器205根据预设的改变量,对控制信号进行改变。
在执行该多次第一检测处理之后,控制器205将该多次第一检测处理得到的多个能量差中值最小的能量差对应的控制信号作为第二控制信号。
在将第二控制信号发送给跨阻放大电路202之后,控制器205还会执行多次第二检测处理,每次第二检测处理中,执行以下过程:
控制器205发送控制信号给所述均衡器;
控制器205以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,Tb为差分电压信号中每个比特的持续时间;
控制器205根据预设的改变量,对所述控制信号进行改变。
在执行该多次第二检测处理之后,控制器205将该多次第二检测处理得到的多个能量差中值最小的能量差对应的控制信号作为第四控制信号。
需要说明的是,如果均衡器206不对差分电压信号增益时,得到的该采样点值最大或该能量差最小,则说明跨阻放大电路202已经对光电探测器201做了最佳补偿,无需均衡器206起作用;否则,就说明需要均衡器206起作用。
另外,由于跨阻放大电路202的增益补偿是在跨阻放大电路202内部实现的,不会引入额外的噪声,而均衡器206在补偿时会引入额外的噪声,故优先调节跨阻放大电路202。但均衡器206具有补偿范围大的优势,与跨阻放大电路202相比,可以补偿更高的频率点,如果跨阻放大电路202无法实现最佳补偿,可以由均衡器206进行进一步地补偿,达到最优的补偿效果。
进一步地,我们可以每隔一段时间对第二控制信号和第四控制信号进行筛选,由于上述的选择过程执行的时间相对于间隔时间来说很短,故不会影响业务的传输。另外,由于跨阻放大电路202和均衡器206的补偿效果是随着环境变化而发生变化的,而环境变化(例如,温度)是一个缓变的过程,故也可以只在当前执行的控制信号的基础上,在一个比较小的范围内改变几次控制信号,通过上述方法(1)和(2)中的一个来选择其中最优的控制信号,这样可以有效降低选择过程的执行时间。
本申请另一实施例提供一种接收方法,如图8所示,包括:
801、光接收机通过光电探测器将接收到的光信号转化成电流信号,其中,光电 探测器的带宽低于系统传输的带宽需求;
802、光接收机根据第一控制信号对电流信号进行跨阻增益,得到电压信号,其中,电流信号在第一带宽内的频率响应值高于在光电探测器带宽内的频率响应值,第一带宽中的任一频率不低于所电探测器的上限截止频率;
803、光接收机将电压信号转成差分电压信号,根据该差分电压信号,产生第二控制信号,其中,第二控制信号用于控制对电流信号进行跨阻增益。
可选地,光接收机根据差分电压信号,产生第二控制信号的方案,如下所示:
(1)执行多次采样处理,将该多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为第二控制信号,其中,每次采样处理中,执行以下过程:
根据控制信号对电流信号进行跨阻增益,得到电压信号,将电压信号转成差分电压信号;对差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对控制信号进行改变。
(2)执行多次检测处理,将该多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为第二控制信号,其中,每次检测处理中,执行以下过程:
根据控制信号对电流信号进行跨阻增益,得到电压信号,将电压信号转成差分电压信号;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,Tb为差分电压信号每个比特的持续时间;根据预设的改变量,对控制信号进行改变。
简而言之,上述两种方案,均为改变控制信号,让接收到的信号处于不同的状态,对这些状态进行比较来选择相对最优的控制信号。
可选地,在光接收机将电压信号转成差分电压信号之后,所述方法还包括:根据第三控制信号对差分电压信号进行增益,其中,差分电压信号在第二带宽内的频率响应值高于在第一带宽内的频率响应值,第二带宽中的任一频率高于第一带宽中的任一频率。在产生第二控制信号之后,所述方法还包括:根据增益后的差分电压信号,产生第四控制信号,其中,第四控制信号用于控制对差分电压信号进行增益。
此时,光接收机根据差分电压信号,产生第二控制信号和第四控制信号的方案,如下所示:
(1)执行多次第一采样处理,将该多次第一采样处理得到的多个采样点中值最大的采样点对应的控制信号作为第二控制信号,其中,每次第一采样处理中,执行以下过程:
根据控制信号对电流信号进行跨阻增益,得到电压信号,将电压信号转成差分电压信号;对差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对控制信号进行改变;
在产生第二控制信号之后,光接收机执行多次第二采样处理,将该多次第二采样处理得到的多个采样点中值最大的采样点对应的控制信号作为第四控制信号,其中,每次第二采样处理中,执行以下过程:
根据控制信号对差分电压信号进行增益,得到增益后的差分电压信号;对增益后的差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对控制信号进行改变。
(2)执行多次第一检测处理,将所述多次第一检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号,其中,每次所述第一检测处理中,执行以下过程:
根据控制信号对所述电流信号进行跨阻增益,得到所述电压信号,将所述电压信号转成所述差分电压信号;对所述差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对所述控制信号进行改变;
在产生第二控制信号之后,光接收机执行多次第二检测处理,将所述多次第二采样处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第四控制信号,其中,每次所述第二检测处理中,执行以下过程:根据控制信号对所述差分电压信号进行增益,得到增益后的差分电压信号;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,Tb为所述差分电压信号每个比特的持续时间;根据预设的改变量,对所述控制信号进行改变。
本申请实施例是与之前的装置实施例对应的方法实施例,实现的原理和取得的效果在之前的实施例中已经描述过,本申请实施例在此不再赘述。
本申请另一实施例提供一种光接收机900,可以应用于10G PON系统或更高速率PON系统的ONU中,如图9示,包括:光电探测器901,第一跨阻放大电路902,单端-差分转换器903,均衡器904,I/O接口905和控制器906。
光电探测器901,用于将接收到的光信号转化成电流信号,其中,光电探测器801的带宽低于系统传输的带宽需求。
具体的,光电探测器901在光接收机900中占的成本比重最高,采用低带宽的光电探测器901可以大幅度降低器件成本,相应地,会存在高频部分的信号无法探测的问题。
第一跨阻放大电路902,用于接收电流信号,对该电流信号进行跨阻增益,得到电压信号。
单端-差分转换器903,用于将电压信号转成差分电压信号,将差分电压信号发送给均衡器904。
均衡器904,用于接收差分电压信号和第一控制信号,根据第一控制信号对差分电压信号进行增益,将增益后的差分电压信号发送给I/O接口905和控制器906,其中,差分电压信号在第一带宽内的频率响应值高于在光电探测器901带宽内的频率响应值,该第一带宽中的任一频率高于光电探测器901的上限截止频率。
在这里,均衡器904可以为模拟均衡器或数字均衡器。
I/0接口905,用于输出增益后的差分电压信号。
控制器906,用于根据增益后的差分电压信号,产生第二控制信号,将第二控制信号发送给均衡器904,其中,第二控制信号用于控制对该差分电压信号进行增益。
在本申请实施例中,采用均衡器904来实现对高频点的增益补偿,利用均衡器904补偿范围大的特点,让均衡器904对光电探测器901进行补偿,达到最优效果。相比之前不存在均衡器的实施例,优点是对光电探测器901的补偿范围更大,缺点是高频点增益完全由均衡器进行补偿而引入更多噪声。
可选地,产生让均衡器904对光电探测器901进行现阶段最佳补偿的第二控制信号,主要有以下两种方式:
(1)控制器906执行多次采样处理,每次采样处理中,执行以下过程:
首先,控制器906发送控制信号给均衡器904;
此时,均衡器904会对差分电压信号产生一个由该控制信号决定的增益,得到增益后的差分电压信号。
其次,控制器906对增益后的差分电压信号的上下电平进行采样,得到采样点的值;
最后,控制器906再根据预设的改变量,对控制信号进行改变。
也就是说,每次采样处理针对的都是经过不同增益之后的信号,得到不同的采样点,从这些采样点中选出值最大的,该采样点对应的控制信号即可让均衡器804进行最优的补偿。
因此,控制器906在执行多次采样处理之后,具体用于:将该多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为第二控制信号。
(2)控制器906执行多次检测处理,每次检测处理中,执行以下过程:
首先,控制器906发送控制信号给均衡器904;
此时,均衡器904会对差分电压信号产生一个由该控制信号决定的增益,得到增益后的差分电压信号。
其次,控制器906以第一频率为界,分别检测高于该第一频率和低于该第一频率的差分电压信号的能量,得到能量差,其中,第一频率为0.28/Tb,Tb为差分电压信号的每个比特的持续时间;
最后,控制器906根据预设的改变量,对控制信号进行改变。
也就是说,每次检测处理针对的都是经过不同增益之后的信号,得到不同的能量差,从这些能量差中选出值最小的,该能量差对应的控制信号即可以让均衡器804进行最优的补偿。
因此,控制器906在执行多次检测处理之后,具体用于:将该多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为第二控制信号。
本申请另一实施例提供了一种接收方法,如图10所示,包括:
1001、光接收机通过光电探测器将接收到的光信号转化成电流信号,其中,光电探测器的带宽低于系统传输的带宽需求;
1002、光接收机对电流信号进行跨阻增益,得到电压信号,将电压信号转成差分电压信号;
1003、光接收机根据第一控制信号,对差分电压信号进行增益,得到增益后的差分电压信号,其中,差分电压信号在第一带宽内的频率响应值高于在光电探测器带宽内的频率响应值,第一带宽中的任一频率高于光电探测器的上限截止频率;
1004、光接收机根据增益后的差分电压信号,产生第二控制信号,其中,第二控制信号用于控制对差分电压信号进行增益。
可选地,根据增益后的差分电压信号,来产生补偿效果相对最好的控制信号的方法,主要有以下两种:
(1)执行多次采样处理,将该多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为第二控制信号,其中,每次采样处理中,执行以下过程:
根据控制信号对差分电压信号进行增益,得到增益后的差分电压信号;对增益后的差分电压信号的上下电平进行采样,得到采样点的值;根据预设的改变量,对控制信号进行改变。
(2)执行多次检测处理,将该多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为第二控制信号,其中,每次检测处理中,执行以下过程:
根据控制信号对差分电压信号进行增益,得到增益后的差分电压信号;以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的该增益后的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,Tb为差分电压信号每个比特的持续时间;根据预设的改变量,对控制信号进行改变。
上面所述多个实施例中的控制方法,均为自适应反馈控制方式,本申请给出了多种可能的实现方式,任何类似的控制方案均应属于本申请的保护范围。
另外,除自适应反馈控制方式外,调节均衡增益还可以采用可编程的模拟或数字方式控制实现,采用这种方案的光接收机包括的器件可以与图2、图7或图9所示的任一种光接收机包括的器件相似,其中,光电探测器,跨阻放大电路,单端-差分转换器,均衡器以及IO端口的功能均与之前实施例相同,唯一的区别在于,控制器无需接收差分电压信号,也就不会对差分电压信号进行采样处理或检测处理,根据产品设计阶段的仿真结果等相关信息,预估外界环境的变化与控制信号的对应关系,例如,温度与控制信号的关系,直接根据外界温度值,选出对应的控制信号;图11示出与如图2所示的光接收机包括相同器件的光接收机的结构示意图,以供参考。
应理解,外界环境的变化与控制信号的关系可以预先存储于该控制器内部,也可以存储于另一个驱动器件中,由这个驱动器件来控制该控制器工作,还可以打印出来,由操作人员根据这个对应关系来控制该控制器工作,本申请对此不做限定。
上述多个本申请实施例提供的光接收机,采用带宽低于系统传输带宽要求的光电探测器,大幅降低光接收机的成本;并通过跨阻放大电路和/或均衡器的运用,弥补了带宽不足造成的接收信号劣化,在保证接收信号质量的情况下,实现降低器件成本的目的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种光接收机,其特征在于,包括:光电探测器,跨阻放大电路,单端-差分转换器,I/O接口和控制器,
    所述光电探测器,用于将接收到的光信号转化成电流信号,其中,所述光电探测器的带宽低于系统传输的带宽需求;
    所述跨阻放大电路,用于接收所述电流信号和第一控制信号,根据所述第一控制信号对所述电流信号进行跨阻增益,得到电压信号,其中,所述电流信号在第一带宽内的频率响应值高于在所述光电探测器带宽内的频率响应值,所述第一带宽中的任一频率不低于所述光电探测器的上限截止频率;
    所述单端-差分转换器,用于将所述电压信号转成差分电压信号,将所述差分电压信号发送给所述I/0接口和所述控制器;
    所述I/0接口,用于输出所述差分电压信号;
    所述控制器,用于根据所述差分电压信号,产生第二控制信号,将所述第二控制信号发送给所述跨阻放大电路,其中,所述第二控制信号用于控制对所述电流信号进行跨阻增益。
  2. 根据权利要求1所述的光接收机,其特征在于,所述控制器具体用于执行多次采样处理,每次所述采样处理中,执行以下过程:
    发送控制信号给所述跨阻放大电路;
    对接收到的所述差分电压信号的上下电平进行采样,得到采样点的值;
    根据预设的改变量,对所述控制信号进行改变;
    所述控制器在执行所述多次采样处理之后,具体用于:
    将所述多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号。
  3. 根据权利要求1所述的光接收机,其特征在于,所述控制器具体用于执行多次检测处理,每次所述检测处理中,执行以下过程:
    发送控制信号给所述跨阻放大电路;
    以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为差分电压信号每个比特的持续时间;
    根据预设的改变量,对所述控制信号进行改变;
    所述控制器在执行所述多次采样处理之后,具体用于:
    将所述多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号。
  4. 根据权利要求1所述的光接收机,其特征在于,所述光接收机还包括均衡器,
    所述均衡器,用于接收所述差分电压信号和第三控制信号,根据所述第三控制信号对所述差分电压信号进行增益,将增益后的差分电压信号发送给所述控制器和所述I/O接口,其中,所述差分电压信号在第二带宽内的频率响应值高于在所述第一带宽内的频率响应值,所述第二带宽中的任一频率高于所述第一带宽中的任一频率;
    所述控制器,还用于根据所述差分电压信号,产生第四控制信号,将所述第四控 制信号发送给所述均衡器,其中,所述第四控制信号用于控制对所述差分电压信号进行增益。
  5. 根据权利要求4所述的光接收机,其特征在于,所述控制器具体用于执行多次第一采样处理,每次所述第一采样处理中,执行以下过程:
    发送控制信号给所述跨阻放大电路;
    对接收到的所述差分电压信号的上下电平进行采样,得到采样点的值;
    根据预设的改变量,对所述控制信号进行改变;
    所述控制器在执行所述多次第一采样处理之后,具体用于:
    将所述多次第一采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号;
    所述控制器在将所述第二控制信号发送给所述跨阻放大电路之后,还会执行多次第二采样处理,每次所述第二采样处理中,执行以下过程:
    发送控制信号给所述均衡器;
    对接收到的所述差分电压信号的上下电平进行采样,得到采样点的值;
    根据预设的改变量,对所述控制信号进行改变;
    所述控制器在执行所述多次第二采样处理之后,具体用于:
    将所述多次第二采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第四控制信号。
  6. 根据权利要求4所述的光接收机,其特征在于,所述控制器具体用于执行多次第一检测处理,每次所述第一检测处理中,执行以下过程:
    发送控制信号给所述跨阻放大电路;
    以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为所述差分电压信号每个比特的持续时间;
    根据预设的改变量,对所述控制信号进行改变;
    所述控制器在执行所述多次第一检测处理之后,具体用于:
    将所述多次第一检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号;
    所述控制器在将所述第二控制信号发送给所述跨阻放大电路之后,还会执行多次第二检测处理,每次所述第二检测处理中,执行以下过程:
    发送控制信号给所述均衡器;
    以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为所述差分电压信号每个比特的持续时间;
    根据预设的改变量,对所述控制信号进行改变;
    所述控制器在执行所述多次第二检测处理之后,具体用于:
    将所述多次第二检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第四控制信号。
  7. 一种光接收机,其特征在于,包括:光电探测器,第一跨阻放大电路,单端- 差分转换器,均衡器,I/O接口和控制器,
    所述光电探测器,用于将接收到的光信号转化成电流信号,其中,所述光电探测器的带宽低于系统传输的带宽需求;
    所述第一跨阻放大电路,用于接收所述电流信号,对所述电流信号进行跨阻增益,得到电压信号;
    所述单端-差分转换器,用于将电所述压信号转成差分电压信号,将所述差分电压信号发送给所述均衡器;
    所述均衡器,用于接收所述差分电压信号和第一控制信号,根据所述第一控制信号对所述差分电压信号进行增益,将增益后的差分电压信号发送给所述I/O接口和所述控制器,其中,所述差分电压信号在第一带宽内的频率响应值高于在所述光电探测器带宽内的频率响应值,所述第一带宽中的任一频率高于所述光电探测器的上限截止频率;
    所述I/0接口,用于输出所述增益后的差分电压信号;
    所述控制器,用于根据所述增益后的差分电压信号,产生第二控制信号,将所述第二控制信号发送给所述均衡器,其中,所述第二控制信号用于控制对所述差分电压信号进行增益。
  8. 根据权利要求7所述的光接收机,其特征在于,所述控制器具体用于执行多次采样处理,每次所述采样处理中,执行以下过程:
    发送控制信号给所述均衡器;
    对接收到的所述差分电压信号的上下电平进行采样,得到采样点的值;
    根据预设的改变量,对所述控制信号进行改变;
    所述控制器在执行所述多次采样处理之后,具体用于:将所述多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号。
  9. 根据权利要求7所述的光接收机,其特征在于,所述控制器具体用于执行多次检测处理,每次所述检测处理中,执行以下过程:
    发送控制信号给所述均衡器;
    以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为差分电压信号每个比特的持续时间;
    根据预设的改变量,对所述控制信号进行改变;
    所述控制器在执行所述多次采样处理之后,具体用于:将所述多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号。
  10. 一种接收方法,其特征在于,包括:
    光接收机通过光电探测器将接收到的光信号转化成电流信号,其中,所述光电探测器的带宽低于系统传输的带宽需求;
    所述光接收机根据第一控制信号对所述电流信号进行跨阻增益,得到电压信号,其中,所述电流信号在第一带宽内的频率响应值高于在所述光电探测器带宽内的频率响应值,所述第一带宽中的任一频率不低于所述光电探测器的上限截止频率;
    所述光接收机将所述电压信号转成差分电压信号,根据所述差分电压信号,产生 第二控制信号,其中,所述第二控制信号用于控制对所述电流信号进行跨阻增益。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述差分电压信号,产生第二控制信号,具体包括:
    执行多次采样处理,将所述多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号,其中,每次所述采样处理中,执行以下过程:
    根据控制信号对所述电流信号进行跨阻增益,得到所述电压信号,将所述电压信号转成所述差分电压信号;
    对所述差分电压信号的上下电平进行采样,得到采样点的值;
    根据预设的改变量,对所述控制信号进行改变。
  12. 根据权利要求10所述的方法,其特征在于,所述根据所述差分电压信号,产生第二控制信号,具体包括:
    执行多次检测处理,将所述多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号,其中,每次所述检测处理中,执行以下过程:
    根据控制信号对所述电流信号进行跨阻增益,得到所述电压信号,将所述电压信号转成所述差分电压信号;
    以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为差分电压信号每个比特的持续时间;
    根据预设的改变量,对所述控制信号进行改变。
  13. 根据权利要求10所述的方法,其特征在于,
    在所述光接收机将所述电压信号转成差分电压信号之后,所述方法还包括:根据第三控制信号对所述差分电压信号进行增益,其中,所述差分电压信号在第二带宽内的频率响应值高于在所述第一带宽内的频率响应值,所述第二带宽中的任一频率高于所述第一带宽中的任一频率;
    在产生第二控制信号之后,所述方法还包括:根据增益后的差分电压信号,产生第四控制信号,其中,所述第四控制信号用于控制对所述差分电压信号进行增益。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述差分电压信号,产生第二控制信号,具体包括:
    执行多次第一采样处理,将所述多次第一采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号,其中,每次所述第一采样处理中,执行以下过程:
    根据控制信号对所述电流信号进行跨阻增益,得到所述电压信号,将所述电压信号转成所述差分电压信号;
    对所述差分电压信号的上下电平进行采样,得到采样点的值;
    根据预设的改变量,对所述控制信号进行改变;
    所述根据所述差分电压信号,产生第四控制信号,具体包括:
    执行多次第二采样处理,将所述多次第二采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第四控制信号,其中,每次所述第二采样处理中,执行以下过程:
    根据控制信号对所述差分电压信号进行增益,得到增益后的差分电压信号;
    对所述增益后的差分电压信号的上下电平进行采样,得到采样点的值;
    根据预设的改变量,对所述控制信号进行改变。
  15. 根据权利要求13所述的方法,其特征在于,所述根据所述差分电压信号,产生第二控制信号,具体包括:
    执行多次第一检测处理,将所述多次第一检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号,其中,每次所述第一检测处理中,执行以下过程:
    根据控制信号对所述电流信号进行跨阻增益,得到所述电压信号,将所述电压信号转成所述差分电压信号;
    对所述差分电压信号的上下电平进行采样,得到采样点的值;
    根据预设的改变量,对所述控制信号进行改变;
    所述根据所述差分电压信号,产生第四控制信号,具体包括:
    执行多次第二检测处理,将所述多次第二采样处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第四控制信号,其中,每次所述第二检测处理中,执行以下过程:
    根据控制信号对所述差分电压信号进行增益,得到增益后的差分电压信号;
    以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为所述差分电压信号每个比特的持续时间;
    根据预设的改变量,对所述控制信号进行改变。
  16. 一种接收方法,其特征在于,
    光接收机通过光电探测器将接收到的光信号转化成电流信号,其中,所述光电探测器的带宽低于系统传输的带宽需求;
    所述光接收机对所述电流信号进行跨阻增益,得到电压信号,将所述电压信号转成差分电压信号;
    所述光接收机根据所述第一控制信号,对所述差分电压信号进行增益,得到增益后的差分电压信号,其中,所述差分电压信号在第一带宽内的频率响应值高于在所述光电探测器带宽内的频率响应值,所述第一带宽中的任一频率高于所述光电探测器的上限截止频率;
    所述光接收机根据所述增益后的差分电压信号,产生第二控制信号,其中,所述第二控制信号用于控制对所述差分电压信号进行增益。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述增益后的差分电压信号,产生第二控制信号,具体包括:
    执行多次采样处理,将所述多次采样处理得到的多个采样点中值最大的采样点对应的控制信号作为所述第二控制信号,其中,每次所述采样处理中,执行以下过程:
    根据控制信号对所述差分电压信号进行增益,得到所述增益后的差分电压信号;
    对所述增益后的差分电压信号的上下电平进行采样,得到采样点的值;
    根据预设的改变量,对所述控制信号进行改变。
  18. 根据权利要求16所述的方法,其特征在于,所述根据所述增益后的差分电压信号,产生第二控制信号,具体包括:
    执行多次检测处理,将所述多次检测处理得到的多个能量差中值最小的能量差对应的控制信号作为所述第二控制信号,其中,每次所述检测处理中,执行以下过程:
    根据控制信号对所述差分电压信号进行增益,得到所述增益后的差分电压信号;
    以第一频率为界,分别检测高于所述第一频率和低于所述第一频率的所述增益后的差分电压信号的能量,得到能量差,其中,所述第一频率为0.28/Tb,所述Tb为差分电压信号每个比特的持续时间;
    根据预设的改变量,对所述控制信号进行改变。
  19. 提供一种跨阻放大电路,其特征在于,包括:固定电阻,第一三极管,第二三极管,变阻电路和输出端口,
    所述固定电阻包括两个端口,其中一个端口接地,另一个端口连接第一三极管的发射极;
    所述第一三极管的基极用于接收输入信号,所述第一三极管的集电极与所述第二三极管的发射极相连;
    所述第二三极管的基极用于接收偏置电压信号,所述第二三极管的集电极与所述变阻电路的第一端口相连,其中,所述偏置电压信号用于调整对所述输入信号的增益;
    所述输出端口位于所述第二三极管的集电极与所述变阻电路的第一端口之间的连接线上;
    所述变阻电路包括三个端口,所述变阻电路的第二端口用于接收控制信号,第三端口接地,其中,所述控制信号用于控制变阻电路的阻值。
PCT/CN2017/072513 2017-01-24 2017-01-24 一种光接收机 WO2018137155A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2019539951A JP6920446B2 (ja) 2017-01-24 2017-01-24 光受信機
EP21191784.4A EP3998718A1 (en) 2017-01-24 2017-01-24 Optical receiver
ES17894304T ES2894263T3 (es) 2017-01-24 2017-01-24 Receptor óptico
KR1020197023778A KR102193071B1 (ko) 2017-01-24 2017-01-24 광 수신기
CN201780083389.2A CN110785949B (zh) 2017-01-24 2017-01-24 一种光接收机
CN202110761244.1A CN113718181B (zh) 2017-01-24 2017-01-24 一种光接收机
PT178943049T PT3567756T (pt) 2017-01-24 2017-01-24 Recetor ótico
PCT/CN2017/072513 WO2018137155A1 (zh) 2017-01-24 2017-01-24 一种光接收机
EP17894304.9A EP3567756B1 (en) 2017-01-24 2017-01-24 Optical receiver
US16/520,029 US10887677B2 (en) 2017-01-24 2019-07-23 Optical receiver
US16/952,912 US11228823B2 (en) 2017-01-24 2020-11-19 Optical receiver
US17/548,793 US11750956B2 (en) 2017-01-24 2021-12-13 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072513 WO2018137155A1 (zh) 2017-01-24 2017-01-24 一种光接收机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/520,029 Continuation US10887677B2 (en) 2017-01-24 2019-07-23 Optical receiver

Publications (1)

Publication Number Publication Date
WO2018137155A1 true WO2018137155A1 (zh) 2018-08-02

Family

ID=62977948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072513 WO2018137155A1 (zh) 2017-01-24 2017-01-24 一种光接收机

Country Status (8)

Country Link
US (3) US10887677B2 (zh)
EP (2) EP3998718A1 (zh)
JP (1) JP6920446B2 (zh)
KR (1) KR102193071B1 (zh)
CN (2) CN110785949B (zh)
ES (1) ES2894263T3 (zh)
PT (1) PT3567756T (zh)
WO (1) WO2018137155A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10920397B2 (en) 2015-08-25 2021-02-16 Kaiser Premier Llc Nozzle and vacuum unit with air and water
JP2023500404A (ja) * 2019-11-12 2023-01-05 華為技術有限公司 受信機、光回線終端装置、および受動光ネットワークシステム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785949B (zh) 2017-01-24 2021-05-28 华为技术有限公司 一种光接收机
US10187149B2 (en) * 2017-05-05 2019-01-22 Cisco Technology, Inc. Downstream node setup

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060115280A1 (en) * 2004-11-30 2006-06-01 Chang Jae J Optical link bandwidth improvement
CN101145851A (zh) * 2007-10-17 2008-03-19 中兴通讯股份有限公司 优化调整接收机判决电平的装置和方法
CN201571058U (zh) * 2009-12-15 2010-09-01 汕头高新区亚威科技有限公司 用于光纤传输系统的光接收机
CN102332951A (zh) * 2011-09-30 2012-01-25 天津大学 面向4g光载无线通信的cmos光电接收机前端电路
CN103840888A (zh) * 2012-11-27 2014-06-04 Oe解决方案美国有限公司 使用低速光接收元件实现的高速光接收器及其实现方法
CN103929139A (zh) * 2014-04-22 2014-07-16 西安电子科技大学 高精度自动增益控制的光接收机的跨阻前置放大器
CN105897207A (zh) * 2016-03-28 2016-08-24 华为技术有限公司 一种连续可变增益放大器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795762B2 (ja) * 2001-03-16 2006-07-12 エヌティティエレクトロニクス株式会社 光出力制御回路
US20050191059A1 (en) * 2004-01-12 2005-09-01 Clariphy Use of low-speed components in high-speed optical fiber transceivers
US8139957B2 (en) * 2008-06-24 2012-03-20 General Instrument Corporation High sensitivity optical receiver employing a high gain amplifier and an equalizing circuit
US8787776B2 (en) 2010-06-04 2014-07-22 The Governing Council Of The University Of Toronto Optical receiver with monolithically integrated photodetector
US9354113B1 (en) * 2010-11-05 2016-05-31 Stc.Unm Impact ionization devices under dynamic electric fields
JP5635474B2 (ja) * 2011-10-18 2014-12-03 日本電信電話株式会社 トランスインピーダンスアンプ
US8891686B2 (en) * 2011-10-26 2014-11-18 Source Photonics, Inc. Data signal detection in optical and/or optoelectronic receivers and/or transceivers
JP5862440B2 (ja) * 2011-12-02 2016-02-16 住友電気工業株式会社 差動増幅回路
JP6107146B2 (ja) * 2013-01-10 2017-04-05 富士通株式会社 光受信回路
CN104242844B (zh) * 2014-09-25 2017-10-24 厦门优迅高速芯片有限公司 一种能够实现自动增益控制的跨阻放大电路
CN105634586A (zh) * 2014-11-27 2016-06-01 上海梅山钢铁股份有限公司 一种光纤通道测量装置
JP6443194B2 (ja) * 2015-04-13 2018-12-26 富士通株式会社 信号識別回路、これを用いた光受信器、及び信号識別方法
CN106535010A (zh) * 2015-09-15 2017-03-22 青岛海信宽带多媒体技术有限公司 无源光网络的光网络单元及其光模块
CN110785949B (zh) * 2017-01-24 2021-05-28 华为技术有限公司 一种光接收机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060115280A1 (en) * 2004-11-30 2006-06-01 Chang Jae J Optical link bandwidth improvement
CN101145851A (zh) * 2007-10-17 2008-03-19 中兴通讯股份有限公司 优化调整接收机判决电平的装置和方法
CN201571058U (zh) * 2009-12-15 2010-09-01 汕头高新区亚威科技有限公司 用于光纤传输系统的光接收机
CN102332951A (zh) * 2011-09-30 2012-01-25 天津大学 面向4g光载无线通信的cmos光电接收机前端电路
CN103840888A (zh) * 2012-11-27 2014-06-04 Oe解决方案美国有限公司 使用低速光接收元件实现的高速光接收器及其实现方法
CN103929139A (zh) * 2014-04-22 2014-07-16 西安电子科技大学 高精度自动增益控制的光接收机的跨阻前置放大器
CN105897207A (zh) * 2016-03-28 2016-08-24 华为技术有限公司 一种连续可变增益放大器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10920397B2 (en) 2015-08-25 2021-02-16 Kaiser Premier Llc Nozzle and vacuum unit with air and water
JP2023500404A (ja) * 2019-11-12 2023-01-05 華為技術有限公司 受信機、光回線終端装置、および受動光ネットワークシステム
US11711152B2 (en) 2019-11-12 2023-07-25 Huawei Technologies Co., Ltd. Receiver, optical line terminal, and passive optical network system
JP7379697B2 (ja) 2019-11-12 2023-11-14 華為技術有限公司 受信機、光回線終端装置、および受動光ネットワークシステム

Also Published As

Publication number Publication date
US20210152901A1 (en) 2021-05-20
US11228823B2 (en) 2022-01-18
JP6920446B2 (ja) 2021-08-18
US10887677B2 (en) 2021-01-05
KR20190104596A (ko) 2019-09-10
EP3567756A1 (en) 2019-11-13
US20190349655A1 (en) 2019-11-14
US11750956B2 (en) 2023-09-05
US20220174379A1 (en) 2022-06-02
KR102193071B1 (ko) 2020-12-18
EP3567756A4 (en) 2020-01-01
ES2894263T3 (es) 2022-02-14
EP3998718A1 (en) 2022-05-18
CN113718181B (zh) 2024-09-24
JP2020509641A (ja) 2020-03-26
CN110785949B (zh) 2021-05-28
PT3567756T (pt) 2021-10-19
EP3567756B1 (en) 2021-08-25
CN113718181A (zh) 2021-11-30
CN110785949A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
US11750956B2 (en) Optical receiver
JP6223584B2 (ja) 光受信器、光終端装置および光通信システム
JP4935422B2 (ja) 前置増幅器およびそれを用いた光受信装置
KR100826882B1 (ko) 버스트 모드 광 수신기에서 디지털 자동이득제어 방법 및장치
US20110129235A1 (en) Burst-mode optical signal receiver
JP2011091688A (ja) トランスインピーダンスアンプ
JP2005006313A (ja) 受動光通信網の光パワー等化装置
CA2875762A1 (en) Burst signal receiving apparatus and method, pon optical line terminal, and pon system
KR20110060305A (ko) 버스트 모드 수신기 및 타이밍 제어 방법
Gurne et al. First demonstration of a 100 Gbit/s PAM-4 linear burst-mode transimpedance amplifier for upstream flexible PON
WO2021028984A1 (ja) 光受信器および局側装置
US20150016828A1 (en) Burst-mode receiver having a wide dynamic range and low pulse-width distortion and a method
KR20040084623A (ko) 버스트 모드 광 수신 장치
JP2008306250A (ja) バースト光受信方法および装置
WO2015025520A1 (ja) 光受信器および光受信方法
US7436787B2 (en) Transceiver for full duplex communication systems
JP4912340B2 (ja) バースト光信号受信方法および装置
WO2024121927A1 (ja) 親局装置、光通信システム、制御回路および光信号処理方法
JPS6373723A (ja) 光受信回路
KR20190063018A (ko) 에너지 효율이 향상된 광 수신기 및 방법
JP4173688B2 (ja) 光モジュールおよび光通信システム
CN114124240A (zh) 光接收机电路及光接收机
JP2011023936A (ja) 光受信回路及び振幅判定器
JPS61127237A (ja) 光受信回路
JP2014072834A (ja) 光受信回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023778

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017894304

Country of ref document: EP

Effective date: 20190805