WO2018135907A1 - 슈반 세포 전구체 및 이로부터 분화된 슈반 세포의 제조 방법 - Google Patents

슈반 세포 전구체 및 이로부터 분화된 슈반 세포의 제조 방법 Download PDF

Info

Publication number
WO2018135907A1
WO2018135907A1 PCT/KR2018/000910 KR2018000910W WO2018135907A1 WO 2018135907 A1 WO2018135907 A1 WO 2018135907A1 KR 2018000910 W KR2018000910 W KR 2018000910W WO 2018135907 A1 WO2018135907 A1 WO 2018135907A1
Authority
WO
WIPO (PCT)
Prior art keywords
schwann
cells
schwann cell
cell precursor
medium
Prior art date
Application number
PCT/KR2018/000910
Other languages
English (en)
French (fr)
Inventor
조이숙
김한섭
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2018135907A1 publication Critical patent/WO2018135907A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0622Glial cells, e.g. astrocytes, oligodendrocytes; Schwann cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0625Epidermal cells, skin cells; Cells of the oral mucosa
    • C12N5/0626Melanocytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/01Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/13Nerve growth factor [NGF]; Brain-derived neurotrophic factor [BDNF]; Cilliary neurotrophic factor [CNTF]; Glial-derived neurotrophic factor [GDNF]; Neurotrophins [NT]; Neuregulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/135Platelet-derived growth factor [PDGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a method of producing Schwann cell precursors from pluripotent stem cells or adult cells, and a method of producing Schwann cells from the Schwann cell precursors prepared above.
  • the present invention relates to a pharmaceutical composition for preventing or treating neurological diseases, a cell therapeutic agent, and a method of manufacturing the same, including the Schwann cell precursor and Schwann cells.
  • the present invention relates to a composition for inducing direct differentiation of pluripotent stem cells from Schwann cells and a composition for differentiation from Schwann cell precursors to Schwann cells.
  • Schwann Cell is a basic glial cell of the peripheral nervous system, and functions to support neurons.
  • Schwann cells the representative cells of glial cells in the peripheral nervous system (PNS), are responsible for myelin formation, neurostimulation transmission, and various neurotrophic factors (e.g., brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic). factor (GDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3)) and secrete the composition of extracellular matrix that provides an environment conducive to neuronal survival and axon growth.
  • BDNF brain-derived neurotrophic factor
  • GDNF glial cell-derived neurotrophic
  • NGF nerve growth factor
  • NT-3 neurotrophin-3
  • hSCs Autologous primary human SCs
  • hSCs are very useful for disease modeling, discovery of phenotype drugs, and treatment of neuronal damage, but their use is limited, because they are very difficult to obtain from human tissue and However, they have limitations such as low cell division rate and insufficient cell number due to fibroblast contamination over time in in vitro culture. In addition, technical problems related to separation and purity also fall as described above.
  • hESCs human embryonic stem cells
  • hiPSCs stem cells
  • Multipotent neural crest stem cells capable of differentiating and producing differentiation from hPSCs by in vitro differentiation protocols include many cell types such as chondrocytes, smooth muscle cells or adipocytes, including Schwann cells. It is a cell with the ability to differentiate into. Lineage-specific differentiation of hPSCs into NCSCs can be achieved by pharmaceutical regulation of key signaling pathways of neural ridge development. It is known that the production of human Schwann cells can be indirectly induced by continuous Schwann lineage-specific in vitro differentiation culture via the differentiation production of hPSC-derived NCSCs.
  • NCSCs Multipotent neural crest stem cells
  • Schwann cells exist during the development process in the form of 1) precursors, 2) Schwann cells without immature myelin, and 3) mature myelized Schwann cells.
  • Schwann cell precursors are intermediate cell types that exist between the neural crest cells appearing in the early stages of development and the Schwann cell stage before immature myelin formation, and are a suitable source for direct production of Schwann cells. It is considered to be.
  • the present inventors have tried to develop a method capable of producing human Schwann cells, which are faster and more efficient than conventional methods, and have improved function, and thus induce differentiation directly from pluripotent stem cells into proliferative Schwann cell precursors. Inducing the differentiation of Schwann cells from Schwann cell precursors to Schwann cells, it was confirmed that the human Schwann cells having improved functionality in vivo and in vitro can be prepared under conditions of improved production efficiency. In addition, autologous cell-derived Schwann cell precursors can be prepared in a relatively short time without undergoing differentiation through pluripotent stem cells through direct reprogramming culture from adult cells differentiated using the media composition and direct reprogramming factor. Confirmed that it can.
  • the Schwann cells produced from the Schwann cell precursor prepared by the method of the present invention is transplanted into a mouse sciatic nerve injury model, the neurological disease cell therapeutic effect is significantly improved by restoring the damaged nerve function. Confirmed and completed the present invention.
  • Another object of the present invention is to provide a method for producing a cultured cell, comprising: (a) first culturing a cultured cell by introducing a direct reprogramming factor into adult cells in a medium comprising SB431542 and CT99021; And (b) to provide a method for producing a Schwann cell precursor from an adult cell comprising the step of secondary culture with a medium further added NRG1 (neuregulin-1) to the primary cultured cells.
  • Yet another object of the present invention is to provide a Schwann cell precursor prepared by the above method.
  • Another object of the present invention is to prepare Schwann cells from pluripotent stem cells comprising culturing the prepared Schwann cell precursors in a medium containing NRG1 (neuregulin-1), and forskolin To provide a way.
  • NRG1 neuroregulin-1
  • Yet another object of the present invention is to provide Schwann cells prepared by the above method.
  • Another object of the present invention is to prevent or treat neurological diseases, including Schwann cell precursor, comprising the step of mixing with the prepared Schwann cell precursor NRG1, forskolin, and a pharmaceutically acceptable carrier It is to provide a method for preparing a pharmaceutical composition.
  • Another object of the present invention to provide a method for producing a pharmaceutical composition for preventing or treating neurological disease, including Schwann cells, comprising mixing the prepared Schwann cells with a pharmaceutically acceptable carrier.
  • Another object of the present invention is to provide a composition for inducing direct differentiation of Schwann cell precursors from pluripotent stem cells comprising SB431542, CT99021, and NRG1 (neuregulin-1).
  • Still another object of the present invention is to provide a cell therapeutic agent for preventing or treating neurological diseases, including NRG1, forskolin, Schwann cell precursor, and Schwann cells.
  • Still another object of the present invention is to provide a kit for screening comprising the Schwann cell precursor or the Schwann cell.
  • the method for producing Schwann cell precursor from the pluripotent stem cells of the present invention does not go through the neural crest intermediate step, it is possible to produce Schwann cell precursors quickly and efficiently.
  • the method of preparing Schwann cell precursors through direct reprogramming from adult cells of the present invention has the advantage of producing Schwann cell precursors in a short time.
  • Schwann cells prepared from Schwann cell precursors prepared by the production method of the present invention have myelin formation ability and neurotrophic factor secretion ability, and can be used for the prevention or treatment of neurological diseases.
  • 1 shows the direct differentiation of hPSCs into hSCP.
  • 1A is a diagram schematically illustrating the differentiation of hPSCs into SCPs.
  • H9 hESCs differentiated into neural rosettes due to treatment with neural differentiation medium (NDM) for 6 days. Cells of the neural rosette were replated on day 0 and further maintained in Schwann cell precursor differentiation medium (SCPDM).
  • SCPDM Schwann cell precursor differentiation medium
  • 1C is a diagram showing the results of immunocytochemical staining for SOX10 (green) and GAP43 (red) at Day 8 and Day 18 of differentiation. DAPI (blue) was used to stain cell nuclei. Scale bars are 100 ⁇ m.
  • 1D is a diagram showing the flow cytometry results. Flow cytometry was used to determine the number of cells expressing SOX10 during SCP generation. All values are expressed relative to hESC (day -6).
  • Figure 2 is a diagram showing the result of gene array analysis of hPSc-SCP.
  • 2A shows the expression levels (fold changes) of genes associated with pluripotent cells, neural stem cells, neural crest cells, Schwann cell precursors, Schwann cells, and melanocytes.
  • Expression analysis of marker genes CDH19, GAP43, MPZ, and SOX10 ) in H9 hESC, hiPSC, hESC-SCP, and hiPSC- SCPSCP were performed using qPCR.
  • 2C shows the results of RT-PCR analysis of each marker gene.
  • 3 is It is a figure which shows the result of having confirmed the characteristic of hPSC-SCP by comparing hSCP with hNCSC.
  • 3A shows significantly different expression in 3 samples of 2 hiPSC cell lines, 2 hESC-NCSC cell lines (hNCSCs), and 2 hESC-SCP cell lines (hSCPs) (3,666 significant transcripts (one-way ANOVA, p ⁇ 0.01) ) Is the result of hierarchical clustering of a set of genes.
  • Heat map represents the relative value of log10 fold change normalized to undifferentiated hESC.
  • 3B is a diagram showing the results of gene array analysis in hESC-NCSCs (hNCSCs) and hESC-SCPs (hSCPs).
  • 3C is a diagram showing the results of qPCR analysis of SCP markers and NCSC markers in H9 hESCs, hSCPs and hNCSCs.
  • 3D is a diagram showing the results of immunocytochemical analysis using SOX10 (red), NGFR (red), and GAP43 (red) in hSCPs and hNCSCs. Cell nuclei were stained using DAPI (blue). Scale bar is 50 ⁇ m.
  • 4 confirms that NRG1, CT and SB are required to produce hSCP from hPSCs.
  • 4A is a diagram showing neural rosettes by immunocytochemical staining of Nestin (green) and ZO1 (red) at D0 day. H9 hESCs were treated with neural differentiation medium (NDM) for 6 days and DAPI (blue) was used to stain cell nuclei. Scale bar is 100 ⁇ m.
  • 4B is a diagram showing the results of processing hSCP from hPSCs (hESCs and hiPSCs) in combination with NRG1 in combination with SB431542 (SB) and CT99021 (CT). Under our differentiation conditions, if NRG1, SB or CT were omitted from the medium, it failed to produce hSCP.
  • FIG. 4C is a bright-field image of Day 11 in which hESCs were differentiated into hSCP in differentiation medium lacking compounds such as NRG1 or SB. Scale bar is 100 ⁇ m.
  • 4D is a diagram showing qPCR results of SCP markers (MPZ and SOX10) during the hSCP induction process by treatment with various concentrations of NRG1.
  • 4E is a brightfield image of day 14 of differentiation from hESC to hSCP. Immunostaining results indicate that the number of SOX10-positive cells depends on the concentration of NRG1 at day 14 after differentiation. Cell nuclei were stained with DAPI (blue). Scale bar is 100 ⁇ m.
  • 4F is a diagram showing the results of performing analysis of the expression of SCP marker genes ( CDH19, MPZ, and SOX10 ) through qPCR in H1 hESCs, H7 hESCs, H1 hESC-SCPs, and H7 hESC-SCPs.
  • Mean ⁇ SE (n 3).
  • 4G shows the results of immunocytochemical staining of SOX10 (green) and GAP43 (red) on day 24 of differentiation. DAPI (blue) was used to stain cell nuclei. Scale bar is 100 ⁇ m.
  • FIG. 5 is a diagram showing the results confirmed that the hSCP can be expanded, and maintained for a long period of culture.
  • 5A schematically shows the number of cells that differentiate and produce hPSCs into hSCP.
  • FIG. 5C is a diagram showing the immunocytochemical staining results of SOX10 (red), NGFR (red), and GAP43 (red) as SCP markers in H9 hESC-derived hSCP (passage 20).
  • FIG. 5D is a diagram showing the results of flow cytometry analysis of hSCP markers (SOX10, NGFR, MPZ and GAP43) in H9 hESC derived hSCP of early passage (p1) and late passage (p20).
  • FIG. 6A is a diagram showing the results of microarray analysis of early-passage hSCP (p1) and late-passage hSCPs (p19) derived from H9 hESC.
  • the heat map represents the relative value of log 10 fold change relative to the value of undifferentiated hESC.
  • 6B and C show qPCR (B), RT-PCR () using SCP markers ( CDH19, GAP43, ITGA4, MPZ, NGFR, and SOX10 ) in early passage (p5) hSCPs and late passage (p25) hSCPs, respectively.
  • C) shows the results of the analysis.
  • Mean ⁇ SE (n 4).
  • FIG. 7 confirms that hSCP can efficiently and rapidly differentiate into Schwann cells .
  • FIG. 7 A is a brightfield image showing the process of differentiation of hSCP into Schwann cells at Days 0, 4, 7, and 20. Scale bar is 100 ⁇ m.
  • Figure 7 C is a diagram showing the results of immunostaining 18 days after the differentiation of Schwann cell markers NGFR (green) and S100 (red). Cell nuclei were stained with DAPI (blue). Scale bar is 100 ⁇ m.
  • FIG. 7 is a diagram confirming that H9 hESC-SCP differentiated into melanocytes.
  • the hESC-SCP was differentiated using differentiation medium containing EDN3, FGF2, cAMP, Wnt and BMP4 signal transduction factors, and the differentiated cells were pigmented within 16 days.
  • FIG. 7F is a diagram showing the results of immunocytochemical analysis of hSCP-derived melanocytes of the melanosite markers MITF (red) and MelA (red). Cell nuclei were stained with DAPI (blue). Scale bar is 100 ⁇ m.
  • FIG. 7G shows that, unlike the undifferentiated hSCP in the left tube, the cell pellet of differentiated cells in the right tube was completely colored.
  • FIG. 8 shows that hSCP-SC was integrated into the regenerated sciatic nerve of the transplanted mice.
  • 8A is a longitudinal section of nerves induced to be regenerated by H9-hESC-SCP derived Schwann cells, immunostained with MBP (red) and CASPR (white). Cell nuclei were stained with DAPI (blue). Most of the transplanted GFP labeled Schwann cells were observed in the distal region. Scale bar is 200 ⁇ m.
  • 8B is a vertical portion of MBP immunostained. High magnification diagrams indicate that the transplanted Schwann cells are positive for MBP. Scale bar is 200 ⁇ m.
  • 9A schematically shows the differentiation of hSCP into Schwann cells.
  • the lower figure is a representative phase contrast image of the cells during differentiation to hSCP-SC.
  • Scale bar is 200 ⁇ m.
  • 9C shows qPCR analysis of neurotrophic factors BDNF, GDNF, and NGF , and Schwann cell marker genes MPZ, MBP NGFR, PMP22, S100, and SOX10 in hSCP-derived Schwann cells obtained 10 days after differentiation Is a diagram showing.
  • FIG. 9E shows the results of microarray analysis for comparing gene expression levels of hSCP with gene expression levels of hSCP-SC and primary human Schwann cells. The heat map represents the relative value of log 10 fold change for undifferentiated H9 hESCs.
  • 10 is a diagram showing the results confirming whether hSCP-derived Schwann cells form myelin and secrete neurotrophic factors.
  • 10A shows co-culture of differentiated Schwann cells derived from H9 hESC-SCP with rat DRG for 28 days, MBP (red), TUJ1 (green), and human nuclear (hNU, gray)
  • Figure shows the results of immunostaining for).
  • the enlarged boxed region above shows that hNU-positive cells were co-stained with MBP.
  • Vertical reconstruction of the boxed regions representing intermediate MPZ-positive cells surround the neurofilament. Most of the non myelin-forming Schwann cells were stained with the Schwann cell marker S100B.
  • FIG. 10B is a diagram showing that neurotrophic factors BDNF, GDNF, NGF, and NT3, known to be secreted by Schwann cells, increased significantly after 18 days of post-differentiation from hSCP to hSCP-SC.
  • Mean ⁇ SE (n 4), # indicates no neurotrophic factor detected, * indicates the case of p ⁇ 0.01 comparing SCP and SCP-SC using t-test.
  • FIG. 11 confirms that hSCP-derived Schwann cells promoted regeneration of peripheral nerves in vivo .
  • Fig. 11A is an experimental schematic. 8-week-old male mice were used as a model for sciatic nerve injury. 5 ⁇ l of Matrigel or a mixture of Matrigel and SCP-SC (Marigel plus SCP-SCs mixture) was implanted into the damaged area (red circle).
  • FIG. 11B is a representative image of sciatic nerve regeneration following transplantation of hSCP derived Schwann cells into the damaged nerve region (8 weeks after injury).
  • FIG. 11D shows the results of immunostaining the longitudinal section of the sciatic nerve induced regeneration by GFP-labeled hSCP-SC and S100B (red) and NF (violet) after 8 weeks of injury. High magnification images in the inset show that the grafted GFP-labeled Schwann cells survived and stained with S100B. Scale bar is 500 ⁇ m.
  • FIG. 11E is a diagram showing a footprint pattern of a mouse transplanted with Matrigel (control) or Matrigel and hSCP-SC (Matrigel plus hSCP-SCs).
  • Figure 13 shows the results of differentiating Schwann cell precursors in SCPDM containing only NRG1 and forskolin, not including retinoic acid and PDGF-BB. Immunostaining of the Schwann cell markers S100B (red) and PLP (green) at 5 and 8 days after differentiation, respectively, showed that they differentiated into Schwann cells after 8 days.
  • FIG. 14 is a diagram showing the result of culturing the hPSC in primary culture (NDM) for 1 to 14 days and then replacing the medium with SCPDM.
  • NDM primary culture
  • SCPDM secondary culture
  • FIG. 15 shows that Schwann cell precursor (DiSCP) was prepared by direct reprogramming in 22 days from fibroblasts in which direct reprogramming factor was introduced using primary culture (NDM) and secondary culture (SCPDM). . Comparing DiSCP and hSCP shows a similar increase in the expression level of major markers.
  • FIG. 16 is a diagram showing the result of culturing the isolated DiSCP in Schwann cell differentiation medium for 8 days. Expression of Schwann cell markers S100B and NGFR in the cultured cells was confirmed, and the secretion of neurotrophic factors BDNF, GDNF, NGF, and NT3 from DiSCP-SC was confirmed by ELISA.
  • one aspect of the present invention comprises the steps of (a) primary culturing a pluripotent stem cell in a medium comprising SB431542, and CT99021; And (b) provides a method for producing a Schwann cell precursor from pluripotent stem cells, comprising the step of secondary culture in the medium further added NRG1 (neuregulin-1) to the primary cultured cells.
  • One specific aspect of the present invention is to provide a method for producing a Schwann cell precursor from the pluripotent stem cells by a direct differentiation method without a neural intermediate step, to provide a method for producing a Schwann cell precursor. .
  • the method for producing the Schwann cell precursor of the present invention is a neuron from pluripotent stem cells by primary culture of pluripotent stem cells in a medium comprising SB431542, and CT99021, and then secondary culture in a medium further comprising NRG1.
  • Schwann cell precursors that can differentiate into Schwann cells, without going through an intermediate, can be prepared directly.
  • pluripotent stem cells refers to undifferentiated stem cells with the ability to differentiate into all cells of the trioderm (endoderm, mesoderm, and ectoderm). Under in vitro culture, undifferentiated pluripotent stem cells have pluripotency and self-proliferative capacity (self-replicating ability) while maintaining a normal karyotype.
  • pluripotency may include both pluripotent and multipotent.
  • Pluripotent pluripotent stem cells may include embryonic cancer cells (EC cells), embryonic stem cells (ES cells), germline stem cells (EG cells) and the like.
  • the pluripotent stem cells of the present invention may be human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) derived from humans, but as long as they have pluripotency, the species of origin thereof is included without limitation.
  • hESCs human embryonic stem cells
  • hiPSCs human induced pluripotent stem cells
  • the term “schwan cell precursor” refers to an intermediate step through which Schwann cells undergo differentiation from stem cells to Schwann cells, specifically neural crest stem cells (NCSCs) and immature myelin. It is an intermediate stage cell between Schwann cells before formation. The Schwann cell precursors can be differentiated into Schwann cells.
  • NSCs neural crest stem cells
  • neural intermediate refers to an intermediate cell that is differentiated from stem cells, except for Schwann cell precursors, and may specifically be neural crest stem cells (NCSCs), but is not limited thereto.
  • NCSCs differentiated from pluripotent stem cells have been used as progenitor cells for Schwann cell production, but they cannot be seen as the best method in terms of time, cost and functionality.
  • proliferative Schwann cell precursors were directly prepared without pluripotent stem cells or differentiated adult cells, and Schwann cells obtained with inherent functions therefrom were efficiently produced. It was confirmed that Schwann cells produced from the Schwann cell precursors had excellent neuronal regeneration effects.
  • the method of the present invention is characterized by being able to prepare directly from the pluripotent stem cells or adult cells as Schwann cell precursors by a combination of specific medium compositions.
  • direct manufacture and “direct induction” of the present invention allow direct line-specific differentiation of lineage-restricted Schwann cell precursors from pluripotent stem cells without the neural crest stem cell (NCSC) differentiation step. That means you can. That is, in a way to omit the NCSC differentiation step, it is possible to dramatically shorten the overall time required for Schwann cell differentiation, increase the efficiency (efficiency), and ultimately increase the function.
  • NCSC neural crest stem cell
  • One specific aspect of the present invention is to provide a method for producing a Schwann cell precursor, wherein the primary culture is carried out for 1 to 14 days, the secondary culture is carried out for 10 to 150 days.
  • the Schwann cell precursor was confirmed to express the SCP-specific marker when the secondary culture, after the primary culture for 1 to 14 days (Fig. 14).
  • the secondary culture is 5 to 150 days, more specifically 10 to 150 days, more specifically 10 to 100 days, more specifically 10 to 50 days, more specifically 10 days To 30 days or 15 days or more.
  • Periods in which the Schwann cell precursors of the invention can be prepared are included without limitation.
  • the medium of step (a) comprises 2 to 20 ⁇ M of SB431542 and 1 to 10 ⁇ M of CT99021, or the medium of step (b) of 20 to 1000 ng / ml of NRG1 It may be to include, but is not limited thereto.
  • SB431542 is a specific inhibitor of transforming growth factor- ⁇ (TGF- ⁇ ) and has a structure represented by the following Chemical Formula 1.
  • the SB431542 may be included in a concentration of 1 to 100 ⁇ M, more specifically 1 to 50 ⁇ M, more specifically 1 to 30 ⁇ M, and more specifically 2 to 20 ⁇ M, but is not limited thereto.
  • CT99021 in the present invention, CHIR-99021 (CT99021), is a GSK-3 ⁇ / ⁇ inhibitor, and may also be named CT99021, CHIR99021, CHIR 99021, CHIR-99021 or CT-99021. It has a structure of formula (2).
  • the CT99021 may be included in a concentration of 1 to 100 ⁇ M, more specifically 1 to 50 ⁇ M, more specifically 1 to 10 ⁇ M, more specifically 1 to 5 ⁇ M, but is not limited thereto.
  • NRG1 neuroregulin-1
  • the NRG1 may be included in a concentration of 1 to 1000 ng / ml, more specifically 10 to 1000 ng / ml, more specifically 20 to 1000 ng / ml, more specifically 20 to 200 ng / ml
  • the present invention is not limited thereto.
  • human pluripotent stem cells are cultured in primary neural differentiation medium (NDM) containing SB431542 (20 ⁇ M) and CT99021 (3 ⁇ M), followed by NRG1 (50 ng / ml).
  • NDM primary neural differentiation medium
  • SCPDM Schwann cell precursor induction medium
  • SCP Schwann cell precursor induction medium
  • SCP Schwann cell precursor derived from hPSC
  • the Schwann cell precursor prepared by the above method was confirmed that the expression level of the SCP-specific markers CDH19, MPZ, GAP43, SOX10, etc., high, the normal Schwann cell precursor was produced according to the method of the present invention ( Example 2).
  • the method of producing Schwann cell precursors from the pluripotent stem cells of the present invention is effectively used in both human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) Confirming that the precursor can be produced, it was confirmed that it can be used regardless of the specific derivation of pluripotent stem cells.
  • the Schwann cell precursor prepared by the above method showed a marker expression pattern that is also distinguished from neural ridge stem cells (NCSC), which is a neural intermediate, and confirmed that the Schwann cell precursor is an intermediate cell that is distinguished from NCSC (Example 3).
  • NCSC neural ridge stem cells
  • Another specific embodiment of the present invention provides a method of preparing a Schwann cell precursor, wherein the Schwann cell precursor is capable of differentiating into Schwann cells or melanocytes.
  • the Schwann cell precursor prepared by the above method has a high expandability, can be maintained for a long time, and has a multipotency that can differentiate into Schwann cells and melanocytes (Example 5 To 6).
  • Another specific embodiment of the present invention is to provide a Schwann cell precursor prepared by the above method.
  • the Schwann cell precursor prepared by the method of the present invention is the first Schwann cell precursor differentiated from pluripotent stem cells, which Schwann cell precursor is capable of differentiating into Schwann cells, melanocytes, etc., multipotency, high proliferation rate (scalability) and long term Has the possibility of maintenance.
  • Another aspect of the present invention comprises the steps of: (a) introducing a direct reprogramming factor into adult cells to primary culture of the cultured cells in a medium comprising SB431542, and CT99021; And (b) to provide a method for producing a Schwann cell precursor from adult cells, comprising the step of secondary culture in the medium additionally added NRG1 (neuregulin-1) to the primary cultured cells.
  • One specific aspect of the present invention is to provide a method for producing Schwann cell precursors from adult cells by a direct reprogramming method that directly differentiates adult cells into target cells without passing through pluripotent stem cells.
  • the direct reprogramming factor may be OCT3 / 4, SOX2, KLF4, LIN28, L-MYC, but is not limited thereto.
  • direct reprogramming is differentiated from a technique for producing pluripotent induced pluripotent stem cells through a reprogramming process, and directly converts into a desired target cell directly through reprogramming culture. It is a technique to induce. That is, direct reprogramming is a method of directly producing a desired target cell through reprogramming culture without undergoing a process of dedifferentiating the isolated cells to omnipotence and re-differentiating them into target cells.
  • the present invention is expected to provide an alternative to overcome the above problems by directly producing Schwann cells, the target cells through direct reprogramming technology.
  • direct reprogramming may be mixed with direct dedifferentiation, direct differentiation, direct conversion, direct cross-differentiation, cross-differentiation and the like.
  • Direct reprogramming in the present invention may in particular mean direct reverse or cross differentiation into Schwann cell precursors.
  • direct reprogramming factor refers to a factor that directly reprograms a specific series of cells that have already undergone differentiation into other types of cells without passing through pluripotent induced pluripotent stem cells. , OCT3 / 4, SOX2, KLF4, LIN28, L-MYC, but is not limited thereto.
  • the step of culturing by introducing the direct reprogramming factor increase the expression level of the factor present in the cell, treatment of a substance having a genetic modification, expression vector, foreign expression gene introduction, expression inducing effect It may be a step through, etc., but is not limited so long as it is a method of increasing the expression level of the direct reprogramming factor. In particular, it may be a method of inducing expression under a desired time and condition.
  • the step of culturing by introducing the direct reprogramming factor may be to increase the expression level of the pluripotent factor in the differentiated cells in the present invention may be performed for 3 to 6 days, but is not limited thereto.
  • the term “adult cell” is not particularly limited, but refers to a cell that has already completely differentiated and that has completely or substantially lost its multipotency, which refers to its ability to differentiate into various cell types.
  • the cell may be a cell in which a lineage is already specified, such as a germ cell, a somatic cell, or a progenitor cell. Examples may be cells derived from humans, but cells derived from various individuals are also within the scope of the present invention. More specifically, the fibroblast may be, but is not limited thereto.
  • the present inventors confirmed that the adult cells that have completed the differentiation can be prepared by direct reprogramming into cells of a different series, and in particular, by introducing a direct reprogramming factor into the fibroblasts and culturing the two-step culture It was confirmed that Schwann cell precursors could be prepared (FIG. 15). In addition, when the reprogrammed Schwann cell precursor directly differentiated into Schwann cells in adult cells, it was confirmed that not only express the markers of Schwann cells but also secrete neurotrophic factors (FIG. 16).
  • Schwann cell precursors prepared from pluripotent stem cells are also methods of producing Schwann cell precursors that do not undergo neural intermediate steps. It may have the advantage of a manufacturing method.
  • the present inventors confirmed that it is possible not only to prepare Schwann cell precursors in pluripotent stem cells through direct differentiation, but also to prepare Schwann cell precursors in adult cells through direct reprogramming.
  • the primary culture of step (a) may be performed for 1 day to 9 days, and the secondary culture of step (b) may be performed for 13 days to 30 days, but is not limited thereto. It doesn't work.
  • the culture period can be appropriately selected by those skilled in the art to obtain a desired cell, for example, the primary culture of step (a) is 1 to 20 days, specifically 1 to 14 days, more Specifically, it may be performed for 1 to 9 days, and the secondary culture of step (b) is to be performed for 10 days to 150 days, specifically, 13 days to 50 days, and more specifically 13 days to 30 days. May be, but is not limited thereto.
  • the medium of step (b) may include 2 to 20 ⁇ M of SB431542 and 1 to 10 ⁇ M of CT99021, and may also include 20 to 1000 ng / ml of NRG1.
  • the present invention is not limited thereto.
  • Another aspect of the present invention comprises the steps of preparing and preparing the Schwann cell precursor by the above production method; And culturing the prepared Schwann cell precursors in a medium containing NRG1, forskolin, to provide Schwann cells.
  • Schwann cells prepared by the method of the present invention are Schwann cells produced via Schwann cell precursors from pluripotent stem cells or adult cells, and Schwann cell-specific marker genes S100B, OCT6, MPZ, Krox20, PMP22, NGFR, and PLP It has a positive expression on the back and at the same time has a characteristic of secreting neuronal nutritional factors including BDNF, NGF, GDNF, NT3 and the like. When co-cultured with nerve cells, they have an excellent effect on regenerating damaged nerve tissue along with a myelination function that can surround neuronal axons.
  • the Schwann cell production method of the present invention recovers Schwann cell precursors through two-step culturing of pluripotent stem cells or adult cells into which a direct reprogramming factor is introduced, and the Schwann cell precursors are NRG1, retinoic acid, PDGF-BB, And it is a method for producing Schwann cells by culturing in a medium containing forskolin.
  • Schwann cells prepared by the method of the present invention have the myelin-forming ability and neurotrophic factor secretion ability of Schwann cells, and have the effect of regenerating and restoring damaged nerves.
  • pluripotent stem cells "adult cells”, “direct reprogramming”, "Schuan cell precursor”, “SB431542”, “CT99021”, “NRG1” are as described above.
  • the term "schwann cell” is a glial cell in the peripheral nervous system, and plays a role in myelin formation, nerve stimulation transmission, neurotrophic factor secretion, etc., and in particular, is known to affect nerve survival and axon growth. .
  • SC differentiation medium including NRG1 (200 ng / ml), retinoic acid (100 nM), PDGF-BB (10 ng / ml), and forskolin (4 ⁇ M)
  • NRG1 200 ng / ml
  • retinoic acid 100 nM
  • PDGF-BB 10 ng / ml
  • forskolin 4 ⁇ M
  • Schwann cells can be produced by differentiating Schwann cell precursors with medium, SCDM) or NRG1 and forskolin.
  • the prepared Schwann cells express Schwann cell markers (FAP, PLP, PMP22, S100, etc.), the expression of neurotrophic factors (BDNF, GDNF, NGF, NT-3, NT-4, CNPase, CNTF, etc.) This improvement was confirmed (Example 7).
  • One specific aspect of the present invention is to provide a method for producing Schwann cells, wherein the medium comprises 100 to 1000 ng / ml of NRG1 and 1 to 10 ⁇ M of forskolin.
  • Another specific aspect of the present invention is to provide a method for producing Schwann cells, wherein the medium further comprises retinoic acid and platelet-derived growth factor-BB (PDGF-BB).
  • PDGF-BB platelet-derived growth factor-BB
  • the medium comprises 100 to 1000 ng / ml NRG1, 50 to 150 nM retinoic acid, 5 to 15 ng / ml PDGF-BB, and 1 to 10 ⁇ M forskolin, It is to provide a method for producing Schwann cells.
  • the medium for preparing Schwann cells of the present invention may include 1 to 1000 ng / ml, more specifically 10 to 1000 ng / ml, more specifically 100 to 1000 ng / ml of NRG1, but is not limited thereto.
  • the term “retinoic acid” is a metabolite produced when vitamin A is broken down in the body and has a chemical formula of C 20 H 28 O 2 . It is known to have effects such as colon cancer suppression and rheumatism treatment. Specifically, the retinoic acid may be included in the medium at a concentration of 1 to 300 nM, more specifically, 10 to 200 nM, more specifically 50 to 150 nM, but is not limited thereto.
  • Platinum-Derived Growth Factor-BB is a dimer of PDGFB encoded from the PDGFB gene.
  • the PDGF-BB may be included in the medium at a concentration of 1 to 100 ng / ml, more specifically, 1 to 50 ng / ml, and more specifically 5 to 15 ng / ml, but is not limited thereto.
  • forskolin is a labdane diterpene produced by Indian Coleus plant (Plectranthus barbatus). Specifically, the forskolin may be included in the medium at a concentration of 1 to 100 ⁇ M, more specifically 1 to 50 ⁇ M, more specifically 1 to 10 ⁇ M, but is not limited thereto.
  • Another specific aspect of the present invention is to provide a method for producing Schwann cells, wherein the Schwann cells have myelination and secretion capacity of neurotrophic factor.
  • the neurotrophic factor may be BDNF, GDNF, NGF, or NT-3, but is not limited thereto.
  • Schwann cells prepared according to the method of the present invention normally secrete myelin-forming ability and neurotrophic factors (NGF, BDNF, GDNF, NT-3) (Example 8). .
  • Another aspect of the invention (a) preparing and preparing the Schwann cell precursor by the production method; (b) culturing the prepared Schwann cell precursors in a medium comprising NRG1 and forskolin; (c) recovering Schwann cells from the medium; And (d) mixing the recovered Schwann cells with a pharmaceutically acceptable carrier, thereby providing a pharmaceutical composition for preventing or treating neurological diseases comprising Schwann cells.
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating neurological diseases, including Schwann cells prepared by the above method.
  • One specific aspect of the present invention is the pharmaceutical composition for the prevention or treatment of neurological diseases, wherein the medium of step (b) further comprises retinoic acid (retinoic acid) and PDGF-BB (platelet-derived growth factor-BB) It provides a method of manufacturing.
  • retinoic acid retinoic acid
  • PDGF-BB platelet-derived growth factor-BB
  • One specific aspect of the present invention is a neurodegenerative disease, neurodegenerative disease, demyelinating neuropathy, atrophic lateral sclerosis, traumatic spinal cord disease or peripheral neurological disease, neurological disease prevention or treatment method for preparing a pharmaceutical composition for treating To provide.
  • the term “neurological disorder” refers to a nervous system-related disorder, and may be caused by damage to the external or internal factors of myelin (myelin sheath) or axon formed, regression or loss of function, loss or damage of nerve cells, and the like.
  • the disease may be a degenerative neurological disease, a demyelinating neurological disease, atrophic lateral sclerosis, a traumatic spinal cord disease or a peripheral neurological disease, but is not limited thereto.
  • Schwann cells prepared by the Schwann cell production method of the present invention can form myelin and secrete various neurotrophic factors, and thus can be used to prevent or treat such neurological diseases through restoration and regeneration of damaged nerves. have.
  • Schwann cells included in the pharmaceutical composition for preventing or treating neurological diseases of the present invention have myelin-forming ability and neurotrophic factor secreting ability, and thus may be used for the prevention or treatment of neurological diseases through nerve regeneration and restoration effects.
  • the sciatic nerve transplanted with Schwann cells was confirmed that the neuronal regeneration effect is superior to the control group (Example 9), which is Schwann cells prepared according to the method of the present invention myelin formation And neurotrophic factor secretion, which may have a prophylactic or therapeutic effect on neurological diseases.
  • the term “pharmaceutically acceptable carrier” may be a binder, a lubricant, a disintegrant, an excipient, a solubilizer, a dispersant, a stabilizer, a suspending agent, a coloring agent, a flavoring agent, or the like during oral administration.
  • buffers, preservatives, analgesic agents, solubilizers, isotonic agents, stabilizers and the like can be mixed and used.
  • bases, excipients, lubricants, preservatives and the like can be used.
  • the formulation of the pharmaceutical composition of the present invention can be prepared in various ways by mixing with the pharmaceutically acceptable carrier as described above.
  • oral administration may be in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc., and in the case of injections, may be prepared in unit dosage ampoules or multiple dosage forms. Others may be formulated into solutions, suspensions, tablets, pills, capsules, sustained release preparations and the like.
  • suitable carriers, excipients and diluents suitable for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl Cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil and the like can be used.
  • fillers, anti-coagulants, lubricants, wetting agents, fragrances, preservatives and the like may be further included.
  • Another embodiment of the present invention comprises the steps of preparing and preparing the Schwann cell precursor by the above production method; And mixing NRG1, forskolin, and a pharmaceutically acceptable carrier with the prepared Schwann cell precursor, a method of preparing a pharmaceutical composition for preventing or treating neurological diseases comprising Schwann cell precursor. to provide.
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating neurological diseases comprising Schwann cell precursor prepared by the above method.
  • One specific aspect of the present invention provides a method for producing Schwann cells, which further comprises mixing Retinoic acid (retinoic acid) and PDGF-BB (platelet-derived growth factor-BB) to the Schwann cell precursor.
  • Retinoic acid retinoic acid
  • PDGF-BB platelet-derived growth factor-BB
  • Method of preparing a pharmaceutical composition for preventing or treating neurological diseases comprising the Schwann cell precursor of the present invention, by preparing a composition comprising the Schwann cell precursor, and various substances necessary for differentiating the Schwann cell precursor, By inducing differentiation of, it can have a prophylactic or therapeutic effect on neurological diseases.
  • the Schwann cell precursor prepared by the method of the present invention or a pharmaceutical composition for preventing or treating neurological diseases comprising Schwann cells may be administered through various routes, and in particular in the form of a cell therapeutic agent.
  • the route of administration of the pharmaceutical composition may be administered via any general route as long as it can reach the target tissue.
  • Oral administration parenteral administration, for example, intraperitoneal administration, intravenous administration (i.v), intramuscular administration, subcutaneous administration, intradermal administration, but is not limited thereto.
  • the content of Schwann cells or Schwann cell precursors contained in the pharmaceutical composition can be easily determined by those skilled in the art, and various types of diseases, severity of diseases, age, weight, general health status, sex and diet, route of administration, etc. It can be adjusted according to the factor. In consideration of all the above factors, it is important to include an amount that can achieve the maximum effect in a minimum amount without side effects.
  • Another aspect of the present invention provides a cell therapeutic agent comprising the pharmaceutical composition prepared by the above method.
  • Another aspect of the invention provides a cell therapy for the prevention or treatment of neurological diseases comprising NRG1, forskolin, and Schwann cell precursors.
  • Another aspect of the invention provides a cell therapeutic agent for the prevention or treatment of neurological diseases, including NRG1, retinoic acid, PDGF-BB, forskolin, and Schwann cell precursors.
  • cell therapeutic agent refers to a drug in which living cells can be directly injected into a patient, and physical, chemical or biological methods such as culturing, proliferating or selecting living autologous cells, allogeneic cells or heterologous cells in vitro. Corresponds to pharmaceuticals manufactured by manipulating.
  • the route of administration of the cell therapy agent may be administered via any general route as long as it can reach the target tissue.
  • Parenteral administration for example, intraperitoneal administration, intravenous administration (i.v), intramuscular administration, subcutaneous administration, intradermal administration, but is not limited thereto.
  • the cell therapy agent may be administered by any device that can migrate to the target cell.
  • Another aspect of the present invention provides a composition for inducing direct differentiation of pluripotent stem cells into Schwann cell precursors, including SB431542, CT99021, and NRG1 (neuregulin-1).
  • composition for inducing direct differentiation of pluripotent stem cells into Schwann cell precursors of the present invention is capable of inducing direct differentiation from pluripotent stem cells to Schwann cell precursors without passing through neural intermediates.
  • Schwann cell precursors can be produced directly from pluripotent stem cells.
  • Another aspect of the invention provides a composition for differentiation from Schwann cell precursors to Schwann cells comprising NRG1, and forskolin.
  • Another aspect of the invention provides a composition for differentiation from Schwann cell precursors to Schwann cells, including NRG1, retinoic acid, PDGF-BB, and forskolin.
  • the composition for differentiation of Schwann cell precursors to Schwann cells of the present invention is a composition capable of differentiating from Schwann cell precursors to Schwann cells, Schwann cells differentiated into the composition has myelin formation ability and neurotrophic factor secretion ability to regenerate and damage It has the effect of restoring nerves and can be usefully used for the prevention or treatment of neurological diseases.
  • Another aspect of the invention provides a kit for screening comprising Schwann cell precursor prepared by the above method.
  • the screening kit may be, but is not limited to, a kit for screening a drug for preventing or treating neurological diseases or a screen for inducing substance for differentiation into Schwann cells.
  • kit can be freely experimented in vitro or ex vivo .
  • the kit may be used to select candidates as prophylactic or therapeutic agents for neurological diseases or differentiation inducing substances by treating candidate substances with Schwann cell precursors and then measuring and comparing the expression levels of specific genes or proteins of the Schwann cell precursors. It may be to use.
  • the screening kit may further include an agent (antisense oligonucleotide, primer pair, probe, antibody, aptamer, etc.) for measuring the expression level of the gene or protein, and further describes the conditions for performing the optimal reaction. It may further include instructions for use. Instructions include brochures in the form of pamphlets or leaflets, labels affixed to the kit, and instructions on the surface of the package containing the kit. In addition, the guide may include information disclosed or provided through an electronic medium such as the Internet.
  • Another aspect of the invention provides a kit for screening comprising Schwann cells prepared by the above method.
  • the screening kit may be a kit for screening a preventive or therapeutic agent for neurological diseases, but is not limited thereto.
  • the kit is used to select candidates as a prophylactic or therapeutic agent for neurological diseases by treating neuronal disease prevention or treatment candidates with Schwann cells and then measuring and comparing the expression levels of specific genes or proteins of the Schwann cells. It may be.
  • Example 1 Differentiation from human pluripotent stem cells (hPSCs) to Schwann cell precursors (SCPs)
  • NCSCs Neural crest stem cells
  • hPSCs human pluripotent stem cells
  • SCPs line-limited Schwann cell precursors
  • H1, H7 and H9 hESC (WiCell Research Institute), and hiPSCs from human newborn foreskin fibroblasts (catalogue number CRL-2097; ATCC) were cultured as previously known.
  • hiPSCs from human newborn foreskin fibroblasts catalog number CRL-2097; ATCC
  • feeder-free cultures cells were grown daily with medium replacement on dishes coated with growth factor-reduced Matrigel (BD biosciences) in mTeSR1 medium (StemCell Technologies).
  • hPSCs colonized hPSCs were replated in growth factor-reduced Matrigel-coated culture dishes coated with growth factor-reduced Matrigel. The following day, the culture medium was neutralized by replacing with modified neural differentiation medium (NDM) containing SB431542 and CT99021 in hPSC culture medium and forming neural rosette for 6 days.
  • NDM modified neural differentiation medium
  • the NDM is an advanced DMEM / F12 containing 1x N2, 1x B27, 0.005% BSA, 2 mM Glutamax, 0.11 mM ⁇ -mercaptoethanol, 3 ⁇ M CT 99021 (Tocris Biosciences), 20 ⁇ M SB431542 (Tocris Biosciences) and Neurobasal medium (1: 1 blend).
  • SB431542 is a specific inhibitor of transforming growth factor- ⁇ (TGF- ⁇ ) / Activin / Nodal delivery pathway) and CT99021 is known as a specific inhibitor of glycogen synthase kinase-3 (GSK-3).
  • SCPDM Schwann cell precursor induction medium
  • SCPDM nerve induction medium containing 50 ng / ml NRG1
  • SCPDM nerve induction medium containing 50 ng / ml NRG1
  • SCPDM nerve induction medium containing 50 ng / ml NRG1
  • hPSC -Derived SCP was generated, differentiated SCP formed a homogenous cell population (homogenous) and confirmed that it has a high proliferative capacity with a doubling time of about 30 hours (Fig. 1A).
  • SCPDM was used to guide and maintain hPSC-derived SCPs.
  • the present inventors attempted to determine whether the hPSC-derived SCP prepared in Example 1 has a characteristic as a Schwann cell precursor.
  • the present inventors attempted to confirm the expression of lineage specific markers of SCP induced using real-time qPCR and immunocytochemistry.
  • RNA (2 ⁇ g) of the SuperScript ® VILO TM cDNA Synthesis Kit was reverse transcribed and used in accordance with the instructions of the manufacturer (Thermo Fisher Scientific).
  • Quantitative polymerase chain reaction (qPCR) was performed with SYBR green and analyzed using a 7500 Fast Real-Time PCR system (Thermo Fisher Scientific). Primers used are as shown in Table 1 below.
  • PAX3, SLUG and TWIST which are marker genes of NCSC, FOXD3 , NGFR , and SOX10 , which are marker genes of NCSC / SCP, and CDH19 , GAP43 , which are marker genes of SCP .
  • the expression of MPZ increased significantly, and expression levels reached their highest at different time points (FIG. 1B).
  • NCSC The expression levels of the marker genes, PAX3 and TWIST , increased temporarily at an early stage, reaching peak levels on Days 5 and 10, respectively.
  • CDH19, MPZ, and GAP43 reached their highest on Day 18 and then maintained their highest levels during subsequent cultures (FIG. 1B ).
  • hPSCs were cultured in primary culture (NDM) for 1 to 14 days and then replaced with SCPDM to confirm expression of SCP- specific marker genes SOX10, NGFR, and MPZ after 24 days.
  • immunocytochemistry was performed as follows. Cells were fixed with 4% paraformaldehyde for 10 minutes. The fixed cells were washed four times for 10 minutes each with PBS. The cells were then blocked and permeabilized with 0.3% Triton X-100, 10% FBS, and 1% BSA dissolved in PBS for 1 hour at room temperature. The cells were incubated with primary antibody in PBS containing 2% BSA for 1 hour at room temperature.
  • the cells were also separated by Accutase and resuspended in PBS.
  • the cells were fixed for 10 minutes in 4% formaldehyde dissolved in PBS, and then washed three times with PBS.
  • the fixed cells were blocked and permeated on ice for 1 hour using 0.1% Triton X-100, 10% FBS, and 1% BSA contained in PBS.
  • the cells were incubated for 10 minutes at room temperature with a primary antibody (Table 2) bound to a fluorophore in PBS containing 2% BSA. After antibody reaction, the cells were washed twice with PBS and analyzed using BD Accuri C6 (BD Biosciences).
  • FACS analysis confirmed that more than 99% of the cells expressed SOX10 at day 18 and that expression was maintained throughout the culture of the cells (FIG. 1D).
  • the inventors have confirmed that the shape of the cell in the second differentiation step is elongated (slender) shape.
  • hESCs human embryonic stem cells
  • hiPSCs human induced pluripotent stem cells
  • hESC-SCPs hESC-SCPs
  • hiPSCs hiPSC-SCPs
  • the chip was placed in a slide holder and scanned using an Agilent C scanner.
  • Gene expression data were processed using GeneSpring software (Agilent), MeV v.4.9.0 software was used to statistically analyze and visualize the significance of each sample.
  • the POU5F1 overall gene expression profile hESC-SCPs and showed a similar pattern in hiPSC-SCPs
  • key pluripotency marker gene both derived SCP in the SCP and hiPSCs derived from hESCs is (pluripotency marker genes) KLF4, MYC, ZFP42, SOX2, SOX1, NCSC- related genes (NCSC-related genes) of ZIC3, DBP, FOXC1, and showed relatively low expression levels of the MSX2, SCP marker gene ITGA4, NGFR, SOX10, CDH19, DHH , High expression levels of GAP43, and MPZ (FIG. 2A).
  • NSC neural crest stem cells
  • isolated hPSCs are plated in a Matrigel-coated culture dish and the next day, the culture medium is replaced with 1% Probumin (Millipore), 1% penicillin-streptomycin, 1% L-alanyl-L-glutamine (Cellgro ), 1% MEM non-essential amino acids, 0.1% trace elements A (Cellgro), 0.1% trace elements B (Cellgro), 0.1% trace elements C (Cellgro), 0.11 mM ⁇ -mercaptoethanol, 10 ⁇ g / ml transferrin, 50 ⁇ g / ml (+)-sodium l-ascorbate (Sigma), 10 ng / ml NRG1 (Peprotech), 200 ng / ml LONG R3 IGF-I (Sigma), 3 ⁇ M BIO (Tocris Biosciences), 20 ⁇ M SB431542 ( Tocris Biosciences) and NCSC induction medium (NCSCIM) containing 8 ng / m
  • SCP is known to be an intermediate precursor between NCSCs and immature Schwann cells.
  • Lineage markers of SCP and NCSC clearly show lineage differences between differentiated SCP and NCSC.
  • microarray analysis showed distinct differences in lineage specific gene expression between hiPSC derived SCP and NCSC (A and B in FIG. 3).
  • NCSC was positive for SOX10 and NGFR, while negative for the Schwann cell precursor marker GAP43 (FIG. 3D).
  • the present inventors have sought to identify what are the essential components for inducing differentiation of the pluripotent stem cells of the above example into Schwann cell precursors.
  • hSCP was produced from hPSCs (hESCs and hiPSCs) by treating NRG1 in combination with SB431542 (SB) and CT99021 (CT), resulting in NRG1, SB or CT in the medium under the differentiation conditions of the inventors used in the above examples. If omitted, it was confirmed to fail to produce hSCP (B and C in FIG. 4).
  • NRG1 increased the dose dependent SOX-10 positive cell population during the second differentiation stage (D and E in FIG. 4), which determined the fate of the cells converted from hPSCs to SCPs.
  • activation of the NRG1 signal transduction pathway means an important role.
  • the present inventors attempted to confirm the expandability of the Schwann cell precursor prepared by the method of the above example.
  • hPSC-derived SCPs were stably expandable over 35 passages without significant morphological changes between passages or loss of SCP properties under chemically defined conditions. (FIGS. 5 and 6).
  • Microarray analysis confirmed that the expression patterns of major SCP markers were nearly identical at early passage (p1) and late passage (p19) of SCPs derived from hESC and hiPSC (FIG. 6A).
  • SCPs derived from hESCs or hiPSCs can be stored cold by conventional methods and recovered after thawing and recultivation.
  • the method of deriving Schwann cell precursors from pluripotent stem cells provides additional cell purification, which produces homogeneous SCP from hPSC, under chemically defined conditions. It can be seen that it is a simple method that is not necessary.
  • the inventors have developed a simple method of producing a homogeneous SCP from hPSCs, using a combination of compounds, followed by treatment with SB431542 and CT99021 in combination, followed by NRG1, SB431542, and CT99021.
  • the method according to the invention does not require separate steps such as cell separation and medium replacement.
  • Schwann cell progenitors are known as glial-restricted progenitors, which only differentiate into SC in the peripheral nervous system, but recent studies have shown that the cells are pluripotent and produce neurons and melanocytes of parasympathetic nerves. It has been reported that it can differentiate into various cells, including.
  • the inventors have determined whether it is possible to produce melanocytes with hPSC-derived SCPs.
  • SCP was cultured on Matrigel coated culture dishes. The following day, the culture medium was added to 1x N2, 1x B27, 0.005% BSA, 2 mM Glutamax, 0.11 mM -mercaptoethanol, 3 ⁇ M CT 99021, 20 ng / ml FGF2 (Peprotech), 0.5 mM dbcAMP (Tocris Biosciences), 25 ng It was replaced with melanocytes induced medium containing advanced DMEM / F12 and Neurobasal medium (1: 1 mix) containing / ml BMP4, and 100 nM EDN3 (Tocris Biosciences). Medium was changed daily. Confluent cells were isolated by Accutase (Millipore) treatment and passaged at 1: 6.
  • the SCP prepared according to the method of the present invention has properties as a pluripotent Schwann cell precursor, which can differentiate into melanocytes, as is known in the art.
  • the inventors have attempted to differentiate from Schwann cell precursors prepared in the above examples into Schwann cells that can be used for the prevention and treatment of actual neurological diseases.
  • SC differentiation including NRG1 (200 ng / ml), retinoic acid (100 nM), PDGF-BB (10 ng / ml) and forskolin (4 ⁇ M).
  • medium, SCDM SC differentiation medium
  • SCDM Schwann Cell Differentiation Medium
  • the SCDM is DMEM / low containing 1% FBS, 200 ng / ml NRG1, 4 ⁇ M phospholine (Sigma), 100 nM all-trans retinoic acid (retinoic acid, RA, Sigma) and 10 ng / ml PDGF-BB Contains glucose.
  • the culture medium was replaced with SCDM containing 1% FBS, 200 ng / ml NRG1, 10 ng / ml PDGF-BB (Thermo Fisher Scientific), but without forskolin or retinoic acid.
  • SCDM Stemn cell medium, SCM
  • FBS fetal bovine serum
  • Schwann cells were kept in SCM for expansion. Schwann cells were produced 2-3 days after incubation in SCM. For comparison, primary human Schwann cells were purchased from ScienCell and cultured in Schwann cell growth medium (ScienCell).
  • SC differentiation medium containing NRG1, retinoic acid, PDGF-BB, and forskolin
  • the Schwann cell precursors were differentiated for 4 to 8 days.
  • hPSC-SCP was changed into spindle-like form.
  • SC markers such as FAP, PLP, PMP22, and S100
  • various neurotrophic factors BDNF, GDNF, NGF, NT-3, CNPase, NT-4 , And CNTF
  • SCDM composition Schwann cell precursors were differentiated for 8 days in SC differentiation medium containing only NRG1 and forskolin without using retinoic acid and PDGF-BB, and most of the SC differentiated through immunocytochemistry. It was confirmed that these SC-specific proteins, S100B and PLP2, were positive (FIG. 13).
  • the average time required to obtain the SC properties as described above was about 7 days, which was confirmed by the morphology of the cells and expression of SC markers.
  • Differentiated SC showed high expression levels of major neurotrophic factors ( NGF, BDNF and GDNF ) and immature SC markers ( S100B, NGFR, MPZ, PMP22 , OCT6 and SOX10, C in FIG. 9).
  • the present inventors confirmed that most of the differentiated SCs were positive for SC-line specific proteins S100B, NGFR, EGR2, and MPZ through immunocytochemical analysis (D in FIG. 9D and 7C).
  • the present inventors intended to determine whether Schwann cells differentiated according to the method of the present invention have a function that can be used for the treatment or prevention of neurological diseases.
  • Schwann cells have myelin formation and neurotrophic factor secretion effects, and thus were intended to confirm.
  • Example 8-1 Confirmation of myelin formation ability of hPSC-SCP-SC
  • the present inventors have found that the myelin of the peripheral nervous system axons in culture in the presence of embryonic rat reinforcement ganglion (embryonic rat dorsal root ganglion, DRG) facilitate formation myelin with neurons ascorbic acid (ascorbic acid) for hPSC-SCP-SC on in vitro The ability to form was confirmed.
  • embryonic rat reinforcement ganglion embryonic rat dorsal root ganglion, DRG
  • DRG neurons were obtained at day 15 of the fetus of rat pups.
  • DRG neurons in rats were 12 mm coated with poly-D-lysine and laminin in DRG growth medium containing 4 g / L D-glucose (Sigma), 50 ng / ml NGF (Peprotech), and 15% FBS in MEM Plated on cover slip.
  • the DRGs were maintained in DRG differentiation medium containing 4 g / L D-glucose (Sigma), 50 ng / ml NGF, 1% FBS, and 1 ⁇ B27 in Neurobasal Medium prior to coculture with Schwann cells. And 20,000 or 25,000 SCP-derived Schwann cells were added to the DRG culture in DRG culture medium and maintained for 5-7 days.
  • MBP myelin basic protein
  • TJ-1 neutron-specific tubulin
  • the MPZ immune reactivity of myelin-forming Schwann cells was found to be very large compared to Schwann cells that do not form myelin.
  • MPZ-positive cells surround neurites.
  • Schwann cells The function of Schwann cells is not only in myelin formation of axons but also in providing nutrients for axon regeneration. To determine whether Schwann cells differentiated according to the method of the present invention secrete neurotrophic factors.
  • the inventors confirmed that the neurotrophic factors (BDNF , GDN F, NGF , and NT-3 ) are highly expressed in hPSC-SCP-SC through real-time qPCR analysis as described above (FIG. 7B).
  • ELISA Enzyme-linked Immunosorbent Assay
  • hSCP cells and hSCP-SC cells were seeded in a 30 mm culture dish to obtain a conditioned medium. After 48 hours, the cultures were filtered using a 0.22 ⁇ m filter (Millipore). To measure the concentration of secreted neurotrophic factors (BDNF, GDNF, b-NGF, and NT-3), ELISA was performed in conditioned cultures derived from hSCP and hSCP-SC according to the manufacturer's protocol (Abcam).
  • the mouse labeled with GFP is a model of sciatic nerve injury. (A in FIG. 11).
  • the central region of the left sciatic nerve of 8-week old C57BL / 6 male mice was cut by injury to form 2-3 mm nerve defects. Dilute the cells in Matrigel (2 x 10 4 cells / ⁇ l) and 5 ⁇ l of a cell suspension containing 1 x 10 5 cells (H9 hESC-SCP-derived SC labeled with GFP by lentiviral infection) was implanted into the nerve defect site. Mice were transfused with PBS lysed 4% paraformaldehyde (transcardially). The sciatic nerve was post-fixed for 1 hour and refrigerated in PBS dissolved 30% sucrose for 72 hours at 4 ° C. Cryostat sections (15 ⁇ m) were placed on glass slides and stored at -20 ° C.
  • the slides were washed with PBS for 15 minutes and blocked for 1 hour at room temperature with PBS containing 0.3% Triton X-100, 10% FBS, and 1% BSA.
  • Primary antibodies were diluted in PBS containing 2% BSA and applied at 4 ° C. overnight.
  • the slides were washed with PBS and incubated with secondary antibody for 45 minutes at room temperature. Images were obtained with an Axio Vert.A1 microscope (Carl Zeiss) and LSM800 confocal microscope (Carl Zeiss).
  • the present inventors evaluated the footprint and sciatic function index (SFI) of the mouse to confirm the functional recovery in vivo of Schwann cells prepared by the above examples.
  • SFI sciatic function index
  • SFI is a method for assessing nerve recovery after sciatic nerve injury (Inserra et al., 1998).
  • the mouse's paw is painted with ink and walked along a white paper-padded passageway (80 cm long, 6 cm wide). Footprints were recorded after 2, 3, 4, 6, and 8 weeks after sciatic nerve injury. The recorded footprint was scanned and three parameters (PL, distance from heel to third toe; TS, distance from first to fifth toe; ITS, distance from second to fourth toe) were measured using a ruler. . All measurements were taken on the injured paw (experimental paw, EPL, ETS, and EITS) and intact paw (NPL, NTS, and NITS) of each mouse. SFI is calculated by the following formula.
  • KRIBB Animal Welfare Assurance number is KRIBB-AEC-11039.
  • SCP-SCs-transplanted mice Compared to Matrigel treated mice, SCP-SCs-transplanted mice exhibited significantly improved sciatic function index (SFI), indicating functional recovery (FIG. 11G).
  • SFI sciatic function index
  • Schwann cell precursor manufacturing method through direct reprogramming was developed as follows.
  • the present inventors cultured fibroblasts (CRL-2097) in fibroblast medium (MEM- medium containing 15% of FBS) for 4 days to obtain Schwann cell precursor (DiSCP) through direct reprogramming, and then 2x10 5 Using the Neon ® transfection system (Invitrogen) as a cell number, the manufacturer-provided protocol, hOCT3 / 4, hSOX2, hKLF4, hLIN28, hL-MYC, has five reprogramming factors and shp53, a factor that enhances reprogramming efficiency.
  • PCEP4 episomal vector expressing oriP / EBNA1 was transformed by electroporation with basic conditions of 1950 V pulse voltage, 10 ms pulse width and 3 pulse number.
  • the cells transformed by the electroporation were seeded in 6-well plates with 2 ⁇ 10 4 cells, and then FM medium (FBS 5%, KSR 10%, NEAA 1%, -mercaptoethanol 0.11 mM, bFGF 10ng /) for 4 days.
  • FM medium FBS 5%, KSR 10%, NEAA 1%, -mercaptoethanol 0.11 mM, bFGF 10ng /
  • ml CT99021 3M, Na-butyrate 0.1 mM, Parnate 2M, RG108 0.5M, DMEM / F12 medium containing NECA 0.5M).
  • the FM culture medium was replaced with the neural differentiation medium (NDM) used in Example 1 and cultured for 5 days, and then the NDM medium was further replaced with Schwann cell precursor differentiation medium (SCPDM) for 13 days.
  • NDM neural differentiation medium
  • SCPDM Schwann cell precursor differentiation medium
  • the present inventors attempted to determine whether the Schwann cell precursor prepared in Example 10 can differentiate into Schwann cells and have a neurotrophic factor secretion ability.
  • Schwann cell precursors can be prepared through direct reprogramming from differentiated somatic cells, and Schwann cell precursors can be differentiated into Schwann cells to produce Schwann cells that can be usefully used for the prevention or treatment of neurological diseases. It was confirmed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Neurosurgery (AREA)
  • Biochemistry (AREA)
  • Neurology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Dermatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 다능성 줄기 세포로부터 슈반 세포 전구체를 제조하는 방법, 성체 세포로부터 슈반 세포 전구체를 제조하는 방법 및 상기 제조된 슈반 세포 전구체로부터 슈반 세포를 제조하는 방법을 제공한다. 또한, 상기 슈반 세포 전구체 및 슈반 세포를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물, 세포 치료제 및 이를 제조하는 방법, 다능성 줄기 세포로부터 슈반 세포로의 직접 분화 유도용 조성물, 슈반 세포 전구체로부터 슈반 세포로의 분화용 조성물을 제공한다. 또한, 상기 방법으로 제조된 슈반 세포 전구체 또는 슈반 세포, 및 이를 포함하는 스크리닝용 키트를 제공한다. 본 발명의 다능성 줄기 세포 또는 성체 세포로부터 슈반 세포 전구체를 제조하는 방법으로 신속하고 효율적인 슈반 세포 전구체를 생산할 수 있고, 또한, 상기 슈반 세포 전구체로부터 제조된 슈반 세포는 미엘린 형성능 및 신경 영양 인자 분비능을 가져, 신경 질환의 예방 또는 치료에 사용될 수 있다.

Description

슈반 세포 전구체 및 이로부터 분화된 슈반 세포의 제조 방법
본 발명은 다능성 줄기 세포 또는 성체 세포로부터 슈반 세포 전구체를 제조하는 방법, 및 상기 제조된 슈반 세포 전구체로부터 슈반 세포를 제조하는 방법에 관한 발명이다. 또한, 상기 슈반 세포 전구체 및 슈반 세포를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물, 세포 치료제 및 이를 제조하는 방법에 관한 발명이다. 더 나아가, 다능성 줄기 세포로부터 슈반 세포로의 직접 분화 유도용 조성물 및 슈반 세포 전구체로부터 슈반 세포로의 분화용 조성물에 관한 발명이다.
슈반 세포(Schwann Cell, SC)는 말초 신경계의 기본적인 신경교세포로서, 뉴런을 지지하는 기능을 한다. 말초 신경계 (peripheral nervous system, PNS) 내 신경교세포의 대표적 세포인 슈반 세포는 수초 형성, 신경 자극 전달, 및 다양한 신경 영양 인자 (예를 들어, brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), 및 neurotrophin-3 (NT-3)) 및 신경의 생존 및 축삭의 성장에 이로운 환경을 제공하는 세포외 기질의 구성을 분비하는 역할을 한다.
자가 유래의 일차 인간 슈반 세포 (human SCs, hSCs)는 질환 모델링, 표현형 약물의 발견, 및 신경 손상의 치료를 위해 매우 유용하지만, 이들의 이용은 한정적인데, 그 이유는 인간 조직으로부터 채취가 매우 어렵고, 낮은 세포 분할 비율 및 in vitro 배양시 시간 경과에 따른 섬유아세포의 오염에 의한 불충분한 세포의 수와 같은 한계에 있다. 또한, 분리 및 순도에 관한 기술적 문제 역시 상기와 같은 한계가 된다.
최근, 신경 능선(neural crest) 유도체를 포함한 인체를 이루는 거의 모든 세포 유형으로 분화할 수 있는 우수한 능력을 가진, 인간 배아 줄기 세포 (human embryonic stem cells, hESCs) 및 인간 유도 만능 줄기 세포 (human induced pluripotent stem cells, hiPSCs)를 포함한 인간 다능성 줄기 세포 (human pluripotent stem cells, hPSCs)가 슈반세포 분화 생산의 중요한 줄기세포 자원으로 많은 주목을 받고 있다.
hPSC로부터 in vitro 분화 프로토콜에 의해 분화 생산 가능한 다분화능 신경능선 줄기세포 [multipotent neural crest stem cells (NCSCs) (multipotent NCSCs)]는 슈반 세포를 포함한 연골세포, 평활근 세포 또는 지방세포와 같은 다수의 세포 유형으로 분화하는 능력을 가진 세포이다. hPSC의 NCSC로의 계통-특이적 분화는 신경 능선 발달의 주요 신호 전달 경로의 약학적 조절에 의해 이루어 질 수 있다. 인간 슈반세포의 생산은 hPSC-유래 NCSCs의 분화 생산을 경유하여 연속적인 슈반세포 계통-특이적 in vitro 분화 배양에 의해 간접적으로 유도될 수 있음이 알려져 있다. 그러나, NCSCs가 다양한 세포 타입으로의 분화 유도 잠재력을 내포하고 있어, 상기와 같은 방법에 의한 시 슈반세포 분화는 여전히 낮은 생산율 및 순도의 문제가 해소되고 있지 않다는 단점이 있다. 또한, 분화 유도 과정이 매우 복잡하고 많은 시간이 소요된다는 문제점과 분화 유도된 슈반 세포의 기능 및 성능 결여 역시 문제가 개선되어야 함이 요구되고 있다.
슈반 세포는 발달 과정 동안, 1) 전구체, 2) 미성숙한 미엘린이 형성되지 않은 슈반 세포, 및 3) 성숙한 수초화된 슈반 세포의 형태 등으로 존재한다.
슈반 세포 전구체 (Schwann cell precursors, SCPs)는 발달의 초기 단계에서 나타나는 신경 능선 세포 및 미성숙한 미엘린 형성 전 슈반 세포 단계 사이에서 구별되어 존재하는 중간 세포 타입이며, 슈반 세포의 직접적인 생산을 위해 적합한 기원인 것으로 여겨진다.
본 발명자들은 신속하면서도 기존 방법에 비해 생산 효율이 높고, 기능이 개선된 인간 슈반 세포를 제조할 수 있는 방법을 개발하기 위해 노력한 결과, 다능성 줄기 세포로부터 증식 가능한 슈반 세포 전구체로 직접 분화를 유도하고, 상기 슈반 세포 전구체로부터 슈반 세포로의 분화를 유도할 경우, 생체내·외에서 기능성이 향상된 인간 슈반 세포를 단축된 시간 내에, 생산효율이 향상된 조건으로 제조할 수 있음을 확인하였다. 또한, 상기 배지 조성물 및 직접리프로그래밍 인자를 활용하여 분화된 성체 세포로부터 직접리프로그래밍 배양을 통해 다능성 줄기세포를 통한 분화과정을 거치지 않고 직접적으로 자가세포유래 슈반세포 전구체를 비교적 짧은 시간내에 제조할 수 있음을 확인하였다. 또한, 본 발명의 제조 방법으로 제조된 슈반세포 전구체로부터 생산된 슈반세포를 생쥐 좌골신경손상 모델 (mouse sciatic nerve injury model)에 이식하였을 때 손상된 신경 기능을 유의하게 회복시킴으로써 신경질환 세포치료제 효과가 있음을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 (a) 다능성 줄기 세포 (pluripotent stem cell)를 SB431542, 및 CT99021을 포함하는 배지에서 1차 배양하는 단계; 및 (b) 상기 1차 배양된 세포에 NRG1 (neuregulin-1)을 추가로 첨가한 배지로 2차 배양하는 단계를 포함하는 다능성 줄기세포로부터 슈반 세포 전구체를 제조하는 방법을 제공하는 것이다.
본 발명의 다른 하나의 목적은 (a) 성체 세포에 직접리프로그래밍 인자를 도입하여 배양된 세포를 SB431542, 및 CT99021을 포함하는 배지에서 1차 배양하는 단계; 및 (b) 상기 1차 배양된 세포에 NRG1 (neuregulin-1)을 추가로 첨가한 배지로 2차 배양하는 단계를 포함하는 성체 세포로부터 슈반 세포 전구체를 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 방법으로 제조된 슈반 세포 전구체를 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 제조된 슈반 세포 전구체를 NRG1 (neuregulin-1), 및 포스콜린 (forskolin)을 포함하는 배지에서 배양하는 단계를 포함하는 다능성 줄기 세포로부터 슈반 세포를 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 방법으로 제조된 슈반 세포를 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 제조된 슈반 세포 전구체에 NRG1, 포스콜린 (forskolin), 및 약학적으로 허용 가능한 담체와 혼합하는 단계를 포함하는, 슈반 세포 전구체를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 제조된 슈반 세포를 약학적으로 허용 가능한 담체와 혼합하는 단계를 포함하는, 슈반 세포를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 SB431542, CT99021, 및 NRG1 (neuregulin-1)을 포함하는 다능성 줄기세포로부터 슈반 세포 전구체로의 직접 분화 유도용 조성물을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 NRG1, 및 포스콜린 (forskolin)을 포함하는 슈반 세포 전구체로부터 슈반 세포로의 분화용 조성물을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 NRG1, 포스콜린 (forskolin), 슈반 세포 전구체, 및 슈반 세포를 포함하는 신경 질환 예방 또는 치료용 세포 치료제를 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 슈반 세포 전구체 또는 상기 슈반 세포를 포함하는 스크리닝용 키트를 제공하는 것이다.
본 발명의 다능성 줄기 세포로부터 슈반 세포 전구체를 제조하는 방법은 신경 능선 중간체 (neural crest intermediate) 단계를 거치지 않으므로, 신속하고 효율적인 슈반 세포 전구체의 생산이 가능하다. 또한, 본 발명의 성체 세포로부터 직접리프로그래밍을 통해 슈반 세포 전구체를 제조하는 방법은 짧은 시간 내에 슈반 세포 전구체를 생산할 수 있는 장점을 가진다. 본 발명의 제조 방법으로 제조된 슈반 세포 전구체로부터 제조된 슈반 세포는 미엘린 형성능 및 신경 영양 인자 분비능을 가져, 신경 질환의 예방 또는 치료에 사용될 수 있다.
도 1은 hPSC의 hSCP로의 직접 분화를 나타낸 도이다. 도 1의 A는 hPSC의 SCP로의 분화를 개략적으로 나타낸 도이다. H9 hESC는 6일간의 신경 분화 배지 (neural differentiation medium, NDM)의 처리로 인해 신경 로제트 (neural rosettes)로 분화하였다. 상기 신경 로제트의 세포는 0일차에 다시 플레이팅하였으며, 슈반 세포 전구체 분화 배지 (Schwann cell precursor differentiation medium, SCPDM)에서 추가적으로 유지하였다. 아래의 도면은 대표적인 명시야 (bright-field) 이미지로서, hSCP로의 분화 과정을 나타낸다. Scale bars는 100 μm이다. 도 1의 B는 hSCP로의 분화 과정 동안 qPCR analysis of NCSC-특이적 마커 (PAX3 ,TWIST ,SLUG), NCSC- 및 SCP-특이적 마커 (FOXD3, NGFR, and SOX10), 및 SCP-특이적 마커 (CDH19, GAP43, and MPZ) 의 qPCR 분석 결과를 나타낸 도이다. Mean ± SE (n=3)으로 나타내었다. 도 1의 C는 분화 8일차 및 18일차에서 SOX10 (green) 및 GAP43 (red)에 대한 면역세포화학 염색 결과를 나타낸 도이다. DAPI (blue)는 세포 핵을 염색하기 위해 사용하였다. Scale bars는 100 μm이다. 도 1의 D는 유세포 분석 결과를 나타낸 도이다. 유세포 분석은 SCP의 생성 동안 SOX10을 발현하는 세포의 수를 측정하기 위해 이용되었다. 모든 값은 hESC에 대한 상대 값으로 나타내었다 (day -6).
도 2는 hPSc-SCP의 유전자 어레이 분석 결과를 나타낸 도이다. 도 2의 A는 다능성 세포, 신경 줄기 세포, 신경 능선 세포 (neural crest cell), 슈반 세포 전구체, 슈반 세포, 및 멜라노사이트(melanocyte)에 연관된 유전자의 발현 수준 (fold change)을 H9 hESC-SCPs 및 hiPSC-SCPs 간에 비교하였다. 마이크로어레이 분석은 SCP 분화 후 29일 차에 수행하였다. 모든 값은 분화되지 않은 hESC (day -6)에 대한 상대 값으로 나타내었으며, Mean ± SE (n=4)으로 나타내었다. H9 hESC, hiPSC, hESC-SCP, 및 hiPSC-SCPSCP에서 마커 유전자 (CDH19, GAP43, MPZ, SOX10)의 발현 분석은 qPCR을 이용하여 수행하였다. 도 2의 B는 반-정량 RT-PCR 분석 결과이다. Mean ± SE (n=3)으로 나타내었다. 도2의 C는 각 마커 유전자의 RT-PCR 분석 결과이다.
도 3은 hSCP를 hNCSC와 비교하여, hPSC-SCP의 특성을 확인한 결과를 나타낸 도이다. 도 3의 A는 2 hiPSC 세포주, 2 hESC-NCSC 세포주 (hNCSCs), 및 2 hESC-SCP 세포주 (hSCPs)의 6개 샘플에서 유의미하게 다른 발현 (3,666 significant transcripts (one-way ANOVA, p<0.01))을 보이는 유전자의 집합의 계층적 클러스터링한 결과이다. 히트 맵 (heat map)은 분화되지 않은 hESC에 정규화된 log10 fold change의 상대값을 나타낸다. 도 3의 B는 hESC-NCSCs (hNCSCs) 및 hESC-SCPs (hSCPs)에서 유전자 어레이 분석 결과를 나타낸 도이다. 슈반 세포 및 신경 능선과 연관된 유전자의 발현 수준 (fold change)은 분화되지 않은 hESC (day -6)의 유전자와 비교하여 나타내었다. Mean ± SE (n=3)으로 나타내었다. 도 3의 C는 H9 hESCs, hSCPs 및 hNCSCs에서 SCP 마커 및 NCSC 마커의 qPCR 분석 결과를 나타낸 도이다. 도 3의 D는 hSCPs 및 hNCSCs에서 SOX10 (red), NGFR (red), 및 GAP43 (red)을 이용한 면역세포화학 분석 결과를 나타낸 도이다. 세포의 핵은 DAPI (blue)를 이용하여 염색하였다. Scale bar는 50 μm이다.
도 4는 NRG1, CT 및 SB가 hPSC로부터 hSCP을 생산하는데 필요하다는 것을 확인한 도이다. 도 4의 A는 D0일차에 Nestin (green) 및 ZO1 (red)을 면역세포화학 염색하여 신경 로제트 (neural rosettes)를 나타내는 도이다. H9 hESC를 신경 분화 배지 (neural differentiation medium, NDM)로 6일간 처리하였으며, DAPI (blue)는 세포 핵을 염색하기 위해 사용하였다. Scale bar는 100 μm이다. 도 4의 B는 hPSC (hESCs 및 hiPSCs)로부터 hSCP를 NRG1를 SB431542 (SB) 및 CT99021 (CT)와 조합하여 처리하여 생산한 결과를 나타낸 도이다. 본 발명자들의 분화 조건 하에서, 배지에서 NRG1, SB 또는 CT가 생략되는 경우, hSCP를 생산하는데 실패하였다. 도 4의 C는 NRG1 또는 SB와 같은 화합물이 결여된 분화 배지에서 hESC를 hSCP로 분화시킨 11일차의 명시야 이미지 (bright-field image)이다. Scale bar는 100 μm이다. 도 4의 D는 다양한 농도의 NRG1로 처리하여 hSCP 유도 과정 동안 SCP 마커 (MPZ 및 SOX10)의 qPCR 결과를 나타낸 도이다. 도 4의 E는 hESC로부터 hSCP로의 분화 14일 차의 명시야 이미지이다. 면역 염색 결과는 SOX10-양성 세포의 수는 분화 후 14일차에 NRG1의 농도에 의존한다는 것을 나타낸다. 세포의 핵은 DAPI (blue)로 염색하였다. Scale bar는 100 μm이다. 도 4의 F는 H1 hESCs, H7 hESCs, H1 hESC-SCPs, 및 H7 hESC-SCPs에서 SCP 마커 유전자 (CDH19, MPZ, SOX10)의 발현 분석을 qPCR을 통해 수행한 결과를 나타낸 도이다. Mean ± SE (n=3)으로 나타내었다. 도 4의 G는 분화 24일차에 SOX10 (green) 및 GAP43 (red)을 면역세포화학 염색한 결과를 나타낸다. DAPI (blue)는 세포 핵을 염색하기 위해 사용하였다. Scale bar는 100 μm이다.
도 5는 hSCP가 확장될 수 있고, 장기간의 배양 동안 유지될 수 있을 확인한 결과를 나타낸 도이다. 도 5의 A는 hPSC의 hSCP로의 분화 및 생산되는 세포의 수를 개략적으로 나타낸 도이다. 도 5의 B는 초기 계대 (p1) 및 후기 계대 (p20)의 H9 hESC 유래 hSCP에서 SCP 마커 (CDH19, GAP43, ITGA4 MPZ, NGFR, and SOX10)의 qPCR 분석 결과를 나타낸 도이다. Mean ± SE (n=3)으로 나타내었다. 도 5의 C는 H9 hESC 유래 hSCP (passage 20)에서 SCP 마커인 SOX10 (red), NGFR (red), 및 GAP43 (red)의 면역세포화학 염색 결과를 나타낸 도이다. Ki67 (red)는 세포 증식 마커로 사용되었다. 세포의 핵은 DAPI (blue)로 염색하였다. Scale bar는 50 μm이다. 도 5의 D는 초기 계대 (p1) 및 후기 계대 (p20)의 H9 hESC 유래 hSCP에서의 hSCP 마커 (SOX10, NGFR, MPZ 및 GAP43) 에 대한 유세포 분석 결과를 나타낸 도이다.
도 6은 hSCP가 자가-증식하며 장기간의 배양 후에도 hSCP 특성을 유지함을 확인한 결과를 나타낸 도이다. 도 6의 A는 H9 hESC 유래 초기-계대 hSCP (p1) 및 후기-계대 hSCPs (p19)의 마이크로어레이 분석 결과를 나타낸 도이다. 히트 맵 (heat map)은 분화되지 않은 hESC의 값에 대한 log10 fold change의 상대값을 나타낸다. 도 6의 B 및 C는 초기 계대 (p5) hSCPs 및 후기 계대 (p25) hSCPs에서 SCP 마커 (CDH19, GAP43, ITGA4, MPZ, NGFR, and SOX10)를 이용하여 각각 qPCR (B), RT-PCR (C) 분석 결과를 나타낸 도이다. Mean ± SE (n=4)으로 나타내었다.
도 7은 hSCP가 슈반 세포로 효율적이고 빠르게 분화할 수 있음을 확인한 도이다. 도 7의 A는 0일차, 4일차, 7일차, 및 20일차에서 hSCP에서 슈반 세포로 분화하는 과정을 보여주는 명시야 이미지이다. Scale bar는 100 μm이다. 도 7의 B는 hSCP-유래 슈반 세포 분화 동안 신경 성장 인자인 BDNF, CNTF, GDNF, NGF, NT-3, NT-4에 대한 qPCR 결과를 나타낸 도이다. Mean ± SE (n=4)으로 나타내었다. 도 7의 C는 슈반 세포 마커인 NGFR (green) 및 S100 (red)을 분화 18일 경과 후 면역 염색한 결과를 나타낸 도이다. 세포의 핵은 DAPI (blue)로 염색하였다. Scale bar는 100 μm이다. 도 7의 D는 H9 hESC-SCP가 멜라노사이트로 분화되었음을 확인한 도이다. 상기 hESC-SCP는 EDN3, FGF2, cAMP, Wnt 및 BMP4 신호 전달 인자를 포함하는 분화 배지를 이용하여 분화되었으며, 상기 분화된 세포는 16일 내에 착색 되었다 (pigmented). 도 7의 E는 SCP 유래 멜라노사이트의 분화 과정 동안 멜라닌 형성 (melanogenesis)에 연관된 유전자인 MITF, TYR,TYRP1 의 qPCR 결과를 나타낸 도이다. Mean ± SE (n=3)으로 나타내었다. 도 7의 F는 멜라노사이트 마커인 MITF (red) 및 MelA (red)의 hSCP 유래 멜라노사이트의 면역 세포 화학 분석 결과를 나타낸 도이다. 세포 핵은 DAPI (blue)로 염색하였다. Scale bar는 100 μm이다. 도 7의 G는 왼쪽 튜브의 분화되지 않은 hSCP와 달리, 오른쪽 튜브의 분화된 세포의 세포 펠렛 (pellet)은 완전히 착색되었음을 확인하였음을 나타낸 도이다.
도 8은 hSCP-SC가 이식된 마우스의 재생된 좌골 신경으로 통합되었음을 나타낸 도이다. 도 8의 A는 MBP (red) 및 CASPR (white)을 면역 염색한, H9-hESC-SCP 유래 슈반 세포에 의해 재생되도록 유도된 신경의 종단면이다. 세포의 핵은 DAPI (blue)으로 염색하였다. 대부분의 이식된 GFP 표지된 슈반 세포는 원위 영역에서 관찰되었다. Scale bar는 200 μm이다. 도 8의 B는 MBP가 면역 염색된 세로 부분이다. 높은 배율의 도는 이식된 슈반 세포가 MBP에 양성임을 나타낸다. Scale bar는 200 μm이다.
도 9의 A는 hSCP의 슈반 세포로의 분화를 개략적으로 나타낸 도이다. 아래도면은 hSCP-SC로의 분화 동안 세포의 대표적인 위상 대조 이미지이다. Scale bar는 200 μm이다. 도 9의 B는 H9 hESC-SCP의 hSCP-SC로의 분화 과정 동안 슈반 세포 마커 유전자인 GFAP, PLP, PMP22, S100의qPCR 결과를 나타낸 도이다. Mean ± SE (n=3)으로 나타내었다. 도 9의 C는 분화 10일 경과 후에 수득한 hSCP-유래 슈반 세포에서 신경 영양 인자인 BDNF, GDNF, NGF, 및 슈반 세포 마커 유전자인 MPZ, MBP NGFR, PMP22, S100, SOX10의 qPCR 분석 결과를 나타낸 도이다. GAPDH에 대한 표시된 유전자의 mRNA 발현 수준 비율은 2-dCt로 정의된다. Mean ± SE (n=5)로 나타내었다. 도 9의 D는 분화 10일 후, 슈반 세포 마커 (NGFR (green), S100 (red), EGR2 (green) 및 MPZ (red))에 대한 면역 염색 결과를 나타낸 도이다. 세포의 핵은 DAPI (blue)로 염색하였다. Scale bars는 100 μm이다. 도 9의 E는 hSCP의 유전자 발현 수준을 hSCP-SC 및 일차 인간 슈반 세포의 유전자 발현 수준과 비교하기 위한 마이크로어레이 분석 결과를 나타낸 도이다. 히트 맵 (heat map)은 분화되지 않은 H9 hESC에 대한 log10 fold change의 상대 값을 나타낸다.
도 10은 hSCP-유래 슈반 세포가 미엘린을 형성하고 신경 영양 인자를 분비하는지 여부를 확인한 결과를 나타낸 도이다. 도 10의 A는 H9 hESC-SCP 유래의 분화된 슈반 세포를 랫트 DRG (rat DRG) 와 함께 28일간 공동 배양하고, MBP (red), TUJ1 (green), 및 인간 핵 (human nuclear, hNU, gray)에 대해 면역 염색한 결과를 나타낸 도이다. 위의 확대된 박스쳐진 영역은 hNU-양성 세포가 MBP와 함께 공동 염색되었음을 나타낸다. 중간의 MPZ-양성 세포를 표시하는 박스 표시된 영역의 수직적 재구성은 뉴로필라멘트 (neurofilament)를 둘러 싸고 있다. 아래의 미엘린 형성하지 않은 슈반 세포의 대부분은 슈반 세포 마커인 S100B이 염색되었다. Zen 소프트웨어를 이용한 2.5D 재건 (reconstruction)을 보여주는 높은 배율의 박스 표시된 영역의 화살표는 정렬된 뉴로필라멘트에 슈반 세포가 존재하는 것을 보여주고 있다. 슬라이스의 두께는 0.34 μm이다. Scale bar는 50 μm이다. 도 10의 B는 슈반 세포에 의해 분비되는 것으로 알려진 신경 영양 인자 BDNF, GDNF, NGF, 및 NT3이 hSCP로부터 hSCP-SC로의 후-분화 (post-differentiation) 18일 경과 후 상당히 증가한 것을 나타내는 도이다. Mean ± SE (n=4)으로 나타내었으며, #는 신경 영양 인자가 검출되지 않았음을, *는 t-테스트를 이용하여 SCP 및 SCP-SC를 비교하여 p<0.01 인 경우를 나타낸다.
도 11은 hSCP-유래 슈반 세포가 in vivo에서 말초 신경의 재생을 촉진하였음을 확인한 도이다. 도 11의 A는 실험 개략도이다. 8주령의 수컷 마우스를 좌골 신경 손상 모델로 이용하였다. 5 μl의 매트리겔 (Matrigel) 또는 매트리겔 및 SCP-SC의 혼합물 (Marigel plus SCP-SCs mixture)을 손상된 부분에 이식하였다 (red circle). 도 11의 B는 손상된 신경 영역에 hSCP 유래 슈반 세포를 이식한 후 좌골 신경 재생의 대표적 이미지이다 (손상 8주후). 도 11의 C는 손상 8주차에 자로 절단된 좌골 신경의 길이를 측정한 결과이다. Mean ± SE (n=6)으로 나타내었다. 도 11의 D는 손상 8주 경과 후, GFP-표지된 hSCP-SC에 의해 재생이 유도된 좌골 신경의 종단면, 및 S100B (red) 및 NF (violet)을 면역 염색한 결과를 나타낸 도이다. 삽도에서 높은 배율의 이미지는 이식된 (grafted) GFP-표지된 슈반 세포가 생존하였으며, S100B로 염색되었음을 나타낸다. Scale bar는 500 μm이다. 도 11의 E는 매트리겔 (대조군) 또는 매트리겔 및 hSCP-SC (Matrigel plus hSCP-SCs)가 이식된 마우스의 발자국 패턴을 대표적으로 나타낸 도이다. 도 11의 F는 hSCP-SC가 이식된 마우스와 대조군의 발자국을 SFI로 정량화한 결과이다. Mean ± SE (n=6)으로 나타내었다. *는 t-테스트를 이용하여 대조군 및 SCP-SC를 비교하여 p<0.01인 경우이다.
도 12는 hPSC로부터 hSCP를 통해 매우 정제된 슈반 세포의 집단을 생성할 수 있음을 확인한 결과이다. 배양 배지의 연속적인 처리에 의해 자가-재생하는 hSCP를 통해 hPSC로부터 매우 균질의 기능적인 슈반 세포를 생성하는 간단한 프로토콜을 도면에 요약하였다.
도 13은 레티노산 및 PDGF-BB를 포함하지 않는, NRG1 및 포스콜린만을 포함하는 SCPDM에서 슈반 세포 전구체를 분화 시킨 결과를 나타낸 도이다. 분화 후 5일과 8일에서 각각 슈반 세포 마커인 S100B (red) 및 PLP (green)을 면역 염색한 결과, 8일만에 슈반 세포로 분화 되었음을 나타낸다.
도 14는 1차 배양액 (NDM)에서 hPSC를 1 내지 14일간 배양한 후, 배지를 SCPDM으로 교체하여 배양한 결과를 나타낸 도이다. hESCs와 iPSCs 로부터 각각 1차배양액 NDM에서 1일, 6일, 14일동안 배양한 후 2차 배양액 SCPDM으로 교체 배양 한후 24일째 세포의 슈반 세포 전구체 마커인 SOX10, NGFR, 및 MPZ의 상대적 발현량을 모두 증가 했음을 보여 준다.
도 15는 1차 배양액 (NDM) 및 2차 배양액 (SCPDM)을 활용하여 직접리프로그래밍 인자가 도입된 섬유아세포로부터 22일만에 직접리프로그래밍을 통해 슈반 세포 전구체 (DiSCP)를 제조하였음을 확인한 도이다. DiSCP와 hSCP를 비교하였을 때 주요 마커들의 발현량이 비슷하게 증가하는 것을 나타낸다.
도 16은 분리된 DiSCP를 8일간 슈반 세포 분화 배지에서 배양한 결과를 나타낸 도이다. 상기 배양된 세포에서 슈반 세포 마커인 S100B 및 NGFR의 발현을 확인하였고, DiSCP-SC로부터 신경 영양 인자인 BDNF, GDNF, NGF, 및 NT3가 분비되는 것을 ELISA를 통해 확인하였다.
상기 목적을 달성하기 위한, 본 발명의 하나의 양태는 (a) 다능성 줄기 세포 (pluripotent stem cell)를 SB431542, 및 CT99021을 포함하는 배지에서 1차 배양하는 단계; 및 (b) 상기 1차 배양된 세포에 NRG1 (neuregulin-1)을 추가로 첨가한 배지로 2차 배양하는 단계를 포함하는, 다능성 줄기세포로부터 슈반 세포 전구체를 제조하는 방법을 제공한다.
본 발명의 구체적인 일 양태는 상기 다능성 줄기세포로부터 슈반 세포 전구체를 제조하는 방법은 신경 중간체 (neural intermediate) 단계를 거치지 않는 직접 분화 방법에 의한 것인, 슈반 세포 전구체를 제조하는 방법을 제공하는 것이다.
본 발명의 슈반 세포 전구체를 제조하는 방법은 SB431542, 및 CT99021을 포함하는 배지에서 다능성 줄기 세포를 1차 배양한 후, NRG1을 추가로 포함하는 배지에서 2차 배양함으로써, 다능성 줄기 세포로부터 신경 중간체를 거치지 않고, 슈반 세포로 분화될 수 있는 슈반 세포 전구체를 직접 제조할 수 있다.
본 발명의 용어, “다능성 줄기 세포”는 삼배엽 (내배엽, 중배엽, 및 외배엽)의 모든 세포로 분화하는 능력을 갖춘 미분화 줄기 세포를 말한다. 생체외 배양조건에서 미분화성 다능성 줄기세포는 정상핵형을 유지한 상태로 다능성과 자가증식능(자가복제능)을 갖는다. 본 발명에서, 다능성은 전분화능 (pluripotent)과 다분화능 (multipotent)을 모두 포함할 수 있다. 전분화능인 다능성 줄기세포는 배성암세포(EC세포), 배성줄기세포(ES세포), 생식줄기세포(EG세포) 등을 포함할 수 있다.
구체적으로, 본 발명의 다능성 줄기 세포는 인간 유래인 hESC (human embryonic stem cell) 또는 hiPSC (human induced pluripotent stem cell)일 수 있으나, 다능성을 가지는 한, 그 유래종은 이에 제한없이 포함된다.
본 발명의 용어, “슈반 세포 전구체”는 줄기 세포로부터 슈반 세포로 분화되는 과정 중에, 슈반 세포가 거치는 하나의 중간 단계로서, 구체적으로는 신경 능선 세포 (neural crest stem cell, NCSC) 및 미성숙한 미엘린 형성 전 슈반 세포 사이의 중간 단계 세포이다. 상기 슈반 세포 전구체는 분화되어 슈반 세포가 될 수 있다.
본 발명의 용어, “신경 중간체”는 슈반 세포 전구체를 제외한, 줄기 세포로부터 분화되는 중간 세포를 의미하고, 구체적으로는 신경 능선 줄기 세포 (neural crest stem cell, NCSC)일 수 있으나, 이에 제한되지 않는다. 종래에는 다능성 줄기 세포로부터 분화되는 NCSC를 슈반 세포 생산을 위한 전구세포로 이용하였으나, 시간, 비용, 기능성 측면에서 효율적인 최선의 방법이라고 볼 수 없다. 본 발명에서는 다능성 줄기 세포 또는 분화된 성체 세포로부터 NCSC를 거치지 않고, 증식 가능한 슈반 세포 전구체를 직접 제조하였고, 이로부터 고유의 기능이 획득된 슈반 세포를 효율적으로 생산하였다. 상기 슈반 세포 전구체로부터 생산된 슈반 세포는 우수한 신경 재생 효과를 가짐을 확인하였다.
본 발명의 방법은 특정 배지 조성의 조합에 의해 다능성 줄기세포 또는 성체 세포로부터 슈반세포 전구체로 직접 제조할 수 있는 것을 특징으로 한다.
본 발명의 용어, “직접 제조”, 및 “직접 유도” 는 혼용되어 사용될 수 있다.
본 발명의 용어, “직접 제조”, 및 “직접 유도”는 다능성 줄기세포로부터 계통 제한적인 슈반 세포 전구체를 NCSC (neural crest stem cell) 분화 단계 없이 직접 계통-특이적으로 분화 (directed differentiation) 시킬 수 있는 방법을 의미한다. 즉, NCSC 분화 단계를 생략할 수 있는 방법으로, 슈반 세포 분화에 소요되는 전체 시간을 획기적으로 단축하여, 효능 (efficiency)를 증대시키고, 궁극적으로 기능을 증대 시킬 수 있다.
본 발명의 구체적인 일 양태는 상기 1차 배양은 1일 내지 14일 동안 수행하고, 상기 2차 배양은 10일 내지 150일 동안 수행하는 것인, 슈반 세포 전구체를 제조하는 방법을 제공하는 것이다.
본 발명의 일 실시예에서는 슈반 세포 전구체를 1 내지 14일 간의 1차 배양 후, 2차 배양할 경우, SCP-특이적 마커를 발현하는 것을 확인하였다 (도 14).
구체적으로, 상기 2차 배양은 5일 내지 150일, 더 구체적으로는 10일 내지 150일, 더욱 구체적으로는 10일 내지 100일, 더욱 구체적으로는 10일 내지 50일, 더욱 구체적으로는 10일 내지 30일 또는 15일 이상 동안 수행할 수 있다. 본 발명의 슈반 세포 전구체를 제조할 수 있는 기간은 제한 없이 포함된다.
본 발명의 구체적인 다른 양태는 상기 (a) 단계의 배지는 2 내지 20 μM의 SB431542 및 1 내지 10 μM의 CT99021을 포함하는 것이거나, 상기 (b) 단계의 배지는 20 내지 1000 ng/ml의 NRG1을 포함하는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 용어, "SB431542"는 TGF-β(transforming growth factor-β)의 특이적 억제자로서, 하기 화학식 1의 구조를 가진다.
[화학식 1]
Figure PCTKR2018000910-appb-I000001
구체적으로, 상기 SB431542는 1 내지 100 μM, 더 구체적으로는 1 내지 50 μM, 더 구체적으로는 1 내지 30 μM, 더욱 구체적으로는 2 내지 20 μM의 농도로 포함될 수 있으나, 이에 제한되지 않는다.
본 발명의 용어, “CT99021”은 CHIR-99021 (CT99021)는 GSK-3α/β 억제자로서, CT99021, CHIR99021, CHIR 99021, CHIR-99021 또는 CT-99021으로도 명명될 수 있다. 하기 화학식 2의 구조를 가진다.
[화학식 2]
Figure PCTKR2018000910-appb-I000002
구체적으로, 상기 CT99021은 1 내지 100 μM, 더 구체적으로는 1 내지 50 μM, 더 구체적으로는 1 내지 10 μM, 더욱 구체적으로는 1 내지 5 μM의 농도로 포함될 수 있으나, 이에 제한되지 않는다.
본 발명의 “NRG1 (neuregulin-1)”은 NRG1 유전자에 의해 암호화되는 단백질로, EGFR 수용체에 작용한다.
구체적으로, 상기 NRG1은 1 내지 1000 ng/ml, 더 구체적으로는 10 내지 1000 ng/ml, 더 구체적으로는 20 내지 1000 ng/ml, 더욱 구체적으로는 20 내지 200 ng/ml 의 농도로 포함될 수 있으나, 이에 제한되지 않는다.
본 발명의 일 실시예에서는 인간 다능성 줄기 세포 (hPSC)를 SB431542 (20 μM) 및 CT99021 (3 μM)을 포함하는 배지 neural differentiation medium, NDM)에서 1차 배양한 후, NRG1 (50 ng/ml)를 추가로 포함하는 슈반 세포 전구체 유도 배지 (Schwann cell precursor induction medium, SCPDM)으로 2차 배양하여, hPSC 유래의 슈반 세포 전구체 (SCP)를 생산할 수 있음을 확인하였다 (실시예 1). 특히, 상기 방법으로 제조된 슈반 세포 전구체는 SCP-특이적 마커인 CDH19, MPZ, GAP43, SOX10 등의 발현 수준이 높은 것을 확인하여, 본 발명의 방법에 따라 정상적인 슈반 세포 전구체가 생산되었음을 확인하였다 (실시예 2).
또한, 본 발명의 다능성 줄기세포로부터 슈반 세포 전구체를 생산하는 방법은 인간 배아 줄기 세포 (human embryonic stem cell, hESC) 및 인간 유도 만능 줄기 세포 (human induced pluripotent stem cell, hiPSC)에서 모두 효과적으로 슈반 세포 전구체를 생산할 수 있음을 확인하여, 다능성 줄기 세포의 구체적인 유래에 무관하게 사용할 수 있음을 확인하였다. 한편, 상기 방법으로 제조된 슈반 세포 전구체는 신경 중간체인 신경 능선 줄기 세포 (NCSC)와도 구별되는 마커 발현 양상을 나타내어, NCSC와 구별되는 중간 세포임을 확인하였다 (실시예 3).
더 나아가, 본 발명의 다른 일 실시예에서는 상기 SB431542, CT99021, 및 NRG1 중 어느 하나만 생략되더라도 슈반 세포 전구체로의 유도가 불가능한 것을 확인하였으며, 이는 상기 세 물질의 조합이 슈반 세포 전구체의 생산에 필수적임을 시사한다 (실시예 4).
본 발명의 구체적인 다른 양태는, 상기 슈반 세포 전구체가 슈반 세포 또는 멜라노사이트 (melanocyte)로 분화 가능한, 슈반 세포 전구체를 제조하는 방법을 제공한다.
본 발명의 일 실시예에서는 상기 방법으로 제조된 슈반 세포 전구체가 높은 확장성을 가지며, 장기간 유지 될 수 있을 뿐만 아니라, 슈반 세포 및 멜라노사이트로도 분화 가능한 다분화능을 가지는 것을 확인하였다 (실시예 5 내지 6).
본 발명의 구체적인 다른 양태는 상기 방법으로 제조된 슈반 세포 전구체를 제공하는 것이다.
본 발명의 방법으로 제조된 슈반 세포 전구체는 다능성 줄기세포로부터 분화된 최초의 슈반 세포 전구체이며, 상기 슈반 세포 전구체는 슈반세포, 멜라닌 세포 등으로 분화 가능한 다분화능, 높은 증식률(확장성) 및 장기간 유지 가능성을 가진다.
본 발명의 다른 양태는 (a) 성체 세포에 직접리프로그래밍 인자를 도입하여 배양된 세포를 SB431542, 및 CT99021을 포함하는 배지에서 1차 배양하는 단계; 및 (b) 상기 1차 배양된 세포에 NRG1 (neuregulin-1)을 추가로 첨가한 배지로 2차 배양하는 단계를 포함하는, 성체 세포로부터 슈반 세포 전구체를 제조하는 방법을 제공하는 것이다.
본 발명의 구체적인 일 양태는 다능성 줄기 세포를 거치지 않고, 성체 세포를 목적 세포로 직접 분화시키는 직접리프로그래밍 방법에 의해 성체 세포로부터 슈반 세포 전구체를 제조하는 방법을 제공하는 것이다. 구체적으로, 상기 직접리프로그래밍 인자는 OCT3/4, SOX2, KLF4, LIN28, L-MYC일 수 있으나, 이에 제한되지 않는다.
본 발명에서 용어, "직접리프로그래밍(direct reprogramming)"은 리프로그래밍 과정을 통해 전능성을 가진 유도 만능 줄기세포를 제작하는 기술과는 차별화되며, 리프로그래밍 배양을 통해 직접적으로 원하는 목적 세포로의 직접 전환을 유도하는 기술이다. 즉, 분리된 세포를 전능성에 이르기까지 역분화하고 다시 목적세포로 재분화하는 과정을 거치지 않고 원하는 목적 세포를 리프로그래밍 배양을 통해 직접 생산하는 방법을 직접 리프로그래밍이라고 한다. 기존의 분화된 세포로부터 리프로그래밍 또는 역분화를 일으켜 유도 만능 줄기세포를 제조한 후, 유도 만능 줄기세포로부터 원하는 특정 세포로의 분화를 유도하는 경우에 미분화 세포가 잔류하여 세포를 이식한 후 종양이 생성되거나, 원하는 세포로의 분화 효율이 높지 않은 문제점 및 시간이 매우 오래 걸린다는 점 등이 지적되고 있다. 본 발명에서는 직접 리프로그래밍 기술을 통해 목적 세포인 슈반 세포를 직접 생산함으로써 상기 문제점을 극복할 수 있는 대안을 제공할 수 있을 것으로 기대한다. 본 발명의 목적상 직접 리프로그래밍은 직접 역분화, 직접 분화, 직접 전환, 직접교차분화, 교차분화 등과 혼용될 수 있다. 본 발명에서 직접 리프로그래밍은 특히 슈반 세포 전구체로의 직접 역분화 또는 교차 분화를 의미할 수 있다.
본 발명의 용어, “직접리프로그래밍 인자”는 이미 분화가 진행된 특정 계열의 세포를 전능성을 가진 유도 만능 줄기세포를 거치지 않고 다른 계열의 세포로 직접리프로그래밍하는 역할을 하는 인자로서, 구체적으로, 있으며, OCT3/4, SOX2, KLF4, LIN28, L-MYC일 수 있으나, 이에 제한되지 않는다.
본 발명에서, 상기 직접리프로그래밍 인자를 도입하여 배양하는 단계는, 세포 내에 존재하는 상기 인자의 발현 수준을 증가시키거나, 유전자 변형, 발현 벡터, 외래 발현 유전자 도입, 발현 유도 효과를 가지는 물질의 처리 등을 통한 단계일 수 있으나, 상기 직접리프로그래밍 인자의 발현 수준을 증가시키는 방법인 이상, 제한되지 않는다. 특히, 원하는 시간 및 조건 하에서 발현을 유도하는 방법일 수 있다.
또한, 상기 직접리프로그래밍 인자를 도입하여 배양하는 단계는 본 발명에서 분화 세포에 전능성 인자의 발현 수준을 증가시키는 단계는 3일 내지 6일 동안 수행하는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 용어, “성체 세포”는 특별한 제한은 없으나, 이미 분화가 완료된 세포로서, 여러 종류의 세포로 분화할 수 있는 능력을 말하는 다분화능을 완전히 소실하거나 대부분 소실한 상태의 세포를 말한다. 구체적으로는 생식세포, 체세포(somatic cell) 또는 전구세포(progenitor cell) 등 이미 계열(lineage)이 특정된 세포일 수 있다. 그 예로 인간에게서 유래한 세포일 수 있으나, 다양한 개체에서 유래된 세포 역시 본 발명의 범위 내에 속한다. 보다 구체적으로, 섬유아 세포일 수 있으나, 이에 제한되지 않는다.
본 발명자들은 상기 분화가 완료된 성체 세포를 다른 계열의 세포로 직접리프로그래밍을 통해 제조할 수 있음을 확인하였고, 특히 섬유아 세포에 직접리프로그래밍 인자를 도입하여 배양한 후, 2단계의 배양을 거치면 슈반 세포 전구체를 제조할 수 있음을 확인하였다 (도 15). 또한, 성체 세포에서 직접리프로그래밍된 슈반 세포 전구체를 슈반 세포로 분화시킬 경우, 슈반 세포의 마커를 발현할 뿐만 아니라, 신경 영양 인자를 분비할 수 있음을 확인하였다 (도 16).
다능성 줄기세포로부터 제조되는 슈반 세포 전구체 뿐만 아니라, 성체 세포로부터 직접리프로그래밍을 통해 제조된 슈반 세포 전구체의 제조 방법 역시, 신경 중간체 단계를 거치지 않는 슈반 세포 전구체 제조 방법으로, 상술한 직접 분화에 의한 제조 방법의 장점을 가질 수 있다.
이러한 결과로부터, 본 발명자들은 직접 분화를 통해 다능성 줄기 세포에서 슈반 세포 전구체를 제조할 수 있을 뿐만 아니라, 직접리프로그래밍을 통해 성체 세포에서 슈반 세포 전구체를 제조하는 것도 가능함을 확인하였다.
본 발명의 구체적인 다른 양태는 상기 (a) 단계의 1차 배양은 1일 내지 9일 동안 수행하고, 상기 (b) 단계의 2차 배양은 13일 내지 30일 동안 수행하는 것일 수 있으나, 이에 제한되지 않는다.
본 발명에서, 배양 기간은 목적하는 세포를 수득하기 위해 당업자가 적절히 선택할 수 있으며, 예를 들어, (a) 단계의 1차 배양은 1일 내지 20일, 구체적으로, 1일 내지 14일, 보다 구체적으로 1일 내지 9일 동안 수행하는 것일 수 있으며, (b) 단계의 2차 배양은 10일 내지 150일, 구체적으로, 13일 내지 50일, 보다 구체적으로 13일 내지 30일 동안 수행하는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 구체적인 다른 양태는 상기 (b) 단계의 배지는 2 내지 20 μM의 SB431542 및 1 내지 10 μM의 CT99021을 포함하는 것일 수 있고, 또한, 20 내지 1000 ng/ml의 NRG1을 포함하는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 다른 양태는 상기 제조 방법으로 슈반 세포 전구체를 제조하여 준비하는 단계; 및 상기 준비된 슈반 세포 전구체를 NRG1, 포스콜린 (forskolin)을 포함하는 배지에서 배양하는 단계를 포함하는, 슈반 세포를 제조하는 방법을 제공하는 것이다.
본 발명의 다른 양태는 상기 방법으로 제조된 슈반 세포를 제공하는 것이다. 본 발명의 방법으로 제조된 슈반세포는 다능성 줄기세포 또는 성체 세포로부터 슈반 세포 전구체를 거쳐 제조된 슈반 세포이며, 슈반 세포-특이 마커 유전자인 S100B, OCT6, MPZ, Krox20, PMP22, NGFR, 및 PLP등에 양성발현을 나타내며, 동시에 BDNF, NGF, GDNF, 및 NT3등을 포함한 신경세포 영양인자를 분비하는 특징을 가진다. 신경 세포와 동시 배양을 할 경우, 신경세포의 축삭을 둘러쌀 수 있는 myelination 기능과 함께, 손상된 신경조직을 재생하는데 탁월한 효과를 가진다.
본 발명의 슈반 세포 제조 방법은 다능성 줄기 세포 또는 직접리프로그래밍 인자가 도입된 성체 세포의 2단계 배양을 통해, 슈반 세포 전구체를 회수하고, 상기 슈반 세포 전구체를 NRG1, 레티노산, PDGF-BB, 및 포스콜린을 포함하는 배지에서 배양하여 슈반 세포를 제조하는 방법이다. 본 발명의 방법으로 제조된 슈반 세포는 슈반 세포의 미엘린 형성능 및 신경 영양 인자 분비능을 가져, 손상된 신경을 재생 및 복원할 수 있는 효과를 가진다.
본 발명의 용어, “다능성 줄기 세포”, “성체 세포”, “직접리프로그래밍”, “슈반 세포 전구체”, “SB431542”, “CT99021”, “NRG1”은 상술한 바와 같다.
본 발명의 용어, “슈반 세포”는 말초 신경계 내 신경교세포로서, 수초 형성, 신경 자극 전달, 신경 영양 인자 분비 등의 역할을 하며, 특히, 신경의 생존 및 축삭의 성장에 영향을 미치는 것으로 알려져 있다.
본 발명의 일 실시예에 의하면, NRG1 (200 ng/ml), 레티노산 (100 nM), PDGF-BB (10 ng/ml), 및 포스콜린 (4μM)을 포함하는, SC 분화 배지 (SC differentiation medium, SCDM) 또는 NRG1 및 포스콜린 (forskolin)로 슈반 세포 전구체를 분화시킴으로써, 슈반 세포를 생산할 수 있음을 확인하였다. 특히, 상기 제조된 슈반 세포는 슈반 세포 마커 (FAP, PLP, PMP22, S100 등)을 발현하며, 신경 영양 인자 (BDNF, GDNF, NGF, NT-3, NT-4, CNPase, CNTF 등)의 발현이 향상됨을 확인하였다 (실시예 7).
본 발명의 구체적인 일 양태는 상기 배지는 100 내지 1000ng/ml의 NRG1 및 1 내지 10 μM의 포스콜린을 포함하는 슈반 세포의 제조 방법을 제공하는 것이다.
본 발명의 구체적인 다른 양태는 상기 배지는 레티노산 (retinoic acid) 및 PDGF-BB (platelet-derived growth factor-BB)를 추가로 포함하는 슈반 세포의 제조 방법을 제공하는 것이다.
본 발명의 구체적인 다른 양태는 상기 배지가 100 내지 1000 ng/ml의 NRG1, 50 내지 150 nM의 레티노산, 5 내지 15 ng/ml의 PDGF-BB, 및 1 내지 10 μM의 포스콜린을 포함하는, 슈반 세포의 제조 방법을 제공하는 것이다.
본 발명의 슈반 세포 제조를 위한 배지에는 1 내지 1000 ng/ml, 더 구체적으로는 10 내지 1000 ng/ml, 더 구체적으로는 100 내지 1000ng/ml의 NRG1이 포함될 수 있으나, 이에 제한되지 않는다.
본 발명의 용어, “레티노산 (retinoic acid)”은 비타민 A가 체내에서 분해될 때 생성되는 대사 산물이며, C20H28O2의 화학식을 가진다. 대장암 억제, 류머티즘 치료 등의 효과를 가지는 것으로 알려져 있다. 구체적으로, 상기 레티노산은 1 내지 300 nM, 더 구체적으로, 10 내지 200 nM, 더 구체적으로 50 내지 150 nM의 농도로 배지에 포함될 수 있으나, 이에 제한되지 않는다.
본 발명의 용어, “PDGF-BB (Platelet-Derived Growth Factor-BB)”는 PDGFB 유전자로부터 암호화되는 PDGFB의 이량체 (homodimer)이다. 구체적으로 상기 PDGF-BB는 1 내지 100 ng/ml, 더 구체적으로, 1 내지 50 ng/ml, 더 구체적으로는 5 내지 15 ng/ml의 농도로 배지에 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 용어, “포스콜린 (forskolin)”은 Indian Coleus plant (Plectranthus barbatus)에서 생산되는 labdane diterpene이다. 구체적으로, 상기 포스콜린은 1 내지 100 μM, 더 구체적으로 1 내지 50 μM, 더 구체적으로는 1 내지 10 μM의 농도로 배지에 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다른 구체적인 일 양태는 상기 슈반 세포는 미엘린 형성능 (myelination) 및 신경 영양 인자 (neurotrophic factor)의 분비능을 가지는 것인, 슈반 세포의 제조 방법을 제공하는 것이다. 구체적으로, 상기 신경 영양 인자는 BDNF, GDNF, NGF, 또는 NT-3일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 실시예에 의하면, 본 발명의 방법에 따라 제조된 슈반 세포가 미엘린 형성 능 및 신경 영양 인자 (NGF, BDNF, GDNF, NT-3)를 정상적으로 분비하는 것을 확인하였다 (실시예 8).
본 발명의 또 다른 일 양태는 (a) 상기 제조 방법으로 슈반 세포 전구체를 제조하여 준비하는 단계; (b) 상기 준비된 슈반 세포 전구체를 NRG1, 및 포스콜린 (forskolin)을 포함하는 배지에서 배양하는 단계; (c) 상기 배지로부터 슈반 세포를 회수하는 단계; 및 (d) 상기 회수된 슈반 세포를 약학적으로 허용 가능한 담체와 혼합하는 단계를 포함하는, 슈반 세포를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법을 제공한다.
본 발명의 다른 일 양태는 상기 방법으로 제조된 슈반 세포를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 구체적인 일 양태는 상기 (b) 단계의 배지는 레티노산 (retinoic acid) 및 PDGF-BB (platelet-derived growth factor-BB)를 추가로 포함하는 것인 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법을 제공한다.
본 발명의 구체적인 일 양태는 상기 신경 질환은 퇴행성 신경질환, 탈수초 신경질환, 근위축성 측색경화증, 외상성 척수질환 또는 말초신경질환인 것인, 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법을 제공하는 것이다.
본 발명의 용어, “신경 질환”은 신경계 관련 질환을 의미하며, 형성된 미엘린 (수초) 또는 축삭의 외적, 내적 요인에 따른 손상, 퇴행 또는 기능의 상실, 신경 세포의 손실 또는 손상 등으로 유발 될 수 있는 질환이며, 구체적으로는 퇴행성 신경질환, 탈수초 신경질환, 근위축성 측색경화증, 외상성 척수질환 또는 말초신경질환일 수 있으나, 이에 제한되지 않는다.
본 발명의 슈반 세포 제조 방법으로 제조되는 슈반 세포는 미엘린을 형성하고, 다양한 신경 영양 인자를 분비할 수 있어, 손상된 신경의 복원 및 재생을 통해, 상기와 같은 신경 질환을 예방 또는 치료하는데 이용될 수 있다.
본 발명의 신경 질환 예방 또는 치료용 약학적 조성물에 포함되는 슈반 세포는 미엘린 형성능 및 신경 영양 인자 분비능을 가지므로, 신경 재생 및 복원 효과를 통해 신경 질환의 예방 또는 치료에 사용될 수 있다.
본 발명의 일 실시예에서는 상기 슈반 세포가 이식된 좌골 신경이 손상된 마우스가 대조군에 비하여 신경 재생 효과가 우수한 것을 확인하였으며 (실시예 9), 이는 본 발명의 방법에 따라 제조된 슈반 세포가 미엘린 형성, 신경 영양 인자 분비 등을 통해 신경 관련 질환에 대해 예방 또는 치료 효과를 가질 수 있음을 뒷받침한다.
본 발명의 용어, “약학적으로 혀용 가능한 담체”는 경구투여시에는 결합제, 활택제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장화제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다. 본 발명의 약학적 조성물의 제형은 상술한 바와 같은 약학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여 시에는 정제, 트로키, 캡슐, 엘릭서, 서스펜션, 시럽, 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 기타, 용액, 현탁액, 정제, 환약, 캡슐, 서방형 제제 등으로 제형화 할 수 있다.
한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 방부제 등을 추가로 포함할 수 있다.
본 발명의 또 다른 양태는 상기 제조 방법으로 슈반 세포 전구체를 제조하여 준비하는 단계; 및 상기 준비된 슈반 세포 전구체에 NRG1, 포스콜린 (forskolin), 및 약학적으로 허용 가능한 담체와 혼합하는 단계를 포함하는, 슈반 세포 전구체를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법을 제공한다.
본 발명의 또 다른 양태는 상기 방법으로 제조된 슈반 세포 전구체를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 구체적인 일 양태는 상기 슈반 세포 전구체에 레티노산 (retinoic acid) 및 PDGF-BB (platelet-derived growth factor-BB)를 추가로 혼합하는 단계를 포함하는 슈반 세포의 제조 방법을 제공한다.
본 발명의 슈반 세포 전구체를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법은 슈반 세포 전구체, 및 상기 슈반 세포 전구체를 분화시키는데 필요한 다양한 물질을 함께 포함하는 조성물을 제조함으로써, 슈반 세포로의 분화를 유도함으로써, 신경 질환에 대한 예방 또는 치료 효과를 가질 수 있다.
본 발명의 방법으로 제조된 슈반 세포 전구체 또는 슈반 세포를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물은 다양한 경로를 통해 투여될 수 있으며, 특히 세포 치료제의 형태로 투여될 수 있다.
상기 약학적 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 경구 투여, 비경구 투여, 예를 들어, 복강내 투여, 정맥내 투여(intravenous therapy, i.v), 근육내 투여, 피하 투여, 피내 투여될 수 있으나, 이에 제한되지는 않는다.
상기 약학적 조성물에 포함되는 슈반 세포 또는 슈반 세포 전구체의 함량은 당업자에 의해 쉽게 결정될 수 있으며, 질환의 종류, 질환의 중증도, 환자의 연령, 체중, 일반건강상태, 성별 및 식이, 투여경로 등 다양한 인자에 따라 조절될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 포함하는 것이 중요하다.
본 발명의 또 다른 양태는 상기 방법으로 제조된 약학 조성물을 포함하는 세포 치료제를 제공한다.
본 발명의 또 다른 양태는 NRG1, 포스콜린 (forskolin), 및 슈반 세포 전구체를 포함하는 신경 질환 예방 또는 치료용 세포 치료제를 제공한다.
본 발명의 또 다른 양태는 NRG1, 레티노산 (retinoic acid), PDGF-BB, 포스콜린 (forskolin), 및 슈반 세포 전구체를 포함하는 신경 질환 예방 또는 치료용 세포 치료제를 제공한다.
본 발명의 용어, “세포 치료제”는 살아있는 세포를 환자에게 직접 주입할 수 있는 형태의 약물이며, 살아있는 자가세포, 동종세포 또는 이종세포를 체외에서 배양, 증식하거나 선별하는 등 물리적, 화학적 또는 생물학적 방법으로 조작하여 제조하는 의약품에 해당한다.
상기 세포치료제의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 비경구 투여, 예를 들어, 복강내 투여, 정맥내 투여(intravenous therapy, i.v), 근육내 투여, 피하 투여, 피내 투여될 수 있으나, 이에 제한되지는 않는다. 또한, 세포치료제가 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수도 있다.
본 발명의 또 다른 일 양태는 SB431542, CT99021, 및 NRG1 (neuregulin-1)을 포함하는, 다능성 줄기세포로부터 슈반 세포 전구체로의 직접 분화 유도용 조성물을 제공한다.
본 발명의 다능성 줄기 세포로부터 슈반 세포 전구체로의 직접 분화 유도용 조성물은 신경 중간체를 거치지 않고, 다능성 줄기 세포로부터 슈반 세포 전구체로 직접 분화를 유도할 수 있는 것으로, 슈반 세포로 분화할 수 있는 슈반 세포 전구체를 다능성 줄기 세포로부터 직접 생산할 수 있다.
본 발명의 또 다른 양태는 NRG1, 및 포스콜린 (forskolin)을 포함하는 슈반 세포 전구체로부터 슈반 세포로의 분화용 조성물을 제공한다.
본 발명의 또 다른 일 양태는 NRG1, 레티노산 (retinoic acid), PDGF-BB, 및 포스콜린 (forskolin)을 포함하는, 슈반 세포 전구체로부터 슈반 세포로의 분화용 조성물을 제공한다.
본 발명의 슈반 세포 전구체로부터 슈반 세포로의 분화용 조성물은 슈반 세포 전구체로부터 슈반 세포로 분화시킬 수 있는 조성물로서, 상기 조성물로 분화된 슈반 세포는 미엘린 형성능 및 신경 영양 인자 분비능을 가져 신경 재생 및 손상된 신경의 복원 효과를 가져, 신경 관련 질환의 예방 또는 치료에 유용하게 사용될 수 있다.
본 발명의 또 다른 양태는 상기 방법으로 제조된 슈반 세포 전구체를 포함하는 스크리닝용 키트를 제공한다.
상기 스크리닝용 키트는 신경 질환 예방 또는 치료제 스크리닝용 키트 또는 슈반 세포로의 분화 유도 물질 스크리닝용 키트일 수 있으나, 이에 제한되지 않는다.
이와 같은 키트는 생체외 (ex vivo) 또는 시험관 내 (in vivo) 등에서 자유롭게 실험을 수행할 수 있다.
구체적으로, 상기 키트는 후보 물질을 슈반 세포 전구체에 처리한 후, 상기 슈반 세포 전구체의 특정 유전자 또는 단백질의 발현량을 측정, 비교함으로써 후보 물질을 신경 질환의 예방 또는 치료제 또는 분화 유도 물질로서 선별하는데 이용하는 것일 수 있다.
상기 스크리닝용 키트는 유전자 또는 단백질의 발현량을 측정하는 제제 (안티센스 올리고뉴클레오티드, 프라이머 쌍, 프로브, 항체, 앱타머, 등)을 추가로 포함할 수 있고, 또한, 최적의 반응 수행 조건을 기재한 사용설명서를 추가로 포함할 수 있다. 사용설명서는 팜플렛 또는 전단지 형태의 안내 책자, 키트에 부착된 라벨, 및 키트를 포함하는 패키지의 표면상에 설명을 포함한다. 또한, 안내서는 인터넷과 같이 전기 매체를 통해 공개되거나 제공되는 정보를 포함할 수 있다.
본 발명의 또 다른 양태는 상기 방법으로 제조된 슈반 세포를 포함하는 스크리닝용 키트를 제공한다.
상기 스크리닝용 키트는 신경 질환 예방 또는 치료제 스크리닝용 키트일 수 있으나, 이에 제한되지 않는다.
구체적으로, 상기 키트는 신경 질환 예방 또는 치료 후보 물질을 슈반 세포 에 처리한 후, 상기 슈반 세포의 특정 유전자 또는 단백질의 발현량을 측정, 비교함으로써 후보 물질을 신경 질환의 예방 또는 치료제로서 선별하는데 이용하는 것일 수 있다.
이하 본 발명을 하기 실시예에 의하여 좀 더 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
실시예 1: 인간 다능성 줄기 세포 (human pluripotent stem cell, hPSC)로부 터 슈반 세포 전구체(Schwann cell precursor, SCP)로의 분화
인간 다능성 줄기 세포 (human pluripotent stem cell, hPSC)로부터 분화되는 신경 능선 줄기 세포 (Neural crest stem cell, NCSC)는 슈반 세포 생산을 위한 유용한 원천으로 여겨졌으나, 직접적인 활용에는 여러 한계가 있었으며, 특히, 간단하면서 신속하고 효율적이면서도 저비용의 제조 방법이 존재하지 않는 것이 가장 큰 문제였다.
본 발명자들은 NCSC 및 슈반 세포의 중간 전구체로서 기능하는, 계통-제한된 슈반 세포 전구체 (SCP)가 hPSC로부터 직접 생산될 수 있는지 여부를 확인하고자 하였다. 상기와 같이 hPSC로부터 SCP가 직접 생산될 경우, NCSC 분화 단계를 생략할 수 있으며, 따라서 SC 분화에 필요한 시간을 절약할 수 있고, 효율성을 향상할 시킬 수 있다.
이를 위해, 인간 신생아 포피 섬유모세포 (human newborn foreskin fibroblasts, catalog number CRL-2097; ATCC) 유래의 H1, H7 및 H9 hESC (WiCell Research Institute), 및 hiPSC를 기존에 공지된 바와 배양하였다. 무지지세포(feeder-free) 배양을 위해, 세포를 mTeSR1 배지 (StemCell Technologies)에서 성장 인자-감소된 매트리겔 (growth factor-reduced Matrigel, BD biosciences)로 코팅된 디쉬 상에서 매일 배지를 교체하면서 성장시켰다.
인간 다능성 줄기세포에서 유래된 슈반 세포 전구체를 수득하기 위해, colonized hPSC를 성장 인자-감소된 매트리겔로 코팅된 배양 디쉬 (growth factor-reduced Matrigel-coated culture dishes)에 다시 플레이팅 하였다. 다음날, 배양 배지를 hPSC 배양 배지에서 SB431542 및 CT99021을 포함하는 수정된 신경 분화 배지 (modified neural differentiation medium, NDM)로 교체하여 중화시켰으며, 6일간 신경 로제트 (neural rosette)를 형성하였다. 구체적으로, 상기 NDM은 1x N2, 1x B27, 0.005% BSA, 2 mM Glutamax, 0.11 mM β-mercaptoethanol, 3 μM CT 99021 (Tocris Biosciences), 20 μM SB431542 (Tocris Biosciences) 을 함유하는 advanced DMEM/F12 및 Neurobasal medium (1:1 혼합)을 포함한다. 상기 SB431542는 transforming growth factor-β (TGF-β)/Activin/Nodal 전달 경로)의 특이적 억제자이며, CT99021는 glycogen synthase kinase-3 (GSK-3)의 특이적 억제자로 알려져 있다.
분화 6일 경과 후, 상기 배지를 50 ng/ml NRG1를 포함하는 신경 유도 배지 (이를 슈반 세포 전구체 유도 배지 (Schwann cell precursor induction medium, SCPDM로 명명한다)로 대체하였으며, 매일 교체하였다. 세포는 80% 밀도 (confluence)에 도달하면 Accutase를 처리하여 분리하였다. 또한 상기 세포를 SCPDM에서 추가적으로 배양함으로써 확장 (expand) 하였다 (D0 to D18, 도 1의 A). 분화 약 18일이 경과한 후, hPSC-유래 SCP가 생성되며, 분화된 SCP가 동질 (homogenous)의 세포군 (cell population)을 형성하였으며 약 30시간의 배가 시간 (doubling time)을 가져 높은 증식능을 가지는 것을 확인하였다 (도 1의 A). hPSC-유래 SCP의 유도 및 유지를 위해 SCPDM을 사용하였다.
실시예 2: 인간 다능성 줄기 세포 (human pluripotent stem cell, hPSC)로부 터 분화된 슈반 세포 전구체(Schwann cell precursor, SCP)의 마커 발현 확인
본 발명자들은 상기 실시예 1에서 제조된 hPSC-유래 SCP가 슈반 세포 전구체로서의 특성을 가지는지 확인하고자 하였다.
구체적으로, 본 발명자들은, 실시간 qPCR 및 면역세포화학법을 이용하여 유도된 SCP의 계통 특이적인 마커의 발현을 확인하고자 하였다.
먼저, 실시간 qPCR은 하기와 같은 방법으로 수행하였다. RNeasy Mini 키트를 제작자의 지시에 따라 이용하여 배양된 세포로부터 총 RNA를 추출하였으며, RNA (2 μg)를 SuperScript®VILOTM cDNA Synthesis 키트를 제작자의 지시에 따라 이용하여 역전사 시켰다 (Thermo Fisher Scientific). 정량적 중합효소 연쇄 반응 (quantitative polymerase chain reaction, qPCR)을 SYBR green과 함께 수행하였으며, 7500 Fast Real-Time PCR system (Thermo Fisher Scientific)을 이용하여 분석하였다. 사용된 프라이머는 하기 표 1에 나타낸 바와 같다.
Figure PCTKR2018000910-appb-T000001
Figure PCTKR2018000910-appb-I000003
그 결과, 2차 분화 단계 약 5일이 경과한 후, NCSC의 마커 유전자인 PAX3, SLUG 및 TWIST, NCSC/SCP의 마커 유전자인 FOXD3, NGFR, 및 SOX10, 및 SCP의 마커 유전자인 CDH19, GAP43, MPZ의 발현이 상당히 증가하였으며, 발현 수준은 각기 다른 시점에서 최고치에 이르렀다 (도 1의 B).
구체적으로, NCSC 마커 유전자인 PAX3TWIST의 발현 수준은 초기 단계에서 일시적으로 증가되었으며, 각각 5일차 및 10일차에 최고치에 이르렀다.
중요한 것은, SCP-특이적 마커 유전자인 CDH19, MPZ,GAP43의 발현 수준은 18일차에서 최고치에 다다른 후, 이어지는 배양 동안 최고 수준을 유지하였다 (도 1의 B).
한편, 본 발명의 SCP 제조 방법의 1차 및 2차 배양 기간을 확인하고자 하였다.
구체적으로, hPSC를 1차 배양액 (NDM)에서 1 내지 14일 동안 배양 후, SCPDM으로 교체하여, 24일 후에 SCP-특이적 마커 유전자인 SOX10, NGFR,MPZ 의 발현을 확인하였다.
그 결과, 마커의 발현 수준이 도 1에 개시된 결과와 크게 다르지 않음을 확인하였다 (도 14). 이로부터 1차 배양을 1 내지 14일간 수행할 수 있음을 확인하였다.
또한, 면역세포화학법 (Immunocytochemistry)은 다음과 같이 수행하였다. 세포는 10분 동안 4% 파라포름알데히드 (paraformaldehyde)로 고정하였다. 상기 고정된 세포는 PBS로 각 10분 동안 네 차례 세척하였다. 이 후, 1시간 동안 실온에서 PBS에 용해된 0.3% Triton X-100, 10% FBS, 및 1% BSA를 이용하여 상기 세포를 블로킹 및 투과시켰다. 상기 세포를 1시간 동안 상온에서 2% BSA를 포함하는 PBS에서 일차 항체와 함께 배양하였다.
일차 항체 반응 후, 상기 세포를 PBS로 세차례 세척하고, Alexa 488-결합된 항-마우스 (Alexa 488-conjugated anti-mouse, 1:500, Thermo Fisher Scientific), Alexa 546-결합된 항-마우스 (Alexa 546-conjugated anti-mouse, 1:500, Thermo Fisher Scientific), Alexa 488-결합된 항-래빗 (Alexa 488-conjugated anti-rabbit, 1:500, Thermo Fisher Scientific), Cy3-결합된 항-랫트 (Cy3-conjugated anti-rat, 1:500, Thermo Fisher Scientific) 또는 Alexa 546-결합된 항-래빗 (Alexa 546-conjugated anti-rabbit, 1:500, Thermo Fisher Scientific) 이차 항체를 포함하는 2% BSA를 함유한 PBS에서 20분간 배양하였다. 형광 이미지는 Axio Vert.A1 현미경 (Carl Zeiss) 및 LSM800 공초점 현미경 (Carl Zeiss)을 이용하여 획득하였다.
그 결과, 병렬적으로 수행된 면역세포화학 분석으로 SC 마커인 SOX10 및 GAP43의 양성 발현을 확인하였다 (도 1의 C).
또한, 세포를 Accutase로 분리하여, PBS에 재현탁하였다. 상기 세포를 PBS에 용해된 4% 포름알데히드로 10분간 고정 한 후, PBS로 세차례 세척 하였다. 상기 고정된 세포를 블라킹하고, PBS에 포함된 0.1% Triton X-100, 10% FBS, 및 1% BSA 를 이용하여 1시간 동안 얼음에서 (on ice) 투과시켰다. 상기 세포는 2% BSA를 포함하는 PBS에서 형광단 (fluorophore)이 결합한 일차 항체 (표 2) 와 함께 10분간 실온에서 배양하였다. 항체 반응 후, 상기 세포는 PBS로 두차례 세척하였으며, BD Accuri C6 (BD Biosciences)를 이용하여 분석하였다.
Figure PCTKR2018000910-appb-T000002
그 결과, 결합되지 않은 SOX10 항체 (Abcam)는 항-래빗 Alexa Fluor 488-결합된 이차 항체 (secondary antibody)를 이용하여 검출하였으며,
FACS 분석으로 18일차에서 99% 이상의 세포가 SOX10을 발현하고, 세포의 배양 동안 상기 발현이 계속 유지되는 것을 확인하였다 (도 1의 D).
한편, 본 발명자들은 2차 분화 단계에서 세포의 형태가 가느다란 (slender) 모양으로 길어지는 것을 확인하였다.
실시예 3: 슈반 세포 전구체(Schwann cell precursor, SCP)의 유래에 따른 슈반 세포 전구체의 마커 발현 확인
본 발명자들은 슈반 세포 전구체로의 분화 과정 동안, 슈반 세포 전구체로 유도되는 다능성 줄기 세포인 인간 배아 줄기 세포 (human embryonic stem cell, hESC)및 인간 유도 만능 줄기 세포 (human induced pluripotent stem cell, hiPSC)의 특성을 비교하고자 하였다.
이를 위해, 본 발명자들은 마이크로어레이 분석을 이용하여 hESCs (hESC-SCPs) 및 hiPSCs (hiPSC-SCPs)로부터 분화된 SCP의 유전자 발현을 탐색하고 비교하였다.
RNeasy Mini 키트를 이용하여 총 RNA를 추출하였으며, Cy3를 이용하여 표지하였다. 제작자의 프로토콜에 따라, 상기 표지된 RNA를 Agilent Human GE 4x44K 마이크로어레이 칩 (one-color platform, Agilent)에 혼성화하였다.
세척 후, 상기 칩을 슬라이드 홀더에 두고 Agilent C 스캐너를 이용하여 스캔하였다.
유전자 발현 데이터는 GeneSpring software (Agilent)를 이용하여 처리하였으며, 통계 분석 및 각 샘플의 유의성을 시각화 하기 위해 MeV v.4.9.0 software를 이용하였다.
그 결과, 전체 유전자 발현 프로파일은 hESC-SCPs 및 hiPSC-SCPs에서 유사한 패턴을 나타냈으며, hESCs에서 유래된 SCP 및 hiPSCs에서 유래된 SCP는 모두 주요 다능성 마커 유전자 (pluripotency marker genes)인 POU5F1, KLF4, MYC, ZFP42, SOX2, SOX1, NCSC-관련 유전자 (NCSC-related genes)인 ZIC3, DBP, FOXC1, MSX2의 상대적으로 낮은 발현 수준을 보였으며, SCP 마커 유전자인 ITGA4, NGFR, SOX10, CDH19, DHH, GAP43, MPZ (도 2의 A)의 높은 발현 수준을 나타냈다.
실시간 qPCR (Real-time qPCR, (도 2의 B)) 및 반-정량적인 RT-PCR 분석 (도 2의 C) 결과 역시 마이크로어레이 결과와 일치하였다.
이는 본 발명자들의 hPSC에서 SCP로의 두 단계 분화 방법인 hESCs 및 hiPSCs에 모두 유용한 방법임을 의미한다.
더 나아가, 본 발명자들은 본 발명에 따른 방법으로 제조된 슈반 세포 전구체는 신경 능선 줄기 세포 (neural crest stem cell, NCSC)와도 명확히 구별됨을 확인하였다.
먼저, hPSC로부터 NCSC를 유도하기 위해, 이전에 공지된 방법을 이용하였다.
간략히 설명하면, 분리된 hPSC를 매트리겔-코팅된 배양 디쉬에 플레이팅하고, 다음 날, 배양 배지를 1% Probumin (Millipore), 1% penicillin-streptomycin, 1% L-alanyl-L-glutamine (Cellgro), 1% MEM non-essential amino acids, 0.1% trace elements A (Cellgro), 0.1% trace elements B (Cellgro), 0.1% trace elements C (Cellgro), 0.11 mM β-mercaptoethanol, 10 μg/ml transferrin, 50 μg/ml (+)-sodium l-ascorbate (Sigma), 10 ng/ml NRG1 (Peprotech), 200 ng/ml LONG R3 IGF-I (Sigma), 3 μM BIO (Tocris Biosciences), 20 μM SB431542 (Tocris Biosciences) 및 8 ng/ml FGF2 (Peprotech)을 포함하는 NCSC 유도 배지 (NCSC induction medium, NCSCIM)로 교체하였다. 배양 배지는 매일 교체하였다. NCSC는 NCSCIM 성장 약 20일이 경과한 후 생산되었다. 달리 지칭되지 않는 한, 모든 시약은 Thermo Fisher Scientific에서 구입하였다.
발달 과정에서, SCP는 NCSC 및 미성숙 슈반 세포 사이의 중간 전구체인 것으로 알려져 있다. SCP 및 NCSC의 계통 마커는 분화된 SCP 및 NCSC의 계통 차이를 명확히 나타낸다. 유사하게, 마이크로어레이 분석은 hiPSC 유래 SCP 및 NCSC 간의 계통 특이적 유전자 발현의 구별되는 차이를 나타내었다 (도 3의 A 및 B).
실시간 qPCR 분석에서도, 상기 마이크로어레이 분석 결과와 유사하게, SCP 특이적인 CDH19, SOX10, GAP43, NGFR의 계통 마커 유전자가 SCP에서 높게 발현되는 반면, NCSC 특이적 TWIST SLUG이 NCSC에서는 다량 발현되는 것을 확인하였다 (도 3의 C).
면역세포화학 분석 결과 역시 NCSC가 SOX10 및 NGFR에 양성인 반면, 슈반 세포 전구체 마커인 GAP43에 대해서는 음성임을 확인하였다 (도 3의 D).
실시예 4: SCP로의 분화 유도를 위한 필수 구성 요소
본 발명자들은 상기 실시예의 다능성 줄기 세포의 슈반 세포 전구체로의 분화를 유도하기 위한 필수 구성 요소는 무엇인지 확인하고자 하였다.
hPSC (hESCs 및 hiPSCs)로부터 hSCP를 NRG1를 SB431542 (SB) 및 CT99021 (CT)와 조합하여 처리하여 생산한 결과, 상기 실시예에서 이용된 본 발명자들의 분화 조건 하에서, 배지에서 NRG1, SB 또는 CT가 생략되는 경우, hSCP를 생산하는데 실패하는 것을 확인하였다 (도 4의 B 및 C).
본 발명자들은 NRG1이 2차 분화 단계 동안 SOX-10 양성인 세포군을 양-의존적으로 (dose dependent) 증가시키는 것을 확인하였으며 (도 4의 D 및 E), 이는 hPSC로부터 SCP로 전환되는 세포의 운명을 결정하는데 있어서, NRG1 신호 전달 경로의 활성화가 중요한 역할을 하는 것을 의미한다.
실시예 5: SCP의 높은 확장성 및 장기간 유지 가능성
본 발명자들은 상기 실시예의 방법으로 제조된 슈반 세포 전구체의 확장 가능성을 확인하고자 하였다.
이에, 초기 및 후기 계대의 hPSC 유래 SCP에서 SCP 마커를 qPCR, 및 마이크로어레이로 분석하였다 (도 5).
그 결과, 고농도의 NRG1 (100 ng/ml)의 존재 하에서, hPSC 유래 SCP는 화학적으로 정의된 조건 하에서 계대 간의 큰 형태 변화나 SCP 특성의 상실 없이 35 계대 이상 안정적으로 확장 가능 (expandable)한 것을 확인하였다 (도 5 및 6).
마이크로어레이 분석으로 hESC 및 hiPSC 유래의 SCP의 초기 계대 (p1) 및 후기 계대 (p19)에서 주요 SCP 마커의 발현 패턴이 거의 동일한 것을 확인하였다 (도 6의 A).
또한, qPCR (도 5의 B 및 6의 B) 및 반-정량적 RT-PCR 분석 (도 6의 C) 결과 역시 초기 계대 (p1) 및 후기 계대 (p20) 모두 SCP가 CDH19, GAP43, ITGA4, MPZ, NGFR, SOX10의 마커를 안정적으로 발현하는 것으로 나타났다.
면역세포화학 분석 역시 초기 계대 (도 1의 C) 및 후기 계대 SCP (p20) 모두 증식하는 세포의 마커인 Ki67에 대해 양성이며, SCP 마커 단백질인 GAP43, NGFR, 및 SOX10을 균일하게 발현하는 것을 확인하였다 (도 5의 C).
마이크로어레이, qPCR, 및 면역세포화학 분석은 모두 상술한 바와 동일하게 실험하였다.
한편, 유세포분석(flow cytometric analysis) 결과, 초기 계대 및 후기 계대 SCP 간 유사한 SCP 특이적 마커(SOX10, NGFR, GAP43MPZ) 발현 수준을 나타내었다 (도 5의 D).
이는 배양된 SCP가 화학적으로 정의된 배지에서 자가-재생가능하고, 균질함을 의미한다. hESC 또는 hiPSC로부터 유래되는 SCP는 전통적인 방법에 의해 저온 보관될 수 있으며, 융해 및 재배양 후 회수될 수 있다.
상기와 같은 결과를 종합하면, 본 발명자들이 제공하는 다능성 줄기 세포로부터 슈반 세포 전구체를 유도하는 방법은 화학적으로 정의된 조건하에서, hPSC로부터 균질의 SCP을 생산하는, 추가적인 세포 정제 (cell purification)가 필요 없는 간단한 방법임을 알 수 있다.
즉, 본 발명자들은 SB431542 및 CT99021을 조합하여 처리한 후, NRG1, SB431542, 및 CT99021을 이어서 처리하는, 화합물의 조합을 연속적으로 이용하는, hPSC로부터 균질한 SCP를 생산하는 간단한 방법을 개발하였다. 본 발명에 따른 방법은 세포 분리 및 배지 교체와 같은 별도의 단계를 필요로 하지 않는다.
실시예 6: SCP의 다능성 (multipotent) 확인
한편, 슈반 세포 전구체는 말초신경계에서 SC로만 분화하는, 신경교-제한된 전구세포(glial-restricted progenitors)로 알려져 있으나, 최근의 연구는 상기 세포가 다능성이며 부교감 신경의 뉴런 및 멜라노사이트 (melanocyte)를 포함하는 다양한 세포로 분화할 수 있음을 보고하였다.
이에, 본 발명자들은 hPSC-유래 SCP로 멜라노사이트로를 생산할 수 있는지 여부를 확인하였다.
구체적으로, 기존의 공지된 방법을 적절히 수정하여 SCP의 멜라노사이트로의 분화를 유도하였다 (Chambers et al., 2013).
간략히 말하면, SCP는 매트리겔 코팅된 배양 디쉬 상에서 배양하였다. 다음 날, 상기 배양 배지를 1x N2, 1x B27, 0.005% BSA, 2 mM Glutamax, 0.11 mM -mercaptoethanol, 3 μM CT 99021, 20 ng/ml FGF2 (Peprotech), 0.5 mM dbcAMP (Tocris Biosciences), 25 ng/ml BMP4, 및 100 nM EDN3 (Tocris Biosciences)을 함유하는, advanced DMEM/F12 및 Neurobasal medium (1:1 mix)를 포함하는 멜라노사이트 유도 배지로 교체하였다. 배지는 매일 교체하였다. confluent 세포를 Accutase (Millipore) 처리를 통해 분리하였으며, 1:6에서 계대(passage)하였다.
그 결과, hESC-유래 SCP가 멜라노사이트로 분화하는 동안, 멜라노사이트의 마커 유전자 (TYROSINASE, MITFTYRP)의 발현 수준이 시간 경과에 따라 점진적으로 증가하는 것을 확인하였다 (도 7의 D 및 E). 또한, 분화 16일이 경과한 후, 대부분의 세포가 멜라노사이트 마커 (MITF 및 MelA)에 대해 양성을 나타내고 (도 7의 F), 색을 나타내는 것을 확인하였다 (pigmented, 도 7의 G).
이는 본 발명의 방법에 따라 제조된 SCP가 기존에 공지된 바와 같이, 멜라노사이트로 분화할 수 있는, 다능성 슈반 세포 전구체로서의 특성을 가짐을 확인한 것이다.
실시예 7: SCP에서 슈반 세포로의 효율적인 분화
본 발명자들은 상기 실시예에서 제조된 슈반 세포 전구체로부터, 실제 신경 질환의 예방 및 치료에 사용될 수 있는 슈반 세포로 분화시키고자 하였다.
이에, 본 발명자들은 NRG1 (200 ng/ml), 레티노산 (retinoic acid, 100 nM), PDGF-BB (10 ng/ml) 및 포스콜린 (forskolin, 4 μM)을 포함하는 SC 분화 배지 (SC differentiation medium, SCDM), 또는 NRG1 (200 ng/ml) 및 포스콜린 (forskolin, 4 μM)을 포함하는 SC 분화 배지를 이용하는, hPSC-SCP로부터 SC를 생산하는 최적화된 분화 방법을 개발하였다.
구체적으로, SCP를 슈반 세포로 분화시키기 위해, 상기 SCP를 슈반 세포 분화 배지 (SCDM) 내 매트리겔로 코팅된 플레이트 상에서 배양하였다. 상기 SCDM은 1% FBS, 200 ng/ml NRG1, 4 μM 포스콜린 (Sigma), 100 nM all-trans 레티노산 (retinoic acid, RA, Sigma) 및 10 ng/ml PDGF-BB을 함유하는 DMEM/low glucose을 포함한다.
배양 3일 경과 후, 상기 배양 배지를 1% FBS, 200 ng/ml NRG1, 10 ng/ml PDGF-BB (Thermo Fisher Scientific)를 포함하지만, 포스콜린이나 레티노산을 포함하지 않는 SCDM으로 대체하였다.
다시 2일 경과 후, 상기 배양 배지는 1% FBS, 및 200 ng/ml NRG1을 포함하지만, 포스콜린, 레티노산, 또는 PDGF-BB를 포함하지 않는 SCDM (Schwann cell medium, SCM)으로 교체하였다.
세포는 확장을 위해 SCM 내에 유지하였다. 슈반 세포는 SCM 내 배양 후 2 내지 3일 경과 후 생성되었다. 비교를 위해, 일차 인간 슈반 세포 (primary human Schwann cells)를 ScienCell에서 구입하여 슈반 세포 성장 배지 (Schwann cell growth medium, ScienCell)에서 배양하였다.
상기 NRG1, 레티노산, PDGF-BB 및 포스콜린을 포함하는 SC 분화 배지 (SCDM) 에서 슈반 세포 전구체를 4 내지 8일 동안 분화시킨 결과, hPSC-SCP는 방추형(spindle-like)의 형태로 변화하였으며 (도 9의 A 및 7의 A), FAP, PLP, PMP22, S100와 같은 SC 마커 (도 9의 B) 및 다양한 신경 영양 인자 (BDNF, GDNF, NGF, NT-3, CNPase, NT-4, 및 CNTF) (도 7의 B)의 발현 수준이 상당히 증가하는 것을 확인하였다.
또한, 상기 SCDM 조성물 중에서 레티노산 및 PDGF-BB 를 사용하지 않고, NRG1 및 포스콜린 만을 포함하는 SC 분화 배지에서 슈반 세포 전구체를 8일 동안 분화시킨 결과, 면역세포화학분석을 통해 분화된 SC의 대부분이 SC-계통 특이적 단백질인 S100B 및 PLP2에 양성임을 확인하였다 (도 13).
상기와 같은 SC 특성을 얻는데 평균 소요되는 기간은 약 7일이었으며, 이는 세포의 형태 및 SC 마커의 발현 양상으로 확인하였다.
분화된 SC는 주요 신경 영양 인자 (NGF, BDNF and GDNF) 및 미성숙 SC의 마커 (S100B, NGFR, MPZ, PMP22, OCT6 및 SOX10, 도 9의 C)의 높은 발현 수준을 나타내었다.
또한, 본 발명자들은 면역세포화학분석을 통해 분화된 SC의 대부분이 SC-계통 특이적 단백질인 S100B, NGFR, EGR2, 및 MPZ에 대해 양성임을 확인하였다 (도 9의 D 및 7의 C).
또한, 마이크로어레이 데이터의 히트 맵 (heat map, 6804 유의 전사체, t-test, p<0.01)을 통해, hPSC-SCP-유래 SC 및 일차 인간 SC가 매우 유사한 반면, hESC 또는 hiPSC 유래의 SC는 SCP와 확연히 구별되는 것을 확인하였다 (도 9의 E).
상기와 같은 결과는, 본 발명자들의 NRG1, 레티노산, PDGF-BB 및 포스콜린 을 포함하는 SC 분화 배지 (SCDM)를 이용한, 슈반 세포 전구체로부터 슈반 세포로 분화 시키는 방법을 통해 효율적으로 슈반 세포를 생산 가능함을 보여주는 것이다.
실시예 8: SCP-유래 슈반 세포의 in vitro 기능 확인
본 발명자들은 본 발명의 방법에 따라 분화된 슈반 세포가 신경 질환의 치료 또는 예방에 사용될 수 있는 기능을 가지는지 여부를 확인하고자 하였다.
특히, 슈반 세포는 미엘린 형성 및 신경 영양 인자 분비 효과를 가지므로, 이에 대해 확인하고자 하였다.
실시예 8-1: hPSC-SCP-SC의 미엘린 형성능 확인
먼저, 본 발명자들은 in vitro 상에서 hPSC-SCP-SC를 배아 랫트 배근 신경절 (embryonic rat dorsal root ganglion, DRG) 뉴런과 함께 미엘린 형성 촉진 아스코빅 산 (ascorbic acid)의 존재 하에 배양하여 말초 신경계 축삭의 미엘린 형성에 대한 능력을 확인하였다.
구체적으로, 배근 신경절 (DRG) 뉴런을 랫트 새끼의 태아 15일차에서 수득하였다. 랫트의 DRG 뉴런은 MEM에 4 g/L D-glucose (Sigma), 50 ng/ml NGF (Peprotech), 및 15% FBS를 포함하는 DRG 성장 배지에서 poly-D-lysine 및 laminin으로 코팅된 12 mm 커버 슬립 상에 플레이팅하였다. 내재적 비신경세포를 제거하기 위해, 배양물에 10 μM 5-fluoro-2-deoxyuridine (Sigma), 4 g/L D-glucose (Sigma), 50 ng/ml NGF (Peprotech), 1% FBS 및 1x B27을 함유하는 10 μM uridine (Sigma), 및 Neurobasal Medium을 3일간 처리하였다. 이후, 2일간 DRG 성장 배지에서 배양하였다. 상기 단계를 15일간 3차례 반복하였다.
상기, DRG는 슈반 세포와 공동 배양하기 전, Neurobasal Medium에 4 g/L D-glucose (Sigma), 50 ng/ml NGF, 1% FBS, 및 1x B27을 포함하는 DRG 분화 배지에서 유지하였다. 그리고 20,000 또는 25,000 SCP-유래 슈반 세포는 DRG 배양 배지 내 DRG 배양물에 첨가하여, 5 내지 7일간 유지하였다.
다음으로, 50 ng/ml ascorbic acid (Sigma)을 포함하는 DRG 성장 배지를 3주간 처리함으로써 미엘린 형성을 유도하였다. 배지는 매일 교체하였다.
이러한 혼합된 배양액을 미엘린 단편(segment)을 나타내는 MBP (myelin basic protein) 및 TUJ-1 (neuron-specific tubulin)에 대해 면역 염색하였다.
그 결과, 상기의 공동 배양 조건하에서, 미엘린 형성 28일 후, MBP-양성 미엘린 단편의 존재를 확인하였다 (0.75 웰 당 미엘린 단편, n=16). 대부분의 공동 배양된 슈반 세포의 S100B은 면역 염색되었다. 인간 특이적 핵 항체 (human specific nuclear antibody)로 미엘린 형성하는 세포를 표지함으로써 시각화된 것처럼 (도 10의 A), 잔존하는 랫트 슈반 세포는 미엘린을 형성하지 않았다.
미엘린 형성 슈반 세포의 MPZ 면역 반응성은 미엘린을 형성하지 않는 슈반 세포에 비해 매우 큰 것을 확인하였다. 또한, MPZ-양성 세포가 신경 돌기를 둘러싸고 있다.
실시예 8-2: hPSC-SCP-SC의 신경 영양 인자 분비능 확인
슈반 세포의 기능은 축삭의 미엘린 형성뿐만 아니라 축삭의 재생을 위한 영양 인자의 제공에도 있다. 본 발명의 방법에 따라 분화된 슈반 세포가 신경 영양 인자를 분비하는지 여부를 확인하고자 하였다.
이에, 본 발명자들은 상술한 바와 같은 실시간 qPCR 분석을 통해 신경 영양 인자 (BDNF, GDNF, NGF, 및 NT-3)가 hPSC-SCP-SC에서 높게 발현됨을 확인하였다 (도 7의 B).
또한, 본 발명자들은 다음과 같이, 효소면역측정법 (Enzyme-linked Immunosorbent Assay, ELISA)을 수행하였다.
먼저, 조건 배지 (conditioned medium) 를 얻기 위해, 105 개의 hSCP 세포 및 hSCP-SC 세포를 30 mm 배양 디쉬에 시딩하였다. 48시간 후, 상기 배양된 배양액은 0.22 μm 필터 (Millipore)를 이용하여 필터링하였다. 분비된 신경 영양 인자 (BDNF, GDNF, b-NGF, 및 NT-3)의 농도를 측정하기 위해, 제작자의 프로토콜 (Abcam)에 따라 hSCP 및 hSCP-SC 유래의 조건 배양액에서 ELISA를 수행하였다.
그 결과, hPSC-SCP-SC 배양 배지에서 분비되는 BDNF, GDNF, NGF, 및 NT-3의 수준이 분화되지 않은 SCP의 배양 배지보다 높은 것을 확인하였다 (도 10의 C). 상기 인자들은 말초신경계 및 중추신경계의 축삭 재생에 있어서 중요한 것으로 알려져 있다.
실시예 9: SCP-유래 슈반 세포의 in vivo 기능 확인
본 발명자들은 상기 실시예에서 제조된 슈반 세포가 체내에서 미엘린 형성 및 신경 영양 인자의 분비를 통해 손상된 신경을 복원 및 재생시킬 수 있는지 여부를 확인하고자, GFP로 표지된 SC를 좌골 신경 손상 모델인 마우스에 이식하였다 (도 11의 A).
먼저, 8-주령C57BL/6 수컷 마우스의 좌측 좌골 신경의 중앙 영역을 절단함으로써 손상시켜 2-3 mm 신경 결함을 형성하였다. 상기 세포를 매트리겔 (Matrigel, 2 x 104 cells/μl)에서 희석하고, 1 x 105 세포 (렌티바이러스 감염에 의해 GFP로 표지된 H9 hESC-SCP-유래 SC)를 포함하는 세포 현탁액 5 μl을 신경 결함 부위에 이식 (implant)하였다. 마우스를 PBS 용해된 4% 파라포름알데히드로 경심 관류 시켰다 (transcardially). 좌골 신경은 1시간 동안 후-고정 (post-fixed) 시켰고, 4 °C에서 72시간 동안 PBS 용해된 30% 수크로스에서 냉장 보존하였다. 동결 절편 (cryostat sections, 15 μm)를 글래스 슬라이드에 올려놓고 -20 °C에서 보관하였다.
면역 염색을 위해, 상기 슬라이드를 15분 동안 PBS로 세척하고, 0.3% Triton X-100, 10% FBS, 및 1% BSA를 포함하는 PBS로 실온에서 1시간 동안 블로킹하였다. 일차 항체는 2% BSA를 포함하는 PBS에서 희석하고 밤새 4 °C에서 적용(applied) 하였다. 상기 슬라이드를 PBS로 세척하고 실온에서 45분간 이차 항체로 배양하였다. Axio Vert.A1 현미경 (Carl Zeiss) 및 LSM800 공초점 현미경 (Carl Zeiss)으로 이미지를 얻었다.
그 결과, SC-이식된 마우스 (n=10/10)에서 근위단 (proximal stumps)에서 원위로의 좌골 신경의 재생이 손상 8주가 경과한 뒤에 관찰되었다. 반면, 매트리겔 처리된 (matrigel-treated) 마우스에서는 손상 후 동일한 시점에서 재생이 거의 나타나지 않았다 (n=8/9) (도 11의 B).
특히, 손상 후 8주 뒤에는, 대조군 마우스(6.4 ± 1.4 mm)에서 보다 SCP-SC-이식된 마우스 (9.6 ± 1.8 mm)에서 절단된 좌골 신경이 상당 수준 증가한 것을 확인하였다 (도 11의 C). 몇몇 GFP-표지된-SC가 재생된 좌골 신경 조직의 원위 영역에 통합되었고 (integrated), 대부분의 GFP-표지된 세포의 S100B가 면역 염색되었다 (도 11의 D). 재생된 신경이 슈반 세포에 의해 미엘린 형성되는 반면, MBP와 공동 염색된 GFL-표지 세포는 거의 검출되지 않았다 (도 8). 재생된 축삭은 많은 세포가 원위 영역에서 발견되는 반면, 적은 세포만 근위 영역에서 발견되는 점에서 구별되었다.
또한, 본 발명자들은 상기 실시예에 의해 제조된 슈반 세포의 in vivo에서 기능적 회복을 확인하고자, 마우스의 발자국 및 좌골 신경 기능 지수 (sciatic function index, SFI)을 평가하였다.
상기 SFI는 좌골 신경 손상 후 신경 회복을 평가하는 방법이다 (Inserra et al., 1998). 간략히 말하면, 마우스의 뒷발을 잉크로 칠하고 흰 종이를 덧댄 통로 (80cm 길이, 6cm 폭)를 따라 걷도록 한다. 좌골 신경 손상 후, 2, 3, 4, 6, 및 8주가 경과한 뒤에 발자국을 기록하였다. 기록된 발자국을 스캔하고 자를 이용하여 3가지 파라미터 (PL, 발뒤꿈치로부터 셋째 발가락까지의 거리; TS, 첫째 발가락에서부터 다섯번째 발가락까지의 거리; ITS, 두번째 발가락에서 네번째 발가락까지의 거리)를 측정하였다. 모든 측정은 각 마우스의 손상된 발 (experimental paw, EPL, ETS, 및 EITS) 및 손상되지 않은 발 (NPL, NTS, 및 NITS)에서 이루어 졌다. SFI는 하기 식으로 계산된다.
SFI = -38.3 x (EPL-NPL)/NPL + 109.5 x (ETS-NTS)/NTS + 13.3 x (EITS-NITS)/NITS - 8.8.
동물 실험은 한국생명공학연구원의 동물실험윤리위원회 가이드라인에 따라 수행되었다. 한국생명공학연구원 동물 복지 번호 (KRIBB Animal Welfare Assurance number)는 KRIBB-AEC-11039이다.
그 결과, 본 발명자들은 2, 3, 4, 6, 및 8주차에 이식된 마우스의 발자국 (footprint)으로부터 기능 회복을 확인하였다 (도 11의 F, n=9 또는 10 마우스).
매트리겔 처리된 마우스에 비해, SCP-SCs-이식된 마우스는 현저히 향상된 좌골 기능 지수 (sciatic function index, SFI)을 나타내어, 기능 회복을 나타내었다 (도 11의 G).
이러한 차이는 이식 2주후부터 관찰되었으며, 8주까지 기능의 회복이 매우 높게 나타났다. 8주차에는 대조군 (-93.3 ± 6.3)에 비해, SCP-SC-이식된 그룹의 평균 SFI가 현저한 회복 (-62.9 ± 8.7)을 나타내었다. 이러한 결과는 재현 가능한 결과이며, hPSC-SCP-SC가 기능적이고 신경 재생을 위한 치료 적용에 유용함을 의미하는 것이다.
상기의 결과로부터, 본 발명의 방법에 따라 생산된 슈반 세포가 in vitro 뿐만이 아니라, in vivo에서도 손상된 신경의 회복 및 재생 효과를 가져, 신경 질환의 예방 또는 치료에 유용하게 사용될 수 있음을 확인하였다.
한편, 본 발명자들은 다능성 줄기 세포를 거치지 않고, 분화된 체세포로부터 직접리프로그래밍을 통해 슈반세포 전구체를 제조하고자 하였다. 이에, 다음과 같은 직접리프로그래밍을 통한 슈반 세포 전구체 제조 방법을 개발하였다.
실시예 10: 섬유아세포로부터 직접리프로그래밍을 통한 슈반 세포 전구체 제조
먼저, 본 발명자들은 직접리프로그래밍을 통한 슈반세포 전구체 (DiSCP)를 얻기 위해, 섬유아세포(CRL-2097)를 섬유아세포 배지(FBS 15%가 포함된 MEM- 배지)에서 4일간 배양 후, 2x105 세포수로 Neon® transfection system(Invitrogen)을 사용하여 제조사가 제공하는 프로토콜로 hOCT3/4, hSOX2, hKLF4, hLIN28, hL-MYC 5개의 리프로그래밍 인자와 리프로그래밍의 효율을 증진시켜주는 인자인 shp53이 발현하는 oriP/EBNA1 기반의 pCEP4 에피솜 벡터를 전기천공법(electroporation)으로 1950 V 펄스 전압, 10 ms 펄스 너비, 3 펄스 수의 기본 조건으로 설정하여 형질전환 하였다.
이후, 상기 전기천공법으로 형질전환한 세포를 2x104 세포수로 6웰 플레이트에 시딩한 후, 4일간 FM배지 (FBS 5%, KSR 10%, NEAA 1%, -mercaptoethanol 0.11mM, bFGF 10ng/ml, CT99021 3M, Na-butyrate 0.1mM, Parnate 2M, RG108 0.5M, NECA 0.5M을 포함하는 DMEM/F12 배지)에서 배양하였다. 이후에 상기 FM 배양 배지를 상기 실시예 1에서 사용한 신경 분화 배지 (NDM)로 교체하여 5일간 배양한 다음, 다시 상기 NDM 배지를 슈반 세포 전구체 분화 배지 (SCPDM)로 교체한 후 13일 간 추가적으로 배양하였다 (도 15의A).
상기 배양 과정 동안, 직접리프로그래밍을 거친 전체 세포 (콜로니를 제외한 세포도 포함)에서 SCP 마커 유전자인 GAP43, SOX10, MPZ, CDH19의 발현량 증가를 확인하였다 (도 15의 B).
상기 배양이 모두 완료된 이후, 형성된 콜로니를 한 개씩 개별적으로 따로 분리하여 24웰 플레이트에서 SCPDM으로 배양하고, 각각의 콜로니를 Accutase로 처리하여 충분히 세포의 수를 확장한 후 슈반 세포 전구체 마커 유전자의 발현 여부를 면역세포화학법 및 BD Accuri C6를 이용하여 확인하였다 (도 15의 C). DiSCP와 hSCP의 표지인자의 발현 정도를 섬유아세포를 기준으로 비교하였다 (도 15의 D).
실시예 11: 섬유아세포로부터 직접리프로그래밍을 통해 제조된 슈반 세포 전구체로부터 슈반 세포의 제조
본 발명자들은 상기 실시예 10에서 제조된 슈반 세포 전구체가 슈반 세포로 분화할 수 있는지, 그리고 신경 영양 인자 분비능을 갖는지 확인하고자 하였다.
이에, 상기 실시예 7과 동일한 방법으로 섬유아세포로부터 직접리프로그래밍을 통해 제조된 슈반 세포 전구체인 DiSCP에서 슈반 세포로의 분화를 유도하였다. 이후, 8일이 되는 시점에 슈반 세포 표지 인자 (S100B, NGFR)를 면역세포화학법으로 DiSCP-SC에서 확인하였다 (도 16의 A). 이후, 상기 실시예 8-2에서와 같이 DiSCP-SC로부터 분비되는 신경 영양 인자 분비능을 확인하였다 (도16의 B).
그 결과, 분화된 체세포로부터 직접리프로그래밍을 통해 슈반 세포 전구체를 제조하고, 상기 제조된 슈반 세포 전구체를 슈반 세포로 분화시켜 신경 질환의 예방 또는 치료에 유용하게 사용될 수 있는 슈반 세포를 제조할 수 있음을 확인하였다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (34)

  1. (a) 다능성 줄기 세포 (pluripotent stem cell)를 SB431542, 및 CT99021을 포함하는 배지에서 1차 배양하는 단계; 및
    (b) 상기 1차 배양된 세포에 NRG1 (neuregulin-1)을 추가로 첨가한 배지로 2차 배양하는 단계를 포함하는,
    다능성 줄기세포로부터 슈반 세포 전구체를 제조하는 방법
  2. 제1항에 있어서,
    상기 다능성 줄기세포로부터 슈반 세포 전구체를 제조하는 방법은 신경 중간체 (neural intermediate) 단계를 거치지 않는 직접 분화 방법에 의한 것인, 슈반 세포 전구체를 제조하는 방법.
  3. 제1항에 있어서,
    상기 1차 배양은 1일 내지 14일 동안 수행하고, 상기 2차 배양은 10일 내지 150일 동안 수행하는 것인, 슈반 세포 전구체를 제조하는 방법.
  4. 제1항에 있어서,
    상기 (a) 단계의 배지는 2 내지 20 μM의 SB431542 및 1 내지 10 μM의 CT99021을 포함하는 것인, 슈반 세포 전구체를 제조하는 방법.
  5. 제1항에 있어서,
    상기 (b) 단계의 배지는 20 내지 1000 ng/ml의 NRG1을 포함하는 것인, 슈반 세포 전구체를 제조하는 방법.
  6. 제1항에 있어서,
    상기 다능성 줄기 세포는 hESC (human embryonic stem cell) 또는 hiPSC (human induced pluripotent stem cell)인 것인, 슈반 세포 전구체를 제조하는 방법.
  7. 제1항에 있어서,
    상기 슈반 세포 전구체는 슈반 세포 또는 멜라노사이트 (melanocyte)로 분화 가능한 것인, 슈반 세포 전구체를 제조하는 방법.
  8. (a) 성체 세포에 직접리프로그래밍 인자를 도입하여 배양된 세포를 SB431542, 및 CT99021을 포함하는 배지에서 1차 배양하는 단계; 및
    (b) 상기 1차 배양된 세포에 NRG1 (neuregulin-1)을 추가로 첨가한 배지로 2차 배양하는 단계를 포함하는,
    성체 세포로부터 슈반 세포 전구체를 제조하는 방법.
  9. 제8항에 있어서,
    상기 성체 세포로부터 슈반 세포 전구체를 제조하는 방법은 다능성 줄기 세포를 거치지 않고, 성체 세포를 목적 세포로 직접 분화시키는 직접리프로그래밍 방법에 의한 것인, 슈반 세포 전구체를 제조하는 방법.
  10. 제8항에 있어서,
    상기 (a) 단계의 직접리프로그래밍 인자는 OCT3/4, SOX2, KLF4, LIN28, L-MYC 것인, 슈반 세포 전구체를 제조하는 방법.
  11. 제8항에 있어서,
    상기 (a) 단계의 직접리프로그래밍 인자를 도입하여 배양하는 단계는 3일 내지 6일 동안 수행하는 것인, 슈반 세포 전구체를 제조하는 방법.
  12. 제8항에 있어서,
    상기 (a) 단계의 1차 배양은 1일 내지 9일 동안 수행하고, 상기 (b) 단계의 2차 배양은 13일 내지 30일 동안 수행하는 것인, 슈반 세포 전구체를 제조하는 방법.
  13. 제8항에 있어서,
    상기 (b) 단계의 배지는 2 내지 20 μM의 SB431542 및 1 내지 10 μM의 CT99021을 포함하는 것인, 슈반 세포 전구체를 제조하는 방법.
  14. 제8항에 있어서,
    상기 (b) 단계의 배지는 20 내지 1000 ng/ml의 NRG1을 포함하는 것인, 슈반 세포 전구체를 제조하는 방법.
  15. 제1항 또는 제8항의 방법으로 슈반 세포 전구체를 제조하여 준비하는 단계; 및
    상기 준비된 슈반 세포 전구체를 NRG1, 및 포스콜린 (forskolin)을 포함하는 배지에서 배양하는 단계를 포함하는,
    슈반 세포를 제조하는 방법.
  16. 제15항에 있어서, 상기 배지는 100 내지 1000 ng/ml의 NRG1 및 1 내지 10 μM의 포스콜린을 포함하는 것인, 슈반 세포의 제조 방법.
  17. 제15항에 있어서, 상기 단계의 배지는 레티노산 (retinoic acid), 및 PDGF-BB (platelet-derived growth factor-BB)를 추가로 포함하는 것인, 슈반 세포의 제조 방법.
  18. 제17항에 있어서,
    상기 배지는 100 내지 1000 ng/ml의 NRG1, 50 내지 150 nM의 레티노산, 5 내지 15 ng/ml의 PDGF-BB, 및 1 내지 10 μM의 포스콜린을 포함하는 것인, 슈반 세포의 제조 방법.
  19. 제15항에 있어서,
    상기 슈반 세포는 미엘린 형성능 (myelination) 및 신경 영양 인자 (neurotrophic factor)의 분비능을 가지는 것인, 슈반 세포의 제조 방법.
  20. 제19항에 있어서,
    상기 신경 영양 인자는 BDNF, GDNF, NGF, 또는 NT-3인 것인, 슈반 세포의 제조 방법.
  21. 제1항 또는 제8항의 방법으로 슈반 세포 전구체를 제조하여 준비하는 단계; 및
    상기 준비된 슈반 세포 전구체에 NRG1, 포스콜린 (forskolin), 및 약학적으로 허용 가능한 담체와 혼합하는 단계를 포함하는,
    슈반 세포 전구체를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법.
  22. 제21항에 있어서,
    상기 슈반 세포 전구체에 레티노산 (retinoic acid), 및 PDGF-BB (platelet-derived growth factor-BB)를 추가로 혼합하는 단계를 포함하는, 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법.
  23. (a) 제1항 또는 제8항의 방법으로 슈반 세포 전구체를 제조하여 준비하는 단계; 및
    (b) 상기 준비된 슈반 세포 전구체를 NRG1, 및 포스콜린 (forskolin)을 포함하는 배지에서 배양하는 단계;
    (c) 상기 배지로부터 슈반 세포를 회수하는 단계; 및
    (d) 상기 회수된 슈반 세포를 약학적으로 허용 가능한 담체와 혼합하는 단계를 포함하는,
    슈반 세포를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법.
  24. 제23항에 있어서,
    상기 (b) 단계의 배지는 레티노산 (retinoic acid), 및 PDGF-BB (platelet-derived growth factor-BB)를 추가로 포함하는 것인, 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법.
  25. 제21항 또는 제23항에 있어서,
    상기 신경 질환은 퇴행성 신경질환, 탈수초 신경질환, 근위축성 측색경화증, 외상성 척수질환 또는 말초신경질환인 것인, 신경 질환 예방 또는 치료용 약학적 조성물을 제조하는 방법.
  26. SB431542, CT99021, 및 NRG1 (neuregulin-1)을 포함하는,
    다능성 줄기세포로부터 슈반 세포 전구체로의 직접 분화 유도용 조성물.
  27. NRG1, 및 포스콜린 (forskolin)을 포함하는, 슈반 세포 전구체로부터 슈반 세포로의 분화용 조성물.
  28. NRG1, 레티노산 (retinoic acid), PDGF-BB (platelet-derived growth factor-BB), 및 포스콜린 (forskolin)을 포함하는, 슈반 세포 전구체로부터 슈반 세포로의 분화용 조성물.
  29. NRG1, 포스콜린 (forskolin), 슈반 세포 전구체, 및 슈반세포를 포함하는 신경 질환 예방 또는 치료용 세포 치료제.
  30. NRG1, 레티노산 (retinoic acid), PDGF-BB (platelet-derived growth factor-BB), 포스콜린 (forskolin), 슈반 세포 전구체, 및 슈반세포를 포함하는 신경 질환 예방 또는 치료용 세포 치료제.
  31. 제1항 또는 제8항의 방법으로 제조된, 다능성 줄기세포 또는 성체세포로부터 제조된 슈반 세포 전구체.
  32. 제15항의 방법으로 제조된, 슈반 세포 전구체로부터 분화 유도된 슈반 세포.
  33. 제31항의 슈반 세포 전구체 또는 제32항의 슈반 세포를 포함하는 스크리닝용 키트.
  34. 제33항에 있어서, 상기 키트는
    (i) 신경 질환 예방 또는 치료제 스크리닝; 또는
    (ii) 슈반 세포로의 분화 유도 물질 스크리닝용인 것인, 스크리닝용 키트.
PCT/KR2018/000910 2017-01-20 2018-01-19 슈반 세포 전구체 및 이로부터 분화된 슈반 세포의 제조 방법 WO2018135907A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170009637A KR101903458B1 (ko) 2017-01-20 2017-01-20 슈반 세포 전구체 (Schwann cell precursor) 및 이로부터 분화된 슈반 세포 (Schwann cell)의 제조 방법
KR10-2017-0009637 2017-01-20

Publications (1)

Publication Number Publication Date
WO2018135907A1 true WO2018135907A1 (ko) 2018-07-26

Family

ID=62909223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000910 WO2018135907A1 (ko) 2017-01-20 2018-01-19 슈반 세포 전구체 및 이로부터 분화된 슈반 세포의 제조 방법

Country Status (2)

Country Link
KR (1) KR101903458B1 (ko)
WO (1) WO2018135907A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3538115A4 (en) * 2016-11-14 2020-04-22 Memorial Sloan Kettering Cancer Center STEM CELL-DERIVED SWAN CELLS

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102451074B1 (ko) * 2019-01-11 2022-10-05 차의과학대학교 산학협력단 Tgf-베타 ⅰ 수용체의 저해제 및 bmp 저해제를 포함하는 줄기 세포의 신경능선세포로의 분화용 조성물, 키트, 및 이를 이용한 방법
KR102322635B1 (ko) * 2021-06-11 2021-11-05 인제대학교 산학협력단 말초신경양 미세조직 제조방법 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150015294A (ko) * 2013-07-31 2015-02-10 한국생명공학연구원 직접 리프로그래밍을 통한 유도 도파민성 전구세포 제조방법
KR20160086170A (ko) * 2015-01-09 2016-07-19 이화여자대학교 산학협력단 편도 유래 중간엽 줄기세포로부터 슈반 세포의 분화 방법
WO2016148656A1 (en) * 2015-03-18 2016-09-22 National University Of Singapore Neurogenesis of dopaminergic neurons
WO2016187135A1 (en) * 2015-05-19 2016-11-24 Maya Sieber-Blum Epidermal neural crest stem cells as a source of schwann cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150015294A (ko) * 2013-07-31 2015-02-10 한국생명공학연구원 직접 리프로그래밍을 통한 유도 도파민성 전구세포 제조방법
KR20160086170A (ko) * 2015-01-09 2016-07-19 이화여자대학교 산학협력단 편도 유래 중간엽 줄기세포로부터 슈반 세포의 분화 방법
WO2016148656A1 (en) * 2015-03-18 2016-09-22 National University Of Singapore Neurogenesis of dopaminergic neurons
WO2016187135A1 (en) * 2015-05-19 2016-11-24 Maya Sieber-Blum Epidermal neural crest stem cells as a source of schwann cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, HAN-SEOP ET AL.: "Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair", STEM CELL REPORTS, vol. 8, no. 6, 6 June 2017 (2017-06-06), pages 1714 - 1726, XP055505353 *
PETERSEN, GAYLE F. ET AL.: "Generation of Diverse Neural Cell Types through Direct Conversion", WORLD JOURNAL OF STEM CELLS, vol. 8, no. 2, 2016, pages 32 - 46, XP055505349 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3538115A4 (en) * 2016-11-14 2020-04-22 Memorial Sloan Kettering Cancer Center STEM CELL-DERIVED SWAN CELLS

Also Published As

Publication number Publication date
KR20180085933A (ko) 2018-07-30
KR101903458B1 (ko) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2017179767A1 (ko) 지방줄기세포에서 신경줄기세포, 신경세포 및 가바성 신경세포로의 분화 유도 방법, 및 인간 골수 유래 중간엽 줄기세포로부터 성장인자를 다량 분비하는 인간 줄기세포의 분화 유도 방법
WO2014163425A1 (ko) Hmga2를 이용하여 비신경 세포로부터 리프로그래밍된 유도 신경줄기세포를 제조하는 방법
WO2011043591A2 (en) Method for differentiation into retinal cells from stem cells
WO2016032263A1 (en) Method for differentiation into retinal ganglion cells from stem cells
WO2011043592A2 (en) Compositions for inducing differentiation into retinal cells from retinal progenitor cells or inducing proliferation of retinal cells comprising wnt signaling pathway activators
WO2018135907A1 (ko) 슈반 세포 전구체 및 이로부터 분화된 슈반 세포의 제조 방법
WO2018190656A1 (ko) In vitro에서 성숙된 인간 장관 오가노이드의 제조 방법 및 이의 용도
WO2010147395A2 (en) Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
WO2019107917A1 (ko) 실시간 글루타치온 측정을 통한 치료용 세포의 품질 측정 방법
WO2018135902A1 (ko) 줄기 세포로부터 분화 유도된 연골세포의 제조방법
WO2022025559A1 (ko) 줄기세포 유래 엑소좀을 포함하는 조성물 및 이의 제조방법
WO2020251181A1 (ko) 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물
WO2017155166A1 (ko) 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법
WO2013180395A1 (ko) 다능성 줄기세포의 제작, 유지, 증식을 증진하는 대사산물 및 이를 포함하는 조성물과 배양방법
WO2011096728A2 (en) Method for proliferating stem cells by activating c-met/hgf signaling and notch signaling
WO2019083281A2 (ko) 신규한 근골격계 줄기세포
WO2021045374A1 (ko) 증식 가능한 간 오가노이드 분화용 배지 조성물 및 이를 이용한 간 오가노이드의 제조방법
WO2011118954A2 (ko) 사람 하비갑개 유래 중간엽 기질세포로부터 연골, 골, 신경세포 또는 지방세포를 분화시키는 방법
WO2020139041A1 (ko) 전신경화증 질환 모델 및 이의 용도
WO2022098052A1 (en) Human intestinal epithelium model and method for preparing same
WO2016032151A1 (ko) 콜린성 신경세포의 생산방법
WO2013137567A1 (ko) Selenium을 이용한 인간 만능줄기세포의 혈액전구세포, 혈관전구세포, 내피세포 및 평활근세포로의 분화방법
WO2021054806A1 (ko) 직접 리프로그래밍을 통한 유도 도파민성 신경세포 전구체의 제조방법
WO2022005023A1 (ko) 중뇌 오가노이드, 이의 고속 및 대량 제조 방법, 이를 이용한 신경독성물질 스크리닝 방법 및 도파민성 신경세포 관련 질환 치료제 스크리닝 방법
WO2021033990A1 (ko) 유도만능줄기세포-유래 중간엽 줄기세포 전구세포로부터 유래된 엑소좀을 포함하는 비알콜성 지방간염의 예방 또는 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742175

Country of ref document: EP

Kind code of ref document: A1