WO2018135889A1 - 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2018135889A1
WO2018135889A1 PCT/KR2018/000873 KR2018000873W WO2018135889A1 WO 2018135889 A1 WO2018135889 A1 WO 2018135889A1 KR 2018000873 W KR2018000873 W KR 2018000873W WO 2018135889 A1 WO2018135889 A1 WO 2018135889A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
secondary battery
lithium
aqueous electrolyte
additive
Prior art date
Application number
PCT/KR2018/000873
Other languages
English (en)
French (fr)
Inventor
김하은
임영민
김광연
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180006125A external-priority patent/KR102053313B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880001466.XA priority Critical patent/CN109075387B/zh
Priority to PL18741574T priority patent/PL3416228T3/pl
Priority to EP18741574.0A priority patent/EP3416228B1/en
Priority to US16/085,333 priority patent/US10700381B2/en
Publication of WO2018135889A1 publication Critical patent/WO2018135889A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery comprising the same.
  • lithium secondary batteries developed in the early 1990s have been spotlighted for their advantages of high operating voltage and high energy density.
  • the lithium secondary battery is composed of a carbon material negative electrode capable of occluding and releasing lithium ions, a positive electrode made of a lithium-containing composite oxide, and a nonaqueous electrolyte in which lithium salt is dissolved in a mixed organic solvent.
  • the lithium secondary battery generates a compound such as Li 2 CO 3 , Li 2 O, LiOH by reacting lithium ions and the electrolyte in the region of 0.5V to 3.5V during the initial charging, by a kind of passivation film (A solid electrolyte interface (SEI) film, which is a passivation layer, is formed.
  • SEI solid electrolyte interface
  • the SEI film formed at the beginning of charging prevents the reaction between lithium ions and carbon anode or lithium ions and other materials during charging and discharging. In addition, it functions as an ion tunnel to pass only lithium ions.
  • the ion tunnel plays a role in preventing the large molecular weight non-aqueous organic solvents that solvate lithium ions and move together to prevent the structure of the carbon anode from collapsing together. Characteristics and output characteristics can be improved.
  • the organic solvent used in the non-aqueous electrolyte of the lithium secondary battery generally causes a side reaction with the transition metal oxide of the cathode active material released when stored for a long time at high temperature to generate a gas.
  • the negative electrode when stored at high temperature in a full charge state (for example, when stored at 60 ° C. after 100% charge at 4.2 V), the negative electrode is exposed while the SEI film gradually collapses, and the exposed negative electrode continuously reacts with the electrolyte, Gases such as CO 2 , CH 4 , and C 2 H 6 are generated.
  • a first technical problem of the present invention is to provide a non-aqueous electrolyte solution for a lithium secondary battery including an additive which forms a stable film on an electrode surface and suppresses an electrolyte side reaction during high temperature storage.
  • the second technical problem of the present invention is to provide a lithium secondary battery having improved high temperature storage characteristics and cycle life characteristics by including the nonaqueous electrolyte solution for lithium secondary batteries.
  • Ionizable lithium salts Organic solvents
  • electrolyte solution for a lithium secondary battery comprising an additive
  • the additive is tetravinylsilane (tert-vinylsilane (TVS): lithium difluorophosphate (LiDFP): 1,3-propylene sulfate (1,3-propylene sulfate (PPS) 1: 1 to 20: 3 It is a mixed additive containing in a weight ratio of 20 to 20,
  • the additive provides a nonaqueous electrolyte solution for a lithium secondary battery, which is included in an amount of 1 wt% to 4 wt% based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
  • the weight ratio of the tetravinylsilane: lithium difluorophosphate: 1,3-propylene sulfate as the additive may be 1: 3 to 17: 5 to 20, more specifically 1: 5 to 15: 5 to 20.
  • the additive may be included in an amount of 1.8 wt% to 4 wt% based on the total weight of the nonaqueous electrolyte solution for the lithium secondary battery.
  • non-aqueous electrolyte of the present invention may further include at least one additional additive selected from the group consisting of vinylene carbonate (VC), LiBF 4 , 1,3-propane sultone, and tetraphenyl borate.
  • VC vinylene carbonate
  • LiBF 4 LiBF 4
  • 1,3-propane sultone 1,3-propane sultone
  • tetraphenyl borate tetraphenyl borate
  • the additional additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the nonaqueous electrolyte solution for the lithium secondary battery.
  • the weight ratio of the tetravinylsilane: 1,3-propane sultone (PS) may be included in a weight ratio of 1: 5 to 15.
  • the tetravinylsilane: VC or LiBF 4 may be included in a weight ratio of 1: 1 to 3.
  • a lithium secondary battery having a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode and a non-aqueous electrolyte
  • the nonaqueous electrolyte solution includes a nonaqueous electrolyte solution for a lithium secondary battery of the present invention
  • the cathode provides a lithium secondary battery including lithium-nickel-manganese-cobalt oxide as a cathode active material.
  • the cathode active material may include a lithium transition metal oxide represented by Formula 1 below.
  • Representative examples of the positive electrode active material include Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , And at least one of Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 , and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 .
  • the lithium secondary battery having improved high temperature storage characteristics and cycle life characteristics may be manufactured by including the same.
  • Ionizable lithium salts Organic solvents
  • electrolyte solution for a lithium secondary battery comprising an additive
  • the additive is a mixed additive comprising tetravinylsilane (TVS): lithium difluorophosphate (LiDFP): 1,3-propylene sulfate (PPS) in a weight ratio of 1: 3 to 20: 3 to 20,
  • the additive provides a nonaqueous electrolyte solution for a lithium secondary battery, which is included in an amount of 1% by weight to 4% by weight based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
  • the ionizable lithium salts may be used without limitation, those conventionally used in the electrolyte solution for lithium secondary batteries, and include, for example, Li + as a cation.
  • anion include F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 - , AsF 6 -, B 10 Cl 10 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 - , (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, CH 3 SO 3 -,
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiAlO 4 , and LiCH 3 SO 3
  • It may include a single or a mixture of two or more selected from the group consisting of, in addition to these LiBTI (lithium bisperfluoroethanesulfonimide, LiN (SO 2 CF 2 CF) commonly used in the electrolyte of the lithium secondary battery 3 ) lithium salts such as lithium imide salts represented by 2 , LiFSI (lithium fluorosulfonyl imide, LiN (SO 2 F) 2 ), and LiTFSI (lithium (bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3 ) 2 )
  • the lithium salt may be appropriately changed within the range generally available, but specifically, may be included in the electrolyte solution 0.1M to 3M, specifically 0.8M to 2.5M. If the concentration of the lithium salt exceeds 3M, the film forming effect may decrease.
  • the organic solvent can be minimized by the oxidation reaction in the charge and discharge process of the secondary battery, and can exhibit the desired characteristics with the additive If there is no limit to the kind.
  • an ether solvent, an ester solvent, an amide solvent, etc. can be used individually or in mixture of 2 or more types, respectively.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
  • the ester solvent may include at least one compound selected from the group consisting of a cyclic carbonate compound, a linear carbonate compound, a linear ester compound, and a cyclic ester compound.
  • cyclic carbonate compound examples include ethylene carbonate (EC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, Any one selected from the group consisting of vinylene carbonate and fluoroethylene carbonate (FEC) or a mixture of two or more thereof, and more specifically ethylene carbonate, 1,2-butylene carbonate, 2,3-butyl Ethylene carbonate, vinylene carbonate, and fluoroethylene carbonate (FEC); any one selected from the group consisting of, or a mixture of two or more thereof.
  • EC ethylene carbonate
  • 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate Any one selected from the group consisting of vinylene carbonate and fluoroethylene carbonate (FEC) or a mixture of two or more thereof, and more specifically ethylene carbonate, 1,2-butylene carbonate, 2,3-butyl
  • the nonaqueous electrolyte solution for lithium secondary batteries of the present invention includes ethylene carbonate having a high melting point as an essential component, instead of including propylene carbonate as the cyclic carbonate compound, thereby realizing the effect of improving high temperature storage characteristics and cycle characteristics.
  • linear carbonate compound examples include dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (diethyl carbonate, DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate Any one selected from, or a mixture of two or more thereof may be representatively used, and more specifically, any one selected from the group consisting of dimethyl carbonate, diethyl carbonate and dipropyl carbonate, and ethyl methyl carbonate or two of them. The above mixture is mentioned.
  • the linear ester compound is any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate.
  • the above mixture and the like can be used representatively, but is not limited thereto.
  • the cyclic ester compound is any one selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -caprolactone, or two or more thereof Mixtures may be used, but are not limited thereto.
  • the cyclic carbonate compound is a high viscosity organic solvent and has a high dielectric constant and is known as a solvent that dissociates lithium salts in the electrolyte.
  • the cyclic carbonate compound is mixed with a low viscosity, a low dielectric constant linear carbonate compound and a linear ester compound such as dimethyl carbonate and diethyl carbonate in an appropriate ratio, an electrolyte having high electrical conductivity can be made.
  • the organic solvent may be used by mixing a cyclic carbonate compound and a linear carbonate compound, and the weight ratio of the cyclic carbonate compound: linear carbonate compound in the organic solvent may be 10:90 to 70:30.
  • tetravinylsilane represented by the following Chemical Formula 2, which is one of the additive components, is solid SEI on the surface of the negative electrode through physical adsorption and electrochemical reaction.
  • TVS tetravinylsilane
  • an increase in resistance caused by an additional reaction of the electrolyte solution at a high temperature can be suppressed, thereby improving durability of the secondary battery at high temperature storage.
  • lithium difluorophosphate represented by the following Chemical Formula 3, which is one of the additive components, is a component that helps to form an SEI film by electrochemically decomposing on the surface of the positive electrode and the negative electrode. Through this, it is possible to realize long-term cycle life characteristics improvement effect of the secondary battery.
  • 1,3-propylene sulfate represented by the following formula (4) of one of the additive components can form a stable protective film that does not crack even when stored at a high temperature on the surface of the negative electrode.
  • the negative electrode coated with the protective film prevents gas generation by inhibiting decomposition of the non-aqueous organic solvent by the negative electrode active material even when using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode active material. can do.
  • the protective film does not interfere with the charge / discharge reaction of the battery. Therefore, performances such as cycle life, capacity, and resistance can be improved along with stability improvement effects at room temperature and high temperature of the secondary battery.
  • the mixed additive tetravinylsilane: lithium difluorophosphate: 1,3-propylene sulfate is specifically 1: 1: 3 to 17: 5 to 20, more specifically 1: 1: 5 to 15: 5 to 20 by weight ratio. May be included.
  • the weight ratio of the tetravinylsilane exceeds the above range, since the excess tetravinylsilane causes side reactions to increase the resistance of the battery, cycle life characteristics may be degraded.
  • the weight ratio of the tetravinylsilane is less than the above range, the gas generation reducing effect and the SEI film forming effect are insignificant.
  • the stabilizing effect is insufficient when the SEI film is formed, and thus high temperature storage characteristics and cycle life characteristics may be reduced. .
  • the non-aqueous electrolyte of the present invention can form a stable SEI film without increasing the resistance when the weight ratio of the compounds constituting the mixed additive satisfies the above range, thereby realizing an electrolyte side reaction suppression effect.
  • the total content of the additive of the present invention may be 1% by weight to 4% by weight, specifically 1.8% by weight to 4% by weight, based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
  • the content of the additive in the non-aqueous electrolyte may be determined by the reaction specific surface area of the positive electrode and the negative electrode. As described above, when the content of the additive is 1% by weight or more, it is possible to form a stable SEI film on the surface of the negative electrode, as well as the electrolyte and the negative electrode. By suppressing the decomposition of the electrolyte by the reaction of to implement the effect of reducing gas generation can be expected to meet the expected effect by adding each component. In addition, when the content of the additive is 4% by weight or less, it is possible not only to improve the gas generation effect, but also to form a stable SEI film on the surface of the electrode while preventing side reactions caused by excessive use of the additive and thereby increasing resistance.
  • the content of the additive exceeds 4% by weight, the gas generation effect may be improved by using the additive excessively, but as each component remains in excess, an excessively thick film is formed to increase resistance and deteriorate output. Can be.
  • the nonaqueous electrolyte according to an embodiment of the present invention includes tetravinylsilane: lithium difluorophosphate: 1,3-propylene sulfate as an additive in a weight ratio of 1: 3 to 20: 3 to 20, and the total weight of the nonaqueous electrolyte.
  • tetravinylsilane: lithium difluorophosphate: 1,3-propylene sulfate as an additive in a weight ratio of 1: 3 to 20: 3 to 20, and the total weight of the nonaqueous electrolyte.
  • a stable SEI film is formed on the surface of the negative electrode, and the decomposition of the electrolyte by the reaction between the electrolyte and the negative electrode is suppressed to the maximum, thereby improving the characteristics of the secondary battery.
  • non-aqueous electrolyte according to an embodiment of the present invention further includes other additional additives as necessary to further implement cycle life characteristics, low temperature high rate discharge characteristics, high temperature stability, overcharge prevention, and high temperature swelling effect. I can.
  • Such additional additives are not particularly limited as long as they are additives capable of forming a stable film on the surface of the anode and cathode without significantly increasing the initial resistance.
  • Such additional additives include at least one selected from the group consisting of vinylene carbonate (VC), LiBF 4 , 1,3-propane sultone (PS), and tetraphenylborate (TPB).
  • VC vinylene carbonate
  • PS 1,3-propane sultone
  • TPB tetraphenylborate
  • the weight ratio of tetravinylsilane: 1,3-propane sultone (PS) may be 1: 5 to 15 by weight.
  • the tetravinylsilane: VC or LiBF 4 may be in a weight ratio of 1: 1 to 3.
  • the additional additive may include 0.1 wt% to 5 wt%, specifically 0.1 wt% to 4 wt%, based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery. If the content of the additional additive is less than 0.1% by weight, the effect to be realized from the additional additive is insignificant, and when the content of the additional additive is more than 5% by weight, a side reaction may occur due to the excess additive.
  • secondary batteries are intercalated with lithium ions derived from lithium metal oxide used as a positive electrode during initial charging to a carbon-based electrode used as a negative electrode.
  • Reaction forms an organic material and Li 2 CO 3 , Li 2 O, LiOH, etc.
  • These form an SEI film on the surface of the cathode. Once formed, the SEI film acts as an ion tunnel that passes only lithium ions between the electrolyte and the cathode, preventing the reaction between lithium ions and the carbon-based negative electrode or other materials during repeated charge / discharge cycles. Will be performed.
  • the SEI membrane is co-caloricated with lithium ions together with lithium ions by blocking the migration of organic solvents having a large molecular weight, such as EC, DMC, DEC, PP, to the carbon-based cathode.
  • organic solvents having a large molecular weight such as EC, DMC, DEC, PP
  • the carbon material of the negative electrode reacts with the electrolyte during initial charging to form a passivation layer on the negative electrode surface to maintain stable charge and discharge without further decomposition of the electrolyte, which is consumed to form the passivation layer on the negative electrode surface.
  • the amount of charged charge is an irreversible capacity, and has a feature of not reversibly reacting at the time of discharge. For this reason, the lithium ion battery can maintain a stable life cycle without any further irreversible reaction after the initial charge reaction.
  • the lithium ion battery when the lithium ion battery is stored at a high temperature in a fully charged state (eg, stored at 60 ° C. after 100% charge of 4.15V or more), the SEI film gradually collapses due to increased electrochemical and thermal energy over time.
  • This SEI film collapse exposes the negative electrode surface, and the exposed negative electrode surface decomposes while reacting with a carbonate-based solvent in the electrolyte, causing a continuous side reaction.
  • tetravinylsilane, lithium difluorophosphate and 1,3-propylene sulfate as an additive in the above-mentioned ratio in the preparation of the non-aqueous electrolyte, a stable film is formed on the electrode surface to react with the electrolyte side reaction. By suppressing this, it is possible to prevent battery expansion during high temperature storage and improve battery characteristics.
  • a lithium secondary battery having a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode and a non-aqueous electrolyte
  • the cathode provides a lithium secondary battery including lithium-nickel-manganese-cobalt oxide as a cathode active material.
  • a separator interposed between the positive electrode, the negative electrode, and the positive electrode and the negative electrode may be sequentially stacked to form an electrode assembly.
  • the positive electrode, the negative electrode, and the separator constituting the electrode assembly are conventional. Any of those manufactured by the method and used in manufacturing the lithium secondary battery may be used.
  • the positive electrode may be manufactured by forming a positive electrode mixture layer on a positive electrode current collector.
  • the cathode mixture layer may be formed by coating a cathode slurry including a cathode active material, a binder, a conductive material, a solvent, and the like on a cathode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the cathode active material may include a lithium transition metal oxide represented by Formula 1 below.
  • Such cathode active materials are representative examples of Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 may be mentioned.
  • the cathode active material may be a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4 , in addition to the lithium transition metal oxide represented by Chemical Formula 1).
  • Etc. lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1 - Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (where, 0 ⁇ z ⁇ 2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1- Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc., lithium-manganese-cobalt based oxides (eg, LiCo 1 -Y2 Mn Y2 O 2 (here,
  • the cathode active material may be LiCoO 2 , LiMnO 2 , LiNiO 2 , or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.).
  • the cathode active material may be included in an amount of 80 wt% to 99 wt%, specifically 93 wt% to 98 wt%, based on the total weight of solids in the cathode slurry. At this time, when the amount of the positive electrode active material is 80% by weight or less, the energy density may be lowered, thereby lowering the capacity.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of solids in the positive electrode slurry.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • Carbon powder Graphite powders such as natural graphite, artificial graphite, or graphite with very advanced crystal structure; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
  • the conductive material is Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, etc., Ketjenblack, EC series (Armak Company) Armak Company), Vulcan XC-72 (Cabot Company), and Super P (manufactured by Timcal) can also be used.
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that becomes a desirable viscosity when including the positive electrode active material and optionally a binder and a conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the solid content concentration in the positive electrode slurry including the positive electrode active material, and optionally the binder and the conductive material may be 10 to 70% by weight, preferably 20 to 60% by weight.
  • the negative electrode may be prepared by forming a negative electrode mixture layer on the negative electrode current collector.
  • the negative electrode mixture layer may be formed by coating a negative electrode slurry including a negative electrode active material, a binder, a conductive material, a solvent, and the like on a negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material may be lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal complex oxide, and may dope and undo lithium. Materials, and at least one selected from the group consisting of transition metal oxides.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used without particular limitation.
  • Examples thereof include crystalline carbon, Amorphous carbons or these may be used together.
  • Examples of the crystalline carbon include graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
  • the metals or alloys of these metals with lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al And a metal selected from the group consisting of Sn or an alloy of these metals with lithium may be used.
  • the metal complex oxide may include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), and Sn x Me 1- x Me ' y O z (Me: Mn, Fe Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8 Any one selected from the group can be used.
  • Examples of the material capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, Is an element selected from the group consisting of rare earth elements and combinations thereof, not Si), Sn, SnO 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth) An element selected from the group consisting of elements and combinations thereof, and not Sn; and at least one of these and SiO 2 may be mixed and used.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, lithium vanadium oxide, and the like.
  • the negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of solids in the negative electrode slurry.
  • the binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 30 wt% based on the total weight of solids in the negative electrode slurry.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of solids in the negative electrode slurry.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, or thermal black may be used.
  • Carbon powder such as natural graphite, artificial graphite, or graphite with very advanced crystal structure
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride powder, aluminum powder and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include an organic solvent such as water or NMP, alcohol, etc., and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material and optionally a binder and a conductive material.
  • concentration of the solids in the negative electrode slurry including the negative electrode active material and, optionally, the binder and the conductive material may be 50 wt% to 75 wt%, preferably 50 wt% to 65 wt%.
  • porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • Cathode active material Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 ): conductive material (carbon black): binder (polyvinylidene fluoride) in a 90: 5: 5 weight ratio N-methyl-2-pyrrolidone as a solvent (NMP) was added to prepare a positive electrode slurry (40 wt% solids).
  • the positive electrode slurry was applied to one surface of a positive electrode current collector (Al thin film) having a thickness of 20 ⁇ m, and dried and roll pressed to prepare a positive electrode.
  • a negative electrode active material artificial graphite: conductive material (carbon black): binder (polyvinylidene fluoride) was added to N-methyl-2-pyrrolidone (NMP) as a solvent in a 90: 5: 5 weight ratio to give a negative electrode.
  • NMP N-methyl-2-pyrrolidone
  • a slurry 40 wt% solids was prepared. The negative electrode slurry was applied to one surface of a negative electrode current collector (Cu thin film) having a thickness of 20 ⁇ m, and dried and roll pressed to prepare a negative electrode.
  • the non-aqueous electrolyte of Example 1 prepared by pouring the lithium secondary battery (battery capacity 340 mAh) was prepared.
  • non-aqueous electrolyte solution In the preparation of the non-aqueous electrolyte solution, the same method as in Example 1, except that 96.4 g of organic solvent contained 0.1 g of tetravinylsilane, 1.5 g of lithium difluorophosphate, and 2 g of 1,3-propylene sulfate as mixed additives.
  • 96.4 g of organic solvent contained 0.1 g of tetravinylsilane, 1.5 g of lithium difluorophosphate, and 2 g of 1,3-propylene sulfate as mixed additives.
  • the non-aqueous electrolyte was prepared in the same manner as in Example 1, except that 98.2 g of the organic solvent contained 0.05 g, 0.75 g of lithium difluorophosphate, and 1.0 g of 1,3-propylene sulfate as an additive. And a lithium secondary battery was prepared (see Table 1 below).
  • non-aqueous electrolyte In preparing the non-aqueous electrolyte, the same method as in Example 1 except that 97.4 g of organic solvent contains 0.1 g of tetravinylsilane, 1.0 g of lithium difluorophosphate, and 1.5 g of 1,3-propylene sulfate as additives. To prepare a non-aqueous electrolyte and a lithium secondary battery (see Table 1 below).
  • non-aqueous electrolyte In the preparation of the non-aqueous electrolyte, the same method as in Example 1 except that 97.9 g of organic solvent contains 0.1 g of tetravinylsilane, 1.0 g of lithium difluorophosphate, and 1.0 g of 1,3-propylene sulfate as an additive.
  • organic solvent contains 0.1 g of tetravinylsilane, 1.0 g of lithium difluorophosphate, and 1.0 g of 1,3-propylene sulfate as an additive.
  • non-aqueous electrolyte In the preparation of the non-aqueous electrolyte, the same method as in Example 1 except that 96.9 g of organic solvent contains 0.1 g of tetravinylsilane, 2.0 g of lithium difluorophosphate, and 1 g of 1,3-propylene sulfate as a mixed additive.
  • organic solvent contains 0.1 g of tetravinylsilane, 2.0 g of lithium difluorophosphate, and 1 g of 1,3-propylene sulfate as a mixed additive.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a nonaqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that 2g was included (see Table 1 below).
  • non-aqueous electrolyte solution In the preparation of the non-aqueous electrolyte solution, the same method as in Example 1 except that 0.5 g of tetravinylsilane, 1.25 g of lithium difluorophosphate, and 1.25 g of 1,3-propylene sulfate were included as a mixed additive in 97 g of an organic solvent. To prepare a non-aqueous electrolyte and a lithium secondary battery (see Table 1 below).
  • non-aqueous electrolyte solution In preparing the non-aqueous electrolyte solution, the same procedure as in Comparative Example 3 was performed except that 96.9 g of organic solvent contained 0.1 g of tetravinylsilane, 0.5 g of lithium difluorophosphate, and 2.5 g of 1,3-propylene sulfate as a mixed additive.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared by the method (see Table 1 below).
  • non-aqueous electrolyte solution In preparing the non-aqueous electrolyte solution, the same procedure as in Comparative Example 3 was performed except that 97.15 g of organic solvent contained 0.1 g of tetravinylsilane, 0.3 g of lithium difluorophosphate, and 2.4 g of 1,3-propylene sulfate as a mixed additive.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared by the method (see Table 1 below).
  • non-aqueous electrolyte solution In the preparation of the non-aqueous electrolyte solution, the same procedure as in Comparative Example 3 was performed except that 97.45 g of organic solvent contained 0.15 g of tetravinylsilane, 2.1 g of lithium difluorophosphate, and 0.3 g of 1,3-propylene sulfate as mixed additives.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared by the method (see Table 1 below).
  • the nonaqueous electrolyte and the lithium secondary were prepared in the same manner as in Comparative Example 3, except that 97 g of lithium difluorophosphate and 1.5 g of 1,3-propylene sulfate were included as a mixed additive in 97 g of an organic solvent.
  • the cell was prepared (see Table 1 below).
  • the non-aqueous electrolyte and the lithium secondary battery were prepared in the same manner as in Comparative Example 3, except that 97.25 g of the organic solvent contained 0.25 g of tetravinylsilane and 2.5 g of 1,3-propylene sulfate as a mixed additive. Was prepared (see Table 1 below).
  • the non-aqueous electrolyte and the lithium secondary battery were prepared in the same manner as in Comparative Example 3, except that 97.25 g of the organic solvent contained 0.25 g of tetravinylsilane and 2.5 g of lithium difluorophosphate as a mixed additive. Prepared (see Table 1 below).
  • lithium cobalt composite oxide Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2
  • each of the secondary batteries prepared in Examples 1 to 6 and Comparative Examples 1 to 10 were charged at 1C to 4.25V / 55mA at 25 ° C under CC / CV conditions, and then discharged at 2C to 3.0V under CC conditions ( 1000 cycles / 1 cycle ⁇ 100) to measure 100 cycle life characteristics at room temperature, and the results are shown in Table 1 below.
  • Each secondary battery prepared in Examples 1 to 6 and Comparative Examples 1 to 10 was stored at 60 ° C. for 16 weeks at room temperature, and then charged to 1 C at 4.25 V / 55 mA at CC / CV conditions at room temperature, followed by CC conditions. Discharge at 2C to 2.5V, calculate the discharge capacity as a percentage after 16 weeks (capacity after 16 weeks / initial discharge capacity x 100 (%)), and measure the capacity after high temperature storage. The results are shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로 이온화 가능한 리튬염; 유기 용매; 및 첨가제를 포함하는 리튬 이차전지용 비수 전해액으로서, 상기 첨가제는 테트라비닐실란 : 리튬 디플루오로포스페이트:1,3-프로필렌 설페이트를 1:3 내지 20:3 내지 20의 중량비로 포함하며, 상기 첨가제는 전체 함량이 리튬 이차전지용 비수전해액 전체 중량을 기준으로 1 중량% 내지 4 중량%인 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2017년 01월 20일자 한국 특허 출원 제2017-0010043호 및 2018년 01월 17일자 한국 특허 출원 제2018-0006125호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있으며, 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기자동차에 까지 그 적용분야가 확대되면서 고용량 전기화학소자 개발에 대한 노력이 점점 구체화되고 있다.
전기화학소자 중에서도 충방전이 가능한 이차전지에 대한 관심이 대두되고 있으며, 특히 1990년대 초에 개발된 리튬 이차전지는 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점에서 각광 받고 있다.
리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재 음극, 리튬 함유 복합 산화물로 이루어진 양극 및 혼합 유기용매에 리튬염이 용해된 비수전해액으로 구성되어 있다.
상기 리튬 이차전지는 초기 충전시 0.5V~3.5V 영역에서 리튬 이온과 전해액이 반응하여 Li2CO3, Li2O, LiOH 등의 화합물을 생성하고, 이러한 화합물에 의해 음극 표면에 일종의 부동태 막(passivation layer)인 고체 전해질 계면(solid electrolyte interface: SEI) 막이 형성된다.
충전 초기에 형성된 SEI 막은 충방전 중 리튬 이온과 탄소 음극 또는 리튬 이온과 다른 물질과의 반응을 막아준다. 또한, 이온 터널(Ion Tunnel)의 역할을 수행하여 리튬 이온만을 통과시킨다. 이온 터널은 리튬 이온을 용매화시켜 함께 이동하는 분자량이 큰 비수성 유기용매들이 탄소 음극에 함께 코인터컬레이션되어 탄소 음극의 구조를 붕괴시키는 것을 막아 주는 역할을 하기 때문에, 리튬 이차전지의 사이클 수명 특성 및 출력 특성을 향상시킬 수 있다.
한편, 리튬 이차전지의 비수 전해액에 사용되는 유기용매는 일반적으로 고온에서 장시간 보관할 경우 방출된 양극활물질의 전이금속 산화물과 부반응이 야기되어 가스를 발생시킨다. 또한, 만충전 상태에서 고온 저장시 (예를 들어, 4.2V에서 100% 충전 후 60℃에서 저장 시) 상기 SEI 막이 서서히 붕괴하면서 음극이 노출되고, 노출된 음극은 전해액과 지속적으로 반응하면서 CO, CO2, CH4, C2H6 등의 가스를 발생시킨다.
이렇게 발생된 가스에 의해 전지의 내압이 상승하면서 전지 부풀음 및 전극 조립체 변형 등을 초래하고, 그 결과 전지의 내부 단락이 유발되어 전지가 열화되거나, 발화 또는 폭발될 수 있다.
이러한 문제점들을 해결하기 위하여, 고온 저장 시 부반응을 억제할 수 있는 리튬 이차전지용 전해액의 개발이 필요한 실정이다.
선행기술문헌
일본 공개특허공보 제2010-116475호
본 발명의 제1 기술적 과제는 전극 표면상에 안정한 막을 형성하고, 고온 저장 시 전해액 부반응을 억제할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공하는 것이다.
또한, 본 발명의 제2 기술적 과제는 상기 리튬 이차전지용 비수전해액을 포함함으로써 고온 저장 특성 및 사이클 수명 특성이 향상된 리튬 이차전지를 제공하는 것이다.
상기의 목적을 달성하기 위한 일 실시예에서,
이온화 가능한 리튬염; 유기 용매; 및 첨가제를 포함하는 리튬 이차전지용 전해액으로서,
상기 첨가제는 테트라비닐실란 (tert-vinylsilane: TVS) : 리튬 디플루오로포스페이트 (lithium difluorophospate: LiDFP) : 1,3-프로필렌 설페이트 (1,3-propylene sulfate: PPS)를 1 : 3 내지 20 : 3 내지 20의 중량비로 포함하는 혼합 첨가제이며,
상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 1 중량% 내지 4 중량%로 포함되는 리튬 이차전지용 비수전해액을 제공한다.
상기 첨가제인 테트라비닐실란 : 리튬 디플루오로포스페이트 : 1,3-프로필렌 설페이트의 중량비는 1: 3 내지 17 : 5 내지 20, 보다 구체적으로 1 : 5 내지 15 : 5 내지 20일 수 있다.
또한, 상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 1.8 중량% 내지 4 중량%로 포함될 수 있다.
또한, 본 발명의 비수전해액은 비닐렌 카보네이트(VC), LiBF4, 1,3-프로판 설톤 및 테트라페닐 보레이트로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가적 첨가제를 더 포함할 수 있다.
상기 부가적 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 5 중량%로 포함될 수 있다.
이때, 상기 부가적 첨가제로 1,3-프로판 설톤(PS)을 포함하는 경우, 상기 테트라비닐실란 : 1,3-프로판 설톤(PS)의 중량비는 1 : 5 내지 15의 중량비로 포함될 수 있다.
또한, 상기 부가적 첨가제로 VC 또는 LiBF4를 포함하는 경우, 상기 테트라비닐실란 : VC 또는 LiBF4는 1 : 1 내지 3의 중량비로 포함될 수 있다.
또한, 본 발명의 일 실시예에서는
음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막 및 비수 전해액을 구비하는 리튬 이차전지에 있어서,
상기 비수 전해액은 본 발명의 리튬 이차전지용 비수 전해액을 포함하고,
상기 양극은 리튬-니켈-망간-코발트계 산화물을 양극 활물질로 포함하는 리튬 이차전지를 제공한다.
구체적으로, 상기 양극 활물질은 하기 화학식 1로 표시되는 리튬 전이금속 산화물을 포함할 수 있다.
[화학식 1]
Li(NiaCobMnc)O2
상기 화학식 1에서,
0.55≤a≤0.9, 0.05≤b≤0.22, 0.05≤c≤0.23이고, a+b+c=1이다.
상기 양극활물질은 그 대표적인 예로 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, 및 Li(Ni0.8Mn0.1Co0.1)O2 중 적어도 하나 이상을 들 수 있다.
본 발명에서는 3종의 화합물이 특정 비율로 혼합된 혼합 첨가제를 포함함으로써, 음극 표면에 안정한 SEI 막을 형성하여 고온 저장 시 부반응이 억제된 리튬 이차전지용 비수전해액을 제조할 수 있다. 또한, 이를 포함함으로써 고온 저장 특성 및 사이클 수명 특성이 향상된 리튬 이차전지를 제조할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
구체적으로, 본 발명의 일 실시예에서는
이온화 가능한 리튬염; 유기 용매; 및 첨가제를 포함하는 리튬 이차전지용 전해액으로서,
상기 첨가제는 테트라비닐실란 (TVS) : 리튬 디플루오로포스페이트 (LiDFP) : 1,3-프로필렌 설페이트 (PPS)를 1 : 3 내지 20 : 3 내지 20의 중량비로 포함하는 혼합 첨가제이며,
상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 1 중량% 내지 4 중량%로 포함되는 것인 리튬 이차전지용 비수전해액을 제공한다.
먼저, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 이온화 가능한 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, B10Cl10 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CH3SO3 -, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiAlO4, 및 LiCH3SO3으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있고, 이들 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2, LiFSI (lithium fluorosulfonyl imide, LiN(SO2F)2), 및 LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 나타내는 리튬 이미드염과 같은 리튬염을 제한 없이 사용할 수 있다. 구체적으로 리튬염은 LiPF6, LiBF4, LiCH3CO2, LiCF3CO2, LiCH3SO3, LiFSI, LiTFSI 및 LiBETI로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. 다만, 상기 리튬염은 상기 혼합 첨가제로서 포함되는 LiDFP는 포함하지 않는다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 구체적으로 전해액 내에 0.1M 내지 3M, 구체적으로 0.8M 내지 2.5M로 포함될 수 있다. 만약, 상기 리튬염의 농도가 3M을 초과하는 경우 막 형성 효과가 감소할 수 있다.
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 유기용매는 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 그 종류에 제한이 없다. 예를 들면 에테르계 용매, 에스테르계 용매, 또는 아미드계 용매 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 유기용매 중 에테르계 용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 에스테르계 용매는 환형 카보네이트 화합물, 선형 카보네이트 화합물, 선형 에스테르 화합물, 및 환형 에스테르 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함할 수 있다.
이중 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있고, 보다 구체적으로 에틸렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다.
한편, 상기 환형 카보네이트 화합물 중 프로필렌 카보네이트(propylene carbonate, PC)의 경우, 탄소계 음극재료와 비가역적인 분해 반응을 일으키고, 전극 두께에 따라 고온 사이클 시에 프로필렌 카보네이트에 의한 전극 탈리(exforiation) 현상이 발생하여 리튬 이차전지의 용량이 저하될 수 있다. 특히, 프로필렌 카보네이트를 LiPF6 등의 리튬염과 함께 사용할 경우, 탄소계 음극 표면에 SEI 막을 형성하는 과정 및 프로필렌 카보네이트에 의하여 용매화된 리튬 이온이 탄소층 사이에 삽입되는 과정에서, 용매화된 프로필렌 카보네이트가 Li 이온과 분리되지 않아 음극층을 무너뜨리면서 삽입되기 때문에 막대한 용량의 비가역 반응이 발생할 수 있다. 뿐만 아니라, 음극 표면에 견고한 SEI 막이 생성되지 않기 때문에, 리튬 이차전지의 구동(working)이 원활하게 이루어지지 않을 수 있다.
이에, 본 발명의 리튬 이차전지용 비수전해액은 상기 환형 카보네이트 화합물로서 프로필렌 카보네이트를 포함하는 대신, 융점이 높은 에틸렌 카보네이트를 필수 성분으로 포함하여, 고온 저장 특성 및 사이클 특성을 향상시키는 효과를 구현할 수 있다.
또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으며, 보다 구체적으로 디메틸 카보네이트, 디에틸 카보네이트 및 디프로필 카보네이트, 에틸메틸 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다.
상기 선형 에스테르 화합물은 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 환형 에스테르 화합물은 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤과 같은 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 에스테르계 용매 중에서 환형 카보네이트계 화합물은 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키는 용매로 알려져 있다. 또한, 환형 카보네이트계 화합물에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트계 화합물 및 선형 에스테르계 화합물을 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있다.
상기 유기용매는 환형 카보네이트계 화합물과 선형 카보네이트계 화합물을 혼합하여 사용할 수 있으며, 상기 유기용매 중 환형 카보네이트계 화합물:선형 카보네이트계 화합물의 중량비는 10:90 내지 70:30일 수 있다.
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 첨가제 성분 중 하나인 하기 화학식 2로 표시되는 테트라비닐실란 (TVS)은 물리적 흡착 및 전기화학적 반응을 통해 음극 표면에 견고한 SEI 막을 형성할 수 있는 화합물로서, 이를 통하여 고온에서 전해액의 추가 반응에 의해 야기되는 저항 증가를 억제할 수 있으므로, 고온 저장 시에 이차전지의 내구성을 향상시킬 수 있다.
[화학식 2]
Figure PCTKR2018000873-appb-I000001
또한, 상기 첨가제 성분 중 하나인 하기 화학식 3으로 표시되는 리튬 디플루오로포스페이트는 양극과 음극 표면에서 전기 화학적으로 분해되어 SEI 막 형성에 도움을 주는 성분이다. 이를 통하여 이차전지의 장기적인 사이클 수명 특성 향상 효과를 구현할 수 있다.
[화학식 3]
Figure PCTKR2018000873-appb-I000002
또한, 상기 첨가제 성분 중 하나인 하기 화학식 4로 표시되는 1,3-프로필렌 설페이트는 음극 표면에 고온 저장 시에도 균열되지 않는 안정적인 보호막을 형성할 수 있다. 이러한 보호막에 의해 피복된 음극은 음극활물질로 천연 흑연이나 인조 흑연 등의 고결정화한 탄소 재료를 사용했을 경우에도, 고온 저장 시에도 음극 활물질에 의한 비수성 유기용매의 분해를 억제하여 가스 발생을 방지할 수 있다. 더욱이, 상기 보호막은 전지의 충방전 반응을 방해하지 않는다. 따라서, 이차전지의 상온 및 고온에서 안정성 향상 효과와 함께 사이클 수명, 용량 및 저항 등의 성능을 개선할 수 있다.
[화학식 4]
Figure PCTKR2018000873-appb-I000003
또한, 상기 혼합 첨가제인 테트라비닐실란 : 리튬 디플루오로포스페이트 : 1,3-프로필렌 설페이트는 구체적으로 1 : 3 내지 17 : 5 내지 20, 보다 구체적으로 1 : 5 내지 15 : 5 내지 20의 중량비로 포함될 수 있다.
만약, 상기 테트라비닐실란의 중량비가 상기 범위를 초과하는 경우, 잉여의 테트라비닐실란이 부반응을 일으켜 전지의 저항을 증가시키기 때문에, 사이클 수명 특성이 저하될 수 있다. 반면에, 상기 테트라비닐실란의 중량비가 상기 범위 미만이면, 가스 발생 저감 효과 및 SEI 막 형성 효과가 미미하다.
또한, 상기 테트라비닐실란 1 중량부를 기준으로 상기 리튬 디플루오로포스페이트의 중량비가 20을 초과하거나, 또는 1,3-프로필렌 설페이트의 중량비가 20을 초과하는 경우, 첨가제 과다 사용으로 인한 전지 내부 저항이 증가하기 때문에, 결론적으로 사이클 수명 특성이 저하된다.
상기 테트라비닐실란 1 중량부를 기준으로 상기 리튬 디플루오로포스페이트 및 1,3-프로필렌 설페이트의 중량비가 3 미만인 경우, SEI 막 형성 시 안정화 효과가 미미하여, 고온 저장 특성 및 사이클 수명 특성이 저하될 수 있다.
이러한 결과로부터, 본 발명의 비수전해액은 상기 혼합 첨가제를 구성하는 화합물들의 중량비가 상기 범위를 만족하는 경우, 저항 증가 없이 안정한 SEI 막을 형성할 수 있고, 이에 따라 전해액 부반응 억제 효과를 구현할 수 있다.
또한, 본 발명의 첨가제의 전체 함량은 리튬 이차전지용 비수전해액 전체 중량을 기준으로 1 중량% 내지 4 중량%, 구체적으로 1.8 중량% 내지 4 중량%일 수 있다.
비수전해액 중 첨가제의 함량은 양극, 음극의 반응 비표면적에 의해 결정될 수 있는데, 상기와 같이 첨가제의 함량이 1 중량% 이상인 경우, 음극 표면에 안정한 SEI 막을 형성할 수 있을 뿐만 아니라, 전해액과 음극과의 반응에 의한 전해액의 분해를 억제하여 가스 발생 저감 효과를 구현할 수 있는 등 각 성분들을 첨가함에 따른 기대 효과를 충족할 수 있다. 또한, 첨가제의 함량이 4 중량% 이하인 경우, 가스 발생 효과를 개선할 수 있을 뿐만 아니라, 첨가제 과량 사용에 따른 부반응 및 이에 따른 저항 증가를 방지하면서, 전극 표면에 안정한 SEI 막을 형성할 수 있다.
만약, 첨가제의 함량이 4 중량%를 초과하는 경우, 첨가제 과량 사용에 의해 가스 발생 효과는 보다 개선될 수 있으나, 각 성분이 과량으로 잔류하게 되면서, 지나치게 두꺼운 막이 형성되어 저항 증가와 출력 열화가 발생할 수 있다.
따라서, 본 발명의 일 실시예에 따른 비수 전해액은 첨가제로 테트라비닐실란 : 리튬 디플루오로포스페이트 : 1,3-프로필렌 설페이트를 1 : 3 내지 20 : 3 내지 20의 중량비로 포함하면서 비수전해액 전체 중량을 기준으로 1 중량% 내지 4 중량%를 포함하는 경우, 음극 표면에 안정한 SEI 막을 형성하여, 전해액과 음극과의 반응에 의한 전해액의 분해를 최대한 억제함으로써, 이차전지의 특성을 향상시킬 수 있다.
또한, 본 발명의 일 실시예에 따른 비수전해액은 사이클 수명 특성, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온 부풀음 개선 효과 등을 추가로 구현하기 위하여, 필요에 따라 다른 부가적 첨가제를 더 포함할 수 이다.
이러한 부가적 첨가제는 초기저항을 크게 증가시키지 않으면서, 양극 및 음극 표면에 안정한 막을 형성할 수 있는 첨가제라면 특별히 제한하지 않는다.
이러한 부가적 첨가제로는 비닐렌카보네이트(VC), LiBF4, 1,3-프로판 설톤(PS), 및 테트라페닐보레이트(TPB)로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
상기 부가적 첨가제 중 1,3-프로판 설톤(PS)을 포함하는 경우, 상기 테트라비닐실란 : 1,3-프로판 설톤(PS)의 중량비는 1 : 5 내지 15의 중량비일 수 있다.
상기 부가적 첨가제로 VC 또는 LiBF4를 포함하는 경우, 상기 테트라비닐실란 : VC 또는 LiBF4는 1 : 1 내지 3의 중량비일 수 있다.
특히, 상기 부가적 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 5 중량%, 구체적으로 0.1 중량% 내지 4 중량%로 포함할 수 있다. 만약, 상기 부가적 첨가제의 함량이 0.1 중량% 미만인 경우 부가적 첨가제로부터 구현하고자 하는 효과가 미미하고, 5 중량%를 초과하는 경우, 잉여의 부가적 첨가제에 의한 부반응이 일어날 수 있다.
일반적으로 이차전지는 초기 충전시 양극으로 사용되는 리튬 금속산화물로부터 나온 리튬 이온이 음극으로 사용되는 탄소계 전극으로 이동하면서 삽입(Intercalation)되게 되는데, 이때 리튬은 반응성이 강하므로 탄소계 음극 및 전해액과 반응하여 유기물질 및 Li2CO3, Li2O, LiOH 등을 형성하게 되고 이것들은 음극의 표면에 SEI 막을 형성하게 된다. 상기 SEI 막은 최초 충전시 일단 형성되고 나면 이후 전지 사용에 의한 충방전 반복시 리튬이온과 탄소계 음극 또는 다른 물질과의 반응을 막아주면서, 전해액과 음극 사이에서 리튬 이온만을 통과시키는 이온 터널로서의 역할을 수행하게 된다. 상기 이온 터널 효과에 의하여 SEI 막은 분자량이 큰 전해액용 유기용매, 예를 들면 EC, DMC, DEC, PP 등이 탄소계 음극으로 이동하는 것을 봉쇄함으로써, 리튬 이온과 함께 탄소계 음극에 동반삽입(cointercalation)되어 탄소계 음극의 구조 붕괴를 방지한다. 즉, 이 막이 형성되고 나면 리튬 이온은 다시 탄소계 음극이나 다른 물질과의 부반응을 하지 않게 됨으로써, 이후 전지 사용에 의한 충방전시 요구되는 리튬이온의 양을 가역적으로 유지할 수 있다.
다시 말하면, 음극의 탄소 재료는 초기 충전시 전해액과 반응하여 음극표면에 패시베이션층을 형성함으로써 더 이상의 전해액 분해가 발생하지 않고 안정적인 충방전을 유지할 수 있도록 해주는데, 이때, 음극표면의 패시베이션층 형성에 소모된 전하량은 비가역 용량으로서, 방전시 가역적으로 반응하지 않는 특징을 가지고 있는 것이며, 이러한 이유로 리튬이온 전지는 초기 충전 반응 이후 더 이상의 비가역 반응을 나타내지 않고 안정적인 수명 사이클을 유지할 수 있게 되는 것이다.
하지만, 만충전 상태에서 리튬 이온전지를 고온 저장(예: 4.15V 이상 100% 충전 후 60℃에서 저장)하는 경우, SEI 막이 시간이 경과함에 따라 증가된 전기화학적 에너지와 열에너지에 의해 서서히 붕괴되는 단점을 가진다.
이러한 SEI 막 붕괴는 음극 표면을 노출시키고, 노출된 음극 표면은 전해액 중 카보네이트계 용매와 반응하면서 분해되어, 지속적인 부반응을 야기한다.
이러한 부반응은 계속적으로 기체를 발생시키게 되는데, 이때 생성되는 주요 기체들은 CO, CO2, CH4, C2H6 등으로서, 음극활물질의 종류에 따라 달라지며, 그 종류에 관계없이 계속적인 기제 발생은 리튬 이온전지의 전지 내부 압력을 상승시켜 전지 두께를 팽창시키는 원인이 된다.
이에, 본 발명에서는 비수전해액 제조 시에 첨가제로 테트라비닐실란, 리튬 디플루오로포스페이트 및 1,3-프로필렌 설페이트를 상술한 바와 같은 비율로 혼합하여 사용함으로써, 전극 표면 상에 안정한 막을 형성하여 전해액 부반응을 억제함으로써, 고온 저장시 전지 팽창을 방지하고, 전지 특성을 향상시킬 수 있다.
또한, 본 발명의 일 실시예에서는
음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막 및 비수 전해액을 구비하는 리튬 이차전지에 있어서,
본 발명의 비수 전해액을 포함하고,
상기 양극은 리튬-니켈-망간-코발트계 산화물을 양극 활물질로 포함하는 리튬 이차전지를 제공한다.
구체적으로, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막이 순차적으로 적층되어 전극 조립체를 형성할 수 있으며, 이때, 상기 전극조립체를 이루는 양극, 음극 및 분리막은 통상적인 방법으로 제조되어 리튬 이차전지 제조 시 사용되던 것들이 모두 사용될 수 있다.
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
또한, 상기 양극 활물질은 하기 화학식 1로 표시되는 리튬 전이금속 산화물을 포함할 수 있다.
[화학식 1]
Li(NiaCobMnc)O2
상기 화학식 1에서,
0.55≤a≤0.9, 0.05≤b≤0.22, 0.05≤c≤0.23이고, a+b+c=1이다.
이러한 양극활물질은 그 대표적인 예로 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2를 들 수 있다.
또한, 상기 양극 활물질은 상기 화학식 1로 표시되는 리튬 전이금속 산화물 외에도 필요에 따라 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1 -Y2MnY2O2(여기에서, 0<Y2<1), LiMn2 - z1Coz1O4(여기에서, 0<Z1<2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다)) 중 어느 하나 또는 둘 이상의 화합물을 더 포함할 수 있다.
이러한 양극 활물질은 LiCoO2, LiMnO2, LiNiO2, 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%, 구체적으로 93 중량% 내지 98 중량%로 포함될 수 있다. 이때, 양극 활물질 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다.
상기 도전재는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케첸 블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등의 명칭으로 시판되고 있는 것을 사용할 수도 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 양극 슬러리 중의 고형분 농도가 10 중량% 내지 70 중량%, 바람직하게 20 중량% 내지 60 중량%가 되도록 포함될 수 있다.
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1 -xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 50 중량% 내지 65 중량%가 되도록 포함될 수 있다.
또한, 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1.
(비수 전해액 제조)
1M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC) : 에틸메틸 카보네이트(EMC)=3:7 부피비) 97.8g에 혼합 첨가제 (테트라비닐실란 0.2g, 리튬 디플루오로포스페이트 1.0g, 1,3-프로필렌 설페이트 1.0g)를 첨가하여, 본 발명의 비수 전해액을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
양극 활물질 (Li(Ni0.6Mn0.2Co0.2)O2) : 도전재 (카본 블랙) : 바인더 (폴리비닐리덴플루오라이드)를 90 : 5 : 5 중량비로 용제인 N-메틸-2-피롤리돈 (NMP) 에 첨가하여 양극 슬러리 (고형분 40 중량%)를 제조하였다. 상기 양극 슬러리를 두께가 20㎛인 양극 집전체 (Al 박막) 일면에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
이어서, 음극 활물질 (인조흑연) : 도전재 (카본 블랙) : 바인더 (폴리비닐리덴플루오라이드)를 90 : 5 : 5 중량비로 용제인 N-메틸-2-피롤리돈 (NMP) 에 첨가하여 음극 슬러리 (고형분 40 중량%)를 제조하였다. 상기 음극 슬러리를 두께가 20㎛인 음극 집전체 (Cu 박막) 일면에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
그 다음, 상기 제조한 양극과 음극을 폴리에틸렌 다공성 필름과 함께 순차적으로 적층하는 통상적인 방법으로 코인형 전지를 제조한 후, 상기 제조된 실시예 1의 비수전해액을 주액하여 리튬 이차전지(전지용량 340 mAh)를 제조하였다.
실시예 2.
비수 전해액 제조 시에, 유기용매 96.4g에 혼합 첨가제로 테트라비닐실란 0.1g, 리튬 디플루오로포스페이트 1.5g, 1,3-프로필렌 설페이트 2g를 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
실시예 3.
(비수 전해액 제조)
비수 전해액 제조 시에, 유기용매 98.2g에 첨가제로 0.05g, 리튬 디플루오로포스페이트 0.75g, 1,3-프로필렌 설페이트 1.0g을 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
실시예 4.
비수전해액 제조 시에, 유기용매 97.4g에 첨가제로 테트라비닐실란 0.1g, 리튬 디플루오로포스페이트 1.0g, 1,3-프로필렌 설페이트 1.5g을 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
실시예 5.
비수전해액 제조 시에, 유기용매 97.9g에 첨가제로 테트라비닐실란 0.1g, 리튬 디플루오로포스페이트 1.0g, 1,3-프로필렌 설페이트 1.0g을 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
실시예 6.
비수전해액 제조 시에, 유기용매 96.9g에 혼합 첨가제로 테트라비닐실란 0.1g, 리튬 디플루오로포스페이트 2.0g, 1,3-프로필렌 설페이트 1g을 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 1.
비수전해액 제조 시에, 1M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC) : 에틸메틸 카보네이트(EMC)=3:7 부피비)) 97g에 비닐렌 카보네이트(VC) 3g을 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 2.
비수전해액 제조 시에, 1M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC) : 에틸메틸 카보네이트(EMC)=3:7 부피비)) 98g에 LiBF4 2g을 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 3.
비수전해액 제조 시에, 유기용매 97g에 혼합 첨가제로 테트라비닐실란 0.5g, 리튬 디플루오로포스페이트 1.25g, 1,3-프로필렌 설페이트 1.25g을 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 4.
비수전해액 제조 시에, 유기용매 96.9g에 혼합 첨가제로 테트라비닐실란 0.1g, 리튬 디플루오로포스페이트 0.5g, 1,3-프로필렌 설페이트 2.5g을 포함하는 것을 제외하고는 상기 비교예 3과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 5.
비수전해액 제조 시에, 유기용매 97.15g에 혼합 첨가제로 테트라비닐실란 0.1g, 리튬 디플루오로포스페이트 0.3g, 1,3-프로필렌 설페이트 2.4g을 포함하는 것을 제외하고는 상기 비교예 3과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 6.
비수전해액 제조 시에, 유기용매 97.45g에 혼합 첨가제로 테트라비닐실란 0.15g, 리튬 디플루오로포스페이트 2.1g, 1,3-프로필렌 설페이트 0.3g을 포함하는 것을 제외하고는 상기 비교예 3과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 7.
비수전해액 제조 시에, 유기용매 97g에 혼합 첨가제로 리튬 디플루오로포스페이트 1.5g, 1,3-프로필렌 설페이트 1.5g을 포함하는 것을 제외하고는 상기 비교예 3과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 8.
비수전해액 제조 시에, 유기용매 97.25g에 혼합 첨가제로 테트라비닐실란 0.25g, 1,3-프로필렌 설페이트 2.5g을 포함하는 것을 제외하고는 상기 비교예 3과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 9.
비수전해액 제조 시에, 유기용매 97.25g에 혼합 첨가제로 테트라비닐실란 0.25g, 리튬 디플루오로포스페이트 2.5g을 포함하는 것을 제외하고는 상기 비교예 3과 마찬가지의 방법으로 비수전해액 및 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 10.
이차전지 제조 시에 양극 활물질로 Li(Ni0.6Mn0.2Co0.2)O2 대신 리튬 코발트 복합산화물 (LiCoO2)을 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 음극, 양극 및 이를 포함하는 리튬 이차전지를 제조하였다.
실험예
실험예 1. 사이클 수명 특성 실험
상기 실시예 1 내지 6과 비교예 1 내지 10에서 제조된 각각의 이차전지를 45℃에서 정전류/정전압(CC/CV) 조건으로 4.25V/55mA까지 1C으로 충전한 다음 CC 조건으로 3.0V까지 2C으로 방전 (1000 사이클/1 사이클 × 100)하여, 고온에서의 100 사이클 수명을 측정하고, 그 결과를 하기 표 1에 나타내었다.
또한, 상기 실시예 1 내지 6과 비교예 1 내지 10에서 제조된 각각의 이차전지를 25℃에서 CC/CV 조건으로 4.25V/55mA까지 1C으로 충전한 다음 CC 조건으로 3.0V까지 2C으로 방전 (1000 사이클/1 cycle × 100)하여 상온에서의 100 사이클 수명 특성을 측정하고, 그 결과를 하기 표 1에 나타내었다.
실험예 2. 고온 저장 특성 실험
상기 실시예 1 내지 6과 비교예 1 내지 10에서 제조된 각각의 이차전지를 60℃ 고온에서 16주동안 저장 후, 상온에서 CC/CV 조건으로 4.25V/55mA까지 1C으로 충전한 다음 CC 조건으로 2.5V까지 2C으로 방전하고, 16주 후 방전 용량을 백분율로 계산 (16주 후 용량/최초 방전 용량 × 100 (%))하여, 고온 저장 후 용량을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
또한, 상기 실시예 1 내지 6과 비교예 1 내지 10에서 제조된 각각의 이차전지를 60℃ 고온에서 16주동안 저장 후, 상온 SOC 50%에서 3C로 10초간 방전하여 발생하는 전압차이로 출력을 계산하여 저장 16주 후 출력 백분율로 계산하고 (16주 후 출력 / 최초 출력 × 100), 그 결과를 하기 표 1에 나타내었다.
또한, 상기 실시예 1 내지 6과 비교예 1 내지 10에서 제조된 각각의 이차전지를 60℃ 고온에서 저장 16주 후, 두께 변화를 측정하고, 그 결과를 하기 표 1에 나타내었다.
Figure PCTKR2018000873-appb-T000001
상기 표 1에 나타낸 바와 같이, 1,000 사이클 후 수명 특성을 살펴보면 실시예 1 내지 6에서 제조된 이차전지는 상온 및 고온에서의 사이클 수명 특성이 비교예 1 내지 10에서 제조된 이차전지보다 현저히 우수한 것을 확인할 수 있다.
또한, 고온 저장 특성을 살펴보면 실시예 1 내지 6에서 제조된 이차전지의 용량 및 출력 특성은 비교예 1 내지 10에서 제조된 이차전지 대비 향상된 것을 확인할 수 있다.
특히, 양극 활물질로 LCO를 포함하는 비교예 10의 이차전지의 경우, 리튬-니켈-망간-코발트계 산화물을 포함하는 실시예 1 내지 6의 이차전지에 비하여 상대적으로 양극표면에 생성되는 SEI 막의 안정도가 낮아 사이클 수명 특성 및 고온 저장 특성이 열화된 것을 알 수 있다.

Claims (11)

  1. 이온화 가능한 리튬염; 유기 용매; 및 첨가제를 포함하는 리튬 이차전지용 비수전해액으로서,
    상기 첨가제는 테트라비닐실란 : 리튬 디플루오로포스페이트 : 1,3-프로필렌 설페이트를 1 : 3 내지 20 : 3 내지 20의 중량비로 포함하는 혼합 첨가제이며,
    상기 첨가제는 비수전해액 전체 중량을 기준으로 1 중량% 내지 4 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  2. 청구항 1에 있어서,
    상기 테트라비닐실란 : 리튬 디플루오로포스페이트 : 1,3-프로필렌 설페이트의 중량비는 1 : 3 내지 17 : 5 내지 20인 것인 리튬 이차전지용 비수전해액.
  3. 청구항 1에 있어서,
    상기 테트라비닐실란 : 리튬 디플루오로포스페이트 : 1,3-프로필렌 설페이트의 중량비는 1 : 5 내지 15 : 5 내지 20인 것인 리튬 이차전지용 비수전해액.
  4. 청구항 1에 있어서,
    상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 1.8 중량% 내지 4 중량%인 것인 리튬 이차전지용 비수전해액.
  5. 청구항 1에 있어서,
    상기 비수전해액은 비닐렌 카보네이트, LiBF4, 1,3-프로판 설톤 및 테트라페닐 보레이트로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가적 첨가제를 더 포함하는 것인 리튬 이차전지용 비수 전해액.
  6. 청구항 5에 있어서,
    상기 부가적 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 5 중량%로 포함되는 것인 리튬 이차전지용 비수 전해액.
  7. 청구항 5에 있어서,
    상기 부가적 첨가제로 1,3-프로판 설톤을 포함하는 경우,
    상기 테트라비닐실란 : 1,3-프로판 설톤의 중량비는 1 : 5 내지 15의 중량비로 포함되는 것인 리튬 이차전지용 비수 전해액.
  8. 청구항 5에 있어서,
    상기 부가적 첨가제로 비닐렌 카보네이트 또는 LiBF4를 포함하는 경우,
    상기 테트라비닐실란 : 비닐렌 카보네이트 또는 LiBF4는 1 : 1 내지 3의 중량비로 포함되는 것인 리튬 이차전지용 비수 전해액.
  9. 음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막 및 비수 전해액을 구비하는 리튬 이차전지에 있어서,
    상기 비수 전해액은 청구항 1의 리튬 이차전지용 비수 전해액을 포함하고,
    상기 양극은 리튬-니켈-망간-코발트계 산화물을 양극 활물질로서 포함하는 것을 특징으로 하는 리튬 이차전지.
  10. 청구항 9에 있어서,
    상기 양극 활물질은 하기 화학식 1로 표시되는 리튬 전이금속 산화물을 포함하는 것인 리튬 이차전지.
    [화학식 1]
    Li(NiaCobMnc)O2
    상기 화학식 1에서,
    0.55≤a≤0.9, 0.05≤b≤0.22, 0.05≤c≤0.23이고, a+b+c=1이다.
  11. 청구항 10에 있어서,
    상기 양극활물질은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, 및 Li(Ni0.8Mn0.1Co0.1)O2 중 적어도 하나 이상인 것인 리튬 이차전지.
PCT/KR2018/000873 2017-01-20 2018-01-18 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 WO2018135889A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880001466.XA CN109075387B (zh) 2017-01-20 2018-01-18 用于锂二次电池的非水电解质溶液和包括该非水电解质溶液的锂二次电池
PL18741574T PL3416228T3 (pl) 2017-01-20 2018-01-18 Niewodny roztwór elektrolitu dla akumulatora litowego i zawierający go akumulator litowy
EP18741574.0A EP3416228B1 (en) 2017-01-20 2018-01-18 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
US16/085,333 US10700381B2 (en) 2017-01-20 2018-01-18 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0010043 2017-01-20
KR20170010043 2017-01-20
KR10-2018-0006125 2018-01-17
KR1020180006125A KR102053313B1 (ko) 2017-01-20 2018-01-17 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2018135889A1 true WO2018135889A1 (ko) 2018-07-26

Family

ID=62908545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000873 WO2018135889A1 (ko) 2017-01-20 2018-01-18 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Country Status (2)

Country Link
CN (1) CN109075387B (ko)
WO (1) WO2018135889A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3416228A4 (en) * 2017-01-20 2019-04-24 LG Chem, Ltd. NONAQUEOUS ELECTROLYTE FOR LITHIUM RECHARGEABLE BATTERY, AND LITHIUM RECHARGEABLE BATTERY COMPRISING SAME
CN111146500A (zh) * 2019-12-23 2020-05-12 东莞市杉杉电池材料有限公司 一种快充型锂离子电池非水电解液及含有该电解液的锂离子电池
CN113764738A (zh) * 2021-10-12 2021-12-07 远景动力技术(江苏)有限公司 改善电池高温存储特性的电解液以及锂离子电池
CN116417570A (zh) * 2023-06-12 2023-07-11 蔚来电池科技(安徽)有限公司 二次电池和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102529247B1 (ko) * 2019-05-02 2023-05-08 주식회사 엘지에너지솔루션 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR20200132024A (ko) * 2019-05-15 2020-11-25 현대자동차주식회사 리튬인산철 기반 리튬이차전지용 전해액 및 이를 포함하는 리튬이차전지
CN110416606B (zh) * 2019-05-30 2022-07-15 贵州兴锂新能源科技有限公司 一种用于硅碳负极锂离子电池的电解液
CN111313086B (zh) * 2019-12-24 2022-11-01 安徽圣格能源科技有限公司 一种电解液及锂离子电池
CN112531212B (zh) * 2020-12-09 2021-12-07 远景动力技术(江苏)有限公司 兼顾高温特性与低阻抗的非水电解液、其应用及锂离子电池
CN112531213A (zh) * 2020-12-09 2021-03-19 远景动力技术(江苏)有限公司 兼顾高温特性与常温循环的非水电解液、其应用及锂离子电池
CN114373981A (zh) * 2022-01-18 2022-04-19 香河昆仑新能源材料股份有限公司 一种锂离子电池非水电解液及其锂离子电池
CN114447435A (zh) * 2022-01-21 2022-05-06 恒实科技发展(南京)有限公司 用于锂二次电池的非水电解液及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120011209A (ko) * 2010-07-28 2012-02-07 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 함유한 리튬 이차전지
US20140120414A1 (en) * 2011-06-09 2014-05-01 Asahi Kasei Kabushiki Kaisha Materials for Battery Electrolytes and Methods for Use
JP2016035820A (ja) * 2014-08-01 2016-03-17 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR20160036810A (ko) * 2014-09-26 2016-04-05 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR101683534B1 (ko) * 2015-07-09 2016-12-07 파낙스 이텍(주) 이차전지 전해액 및 이를 포함하는 이차전지

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572331A (zh) * 2009-06-09 2009-11-04 东莞市杉杉电池材料有限公司 一种适用于高温环境的锂离子电池电解液及制备方法
CN104025353A (zh) * 2011-10-04 2014-09-03 旭化成株式会社 用于电池组电解质的材料及使用方法
CN105958120B (zh) * 2016-06-28 2019-05-21 宁德时代新能源科技股份有限公司 一种电解液及使用该电解液的锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120011209A (ko) * 2010-07-28 2012-02-07 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 함유한 리튬 이차전지
US20140120414A1 (en) * 2011-06-09 2014-05-01 Asahi Kasei Kabushiki Kaisha Materials for Battery Electrolytes and Methods for Use
JP2016035820A (ja) * 2014-08-01 2016-03-17 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR20160036810A (ko) * 2014-09-26 2016-04-05 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR101683534B1 (ko) * 2015-07-09 2016-12-07 파낙스 이텍(주) 이차전지 전해액 및 이를 포함하는 이차전지

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3416228A4 (en) * 2017-01-20 2019-04-24 LG Chem, Ltd. NONAQUEOUS ELECTROLYTE FOR LITHIUM RECHARGEABLE BATTERY, AND LITHIUM RECHARGEABLE BATTERY COMPRISING SAME
US10700381B2 (en) 2017-01-20 2020-06-30 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
CN111146500A (zh) * 2019-12-23 2020-05-12 东莞市杉杉电池材料有限公司 一种快充型锂离子电池非水电解液及含有该电解液的锂离子电池
CN113764738A (zh) * 2021-10-12 2021-12-07 远景动力技术(江苏)有限公司 改善电池高温存储特性的电解液以及锂离子电池
CN113764738B (zh) * 2021-10-12 2024-05-14 远景动力技术(江苏)有限公司 改善电池高温存储特性的电解液以及锂离子电池
CN116417570A (zh) * 2023-06-12 2023-07-11 蔚来电池科技(安徽)有限公司 二次电池和装置
CN116417570B (zh) * 2023-06-12 2023-08-22 蔚来电池科技(安徽)有限公司 二次电池和装置

Also Published As

Publication number Publication date
CN109075387A (zh) 2018-12-21
CN109075387B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2018135889A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2019156539A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2018135890A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2018093152A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019151724A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지
WO2023085843A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020213962A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2017204599A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2021049872A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020096411A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019172650A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2023014174A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2021101174A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018741574

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018741574

Country of ref document: EP

Effective date: 20180914

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE