WO2018135443A1 - 射出成形機の成形条件推定方法 - Google Patents
射出成形機の成形条件推定方法 Download PDFInfo
- Publication number
- WO2018135443A1 WO2018135443A1 PCT/JP2018/000854 JP2018000854W WO2018135443A1 WO 2018135443 A1 WO2018135443 A1 WO 2018135443A1 JP 2018000854 W JP2018000854 W JP 2018000854W WO 2018135443 A1 WO2018135443 A1 WO 2018135443A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molding
- resin
- information
- condition estimation
- mold
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
Definitions
- the present invention relates to a molding condition estimation method for an injection molding machine that estimates molding conditions related to at least resin flow of the injection molding machine.
- a mold used for an injection molding machine has a cavity that is shaped like a molded product (product), and a gate serving as an inflow path through which resin flows into the cavity. Therefore, after the resin is injected and filled into the cavity at the time of molding, the resin staying in the gate is also solidified. Therefore, the time until the resin is solidified is usually grasped as the gate seal time. If the resin in the gate solidifies, the gate will be clogged, so it is necessary to move to the next shot before solidifying, and it is necessary to know the exact gate seal time, molding conditions such as holding time This is one of the important items from the standpoint of appropriately setting the above, and also from the viewpoint of increasing the productivity by shortening the molding cycle.
- Patent Document 1 Conventionally, as a technique for setting such a gate seal time (pressure holding time), a method for setting a pressure holding time in an injection molding machine disclosed in Patent Document 1 is known.
- This setting method is intended to easily and accurately set the holding pressure (holding pressure) and holding pressure time (gate seal time) without requiring skill.
- the display device In an injection molding machine having an input device, a storage device and a processing device, and an injection molding machine main body, based on the screen of the display device, the type of resin to be used, the type of gate, and the target value of the product Based on the input process, the type of resin and the type of gate, select from the data in the storage device, and the process of setting the holding pressure temporarily and the holding pressure set to the temporary will vary the holding time.
- the actual weight of the product molded by these injections is input based on the screen of the display device, and the pressure holding time is automatically calculated by the processing device based on the change in the actual weight.
- Process to set automatically A process of injecting a predetermined number of times with different holding pressures based on the holding time, and inputting the actual dimensions of a product molded by these injections based on the screen of the display device, the change in the actual dimensions, and the input And a step of automatically setting a holding pressure by a processing device based on the target value of the product.
- the product is molded by a predetermined number of injections by varying the holding time with the temporarily set holding pressure, and the actual weight of the product is measured. Thereafter, the holding time is determined based on the holding time. Since a product is molded by injecting a predetermined number of times by different pressures, and a process for measuring the actual dimensions of the product is performed, a considerably long time is required for setting. Moreover, since these setting steps need to be executed for each injection molding machine (die), it becomes a major factor that causes a reduction in production efficiency and productivity.
- the present invention aims to provide a molding condition estimation method for an injection molding machine of an injection molding machine that has solved the problems existing in the background art.
- the molding condition estimation method for the injection molding machine M is based on information regarding the type of resin in advance when estimating the molding conditions related to at least the resin flow of the injection molding machine M.
- the resin flow analysis processing by the CAE processing unit 3 is performed by using the specific molding information Cs set in the above and combining a plurality of different numerical values, and a plurality of data for a predetermined molding condition is acquired from the analysis processing result.
- the basic database 5a is constructed
- the neural network processing unit 4 performs learning processing on the basic database 5a
- the molding condition estimation model 5b is constructed and set in the predetermined model storage unit 6b.
- the molding condition estimation model 5b is used, and information on the type of resin and specific molding information By inputting s, characterized by being adapted to estimate the corresponding molding conditions.
- the specific molding information Cs includes the resin temperature Thr, the mold temperature Thc, the injection speed Vs, the holding pressure Ph, and the information related to the gate provided before the cavity of the mold 2.
- the gate sealing time Ts until the resin staying in the gate is solidified after the resin is injected and filled into the cavity can be applied.
- the gate information can include the gate shape, and the gate seal time Ts can be used for setting the pressure holding time.
- the other specific molding information Cs includes at least one of a resin temperature, a mold temperature, a maximum product thickness, a thermal conductivity of the resin, and a heat transfer coefficient between the resin and the mold 2. While using two or more, the cooling time of the metal mold
- the other specific molding information Cs uses at least one of the resin temperature, the resin viscosity, the pressure loss of the runner part, the projected area of the product part, the injection pressure, and the holding pressure, and the molding conditions include A mold clamping force for the mold 2 can be applied.
- other specific molding information Cs includes resin temperature, mold temperature, resin viscosity, minimum product thickness, flow length in the mold, resin thermal conductivity, heat transfer coefficient between resin and mold 2, In addition, at least one of the above can be used, and the injection speed can be applied to the molding conditions.
- the basic database 5a can be set in the registration unit 6a in the server computer 11 and updated at least based on information collected from the user side.
- the molding condition estimation model 5b can include a data table or an arithmetic expression.
- the molding condition estimation model 5b is set in the model storage unit 6b in the server computer 11 and can be accessed from the client computer 12.
- the client computer 12 can include a portable terminal 12s.
- Necessary molding conditions are obtained by combining a simulation by a resin flow analysis process using a CAE processing unit 3 and a brush-up by a learning process using a neural network processing unit 4 for this simulation ( Therefore, it is not necessary to repeat the time-consuming actual molding. Thereby, the target molding conditions can be obtained quickly and easily, and the production efficiency and productivity can be dramatically increased.
- the gate seal time Ts until the resin staying in the gate solidifies after injection filling of the resin into the cavity is used as the molding condition, the main specific molding that greatly affects the gate seal time Ts Since the information Cs can be secured, it is possible to avoid the trouble that becomes complicated due to multiple information while obtaining sufficient information for estimation. In addition, an accurate production plan by grasping the molding cycle time can be efficiently established.
- the gate seal time Ts is used for setting the pressure holding time according to a preferred embodiment, it can be used for setting the pressure holding time in addition to estimating the target gate seal time Ts. Can be obtained.
- At least one of resin temperature, mold temperature, maximum product thickness, resin thermal conductivity, and heat transfer coefficient of resin and mold 2 is used for specific molding information Cs.
- the cooling time of the mold 2 after the resin is injected and filled is applied to the molding conditions, the main specific molding information Cs that greatly affects the cooling time can be secured. The trouble which becomes complicated by many information can be avoided while obtaining information. In addition, it is possible to quickly and easily set the desired accurate cooling time.
- At least one of resin temperature, resin PVT characteristics, target shrinkage, and runner pressure loss is used as the specific molding information Cs, and the molding conditions for the mold 2 If the holding pressure is applied, the main specific molding information Cs that greatly influences the holding pressure can be secured, so that it is possible to avoid the trouble that is complicated by many information while obtaining sufficient information for estimation. Moreover, it is possible to quickly and easily set the desired appropriate holding pressure.
- the specific molding information Cs includes at least one of resin temperature, resin viscosity, runner pressure loss, product area projection area, injection pressure, holding pressure, and molding conditions.
- the main specific molding information Cs that greatly affects the mold clamping force can be secured, so that it is complicated by a lot of information while obtaining sufficient information for estimation. The trouble can be avoided.
- the specific molding information Cs includes the resin temperature, mold temperature, resin viscosity, minimum product thickness, flow length in the mold, thermal conductivity of the resin, heat of the resin and the mold 2 If at least one of the transfer coefficients is used and the injection speed is applied to the molding conditions, the main specific molding information Cs that greatly affects the injection speed can be secured. The trouble which becomes complicated by many information can be avoided while obtaining. Moreover, the target and precise injection speed can be set quickly and easily.
- the basic database 5a is set in the registration unit 6a in the server computer 11 and can be updated based on at least the information collected from the user side, the basic database 5a is updated on the server computer 11 side. Since the basic database 5a can be updated in a batch and updated, it can contribute to efficient optimization of the system.
- the molding condition estimation model 5b is set in the model storage unit 6b in the server computer 11 and is accessible or downloadable from the client computers 12 according to a preferred embodiment, in particular, in addition to the update of the basic database 5a.
- the user can access the model storage unit 6b and use the latest molding condition estimation model 5b.
- the molding condition estimation model 5b can be used anytime and anywhere by a smartphone, a mobile phone, a laptop computer, etc. Quickly grasp and contribute to quick setting of molding conditions.
- the flowchart for demonstrating the gate seal time estimation method which concerns on suitable embodiment of this invention, Overview of an injection molding machine that can implement the gate seal time estimation method
- requires the gate seal time by the actual molding for verifying the effectiveness of the gate seal time estimation method Cavity pattern diagram of the mold used by real molding, A graph showing the relationship between the set time (holding time) obtained by the same molding and the weight of the molded product, A correlation graph of gate seal time against mold temperature showing an example of learning processing by the neural network processing unit performed on the gate seal time obtained by the resin flow analysis processing by the CAE processing unit; A correlation graph of the gate seal time with respect to the resin temperature showing an example of another learning process performed by the neural network processing unit performed on the gate seal time obtained by the resin flow analysis process by the CAE processing unit, A screen pattern diagram showing an example of a user screen used when implementing the gate seal time estimation method, Relationship diagram between specific molding information used when implementing the gate seal time estimation method and molding conditions to be estimated, The relationship diagram of the other molding conditions to estimate with other specific molding information showing other embodiments of the molding condition estimation method according to the present invention, The relationship diagram of the other molding conditions to estimate with other specific molding
- 2 mold
- 3 CAE processing unit
- 4 neural network processing unit
- 5a basic database
- 5b molding condition estimation model
- 6b model storage unit
- 11 server computer
- 12 client computer
- 12s portable terminal
- M injection molding machine
- Cs specific molding information
- Ts ... gate seal time
- Thr resin temperature
- Thc mold temperature
- Vs injection speed
- Ph holding pressure
- M represents an injection molding machine
- A represents an entire system including a server computer 11 including the injection molding machine M and a client computer 12.
- the injection molding machine M includes a machine base Mb, and an injection device Mi and a mold clamping device Mc mounted on the machine base Mb.
- the injection device Mi includes a heating cylinder 41.
- the heating cylinder 41 accommodates a screw that rotates and moves back and forth, and an injection nozzle that does not appear in the drawing at the front end of the heating cylinder 41.
- a hopper 42 for supplying a molding material (resin pellet) is provided at the rear portion of the heating cylinder 41.
- the mold clamping device Mc includes a mold 2 composed of a combination of a movable mold and a fixed mold, and a side panel 44 is erected on the machine base Mb, and a liquid crystal display or the like is used for the side panel 44.
- a display 45 with a touch panel is provided.
- the injection molding machine M incorporates a molding machine controller 51 having a computer function of performing various control processes and arithmetic processes and performing communication processes with the outside. Therefore, the molding machine controller 51 includes a controller main body 52 having hardware such as a CPU and an internal memory 53 such as an SSD managed by the controller main body 52.
- the internal memory 53 has a data area 53d in which various data can be written and a program area 53p in which various programs can be stored.
- the display 45 described above includes a touch panel unit 45t for performing various inputs and a display body unit 45d for performing various displays. The display 45 is connected to the controller body 52 via a display interface 54.
- the injection molding machine M using an arbitrary mold 2 is a molding condition setting target in relation to the molding condition estimation method according to the present embodiment
- the molding machine controller 51 is a portable terminal such as a smartphone described later.
- 12s client computer 12
- 11 indicates a server computer.
- the server computer 11 is installed in a service center or the like that provides various services for the injection molding machine M owned by the user.
- the server computer 11 has a normal server function that functions by connecting to a network such as the Internet.
- the CAE (Computer Aided Engineering) processing unit 3 And a neural network processing unit 4.
- the CAE processing unit 3 has an analysis processing function for performing resin flow analysis processing
- the neural network processing unit 4 has a learning processing function for performing learning processing based on various data using a neural network.
- the server computer 11 includes a registration unit (internal storage device) 6a for registering a basic database 5a described later, and a model storage unit for storing a molding condition estimation model (illustrated gate seal time estimation model) 5b described later. (Internal storage device) 6b is provided.
- the client computer 12 indicates a client computer.
- the client computer 12 is connected to the same network as the network to which the server computer 11 is connected, and is configured to be accessible to the server computer 11. Therefore, the client computer 12 can use a general-purpose personal computer (personal computer) or the like, and can use a mobile terminal 12s such as a smartphone, a mobile phone, or a laptop computer.
- the portable terminal 12s is used as the client computer 12, the molding condition estimation model 5b described later can be used anytime and anywhere, so that the necessary molding conditions can be quickly grasped and the molding conditions can be quickly set. Can contribute.
- a molding condition (example is gate seal time) estimation model download function Fd a user screen display function Fv
- a molding condition (example is gate seal time) derivation function Fs Various main functions including the data transfer function Fs and the like can be executed.
- the molding condition estimation method according to the present embodiment will be described with reference to FIGS.
- the gate seal time Ts is applied as an example of molding conditions.
- the gate seal time estimation method according to the present embodiment is roughly divided into processing on the server computer 11 side and processing on the client computer 12 side.
- the server computer 11 side has a processing function for constructing the basic database 5a for the gate seal times Ts. More specifically, the resin flow analysis process by the CAE processing unit 3 is performed by using the information related to the gate and the set specific molding information Cs for the resin type and combining a plurality of different numerical values. A first step and a second step of acquiring a plurality of gate seal times Ts... From the analysis processing result and performing a learning process by the neural network processing unit 4 on the acquired gate seal times Ts. As a result, the gate seal time Ts... Is constructed as the gate seal time estimation model 5b and provided with the function of setting it in the model storage unit 6b.
- the server computer 11 when obtaining the gate seal time Ts in the injection molding machine M using the mold 2 to be used, the server computer 11 is accessed to download the gate seal time estimation model 5b in the server computer 11 or download.
- a processing function for acquiring the target gate seal time Ts using the gate seal time estimation model 5b is provided. That is, by inputting the specific molding information Cs including information related to the resin type and the gate and using the gate seal time estimation model 5b, the corresponding gate seal time Ts is obtained, and the obtained gate seal time Ts is arbitrarily set.
- a processing function for estimating the gate seal time Ts for the mold 2 is provided.
- the gate seal time estimation model 5b (basic database 5a) to be constructed includes the gate seal time Ts corresponding to the specific molding information Cs including the information on the type of resin and the gate, so that the gate seal time estimation is performed. If the accurate gate seal time Ts corresponding to the specific molding information Cs including information related to the type of resin and the gate to be input is secured in the model 5b, the target accurate gate seal time Ts can be estimated. Become.
- the verification is based on the analysis result of the gate seal time Ts obtained by the resin flow analysis process by the CAE processing unit 3 for constructing the basic database 5a used in the gate seal time estimation method according to the present embodiment and the actual result by the injection molding machine M.
- the comparison was made by comparing the detection results of the gate seal time Ts close to the actual situation obtained by molding.
- specific molding information Cs is set.
- the illustration shows a case where the resin temperature Thr, the mold temperature Thc, the injection speed Vs, and the holding pressure Ph are set as the specific molding information Cs.
- the specific molding information Cs As described above, if the four items of the resin temperature Thr, the mold temperature Thc, the injection speed Vs, and the holding pressure Ph are used as the specific molding information Cs, it can be secured as main molding conditions that greatly affect the gate seal time Ts. There is an advantage that it is possible to avoid the trouble that becomes complicated due to a lot of information while obtaining sufficient information when performing the estimation.
- the gate shape was used as information related to the gate.
- the gate shape in this case can include the gate dimensions and the number of gates as required, as well as the dimensional dimensions of the gate itself.
- a cavity pattern E shown in FIG. 8 is assumed as the gate shape.
- HIPS impact polystyrene 495F (trade name)
- the resin type and the information related to the gate are fixed, and the specific molding information Cs is the resin temperature Thr, the mold temperature Thc, the injection speed Vs, and the like.
- the holding pressure Ph is obtained by combining a plurality of different numerical values as shown in the list of specific molding information Cs used in the resin flow analysis process shown in FIG. 4 to determine the decreasing state of the resin temperature Thr with respect to the elapsed time.
- the simulation was performed by the resin flow analysis process using the part 3.
- FIG. 3 is a flowchart for explaining a procedure for obtaining the gate seal time Ts by the resin flow analysis process by the CAE processing unit 3.
- the data related to the type of resin and the data related to the gate shape are input to the CAE processing unit 3, and the execution conditions of the sample W1, that is, the resin temperature 200 [° C.], the mold Data relating to the specific molding information Cs that is 40 [° C.], injection speed 10 [mm / s], and holding pressure 50 [MPa] is input (step S31).
- step S32 a resin flow analysis process using the CAE processing unit 3 is performed under these conditions.
- these software since various software is currently provided as application software, these software can be selected and installed in the server computer 11 for use.
- the corresponding gate seal time Ts can be acquired (step S33).
- the resin flow analysis process using the CAE processing unit 3 simulates the decrease state of the resin temperature Thr with respect to the elapsed time
- the elapsed time until the specific resin temperature Thr is decreased can be obtained.
- the solidification temperature is 98 [° C.] (manufacturer announced value)
- the mold removal temperature is 88 [° C.] (manufacturer announced value). Therefore, in this case, if the elapsed time when the resin temperature Thr is lowered to 98 [° C.] is taken in, this elapsed time can be set as the gate seal time Ts.
- step S34 The simulation by the resin flow analysis process using such a CAE processing unit 3 is similarly performed up to samples W2-W9 (steps S34, S31).
- nine gate seal times Ts... For each sample W1-W9 can be acquired.
- the resin flow analysis process using the CAE processing unit 3 is ended (step S34).
- gate seal time Ts are shown in the “CAE” column in FIG.
- the gate seal time Ts obtained by a generally used formula for calculating the gate seal time is shown in the column “General Formula” in FIG. 6 is a graph showing the gate seal time Ts... Of FIG. 5.
- the graph line Ti is the gate seal time Ts obtained by the CAE processing unit 3.
- the graph line Tr is a general calculation formula.
- the gate seal times Ts. For reference, a commonly used calculation formula is shown in [Formula 1].
- the gate seal time Ts... Shown in the “general expression” column in FIG. 5 is a numerical value calculated by [Equation 1].
- tSR is the gate seal time [s]
- ⁇ is the thermal conductivity of the resin [kcal / m ⁇ h ⁇ ° C.]
- c is the specific heat of the resin [kcal / kg ⁇ ° C.]
- ⁇ is the density of the resin.
- Kg / cubic meter ⁇ r is the molten resin temperature [° C.]
- ⁇ e is the molded product takeout temperature [° C.]
- ⁇ m is the cavity surface temperature [° C.]
- k is the gate depth [mm]
- b is the gate width.
- [Mm] L is the land length [mm] of the gate.
- FIG. 7 shows a flowchart for explaining the procedure for obtaining the gate seal time Ts... By actual molding.
- a cavity pattern E of the mold 2 to be used is shown in FIG.
- a molded product (product) molded by the cavity pattern E is a part of a plastic model, and in FIG.
- 2m represents a product part, 2r... A runner, and 2s a sprue.
- molding conditions are set for the injection molding machine M including the mold 2 to be used (step S51).
- the molding conditions include at least the specific molding information Cs described above, and other normal molding conditions necessary for molding are set.
- step S52 the first molding process corresponding to the sample W1 is performed (step S52). Specifically, a mold clamping process, a weighing process, and an injection process are sequentially performed. At the same time, the progress of the process is monitored (step S53). Then, the process proceeds to the pressure holding process, that is, when the VP switching point that becomes the switching point from the injection process serving as the speed control area to the pressure holding process as the pressure control area is reached, the elapsed time is monitored, that is, the time is measured. Start (steps S54 and S55).
- the elapsed time is monitored, and when the set time (N) is reached, the pressure holding process is stopped and the molded product is taken out (steps S56 and S57).
- the first set time (N) a time sufficiently before the time when solidification is assumed is selected. In the example, 2.3 [s] was set as the set time (pressure holding time).
- the weight of the molded product is measured (step S58).
- the set time is slightly increased, that is, the set time (N) is changed to a new set time (N + n), and the same molding process is performed (steps S59, S60, S52).
- “n” is set to about 0.3 [s]. Note that the value of “n” does not necessarily have to be constant.
- a relatively long time interval is set, and when the weight change decreases as a result of the weight measurement, the time interval is gradually set to a short time interval. Can be set arbitrarily.
- the set time (N + n) is sequentially changed and the same molding process is repeated, and the molding process is terminated when the weight change (increase) of the molded product does not occur. (Step S59).
- FIG. 9 is a change graph showing the relationship between the weight of the molded product obtained by the molding process and the set time (holding time). Graph line Q1 is sample W1, graph line Q5 is sample W5, and graph line Q9 is sample. W9 is shown respectively. As shown in FIG. 9, it can be confirmed that the maximum value of the molded product weight occurs at the time indicated by the dotted lines t1, t5, and t9.
- FIG. 1 is a flowchart for explaining a procedure for performing the gate seal time estimation method according to the present embodiment.
- the gate seal time Ts... Is acquired by the resin flow analysis process using the CAE processing unit 3 (step S1).
- the CAE is obtained by using the specific molding information Cs that includes the information related to the gate for the resin type and combining different numerical values.
- Resin flow analysis processing by the processing unit 3 is performed.
- a plurality of gate seal times Ts... Can be acquired.
- the basic database 5a is constructed from the obtained many gate seal times Ts (data group) and registered in the registration unit (internal storage device) 6a (steps S2 and S3).
- the CAE processing unit 3 By the way, by performing the resin flow analysis process using the CAE processing unit 3, when information that matches the process conditions used in the resin flow analysis process is input for the acquired gate seal time Ts. As is apparent from the verification results, the accurate gate seal time Ts can be estimated. However, in order to be able to estimate a more accurate gate seal time Ts that can be approximated even when information that does not match is input, the CAE processing unit 3 is used in the gate seal time estimation method according to the present embodiment.
- the result obtained by the resin flow analysis process that is, the basic database 5a described above is subjected to a learning process by a neural network using the neural network processing unit 4 (step S4).
- the learning process by the neural network using the neural network processing unit 4 is usually applied to the actually measured values.
- the CAE processing unit is used.
- One of the techniques to be noted this time is that it is applied to the estimated value of the gate seal time Ts...
- the calculation process (learning process) by the neural network processing unit 4 can significantly reduce the calculation time as compared with the calculation process by the CAE processing unit 3. Therefore, on the user side, a separate product model for performing the CAE process is provided. Preparation is not necessary.
- a gate seal time estimation model 5b is constructed by learning processing by a neural network using the neural network processing unit 4, and is stored in a model storage unit (internal storage device) 6b having a storage processing function in the server computer 11 (steps). S7, S8).
- the gate seal time estimation model 5b may be constructed as a data table, or may be constructed by an arithmetic expression including a function expression or a conversion expression. Thus, if the data table or the arithmetic expression is included in the gate seal time estimation model 5b, it is possible to construct an accurate gate seal time estimation model 5b according to the type, grade or data content of the injection molding machine M.
- the gate seal time estimation model 5b is updated all at once as needed ( Evolving). For this reason, if the collected information exists, that is, if there is an update reason, the basic database 5a is updated as needed, and the updated basic database 5a is subjected to learning processing by a neural network (step S5). , S6). Thereby, on the server computer 11 side, the basic database 5a can be updated all at once, and the basic database 5a can be updated, so that there is an advantage that it can contribute to efficient optimization of the system.
- the neural network processing using the neural network processing unit 4 that is, the processing program in the neural network processing unit 4 performs learning processing on the basic database 5 a obtained based on the CAE processing unit 3 and pattern recognition.
- a simulation is performed by modeling a certain physical phenomenon by using the input parameters such as the specific molding information Cs described above without actually operating the injection molding machine M.
- FIG. 10 and FIG. 3 shows an example of a learning result by the neural network processing unit 4.
- FIG. 10 shows that a pseudo correlation curve Qc is obtained by plotting the mold temperature Thc (the plot is not shown) against the gate seal time Ts. That is, FIG. 10 shows that the gate seal time Ts is substantially proportional to the mold temperature Thc.
- FIG. 11 shows that a pseudo correlation curve Qr is obtained by plotting the resin temperature Thr (the plot is omitted) with respect to the gate seal time Ts. That is, FIG. 11 shows that the gate seal time Ts is substantially proportional to the resin temperature Thr.
- the gate seal time estimation model 5b is basically set on the server computer 11 side. Thus, if the gate seal time estimation model 5b is set in the server computer 11, it becomes accessible or downloadable from client computers 12 to be described later, and there is an advantage that the latest molding condition estimation model 5b can be used.
- step S9 application software Pa for performing the gate seal time estimation method according to the present embodiment is acquired by downloading or the like, and installed in advance in the mobile terminal 12s (step S9).
- the user uses the mobile terminal 12s to activate the application software Pa (step S10).
- the user screen 61 shown in FIG. 12 is displayed on the display of the portable terminal 12s by the user screen display function Fv (step S11). If the download key is operated automatically upon start-up or the gate seal time estimation model download function Fd is accessed, the server computer 11 is accessed and the latest gate seal time estimation model 5b is downloaded to the registration unit of the portable terminal 12s. (Step S12).
- the user inputs necessary information, which is a precondition for estimating the gate seal time Ts, on the user screen 61 (step S13). That is, the type of resin.
- Each information related to the gate shape and specific molding information Cs is input.
- the selection of the type of resin using the resin selection unit 62 (example is “PP”)
- the input of the resin temperature Thr using the resin temperature setting unit 63 (example is “220” ° C.)
- the mold temperature setting The mold temperature Thc is input using the unit 64 (illustrated is “40” ° C.)
- the filling time is input using the filling time setting unit 65 (illustrated is “2” seconds)
- the holding pressure is set using the holding pressure setting unit 66.
- Input of the pressure Ph (illustrative is “60” MPa).
- the filling time is converted to the injection speed Vs using the screw injection stroke.
- the gate shape setting unit 67 is used to set the type of gate shape (illustration is “side”), the quantity, and the like.
- the gate seal time deriving function Fs performs the corresponding gate seal time Ts derivation process based on the gate seal time estimation model 5b and the input information (step S14).
- the derived gate seal time Ts is set as the estimated gate seal time Ts and displayed on the gate seal time display unit 69 shown in FIG. 12 (step S15).
- necessary molding conditions are set by obtaining the gate seal time Ts (step S16). Specifically, it is possible to set the holding pressure time that can directly use the gate seal time Ts, and to grasp the entire molding cycle time in consideration of other molding conditions.
- the required gate seal time Ts can be obtained using the portable terminal 12s, it is possible to contribute to the rapid setting of molding conditions (such as pressure holding time) and to grasp the molding cycle time. It is also possible to efficiently make an accurate production plan by
- the data such as the obtained gate seal time Ts and molding conditions can be transferred (transmitted) to the molding machine controller 51 by the data transfer function Fs (step S17). Further, the molding machine controller 51 can set the received data in the internal memory 53 (step S18). Since information can be input using the user screen 61 displayed on the mobile terminal 12s, the information input from the mobile terminal 12s while the gate seal time estimation model 5b described above remains in the server computer 11. You may transmit to the server computer 11. Thereby, on the server computer 11 side, the derivation process of the corresponding gate seal time Ts in step S14 may be performed, and the obtained gate seal time Ts may be transmitted to the mobile terminal 12s.
- the CAE processing unit 3 is used by using the specific molding information Cs previously set for the information related to the resin type and combining a plurality of different numerical values.
- a basic database 5a is constructed by obtaining a plurality of data (Ts%) For a predetermined gate seal time from the analysis processing result, and a neural network processor for the basic database 5a. 4 and the gate seal time estimation model 5b is constructed and set in the predetermined model storage unit 6b, and the gate seal time estimation model 5b is used to obtain the predetermined gate seal time.
- the corresponding gate Since the simulation time Ts is estimated, it is necessary to combine the simulation by the resin flow analysis process using the CAE processing unit 3 and the brushup by the learning process using the neural network processing unit 4 for this simulation. It is possible to obtain (estimate) a correct gate seal time Ts. This eliminates the need to repeat the time-consuming actual molding, so that the target gate seal time Ts can be obtained (estimated) quickly and easily. As a result, the production efficiency and productivity are dramatically increased. be able to.
- the neural network processing unit 4 can significantly reduce the calculation time compared to the calculation process by the CAE processing unit 3, and therefore, on the user side, a separate product for performing the CAE process. There is an advantage that the preparation of the model becomes unnecessary.
- the molding condition estimation method according to the present invention is used in the injection molding machine M when estimating the molding condition related to at least the resin flow. can do.
- the molding conditions related to the resin flow the cooling time of the mold 2, the holding pressure against the mold 2, the mold clamping force, and the injection speed can be applied.
- FIG. 13 shows the relationship between the specific molding information Cs, the CAE processing unit 3, and the basic database 5a when the basic database 5a related to the gate seal time Ts... Described above is constructed. Therefore, when estimating other molding conditions, the basic database 5a can be constructed using the CAE processing unit 3 and the target molding conditions can be estimated based on the same principle.
- FIG. 14A is a relationship diagram in the case of estimating the cooling time.
- the specific molding information Cs includes the resin temperature, the mold temperature, the maximum thickness of the product portion, the thermal conductivity of the resin, the resin and the mold 2.
- One or two or more of these heat transfer coefficients can be used in combination, whereby the cooling time (molding conditions) of the mold 2 after the resin is injected and filled can be estimated.
- the specific molding information Cs includes at least one of the resin temperature, the mold temperature, the maximum thickness of the product part, the thermal conductivity of the resin, and the heat transfer coefficient of the resin and the mold 2 and molding.
- the cooling time of the mold 2 is applied to the conditions, the main specific molding information Cs that greatly influences the cooling time can be secured, so that the information becomes complicated while obtaining sufficient information for estimation. Can be avoided. Therefore, it can be used as a cooling time estimation method, and a target and accurate cooling time can be set quickly and easily. In addition, it is possible to quickly and easily set the desired accurate cooling time.
- FIG. 14B is a relationship diagram in the case where the holding pressure for the mold 2 is estimated.
- the specific molding information Cs includes one of resin temperature, resin PVT characteristics, target shrinkage rate, and runner pressure loss.
- two or more can be used in combination, whereby the holding pressure (molding conditions) for the mold 2 can be estimated.
- the resin temperature, the PVT characteristics of the resin, the target shrinkage rate, and the pressure loss of the runner portion is used as the specific molding information Cs, and the holding pressure for the mold 2 is applied to the molding conditions.
- the main specific molding information Cs that greatly affects the holding pressure can be secured, so that it is possible to avoid a trouble that is complicated by a large amount of information while obtaining sufficient information for estimation. Therefore, it can be used as a holding pressure estimation method, and a desired and accurate holding pressure can be set quickly and easily.
- FIG. 14c is a relationship diagram in the case of estimating the clamping force.
- the specific molding information Cs includes the resin temperature, the resin viscosity, the pressure loss of the runner part, the projected area of the product part, the injection pressure or the holding pressure.
- One or two or more can be used in combination, whereby the mold clamping force (molding conditions) can be estimated.
- the resin temperature, the resin viscosity, the runner pressure loss, the projected area of the product portion, the injection pressure or the holding pressure is used as the specific molding information Cs, and the mold is used as the molding condition.
- the mold clamping force for 2 If the mold clamping force for 2 is applied, the main specific molding information Cs that greatly affects the mold clamping force can be secured, so that it is possible to avoid inconvenience caused by multiple information while obtaining sufficient information for estimation. . Therefore, it can be used as a mold clamping force estimation method, and a desired and accurate mold clamping force can be set quickly and easily.
- FIG. 14d is a relationship diagram when estimating the injection speed.
- the specific molding information Cs includes the resin temperature, the mold temperature, the resin viscosity, the minimum thickness of the product part, the flow length described in the mold, One or two or more of the thermal conductivity of the resin and the heat transfer coefficient of the resin and the mold 2 can be used in combination, whereby the injection speed (molding condition) can be estimated.
- the specific molding information Cs includes the resin temperature, mold temperature, resin viscosity, minimum product thickness, flow length in the mold, thermal conductivity of the resin, and heat transfer coefficient of the resin and the mold 2. If at least one is used and the injection speed is applied to the molding conditions, the main specific molding information Cs that greatly affects the injection speed can be secured. The trouble which becomes complicated by information can be avoided. Therefore, it can be used as an injection speed estimation method, and a desired and accurate injection speed can be set quickly and easily.
- the specific molding information Cs set in advance for the information related to the type of resin is used, and a plurality of different numerical values are used.
- a resin flow analysis process by the CAE processing unit 3 is used, and a plurality of data for predetermined molding conditions from the analysis process result to construct a basic database 5a.
- the learning processing by the neural network processing unit 4 is performed, the molding condition estimation model 5b is constructed and set in the predetermined model storage unit 6b, and the molding condition estimation model 5b is used when obtaining the predetermined molding conditions.
- the corresponding molding conditions are estimated.
- a necessary molding condition is obtained (estimated) by a combination of a simulation by a resin flow analysis process using the CAE processing unit 3 and a brush-up by a learning process using the neural network processing unit 4 for this simulation. )be able to. This eliminates the need for repeated time-consuming actual molding, so that the desired molding conditions can be obtained (estimated) quickly and easily.
- the neural network processing unit 4 can significantly reduce the calculation time compared to the calculation process by the CAE processing unit 3, and therefore, on the user side, a separate product model for performing the CAE process. Preparation is not necessary.
- this invention is not limited to such embodiment, It does not deviate from the summary of this invention in a detailed structure, a shape, a raw material, quantity, a numerical value, etc. It can be changed, added, or deleted arbitrarily.
- the portable terminal 12s is illustrated as the client computer 12, the computer function as the client computer 12 may be built in the molding machine controller 51.
- the molding condition estimation method according to the present invention can be used for various injection molding machines that perform molding by injection filling a mold with resin.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
予め、樹脂の種別に係わる情報に対して設定した特定成形情報Csを使用し、かつ異なる複数の数値を組合わせることにより、CAE処理部3による樹脂流動解析処理を行い、この解析処理結果から所定の成形条件に対する複数のデータ(Ts…)を取得することにより基礎データベース5aを構築し、この基礎データベース5aに対して、ニューラルネットワーク処理部4による学習処理を行い、かつ成形条件推定モデル5bを構築して所定のモデル格納部6bに設定するとともに、所定の成形条件を求める際に、成形条件推定モデル5bを使用し、樹脂の種別に係わる情報及び特定成形情報Csを入力することにより、対応する成形条件を推定する。
Description
本発明は、射出成形機の少なくとも樹脂流動に係わる成形条件を推定する射出成形機の成形条件推定方法に関する。
一般に、射出成形機に使用する金型は、成形品(製品)を象ったキャビティを有するとともに、このキャビティの手前には樹脂をキャビティに流入させる流入路となるゲートを有している。したがって、成形時に、キャビティに樹脂を射出充填した後は、ゲート内に在留する樹脂の固化も進行するため、通常、樹脂が固化するまでの時間をゲートシール時間として把握している。ゲート内の樹脂が固化した場合、ゲートが詰まる事態を招くため、固化する前に、次のショットに移行する必要があり、正確なゲートシール時間を把握することは、保圧時間等の成形条件に対する適切な設定、更には、成形サイクルを短縮して生産性を高める観点からも重要な項目の一つとなる。
従来、このようなゲートシール時間(保圧時間)を設定するための技術としては、特許文献1で開示される射出成形機における保圧時間の設定方法が知られている。この設定方法は、熟練を要することなく、保圧(保持圧力)及び保圧時間(ゲートシール時間)を容易かつ正確に設定することを目的としたものであり、具体的には、表示装置、入力装置、記憶装置及び処理装置を有する制御装置と、射出成形機本体と、を備えた射出成形機において、表示装置の画面に基づき、使用する樹脂の種類、ゲートの種類及び製品の目標値を入力する行程と、樹脂の種類及びゲートの種類に基づき、記憶装置のデータから選択して、保圧力を仮りに設定する行程と、該仮りに設定された保圧力により、保圧時間を異ならせて所定回数射出し、これら射出にて成形された製品の実重量を、表示装置の画面に基づき入力する行程と、該実重量の変化に基づき、保圧時間を処理装置にて演算して自動的に設定する工程と、該保圧時間に基づき、保圧力を異ならせて所定回数射出し、これら射出にて成形された製品の実寸法を、前記表示装置の画面に基づき入力する行程と、該実寸法の変化と前記入力された製品の目標値とに基づき、保圧力を処理装置にて演算して自動的に設定する行程とを備えたものである。
しかし、上述したゲートシール時間(保圧時間)を設定する従来の手法は、次のような問題点があった。
第一に、仮りに設定された保圧力により、保圧時間を異ならせることにより所定回数射出して製品成形を行い、製品の実重量を計測するとともに、この後、保圧時間に基づき、保圧力を異ならせることにより所定回数射出して製品成形を行い、製品の実寸法を計測する工程等を経るため、設定にはかなりの長時間が必要になる。しかも、これらの、設定のための工程を各射出成形機(金型)毎に実行する必要があるため、生産能率及び生産性の低下を招く大きな要因となる。
第二に、実際に製品成形を行う実成形を、ゲートシール時間(保圧時間)を把握する目的のみで繰り返し相当数行う必要があるため、この間における成形材料や消費電力が無駄となる。結局、資材節減及び省エネルギ性の確保、更にはコスト削減の観点からも無視できない要因となる。しかも、実成形を繰り返すことから、そのための作業労力も無視できないとともに、人為的に行う工程も含まれるため、人為的な作業により発生するバラツキ要因も無視できないなど、必ずしも正確なゲートシール時間(保圧時間)の把握が保証されるものではない。なお、このような課題は、ゲートシール時間(保圧時間)のみならず、他の成形条件においても基本的に同じである。
本発明は、このような背景技術に存在する課題を解決した射出成形機の射出成形機の成形条件推定方法の提供を目的とするものである。
本発明に係る射出成形機Mの成形条件推定方法は、上述した課題を解決するため、射出成形機Mの少なくとも樹脂流動に係わる成形条件を推定するに際し、予め、樹脂の種別に係わる情報に対して設定した特定成形情報Csを使用し、かつ異なる複数の数値を組合わせることにより、CAE処理部3による樹脂流動解析処理を行い、この解析処理結果から所定の成形条件に対する複数のデータを取得することにより基礎データベース5aを構築し、この基礎データベース5aに対して、ニューラルネットワーク処理部4による学習処理を行い、かつ成形条件推定モデル5bを構築して所定のモデル格納部6bに設定するとともに、所定の成形条件を求める際に、成形条件推定モデル5bを使用し、樹脂の種別に係わる情報及び特定成形情報Csを入力することにより、対応する成形条件を推定するようにしたことを特徴とする。
この場合、発明の好適な態様により、特定成形情報Csとしては、樹脂温度Thr,金型温度Thc,射出速度Vs,保圧力Ph,金型2のキャビティの手前に設けたゲートに係わる情報,の少なくとも一つ以上を使用するとともに、成形条件には、キャビティに樹脂を射出充填した後、ゲートに在留する樹脂が固化するまでのゲートシール時間Tsを適用できる。この際、ゲートに係わる情報には、ゲート形状を含ませることができるとともに、ゲートシール時間Tsは、保圧時間の設定に用いることができる。
また、発明の好適な態様により、他の特定成形情報Csには、樹脂温度,金型温度,製品部の最大厚,樹脂の熱伝導率,樹脂と金型2の熱伝達係数,の少なくとも一つ以上を使用するとともに、成形条件には、樹脂を射出充填した後における金型2の冷却時間を適用できる。さらに、他の特定成形情報Csには、樹脂温度,樹脂のPVT特性,目標収縮率,ランナ部の圧力損失,の少なくとも一つ以上を使用するとともに、成形条件には、金型2に対する保圧力を適用できる。さらに、他の特定成形情報Csには、樹脂温度,樹脂粘度,ランナ部の圧力損失,製品部の投影面積,射出圧力,保圧力,の少なくとも一つ以上を使用するとともに、成形条件には、金型2に対する型締力を適用できる。さらに、他の特定成形情報Csには、樹脂温度,金型温度,樹脂粘度,製品部の最小厚,金型内の流動長,樹脂の熱伝導率,樹脂と金型2の熱伝達係数,の少なくとも一つ以上を使用するとともに、成形条件には、射出速度を適用できる。
加えて、発明の好適な態様により、基礎データベース5aは、サーバコンピュータ11における登録部6aに設定し、少なくともユーザー側から収集した情報に基づいて更新可能にすることができる。また、成形条件推定モデル5bには、データテーブル又は演算式を含ませることができるとともに、この成形条件推定モデル5bは、サーバコンピュータ11におけるモデル格納部6bに設定し、クライアントコンピュータ12からアクセス可能又はダウンロード可能にすることができ、このクライアントコンピュータ12には、携帯端末12sを含ませることができる。
このような手法による本発明に係る射出成形機Mの成形条件推定方法によれば、次のような顕著な効果を奏する。
(1) CAE処理部3を用いた樹脂流動解析処理によるシミュレーション、更にはこのシミュレーションに対してニューラルネットワーク処理部4を用いた学習処理によるブラシアップを組合わせることにより、必要な成形条件を求める(推定する)ようにしたため、時間のかかる実成形を繰り返す作業が不要となる。これにより、目的の成形条件を迅速かつ容易に求めることができ、生産能率及び生産性を飛躍的に高めることができる。
(2) 射出成形機Mを稼働して繰り返す実成形が不要になることから実成形に伴う成形材料や消費電力を無駄を排除できる。この結果、資材節減及び省エネルギ性、更にはコスト削減を図ることができる。しかも、実成形に伴う作業労力を排除できるとともに、人為的な作業により生じるバラツキ要因も排除できるため、正確性及び安定性に優れた成形条件を確保できる。
(3) 好適な態様により、特定成形情報Csに、樹脂温度Thr,金型温度Thc,射出速度Vs,保圧力Ph,金型2のキャビティの手前に設けたゲートに係わる情報,の少なくとも一つ以上を使用するとともに、成形条件に、キャビティに樹脂を射出充填した後、ゲートに在留する樹脂が固化するまでのゲートシール時間Tsを適用すれば、ゲートシール時間Tsに大きく影響する主要な特定成形情報Csを確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避できる。しかも、成形サイクル時間の把握による的確な生産計画等も効率的に立てることができる。
(4) 好適な態様により、ゲートに係わる情報に、ゲート形状を含ませれば、情報として入手しやすく、かつゲートシール時間Tsに大きく影響する要素となるため、ゲートシール時間Tsの推定に際し、的確で信頼性の高い情報として利用できる。
(5) 好適な態様により、ゲートシール時間Tsを、保圧時間の設定に用いれば、目的とするゲートシール時間Tsの推定に加え、保圧時間の設定にも利用できるなど、副次的効果を得ることができる。
(6) 好適な態様により、特定成形情報Csに、樹脂温度,金型温度,製品部の最大厚,樹脂の熱伝導率,樹脂と金型2の熱伝達係数,の少なくとも一つ以上を使用するとともに、成形条件に、樹脂を射出充填した後における金型2の冷却時間を適用すれば、当該冷却時間に大きく影響する主要な特定成形情報Csを確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避できる。しかも、目的とする的確な冷却時間の設定も迅速かつ容易に行うことができる。
(7) 好適な態様により、特定成形情報Csに、樹脂温度,樹脂のPVT特性,目標収縮率,ランナ部の圧力損失,の少なくとも一つ以上を使用するとともに、成形条件に、金型2に対する保圧力を適用すれば、当該保圧力に大きく影響する主要な特定成形情報Csを確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避することができる。しかも、目的とする的確な保圧力の設定も迅速かつ容易に行うことができる。
(8) 好適な態様により、特定成形情報Csに、樹脂温度,樹脂粘度,ランナ部の圧力損失,製品部の投影面積,射出圧力,保圧力,の少なくとも一つ以上を使用するとともに、成形条件に、金型2に対する型締力を適用すれば、当該型締力に大きく影響する主要な特定成形情報Csを確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避できる。しかも、目的とする的確な型締力の設定も迅速かつ容易に行うことができる。
(9) 好適な態様により、特定成形情報Csに、樹脂温度,金型温度,樹脂粘度,製品部の最小厚,金型内の流動長,樹脂の熱伝導率,樹脂と金型2の熱伝達係数,の少なくとも一つ以上を使用するとともに、成形条件に、射出速度を適用すれば、当該射出速度に大きく影響する主要な特定成形情報Csを確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避できる。しかも、目的とする的確な射出速度の設定も迅速かつ容易に行うことができる。
(10) 好適な態様により、基礎データベース5aを、サーバコンピュータ11における登録部6aに設定し、少なくともユーザー側から収集した情報に基づいて更新可能にすれば、サーバコンピュータ11側において、基礎データベース5aを一括して更新し、基礎データベース5aを最新の状態にできるため、システムの効率的な最適化に寄与できる。
(11) 好適な態様により、成形条件推定モデル5bに、データテーブル又は演算式を含ませれば、射出成形機Mの種別やグレード或いはデータ内容等に合わせた的確な成形条件推定モデル5bを構築することができる。
(12) 好適な態様により、成形条件推定モデル5bを、サーバコンピュータ11におけるモデル格納部6bに設定し、クライアントコンピュータ12…からアクセス可能又はダウンロード可能にすれば、特に、基礎データベース5aの更新と併せ、ユーザー側では、モデル格納部6bにアクセスして最新の成形条件推定モデル5bを利用することができる。
(13) 好適な態様により、クライアントコンピュータ12に、携帯端末12sを含ませれば、スマートフォン,携帯電話,ノートパソコン等により何時でも何処でも成形条件推定モデル5bを利用できるため、必要となる成形条件を迅速に把握し、成形条件の迅速な設定に寄与できる。
2:金型,3:CAE処理部,4:ニューラルネットワーク処理部,5a:基礎データベース,5b:成形条件推定モデル,6b:モデル格納部,11:サーバコンピュータ,12:クライアントコンピュータ,12s:携帯端末,M:射出成形機,Cs:特定成形情報,Ts…:ゲートシール時間,Thr:樹脂温度,Thc:金型温度,Vs:射出速度,Ph:保圧力
次に、本発明に係る好適実施形態を挙げ、図面に基づき詳細に説明する。
まず、本実施形態に係る成形条件推定方法を実施できる射出成形機M及び全体システムAについて、図2を参照して説明する。
図2中、Mは射出成形機を示すとともに、Aは射出成形機Mを含むサーバコンピュータ11及びクライアントコンピュータ12を含む全体システムを示す。
射出成形機Mは、機台Mbと、この機台Mbの上に搭載された射出装置Mi及び型締装置Mcを備える。射出装置Miは、加熱筒41を備え、この加熱筒41の内部には回転動作及び進退動作するスクリュを収容するとともに、加熱筒41の前端には図に現れない射出ノズルを備える。また、加熱筒41の後部には、成形材料(樹脂ペレット)を供給するホッパー42を備える。一方、型締装置Mcには可動型と固定型の組合わせからなる金型2を備えるとともに、機台Mb上には側面パネル44を起設し、この側面パネル44に液晶ディスプレイ等を用いたタッチパネル付のディスプレイ45を配設する。
さらに、射出成形機Mには、各種の制御処理及び演算処理を行うとともに、外部との通信処理を行うコンピュータ機能を有する成形機コントローラ51を内蔵する。したがって、成形機コントローラ51には、CPU等のハードウェアを有するコントローラ本体52及びコントローラ本体52に管理されるSSD等の内部メモリ53を備える。この内部メモリ53には、各種データを書込可能なデータエリア53dを有するとともに、各種プログラムを格納可能なプログラムエリア53pを有する。また、上述したディスプレイ45は、各種入力を行うタッチパネル部45tと各種表示を行うディスプレイ本体部45dを備え、このディスプレイ45は、表示インターフェイス54を介してコントローラ本体52に接続する。特に、任意の金型2を用いた射出成形機Mは、本実施形態に係る成形条件推定方法に関連して、成形条件の設定対象となり、成形機コントローラ51は、後述するスマートフォン等の携帯端末12s(クライアントコンピュータ12)に対する相互通信機能(データ授受機能)を備えている。
一方、11はサーバコンピュータを示す。このサーバコンピュータ11は、ユーザーが所有する射出成形機Mに対する各種サービスを行うサービスセンター等に設置される。また、サーバコンピュータ11は、インターネット等のネットワークに接続して機能する通常のサーバ機能を備えるとともに、特に、本実施形態に係る成形条件推定方法に関連して、CAE(コンピュータ支援エンジニアリング)処理部3及びニューラルネットワーク処理部4を備えている。この場合、CAE処理部3は、樹脂流動解析処理を行う解析処理機能を備えるとともに、ニューラルネットワーク処理部4は、ニューラルネットワークにより各種データに基づく学習処理を行う学習処理機能を備えている。また、サーバコンピュータ11は、後述する基礎データベース5aを登録する登録部(内部記憶装置)6aを備えるとともに、後述する成形条件推定モデル(例示は、ゲートシール時間推定モデル)5bを格納するモデル格納部(内部記憶装置)6bを備える。
他方、12はクライアントコンピュータを示す。クライアントコンピュータ12は、上述したサーバコンピュータ11を接続したネットワークと同じネットワークに接続し、サーバコンピュータ11に対してアクセス可能に構成する。したがって、クライアントコンピュータ12は、汎用的なパソコン(パーソナルコンピュータ)等を利用できるとともに、スマートフォン,携帯電話,ノートパソコン等の携帯端末12sを利用できる。特に、クライアントコンピュータ12として携帯端末12sを用いれば、何時でも何処でも、後述する成形条件推定モデル5bを利用可能になるため、必要となる成形条件を迅速に把握し、成形条件の迅速な設定に寄与できる。
したがって、クライアントコンピュータ12には、本実施形態に係る成形条件推定方法を実施可能にするためのアプリケーションソフトウェアPaを予めインストールしておく。このアプリケーションソフトウェアPaを用いることにより、クライアントコンピュータ12において、成形条件(例示は、ゲートシール時間)推定モデルダウンロード機能Fd,ユーザー画面表示機能Fv,成形条件(例示は、ゲートシール時間)導出機能Fs,データ転送機能Fs等を含む主要な各種機能を実行することができる。
次に、本実施形態に係る成形条件推定方法について、図1~図11を参照して説明する。なお、本実施形態では、成形条件の一例として、ゲートシール時間Tsを適用した。
最初に、本実施形態に係る成形条件推定方法を適用するゲートシール時間件推定方法の原理について説明する。本実施形態に係るゲートシール時間推定方法は、大別して、サーバコンピュータ11側における処理と、クライアントコンピュータ12側における処理に分けられる。
この場合、サーバコンピュータ11側では、予め、ゲートシール時間Ts…に対する
基礎データベース5aを構築して登録部6aに設定する処理機能を備える。より具体的には、樹脂の種別に対して、ゲートに係わる情報及び設定した特定成形情報Csを使用し、かつ異なる複数の数値を組合わせることにより、CAE処理部3による樹脂流動解析処理を行う第一のステップと、この解析処理結果から複数のゲートシール時間Ts…を取得し、取得したゲートシール時間Ts…に対して、ニューラルネットワーク処理部4による学習処理を行う第二のステップとを経ることにより、ゲートシール時間Ts…をゲートシール時間推定モデル5bとして構築し、モデル格納部6bに設定する機能を備える。
基礎データベース5aを構築して登録部6aに設定する処理機能を備える。より具体的には、樹脂の種別に対して、ゲートに係わる情報及び設定した特定成形情報Csを使用し、かつ異なる複数の数値を組合わせることにより、CAE処理部3による樹脂流動解析処理を行う第一のステップと、この解析処理結果から複数のゲートシール時間Ts…を取得し、取得したゲートシール時間Ts…に対して、ニューラルネットワーク処理部4による学習処理を行う第二のステップとを経ることにより、ゲートシール時間Ts…をゲートシール時間推定モデル5bとして構築し、モデル格納部6bに設定する機能を備える。
一方、クライアントコンピュータ12側では、使用する金型2を用いた射出成形機Mにおけるゲートシール時間Tsを求める際に、サーバコンピュータ11にアクセスし、サーバコンピュータ11内のゲートシール時間推定モデル5b又はダウンロードしたゲートシール時間推定モデル5bを利用して目的のゲートシール時間Tsを取得するための処理機能を備える。即ち、樹脂の種別及びゲートに係わる情報を含む特定成形情報Csを入力し、ゲートシール時間推定モデル5bを利用することにより、対応するゲートシール時間Tsを求めるとともに、求めたゲートシール時間Tsを任意の金型2に対するゲートシール時間Tsとして推定する処理機能を備える。
したがって、構築するゲートシール時間推定モデル5b(基礎データベース5a)には、樹脂の種別及びゲートに係わる情報を含む特定成形情報Csに対応するゲートシール時間Tsが含まれているため、ゲートシール時間推定モデル5bに、入力する、樹脂の種別及びゲートに係わる情報を含む特定成形情報Csに対応する、正確なゲートシール時間Tsが担保されれば、目的とする正確なゲートシール時間Tsを推定できることになる。
以下、本実施形態に係るゲートシール時間推定方法の有効性についての検証結果について説明する。
検証は、本実施形態に係るゲートシール時間推定方法に用いる基礎データベース5aを構築するためのCAE処理部3による樹脂流動解析処理により求めたゲートシール時間Tsの解析処理結果と射出成形機Mによる実成形により得られた実情に近いゲートシール時間Tsの検出結果を対比することにより行った。
最初に、本実施形態に係るゲートシール時間推定方法に用いる基礎データベース5aを構築するためのCAE処理部3による樹脂流動解析処理によりゲートシール時間Tsを求める処理方法及び解析結果について、図3~図6を参照して説明する。
まず、特定成形情報Csを設定する。例示は、特定成形情報Csとして、樹脂温度Thr,金型温度Thc,射出速度Vs及び保圧力Phを設定した場合を示す。このように、特定成形情報Csとして、樹脂温度Thr,金型温度Thc,射出速度Vs及び保圧力Phの四項目を用いれば、ゲートシール時間Tsに大きく影響する主要な成形条件として確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避できる利点がある。
また、ゲートに係わる情報としてゲート形状を用いた。この場合のゲート形状には、ゲート自身の寸法的なディメンションをはじめ、必要に応じてゲートの位置やゲートの数量を含めることができる。本実施形態では、ゲート形状として、図8に示すキャビティパターンEを想定した。このように、ゲートに係わる情報として、ゲート形状を用いれば、情報として入手しやすく、かつゲートシール時間Tsに大きく影響する要素となるため、ゲートシール時間Tsの推定に際し、的確で信頼性の高い情報として利用できる利点がある。さらに、樹脂の種別として、HIPS(耐衝撃性ポリスチレン495F(商品名))を想定した。
そして、CAE処理部3を用いた樹脂流動解析処理を行うに際しては、樹脂の種別及びゲートに係わる情報は固定し、特定成形情報Csとなる、樹脂温度Thr,金型温度Thc,射出速度Vs及び保圧力Phは、それぞれ図4に示す樹脂流動解析処理に用いる特定成形情報Csの一覧表のように、異なる複数の数値を組合わせることにより、経過時間に対する樹脂温度Thrの下降状況を、CAE処理部3を用いた樹脂流動解析処理によりシミュレーションした。
図3は、CAE処理部3による樹脂流動解析処理によりゲートシール時間Tsを求める手順を説明するためのフローチャートを示す。
処理を実行するに際し、まず、CAE処理部3に、上述した樹脂の種別に係わるデータ及びゲート形状に係わるデータを入力するとともに、サンプルW1の実施条件、即ち、樹脂温度200〔℃〕,金型温度40〔℃〕,射出速度10〔mm/s〕,保圧力50〔MPa〕となる特定成形情報Csに係わるデータ入力を行う(ステップS31)。
データ入力が終了したなら、これらの条件の下に、CAE処理部3を用いた樹脂流動解析処理を行う(ステップS32)。この場合、CAE技術を用いる樹脂流動解析処理については、現在、様々なソフトウェアがアプリケーションソフトウェアとして提供されているため、これらのソフトウェアを選定し、サーバコンピュータ11にインストールして用いることができる。
これにより、対応するゲートシール時間Tsを取得できる(ステップS33)。即ち、CAE処理部3を用いた樹脂流動解析処理により、経過時間に対する樹脂温度Thrの下降状況をシミュレーションするため、特定の樹脂温度Thrに低下するまでの経過時間を求めることができる。設定した樹脂(HIPS)の場合、固化温度は98〔℃〕(メーカー公表値)であり、また、金型取出温度は88〔℃〕(メーカー公表値)である。したがって、この場合、樹脂温度Thrが、98〔℃〕に低下した時点の経過時間を取り込めば、この経過時間をゲートシール時間Tsとすることができる。
このようなCAE処理部3を用いた樹脂流動解析処理によるシミュレーションを、サンプルW2-W9まで同様に行う(ステップS34,S31…)。これにより、各サンプルW1-W9における九つのゲートシール時間Ts…を取得することができる。そして、全サンプルW1-W9に対するゲートシール時間Ts…の取得が終了したなら、CAE処理部3を用いた樹脂流動解析処理を終了させる(ステップS34)。
得られた結果(ゲートシール時間Ts…)を図5における「CAE」の欄に示す。なお、比較例として、現在、一般に用いられているゲートシール時間の計算式により求めたゲートシール時間Tsを図5における「一般式」の欄に示した。また、図6は、図5のゲートシール時間Ts…をグラフで示したものであり、グラフ線Tiは、CAE処理部3により得たゲートシール時間Ts…、グラフ線Trは、一般の計算式により得たゲートシール時間Ts…を、それぞれ示す。なお、参考までに、一般に用いられている計算式を[数1]に示す。図5における「一般式」の欄に示したゲートシール時間Ts…は[数1]により算出した数値である。
[数1]において、tSRはゲートシール時間〔s〕,λは樹脂の熱伝導率〔kcal/m・h・℃〕,cは樹脂の比熱〔kcal/kg・℃〕,ρは樹脂の密度〔kg/立法メートル〕,θrは溶融樹脂温度〔℃〕,θeは成形品取出温度〔℃〕,θmはキャビティ表面温度〔℃〕,kはゲートの深さ〔mm〕,bはゲートの幅〔mm〕,Lはゲートのランド長さ〔mm〕である。
次に、射出成形機Mの実成形によりゲートシール時間Tsを求める実施方法及び実施結果について、図7~図9を参照して具体的に説明する。
図7は、実成形によりゲートシール時間Ts…を求める手順を説明するためのフローチャートを示す。また、使用する金型2のキャビティパターンEを図8に示す。このキャビティパターンEにより成形する成形品(製品)はプラモデルの一部であり、図8中、2g…がゲートを示す。その他、2mは製品部、2r…はランナ、2sはスプルをそれぞれ示している。
実成形に際しては、まず、使用する金型2を含む射出成形機Mに対する成形条件の設定を行う(ステップS51)。この場合、成形条件には、少なくとも前述した特定成形情報Csを含むとともに、その他、成形に必要な通常の成形条件を設定する。また、前述したサンプルW1-W9の全サンプルに対応した成形を行うことが望ましいが、本実施形態では、樹脂温度Thrが異なる代表的なサンプルW1,W5,W9の三サンプルについて実成形を行った。
一方、成形条件の設定が終了したなら、サンプルW1に対応する最初の成形工程を実施する(ステップS52)。具体的には、型締工程,計量工程,射出工程を順次行う。また、同時に、工程の進行状態を監視する(ステップS53)。そして、保圧工程に移行、即ち、速度制御領域となる射出工程から圧力制御領域となる保圧工程への切換点となるV-P切換点に達したなら経過時間を監視、即ち、計時を開始する(ステップS54,S55)。経過時間を監視し、設定時間(N)に達したなら、保圧工程を停止し、成形品の取出しを行う(ステップS56,S57)。この場合、最初の設定時間(N)は、固化が想定される時間よりも十分に手前となる時間を選定する。例示の場合、2.3〔s〕を設定時間(保圧時間)とした。成形品の取出しが終了したなら成形品の重量測定を行う(ステップS58)。
次いで、設定時間を若干長くなる方向、即ち、設定時間(N)を新たな設定時間(N+n)に変更して同様の成形工程を実施する(ステップS59,S60,S52…)。例示の場合、「n」は、0.3〔s〕程度に設定した。なお、「n」の値は、必ずしも一定である必要はなく、最初は比較的長い時間間隔を設定し、重量測定の結果、重量変化が少なくなってきたら、徐々に短い時間間隔に設定するなど任意に設定できる。この後、設定時間(N+n)を順次変更して同様の成形工程を繰り返し、成形した成形品の重量変化(増加)が生じなくなり、いわばピークを過ぎたと判断できる状態になったら成形処理を終了させる(ステップS59)。
これにより、サンプルW1に対応する成形処理が終了するため、次に、サンプルW5に対応する成形処理を、サンプルW1の場合と同様に行う。また、サンプルW5に対応する成形処理が終了したなら、次に、サンプルW9に対応する成形処理をサンプルW1の場合と同様に行う(ステップS61,S51…)。そして、サンプルW1,W5,W9に対応する全ての成形処理が終了したなら、成形品重量の最大値を選出する(ステップS61,S62)。図9は、成形処理により得られた成形品重量と設定時間(保圧時間)の関係を示した変化グラフであり、グラフ線Q1はサンプルW1、グラフ線Q5はサンプルW5、グラフ線Q9はサンプルW9をそれぞれ示す。図9に示すように、成形品重量の最大値が、点線t1,t5,t9により示す時間で生じていることを確認できる。
この場合、成形品重量が最大値を示すことは、充填が停止、即ち、樹脂が流動しなくなったことを意味するため、この点を固化時点とした。例示の場合、サンプルW1における時間t1は、約2.5〔s〕、サンプルW5における時間t5は、約3.6〔s〕、サンプルW9における時間t9は、約4.2〔s〕となる。得られた各時間をゲートシール時間Ts…とした。また、得られたゲートシール時間Ts…は、図5に「実成形」として示した。これにより、CAE処理部3による樹脂流動解析処理による処理結果と対比することができる。
以上の結果から明らかなように、特に、サンプルW5とW9については、CAE処理部3を用いた樹脂流動解析処理に基づく処理結果と実成形を行うことにより得られた実施結果の間には、強い近似性が担保されていることを確認できた。したがって、このようなCAE処理部3による樹脂流動解析処理に基づく結果をデータベース化すれば、樹脂の種別,ゲートに係わる情報及び特定成形情報Csが、一致した場合、正確なゲートシール時間Tsを推定できることを示している。
以下、このような検証結果を踏まえ、本実施形態に係るゲートシール時間推定方法について、図1~図12を参照して説明する。図1は、本実施形態に係るゲートシール時間推定方法を実施する手順を説明するためのフローチャートを示す。
最初に、サーバコンピュータ11側(メーカー側)の処理について説明する。サーバコンピュータ11では、まず、CAE処理部3を用いた樹脂流動解析処理によりゲートシール時間Ts…を取得する(ステップS1)。この場合、前述した検証時に実施した処理手順と同様に、樹脂の種別に対して、ゲートに係わる情報を含む設定した特定成形情報Csを使用し、かつ異なる複数の数値を組合わせることにより、CAE処理部3による樹脂流動解析処理を行う。これにより、複数のゲートシール時間Ts…を取得することができる。また、樹脂の種別とゲート形状(ゲートに係わる情報)を変更することにより、同様の処理を行い、様々な条件に対応するゲートシール時間Ts…を取得する。そして、得られた多数のゲートシール時間Ts…(データ群)から基礎データベース5aを構築して登録部(内部記憶装置)6aに登録する(ステップS2,S3)。
ところで、CAE処理部3を用いた樹脂流動解析処理を行うことにより、取得したゲートシール時間Ts…に対して、樹脂流動解析処理で用いた処理条件と一致する情報を入力した場合には、前述した検証結果から明らかなように、正確なゲートシール時間Tsを推定することができる。しかし、一致しない情報を入力した場合であっても、近似できる、より正確なゲートシール時間Tsを推定できるようにするため、本実施形態に係るゲートシール時間推定方法では、CAE処理部3を用いた樹脂流動解析処理による結果、即ち、上述した基礎データベース5aをニューラルネットワーク処理部4を用いたニューラルネットワークにより学習処理させるようにした(ステップS4)。
なお、ニューラルネットワーク処理部4を用いたニューラルネットワークによる学習処理は、通常、実際に得られる実測値に対して適用させるものであるが、本実施形態に係るゲートシール時間推定方法では、CAE処理部3を用いた樹脂流動解析処理による処理結果であるゲートシール時間Ts…の推定値に対して適用させた点が今回の着目すべき技術の一つとなる。特に、ニューラルネットワーク処理部4による計算処理(学習処理)は、CAE処理部3による計算処理に比べ、計算時間を大幅に短縮できるため、ユーザー側においては、CAE処理を行うための別途の製品モデルの用意は不要となる。
そして、ニューラルネットワーク処理部4を用いたニューラルネットワークによる学習処理により、ゲートシール時間推定モデル5bを構築し、サーバコンピュータ11における記憶処理機能を有するモデル格納部(内部記憶装置)6bに格納する(ステップS7,S8)。このゲートシール時間推定モデル5bは、データテーブルとして構築してもよいし、関数式や変換式等を含む演算式により構築してもよい。このように、ゲートシール時間推定モデル5bに、データテーブル又は演算式を含ませれば、射出成形機Mの種別やグレード或いはデータ内容等に合わせた的確なゲートシール時間推定モデル5bを構築できる。
なお、本実施形態では、サーバコンピュータ11側において、ユーザー側の利用履歴や成形品データ等の情報を収集し、学習対象に含めることにより、ゲートシール時間推定モデル5bを随時一括して更新する(進化させる)ことができるようにした。このため、収集した情報が存在する場合、即ち、更新事由が存在する場合には、基礎データベース5aを随時更新し、更新した基礎データベース5aに対してニューラルネットワークによる学習処理を行っている(ステップS5,S6)。これにより、サーバコンピュータ11側においては、基礎データベース5aを一括して更新し、基礎データベース5aを最新の状態にできるため、システムの効率的な最適化に寄与できる利点がある。
この場合、ニューラルネットワーク処理部4を用いたニューラルネットワーク処理、即ち、ニューラルネットワーク処理部4における処理プログラムは、CAE処理部3に基づいて得られた基礎データベース5aを学習処理し、パターン認識させることにより、ある物理現象を疑似的にモデル化し、実際に射出成形機Mを運転させることなく、前述した特定成形情報Cs等の入力パラメータにより、成形状態をシミュレーションするものであり、図10及び図11に、ニューラルネットワーク処理部4による学習結果の一例を示している。
図10は、ゲートシール時間Tsに対して金型温度Thcがプロット(プロットの図示は省略)されることにより、疑似的な相関曲線Qcが得られることを示している。即ち、図10により、ゲートシール時間Tsは、金型温度Thcに、ほぼ比例することを示している。同様に、図11は、ゲートシール時間Tsに対して樹脂温度Thrがプロット(プロットの図示は省略)されることにより、疑似的な相関曲線Qrが得られることを示している。即ち、図11により、ゲートシール時間Tsは、樹脂温度Thrに、ほぼ比例することを示している。
また、ゲートシール時間推定モデル5bは、基本的に、サーバコンピュータ11側に設定することが望ましい。このように、ゲートシール時間推定モデル5bを、サーバコンピュータ11に設定すれば、後述するクライアントコンピュータ12…からアクセス可能又はダウンロード可能になり、最新の成形条件推定モデル5bを利用できる利点がある。
次に、クライアントコンピュータ12側(ユーザー側)の処理について説明する。前述したように、クライアントコンピュータ12としては、スマートフォン等の携帯端末12sを用いることが望ましい。したがって、実施形態は、携帯端末12sを用いた場合について説明する。最初に、本実施形態に係るゲートシール時間推定方法を実施するためのアプリケーションソフトウェアPaを、ダウンロード等により取得し、携帯端末12sに予めインストールしておく(ステップS9)。
今、ユーザーは、任意の金型2を用いた射出成形機Mの成形条件の設定や生産計画を立てる状況下にあり、ゲートシール時間Tsの把握が必要になった場合を想定する。この場合、ユーザーは、携帯端末12sを使用し、アプリケーションソフトウェアPaを起動させる(ステップS10)。これにより、携帯端末12sのディスプレイには、ユーザー画面表示機能Fvにより、図12に示すユーザー画面61が表示される(ステップS11)。また、起動により自動で、又はダウンロードキーを操作すれば、ゲートシール時間推定モデルダウンロード機能Fdにより、サーバコンピュータ11にアクセスし、最新のゲートシール時間推定モデル5bを、携帯端末12sの登録部にダウンロードする(ステップS12)。
一方、ユーザーは、ユーザー画面61に、ゲートシール時間Tsの推定を行う前提となる必要な情報を入力する(ステップS13)。即ち、樹脂の種別.ゲート形状,特定成形情報Csに係わる各情報を入力する。例示の場合、樹脂選択部62を用いた樹脂の種別の選択(例示は「PP」)、樹脂温度設定部63を用いた樹脂温度Thrの入力(例示は「220」℃)、金型温度設定部64を用いた金型温度Thcの入力(例示は「40」℃)、充填時間設定部65を用いた充填時間の入力(例示は「2」秒)、保圧力設定部66を用いた保圧力Phの入力(例示は「60」MPa)を行う。この場合、充填時間は、スクリュの射出ストローク用いて射出速度Vsに変換される。また、ゲート形状設定部67を用いて、ゲート形状の種類(例示は「サイド」)及び数量等の設定を行う。
情報の入力が終了したなら、計算キー68をタッチする。これにより、ゲートシール時間導出機能Fsにより、ゲートシール時間推定モデル5bと入力した情報に基づいて、対応するゲートシール時間Tsの導出処理が行われる(ステップS14)。そして、導出されたゲートシール時間Tsは、推定したゲートシール時間Tsとして設定されるとともに、図12に示すゲートシール時間表示部69に表示される(ステップS15)。また、ゲートシール時間Tsが得られたことにより、必要な成形条件が設定される(ステップS16)。具体的には、ゲートシール時間Tsを直接的に利用できる保圧時間の設定を行うことができるとともに、他の成形条件も考慮して全体の成形サイクル時間を把握することができる。このように、本実施形態では、携帯端末12sを用いて必要なゲートシール時間Tsを得ることができるため、成形条件(保圧時間等)の迅速な設定に寄与できるとともに、成形サイクル時間の把握による的確な生産計画等も効率的に立てることができる。
そして、得られたゲートシール時間Tsや成形条件等のデータは、データ転送機能Fsにより、成形機コントローラ51に転送(送信)できる(ステップS17)。また、成形機コントローラ51では受信したデータを内部メモリ53に設定することができる(ステップS18)。なお、携帯端末12sに表示されるユーザー画面61を利用して情報の入力を行うことができるため、前述したゲートシール時間推定モデル5bをサーバコンピュータ11に残したまま携帯端末12sから入力した情報をサーバコンピュータ11に送信してもよい。これにより、サーバコンピュータ11側において、ステップS14における、対応するゲートシール時間Tsの導出処理を行い、得られたゲートシール時間Tsを、携帯端末12sに送信してもよい。
したがって、このようなゲートシール時間推定方法によれば、予め、樹脂の種別に係わる情報に対して設定した特定成形情報Csを使用し、かつ異なる複数の数値を組合わせることにより、CAE処理部3による樹脂流動解析処理を行い、この解析処理結果から所定のゲートシール時間に対する複数のデータ(Ts…)を取得することにより基礎データベース5aを構築し、この基礎データベース5aに対して、ニューラルネットワーク処理部4による学習処理を行い、かつゲートシール時間推定モデル5bを構築して所定のモデル格納部6bに設定するとともに、所定のゲートシール時間を求める際に、ゲートシール時間推定モデル5bを使用し、樹脂の種別に係わる情報及び特定成形情報Csを入力することにより、対応するゲートシール時間Tsを推定するようにしたため、CAE処理部3を用いた樹脂流動解析処理によるシミュレーション、更にはこのシミュレーションに対してニューラルネットワーク処理部4を用いた学習処理によるブラシアップの組合わせにより、必要なゲートシール時間Tsを求める(推定する)ことができる。これにより、時間のかかる実成形を繰り返す作業が不要となるため、目的のゲートシール時間Tsを迅速かつ容易に求める(推定する)ことができ、この結果、生産能率及び生産性を飛躍的に高めることができる。
また、射出成形機を稼働して繰り返す実成形が不要になることから実成形に伴う成形材料や消費電力を無駄を排除できる。この結果、資材節減及び省エネルギ性、更にはコスト削減を図ることができる。しかも、実成形に伴う作業労力を排除できるとともに、人為的な作業により生じるバラツキ要因も排除できるため、正確性及び安定性に優れたゲートシール時間Ts(保圧時間)を確保できる。加えて、ニューラルネットワーク処理部4による計算処理(学習処理)は、CAE処理部3による計算処理に比べ、計算時間を大幅に短縮できるため、ユーザー側においては、CAE処理を行うための別途の製品モデルの用意は不要となる利点がある。
以上、成形条件の一例として、ゲートシール時間Tsを推定する場合について説明したが、本発明に係る成形条件推定方法は、射出成形機Mにおける、少なくとも樹脂流動に係わる成形条件を推定する際に利用することができる。樹脂流動に係わる成形条件としては、金型2の冷却時間,金型2に対する保圧力,型締力,射出速度を適用できる。
図13は、前述したゲートシール時間Ts…に係わる基礎データベース5aを構築する際における、特定成形情報Cs,CAE処理部3,基礎データベース5aの関係を示したものである。したがって、他の成形条件を推定する場合にも、同様の原理により、CAE処理部3を用いて基礎データベース5aを構築し、目的の成形条件を推定することができる。
図14a~図14dは、上述した成形条件、即ち、金型2の冷却時間,金型2に対する保圧力,型締力,射出速度の各成形条件を推定する際に用いる特定成形情報Csと構築する基礎データベース5aの関係を示す。
図14aは、冷却時間を推定する場合の関係図であり、この場合、特定成形情報Csには、樹脂温度,金型温度,製品部の最大厚,樹脂の熱伝導率,樹脂と金型2の熱伝達係数,の一又は二以上を組合わせて使用でき、これにより、樹脂を射出充填した後における金型2の冷却時間(成形条件)を推定することができる。このように、特定成形情報Csに、樹脂温度,金型温度,製品部の最大厚,樹脂の熱伝導率,樹脂と金型2の熱伝達係数,の少なくとも一つ以上を使用するとともに、成形条件に、金型2の冷却時間を適用すれば、当該冷却時間に大きく影響する主要な特定成形情報Csを確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避できる。したがって、冷却時間推定方法として利用することができ、目的とする的確な冷却時間の設定を迅速かつ容易に行うことができる。
しかも、目的とする的確な冷却時間の設定も迅速かつ容易に行うことができる。
しかも、目的とする的確な冷却時間の設定も迅速かつ容易に行うことができる。
図14bは、金型2に対する保圧力を推定する場合の関係図であり、この場合、特定成形情報Csには、樹脂温度,樹脂のPVT特性,目標収縮率,ランナ部の圧力損失,の一又は二以上を組合わせて使用でき、これにより、金型2に対する保圧力(成形条件)を推定することができる。このように、特定成形情報Csに、樹脂温度,樹脂のPVT特性,目標収縮率,ランナ部の圧力損失,の少なくとも一つ以上を使用するとともに、成形条件に、金型2に対する保圧力を適用すれば、当該保圧力に大きく影響する主要な特定成形情報Csを確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避できる。したがって、保圧力推定方法として利用することができ、目的とする的確な保圧力の設定を迅速かつ容易に行うことができる。
図14cは、型締力を推定する場合の関係図であり、この場合、特定成形情報Csには、樹脂温度,樹脂粘度,ランナ部の圧力損失,製品部の投影面積,射出圧力又は保圧力,の一又は二以上を組合わせて使用でき、これにより、型締力(成形条件)を推定することができる。このように、特定成形情報Csに、樹脂温度,樹脂粘度,ランナ部の圧力損失,製品部の投影面積,射出圧力又は保圧力,の少なくとも一つ以上を使用するとともに、成形条件に、金型2に対する型締力を適用すれば、当該型締力に大きく影響する主要な特定成形情報Csを確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避できる。したがって、型締力推定方法として利用することができ、目的とする的確な型締力の設定を迅速かつ容易に行うことができる。
図14dは、射出速度を推定する場合の関係図であり、この場合、特定成形情報Csには、樹脂温度,金型温度,樹脂粘度,製品部の最小厚,金型内述の流動長,樹脂の熱伝導率,樹脂と金型2の熱伝達係数,の一又は二以上を組合わせて使用でき、これにより、射出速度(成形条件)を推定することができる。このように、特定成形情報Csに、樹脂温度,金型温度,樹脂粘度,製品部の最小厚,金型内の流動長,樹脂の熱伝導率,樹脂と金型2の熱伝達係数,の少なくとも一つ以上を使用するとともに、成形条件に、射出速度を適用すれば、当該射出速度に大きく影響する主要な特定成形情報Csを確保できるため、推定を行うに際しての十分な情報を得つつ多情報により煩雑になる不具合を回避できる。したがって、射出速度推定方法として利用することができ、目的とする的確な射出速度の設定を迅速かつ容易に行うことができる。
その他の処理については、図1~図12に基づいて説明したゲートシール時間推定方法に準じて同様に行うことができる。特に、特定成形情報Csとしては、例示した全ての情報を組合わせることが望ましいが、必要に応じて一部の情報を他の情報と置換したり、或いは他の情報を追加的に付加してもよい。したがって、例えば、ゲートに係わる情報として、ゲート形状を例示したが、必要により特殊形態のゲート等を含めてもよい。
よって、このような本実施形態に係る成形条件推定方法によれば、基本的な手法として、予め、樹脂の種別に係わる情報に対して設定した特定成形情報Csを使用し、かつ異なる複数の数値を組合わせることにより、CAE処理部3による樹脂流動解析処理を行い、この解析処理結果から所定の成形条件に対する複数のデータを取得することにより基礎データベース5aを構築し、この基礎データベース5aに対して、ニューラルネットワーク処理部4による学習処理を行い、かつ成形条件推定モデル5bを構築して所定のモデル格納部6bに設定するとともに、所定の成形条件を求める際に、成形条件推定モデル5bを使用し、樹脂の種別に係わる情報及び特定成形情報Csを入力することにより、対応する成形条件を推定するようにしたため、CAE処理部3を用いた樹脂流動解析処理によるシミュレーション、更にはこのシミュレーションに対してニューラルネットワーク処理部4を用いた学習処理によるブラシアップの組合わせにより、必要な成形条件を求める(推定する)ことができる。これにより、時間のかかる実成形を繰り返す作業が不要となるため、目的の成形条件を迅速かつ容易に求める(推定する)ことができる。
また、射出成形機を稼働して繰り返す実成形が不要になることから実成形に伴う成形材料や消費電力を無駄を排除できる。この結果、資材節減及び省エネルギ性、更にはコスト削減を図ることができる。しかも、実成形に伴う作業労力を排除できるとともに、人為的な作業により生じるバラツキ要因も排除できるため、正確性及び安定性に優れた成形条件を確保できる。さらに、ニューラルネットワーク処理部4による計算処理(学習処理)は、CAE処理部3による計算処理に比べ、計算時間を大幅に短縮できるため、ユーザー側においては、CAE処理を行うための別途の製品モデルの用意は不要となる。
以上、好適実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。例えば、クライアントコンピュータ12として携帯端末12s例示したが、クライアントコンピュータ12としてのコンピュータ機能を、成形機コントローラ51に内蔵する形態であってもよい。
本発明に係る成形条件推定方法は、金型に樹脂を射出充填して成形を行う各種射出成形機に利用できる。
Claims (15)
- 射出成形機の少なくとも樹脂流動に係わる成形条件を推定する射出成形機の成形条件推定方法であって、予め、樹脂の種別に係わる情報に対して設定した特定成形情報を使用し、かつ異なる複数の数値を組合わせることにより、CAE処理部による樹脂流動解析処理を行い、この解析処理結果から所定の成形条件に対する複数のデータを取得することにより基礎データベースを構築し、この基礎データベースに対して、ニューラルネットワーク処理部による学習処理を行い、かつ成形条件推定モデルを構築して所定のモデル格納部に設定するとともに、前記所定の成形条件を求める際に、前記成形条件推定モデルを使用し、樹脂の種別に係わる情報及び前記特定成形情報を入力することにより、対応する成形条件を推定することを特徴とする射出成形機の成形条件推定方法。
- 前記特定成形情報として、樹脂温度,金型温度,射出速度,保圧力,金型のキャビティの手前に設けたゲートに係わる情報,の少なくとも一つ以上を使用するとともに、成形条件には、前記キャビティに樹脂を射出充填した後、前記ゲートに在留する樹脂が固化するまでのゲートシール時間を適用することを特徴とする請求項1記載の射出成形機の成形条件推定方法。
- 前記ゲートに係わる情報には、ゲート形状を含むことを特徴とする請求項2記載の射出成形機の成形条件推定方法。
- 前記ゲートシール時間は、保圧時間の設定に用いることを特徴とする請求項2記載の射出成形機の成形条件推定方法。
- 前記特定成形情報として、樹脂温度,金型温度,製品部の最大厚,樹脂の熱伝導率,樹脂と金型の熱伝達係数,の少なくとも一つ以上を使用するとともに、前記成形条件には、樹脂を射出充填した後における金型の冷却時間を適用することを特徴とする請求項1記載の射出成形機の成形条件推定方法。
- 前記特定成形情報として、樹脂温度,樹脂のPVT特性,目標収縮率,ランナ部の圧力損失,の少なくとも一つ以上を使用するとともに、前記成形条件には、金型に対する保圧力を適用することを特徴とする請求項1記載の射出成形機の成形条件推定方法。
- 前記特定成形情報として、樹脂温度,樹脂粘度,ランナ部の圧力損失,製品部の投影面積,射出圧力,保圧力,の少なくとも一つ以上を使用するとともに、成形条件には、金型に対する型締力を適用することを特徴とする請求項1記載の射出成形機の成形条件推定方法。
- 前記特定成形情報として、樹脂温度,金型温度,樹脂粘度,製品部の最小厚,金型内の流動長,樹脂の熱伝導率,樹脂と金型の熱伝達係数,の少なくとも一つ以上を使用するとともに、成形条件として、射出速度を適用することを特徴とする請求項1記載の射出成形機の成形条件推定方法。
- 前記基礎データベースは、サーバコンピュータにおける登録部に設定し、少なくともユーザー側から収集した情報に基づいて更新可能にすることを特徴とする請求項1記載の射出成形機の成形条件推定方法。
- 前記成形条件推定モデルには、データテーブルを含むことを特徴とする請求項1記載の射出成形機の成形条件推定方法。
- 前記成形条件推定モデルには、演算式を含むことを特徴とする請求項1記載の射出成形機の成形条件推定方法。
- 前記成形条件推定モデルは、サーバコンピュータにおけるモデル格納部に設定し、クライアントコンピュータからアクセス可能にすることを特徴とする請求項1,10又は11記載の射出成形機の成形条件推定方法。
- 前記クライアントコンピュータには、携帯端末を含むことを特徴とする請求項12記載の射出成形機の成形条件推定方法。
- 前記成形条件推定モデルは、サーバコンピュータにおけるモデル格納部に設定し、クライアントコンピュータからダウンロード可能にすることを特徴とする請求項1,10又は11記載の射出成形機の成形条件推定方法。
- 前記クライアントコンピュータには、携帯端末を含むことを特徴とする請求項14記載の射出成形機の成形条件推定方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018563313A JP6779316B2 (ja) | 2017-01-17 | 2018-01-15 | 射出成形機の成形条件推定方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017005706 | 2017-01-17 | ||
JP2017-005706 | 2017-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018135443A1 true WO2018135443A1 (ja) | 2018-07-26 |
Family
ID=62908497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/000854 WO2018135443A1 (ja) | 2017-01-17 | 2018-01-15 | 射出成形機の成形条件推定方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6779316B2 (ja) |
WO (1) | WO2018135443A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020095848A1 (ja) * | 2018-11-06 | 2020-05-14 | 株式会社 東芝 | 製品状態推定装置 |
CN111319206A (zh) * | 2018-12-13 | 2020-06-23 | 杭州电子科技大学 | 注塑成型系统中参数优化方法和装置 |
IT201900005646A1 (it) * | 2019-04-12 | 2020-10-12 | Inglass Spa | “Metodo implementato via software per elaborare risultati di una simulazione realizzata con software di analisi agli elementi finiti” |
CN112541248A (zh) * | 2019-09-23 | 2021-03-23 | 信华科技(厦门)有限公司 | 自动化模流分析系统及方法 |
JP2021053843A (ja) * | 2019-09-27 | 2021-04-08 | ファナック株式会社 | 逆回転条件推定装置、逆回転条件推定方法及び射出成形機 |
KR102355246B1 (ko) * | 2020-10-30 | 2022-02-07 | (주)화인 | 사출 성형 통합 관리 시스템 |
JP7571521B2 (ja) | 2020-12-18 | 2024-10-23 | 株式会社ジェイテクト | センサ配置決定システム、センサ配置決定方法、コンピュータプログラム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6787971B2 (ja) * | 2018-10-25 | 2020-11-18 | ファナック株式会社 | 状態判定装置及び状態判定方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0477219A (ja) * | 1990-07-19 | 1992-03-11 | Toshiba Corp | 成形支援エキスパートシステム |
JP2000355033A (ja) * | 1999-04-13 | 2000-12-26 | Fanuc Ltd | 成形条件作成方法、装置、媒体及び成形機 |
JP2006281662A (ja) * | 2005-04-01 | 2006-10-19 | Nissei Plastics Ind Co | 射出成形機の制御装置 |
JP2010042599A (ja) * | 2008-08-12 | 2010-02-25 | Sumitomo Chemical Co Ltd | 成形条件の設定方法および多目的最適化方法 |
JP2016087975A (ja) * | 2014-11-07 | 2016-05-23 | 本田技研工業株式会社 | 樹脂粘度算出機能を有する流動解析装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05309711A (ja) * | 1992-04-03 | 1993-11-22 | Sony Corp | 成形制御方法および装置 |
JPH0631787A (ja) * | 1992-07-13 | 1994-02-08 | Sumitomo Heavy Ind Ltd | 射出成形機の成形状態表示装置 |
JP4481287B2 (ja) * | 2001-06-08 | 2010-06-16 | 三菱重工プラスチックテクノロジー株式会社 | 射出成形条件の解析方法 |
JP4167282B2 (ja) * | 2006-10-27 | 2008-10-15 | 日精樹脂工業株式会社 | 射出成形機の支援装置 |
JP2009023254A (ja) * | 2007-07-20 | 2009-02-05 | Toray Eng Co Ltd | 射出成形解析方法、解析装置、そのプログラム、記憶媒体及びそのプログラムを用いた製造方法 |
-
2018
- 2018-01-15 WO PCT/JP2018/000854 patent/WO2018135443A1/ja active Application Filing
- 2018-01-15 JP JP2018563313A patent/JP6779316B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0477219A (ja) * | 1990-07-19 | 1992-03-11 | Toshiba Corp | 成形支援エキスパートシステム |
JP2000355033A (ja) * | 1999-04-13 | 2000-12-26 | Fanuc Ltd | 成形条件作成方法、装置、媒体及び成形機 |
JP2006281662A (ja) * | 2005-04-01 | 2006-10-19 | Nissei Plastics Ind Co | 射出成形機の制御装置 |
JP2010042599A (ja) * | 2008-08-12 | 2010-02-25 | Sumitomo Chemical Co Ltd | 成形条件の設定方法および多目的最適化方法 |
JP2016087975A (ja) * | 2014-11-07 | 2016-05-23 | 本田技研工業株式会社 | 樹脂粘度算出機能を有する流動解析装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020095848A1 (ja) * | 2018-11-06 | 2020-05-14 | 株式会社 東芝 | 製品状態推定装置 |
JP2020075385A (ja) * | 2018-11-06 | 2020-05-21 | 株式会社東芝 | 製品状態推定装置 |
JP7021052B2 (ja) | 2018-11-06 | 2022-02-16 | 株式会社東芝 | 製品状態推定装置 |
CN111319206A (zh) * | 2018-12-13 | 2020-06-23 | 杭州电子科技大学 | 注塑成型系统中参数优化方法和装置 |
IT201900005646A1 (it) * | 2019-04-12 | 2020-10-12 | Inglass Spa | “Metodo implementato via software per elaborare risultati di una simulazione realizzata con software di analisi agli elementi finiti” |
WO2020208602A1 (en) * | 2019-04-12 | 2020-10-15 | Inglass S.P.A. | Software-implemented method and system for processing results of a simulation carried out with finite element analysis software |
CN112541248A (zh) * | 2019-09-23 | 2021-03-23 | 信华科技(厦门)有限公司 | 自动化模流分析系统及方法 |
CN112541248B (zh) * | 2019-09-23 | 2023-04-07 | 信华科技(厦门)有限公司 | 自动化模流分析系统及方法 |
JP2021053843A (ja) * | 2019-09-27 | 2021-04-08 | ファナック株式会社 | 逆回転条件推定装置、逆回転条件推定方法及び射出成形機 |
JP7311376B2 (ja) | 2019-09-27 | 2023-07-19 | ファナック株式会社 | 逆回転条件推定装置、逆回転条件推定方法及び射出成形機 |
KR102355246B1 (ko) * | 2020-10-30 | 2022-02-07 | (주)화인 | 사출 성형 통합 관리 시스템 |
JP7571521B2 (ja) | 2020-12-18 | 2024-10-23 | 株式会社ジェイテクト | センサ配置決定システム、センサ配置決定方法、コンピュータプログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018135443A1 (ja) | 2019-11-07 |
JP6779316B2 (ja) | 2020-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018135443A1 (ja) | 射出成形機の成形条件推定方法 | |
CN101168282B (zh) | 注模机的支持设备 | |
JP2003510202A (ja) | 金型キャビティ内の流体の射出をモデリングするための方法および装置 | |
JP2020163825A (ja) | 射出成形システム、成形条件補正システムおよび射出成形方法 | |
Krebelj et al. | The cooling rate dependence of the specific volume in amorphous plastic injection molding | |
CN111745925A (zh) | 注塑成型解析方法及注塑成型解析系统 | |
Wang et al. | Numerical simulation of the wax injection process for investment casting | |
JP2019181801A (ja) | 収縮率予測装置、収縮率予測モデル学習装置、及びプログラム | |
Martinez et al. | Characterization of viscous response of a polymer during fabric IMD injection process by means a spiral mold | |
EP3721343B1 (en) | Predictive simulation system and method for injection molding | |
Martinez et al. | Characterization of in-mold decoration process and influence of the fabric characteristics in this process | |
Wang et al. | Strategies for adjusting process parameters in CAE simulation to meet real injection molding condition of screw positions and cavity pressure curves | |
CN116766544B (zh) | 热流道阀针控制方法、装置、设备及存储介质 | |
Midea et al. | Mold material thermophysical data | |
Fu et al. | Mold modification methods to fix warpage problems for plastic molding products | |
Schmidt et al. | Efficient mold cooling optimization by using model reduction | |
JP2008143111A (ja) | ガス溶解度予測方法並びに発泡性樹脂の流動解析方法及びプログラム | |
Primo Benitez-Rangel et al. | Filling process in injection mold: a review | |
JP4032848B2 (ja) | 成形シミュレーション方法、成形シミュレーション装置及び成形シミュレーションプログラム並びに当該成形シミュレーションプログラムを記録したコンピュータ読みとり可能な記録媒体 | |
JP6596633B1 (ja) | 情報処理装置及びプログラム | |
Lucyshyn et al. | A physical model for a quality control concept in injection molding | |
Cao et al. | Computing flow-induced stresses of injection molding based on the Phan–Thien–Tanner model | |
CN115408842A (zh) | 注塑成型仿真过程特性相似性分析方法 | |
Zhao et al. | Fast optimization of injection velocity profile based on graph theory | |
JP2008093860A (ja) | 発泡射出成形品の品質予測システム、プログラム、及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18741624 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018563313 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18741624 Country of ref document: EP Kind code of ref document: A1 |