WO2018135368A1 - 光ファイバ保持部品、光コネクタ、及び光結合構造 - Google Patents

光ファイバ保持部品、光コネクタ、及び光結合構造 Download PDF

Info

Publication number
WO2018135368A1
WO2018135368A1 PCT/JP2018/000451 JP2018000451W WO2018135368A1 WO 2018135368 A1 WO2018135368 A1 WO 2018135368A1 JP 2018000451 W JP2018000451 W JP 2018000451W WO 2018135368 A1 WO2018135368 A1 WO 2018135368A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
fiber holding
holding component
holding
Prior art date
Application number
PCT/JP2018/000451
Other languages
English (en)
French (fr)
Inventor
哲 森島
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112018000403.1T priority Critical patent/DE112018000403T5/de
Priority to JP2018563291A priority patent/JP7040464B2/ja
Priority to CN201880007124.9A priority patent/CN110178063B/zh
Publication of WO2018135368A1 publication Critical patent/WO2018135368A1/ja
Priority to US16/509,838 priority patent/US20190331865A1/en
Priority to US17/321,634 priority patent/US11822134B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/3676Stacked arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3835Means for centering or aligning the light guide within the ferrule using discs, bushings or the like
    • G02B6/3837Means for centering or aligning the light guide within the ferrule using discs, bushings or the like forwarding or threading methods of light guides into apertures of ferrule centering means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • G02B6/3839Means for centering or aligning the light guide within the ferrule using grooves for light guides for a plurality of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • G02B6/403Mechanical coupling means having fibre bundle mating means of the ferrule type, connecting a pair of ferrules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3867Details of mounting fibres in ferrules; Assembly methods; Manufacture comprising air venting holes

Definitions

  • the present invention relates to an optical fiber holding component, an optical connector, and an optical coupling structure.
  • Patent Document 1 discloses an example of a multi-core connector.
  • a plurality of multi-core fibers MCF are inserted into a plurality of optical fiber holding members, respectively.
  • the MCF is rotationally aligned with respect to each optical fiber holding member and fixed to each optical fiber holding member.
  • the plurality of optical fiber holding members are collectively accommodated in the ferrule of the multi-fiber connector in a state of being aligned in a row.
  • the optical fiber holding component according to the present disclosure is disposed in a ferrule that holds a plurality of optical fibers arranged in a first direction each having at least one core in a region shifted from the central axis and intersecting the central axis.
  • the present invention relates to an optical fiber holding component.
  • the optical fiber holding component includes a holding unit that holds the coating removing unit while defining a position in a plane perpendicular to the central axis of the coating removing unit from which the resin coating having a predetermined length is removed from the tip of each optical fiber. And a fixing portion that is arranged in a second direction along the central axis with respect to the holding portion, and to which the resin coating portion of each optical fiber is fixed.
  • An optical connector includes at least one or more of the above optical fiber holding components, a plurality of optical fibers held by the optical fiber holding components, and at least a part of the optical fiber holding components and the plurality of optical fibers therein. And a ferrule to be housed.
  • the ferrule includes a front end surface that intersects the second direction, an opening that is provided on the opposite side of the front end surface, and that collectively receives the optical fiber holding component and the plurality of optical fibers, and extends from the opening in the second direction.
  • a plurality of holding holes that extend from the front end opposite to the opening of the introduction hole to the front end surface and hold the coating removal portions of the plurality of optical fibers, respectively.
  • the optical coupling structure of the present disclosure includes first and second optical connectors that are the optical connectors described above.
  • the front end surface of the first optical connector and the front end surface of the second optical connector are opposed to each other with a gap in the second direction.
  • FIG. 1 is a perspective view of an optical fiber holding component according to an embodiment.
  • FIG. 2 is an exploded perspective view showing the configuration of the optical connector including the optical fiber holding component according to the embodiment.
  • FIG. 3 is a perspective view of an optical connector according to an embodiment. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
  • FIG. 5 is a perspective view showing a configuration of an optical coupling structure including an optical connector according to an embodiment.
  • FIG. 6 is a perspective view of the optical fiber holding component according to the first modification.
  • FIG. 7 is a top view of the optical fiber holding component shown in FIG.
  • FIG. 8 is a perspective view of an optical fiber holding component according to a second modification.
  • FIG. 9 is a top view of the optical fiber holding component shown in FIG.
  • FIG. 10 is a perspective view of an optical fiber holding component according to a third modification.
  • FIG. 11 is a top view of the optical fiber holding component shown in FIG.
  • a multi-fiber connector for collectively connecting a plurality of optical fibers (for example, a plurality of MCFs) each having at least one core in a region shifted from the central axis, for example, a multi-fiber connector described in Patent Document 1 Proposed.
  • the plurality of optical fibers are not directly fixed to the ferrule, but are inserted into and fixed to the plurality of optical fiber holding members and then fixed to the ferrule.
  • An optical fiber holding component holds a plurality of optical fibers arranged in a first direction each having at least one core in a region shifted from the central axis and intersecting the central axis. It is an optical fiber holding part arrange
  • This optical fiber holding component holds and holds the coating removal portion while defining the position in the plane perpendicular to the central axis of the coating removal portion from which the resin coating of a predetermined length is removed from the tip of each optical fiber.
  • a fixing portion that is arranged in a second direction along the central axis with respect to the holding portion and to which the resin coating portion of each optical fiber is fixed.
  • the holding portion holds the coating removal portion while defining the position of the coating removal portion of each optical fiber, so that the relative position of the coating removal portion with respect to the ferrule and the relative angle after rotational alignment are obtained. It can be held with high accuracy.
  • the fixing portion fixes the resin coating portion of each optical fiber.
  • the resin coating part is more resistant to bending than the coating removal part. Therefore, even if bending occurs in the optical fiber located behind the optical fiber holding component and bending stress concentrates on the resin coating portion at the boundary between the portion held by the optical fiber holding component and the portion not held, the coating As compared with the case where bending stress is concentrated on the removed portion, the damage of the optical fiber can be reduced.
  • the holding portion may be made of quartz glass.
  • the frictional resistance between the coating removal portion and the holding portion of the plurality of optical fibers can be reduced, so that the twist of the optical fibers when rotating and aligning each of the plurality of optical fibers can be reduced and rotated. Alignment work can be performed easily.
  • the holding portion may be made of metal or may be made of resin.
  • the holding unit may have a plurality of V grooves on which the plurality of optical fiber coating removal units are respectively mounted.
  • the position of the coating removal part of each optical fiber in the plane orthogonal to the second direction can be defined with high accuracy.
  • Each of the plurality of V grooves may extend along the second direction, and the plurality of V grooves may be provided in order in the first direction so that the extending directions are parallel to each other. Good.
  • the optical fiber holding component described above may further include a lid disposed thereon so as to cover the plurality of V grooves.
  • the holding part may have a plurality of first holes into which the coating removal parts of the plurality of optical fibers are respectively inserted. Thereby, the position of the coating removal part of each optical fiber in the plane orthogonal to the second direction can be defined with high accuracy.
  • the plurality of first holes may have a portion whose diameter increases toward one end on the fixed portion side in the second direction.
  • the fixing portion may have one second hole communicating with the plurality of first holes or a plurality of second holes communicating with each of the plurality of first holes. .
  • the V-groove or the first hole may hold the plurality of optical fiber coating removal portions so as to be rotatable around the central axis.
  • the fixing part may have a fixing surface provided at a position lower than the height of the holding part.
  • An optical connector includes at least one of the above-described optical fiber holding components, a plurality of optical fibers held by the optical fiber holding components, an optical fiber holding component, and a plurality of optical fibers.
  • a ferrule that houses at least a portion of the optical fiber therein.
  • the ferrule includes a front end surface that intersects the second direction, an opening that is provided on the opposite side of the front end surface, and that collectively receives the optical fiber holding component and the plurality of optical fibers, and extends from the opening in the second direction.
  • a plurality of holding holes that extend from the front end opposite to the opening of the introduction hole to the front end surface and hold the coating removal portions of the plurality of optical fibers, respectively.
  • the optical fiber holding component may have first and second outer surfaces that extend along the second direction and whose normals intersect each other, and the introduction hole of the ferrule has the first hole. And a first inner surface and a second inner surface in contact with the second outer surface, respectively. Since this optical connector includes any one of the optical fiber holding parts described above, it is possible to reduce breakage of each optical fiber as described above. Thereby, an optical fiber holding component and each optical fiber can be assembled easily. Therefore, the optical connector can be easily manufactured.
  • the first and second outer surfaces of the optical fiber holding component and the first and second inner surfaces of the ferrule are in contact with each other, so that the relative position and relative angle between the ferrule and the optical fiber holding component can be accurately determined. The angle after the rotation alignment of each optical fiber can be accurately maintained with respect to the ferrule.
  • the opening accepts two or more optical fiber holding parts in a lump
  • the introduction hole holds two or more optical fiber holding parts in a lump.
  • And may be stacked in a third direction orthogonal to the first and second directions.
  • the plurality of holding holes are arranged in multiple rows (multi-stage) along the third direction, by stacking a plurality of optical fiber holding components in the third direction, Each optical fiber can be arranged corresponding to the arrangement of each holding hole. Therefore, more optical fibers can be connected.
  • each of the plurality of optical fibers may have one core disposed on the central axis and a plurality of cores disposed at equal intervals around the central axis.
  • the optical coupling structure which concerns on one Embodiment of this invention is equipped with the 1st and 2nd optical connector which is the optical connector mentioned above,
  • the front-end surface of a 1st optical connector and the front-end surface of a 2nd optical connector are , Facing each other with a gap in the second direction.
  • a pressing force for connecting the first optical connector and the second optical connector to the PC becomes unnecessary. Thereby, an extremely large number of optical fibers can be easily connected together.
  • FIG. 1 is a perspective view of an optical fiber holding component 10 according to the present embodiment.
  • FIG. 1 shows an XYZ orthogonal coordinate system for easy understanding.
  • the optical fiber holding component 10 has a substantially rectangular parallelepiped appearance with the X direction as an alignment direction. That is, the cross-sectional shape parallel to the XY plane of the optical fiber holding component 10 is a substantially rectangular shape with the X direction as the alignment direction.
  • the optical fiber holding component 10 is made of quartz glass. Alternatively, the optical fiber holding component 10 may be made of a metal material or a resin material.
  • the optical fiber holding component 10 includes a front end face 10a, a rear end face 10b, a lower face 10c, a side face 10d, a side face 10e, a holding part 11, and a fixing part 12.
  • the front end face 10a and the rear end face 10b face each other in the Z direction and are parallel to the XY plane.
  • the lower surface 10c intersects the Y direction and is parallel to the XZ plane.
  • the side surface 10d and the side surface 10e face each other in the X direction and are parallel to the YZ plane.
  • the normal lines of the side surfaces 10d and 10e intersect (normally in this embodiment) the normal line of the lower surface 10c.
  • the holding part 11 is provided on the front end face 10a side in the Z direction.
  • the holding part 11 has an upper surface 11a and a plurality of V grooves 11b.
  • the upper surface 11a is provided on the opposite side to the lower surface 10c, and is parallel to the XZ plane.
  • the plurality of V grooves 11b are formed on the upper surface 11a.
  • Each of the plurality of V grooves 11b extends in the Z direction from the front end face 10a toward the rear end face 10b, and is aligned along the X direction.
  • each of the plurality of V-grooves 11b is sequentially provided in the X direction so that the extending directions (that is, the Z direction) are parallel to each other.
  • each of the 16 V-grooves 11b is arranged at equal intervals along the X direction.
  • the plurality of V grooves 11b respectively hold a plurality of coating removal portions 22 (see FIGS. 2 and 4) of the plurality of MCFs 20, which will be described later.
  • the coating removal portions 22 of the plurality of MCFs 20 are respectively placed and accommodated in the plurality of V grooves 11b.
  • the plurality of V grooves 11b respectively hold the coating removal portions 22 of the plurality of MCFs 20 so as to be rotatable around the central axis.
  • the plurality of V-grooves 11b define positions in a plane perpendicular to the central axis of the coating removing unit 22 (that is, in the XY plane).
  • the fixing part 12 is provided on the rear end face 10b side in the Z direction, and is arranged side by side in the direction along the central axis of the MCF 20 (that is, the Z direction) with respect to the holding part 11.
  • the fixing portion 12 extends from one end on the rear end surface 10b side of the holding portion 11 in the Z direction to the rear end surface 10b.
  • a plurality of covering portions 23 (see FIGS. 2 and 4) of the plurality of MCFs 20 described later are fixed.
  • the fixed portion 12 has an upper surface 12a that intersects the Z direction and is parallel to the XZ plane.
  • the covering portion 23 is fixed to the upper surface 12a.
  • the upper surface 12a is provided on the side opposite to the lower surface 10c.
  • the upper surface 12 a is disposed at a position lower than the height of the holding unit 11.
  • the upper surface 12a forms a step with respect to the upper surface 11a. That is, the upper surface 12a is disposed on the lower surface 10c side in the Y direction with respect to the upper surface 11a.
  • the upper surface 12 a and the upper surface 11 a are connected by the surface 13.
  • the surface 13 is parallel to the XY plane.
  • FIG. 2 is an exploded perspective view showing the configuration of the optical connector 1 including the optical fiber holding component 10 according to the present embodiment.
  • FIG. 3 is a perspective view after assembly of the optical connector 1 according to the present embodiment.
  • 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
  • the XYZ coordinate system shown in each figure corresponds to the XYZ orthogonal coordinate system shown in FIG.
  • the optical connector 1 includes a plurality of optical fiber holding components 10, a plurality of MCFs 20, and a ferrule 30.
  • Each optical fiber holding component 10 holds a plurality of MCFs 20 and is stacked in the Y direction.
  • the two optical fiber holding components 10 respectively hold 16 MCFs 20 arranged along the X direction, and are stacked in two rows along the Y direction.
  • a plate-like lid 15 is provided on the upper surface 11a of each optical fiber holding component 10, as shown in FIG. .
  • the lid 15 is disposed on the plurality of V grooves 11b so as to cover the plurality of V grooves 11b.
  • the optical fiber holding components 10 are fixed in a state where one of the two optical fiber holding components 10 is inverted in the Z direction so that the lids 15 face each other. .
  • Each MCF 20 has a front end surface 20a, a covering removal portion 22, and a covering portion 23, as shown in FIGS.
  • the front end surface 20 a is provided on the opposite side of the fixing portion 12 with the holding portion 11 interposed therebetween.
  • the front end surface 10a is provided on the front end surface 20a side in the Z direction.
  • Each MCF 20 has at least one core in a region excluding on the central axis (that is, a region shifted from the central axis).
  • each MCF 20 has one core (central core) on the central axis, and further includes a plurality of (for example, six) cores (peripheral cores) arranged at equal intervals around the central axis.
  • the MCF 20 further includes a clad that covers these cores.
  • the covering portion 23 has a plurality of cores, a cladding, and a resin coating that covers the plurality of cores and the cladding. Specifically, the resin coating covers the periphery of the clad surrounding the plurality of cores 21. As described above, the covering portion 23 is fixed to the upper surface 12a of the fixing portion 12 of each optical fiber holding component 10 by bonding.
  • the coating removal portion 22 is a portion where the resin coating of a predetermined length is removed from the front end surface 20a of each MCF 20, and the cladding is exposed.
  • the sheath removing portion 22 extends from one end of the sheath portion 23 on the distal end surface 20a side in the Z direction to the distal end surface 20a. As described above, the coating removing unit 22 is held by the V-groove 11b of each optical fiber holding component 10.
  • the ferrule 30 houses at least a part of the plurality of optical fiber holding components 10 and the plurality of MCFs 20 therein.
  • the ferrule 30 includes a front end face 30a, a rear end face 30b, an opening 31, an introduction hole 32, a plurality of holding holes 33, a pair of guide holes 34, and a window 35.
  • the front end face 30a intersects with the Z direction and is inclined with respect to a plane perpendicular to the Z direction. In one embodiment, the front end surface 30a is flush with the front end surface 20a of each MCF 20.
  • the opening 31 is provided in the rear end surface 30b opposite to the front end surface 30a in the Z direction. The opening 31 receives each optical fiber holding component 10 and each MCF 20 collectively. In one embodiment, the opening 31 has a substantially rectangular shape with the X direction as the longitudinal direction.
  • the introduction hole 32 extends from the opening 31 along the Z direction.
  • the cross section of the introduction hole 32 parallel to the XY plane has a substantially rectangular shape with the X direction as the longitudinal direction.
  • the introduction hole 32 collectively holds the optical fiber holding components 10.
  • the introduction hole 32 has a pair of inner wall surfaces 32a facing each other and a pair of inner wall surfaces 32b facing each other.
  • FIG. 4 shows only one of the pair of inner wall surfaces 32b.
  • the inner wall surface 32 a intersects the Y direction and is disposed at a position facing the lower surface 10 c of the optical fiber holding component 10.
  • the inner wall surface 32b is connected to the inner wall surface 32a and intersects the X direction.
  • the inner wall surface 32b is disposed at a position facing the side surfaces 10d and 10e (see FIG. 1) of the optical fiber holding component 10.
  • Each optical fiber holding component 10 is positioned with respect to the introduction hole 32 by contacting the inner wall surfaces 32a and 32b with the lower surface 10c and the side surfaces 10d and 10e, respectively.
  • the inner wall surface 32a and the lower surface 10c abut each other in the Y direction, whereby the position of the optical fiber holding component 10 in the Y direction with respect to the introduction hole 32 is defined.
  • the position of the optical fiber holding component 10 in the X direction with respect to the introduction hole 32 is defined.
  • the plurality of holding holes 33 extend from the front end opposite to the opening 31 of the introduction hole 32 to the front end face 30a.
  • the plurality of holding holes 33 are arranged one-dimensionally or two-dimensionally on the front end face 30a.
  • 16 holding hole rows arranged along the X direction are arranged in two rows along the Y direction.
  • Each holding hole 33 holds the coating removal portion 22 of each MCF 20.
  • each holding hole 33 holds a part of the coating removal portion 22 of each MCF 20 including the distal end surface 20a.
  • the pair of guide holes 34 extend from the front end face 30a to the rear end face 30b along the Z direction, and are provided on both sides of the plurality of holding holes 33 in the X direction.
  • the pair of guide holes 34 has a circular cross section perpendicular to the central axis.
  • the coating removal portions 22 of the plurality of MCFs 20 are respectively placed in the plurality of V grooves 11 b of the optical fiber holding component 10, and each MCF 20 is rotationally aligned around the central axis. At this time, each MCF 20 is rotated and aligned with respect to the optical fiber holding component 10 one by one. Thereafter, the optical fiber holding component 10 and each MCF 20 are fixed with an adhesive, and a plurality of optical fiber holding components 10 are stacked in the Y direction via the lid 15.
  • the adhesive is, for example, a UV curable adhesive or a thermosetting adhesive. Then, in a state where the optical fiber holding components 10 are fixed to each other, the optical fiber holding components 10 are inserted into the introduction holes 32 of the ferrule 30.
  • each optical fiber holding component 10 is disposed at a position where the lower surface 10c of each optical fiber holding component 10 is in contact with the pair of inner wall surfaces 32a and the side surfaces 10d and 10e are in contact with the pair of inner wall surfaces 32b.
  • the ferrule 30, the plurality of optical fiber holding components 10, and the plurality of MCFs 20 are fixed to each other via an adhesive.
  • the holding hole 33 and the coating removal part 22 can also be fixed by introducing a thermosetting adhesive from a window 35 provided on the upper portion of the ferrule 30 and thermosetting it.
  • FIG. 5 is a perspective view showing a configuration of an optical coupling structure 1A including the optical connector 1 according to the present embodiment.
  • the XYZ coordinate system shown in FIG. 5 corresponds to the XYZ orthogonal coordinate system shown in FIGS.
  • the optical coupling structure 1 ⁇ / b> A includes a pair of optical connectors 1, a pair of guide pins 40, and a spacer 50.
  • One optical connector 1 and the other optical connector 1 of the pair of optical connectors 1 face each other with a gap therebetween.
  • the pair of guide pins 40 extend along the Z direction, and a cross section perpendicular to the central axis is circular.
  • the outer diameter of the pair of guide pins 40 matches the inner diameter of the pair of guide holes 34.
  • the spacer 50 has a plate shape having an opening 50a.
  • the opening 50 a allows a plurality of optical paths extending between one optical connector 1 and the other optical connector 1 to pass therethrough.
  • the holding unit 11 holds the coating removal unit 22 while defining the position of the coating removal unit 22 of each MCF 20, so that the relative position of the coating removal unit 22 to the ferrule 30 and The relative angle after rotational alignment can be accurately maintained.
  • fixed part 12 has fixed the coating
  • the covering portion 23 is more resistant to bending than the covering removing portion 22.
  • the holding unit 11 may be made of quartz glass. Thereby, since the frictional resistance between the coating removal portions 22 of the plurality of MCFs 20 and the respective V grooves 11b can be reduced, the twist of the MCFs 20 during the rotation alignment of each of the plurality of MCFs 20 is reduced, and the rotation Alignment work can be performed easily.
  • a part including the plurality of V grooves 11b of the holding part 11 may be made of quartz glass.
  • the holding unit 11 may include a plurality of V grooves 11b on which the coating removal units 22 of the plurality of MCFs 20 are respectively placed. Thereby, the position of the coating removal portion 22 of each MCF 20 can be accurately defined in the XY plane.
  • the optical connector 1 according to the present embodiment includes the optical fiber holding component 10 according to the present embodiment, the breakage of each MCF 20 can be reduced as described above. Thereby, the optical fiber holding component 10 and each MCF 20 can be easily assembled. Therefore, the optical connector 1 according to the present embodiment can be easily manufactured.
  • the lower surface 10c and the side surfaces 10d and 10e of the optical fiber holding component 10 and the inner wall surfaces 32a and 32b of the ferrule 30 are in contact with each other, so that the relative position and relative angle between the ferrule 30 and the optical fiber holding component 10 are changed. It is possible to define with high accuracy and hold the angle after rotational alignment of each MCF 20 with respect to the ferrule 30 with high accuracy.
  • the optical connector 1 may include a plurality of optical fiber holding components 10.
  • the MCFs 20 can be arranged corresponding to the arrangement of the holding holes 33. Therefore, more MCFs 20 can be connected.
  • the optical coupling structure 1A includes a pair of optical connectors 1, and one optical connector 1 and the other optical connector 1 of the pair of optical connectors 1 face each other with a gap in the Z direction. ing. As shown in FIG. 5, in the optical coupling structure 1A according to the present embodiment, one optical connector 1 and the other optical connector 1 are not PC-connected. A pressing force for connecting to the PC becomes unnecessary. Thereby, an extremely large number of MCFs 20 can be easily connected.
  • FIG. 6 is a perspective view of an optical fiber holding component 10A according to a first modification of the above embodiment.
  • FIG. 7 is a top view of the optical fiber holding component 10A shown in FIG.
  • the holding portion 11A includes a plurality of holding holes 11c instead of the plurality of V grooves 11b.
  • the plurality of holding holes 11 c penetrate from the front end surface 10 a to the surface 13 along the Z direction.
  • the cross-sectional shape parallel to the XY plane of the plurality of holding holes 11c is a circular shape.
  • the plurality of holding holes 11c are arranged along the X direction.
  • the 16 holding holes 11c are arranged at equal intervals along the X direction.
  • the inner diameter of each holding hole 11c is the same as or slightly larger than the outer diameter of the coating removal portion 22 of each MCF 20 according to the above embodiment.
  • Each holding hole 11c holds the coating removal portion 22 of each MCF 20 so as to be rotatable around the central axis.
  • a taper portion 11d is formed at the rear end portion of each holding hole 11c on the surface 13 side. In the tapered portion 11d, the inner diameters of the plurality of holding holes 11c gradually increase as the surface 13 is approached. In other words, in this taper portion 11d, each holding hole 11c is expanded in diameter toward the rear end on the fixed portion 12 side in the Z direction.
  • the plurality of holding holes 11c hold the coating removal portions 22 of the plurality of MCFs 20, respectively.
  • Each holding hole 11c defines the position of each coating removal portion 22 in the XY plane. In this way, each holding hole 11c holds each MCF 20, so that the coating removal unit 22 can be held while accurately defining the position of the coating removal unit 22 of each MCF 20 in the XY plane.
  • the coating removal portion 22 of each MCF 20 can be easily inserted into each holding hole 11c.
  • FIG. 8 is a perspective view of an optical fiber holding component 10B according to a second modification of the embodiment.
  • FIG. 9 is a top view of the optical fiber holding component 10B shown in FIG.
  • the holding portion 11A has a plurality of holding holes 11c instead of the plurality of V grooves 11b
  • the fixing portion 12A has a fixing hole 12b instead of the upper surface 12a. It is a point.
  • the form of the plurality of holding holes 11c is the same as that of the first modification described above.
  • the fixing hole 12b is a hole formed with the Z direction as the depth direction from the rear end surface 10b, and the surface 13 is a bottom surface.
  • the fixing hole 12b communicates with the plurality of holding holes 11c.
  • the cross-sectional shape of the fixing hole 12b parallel to the XY plane is an oval shape whose longitudinal direction is the X direction.
  • the covering portions 23 of the plurality of MCFs 20 are collectively inserted into the fixing hole 12b and fixed through an adhesive.
  • the fixing portion may have a shape as in the present modification, and the covering portion 23 of each MCF 20 can be more reliably fixed.
  • FIG. 10 is a perspective view of an optical fiber holding component 10C according to a third modification of the embodiment.
  • FIG. 11 is a top view of the optical fiber holding component 10C shown in FIG.
  • the holding portion 11A includes a plurality of holding holes 11c instead of the plurality of V grooves 11b
  • the fixing portion 12B replaces the upper surface 12a and includes a plurality of fixing holes. 12c.
  • the form of the plurality of holding holes 11c is the same as that of the first modification described above.
  • the plurality of fixing holes 12c are holes formed in the depth direction from the rear end surface 10b, respectively, and communicate with the plurality of holding holes 11c.
  • the cross-sectional shape parallel to the XY plane of each fixing hole 12c is a circular shape.
  • the inner diameter of each fixing hole 12 c is the same as or slightly larger than the outer diameter of the covering portion 23 of each MCF 20.
  • the covering portion 23 of each MCF 20 is inserted into each fixing hole 12c and is fixed via an adhesive.
  • the fixing portion may have a shape as in the present modification, and the covering portion 23 of each MCF 20 can be more reliably fixed.
  • Optical connector 1A ... Optical coupling structure 10, 10A, 10B, 10C ... Optical fiber holding component, 10a, 30a ... Front end surface, 10b, 30b ... Rear end surface, 10c ... Lower surface, 10d, 10e ... Side surface, 11, 11A: holding part, 11a, 12a ... upper surface, 11b ... V groove, 11c ... holding hole, 11d ... tapered part, 12, 12A, 12B ... fixing part, 12b, 12c ... fixing hole, 13 ... surface, 15 ... lid, 20a ... tip surface, 22 ... coating removal part, 23 ... coating part, 30 ... ferrule, 31 ... opening, 32 ... introduction hole, 32a, 32b ... inner wall surface, 33 ... holding hole, 34 ... guide hole, 35 ... window, 40 ... guide pins, 50 ... spacers, 50a ... openings.

Abstract

中心軸線上からずれた領域に少なくとも1つのコアをそれぞれが有しており中心軸線と交差する第1の方向(X方向)に並ぶ複数の光ファイバを保持するフェルール内に配置される光ファイバ保持部品(10)であって、各光ファイバの先端から所定長さの樹脂被覆が除去された被覆除去部の中心軸線に垂直な面内における位置を規定しつつ被覆除去部を保持する保持部(11)と、前記保持部に対し中心軸線に沿った第2の方向(Z方向)に並んで配置されており各光ファイバの樹脂被覆部が固定される固定部(12)と、を備える光ファイバ保持部品(10)。

Description

光ファイバ保持部品、光コネクタ、及び光結合構造
 本発明は、光ファイバ保持部品、光コネクタ、及び光結合構造に関する。
 本出願は、2017年1月17日出願の日本出願第2017-005989号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用する。
 特許文献1は、多心コネクタの一例を開示する。この多心コネクタでは、複数本のマルチコアファイバ(MCF:Multi Core Fiber)が、複数の光ファイバ保持部材にそれぞれ挿入される。MCFは、各光ファイバ保持部材に対して回転調心され、各光ファイバ保持部材に固定される。複数の光ファイバ保持部材は、一列に並んだ状態で多心コネクタのフェルール内に一括して収容される。
国際公開第2016/031678号
 本開示の光ファイバ保持部品は、中心軸線上からずれた領域に少なくとも1つのコアをそれぞれが有しており中心軸線と交差する第1の方向に並ぶ複数の光ファイバを保持するフェルール内に配置される光ファイバ保持部品に関する。この光ファイバ保持部品は、各光ファイバの先端から所定長さの樹脂被覆が除去された被覆除去部の、中心軸線に垂直な面内における位置を規定しつつ被覆除去部を保持する保持部と、保持部に対し中心軸線に沿った第2方向に並んで配置されており、各光ファイバの樹脂被覆部が固定される固定部と、を備える。
 本開示の光コネクタは、少なくとも1つ以上の上記の光ファイバ保持部品と、光ファイバ保持部品によって保持される複数の光ファイバと、光ファイバ保持部品及び複数の光ファイバの少なくとも一部をその内部に収納するフェルールと、を備える。フェルールは、第2の方向と交差する前端面と、前端面とは反対側に設けられており光ファイバ保持部品及び複数の光ファイバを一括して受け入れる開口と、開口から第2の方向に沿って延びており光ファイバ保持部品を保持する導入孔と、導入孔の開口とは反対側の前端から前端面まで延びており複数の光ファイバの被覆除去部をそれぞれ保持する複数の保持孔と、を有する。
 本開示の光結合構造は、上記の光コネクタである、第1及び第2の光コネクタを備える。第1の光コネクタの前端面と第2の光コネクタの前端面とは、第2の方向において間隙を挟んで互いに対向している。
図1は、一実施形態に係る光ファイバ保持部品の斜視図である。 図2は、一実施形態に係る光ファイバ保持部品を含む光コネクタの構成を示す分解斜視図である。 図3は、一実施形態に係る光コネクタの斜視図である。 図4は、図3に示すIV-IV線に沿った断面図である。 図5は、一実施形態に係る光コネクタを含む光結合構造の構成を示す斜視図である。 図6は、第1変形例に係る光ファイバ保持部品の斜視図である。 図7は、図6に示す光ファイバ保持部品の上面図である。 図8は、第2変形例に係る光ファイバ保持部品の斜視図である。 図9は、図8に示す光ファイバ保持部品の上面図である。 図10は、第3変形例に係る光ファイバ保持部品の斜視図である。 図11は、図10に示す光ファイバ保持部品の上面図である。
[本開示が解決しようとする課題]
 中心軸線上からずれた領域に少なくとも1つのコアをそれぞれが有する複数の光ファイバ(例えば複数のMCF)を一括して接続するための多心コネクタとして、例えば特許文献1に記載の多心コネクタが提案されている。この多心コネクタでは、複数の光ファイバは、直接フェルールに固定されるのではなく、複数の光ファイバ保持部材にそれぞれ挿入され固定された後にフェルールに固定される。
 しかしながら、このように光ファイバを光ファイバ保持部材に固定する際に、光ファイバの樹脂被覆が除去された部分(被覆除去部)のみが光ファイバ保持部材に保持されると、次のような問題が生じることがある。すなわち、光ファイバ保持部材の後方に位置する光ファイバに曲げが生じた場合、光ファイバ保持部材に保持された部分と保持されていない部分との境界において被覆除去部に曲げ応力が集中する懸念がある。この場合、被覆除去部が破損する虞がある。
[本開示の効果]
 本開示による光ファイバ保持部品、光コネクタ、及び光結合構造によれば、中心軸線上からずれた領域に少なくとも1つのコアをそれぞれが有する複数の光ファイバを固定する際に、各光ファイバの破損を低減することができる。
[本願発明の実施形態の説明]
 最初に本願の実施形態の内容を列記して説明する。本願の一実施形態に係る光ファイバ保持部品は、中心軸線上からずれた領域に少なくとも1つのコアをそれぞれが有しており中心軸線と交差する第1の方向に並ぶ複数の光ファイバを保持するフェルール内に配置される光ファイバ保持部品である。この光ファイバ保持部品は、各光ファイバの先端から所定長さの樹脂被覆が除去された被覆除去部の、中心軸線に垂直な面内における位置を規定しつつ被覆除去部を保持する保持する保持部と、保持部に対し中心軸線に沿った第2方向に並んで配置されており、各光ファイバの樹脂被覆部が固定される固定部と、を備える。
 上述した光ファイバ保持部品では、保持部が各光ファイバの被覆除去部の位置を規定しつつ被覆除去部を保持することにより、フェルールに対する被覆除去部の相対位置及び回転調心後の相対角度を精度よく保持することができる。また、上述した光ファイバ保持部品では、固定部が各光ファイバの樹脂被覆部を固定している。通常、樹脂被覆部は被覆除去部よりも曲げに強い。従って、光ファイバ保持部品の後方に位置する光ファイバに曲げが生じ、光ファイバ保持部品に保持された部分と保持されていない部分との境界において樹脂被覆部に曲げ応力が集中したとしても、被覆除去部に曲げ応力が集中した場合と比べ、光ファイバの破損を低減できる。
 上述した光ファイバ保持部品では、保持部が、石英ガラスにより構成されてもよい。これにより、複数の光ファイバの被覆除去部と保持部との間の摩擦抵抗を低減することができるので、複数の光ファイバそれぞれの回転調心を行う際の光ファイバの捻れを低減し、回転調心作業を容易に行うことができる。また、上述した光ファイバ保持部品では、保持部は、金属により構成されてもよく、また、樹脂により構成されてもよい。
 上述した光ファイバ保持部品では、保持部が、複数の光ファイバの被覆除去部がそれぞれ載置される複数のV溝を有してもよい。これにより、第2の方向と直交する面内における各光ファイバの被覆除去部の位置を精度良く規定することができる。複数のV溝のそれぞれは、第2の方向に沿って延在してもよく、複数のV溝は、各延在方向が互いに平行となるように第1の方向に順に設けられていてもよい。上述した光ファイバ保持部品は、複数のV溝を覆うように、その上に配置される蓋を更に備えてもよい。
 上述した光ファイバ保持部品では、保持部が、複数の光ファイバの被覆除去部がそれぞれ挿入される複数の第1の孔を有してもよい。これにより、第2の方向と直交する面内における各光ファイバの被覆除去部の位置を精度良く規定することができる。複数の第1の孔は、第2の方向における固定部側の一端に向けて拡径する部分を有してもよい。上述した光ファイバ保持部品では、固定部は、複数の第1の孔に連通する1つの第2の孔又は複数の第1の孔それぞれに連通する複数の第2の孔を有してもよい。
 上述した光ファイバ保持部品では、V溝又は第1の孔は、複数の光ファイバの被覆除去部を中心軸線周りに回転自在に保持してもよい。
 上述した光ファイバ保持部品では、固定部は、保持部の高さよりも低い位置に設けられる固定面を有してもよい。
 本発明の一実施形態に係る光コネクタは、少なくとも1つ以上の、上述したいずれかの光ファイバ保持部品と、光ファイバ保持部品によって保持される複数の光ファイバと、光ファイバ保持部品及び複数の光ファイバの少なくとも一部をその内部に収納するフェルールと、を備える。フェルールは、第2の方向と交差する前端面と、前端面とは反対側に設けられており光ファイバ保持部品及び複数の光ファイバを一括して受け入れる開口と、開口から第2の方向に沿って延びており光ファイバ保持部品を保持する導入孔と、導入孔の開口とは反対側の前端から前端面まで延びており複数の光ファイバの被覆除去部をそれぞれ保持する複数の保持孔と、を有する。上述した光コネクタでは、光ファイバ保持部品は、第2の方向に沿って延びており法線が互いに交差する第1及び第2の外面を有してもよく、フェルールの導入孔は、第1及び第2の外面とそれぞれ接する第1及び第2の内面を有してもよい。この光コネクタは、上述したいずれかの光ファイバ保持部品を備えるので、上述したように各光ファイバの破損を低減することができる。これにより、光ファイバ保持部品と各光ファイバとを容易に組み立てることができる。従って、光コネクタを容易に製造することができる。加えて、光ファイバ保持部品の第1及び第2の外面と、フェルールの第1及び第2の内面とがそれぞれ互いに接することにより、フェルールと光ファイバ保持部品との相対位置及び相対角度を精度良く規定し、各光ファイバの回転調心後の角度をフェルールに対して精度良く保持することができる。
 上述した光コネクタは、開口は、2つ以上の光ファイバ保持部品を一括して受け入れ、導入孔は、2つ以上の光ファイバ保持部品を一括して保持しており、各光ファイバ保持部品は、第1及び第2の方向と直交する第3の方向に積み重ねられていてもよい。上述した光コネクタでは、複数の保持孔が第3の方向に沿って複数列にわたって(多段に)配列される場合であっても、複数の光ファイバ保持部品を第3の方向に積み重ねることによって、各保持孔の配列に対応して各光ファイバを配列させることができる。従って、より多くの光ファイバを接続させることができる。
 上述した光コネクタでは、複数の光ファイバのそれぞれは、中心軸線上に配置された1つのコアと、中心軸線周りに等間隔に配置された複数のコアとを有してもよい。
 本発明の一実施形態に係る光結合構造は、上述した光コネクタである、第1及び第2の光コネクタを備え、第1の光コネクタの前端面と第2の光コネクタの前端面とは、第2の方向において間隙を挟んで互いに対向している。この光結合構造では、第1の光コネクタと第2の光コネクタとはPC接続されないので、第1の光コネクタと第2の光コネクタとをPC接続するための押圧力が不要となる。これにより、極めて多くの光ファイバを一括して容易に接続させることができる。
 [本発明の実施形態の詳細]
 本発明の実施形態に係る光ファイバ保持部品、光コネクタ、及び光結合構造の具体例を、以下に図面を参照しつつ説明する。本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、本実施形態に係る光ファイバ保持部品10の斜視図である。図1には、理解の容易のため、XYZ直交座標系が示されている。光ファイバ保持部品10は、図1に示されるように、X方向を並び方向とする略直方体状の外観を有している。すなわち、光ファイバ保持部品10のXY平面に平行な断面形状は、X方向を並び方向とする略長方形状である。光ファイバ保持部品10は、石英ガラスにより構成されている。或いは、光ファイバ保持部品10は、金属材料又は樹脂材料により構成されてもよい。
 図1に示されるように、光ファイバ保持部品10は、前端面10aと、後端面10bと、下面10cと、側面10dと、側面10eと、保持部11と、固定部12と、を備える。前端面10aと後端面10bとは、Z方向において互いに対向しており、XY平面に平行である。下面10cは、Y方向と交差しており、XZ平面に平行である。側面10dと側面10eとは、X方向において互いに対向しており、YZ平面に平行である。側面10d,10eの法線は、下面10cの法線と交差(本実施形態では直交)する。
 保持部11は、Z方向における前端面10a側に設けられる。保持部11は、上面11a、及び複数のV溝11bを有する。上面11aは、下面10cとは反対側に設けられており、XZ平面に平行である。複数のV溝11bは、上面11aに形成されている。複数のV溝11bのそれぞれは、前端面10aから後端面10b側に向かってZ方向に延びており、X方向に沿って並んでいる。言い換えれば、複数のV溝11bのそれぞれは、各延在方向(すなわちZ方向)が互いに平行となるようにX方向に順に設けられている。一実施例では、16本のV溝11bのそれぞれが、X方向に沿って等間隔に並んでいる。複数のV溝11bは、後述する複数のMCF20の被覆除去部22(図2及び図4参照)をそれぞれ保持する。具体的には、複数のMCF20の被覆除去部22が複数のV溝11bにそれぞれ載置され、収容される。複数のMCF20が光ファイバ保持部品10に接着固定される前の段階では、複数のV溝11bは、これら複数のMCF20の被覆除去部22を、中心軸周りに回転自在にそれぞれ保持する。複数のV溝11bは、被覆除去部22の中心軸線に垂直な面内(すなわちXY平面内)における位置を規定する。
 固定部12は、Z方向における後端面10b側に設けられ、保持部11に対し、MCF20の中心軸線に沿った方向(すなわちZ方向)に並んで配置されている。固定部12は、Z方向における保持部11の後端面10b側の一端から後端面10bまで延びている。固定部12では、後述する複数のMCF20の被覆部23(図2及び図4参照)が固定される。固定部12は、Z方向と交差しておりXZ平面に平行な上面12aを有する。被覆部23は、上面12aに固定される。上面12aは、下面10cとは反対側に設けられる。上面12aは、保持部11の高さよりも低い位置に配置される。上面12aは、上面11aに対して段差を構成している。すなわち、上面12aは、上面11aに対してY方向における下面10c側に配置される。これにより、被覆除去部22よりも外径が大きい被覆部23を上面12a上に載置した際に、光ファイバの曲げが抑制される。上面12aと上面11aとは、面13によって繋がれている。面13は、XY平面に平行である。
 図2は、本実施形態に係る光ファイバ保持部品10を含む光コネクタ1の構成を示す分解斜視図である。図3は、本実施形態に係る光コネクタ1の組み立て後の斜視図である。図4は、図3に示すIV-IV線に沿った断面図である。但し、理解の容易のため、図2では1つの光ファイバ保持部品10のみを示し、図3では複数(本実施形態では2つ)の光ファイバ保持部品10を示している。各図に示されたXYZ座標系は、図1に示すXYZ直交座標系に対応している。図3及び図4に示されるように、光コネクタ1は、複数の光ファイバ保持部品10と、複数のMCF20と、フェルール30とを備える。各光ファイバ保持部品10は、複数のMCF20を保持しており、Y方向に積み重ねられている。一実施例では、2つの光ファイバ保持部品10が、X方向に沿って並ぶ16本のMCF20をそれぞれ保持しており、Y方向に沿って2列にわたって積み重ねられている。この2つの光ファイバ保持部品10をY方向に沿って2列にわたって積み重ねる際には、図2に示されるように、各光ファイバ保持部品10の上面11aの上に板状の蓋15が設けられる。具体的には、蓋15は、複数のV溝11bを覆うように、複数のV溝11bの上に配置される。そして、これらの蓋15同士が対向するように、2つの光ファイバ保持部品10のうち一方の光ファイバ保持部品10をZ方向において反転させた状態にて、光ファイバ保持部品10同士が固定される。
 各MCF20は、図2及び図4に示されるように、先端面20a、被覆除去部22、及び被覆部23を有する。先端面20aは、保持部11を挟んで固定部12とは反対側に設けられている。言い換えると、前端面10aは、Z方向における先端面20a側に設けられる。各MCF20は、中心軸線上を除く領域(すなわち中心軸上からずれた領域)に少なくとも1つのコアを有する。一例では、各MCF20は、中心軸線上に1つのコア(中心コア)を有し、更に、中心軸線周りに等間隔に配置された複数(例えば6つ)のコア(周辺コア)を有する。そして、MCF20は、これらのコアを覆うクラッドを更に有する。
 被覆部23は、複数のコアと、クラッドと、複数のコア及びクラッドを覆う樹脂被覆とを有する。具体的には、樹脂被覆は、複数のコア21を包囲するクラッドの周りを覆っている。被覆部23は、前述したように、各光ファイバ保持部品10の固定部12の上面12aに接着により固定される。被覆除去部22は、各MCF20の先端面20aから所定長さの樹脂被覆が除去され、クラッドが露出した部分である。被覆除去部22は、被覆部23のZ方向における先端面20a側の一端から先端面20aまで延びている。被覆除去部22は、前述したように、各光ファイバ保持部品10のV溝11bによって保持される。
 フェルール30は、複数の光ファイバ保持部品10及び複数のMCF20の少なくとも一部をその内部に収納する。フェルール30は、前端面30a、後端面30b、開口31、導入孔32、複数の保持孔33、一対のガイド孔34、及び窓35を有する。前端面30aは、Z方向と交差し、Z方向に垂直な面に対して傾斜している。一実施例では、前端面30aは、各MCF20の先端面20aと面一である。開口31は、Z方向において、前端面30aとは反対側の後端面30bに設けられる。開口31は、各光ファイバ保持部品10及び各MCF20を一括して受け入れる。開口31は、一実施例では、X方向を長手方向とする略長方形状を有している。
 導入孔32は、開口31からZ方向に沿って延びている。導入孔32のXY平面に平行な断面は、一実施例では、X方向を長手方向とする略長方形状である。導入孔32は、各光ファイバ保持部品10を一括して保持している。導入孔32は、互いに対向する一対の内壁面32aと、互いに対向する一対の内壁面32bとを有する。図4は、一対の内壁面32bのうち一方のみを示す。内壁面32aは、Y方向と交差しており、光ファイバ保持部品10の下面10cと対向する位置に配置される。内壁面32bは、内壁面32aに繋がっており、X方向と交差している。内壁面32bは、光ファイバ保持部品10の側面10d,10e(図1参照)と対向する位置に配置される。内壁面32a及び32bと、下面10c及び側面10d,10eとがそれぞれ接することにより、導入孔32に対して各光ファイバ保持部品10が位置決めされる。具体的には、内壁面32aと下面10cとがY方向において互いに当接することによって、導入孔32に対する光ファイバ保持部品10のY方向における位置が規定される。内壁面32bと側面10d,10eとがX方向において互いに当接することによって、導入孔32に対する光ファイバ保持部品10のX方向における位置が規定される。
 複数の保持孔33は、図4に示されるように、導入孔32の開口31とは反対側の前端から前端面30aまで延びている。複数の保持孔33は、前端面30aにおいて一次元状若しくは二次元状に配列されている。一実施例では、X方向に沿って並ぶ16本の保持孔列が、Y方向に沿って2列にわたって配置されている。各保持孔33は、各MCF20の被覆除去部22をそれぞれ保持する。具体的には、各保持孔33は、各MCF20の被覆除去部22のうち先端面20aを含む一部分を保持する。
 一対のガイド孔34は、前端面30aからZ方向に沿って後端面30bまで延びており、X方向において複数の保持孔33を挟んで両側に設けられる。一対のガイド孔34は、その中心軸に垂直な断面が円形状である。
 光コネクタ1を製造する際には、光ファイバ保持部品10の複数のV溝11bに複数のMCF20の被覆除去部22をそれぞれ載置し、各MCF20を中心軸周りに回転調心する。このとき、光ファイバ保持部品10に対して各MCF20を1本ずつ回転調心する。その後、光ファイバ保持部品10と各MCF20とを接着剤を介して固定し、蓋15を介して複数の光ファイバ保持部品10をY方向に積み重ねる。接着剤は、例えばUV硬化性接着剤又は熱硬化性接着剤である。そして、各光ファイバ保持部品10を互いに固定させた状態にて、各光ファイバ保持部品10をフェルール30の導入孔32に挿入する。このとき、各光ファイバ保持部品10の下面10cが一対の内壁面32aにそれぞれ接し、側面10d,10eが一対の内壁面32bにそれぞれ接する位置に各光ファイバ保持部品10が配置される。その後、フェルール30と、複数の光ファイバ保持部品10と、複数のMCF20とが、接着剤を介して互いに固定される。例えば、フェルール30の上部に設けられた窓35から熱硬化性接着剤を導入し、熱硬化させることで、保持孔33と被覆除去部22も固定できる。
 図5は、本実施形態に係る光コネクタ1を含む光結合構造1Aの構成を示す斜視図である。図5に示されたXYZ座標系は、図1~図4に示されたXYZ直交座標系に対応している。図5に示されるように、光結合構造1Aは、一対の光コネクタ1と、一対のガイドピン40と、スペーサ50と、を備える。一対の光コネクタ1のうち一方の光コネクタ1と他方の光コネクタ1とは間隙を挟んで互いに対向している。一対のガイドピン40は、Z方向に沿って延びており、その中心軸に垂直な断面が円形状である。一対のガイドピン40の外径は、一対のガイド孔34の内径と一致する。一対のガイドピン40のZ方向における一端部は、一方の光コネクタ1の一対のガイド孔34にそれぞれ嵌合し、一対のガイドピン40の他端部は、他方の光コネクタ1の一対のガイド孔34にそれぞれ嵌合する。一対のガイドピン40によって、一方の光コネクタ1と他方の光コネクタ1とがXY平面内において位置合わせされる。スペーサ50は、開口50aを有する板状を呈している。開口50aは、一方の光コネクタ1と他方の光コネクタ1との間に延びる複数の光路を通過させる。スペーサ50が一方の光コネクタ1と他方の光コネクタ1とに当接することによって、一方の光コネクタ1と他方の光コネクタ1との間隙が規定される。
 以上に説明した、本実施形態に係る光ファイバ保持部品10、光コネクタ1、及び光結合構造1Aによって得られる効果について説明する。本実施形態に係る光ファイバ保持部品10では、保持部11が各MCF20の被覆除去部22の位置を規定しつつ被覆除去部22を保持することにより、フェルール30に対する被覆除去部22の相対位置及び回転調心後の相対角度を精度よく保持することができる。また、本実施形態の光ファイバ保持部品10では、固定部12が各MCF20の被覆部23を固定している。通常、被覆部23は被覆除去部22よりも曲げに強い。従って、光ファイバ保持部品10の後方に位置するMCF20に曲げが生じ、光ファイバ保持部品10に保持された部分と保持されていない部分との境界において被覆部23に曲げ応力が集中したとしても、被覆除去部22に曲げ応力が集中した場合と比べ、MCF20の破損を低減できる。
 保持部11は、石英ガラスにより構成されてもよい。これにより、複数のMCF20の被覆除去部22と各V溝11bとの間の摩擦抵抗を低減することができるので、複数のMCF20それぞれの回転調心を行う際のMCF20の捻れを低減し、回転調心作業を容易に行うことができる。保持部11の複数のV溝11bを含む一部分が石英ガラスにより構成されてもよい。
 保持部11は、複数のMCF20の被覆除去部22がそれぞれ載置される複数のV溝11bを有してもよい。これにより、XY平面内において各MCF20の被覆除去部22の位置を精度良く規定することができる。
 本実施形態に係る光コネクタ1は、本実施形態に係る光ファイバ保持部品10を備えるので、上述したように各MCF20の破損を低減することができる。これにより、光ファイバ保持部品10と各MCF20とを容易に組み立てることができる。従って、本実施形態に係る光コネクタ1を容易に製造することができる。加えて、光ファイバ保持部品10の下面10c及び側面10d,10eと、フェルール30の内壁面32a及び32bとがそれぞれ互いに接することにより、フェルール30と光ファイバ保持部品10との相対位置及び相対角度を精度良く規定し、各MCF20の回転調心後の角度をフェルール30に対して精度良く保持することができる。
 光コネクタ1は、光ファイバ保持部品10を複数備えてもよい。本実施形態に係る光コネクタ1では、図3及び図4に示されるように、複数の保持孔33がY方向に沿って複数列にわたって(多段に)配列される場合であっても、複数の光ファイバ保持部品10をY方向に積み重ねることによって、各保持孔33の配列に対応して各MCF20を配列させることができる。従って、より多くのMCF20を接続させることができる。
 本実施形態に係る光結合構造1Aは、一対の光コネクタ1を備え、一対の光コネクタ1のうち一方の光コネクタ1と他方の光コネクタ1とは、Z方向において間隙を挟んで互いに対向している。図5に示されるように、本実施形態に係る光結合構造1Aでは、一方の光コネクタ1と他方の光コネクタ1とはPC接続されないので、一方の光コネクタ1と他方の光コネクタ1とをPC接続するための押圧力が不要となる。これにより、極めて多くのMCF20を容易に接続させることができる。
(第1変形例)
 図6は、上記実施形態の第1変形例に係る光ファイバ保持部品10Aの斜視図である。図7は、図6に示す光ファイバ保持部品10Aの上面図である。本変形例と上記実施形態との相違点は、保持部11Aが複数のV溝11bに代えて複数の保持孔11cを備えている点である。図6及び図7に示されるように、複数の保持孔11cは、前端面10aから面13までZ方向に沿って貫通している。複数の保持孔11cのXY平面に平行な断面形状は、円形状である。複数の保持孔11cは、X方向に沿って並んでいる。一例では、16本の保持孔11cが、X方向に沿って等間隔に並んでいる。各保持孔11cの内径は、上記実施形態に係る各MCF20の被覆除去部22の外径と同じか、被覆除去部22の外径よりも僅かに大きい。各保持孔11cは、各MCF20の被覆除去部22を、中心軸線周りに回転自在に保持する。各保持孔11cの面13側の後端部には、テーパ部11dが形成されている。このテーパ部11dでは、複数の保持孔11cの内径が、面13に近づくに従い次第に大きくなっている。言い換えれば、このテーパ部11dでは、各保持孔11cが、Z方向における固定部12側の後端に向けて拡径している。複数の保持孔11cは、複数のMCF20の被覆除去部22をそれぞれ保持する。各保持孔11cは、各被覆除去部22のXY平面内における位置を規定する。このように各保持孔11cが各MCF20を保持することによって、XY平面内における各MCF20の被覆除去部22の位置を精度良く規定しつつ被覆除去部22を保持することができる。各保持孔11cにテーパ部11dを設けることにより、各MCF20の被覆除去部22を各保持孔11cに容易に挿入することができる。
(第2変形例)
 図8は、上記実施形態の第2変形例に係る光ファイバ保持部品10Bの斜視図である。図9は、図8に示す光ファイバ保持部品10Bの上面図である。本変形例と上記実施形態との相違点は、保持部11Aが複数のV溝11bに代えて複数の保持孔11cを備えている点、及び固定部12Aが上面12aに代えて固定孔12bを有している点である。複数の保持孔11cの形態は、上述した第1変形例と同様である。固定孔12bは、後端面10bからZ方向を深さ方向として形成された孔であり、面13を底面としている。固定孔12bは、複数の保持孔11cと連通している。固定孔12bのXY平面に平行な断面形状は、一実施例では、X方向を長手方向とする長円形状である。固定孔12bには、複数のMCF20の被覆部23が一括して挿入され、接着剤を介して固定される。固定部は本変形例のような形状を有してもよく、各MCF20の被覆部23をより確実に固定することができる。
(第3変形例)
 図10は、上記実施形態の第3変形例に係る光ファイバ保持部品10Cの斜視図である。図11は、図10に示す光ファイバ保持部品10Cの上面図である。本変形例と上記実施形態との相違点は、保持部11Aが複数のV溝11bに代えて複数の保持孔11cを備えている点、及び固定部12Bが上面12aに代えて複数の固定孔12cを有している点である。複数の保持孔11cの形態は、上述した第1変形例と同様である。複数の固定孔12cは、それぞれ後端面10bからZ方向を深さ方向として形成された孔であり、複数の保持孔11cとそれぞれ連通している。各固定孔12cのXY平面に平行な断面形状は、円形状である。各固定孔12cの内径は、各MCF20の被覆部23の外径と同じか、被覆部23の外径よりも僅かに大きい。各固定孔12cには、各MCF20の被覆部23が挿入され、接着剤を介して固定される。固定部は本変形例のような形状を有してもよく、各MCF20の被覆部23をより確実に固定することができる。
 1…光コネクタ、1A…光結合構造、10,10A,10B,10C…光ファイバ保持部品、10a,30a…前端面、10b,30b…後端面、10c…下面、10d,10e…側面、11,11A…保持部、11a,12a…上面、11b…V溝、11c…保持孔、11d…テーパ部、12,12A,12B…固定部、12b,12c…固定孔、13…面、15…蓋、20a…先端面、22…被覆除去部、23…被覆部、30…フェルール、31…開口、32…導入孔、32a,32b…内壁面、33…保持孔、34…ガイド孔、35…窓、40…ガイドピン、50…スペーサ、50a…開口。

Claims (17)

  1.  中心軸線上からずれた領域に少なくとも1つのコアをそれぞれが有しており前記中心軸線と交差する第1の方向に並ぶ複数の光ファイバを保持するフェルール内に配置される光ファイバ保持部品であって、
     各光ファイバの先端から所定長さの樹脂被覆が除去された被覆除去部の、前記中心軸線に垂直な面内における位置を規定しつつ前記被覆除去部を保持する保持部と、
     前記保持部に対し前記中心軸線に沿った第2の方向に並んで配置されており、各光ファイバの樹脂被覆部が固定される固定部と、
    を備える、光ファイバ保持部品。
  2.  前記保持部は、石英ガラスにより構成される、
    請求項1に記載の光ファイバ保持部品。
  3.  前記保持部は、金属により構成される、
    請求項1に記載の光ファイバ保持部品。
  4.  前記保持部は、樹脂により構成される、
    請求項1に記載の光ファイバ保持部品。
  5.  前記保持部は、前記複数の光ファイバの前記被覆除去部がそれぞれ載置される複数のV溝を有する、
    請求項1~請求項4のいずれか1項に記載の光ファイバ保持部品。
  6.  前記複数のV溝のそれぞれは、前記第2の方向に沿って延在しており、
     前記複数のV溝は、各延在方向が互いに平行となるように前記第1の方向に順に設けられている、
    請求項5に記載の光ファイバ保持部品。
  7.  前記複数のV溝を覆うように、その上に配置される蓋を更に備える、
    請求項5または請求項6に記載の光ファイバ保持部品。
  8.  前記保持部は、前記複数の光ファイバの前記被覆除去部がそれぞれ挿入される複数の第1の孔を有する、
    請求項1~請求項4のいずれか1項に記載の光ファイバ保持部品。
  9.  前記複数の第1の孔は、前記第2の方向における前記固定部側の一端に向けて拡径する部分を有する、
    請求項8に記載の光ファイバ保持部品。
  10.  前記固定部は、前記複数の第1の孔に連通する1つの第2の孔又は前記複数の第1の孔それぞれに連通する複数の第2の孔を有する、
    請求項8または請求項9に記載の光ファイバ保持部品。
  11.  前記V溝又は前記第1の孔は、前記複数の光ファイバの前記被覆除去部を前記中心軸線周りに回転自在に保持する、
    請求項5~請求項10のいずれか1項に記載の光ファイバ保持部品。
  12.  前記固定部は、前記保持部の高さよりも低い位置に設けられる固定面を有する、
    請求項1~請求項11のいずれか1項に記載の光ファイバ保持部品。
  13.  少なくとも1つ以上の、請求項1~請求項12のいずれか1項に記載の光ファイバ保持部品と、
     前記光ファイバ保持部品によって保持される複数の光ファイバと、
     前記光ファイバ保持部品及び前記複数の光ファイバの少なくとも一部をその内部に収納するフェルールと、を備え、
     前記フェルールは、
     前記第2の方向と交差する前端面と、
     前記前端面とは反対側に設けられており前記光ファイバ保持部品及び前記複数の光ファイバを一括して受け入れる開口と、
     前記開口から前記第2の方向に沿って延びており前記光ファイバ保持部品を保持する導入孔と、
     前記導入孔の前記開口とは反対側の前端から前記前端面まで延びており前記複数の光ファイバの前記被覆除去部をそれぞれ保持する複数の保持孔と、を有する、光コネクタ。
  14.  前記光ファイバ保持部品は、前記第2の方向に沿って延びており法線が互いに交差する第1及び第2の外面を有し、
     前記フェルールの前記導入孔は、前記第1及び第2の外面とそれぞれ接する第1及び第2の内面を有する、
    請求項13に記載の光コネクタ。
  15.  前記開口は、2つ以上の前記光ファイバ保持部品を一括して受け入れ、
     前記導入孔は、2つ以上の前記光ファイバ保持部品を一括して保持しており、
     各光ファイバ保持部品は、前記第1及び第2の方向と交差する第3の方向に積み重ねられている、
    請求項13または請求項14に記載の光コネクタ。
  16.  前記複数の光ファイバのそれぞれは、前記中心軸線上に配置された1つのコアと、前記中心軸線周りに等間隔に配置された複数のコアとを有する、
    請求項13~請求項15のいずれか1項に記載の光コネクタ。
  17.  請求項13~請求項16のいずれか1項に記載の光コネクタである、第1及び第2の光コネクタを備え、
     前記第1の光コネクタの前記前端面と前記第2の光コネクタの前記前端面とは、前記第2の方向において間隙を挟んで互いに対向している、光結合構造。
PCT/JP2018/000451 2017-01-17 2018-01-11 光ファイバ保持部品、光コネクタ、及び光結合構造 WO2018135368A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112018000403.1T DE112018000403T5 (de) 2017-01-17 2018-01-11 Optische faserhalterungskomponente, optischer stecker und optische koppelungsstruktur
JP2018563291A JP7040464B2 (ja) 2017-01-17 2018-01-11 光ファイバ保持部品、光コネクタ、及び光結合構造
CN201880007124.9A CN110178063B (zh) 2017-01-17 2018-01-11 光纤保持部件、光连接器及光耦合构造
US16/509,838 US20190331865A1 (en) 2017-01-17 2019-07-12 Optical-fiber holding component, optical connector, and optical coupling structure
US17/321,634 US11822134B2 (en) 2017-01-17 2021-05-17 Optical-fiber holding component, optical connector, and optical coupling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005989 2017-01-17
JP2017-005989 2017-01-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/509,838 Continuation US20190331865A1 (en) 2017-01-17 2019-07-12 Optical-fiber holding component, optical connector, and optical coupling structure

Publications (1)

Publication Number Publication Date
WO2018135368A1 true WO2018135368A1 (ja) 2018-07-26

Family

ID=62908061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000451 WO2018135368A1 (ja) 2017-01-17 2018-01-11 光ファイバ保持部品、光コネクタ、及び光結合構造

Country Status (6)

Country Link
US (2) US20190331865A1 (ja)
JP (1) JP7040464B2 (ja)
CN (1) CN110178063B (ja)
DE (1) DE112018000403T5 (ja)
TW (1) TWI743293B (ja)
WO (1) WO2018135368A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187178A1 (ja) * 2020-03-16 2021-09-23 住友電気工業株式会社 光ファイバ接続部品及び光ファイバ接続部品の製造方法
WO2023199632A1 (ja) * 2022-04-12 2023-10-19 住友電気工業株式会社 光ファイバ保持部品、光ファイバ結合構造体、光コネクタ、及び光結合構造
WO2024029270A1 (ja) * 2022-08-03 2024-02-08 住友電気工業株式会社 光コネクタ、フェルール、及び光結合構造
CN115280207B (zh) * 2020-03-16 2024-04-26 住友电气工业株式会社 光纤连接部件以及光纤连接部件的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166084A1 (ja) * 2020-02-18 2021-08-26 住友電気工業株式会社 光コネクタ付きファイバ接続構造、及びモジュール
EP4153543A1 (en) * 2020-05-20 2023-03-29 Fujikura Ltd. Optical fiber cutter and method of cutting optical fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177268A (ja) * 2001-12-07 2003-06-27 Olympus Optical Co Ltd 光ファイバ保持装置
JP2004109949A (ja) * 2002-09-20 2004-04-08 Nippon Telegr & Teleph Corp <Ntt> 光ファイバコネクタのプラグ及び光ファイバ配線板
JP2014041189A (ja) * 2012-08-21 2014-03-06 Fujitsu Ltd 光コネクタおよびその製造方法
US20140191427A1 (en) * 2013-01-08 2014-07-10 Commscope, Inc. Of North Carolina Selective uv curing of epoxy adjacent to optical fibers by transmitting uv energy through the fiber cladding
JP2015125172A (ja) * 2013-12-25 2015-07-06 住友電気工業株式会社 マルチコア光ファイバ及びマルチコア光ファイバコネクタの製造方法
WO2016031678A1 (ja) * 2014-08-29 2016-03-03 古河電気工業株式会社 多心コネクタ、コネクタおよびコネクタ接続構造

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1283569C (en) * 1986-03-14 1991-04-30 Toshiaki Kakii Optical connector and splicer
JPH05224097A (ja) * 1992-02-14 1993-09-03 Nec Corp 光ファイバアレイ
WO1994023318A1 (en) * 1993-03-31 1994-10-13 Sumitomo Electric Industries, Ltd. Optical fiber array
US5602951A (en) * 1994-04-14 1997-02-11 Sumitomo Electric Industries, Ltd. Ferrule for optical connector and process for making same
EP1482336A3 (en) * 1994-07-21 2004-12-22 Sumitomo Electric Industries, Ltd. Optical waveguide module having waveguide substrate made of predetermined material and ferrule made of material different from that of waveguide substrate
US5815621A (en) * 1996-05-23 1998-09-29 Sumitomo Electric Industries, Ltd. Optical fiber connector ferrule with die and method of manufacturing same
JP3571863B2 (ja) * 1996-10-16 2004-09-29 古河電気工業株式会社 光コネクタの光ファイバ突出長設定方法およびその治具
JPH10186177A (ja) * 1996-10-28 1998-07-14 Sumitomo Electric Ind Ltd 光コネクタおよび光コネクタの接続方法および把持用工具
US6095695A (en) * 1996-10-28 2000-08-01 Sumitomo Electric Industries, Ltd. Optical connector, and using method and tool thereof
EP1459865B1 (en) * 2001-11-29 2011-03-09 Sumitomo Electric Industries, Ltd. Method and metal mold for manufacturing optical connector ferrule
JP4255731B2 (ja) * 2002-04-24 2009-04-15 株式会社フジクラ 光ファイバ配列部品の製造方法
US6816662B2 (en) * 2002-09-19 2004-11-09 3M Innovative Properties Company Article for cleaving and polishing optical fiber ends
WO2009045562A1 (en) * 2007-04-13 2009-04-09 Adc Telecommunications, Inc. Optical fiber field termination kit
JP2009122451A (ja) * 2007-11-15 2009-06-04 Hitachi Chem Co Ltd 光学接続構造
CN102630306B (zh) * 2009-11-24 2015-11-25 康宁光缆系统有限责任公司 制备光纤与将光纤安置到盲孔中的方法以及相关总成和制造总成的方法
CN102081193B (zh) * 2010-12-31 2013-05-01 今皓光电(昆山)有限公司 新型多信道光纤数组的制造方法
CN203673110U (zh) * 2011-02-17 2014-06-25 古河电气工业株式会社 光连接器用插芯
WO2012164761A1 (ja) 2011-05-31 2012-12-06 日立ビークルエナジー株式会社 電池システム監視装置
US20130030363A1 (en) * 2011-07-29 2013-01-31 Hansen Medical, Inc. Systems and methods utilizing shape sensing fibers
WO2013039766A1 (en) * 2011-09-13 2013-03-21 Corning Cable Systems Llc Gradient index (grin) lens holders employing a recessed cover, and optical connectors and methods incorporating the same
CN104169765B (zh) 2011-12-09 2016-08-17 康宁光电通信有限责任公司 采用凹槽对齐特征结构和全内反射(tir)表面的梯度折射率(grin)透镜架以及相关组件、连接器与方法
WO2013086117A2 (en) * 2011-12-09 2013-06-13 Corning Cable Systems Llc Gradient index (grin) lens holders employing groove alignment features(s) in recessed cover and single piece components, connectors, and methods
US9529155B2 (en) * 2012-11-28 2016-12-27 Corning Optical Communications LLC Gradient index (GRIN) lens chips and associated small form factor optical arrays for optical connections, related fiber optic connectors
US9946033B2 (en) * 2013-08-07 2018-04-17 Corning Optical Communications LLC Fiber optic connector with adhesive management
CN107608032B (zh) * 2014-07-01 2019-12-20 泰科电子(上海)有限公司 光纤对准装置、插芯器件和插芯器件的制造方法
WO2016170782A1 (ja) * 2015-04-20 2016-10-27 アダマンド株式会社 多芯光コネクタ
WO2017067583A1 (de) * 2015-10-21 2017-04-27 Reichle & De-Massari Ag Optische steckverbindervorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177268A (ja) * 2001-12-07 2003-06-27 Olympus Optical Co Ltd 光ファイバ保持装置
JP2004109949A (ja) * 2002-09-20 2004-04-08 Nippon Telegr & Teleph Corp <Ntt> 光ファイバコネクタのプラグ及び光ファイバ配線板
JP2014041189A (ja) * 2012-08-21 2014-03-06 Fujitsu Ltd 光コネクタおよびその製造方法
US20140191427A1 (en) * 2013-01-08 2014-07-10 Commscope, Inc. Of North Carolina Selective uv curing of epoxy adjacent to optical fibers by transmitting uv energy through the fiber cladding
JP2015125172A (ja) * 2013-12-25 2015-07-06 住友電気工業株式会社 マルチコア光ファイバ及びマルチコア光ファイバコネクタの製造方法
WO2016031678A1 (ja) * 2014-08-29 2016-03-03 古河電気工業株式会社 多心コネクタ、コネクタおよびコネクタ接続構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187178A1 (ja) * 2020-03-16 2021-09-23 住友電気工業株式会社 光ファイバ接続部品及び光ファイバ接続部品の製造方法
CN115280207A (zh) * 2020-03-16 2022-11-01 住友电气工业株式会社 光纤连接部件以及光纤连接部件的制造方法
CN115280207B (zh) * 2020-03-16 2024-04-26 住友电气工业株式会社 光纤连接部件以及光纤连接部件的制造方法
WO2023199632A1 (ja) * 2022-04-12 2023-10-19 住友電気工業株式会社 光ファイバ保持部品、光ファイバ結合構造体、光コネクタ、及び光結合構造
WO2024029270A1 (ja) * 2022-08-03 2024-02-08 住友電気工業株式会社 光コネクタ、フェルール、及び光結合構造

Also Published As

Publication number Publication date
JP7040464B2 (ja) 2022-03-23
TW201831932A (zh) 2018-09-01
CN110178063B (zh) 2021-08-17
US11822134B2 (en) 2023-11-21
JPWO2018135368A1 (ja) 2019-11-07
DE112018000403T5 (de) 2019-10-24
US20210271034A1 (en) 2021-09-02
US20190331865A1 (en) 2019-10-31
TWI743293B (zh) 2021-10-21
CN110178063A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2018135368A1 (ja) 光ファイバ保持部品、光コネクタ、及び光結合構造
JP5798177B2 (ja) マルチコア光ファイバケーブルのための単心コネクタ
US7431514B2 (en) Multifiber optical connector
US10151884B2 (en) Apparatus for and method of terminating a multi-fiber ferrule
WO2012172869A1 (ja) 光ファイバの接続方法及び光ファイバの接続構造
WO2013172322A1 (ja) 多心光コネクタ、光コネクタ接続構造
JP2007256372A (ja) 光ファイバ接続部品
WO2018139184A1 (ja) 光接続部品及び光結合構造
JP2019066634A (ja) ブーツ、フェルール及び光コネクタ
JP2012032725A (ja) 小径曲げ光コネクタ及びこの製造方法
US11934005B2 (en) Method of manufacturing optical connector
JP2010078695A (ja) 光ファイバ付きフェルール、光ファイバ付きフェルールの製造方法
JP5075562B2 (ja) 多心光コネクタおよびその組み立て方法
WO2023199632A1 (ja) 光ファイバ保持部品、光ファイバ結合構造体、光コネクタ、及び光結合構造
JP5743676B2 (ja) 光コネクタ
JP6930170B2 (ja) 光接続部品の製造方法
JP3222482U (ja) フェルール及び光コネクタ
JP6907866B2 (ja) 光接続構造及び光配線部材
WO2024029270A1 (ja) 光コネクタ、フェルール、及び光結合構造
EP4270070A1 (en) Optical fiber ribbon, optical fiber connection component, and method for manufacturing optical fiber connection component
JP5398409B2 (ja) 光コネクタ
JP2009053365A (ja) 光コネクタ
JP7388368B2 (ja) フェルール及び光コネクタ
JP7123857B2 (ja) フェルール、ファイバ付きフェルール及びファイバ付きフェルールの製造方法
JP5291062B2 (ja) 光コネクタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563291

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18742018

Country of ref document: EP

Kind code of ref document: A1