WO2018131665A1 - 発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法 - Google Patents

発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法 Download PDF

Info

Publication number
WO2018131665A1
WO2018131665A1 PCT/JP2018/000545 JP2018000545W WO2018131665A1 WO 2018131665 A1 WO2018131665 A1 WO 2018131665A1 JP 2018000545 W JP2018000545 W JP 2018000545W WO 2018131665 A1 WO2018131665 A1 WO 2018131665A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
convex
multilayer film
concavo
film layer
Prior art date
Application number
PCT/JP2018/000545
Other languages
English (en)
French (fr)
Inventor
麻衣 吉村
香子 坂井
瑶子 市原
雅史 川下
直樹 南川
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017133774A external-priority patent/JP7004134B2/ja
Priority claimed from JP2017220936A external-priority patent/JP6981194B2/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201880006290.7A priority Critical patent/CN110192129B/zh
Priority to EP18739439.0A priority patent/EP3570079A4/en
Publication of WO2018131665A1 publication Critical patent/WO2018131665A1/ja
Priority to US16/508,010 priority patent/US20190329527A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/203Filters having holographic or diffractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films

Definitions

  • the present invention relates to a coloring structure that exhibits a structural color, a display body that includes a coloring structure, a coloring sheet, a molded body that includes a coloring sheet, and a method for manufacturing the coloring structure.
  • the structural colors that are often observed as the colors of natural creatures such as morpho butterflies are different from the colors that are visible due to electronic transitions in molecules, such as the colors exhibited by pigments, such as light diffraction, interference, and scattering. It is a color visually recognized by the action of an optical phenomenon caused by the fine structure of the object.
  • a structural color due to multilayer film interference is caused by interference of light reflected at each interface of the multilayer film in multilayer films having mutually different refractive indexes of thin films.
  • Multilayer interference is one of the coloring principles of morpho butterfly wings.
  • the morpho butterfly wing in addition to the multilayer film interference, light is scattered and diffracted by the fine concavo-convex structure on the surface of the wing, so that a bright blue color is visible at a wide observation angle.
  • the wavelength of light strengthened by interference varies depending on the optical path difference generated in each layer of the multilayer film layer, and the optical path difference is determined according to the film thickness and refractive index of each layer. And the outgoing direction of the light strengthened by the interference is limited to a specific direction depending on the incident angle of the incident light. Therefore, in the structure in which the multilayer film layers are laminated on the plane, the wavelength of the reflected light that is visually recognized varies greatly depending on the observation angle, and thus the visually recognized color varies greatly depending on the observation angle.
  • Patent Document 1 a multilayer film layer is laminated on irregular irregularities, and reflected light strengthened by interference spreads in multiple directions, so that the color change according to the observation angle becomes gentle. .
  • a structure that exhibits a specific color with a wide observation angle like a morpho butterfly wing is realized.
  • the multilayer film layer has unevenness following the unevenness of the base material, and the unevenness constitutes the surface of the structure. For this reason, when a physical impact or chemical impact is applied to the structure from the outside, the uneven structure of the multilayer film layer may be deformed or altered. In addition, the uneven structure may be clogged with dirt and foreign matter. When such a concavo-convex structure collapses, the optical path length of the light reflected by the multilayer film layer changes or the effect of diffusing the reflected light in multiple directions decreases, so that the desired color can be obtained in the structure. It becomes difficult to be.
  • An object of the present invention is to provide a coloring structure, a display body, a coloring sheet, a molded body, and a method for producing the coloring structure that can protect the uneven structure of the multilayer film layer.
  • the color developing structure that solves the above problems is a concavo-convex layer having a concavo-convex structure on a surface, and a multilayer film layer having a surface shape that is located on the concavo-convex structure and follows the shape of the concavo-convex structure,
  • the refractive indexes of layers adjacent to each other in the layers are different from each other, and the reflectance of light in a specific wavelength region of incident light incident on the multilayer film layer is in a wavelength region other than the specific wavelength region.
  • An optical functional layer including the multilayer film layer having a light reflectance higher than the outermost layer on the side opposite to the concavo-convex layer in the optical functional layer, which has a protective function for a lower layer than the outermost layer.
  • An optical functional layer, and the first direction and the second direction orthogonal to the first direction are on a virtual plane that is a virtual surface on which the concavo-convex structure is projected in the thickness direction of the concavo-convex layer.
  • the protrusions constituting the concavo-convex structure have one or more steps.
  • the pattern formed by the projected image of the convex portion on the virtual plane is a pattern formed of a set of graphic elements whose length along the second direction is equal to or longer than the length along the first direction.
  • the length of the graphic element along the first direction is equal to or less than a sub-wavelength
  • the standard deviation of the length along the second direction is along the first direction. Greater than the standard deviation of the length.
  • the concavo-convex layer has light transmittance with respect to the incident light, and the protective layer covering the surface of the multilayer film layer as the outermost layer transmits the multilayer film layer of the incident light. You may have the light absorptivity which absorbs at least one part of light.
  • the protective layer when the colored structure is observed from the side where the uneven layer is located, at least part of the light transmitted through the multilayer film layer from the uneven layer side is absorbed by the protective layer, and the transmitted light is absorbed by the uneven layer side. It is possible to suppress the return to Accordingly, since it is possible to suppress the viewing of light in a wavelength region different from the reflected light from the multilayer film layer, it is possible to suppress the color visibility due to the reflected light from being lowered.
  • the layer constituting the coloring structure may include a layer containing an ultraviolet absorber. According to the said structure, it can suppress that the material which comprises a color development structure deteriorates with an ultraviolet-ray.
  • the protective layer covering the surface of the multilayer layer as the outermost layer may be composed of two or more layers. According to the above configuration, the multifunction of the protective layer and the enhancement of the function of the protective layer can be achieved by combining the functions of the layers constituting the protective layer.
  • the hardness measured from the outermost surface of the coloring structure may be 0.03 GPa or more. According to the above configuration, the scratch resistance of the coloring structure is increased.
  • the arithmetic average roughness on the outermost surface of the coloring structure may be 2 ⁇ m or less. According to the above configuration, since the irregular reflection of light on the outermost surface of the color forming structure can be suppressed, it is possible to suppress the color visibility from being reflected by the reflected light from the multilayer film layer.
  • the water contact angle on the outermost surface of the coloring structure may be 60 degrees or more. According to the above configuration, it is possible to suppress the deterioration of the coloring structure due to the adhesion of water to the outermost surface.
  • the pattern formed by the projected image of the convex portion in the virtual plane is a pattern made of a set of the graphic elements, and the height of the convex portion constituting the concave-convex structure is constant. Also good.
  • the diffusion effect of reflected light is acquired by the convex part which comprises an uneven
  • a pattern formed by the projection image of the convex portion on the virtual plane extends along the first direction, the first pattern composed of the set of graphic elements, and along the first direction. It is a pattern in which a second pattern composed of a plurality of strip-like regions arranged is overlapped, and the arrangement interval of the strip-like regions along the first direction is not constant in the plurality of strip-like regions, and is an average value of the arrangement intervals Is 1 ⁇ 2 or more of the minimum wavelength in the wavelength range included in the incident light, and the projections constituting the concavo-convex structure are elements in which the projection image on the virtual plane constitutes the first pattern, and A multi-stage shape in which a convex element having a height and a convex element having a predetermined height and whose projected image on the virtual plane constitutes the second pattern are overlapped in the height direction. It may be.
  • the diffusing effect and the diffracting effect of the reflected light are obtained by the convex portion, and light in a specific wavelength region can be observed as a reflected light from the multilayer film layer with a wide observation angle.
  • the vivid color with glossiness is visually recognized by increasing the strength of.
  • the uneven layer may be configured to be peelable from the multilayer film layer. According to the above configuration, since the uneven layer can be peeled from the color developing structure, the use of the color forming structure can be expanded.
  • the color developing structure may further include an adhesive layer that covers a surface of the optical function layer opposite to the uneven layer. According to the above configuration, the coloring structure can be attached to the adherend.
  • a display body that solves the above-described problem is a display body that includes a plurality of display elements and has a front surface and a back surface, and the display elements are composed of the color developing structure. According to the above configuration, a display body in which the concavo-convex structure of the multilayer film layer is protected is realized, and a desired color can be easily obtained on the display body.
  • the coloring sheet that solves the above problems is a coloring sheet composed of the coloring structure. According to the above configuration, a coloring sheet in which the uneven structure of the multilayer film layer is protected is realized, and a desired coloring can be easily obtained with the coloring sheet.
  • a molded body that solves the above-described problem includes the color developing sheet and an adherend to which the color developing sheet is fixed, and the adherend is disposed on a side where the optical functional layer is located with respect to the uneven layer. To position. According to the said structure, since a molded object is provided with the coloring sheet
  • a method for producing a color developing structure that solves the above problems includes a step of forming a concavo-convex layer having a concavo-convex structure on a surface by transferring the concavo-convex of an intaglio to a resin using a nanoimprint method,
  • the optical function layer including the multilayer film layer has a refractive index different from each other in the multilayer film layer, and reflects light in a specific wavelength region of incident light incident on the multilayer film layer.
  • the outermost layer on the opposite side of the concavo-convex layer in the optical function layer has a lower layer protection function than the outermost layer.
  • a first direction and a second direction perpendicular to the first direction are directions along a virtual plane that is a virtual surface on which the concavo-convex structure is projected in the thickness direction of the concavo-convex layer. And in the step of forming the uneven layer
  • the pattern formed in the virtual plane by the projected image of one or more convex portions constituting the concavo-convex structure is a graphic element whose length along the second direction is greater than or equal to the length along the first direction.
  • the concavo-convex structure is formed so as to include a pattern consisting of a set, and the length along the first direction of the graphic element is equal to or less than a sub-wavelength, and the length along the second direction in the set of graphic elements
  • the standard deviation of the length is larger than the standard deviation of the length along the first direction.
  • the uneven structure of the uneven layer is formed using the nanoimprint method in the production of the color developing structure including the optical function layer having a protective function, the fine uneven structure is suitably and easily formed. Can be formed.
  • the figure which shows the cross-section of the coloring structure of a modification about one Embodiment of coloring structure The figure which shows the planar structure of a display body about one Embodiment of a display body. The figure which shows the cross-section of a display body about one Embodiment of a display body. The figure which shows the cross-section of a coloring sheet about one Embodiment of a coloring sheet. The figure which shows the cross-section of a molded object about one Embodiment of a molded object. The figure which shows the cross-section of transfer foil about one Embodiment of transfer foil. The schematic diagram which shows the state which affixed the transfer foil on the to-be-adhered body.
  • the figure which shows the cross-section of transfer foil about other embodiment of transfer foil.
  • Embodiments of a color forming structure, a display body, a color forming sheet, a molded body, and a method for manufacturing the color forming structure will be described with reference to FIGS.
  • the color developing structure of the present embodiment includes a concavo-convex structure having a multilayer film layer and a protective layer covering the surface of the multilayer film layer in the concavo-convex structure.
  • a concavo-convex structure of the concavo-convex structure both the first structure and the second structure can be applied. First, each of these two structures will be described.
  • FIG. 1 shows a color developing structure 30 including a concavo-convex structure 10 having a first structure and a protective layer 20.
  • the concavo-convex structure 10 includes a base material 15 and a multilayer film layer 16.
  • the base material 15 is an example of a concavo-convex layer made of a material that transmits light in the visible region and having a concavo-convex structure on the surface.
  • the multilayer film layer 16 is laminated on the surface of the base material 15. That is, the multilayer film layer 16 covers the surface of the base material 15 where the irregularities are formed.
  • the concavo-convex structure of the base material 15 includes a plurality of convex portions 15a and concave portions 15b that are regions between the plurality of convex portions 15a.
  • the convex portion 15a has an irregular length and extends in a substantially band shape.
  • the multilayer film layer 16 has a structure in which high refractive index layers 16a and low refractive index layers 16b are alternately stacked.
  • the refractive index of the high refractive index layer 16a is larger than the refractive index of the low refractive index layer 16b.
  • the surface of the base material 15 is in contact with the high refractive index layer 16a, and the surface of the multilayer film 16 opposite to the base material 15 is formed by the low refractive index layer 16b.
  • the configuration of the multilayer film layer 16, that is, the material, the film thickness, and the stacking order of each layer constituting the multilayer film layer 16 are the same on the convex portion 15a of the base material 15 and the concave portion 15b of the base material 15. I'm doing it.
  • connects the base material 15 in the multilayer film layer 16 has the surface shape which followed the uneven structure of the base material 15.
  • the surface shape has irregularities with an arrangement corresponding to the arrangement of the irregularities formed on the substrate 15.
  • the protective layer 20 covers the surface of the multilayer film layer 16.
  • the protective layer 20 and the multilayer film layer 16 constitute an optical functional layer.
  • the concavo-convex structure of the multilayer film layer 16 collapses, specifically, the concavo-convex structure is deformed, and the concavo-convex structure is clogged with dirt and foreign matter. Is suppressed.
  • the surface (back surface) in contact with the base material 15 in the multilayer film layer 16 has the same unevenness as the surface of the multilayer film layer 16. Therefore, even when light is incident on the coloring structure 30 from the side opposite to the multilayer film layer 16 side with respect to the base material 15, similarly, reflected light in a specific wavelength region is emitted at a wide angle. That is, the coloring structure 30 may be observed from the side opposite to the multilayer film layer 16 side with respect to the protective layer 20 and the side opposite to the multilayer film layer 16 side with respect to the base material 15.
  • FIG. 2A is a plan view of the base material 15 as viewed from the direction facing the surface of the base material 15, and FIG. 2B is a plan view taken along the line 2-2 in FIG. 2 is a cross-sectional view showing a cross-sectional structure of a material 15.
  • FIG. 2A the surface of the convex portion 15a constituting the concave-convex structure is shown with dots.
  • the first direction Dx and the second direction Dy are directions included in a virtual plane.
  • the virtual plane is a virtual surface on which a concavo-convex structure (boundary between the convex portion 15 a and the concave portion 15 b) is projected in the thickness direction of the base material 15.
  • the first direction Dx and the second direction Dy are orthogonal to each other.
  • the virtual plane is a surface along the direction in which the base material 15 spreads, and is a surface orthogonal to the thickness direction of the base material 15.
  • the pattern formed by the projected image of the convex portion 15a is a pattern in which a plurality of rectangles R indicated by broken lines are gathered.
  • the rectangle R is an example of a graphic element.
  • the rectangle R has a shape extending in the second direction Dy.
  • the length d2 in the second direction Dy has a size equal to or greater than the length d1 in the first direction Dx.
  • each rectangle R is arranged so as not to overlap other rectangles R in either the first direction Dx or the second direction Dy.
  • the length d1 in the first direction Dx is constant.
  • the rectangles R are arranged in the first direction Dx with an arrangement interval of length d1, that is, a cycle of length d1.
  • the length d2 in the second direction Dy is irregular, and the length d2 in each rectangle R is a value selected from a population having a predetermined standard deviation. This population preferably follows a normal distribution.
  • the pattern composed of a plurality of rectangles R is set by the following method, for example. For example, a plurality of rectangles R having a length d2 distributed with a predetermined standard deviation are temporarily laid in a predetermined area. Next, the presence / absence of arrangement for each rectangle R laid out is determined according to a certain probability. Then, an area where the rectangle R is actually arranged and an area where the rectangle R is not actually arranged are set.
  • the length d2 preferably has a distribution with an average value of 4.15 ⁇ m or less and a standard deviation of 1 ⁇ m or less.
  • the area where the rectangle R is arranged is the area where the convex portion 15a is arranged.
  • one convex portion 15a is arranged in one region where the regions where the rectangles R are arranged are coupled to each other.
  • the length of the convex portion 15a in the first direction Dx is an integral multiple of the length d1 of the rectangle R.
  • the length d1 of the first direction Dx in the rectangle R is set to be equal to or less than the wavelength of light in the visible region.
  • the length d1 has a length equal to or shorter than the sub-wavelength, that is, equal to or shorter than the wavelength range of the incident light. That is, the length d1 is preferably 830 nm or less, and more preferably 700 nm or less.
  • the length d1 is preferably smaller than the peak wavelength of the light in the specific wavelength region reflected from the multilayer film layer 16.
  • the length d1 is preferably about 300 nm
  • the length d1 is about 400 nm
  • the length d1 is preferably about 460 nm.
  • the concavo-convex structure has a large undulation, and is opposed to the surface of the substrate 15.
  • the ratio of the area occupied by the protrusions 15a per unit area is preferably 40% to 60%.
  • the ratio of the area of the convex portion 15 a and the concave portion 15 b per unit area is preferably 1: 1.
  • each convex portion 15a is constant.
  • the height of the convex portion 15 a may be set in accordance with a desired color to be developed by the color developing structure 30, that is, a wavelength range desired to be reflected from the color developing structure 30. If the height h1 of the convex portion 15a is larger than the surface roughness of the multilayer film layer 16 on the convex portion 15a and the concave portion 15b, the reflected light scattering effect can be obtained.
  • the height h1 is preferably 1 ⁇ 2 or less of the wavelength of light in the visible region, that is, 415 nm or less. Preferably there is. Furthermore, in order to suppress the light interference, the height h1 is more preferably 1 ⁇ 2 or less of the peak wavelength of the light in the specific wavelength region reflected from the multilayer film layer 16.
  • the height h1 is preferably 10 nm or more and 200 nm or less.
  • the height h1 is preferably about 40 nm or more and 150 nm or less, and the scattering effect is suppressed from becoming too high.
  • the height h1 is preferably 100 nm or less.
  • the rectangle R is arranged such that a part of two rectangles R adjacent in the first direction Dx overlap each other, and a pattern of the convex portions 15a on the virtual plane can be configured. That is, the plurality of rectangles R may be arranged in the first direction Dx with an arrangement interval smaller than the length d1, and the arrangement intervals of the rectangles R may not be constant. In a region corresponding to the rectangles R that overlap each other, one convex portion 15a is located in one region where the regions where the rectangles R are arranged are combined. In this case, the length of the convex portion 15a in the first direction Dx is different from an integral multiple of the length d1 of the rectangle R. The length d1 of the rectangle R may not be constant.
  • the length d2 is not less than the length d1
  • the standard deviation of the length d2 in the plurality of rectangles R is the plurality of rectangles. What is necessary is just to be larger than the standard deviation of the length d1 in R. Even with such a configuration, the scattering effect of the reflected light can be obtained.
  • FIG. 3 shows a color developing structure 31 including the concavo-convex structure 11 having the second structure and the protective layer 20.
  • the concavo-convex structure 11 having the second structure has a configuration of the concavo-convex structure in the substrate 15, that is, the configuration of the concavo-convex structure on the surface of the multilayer film layer 16.
  • the configuration of the concavo-convex structure is the same as that of the concavo-convex structure 10 having the first structure described above except for the configuration of the concavo-convex structure.
  • the color forming structure 31 will be described with a focus on the differences from the above-described color forming structure 30, and the same components as those of the color forming structure 30 will be denoted by the same reference numerals and description thereof will be omitted.
  • the convex portion 15c constituting the concave-convex structure of the base material 15 in the concave-convex structure 11 includes a first convex element having the same configuration as the convex portion 15a in the first structure and a second convex element extending in a strip shape.
  • the substrate 15 has a structure superimposed in the thickness direction.
  • the coloring structure 30 having the first structure although the change due to the observation angle of the color to be visually recognized is moderate due to the scattering effect of the reflected light, it is visually recognized due to the decrease in the intensity of the reflected light due to the scattering. Color vividness decreases.
  • a structure capable of observing more vivid colors at a wide viewing angle may be required.
  • the second convex element is arranged so that incident light is strongly diffracted in a specific direction, and the light scattering effect by the first convex element and the light by the second convex element are arranged. Due to the diffraction effect, the color forming structure 31 capable of observing brighter colors at a wide viewing angle is realized.
  • FIG. 4A is a plan view of the concavo-convex structure including only the second convex element
  • FIG. 4B is a cross-sectional view showing a cross-sectional structure taken along line 4-4 of FIG. 4A. is there.
  • the surface of the second convex element is shown with dots.
  • the second convex element 15Eb in plan view, that is, in the virtual plane, the second convex element 15Eb has a strip shape extending with a certain width along the second direction Dy, and has a plurality of second shapes.
  • the convex elements 15Eb are arranged at intervals along the first direction Dx.
  • the pattern formed by the projection image of the second convex element 15Eb in the virtual plane is a pattern including a plurality of band-like regions extending along the second direction Dy and arranged along the first direction Dx.
  • the length d3 in the first direction Dx of the second convex element 15Eb may be the same as or different from the length d1 of the rectangle R that determines the pattern of the first convex element.
  • the arrangement interval de of the second convex element 15Eb in the first direction Dx is at least one of the reflected light on the surface of the concavo-convex structure formed by the second convex element 15Eb.
  • the part is set to be observed as first-order diffracted light.
  • the first-order diffracted light is diffracted light whose diffraction order m is 1 or -1.
  • the arrangement interval de is de ⁇ ⁇ / (sin ⁇ + sin ⁇ ) is satisfied.
  • the arrangement interval de of the second convex elements 15Eb may be 180 nm or more, that is, the arrangement interval de is the minimum wavelength in the wavelength region included in the incident light. It is sufficient if it is 1/2 or more of the above.
  • interval de is the distance along the 1st direction Dx between the edge parts of two adjacent 2nd convex part elements 15Eb.
  • the ends of the two second convex element 15Eb adjacent to each other are located on the same side (right side in the drawing) in the first direction Dx with respect to each second convex element 15Eb.
  • the periodicity of the pattern formed by the second convex element 15Eb is reflected in the periodicity of the uneven structure of the substrate 15, that is, the periodicity of the uneven structure on the surface of the multilayer film layer 16.
  • the arrangement interval de is constant in the plurality of second convex elements 15Eb
  • reflected light of a specific wavelength is emitted from the multilayer film layer 16 at a specific angle due to a diffraction phenomenon on the surface of the multilayer film layer 16.
  • the reflection intensity of light due to this diffraction is very high compared to the reflection intensity of reflected light generated by the light scattering effect by the first convex element described in the first structure. For this reason, light having a brightness such as metallic luster is visually recognized, but on the other hand, spectroscopy due to diffraction occurs, and the color visually recognized changes in accordance with a change in observation angle.
  • the arrangement interval de of the second convex elements 15Eb is a constant value of 400 nm or more and 5 ⁇ m or less.
  • the observation angle light from strong green to red surface reflections is observed due to diffraction.
  • the arrangement interval de of the second convex element 15Eb is as large as about 50 ⁇ m, the range of the angle at which the light in the visible region is diffracted becomes narrow, so that the color change due to diffraction is difficult to be visually recognized.
  • light having a brightness like metallic luster is observed only at a specific observation angle.
  • the arrangement interval de is not a constant value
  • the pattern of the second convex element 15Eb is a pattern in which a plurality of periodic structures having different periods are overlapped
  • light of a plurality of wavelengths is mixed with reflected light by diffraction.
  • the arrangement interval de is selected from a range of, for example, 360 nm or more and 5 ⁇ m or less
  • the average value of the arrangement intervals de of the plurality of second convex element 15Eb is 1 / of the minimum wavelength in the wavelength range included in the incident light. What is necessary is just two or more.
  • the arrangement interval de of the second convex elements 15Eb is based on the angle at which the light is diffused by the light scattering effect of the first convex elements, and the reflected light due to diffraction is emitted in the same range as this light spreads. It is preferable to determine that For example, when blue reflected light is emitted in a range of ⁇ 40 ° with respect to the incident angle, the average value of the arrangement interval de in the pattern of the second convex element 15Eb is 1 ⁇ m or more and 5 ⁇ m or less. The standard deviation is about 1 ⁇ m. Thereby, the reflected light by diffraction arises in the same angle as the angle which light spreads by the light scattering effect of the 1st convex part element.
  • the structure composed of the plurality of second convex elements 15Eb has a predetermined angular range using diffraction due to dispersion of the arrangement interval de. This is a structure for emitting light in various wavelength ranges.
  • a square region having a side of 10 ⁇ m or more and 100 ⁇ m or less is used as a unit region, and in the pattern of the second convex element 15Eb for each unit region, The standard deviation may be about 1 ⁇ m or more and 5 ⁇ m or less, and the standard deviation may be about 1 ⁇ m.
  • the plurality of unit regions may include a region having a constant value that is included in the range in which the arrangement interval de is 1 ⁇ m or more and 5 ⁇ m or less.
  • the 2nd convex part element 15Eb shown in FIG. 4 has the periodicity resulting from arrangement
  • the light scattering effect by the first convex element acts mainly on the reflected light in the direction along the first direction Dx when viewed from the direction facing the surface of the base material 15, but in the second direction Dy. It can also partially affect the reflected light in the direction along. Therefore, the second convex element 15Eb may have periodicity in the second direction Dy. That is, the pattern of the second convex element 15Eb may be a pattern in which a plurality of band-like regions extending in the second direction Dy are arranged along each of the first direction Dx and the second direction Dy.
  • each of the arrangement interval along the first direction Dx of the band-like region and the arrangement interval along the second direction Dy of the band-like region has an average value of the arrangement intervals. What is necessary is just to have dispersion
  • the first direction depends on the difference between the influence of the light scattering effect by the first convex element in the first direction Dx and the influence of the light scattering effect by the first convex element in the second direction Dy.
  • the average value of the arrangement intervals along Dx and the average value of the arrangement intervals along the second direction Dy may be different from each other.
  • the first direction depends on the difference between the influence of the light scattering effect by the first convex element in the first direction Dx and the influence of the light scattering effect by the first convex element in the second direction Dy.
  • the standard deviation of the arrangement interval along Dx and the standard deviation of the arrangement interval along the second direction Dy may be different from each other.
  • the height h2 of the second convex element 15Eb only needs to be larger than the surface roughness of the multilayer film layer 16 on the convex part 15c and the concave part 15b.
  • the height h2 increases, the diffraction effect by the second convex element 15Eb becomes dominant in the effect that the concavo-convex structure gives to the reflected light, and the light scattering effect by the first convex element becomes difficult to obtain. Therefore, the height h2 is preferably approximately the same as the height h1 of the first convex element, and the height h2 may coincide with the height h1.
  • the height h1 of the first convex element and the height h2 of the second convex element 15Eb are preferably included in the range of 10 nm or more and 200 nm or less. It is preferable that the height h1 of the first convex element and the height h2 of the second convex element 15Eb are included in the range of 10 nm to 150 nm.
  • 5A is a plan view of the base material 15 as viewed from the direction facing the surface of the base material 15, and FIG. 5B is a base material taken along line 5-5 of FIG. 5A. It is sectional drawing which shows the cross-section of 15.
  • dots are added to the pattern formed by the first convex elements, and dots having a density different from that of the pattern formed by the first convex elements are applied to the pattern formed by the second convex elements. As shown.
  • the pattern formed by the projected image of the convex portion 15c is the first pattern that is the pattern formed by the projected image of the first convex portion element 15Ea, and the second pattern.
  • This is a pattern in which a second pattern that is a pattern formed by the projected image of the convex element 15Eb is overlaid. That is, the region where the convex portion 15c is located includes a region S1 composed of only the first convex element 15Ea, a region S2 where the first convex element 15Ea and the second convex element 15Eb overlap, and the second convex portion. And a region S3 including only the element 15Eb.
  • the first convex element 15Ea and the second convex element 15Eb are overlapped so that the end portions are aligned with each other in the first direction Dx.
  • the end of the convex element 15Ea and the end of the second convex element 15Eb may be offset.
  • the height of the convex portion 15c is the height h1 of the first convex portion element 15Ea.
  • the height of the convex portion 15c is the sum of the height h1 of the first convex portion element 15Ea and the height h2 of the second convex portion element 15Eb.
  • the height of the convex portion 15c is the height h2 of the second convex portion element 15Eb.
  • the convex part 15c has a multi-stage shape in which the first convex element 15Ea and the second convex element 15Eb are overlapped in the height direction.
  • the projection image on the virtual plane of the first convex element 15Ea constitutes the first pattern, and has a predetermined height h1.
  • the projection image on the virtual plane of the second convex element 15Eb constitutes a second pattern, and has a predetermined height h2.
  • the convex portion 15c can also be regarded as a structure in which the second convex portion element 15Eb is superimposed on the first convex portion element 15Ea, and a structure in which the first convex portion element 15Ea is superimposed on the second convex portion element 15Eb. It is also possible to capture.
  • the concavo-convex structure on the surface of the multilayer film 16 is more complex than the first structure, and thus the concavo-convex structure is easily deformed. Therefore, it is highly beneficial to protect the concavo-convex structure of the multilayer film layer 16 with the protective layer 20.
  • the coloring structure 31 having the second structure As described above, according to the coloring structure 31 having the second structure, the light diffusion phenomenon caused by the portion of the convex portion 15c formed by the first convex portion element 15Ea and the second convex portion in the convex portion 15c. A color that is synergistic with the light diffraction phenomenon caused by the portion formed by the element 15Eb is visually recognized. That is, according to the coloring structure 31 having the second structure, the reflected light in a specific wavelength region can be observed at a wide observation angle, and the vividness with a glossy feeling due to the enhancement of the intensity of the reflected light is obtained. The color is visible. In other words, in the second structure, the convex portion 15c, which is one structure, has two functions of a light diffusion function and a light diffraction function.
  • the pattern constituted by the first convex element 15Ea and the pattern constituted by the second convex element 15Eb are such that the first convex element 15Ea and the second convex element 15Eb overlap each other. You may arrange
  • the first convex element 15Ea and the second convex element 15Eb are overlapped to form a convex part. It is preferable to make 15c into a multistage shape.
  • the base material 15 is made of a material that is transparent to light in the visible region, that is, a material that is transparent to light in the visible region.
  • a synthetic quartz substrate or a film made of a resin such as polyethylene terephthalate (PET) is used as the base material 15.
  • PET polyethylene terephthalate
  • the concavo-convex structure on the surface of the base material 15 is formed using a known fine processing technique such as lithography or dry etching that irradiates light or charged particle beams.
  • the concavo-convex structure of the second structure is formed, for example, by sequentially performing etching using the first pattern resist pattern and etching using the second pattern resist pattern. At this time, either the first pattern etching or the second pattern etching may be performed first. That is, either the first convex element 15Ea or the second convex element 15Eb may be formed first.
  • the high-refractive index layer 16a and the low-refractive index layer 16b constituting the multilayer film layer 16 are made of a material that is transparent to light in the visible region, that is, a material that is transparent to light in the visible region.
  • the material of these layers is not limited as long as the refractive index of the high refractive index layer 16a is higher than the refractive index of the low refractive index layer 16b, but the refraction of the high refractive index layer 16a and the low refractive index layer 16b is not limited. The greater the difference in the ratio, the higher the intensity of the reflected light with the smaller number of layers.
  • the high refractive index layer 16a and the low refractive index layer 16b are made of an inorganic material
  • the high refractive index layer 16a is made of titanium dioxide (TiO 2 )
  • the low refractive index layer 16b is made of silicon dioxide. It is preferable to comprise from (SiO 2 ).
  • Each of the high-refractive index layer 16a and the low-refractive index layer 16b made of such an inorganic material is formed using a known thin film forming technique such as sputtering, vacuum evaporation, or atomic layer deposition.
  • each of the high refractive index layer 16a and the low refractive index layer 16b may be made of an organic material.
  • the formation of the high refractive index layer 16a and the low refractive index layer 16b is a known method such as self-organization. This technique may be used.
  • each of the high refractive index layer 16a and the low refractive index layer 16b may be designed using a transfer matrix method or the like according to a desired color to be developed by the color forming structures 30 and 31.
  • the film thickness of the high refractive index layer 16a made of TiO 2 is preferably about 40 nm
  • a multilayer film layer 16 composed of 10 layers in which a high refractive index layer 16a and a low refractive index layer 16b are alternately stacked in this order from a position close to the base material 15.
  • the number of layers included in the multilayer film layer 16 and the order of stacking are not limited thereto, and the multilayer film layer 16 may be stacked so that reflected light in a desired wavelength region can be obtained.
  • the low refractive index layer 16b may be in contact with the surface of the substrate 15, and the high refractive index layer 16a and the low refractive index layer 16b may be alternately stacked thereon.
  • the layer constituting the outermost surface which is the surface opposite to the base material 15 in the multilayer film layer 16 may be either the high refractive index layer 16a or the low refractive index layer 16b. Furthermore, if the low-refractive index layers 16b and the high-refractive index layers 16a are alternately laminated, the material constituting the layer that contacts the surface of the substrate 15 and the layer that constitutes the outermost surface are the same. Also good. Furthermore, the multilayer film layer 16 may be a combination of three or more types of layers different from each other, and the refractive index of each layer may be different from each other.
  • the multilayer film layer 16 has mutually different refractive indexes of adjacent layers, and the incident light incident on the multilayer film layer 16 has a reflectance of light in a specific wavelength region in other wavelength regions. What is necessary is just to be comprised so that it may be higher than a reflectance.
  • the protective layer 20 is a material having light permeability with respect to light in the visible region, that is, with respect to light in the visible region. Constructed from a transparent material. Examples of such materials include acrylic, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and polyethylene, resins such as polyvinyl chloride, polycarbonate, polyvinyl alcohol, polystyrene, and polyamide.
  • the concavo-convex structures 10 and 11 are formed of a material transparent to light in the visible region. Therefore, a part of light in a wavelength region other than the specific wavelength region reflected by the multilayer film layer 16 among the wavelength regions included in the incident light is the multilayer film layer 16 and the concavo-convex structures 10 and 11. Transparent.
  • the concavo-convex structures 10 and 11 are observed from one side of the front and back, if there is a structure that repels transmitted light such as a light source or a white plate on the other side of the concavo-convex structures 10 and 11, Along with the reflected light in a specific wavelength range from the multilayer film layer 16, the transmitted light transmitted through the multilayer film layer 16 from the other side is visually recognized.
  • the wavelength range of the transmitted light is different from the wavelength range of the reflected light, and the color of the transmitted light is mainly a complementary color of the color of the reflected light. For this reason, when such transmitted light is visually recognized, the color visibility by reflected light is lowered.
  • the protective layer 20 is preferably made of a material that absorbs the transmitted light transmitted through the multilayer film layer 16.
  • the color forming structures 30 and 31 are used in such a manner that they are observed from the side opposite to the multilayer film layer 16 side with respect to the base material 15. According to such a configuration, light transmitted through the multilayer film layer 16 from the base material 15 side with respect to the multilayer film layer 16 is absorbed by the protective layer 20, and transmitted light returns to the base material 15 side with respect to the multilayer film layer 16. Is suppressed.
  • the color forming structures 30 and 31 are observed from the side opposite to the multilayer film layer 16 side with respect to the base material 15, light in a wavelength region different from the reflected light from the multilayer film layer 16 is suppressed from being visually recognized. It is done. Therefore, the color visibility due to the reflected light is prevented from being lowered by the protective layer 20, and a desired color development can be suitably obtained in the color forming structures 30 and 31.
  • the protective layer 20 may be a layer containing a material that absorbs light in the visible region, such as a light absorber or a black pigment.
  • the protective layer 20 is preferably a layer in which a black inorganic pigment such as carbon black, titanium black, black iron oxide, or black composite oxide is mixed with a resin.
  • the protective layer 20 has such a light absorptivity as long as it has a light absorptivity that absorbs at least part of the light transmitted through the multilayer film layer 16 without absorbing all of the light in the visible region.
  • the effect of suppressing the color visibility due to the reflected light from being lowered by the protective layer 20 can be obtained as compared with a configuration in which no layer is provided. Therefore, the protective layer 20 may be a layer containing a pigment having a color corresponding to the wavelength range of light transmitted through the multilayer film layer 16. If the protective layer 20 is a black layer containing a black pigment, it is not necessary to adjust the color of the protective layer 20 in accordance with the wavelength range of transmitted light. Moreover, since the protective layer 20 absorbs light in a wide wavelength range, it is possible to easily and suitably suppress a decrease in color visibility due to reflected light.
  • the protective layer 20 may contain an ultraviolet absorber.
  • an ultraviolet absorber known UV absorbers such as benzophenone, benzotriazole, benzoate, salicylate, triazine, and cyanoacrylate can be used.
  • the protective layer 20 includes an ultraviolet absorber
  • the protective layer 20 continues to absorb ultraviolet rays when the color forming structures 30 and 31 are exposed to ultraviolet rays caused by direct sunlight for a long time. Therefore, it is possible to suppress deterioration of the materials constituting the color forming structures 30 and 31 due to ultraviolet rays.
  • Such an effect is obtained when the color developing structures 30 and 31 are observed from the side opposite to the multilayer film layer 16 side with respect to the protective layer 20, that is, the incident light is incident from the side opposite to the multilayer film layer 16 side with respect to the protective layer 20. This is particularly high when the color forming structures 30 and 31 are used in a form that enters the color forming structures 30 and 31.
  • the protective layer 20 is formed on the surface of the multilayer film 16 using a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method.
  • a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method.
  • the film thickness of the protective layer 20 is not specifically limited, For example, it is preferable that it is a grade of 1 micrometer or more and 100 micrometers or less.
  • a solvent may be mixed in the ink that is the coating liquid for forming the protective layer 20.
  • a solvent that is compatible with the resin constituting the protective layer 20 is selected.
  • the solvent include ethyl acetate, butyl acetate, ethylene glycol monomethyl ether, toluene, xylene, methylcyclohexane, ethylcyclohexane, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and the like.
  • the protective layer 20 may be composed of a plurality of layers. For example, if the protective layer 20 includes a plurality of layers having different resistances to physical or chemical stimuli, the protective layer 20 having a plurality of resistances can be realized. Further, for example, if the protective layer 20 includes a plurality of layers having similar resistance, the resistance common to the plurality of layers can be enhanced by the protective layer 20. Examples of such resistance include scratch resistance and water resistance.
  • the hardness measured from the surface of the protective layer 20 is 0.03 GPa or more.
  • This hardness is an indentation hardness, and is a hardness measured when the indentation depth is set to 100 nm using the nanoindentation method. This hardness can be measured, for example, using a nanoindenter manufactured by MTS. If the said hardness is 0.03 GPa or more, since the protective layer 20 is hard enough, the abrasion resistance of the color structure 30 and 31 is improved.
  • the surface roughness Ra on the surface of the protective layer 20 is 2 ⁇ m or less.
  • the surface roughness Ra is an arithmetic average roughness and is calculated according to JIS B 0601: 2013.
  • the surface roughness Ra can be measured using, for example, a non-contact type surface roughness meter (non-contact type surface / layer cross-section measuring system) manufactured by Ryoka System. If the surface roughness Ra is 2 ⁇ m or less, the surface of the protective layer 20 is sufficiently smooth, so that irregular reflection of light on the surface of the protective layer 20 can be suppressed. As a result, the color visibility due to the reflected light from the multilayer film layer 16 can be prevented from being lowered by the protective layer 20.
  • the water contact angle on the surface of the protective layer 20 is 60 degrees or more.
  • This water contact angle is a contact angle measured 5 seconds after the droplet of water has landed on the surface of the protective layer 20.
  • the contact angle can be measured by a known procedure using a contact angle meter.
  • the affinity between the protective layer 20 and water can be kept low. Therefore, when the color developing structures 30 and 31 are wet with water, the protective layer 20 can be prevented from absorbing and deteriorating moisture.
  • the various characteristics described above are applied as follows. That is, on the outermost surface of the outermost layer, for example, the surface of the substrate 15 opposite to the multilayer film layer 16, the hardness is 0.03 GPa or more, the surface roughness Ra is 2 ⁇ m or less, and the water The contact angle is 60 degrees or more.
  • the coloring structure may have the configuration shown in FIG.
  • the uneven structure 12 included in the color forming structure 32 illustrated in FIG. 6 includes a base material 15, a resin layer 17 that covers the surface of the base material 15, and a multilayer film layer 16 laminated on the resin layer 17.
  • the surface of the base material 15 is flat, and the resin layer 17 has irregularities on the surface.
  • the laminated body of the base material 15 and the resin layer 17 is an uneven
  • any of the concavo-convex structure of the first structure and the concavo-convex structure of the second structure described above can be applied.
  • a nanoimprint method is used as a method for forming the concavo-convex structure of the resin layer 17, for example.
  • a nanoimprint method is used.
  • the resin constituting the resin layer 17 is formed on the surface on which the concavo-convex shape of the intaglio having the concavo-convex inversion of the formation target is formed.
  • a photocurable resin is applied as a photocurable resin.
  • the coating method of the photocurable resin is not particularly limited, and a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method may be used.
  • the base material 15 is overlaid on the surface of the coating layer made of a photocurable resin. Then, in a state where the coating layer and the mold are pressed against each other, light is irradiated from the base material 15 side with respect to the coating layer or the mold side with respect to the coating layer. Subsequently, the mold is released from the cured photocurable resin and the base material 15. Thereby, the unevenness of the mold is transferred to the photocurable resin, and the resin layer 17 having the unevenness on the surface is formed.
  • the mold is made of, for example, synthetic quartz or silicon, and is formed using a well-known fine processing technique such as lithography or dry etching that irradiates light or a charged particle beam.
  • the photocurable resin may be applied to the surface of the base material 15 and irradiated with light in a state where the mold is pressed against the coating layer on the base material 15. Further, instead of the optical nanoimprint method, a thermal nanoimprint method may be used. In this case, as the resin of the resin layer 17, a resin according to the manufacturing method such as a thermoplastic resin or a thermosetting resin is used. .
  • a first application example of the coloring structure is a form in which the coloring structure is used as a display.
  • the display body may be used for the purpose of increasing the difficulty of counterfeiting the article, may be used for the purpose of improving the design of the article, or may be used for these purposes.
  • the display body is used for authentication documents such as passports and licenses, securities such as gift certificates and checks, cards such as credit cards and cash cards, and banknotes. It is pasted.
  • the display body is, for example, a decorative article worn by the user, an article carried by the user, an article placed like a furniture or a household appliance, a wall or a door. It can be attached to structures, automobile interiors and exteriors.
  • the display body 40 includes a front surface 40F and a back surface 40R that is a surface opposite to the front surface 40F, and the display body 40 includes a first surface when viewed from the direction facing the front surface 40F.
  • a display area 41A and a second display area 41B are included.
  • the first display area 41A is an area where a plurality of first pixels 42A are arranged
  • the second display area 41B is an area where a plurality of second pixels 42B are arranged.
  • the first display area 41A is configured by a set of a plurality of first pixels 42A
  • the second display area 41B is configured by a set of a plurality of second pixels 42B.
  • Each of the first pixel 42A and the second pixel 42B has a color forming structure, and the first pixel 42A and the second pixel 42B exhibit colors of different hues. That is, when viewed from the direction facing the surface 40F of the display body 40, colors of different hues are visually recognized in the first display area 41A and the second display area 41B.
  • Each of the first display area 41A and the second display area 41B represents a character, a symbol, a figure, a pattern, a pattern, a background thereof, or the like by using only these areas or a combination of two or more of these areas. .
  • a circular graphic is expressed by the first display area 41A
  • a triangular graphic is expressed by the second display area 41B.
  • the display body 40 is a region having a configuration different from the configuration of the color forming structure around the display regions 41A and 41B, for example, a region having a structure in which a multilayer film layer is laminated on a base material having a flat surface. Or you may have the area
  • FIG. 8 is a diagram showing a cross-sectional structure of the first pixel 42A and the second pixel 42B.
  • FIG. 8 shows an example in which the color structure 33 constituting the pixels 42A and 42B is a color structure having the first structure.
  • the height h1 of the convex portion 15a is different between the first pixel 42A and the second pixel 42B.
  • the configuration of the multilayer film layer 16 is common to the first pixel 42A and the second pixel 42B. That is, in the first pixel 42A and the second pixel 42B, the material and film thickness of the high refractive index layer 16a, the material and film thickness of the low refractive index layer 16b, and the number of layers of these layers are common. .
  • the first pixel 42A and the second pixel 42B have different heights h1 of the convex portions 15a, so that the first pixel 42A and the second pixel 42B exhibit different hues.
  • the height h1 of the convex portion 15a in each pixel 42A, 42B may be set according to the desired hue for each pixel 42A, 42B.
  • the difference with the hue to exhibit becomes large, and the difference of the hue becomes easy to be recognized by human eyes.
  • the difference between the height h1a and the height h1b is 5 nm or more, and is 1% or more of the peak wavelength of the reflected light from the multilayer film layer 16 when the multilayer film layer 16 is laminated on a flat surface.
  • the peak wavelength of the reflected light from the multilayer film layer 16 is 500 nm
  • the height h1 of the convex portion 15a is When it is about 100 nm and it is desired to develop red color by the pixel, the height h1 of the convex portion 15a is about 200 nm.
  • the height of the concavo-convex structure on the surface of the multilayer film layer 16 is different between the first display area 41A and the second display area 41B, and the display body is compared with the case where such height is constant. Since the uneven structure in the whole 40 is complicated, the uneven structure is easily deformed. Therefore, it is highly beneficial to protect the concavo-convex structure of the multilayer film layer 16 with the protective layer 20.
  • the coloring structure applied to the pixels 42A and 42B is a coloring structure having the second structure
  • the following hue adjustment is possible. That is, in the pattern formed by the projection image of the convex portion 15c on the virtual plane, the second convex portion element 15Eb has a configuration in which the proportion of the second convex portion element 15Eb is smaller than the proportion of the first convex portion element 15Ea.
  • the effect of the height h2 on the hue of the pixels 42A and 42B is very small. Therefore, even in the color forming structure having the second structure, the hue exhibited by the pixels 42A and 42B can be adjusted by adjusting the height h1 of the first convex element 15Ea corresponding to the convex part 15a of the first structure. It is.
  • the pattern of the convex portions 15a is set for each first pixel 42A and each second pixel 42B, for example. That is, the average value and the standard deviation of the length d1 and the length d2 in the plurality of rectangles R constituting the projected image pattern of the convex portion 15a are set for each of the pixels 42A and 42B.
  • the pattern of the convex portion 15a may be different between the pixels 42A and 42B, or may be the same between the pixels 42A and 42B.
  • the size of the pixels 42A and 42B may be set according to the desired resolution for the image formed by the display areas 41A and 41B. In order to display a more accurate image, one side of the pixels 42A and 42B is preferably 10 ⁇ m or more.
  • the convex portions are cut so as to divide the pattern. It is also possible to form the concavo-convex structure of each pixel 42A, 42B by dividing by, for example. Such a manufacturing method is preferable because the manufacturing process becomes easy.
  • the length d2 in the second direction Dy is greater than the length d1 in the first direction Dx at the ends of the pixels 42A and 42B in some of the plurality of pixels 42A and 42B.
  • the convex part which comprises the small rectangle R may be formed. However, even if such a rectangle R is included in the pattern of the convex portions 15a, if the ratio is sufficiently small, the optical influence by the rectangle R is so small that it can be ignored.
  • the protective layer 20 having the ability to absorb the transmitted light of the multilayer film layer 16 is used.
  • the coloring structure 33 constituting the pixels 42 ⁇ / b> A and 42 ⁇ / b> B includes an antireflection layer 21.
  • the antireflection layer 21 covers the surface of the substrate 15 opposite to the surface in contact with the multilayer film layer 16, that is, the surface of the uneven layer opposite to the multilayer film layer 16.
  • the pixels 42A and 42B are arranged such that the side of the antireflection layer 21 with respect to the protective layer 20 is the side of the front surface 40F with respect to the back surface 40R of the display body 40. That is, the protective layer 20 constitutes the back surface 40R of the display body 40, and the antireflection layer 21 constitutes the front surface 40F. And the display body 40 is observed from the surface 40F side, ie, the side in which the antireflection layer 21 is located.
  • the antireflection layer 21 has a function of reducing the surface reflection of the surface of the substrate 15 opposite to the surface having unevenness. That is, the film thickness of the antireflection layer 21 is less than or equal to the wavelength of light in the visible region, and in order to enhance the function of suppressing surface reflection, the film thickness of the antireflection layer 21 is preferably 200 nm or less. Examples of the material constituting the antireflection layer 21 include magnesium fluoride (MgF 2 ) and silicon dioxide (SiO 2 ). In order to enhance the function of suppressing the surface reflection of the base material 15, the refractive index of the antireflection layer 21 is preferably equal to or lower than the refractive index of the base material 15.
  • the antireflection layer 21 may be a layer made of a multilayer film in which high refractive index layers and low refractive index layers are alternately stacked.
  • the base material 15 is continuous between the first pixel 42A and the second pixel 42B, that is, the pixels 42A and 42B have one common base material 15.
  • the uneven structure in the base material 15 is, for example, for each of a portion corresponding to the first display area 41A where the first pixel 42A is located and a portion corresponding to the second display area 41B where the second pixel 42B is located. It is formed by performing lithography or dry etching. In order to change the height h1 of the convex portion 15a, the etching time may be changed.
  • the multilayer film layer 16 is simultaneously formed in the same process for the portion corresponding to the first display region 41A and the portion corresponding to the second display region 41B.
  • the protective layer 20 is formed simultaneously on the portions corresponding to the display areas 41A and 41B, and the antireflection layer 21 is also formed simultaneously.
  • the antireflection layer 21 is formed, for example, by sputtering or vacuum deposition before or after the formation of the multilayer film layer 16.
  • the multilayer film layer 16, the protective layer 20, and the antireflection layer 21 are between the first pixel 42A and the second pixel 42B. Each is continuous.
  • the hues of the first pixel 42A and the second pixel 42B are different from each other because the first pixel 42A and the second pixel 42B have different materials, film thicknesses, and the like of the layers constituting the multilayer film layer 16. It can also be realized by making the configurations different from each other. However, if the configuration of the multilayer film layer 16 is different for each of the display regions 41A and 41B, masking of the region and film formation of the high refractive index layer 16a and the low refractive index layer 16b are repeated for each display region 41A and 41B. And the manufacturing process becomes complicated. As a result, an increase in manufacturing cost and a decrease in yield are caused. In addition, since it is difficult to mask a minute area, there is a limit to the formation of a fine image.
  • the display body 40 it is possible to simultaneously form the multilayer film layer 16 on the portion corresponding to the first display region 41A and the portion corresponding to the second display region 41B. Therefore, the load required for manufacturing the display body 40 is reduced. Further, since it is easy to make the height h1 of the convex portion 15a different for each minute area as compared with masking to a minute area, the display areas 41A and 41B are made smaller, so that a finer image can be obtained. It can also be formed.
  • the multilayer film layer 16 is preferably configured as follows. That is, when the multilayer film layer 16 is laminated on a flat surface, the peak wavelength of the reflected light from the multilayer film layer 16 causes the wavelength of the light of the color to be developed in the first pixel 42A and the color in the second pixel 42B.
  • the multilayer film layer 16 is preferably configured so as to be positioned between the hue light wavelength.
  • the shape of each layer constituting the multilayer film layer 16 is changed to change the optical path length, or the wavelength range of light that is efficiently scattered by the concavo-convex structure may change. It is considered that the hue visually recognized by the coloring structure is changed due to such a phenomenon.
  • the uneven structure is, for example, It is formed as follows. That is, using the nanoimprint method, a mold in which the height of the unevenness is changed in the portion corresponding to each display region 41A, 41B is used, and the uneven structure of the resin layer 17 of each pixel 42A, 42B is simultaneously formed.
  • Such a mold may be formed by performing lithography or dry etching for each portion corresponding to the display regions 41A and 41B.
  • a mold can be more easily formed. That is, the dose of the charged particle beam irradiated to the resist used for the charged particle beam lithography is changed for each of the display areas 41A and 41B, and development is performed so that unevenness of a desired height is formed in each of the display areas 41A and 41B.
  • a resist pattern is formed by adjusting the time. After a metal layer such as nickel is formed on the surface of the resist pattern by electroforming, a resist mold is dissolved to obtain a nickel mold.
  • the number of display areas included in the display body 40 that is, the number of display areas in which pixels composed of color forming structures are arranged and exhibit colors of different hues is not particularly limited, and the number of display areas May be one, or three or more.
  • the display area only needs to include a display element composed of a color developing structure, and the display element is not limited to a pixel that is a minimum unit for forming a raster image, but to form a vector image. It may be a region where the anchors are tied.
  • the protective layer 20 has the ability to absorb the transmitted light of the multilayer film layer 16.
  • the multilayer film layer 16 may have only the function of protecting the concavo-convex structure, or may have an ultraviolet absorbing function by containing an ultraviolet absorber.
  • the protective layer 20 forms the front surface 40F of the display body 40
  • the antireflection layer 21 forms the back surface 40R
  • the display body 40 is observed from the front surface 40F side, that is, the side where the protective layer 20 is located. It is preferable. Further, the antireflection layer 21 may not be provided.
  • a second application example of the coloring structure is a form in which the coloring structure is used for a coloring sheet.
  • the coloring sheet is a sheet composed of a coloring structure, and is fixed to an adherend for decoration or the like.
  • a molded body is composed of the coloring sheet and the adherend.
  • the shape and material of the adherend are not particularly limited.
  • the color developing sheet when a color developing sheet is attached to a resin adherend, the color developing sheet may be, for example, a film insert method, an in-mold lamination method, a three-dimensional overlay lamination method ( It is fixed to the surface of the adherend using a laminate decoration method such as TOM).
  • the film insert method is a method in which the adherend and the color developing sheet are integrated by performing injection molding in a state where the color developing sheet formed by thermal vacuum forming is placed in a mold.
  • the in-mold lamination method is a method in which everything from the thermal vacuum forming of the color developing sheet to the formation of the adherend by injection molding and the integration with the color developing sheet is performed in the same mold.
  • the three-dimensional overlay lamination method is a method in which an adherend and a color developing sheet are integrated using a pressure difference in an airtight space separated from each other by a color developing sheet.
  • the protective layer 20 protects the concavo-convex structure of the multilayer film layer 16.
  • any configuration of the coloring structure described above can be applied.
  • the color developing sheet is used so as to be arranged along the surface of the adherend, it is preferable that the color developing structure has a property of being easily deformed into a shape following the surface of the adherend.
  • the configuration of the color forming structure 32 that is, the configuration in which the resin layer 17 laminated on the base material 15 has an uneven structure has a high degree of freedom with respect to a material that can be used as the base material 15. Therefore, it is preferable.
  • the base material 15 is deformed following the adherend during heating for integration with the adherend.
  • the base material 15 is comprised from a thermoplastic resin.
  • the thermoplastic resin include polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene copolymer (ABS resin), polymethyl methacrylate (PMMA), polyethylene (PE), polypropylene (PP), polycarbonate (PC), Nylon (PA) etc. are mentioned.
  • the film thickness of the base material 15 is preferably as thin as possible from the viewpoint that the color developing sheet easily follows the adherend, and is preferably, for example, about 20 ⁇ m or more and 300 ⁇ m or less.
  • the protective layer 20 having the ability to absorb the transmitted light of the multilayer film layer 16 is used.
  • the protective layer 20 is formed into the concavo-convex structure of the multilayer film layer 16 at the time of heating for integration with the adherend.
  • the protective layer 20 preferably has thermoplasticity. Specifically, if the protective layer 20 is configured to have thermoplasticity at a temperature of 100 ° C. or higher and 160 ° C. or lower, the multilayer film layer 16 can be applied to the concavo-convex structure during heating in the laminate decoration method.
  • followability is suitably obtained.
  • thermoplastic resin may be used as the resin in the configuration in which the protective layer 20 includes a black pigment and a resin.
  • a thermoplastic resin the thermoplastic resin illustrated as a material of the above-mentioned base material 15 is mentioned, for example.
  • the coloring structure 34 constituting the coloring sheet 50 includes an adhesive layer 22 that covers the surface of the protective layer 20 opposite to the surface in contact with the multilayer film layer 16.
  • the adhesive layer 22 has a function of bonding the color developing sheet 50 and the adherend.
  • a color forming structure having a configuration in which the resin layer 17 laminated on the base material 15 has a concavo-convex structure of the second structure is applied as the color forming structure 34 constituting the color developing sheet 50. An example is shown.
  • the adhesive layer 22 When the coloring sheet is fixed to the resin-made adherend using the laminate decorating method, the adhesive layer 22 is bonded so that the adhesive layer 22 exhibits an adhesive function when heated for integration with the adherend.
  • the layer 22 preferably has heat sealability.
  • the heat sealing agent constituting the adhesive layer 22 include thermoplastic resins such as polyethylene, polyvinyl acetate, acrylic resin, polyamide, polyester, polypropylene, and polyurethane.
  • the adhesive layer 22 is formed using a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method.
  • a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method.
  • the film thickness of the contact bonding layer 22 is not specifically limited, For example, it is preferable that it is a grade of 2 micrometers or more and 200 micrometers or less.
  • the coloring sheet 50 having the above configuration is fixed to the adherend 71 such that the adhesive layer 22 is in contact with the adherend 71. That is, in the molded body 55 in which the coloring sheet 50 is fixed to the adherend 71, the base material 15 is directed outward, and the adherend 71 is located on the side where the protective layer 20 is located with respect to the base material 15. . The coloring sheet 50 is observed from the base material 15 side.
  • the coloring structure 34 constituting the coloring sheet 50 may include an antireflection layer similar to that of the display body 40 described above.
  • the protective layer 20 has the ability to absorb the transmitted light of the multilayer film layer 16.
  • the multilayer film layer 16 may have only the function of protecting the concavo-convex structure, or may have an ultraviolet absorbing function by containing an ultraviolet absorber.
  • the color developing sheet is formed such that the protective layer 20 is directed outward to form the outermost surface of the color developing sheet, and the adherend 71 is positioned on the side of the base material 15 relative to the protective layer 20. It is preferable that the colored sheet is fixed to the adherend 71 and observed from the protective layer 20 side.
  • the following effects can be obtained. (1) Since the surface of the multilayer film layer 16 is covered with the protective layer 20 in the color developing structure, deformation of the uneven structure in the multilayer film layer 16 and clogging of the uneven structure can be suppressed. Therefore, it is possible to suppress the change in the optical path length of the light reflected by the multilayer film layer 16 and the decrease in the diffusion effect and diffraction effect of the reflected light due to the concavo-convex structure. Is obtained.
  • the protective layer 20 is laminated directly on the multilayer film layer 16, the manufacturing process is simplified compared to a configuration in which the protective layer is provided via an adhesive layer or the like, and the manufacturing cost is increased and the yield is increased. Reduction is suppressed.
  • the display body 40 including the pixels formed of such a coloring structure and the coloring sheet 50 configured of such a coloring structure can realize the display body 40 and the coloring sheet 50 that can suitably obtain a desired color. Is done. Furthermore, in the molded body provided with such a coloring sheet 50, the decorativeness is enhanced.
  • the protective layer 20 is configured to absorb the transmitted light of the multilayer film layer 16, when the colored structure is observed from the side where the concave / convex layer is located, the concave / convex layer side with respect to the multilayer film layer 16 is observed.
  • the light transmitted through the multilayer film layer 16 is absorbed by the protective layer 20, and the transmitted light is prevented from returning to the uneven layer side. Accordingly, since it is possible to suppress the light having a wavelength region different from the reflected light from the multilayer film 16 from being visually recognized, the color visibility due to the reflected light is prevented from being lowered, and a desired color development can be achieved in the coloring structure. Preferably obtained.
  • the protective layer 20 is a structure containing a black pigment, since the protective layer 20 can absorb light in a wide wavelength range in the visible region, regardless of the wavelength range of light transmitted through the multilayer film layer 16, The protective layer 20 that absorbs transmitted light can be suitably realized.
  • the color developing structure can be suitably attached to the adherend for decoration or the like.
  • corrugated layer is located is implement
  • the protective layer 20 includes an ultraviolet absorber, the protective layer 20 absorbs ultraviolet rays, so that the materials constituting the color forming structures 30 and 31 are prevented from being deteriorated by ultraviolet rays.
  • the protective layer 20 is composed of two or more layers, the protective layer 20 can be multifunctional and the protective layer 20 can be enhanced by combining the functions of these layers. (7) If the hardness measured from the outermost surface of the coloring structure is 0.03 GPa or more, the scratch resistance of the coloring structure is enhanced.
  • the arithmetic average roughness on the outermost surface of the coloring structure is 2 ⁇ m or less, irregular reflection of light on the outermost surface of the coloring structure can be suppressed. As a result, the color visibility due to the reflected light from the multilayer film layer 16 can be suppressed from decreasing.
  • the water contact angle on the outermost surface of the coloring structure is 60 degrees or more, the coloring structure is prevented from deteriorating due to the adhesion of water to the outermost surface.
  • the color developing structure has a concavo-convex structure of the first structure, a diffusion effect of reflected light is obtained by the convex portion, and light in a specific wavelength region is wide as reflected light from the multilayer film layer 16. Observed at an angle.
  • the convex portion can obtain a diffusion effect and a diffraction effect of the reflected light, and a specific wavelength region as the reflected light from the multilayer film layer 16. Can be observed at a wide observation angle, and the intensity of the reflected light is increased, so that a vivid color with a glossiness is visually recognized.
  • the following form can be realized by the second pattern formed by the projection image of the second convex element 15Eb. That is, a plurality of strip regions are arranged along each of the first direction Dx and the second direction Dy, and at least one of the average value and the standard deviation of the array intervals of the strip regions is the array interval along the first direction Dx. It differs from the arrangement interval along the second direction Dy. According to this configuration, the reflected light from the second convex element 15Eb according to the difference between the influence of the scattering effect of the reflected light by the first convex element 15Ea on the first direction Dx and the influence on the second direction Dy.
  • the diffraction effect can be adjusted.
  • the diffraction effect of the reflected light is suitably expressed.
  • the diffraction effect of the reflected light can be adjusted within the range.
  • the material and film thickness of each layer constituting the multilayer film layer 16 are the same in the first pixel 42A and the second pixel 42B, and the uneven layer The structure from which the height of the convex part in can differ is realizable. With this configuration, different hue colors are visually recognized in the region where the first pixel 42A is located and the region where the second pixel 42B is located. Since the configuration of the multilayer film layer 16 is the same in the first pixel 42A and the second pixel 42B, it is not necessary to form the multilayer film layer 16 for each region where the pixels 42A and 42B are located. As a result, the display body 40 having the pixels 42A and 42B exhibiting different hues can be formed by a simple manufacturing process.
  • the coloring sheet 50 composed of the coloring structure
  • the protective layer 20 has a thermoplastic structure
  • the coloring sheet 50 is fixed to the surface of the adherend 71 using a laminate decoration method. In doing so, the followability of the protective layer 20 to the concavo-convex structure of the multilayer film layer 16 is suitably obtained. Therefore, a suitable configuration is realized as the color developing sheet 50 fixed to the surface of the adherend using the laminate decoration method.
  • the color developing sheet 50 composed of the color developing structure, if the adhesive layer 22 has a heat sealing property, the color developing sheet 50 is applied to the surface of the adherend 71 using a laminate decoration method.
  • the color developing sheet 50 and the adherend 71 can be integrated by bringing the adhesive layer 22 into contact with the adherend 71.
  • the coloring sheet 50 and the adherend 71 are suitably bonded. Therefore, a suitable configuration is realized as the color developing sheet 50 fixed to the surface of the adherend 71 using the laminate decoration method.
  • the base material 15 supports the multilayer film layer 16 and the protective layer 20 on the surface of the adherend 71.
  • High heat resistance is required so that the strength is not lowered by heat applied to the base material 15 in the manufacturing process.
  • the surface on the protective layer 20 side is fixed to the adherend 71, the degree of freedom in selecting the material of the base material 15 is increased.
  • the adherend 71 is provided on the side where the protective layer 20 has the absorbability of the transmitted light of the multilayer film layer 16 and the protective layer 20 is located with respect to the uneven layer.
  • the color developing sheet 50 is observed from the side where the uneven layer is positioned, and the light transmitted through the multilayer film layer 16 is absorbed by the protective layer 20. Therefore, desired color development can be suitably obtained in the color development sheet 50. That is, since the color developing sheet 50 is used in a mode in which the color developability can be suitably exhibited, the decorativeness of the molded body is enhanced.
  • the concavo-convex structure is formed on the resin layer 17 covering the surface of the base material 15, the degree of freedom in selecting the material of the base material 15 is increased, and the formation of the concavo-convex structure is fine. It is possible to apply a nanoimprinting method suitable for forming irregularities.
  • the manufacturing method in which the concavo-convex structure of the concavo-convex layer is formed using the nanoimprint method a fine concavo-convex structure can be suitably and easily formed.
  • the nanoimprint method is a manufacturing method in which an optical nanoimprint method or a thermal nanoimprint method is used, formation of a concavo-convex structure by the nanoimprint method can be realized suitably and simply.
  • the layer having the ability to absorb transmitted light of the multilayer film layer 16 may be provided on the side opposite to the protective layer 20 with respect to the multilayer film layer 16.
  • a configuration can be realized by setting the base material 15 and the resin layer 17 to a black layer, or arranging a black layer on the surface of the base material 15 opposite to the multilayer film layer 16.
  • the protective layer 20 is made of a material that is transparent to light in the visible region, and the coloring structure is observed from the side where the protective layer 20 is located.
  • the antireflection layer 21 may be provided on the protective layer 20, and the adhesive layer 22 is provided so as to constitute the outermost surface on the base material 15 side in the coloring structure. It only has to be.
  • the multilayer film layer 16 is in direct contact with the layer that absorbs transmitted light, rather than the configuration in which the transparent layer such as the substrate 15 is sandwiched between the multilayer film layer 16 and the layer that absorbs transmitted light. In this configuration, the transmitted light from the multilayer film layer 16 is more efficiently absorbed by this layer, so that the color visibility due to the reflected light is preferably reduced.
  • the color developing structure may include a layer having an ultraviolet absorptivity as a layer different from the protective layer 20.
  • the coloring structure may include a layer containing an ultraviolet absorber on the opposite side of the base film 15 from the multilayer film layer 16.
  • the pixels included in the display body 40 may include pixels whose extending directions of the concavo-convex structure in the concavo-convex layer are different from each other on the virtual plane.
  • the second direction Dy which is the direction in which the convex portion extends in any pixel
  • the second direction Dy which is the direction in which the convex portion extends in a pixel different from this pixel
  • a configuration in which these directions are orthogonal to each other may be used. According to such a configuration, the direction in which the reflected light from the multilayer film 16 is diffused can be changed depending on the pixel, and various images can be expressed.
  • the width of the convex portion of the concave-convex structure in the multilayer film layer 16 is slightly larger than the width of the convex portion in the concave-convex layer.
  • a portion extending in the multilayer film layer 16 as described above is connected between convex portions having different extension directions, thereby forming a concavo-convex structure in the multilayer film layer 16.
  • a region where the unevenness is not formed in the uneven layer is provided between pixels in which the extending direction of the uneven structure is different from each other. Further, even between pixels having the same concavo-convex structure in the extending direction, a region where the concavo-convex layer is not formed may be provided, and according to such a configuration, the concavo-convex portion caused by the spread of the multilayer film layer 16 may be provided. The collapse of the structure is suppressed at the end of the pixel, and a desired color can be easily obtained from the entire pixel.
  • the width of the region where the unevenness provided between the pixels is not formed is preferably, for example, 1/2 or more of the film thickness of the multilayer film layer 16.
  • the convex part constituting the concave-convex structure of the concave-convex layer may have a configuration in which the width in the first direction Dx gradually decreases from the base part to the top part. According to such a configuration, the multilayer film layer 16 is easily formed on the convex portion.
  • the length d1 and the length d3 in the first direction Dx are defined by a pattern formed by the bottom surface of the convex portion.
  • the pattern constituting the projected image of the convex portion 15a with the first structure of the concave-convex structure in the concave-convex layer and the pattern constituting the pattern with the projected image of the first convex portion element 15Ea in the second structure are It is not limited to a rectangle.
  • the figure constituting these patterns may be an ellipse or the like.
  • the figure may be a graphic element having a shape whose length along the second direction Dy is equal to or greater than the length along the first direction Dx. That's fine.
  • the length d1 in the first direction Dx and the length d2 in the second direction Dy of the graphic element only need to satisfy the various conditions described in the description of the first structure.
  • the outermost layer in the multilayer film layer 16, that is, the layer constituting the outermost surface of the multilayer film layer 16 on the side opposite to the uneven layer may function as a protective layer.
  • the multilayer film layer 16 is an optical functional layer.
  • the layer functioning as the protective layer only needs to be able to suppress, in at least one aspect, changes that make it difficult to obtain a desired color in the color forming structure, such as deformation or alteration of the uneven structure in the lower layer than the protective layer. .
  • the outermost layer in the multilayer film layer 16 functions as a protective layer by having characteristics different from those of the multilayer film layer 16 other than the outermost layer.
  • characteristics may be structural characteristics, chemical characteristics, or physical characteristics, such as hardness, thickness, uneven height, water repellency, and the like.
  • the outermost layer is harder than the other layers, or if the outermost layer is thicker than the other layers, the outermost layer is more resistant to impact than the other layers. The concavo-convex structure in the lower layer is protected.
  • the height of the unevenness in the outermost layer is smaller than that of the other layers, that is, if the flatness in the outermost layer is higher than that of the other layers, the height of the unevenness on the surface of the multilayer film layer 16 is reduced. As a result, it becomes difficult for the impact to cause deformation of the unevenness, so that the uneven structure below the outermost layer is protected.
  • the entire multilayer film layer 16 has a surface shape that follows the concavo-convex structure of the concavo-convex layer, that is, the concavo-convex layer.
  • the multilayer film layer 16 has projections and depressions corresponding to the arrangement of the projections and depressions in the projection / recess structure, and the reflectance of light in a specific wavelength region of incident light incident on the multilayer film layer 16 is different in other wavelength regions. It is configured to be higher than the reflectance of light.
  • Example 1 is a display body in which a coloring structure is applied to pixels.
  • the pixel included in the display body of Example 1 is composed of a color developing structure in which a concavo-convex structure having a first structure is formed on a base material.
  • a mold which is an intaglio used in the optical nanoimprint method was prepared. Specifically, since light having a wavelength of 365 nm was used as light to be irradiated in the optical nanoimprint method, synthetic quartz that transmits light having this wavelength was used as a mold material.
  • a film made of chromium (Cr) was formed on the surface of the synthetic quartz substrate by sputtering, and an electron beam resist pattern was formed on the Cr film by electron beam lithography.
  • the formed pattern is a pattern composed of a set of a plurality of rectangles shown in FIG.
  • the pixel region is a square having a side of 130 mm, the length of the rectangle in the first direction is 380 nm, and the length of the rectangle in the second direction is a normal value having an average value of 2400 nm and a standard deviation of 580 nm. The length selected from the distribution.
  • the plurality of rectangles are arranged so as not to overlap in the first direction.
  • the resist used was a positive type, and the film thickness was 200 nm.
  • the Cr film in the region exposed from the resist was etched by plasma generated by applying a high frequency to a mixed gas of chlorine (Cl 2 ) and oxygen (O 2 ).
  • the synthetic quartz substrate in the region exposed from the resist and the Cr film was etched by a plasma generated by applying a high frequency to hexafluoroethane gas.
  • the depth of the synthetic quartz substrate etched by this was 70 nm.
  • OPTOOL HD-1100 manufactured by Daikin Industries
  • OPTOOL HD-1100 manufactured by Daikin Industries
  • a photocurable resin PAK-02, manufactured by Toyo Gosei Co., Ltd.
  • PAK-02 manufactured by Toyo Gosei Co., Ltd.
  • the synthetic quartz wafer and the resin layer were peeled from the mold.
  • a synthetic quartz wafer in which a resin layer having an uneven structure was laminated was obtained.
  • the synthetic quartz wafer was etched by plasma using O 2 gas to remove the photocurable resin remaining in the concave portion of the concave-convex structure.
  • O 2 gas 40 sccm of O 2 gas was introduced to cause plasma discharge.
  • etching using plasma using a mixed gas of octafluorocyclobutane (C 4 F 8 ) and argon (Ar) was performed, and the uneven structure of the resin layer was transferred to a synthetic quartz wafer.
  • a TiO 2 film as a high refractive index layer having a thickness of 205 nm and a SiO 2 film as a low refractive index layer having a thickness of 100 nm are formed on the surface of the synthetic quartz wafer having irregularities by vacuum deposition.
  • a multilayer film layer having 10 layers was formed.
  • an SiO 2 film having a thickness of 100 nm was formed as an antireflection layer by vacuum deposition on the surface opposite to the surface on which the multilayer stack was stacked in the synthetic quartz wafer.
  • Example 1 Furthermore, about 4% by mass of carbon nanotube powder is mixed with acrylic UV curable resin to adjust the black ink.
  • the black ink is applied to the surface of the multilayer film layer using the bar coating method, and the coating layer is dried. To form a protective layer. Thereby, the display body of Example 1 was obtained. When the display body of Example 1 was observed from the side where the antireflection layer was positioned, green color was confirmed in the region where the pixels were positioned with good visibility.
  • Example 2 is a coloring sheet to which the coloring structure is applied, and a molded body using the coloring sheet.
  • the color developing sheet of Example 2 is composed of a color developing structure in which a concavo-convex structure having a second structure is formed on a resin layer on a substrate.
  • a mold which is an intaglio used in the optical nanoimprint method was prepared. Specifically, since light having a wavelength of 365 nm was used as light to be irradiated in the optical nanoimprint method, synthetic quartz that transmits light having this wavelength was used as a mold material.
  • a film made of chromium (Cr) was formed on the surface of the synthetic quartz substrate by sputtering, and an electron beam resist pattern was formed on the Cr film by electron beam lithography.
  • the formed pattern is a pattern composed of a set of a plurality of rectangles shown in FIG.
  • the length of the rectangle in the first direction is 300 nm
  • the length of the rectangle in the second direction is a length selected from a normal distribution having an average value of 2000 nm and a standard deviation of 500 nm.
  • the plurality of rectangles are arranged so as not to overlap in the first direction.
  • the resist used was a positive type, and the film thickness was 200 nm.
  • the Cr film in the region exposed from the resist was etched by plasma generated by applying a high frequency to a mixed gas of chlorine (Cl 2 ) and oxygen (O 2 ).
  • the synthetic quartz substrate in the region exposed from the resist and the Cr film was etched by a plasma generated by applying a high frequency to hexafluoroethane gas.
  • the depth of the synthetic quartz substrate etched by this was 70 nm.
  • the formed pattern is a pattern composed of a plurality of strip-like regions shown in FIG.
  • the length of the band-like region in the first direction is 200 nm
  • the length of the band-like region in the second direction is 94 ⁇ m
  • the length in the first direction is 40 ⁇ m
  • the length in the second direction is 94 ⁇ m.
  • the belt-like regions are arranged with an arrangement interval in the first direction having an average value of 1.5 ⁇ m and a standard deviation of 0.5 ⁇ m.
  • the electron beam resist used was a positive type, and the film thickness was 200 nm.
  • the Cr film in the region exposed from the resist was etched by plasma generated by applying a high frequency to a mixed gas of chlorine (Cl 2 ) and oxygen (O 2 ).
  • the synthetic quartz substrate in the region exposed from the resist and the Cr film was etched by a plasma generated by applying a high frequency to hexafluoroethane gas.
  • the depth of the etched synthetic quartz substrate was 65 nm.
  • OPTOOL HD-1100 manufactured by Daikin Industries
  • a photocurable resin (PAK-02, manufactured by Toyo Gosei) is applied to the surface of the polyester film (Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) that has been subjected to an easy adhesive process on one side, The surface on which the unevenness of the mold was formed was pressed against this resin, and 365 nm light was irradiated from the back side of the mold. After the photocurable resin was cured by this light irradiation, the polyester film and the resin layer were peeled from the mold. Thereby, the polyester film which is a base material with which the resin layer which has the uneven structure of a 2nd structure was laminated
  • the surface having the unevenness of the laminate of the obtained base material and the resin layer, by vacuum evaporation, and TiO 2 film as a high refractive index layer film thickness is 40 nm, a low film thickness of 75nm
  • the SiO 2 film as the refractive index layer was alternately formed to form a multi-layered film layer having 5 sets of high refractive index layers and low refractive index layers, that is, 10 layers.
  • the molded body of Example 2 was obtained by integrating the color developing sheet of Example 2 with an adherend made of polycarbonate using a three-dimensional overlay lamination method.
  • the adhesive layer of the color developing sheet was placed on the adherend in a molding machine, the inside of the molding machine was evacuated, and then heated to 160 ° C. to contact the color developing sheet and the adherend. In this state, pressurization from the color developing sheet side to atmospheric pressure was performed to integrate the color developing sheet and the adherend. Then, the molded part of Example 2 decorated with the color developing sheet was obtained by cutting off unnecessary portions of the color developing sheet.
  • a glossy blue color was confirmed with good visibility in the portion where the color developing sheet was located.
  • the transfer foil is a sheet used for attaching the color developing structure to an adherend such as an article. Specifically, the transfer foil is used for transferring the color forming structure provided in the transfer foil to the adherend. Below, it demonstrates centering around structures other than the multilayer film layer with which a color development structure is provided, About the structure similar to the multilayer film layer mentioned above, the same code
  • the transfer foil 60 includes a release layer 65, which is an example of an uneven layer, a multilayer film layer 16, an anchor layer 67, an absorption layer 68, and an adhesive layer 69.
  • the multilayer film layer 16, the anchor layer 67, the absorption layer 68, and the adhesive layer 69 constitute the color developing sheet 61.
  • the anchor layer 67 and the absorption layer 68 are examples of a protective layer (outermost layer). That is, the transfer foil 60 is a laminate of the release layer 65 and the color developing sheet 61.
  • the release layer 65 includes a base material 62 that is a flat layer and a resin layer 63 located on the surface of the base material 62.
  • the resin layer 63 has a concavo-convex structure on the surface that is the surface opposite to the surface in contact with the base material 62.
  • the concavo-convex structure of the resin layer 13 includes a plurality of convex portions 15a and concave portions 15b that are regions between the plurality of convex portions 15a, and the convex portions 15a have an irregular length and are substantially band-shaped. It is comprised from the part extended to.
  • the release layer 65 is preferably made of a material that transmits light in the visible region.
  • the base material 62 for example, a synthetic quartz substrate or a film made of a resin such as polyethylene terephthalate (PET) is used. From the viewpoint of enhancing the flexibility of the transfer foil 60, the substrate 62 is preferably made of a resin.
  • resin which comprises the resin layer 63 photocurable resin is used, for example.
  • the film thickness of the base material 62 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the release layer 65 is configured to be peelable from the multilayer film layer 16 of the color developing sheet 61.
  • the resin layer 63 contains a component that functions as a release agent such as silicone oil or a fluorine compound.
  • the multilayer film layer 16 has a surface shape that covers the surface of the resin layer 63 and follows the uneven structure of the resin layer 63.
  • the multilayer film layer 16 has a first surface 16F that is a surface in contact with the resin layer 63 and a second surface 16S that is a surface opposite to the first surface 16F.
  • the first surface 16F has a concavo-convex structure composed of concavo-convex portions in which the convex portions 15a and the concave portions 15b in the concavo-convex structure of the resin layer 63 are inverted.
  • the second surface 16 ⁇ / b> S has a concavo-convex structure that follows the concavo-convex structure of the resin layer 13.
  • the configuration of the multilayer film layer 16, that is, the material, film thickness, and stacking order of the multilayer film layer 16 are the same on the convex portion 15 a and the concave portion 15 b in the resin layer 63.
  • the anchor layer 67, the absorption layer 68, and the adhesive layer 69 are located on the side facing the second surface 16S with respect to the multilayer film layer 16.
  • the anchor layer 67 covers the second surface 16S of the multilayer film layer 16 and is sandwiched between the multilayer film layer 16 and the absorption layer 68.
  • the anchor layer 67 has a function of improving adhesion to the lower layer in the absorption layer 68. In other words, the anchor layer 67 enhances the fixing strength of the absorption layer 68 with respect to the multilayer film layer 16.
  • a material constituting the anchor layer 67 for example, a vinyl resin or the like is used.
  • the film thickness of the anchor layer 67 is, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • the absorbing layer 68 is in contact with the anchor layer 67 on the side opposite to the multilayer film layer 16 with respect to the anchor layer 67 and has a light absorptivity for absorbing light transmitted through the multilayer film layer 16.
  • the absorption layer 68 is a layer containing a material that absorbs light in the visible region, such as a light absorber or a black pigment.
  • the absorbing layer 68 is preferably a layer in which a black inorganic pigment such as carbon black, titanium black, black iron oxide, or black composite oxide is mixed with a resin.
  • the film thickness of the absorption layer 68 is, for example, not less than 1 ⁇ m and not more than 10 ⁇ m.
  • the adhesive layer 69 is in contact with the absorbent layer 68 on the side opposite to the multilayer film layer 16 with respect to the absorbent layer 68 and has adhesiveness.
  • a material for forming the adhesive layer 69 for example, an acrylic resin or the like is used.
  • the film thickness of the adhesive layer 19 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the surface of the adhesive layer 69 opposite to the multilayer film layer 16 with respect to the adhesive layer 69 may be covered with a protective sheet for protecting the adhesive layer 69 and suppressing a decrease in adhesiveness.
  • the release layer 65 is formed.
  • a method for forming the concavo-convex structure of the resin layer 63 for example, a nanoimprint method is used.
  • the material of the resin layer 13 is formed on the surface on which the concavo-convex shape of the intaglio having the concavo-convex inversion of the formation target is formed.
  • a coating solution containing a photocurable resin is applied.
  • the coating liquid also contains a release agent.
  • the coating method of the coating solution is not particularly limited, and a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method may be used.
  • the substrate 62 is superimposed on the resin layer 63 on the surface of the coating liquid layer, and the resin is applied from the substrate 62 side or the mold side to the resin layer 63 in a state where the substrate 62 and the mold are pressed against each other.
  • the layer 63 is irradiated with light.
  • the mold is released from the layer containing the cured photocurable resin and the substrate 62. Thereby, the unevenness of the mold is transferred to the photo-curing resin, the resin layer 63 having the unevenness on the surface is formed, and the peeling layer 65 composed of the base material 62 and the resin layer 63 is formed.
  • the mold is made of, for example, synthetic quartz or silicon, and is formed using a well-known fine processing technique such as lithography or dry etching that irradiates light or a charged particle beam.
  • the coating liquid may be applied to the surface of the base material 62 and irradiated with light in a state where the mold is pressed against the layer made of the coating liquid on the base material 62.
  • the resin constituting the resin layer 63 may be a resin according to a manufacturing method such as a thermoplastic resin or a thermosetting resin. Used. Subsequently, the layers constituting the multilayer film layer 16 are sequentially laminated on the uneven surface of the release layer 65.
  • an anchor layer 67 is formed on the second surface 16S that is the upper surface of the multilayer film layer 16.
  • the anchor layer 67 is formed using a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method.
  • an absorption layer 68 is formed on the surface of the anchor layer 67.
  • the absorption layer 68 is formed by using a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method.
  • a solvent may be mixed in the ink that is a coating liquid for forming the absorption layer 68.
  • a solvent that is compatible with the resin constituting the absorption layer 18 may be selected.
  • an adhesive layer 69 is formed on the surface of the absorption layer 68.
  • the adhesive layer 69 is formed using a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method. Thereby, the transfer foil 60 is formed.
  • the structure of the color developing sheet 61 and the molded body will be described while explaining the method of transferring the color developing sheet 61 from the transfer foil 60 to the adherend.
  • the coloring sheet 61 may be used, for example, for the purpose of increasing the designability of an article that is an adherend, or may be used for the purpose of increasing the difficulty of counterfeiting the article. It may also be used.
  • the transfer foil 60 is attached to the adherend 71 such that the adhesive layer 69 is in contact with the adherend 71. That is, in the state where the transfer foil 60 is fixed to the adherend 71, the base material 62 of the release layer 65 is directed outward.
  • the shape and material of the adherend 71 are not particularly limited, and the adherend 71 only needs to have a surface to which the adhesive layer 69 can adhere.
  • the release layer 65 is peeled from the color developing sheet 61.
  • the peeling layer 65 is peeled off by applying a force that pulls the peeling layer 65 to the opposite side of the adherend 71 to the peeling layer 65.
  • the coloring sheet 61 is transferred from the transfer foil 60 to the adherend 71, and the coloring sheet 61 is fixed to the surface of the adherend 71. And the molded object 80 comprised from the color development sheet 61 and the to-be-adhered body 71 is obtained.
  • the first surface 16F of the multilayer film layer 16 in the color developing sheet 61 constitutes the outermost surface of the color developing sheet 61 and is exposed to the outside air.
  • the adhesive layer 69 constitutes the outermost surface on the opposite side of the first surface 16F in the color developing sheet 61.
  • the concavo-convex structure of the first surface 16F is constituted by the concavo-convex structure in which the concavo-convex convex portions 15a and the concave portions 15b of the release layer 65 are inverted. That is, when viewed from the direction facing the first surface 16F, the pattern formed by the concave portions 11a of the first surface 16F is a pattern formed by a set of a plurality of rectangles R, and the width distribution of the rectangles R and the rectangles R This arrangement has the same characteristics as the pattern formed by the convex portions 15a viewed from the direction facing the surface of the resin layer 13.
  • the depth k1 of the concave portion 11a coincides with the height h1 of the convex portion 15a, and the depth k1 of the concave portion 11a is constant. That is, the concave portion 11a has a shape that is recessed in one step from the plane in which the concave portion 11a opens.
  • the layer made of the base material 62 and the resin layer 63 used for forming the concavo-convex structure of the multilayer film layer 16 when the color developing sheet 61 is manufactured is configured to be peelable from the multilayer film layer 16.
  • the coloring sheet 61 is attached to the adherend 71 and then peeled off.
  • the color developing sheet 61 does not have a base material at the time of manufacture, the flexibility of the color developing sheet 61 is enhanced.
  • the coloring sheet is composed of a structure including the base material 62 and the resin layer 63 and the base material 62 and the resin layer 63 are also fixed to the adherend 71 in addition to the multilayer film layer 16, the coloring sheet is In order to maintain the state of being fixed to the curved surface of the adherend 71, it is necessary to deform not only the multilayer film 16 but also the base material 62 and the resin layer 63 into a shape along the curved surface.
  • the adherend 71 is made of a resin
  • the adherend 71 and the coloring sheet are integrated using a laminate decorating method or the like.
  • the laminate decoration method a heat treatment, a pressure treatment, and a vacuum treatment are performed, so that a physical or chemical load on the color developing sheet is large. As a result, the concavo-convex structure of the multilayer film layer 16 may collapse, making it difficult to obtain a desired color.
  • the material and surface shape of the adherend 71 that can be used as an object to which the coloring sheet is attached.
  • the coloring sheet is easily peeled off from the adherend 71.
  • the transfer foil since the base material 62 and the resin layer 63 are peeled off, it is not necessary to deform these layers as plastic deformation into a shape along the surface of the adherend 71.
  • the substrate 62 and the resin layer 63 are flexible enough to be along the surface of the adherend 71 in a short period of time after the transfer foil 60 is attached to the adherend 71 and after the release layer 65 is peeled off. is doing. Therefore, the coloring sheet 61 can be fixed to the adherend 71 using the transfer foil 60 without applying a large load such as heating or pressing to the coloring sheet 61.
  • the coloring sheet 61 fixed to the adherend 71 does not have a base material at the time of manufacture, and has high flexibility, the adhesion between the coloring sheet 61 and the surface of the adherend 71 is increased. Further, peeling of the color developing sheet from the adherend 71 is also suppressed.
  • the thickness of the color developing sheet 61 is reduced as compared with the case of having a base material at the time of manufacture. Therefore, it is possible to suppress the portion of the molded body 80 where the color developing sheet 61 is attached from rising. Therefore, when the color developing sheet 61 is used for decoration, it is possible to enhance the decoration.
  • the multilayer film layer 16 is formed of a material that is transparent to light in the visible region, the wavelength other than the specific wavelength region reflected by the multilayer film layer 16 among the wavelength regions included in the incident light. Part of the light in the region is transmitted through the multilayer film layer 16.
  • the wavelength range of the transmitted light is different from the wavelength range of the reflected light in the multilayer film layer 16, and the color of the transmitted light is mainly a complementary color of the color of the reflected light. For this reason, when such transmitted light is visually recognized, the color visibility by reflected light is lowered.
  • the color developing sheet 61 since the color developing sheet 61 includes the absorption layer 68, the transmitted light of the multilayer film layer 16 is absorbed by the absorption layer 68, and the transmitted light is reflected by the surface of the adherend 71 and the like. Injection to the first surface 16F side of the film layer 16 is suppressed. Accordingly, it is possible to suppress the viewing of light in a wavelength region different from the reflected light from the multilayer film layer 16 when viewed from the first surface 16F side, and thus it is possible to suppress a decrease in color visibility due to the reflected light. In the color developing sheet 61, a desired color development can be suitably obtained.
  • the release layer 65 is peeled off from the multilayer film 16 after the transfer foil 60 is attached and fixed to the adherend 71 .
  • the procedure for fixing the coloring sheet 61 to the adherend 71 is not limited to this order.
  • the peeling layer 65 is peeled off by the transfer foil 60 before being attached to the adherend 71, and then the coloring sheet 61 is covered. You may affix on the kimono 71.
  • FIG. Thereby, since the coloring sheet 61 is affixed to the adherend 71 in a state where flexibility is increased, the degree of freedom of the shape of the surface of the adherend 71 to which the coloring sheet 61 is fixed is further increased.
  • the transfer foil 60 includes a protective sheet for protecting the adhesive layer 69 when the peeling layer 65 is peeled off and suppressing a decrease in adhesiveness.
  • the color developing sheet 61 may include a protective layer 90 that covers the first surface 16 ⁇ / b> F of the multilayer film 16.
  • the protective layer 90 constitutes the outermost surface of the color developing sheet 61.
  • the protective layer 90 is a coating layer containing a resin, and is made of a material that is transparent to light in the visible region, that is, a material that is transparent to light in the visible region.
  • a material constituting the protective layer 90 for example, an acrylic resin or the like is used.
  • the protective layer 90 is made of a resin containing fluorine, it is possible to prevent dirt such as sebum from adhering to the surface of the color developing sheet 61.
  • the film thickness of the protective layer 90 is, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the protective layer 90 is formed after the release layer 65 is peeled off.
  • the protective layer 90 is formed by using a known coating method such as an inkjet method, a spray method, a bar coating method, a roll coating method, a slit coating method, or a gravure coating method.
  • the color developing sheet 61 includes the protective layer 90, the overall thickness of the color developing sheet 61 is reduced as compared with the configuration in which the color developing sheet includes the base material 62 and the resin layer 63 which are base materials at the time of manufacture. It is possible to increase the flexibility of the color developing sheet 61. As described above, according to the transfer foil, the following effects can be obtained.
  • the color developing sheet 61 does not include the base material used to form the uneven structure of the multilayer film layer 16, the flexibility of the color developing sheet 61 is enhanced. Therefore, since the color developing sheet 61 can easily follow along the surface of the adherend 71, it is possible to reduce a load such as heating and pressurization applied to the color developing sheet 61 when the color developing sheet 61 is fixed to the adherend 71. Further, since the adhesion between the color developing sheet 61 and the adherend 71 is improved, the color developing sheet 61 is difficult to peel off from the adherend 71.
  • the thickness of the color developing sheet 61 can be particularly suppressed.
  • the multilayer film layer 16 is covered with the protective layer 90 and the protective layer 90 forms the outermost surface of the color developing sheet 61, the concave-convex structure of the multilayer film layer 16 can be protected. Deformation can be suppressed. Therefore, the desired color can be suitably obtained in the color developing sheet 61.
  • the color developing sheet 61 includes the absorption layer 68, the light transmitted through the multilayer film layer 16 is absorbed by the absorption layer 68 and the transmitted light is prevented from returning to the first surface 16F side. It is done. Therefore, when the color developing sheet 61 is observed from the first surface 16F side, light in a wavelength region different from the reflected light from the multilayer film layer 16 is suppressed from being visually recognized. Decrease is suppressed. Since the color developing sheet 61 includes the absorption layer 68 in addition to the adhesive layer 69, the selection of the material of the adhesive layer 69 and the selection of the material of the absorption layer 68 are compared with the configuration in which the adhesive layer 69 has light absorption. Increased freedom. Therefore, a high degree of freedom in adjusting the adhesion of the adhesive layer 69 and the light absorption of the absorption layer 18 can be obtained.
  • the absorption layer 68 is a layer containing a black pigment
  • the absorption layer 68 can absorb light in a wide wavelength region in the visible region. Therefore, in the configuration where the incident light is light in the visible region, the light transmitted through the multilayer film 16 is favorably absorbed.
  • the absorption layer 68 containing a pigment can be suitably fixed on the multilayer film layer 16 by the anchor layer 67.
  • a diffused effect of reflected light is obtained by the concavo-convex structure of the multilayer film layer 16, and light in a specific wavelength region is observed at a wide angle as reflected light from the multilayer film layer 16.
  • the flexibility of the color developing sheet 61 is enhanced, so that the degree of freedom of the shape of the surface to which the color developing sheet 61 is fixed in the adherend 71 is increased. Further, a molded body 80 in which the color developing sheet 61 is hardly peeled off from the adherend 71 is realized.
  • the release layer 65 is configured to be peelable from the multilayer film 16, the adhesive layer 69 is attached to the adherend 71 and the transfer foil 60 is attached to the adherend 71. Then, the release layer 65 can be released from the multilayer film layer 16. Therefore, by using the transfer foil 60, it is possible to dispose a highly flexible coloring sheet 61 on the adherend 71 that does not include the base material used for forming the uneven structure of the multilayer film layer 16. .
  • the release layer 65 if the resin layer 63 covering the surface of the base material 62 has a concavo-convex structure, a nanoimprint method suitable for forming a fine concavo-convex structure is used. Applicable. And if it is the structure in which the mold release agent is contained in the resin layer 63, the peeling layer 65 which can peel with respect to the multilayer film layer 16 is implement
  • the uneven structure of the release layer 65 in the transfer foil 100 that is, the structure of the uneven structure of the first surface 16 ⁇ / b> F of the multilayer film layer 16 is the same as the structure of the uneven structure of the transfer foil 60 described above. Is different. Except for the configuration of such an uneven structure, the transfer foil 100 and the color developing sheet 110 have the same configuration as the transfer foil 60 and the color developing sheet 61 described above.
  • the uneven structure of the first surface 16F of the multilayer film layer 16 in the color developing sheet 110 is composed of unevenness in which the uneven protrusions 15c and the recesses 15b of the release layer 65 are inverted. That is, when viewed from the direction facing the first surface 16F, the pattern formed by the recessed portion 31a of the first surface 16F is the pattern formed by the inverted first recessed portion element of the first protruding portion element 15Ea, and This is a pattern in which the pattern formed by the inverted second concave element of the two convex elements 15Eb is overlaid.
  • the pattern formed by the first recessed element that is, the pattern formed by the projection image of the first recessed element in the direction facing the first surface 16F is the first pattern described above with respect to the distribution of the width of the rectangle R and the arrangement of the rectangle R. It has the same characteristics.
  • the pattern formed by the second recessed element that is, the pattern formed by the projection image of the second recessed element in the direction facing the first surface 16F has the same characteristics as the second pattern with respect to the width and arrangement of the band-like regions. Have.
  • the recessed part 31a has a multistage shape in which the 1st recessed part element and the 2nd recessed part element were located in a line with the depth direction.
  • the depth k1 of the concave 31a matches the height h1 of the first convex element 15Ea.
  • the depth k3 of the concave 31a is the height h1 of the first convex element 15Ea and the height h2 of the second convex element 15Eb. Matches the sum.
  • the color developing sheet 110 may include a protective layer 20 that covers the first surface 16F of the multilayer layer 16.
  • the color developing sheet 110 As described above, according to the color developing sheet 110, the light diffusion phenomenon caused by the portion formed by the first recessed element in the recessed portion 31a and the light diffraction phenomenon caused by the portion formed by the second recessed element. Thus, the reflected light in a specific wavelength region can be observed at a wide observation angle, and the intensity of this reflected light is increased, whereby a vivid color with a glossy feeling is visually recognized.
  • the transfer foil 100 provided with the coloring structure 32 the following effects can be obtained in addition to the effects (2-1) to (2-8).
  • (2-9) The diffused and diffracted effects of reflected light can be obtained by the uneven structure of the multilayer film layer 16, and light in a specific wavelength region can be observed from a wide observation angle as reflected light from the multilayer film layer 16. At the same time, a bright color with glossiness is visually recognized by increasing the intensity of the reflected light.
  • the transfer foils 60 and 100 described above can be implemented with the following modifications.
  • the resin layer 63 of the release layer 65 includes a release agent, so that the release layer 65 is configured to be peelable from the multilayer film layer 16.
  • the transfer foils 61 and 100 are release layers that are layers along the uneven structure of the release layer 65 between the release layer 65 and the multilayer film layer 16 and include a release agent. May be further provided.
  • the release layer is formed, for example, by applying a release agent to the resin layer 63 before the formation of the multilayer film layer 16. Then, when peeling occurs at the interface between the release layer 65 and the release layer, or at the interface between the release layer and the multilayer film layer 16, the release layer 65 is peeled from the multilayer film layer 16.
  • the color developing sheets 61 and 110 include the release layer as the protective layer 90.
  • the release layer is made of a resin containing fluorine
  • the release layer 65 can be peeled off from the multilayer film layer 16 by the release layer, and after release of the release layer 65, the release layer Exhibits an effect of suppressing dirt such as sebum from adhering to the surfaces of the color developing sheets 61 and 110 as the protective layer 90.
  • the release layer 65 may include only the base material 62 and may have a concavo-convex structure on the surface of the base material 62.
  • the concavo-convex structure on the surface of the base material 62 is formed by using a known fine processing technique such as lithography or dry etching that irradiates light or charged particle beams.
  • the release layer 65 can be configured to be peelable from the multilayer film layer 16 by providing the above-described release layer.
  • the release layer 65 may be configured to exhibit peelability with respect to the multilayer film layer 16 based on receiving a physical external stimulus such as heating or cooling. According to such a configuration, the peeling of the peeling layer 65 can be controlled by the presence / absence of an external stimulus and the timing at which the external stimulus is applied. That is, it is possible to suppress the peeling layer 65 from being peeled when not intended.
  • the absorption layer 68 has a light absorptivity that absorbs at least part of the light transmitted through the multilayer film layer 16 without absorbing all the light in the visible region, the layer having such a light absorptivity is used. As compared with a configuration in which no is provided, an effect of suppressing a decrease in color visibility due to reflected light can be obtained.
  • the absorption layer 68 may be a layer containing a pigment having a color corresponding to the wavelength range of light that passes through the multilayer film layer 16.
  • the absorption layer 68 is a black layer containing a black pigment, it is not necessary to adjust the color of the absorption layer 68 in accordance with the wavelength range of transmitted light, and the absorption layer 68 emits light in a wide wavelength range. Since it absorbs, the fall of the visibility of the color by reflected light is suppressed simply and suitably.
  • the color developing sheets 61 and 110 do not have the absorption layer 68 that is separate from the adhesive layer 69, and the adhesive layer 69 has a light absorptivity that absorbs at least part of the light transmitted through the multilayer film layer 16. May be. Even with such a configuration, when viewed from the first surface 16F side, light in a wavelength region different from the reflected light from the multilayer film layer 16 is suppressed from being visually recognized. Therefore, it is possible to suppress a decrease in color visibility due to reflected light. If the adhesive layer 69 has a light-absorbing configuration, the color-forming sheets 61 and 110 are different from the configuration in which the color-forming sheets 61 and 110 have a light-absorbing layer separately from the adhesive layer 69.
  • the configuration is simplified, and the color developing sheets 61 and 110 can be made thin.
  • the color developing sheets 61 and 110 do not need to include the anchor layer 67. That is, the adhesive layer 69 only needs to cover the second surface 16 ⁇ / b> S of the multilayer film layer 16.
  • the color developing sheets 61 and 110 may not include a layer that absorbs at least part of the light transmitted through the multilayer film layer 16. As such a case where the color developing sheets 61 and 110 are used, for example, the case where the color developing sheets 61 and 110 are used for applications where high visibility of the color by reflected light is not required is assumed. Further, when such color developing sheets 61 and 110 are used, the transmitted light of the multilayer film layer 16 is transmitted to the first surface 16F side, such as a form in which the color developing sheets 61 and 110 are attached to the black surface of the adherend 71. It is assumed that the color developing sheets 61 and 110 are used in such a manner that it is possible to suppress the return to the above.
  • the protective layer 90 may not be a coating layer, and the protective layer 90 may be composed of a plurality of layers.
  • the pattern constituting the convex portion 15a of the release layer 65 that is, the figure constituting the pattern constituted by the concave portion 11a of the multilayer film layer 16, is not limited to a rectangle.
  • the figure constituting the pattern formed by the first convex element or the first concave element is not limited to a rectangle.
  • the figure constituting these patterns may be an ellipse or the like.
  • the figure may be a graphic element having a shape whose length along the second direction Dy is equal to or greater than the length along the first direction Dx. That's fine.
  • the length d1 of the 1st direction Dx in the figure element and the length d2 of the 2nd direction Dy should just satisfy
  • the convex part which comprises the uneven structure of the peeling layer 65 may have a structure where the width
  • the length d1 and the length d3 in the first direction Dx are defined by a pattern formed by the bottom surface of the convex portion.
  • the concave portion constituting the concave-convex structure of the first surface 16F of the multilayer film layer 16 may have a configuration in which the width in the first direction Dx gradually increases from the bottom toward the opening.
  • the length of the recess in the first direction Dx is defined by the pattern formed by the opening of the recess.
  • the anchor layer 67 and the absorption layer 68 can be changed to the above-described protective layer 20 applied to the display body. That is, the protective layer positioned between the multilayer film layer 16 and the adhesive layer 69 may contain an ultraviolet absorber. Further, in the protective layer located between the multilayer film layer 16 and the adhesive layer 69, the hardness measured from the surface of the protective layer can be 0.03 GPa or more, like the protective layer 20 described above. . Further, in the protective layer located between the multilayer film layer 16 and the adhesive layer 69, the surface roughness Ra on the surface of the protective layer can be set to 2 ⁇ m or less, like the protective layer 20 described above. Furthermore, in the protective layer located between the multilayer film layer 16 and the adhesive layer 69, the water contact angle on the surface of the protective layer 20 can be 60 degrees or more.

Abstract

発色構造体は、表面に凹凸構造を有する凹凸層と、この凹凸構造上に位置して当該凹凸構造に追従した表面形状を有する多層膜層と、多層膜層の表面を覆う保護層とを備える。凹凸構造を構成する凸部は1段以上の形状を有し、凹凸層の厚さ方向に凹凸構造が投影される仮想平面において凸部の投影像が構成するパターンは、第2方向に沿った長さが第1方向に沿った長さ以上である複数の矩形の集合からなるパターンを含み、矩形の第1方向に沿った長さはサブ波長以下であり、複数の矩形において、第2方向に沿った長さの標準偏差は、第1方向に沿った長さの標準偏差よりも大きい。

Description

発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法
 本発明は、構造色を呈する発色構造体、発色構造体を備える表示体、発色シート、発色シートを備える成形体、および、発色構造体の製造方法に関する。
 モルフォ蝶等の自然界の生物の色として多く観察される構造色は、色素が呈する色のように分子における電子遷移に起因して視認される色とは異なり、光の回折や干渉や散乱といった、物体の微細な構造に起因した光学現象の作用によって視認される色である。
 例えば、多層膜干渉による構造色は、相互に隣り合う薄膜の屈折率が相互に異なる多層膜層において、多層膜の各界面で反射した光が干渉することによって生じる。多層膜干渉は、モルフォ蝶の翅の発色原理の1つである。モルフォ蝶の翅では、多層膜干渉に加えて、翅の表面の微細な凹凸構造によって光の散乱や回折が生じる結果、鮮やかな青色が広い観察角度において視認される。
 モルフォ蝶の翅のような構造色を人工的に再現する構造として、特許文献1に記載のように、不均一に配列された微細な凹凸を有する基材の表面に、多層膜層が積層された構造が提案されている。
 多層膜層において、干渉によって強められる光の波長は、多層膜層の各層にて生じる光路差によって変わり、光路差は各層の膜厚および屈折率に応じて決まる。そして、干渉によって強められた光の出射方向は、入射光の入射角度に依存した特定の方向に限定される。したがって、平面に多層膜層が積層された構造では、視認される反射光の波長が観察角度によって大きく変化するため、視認される色が観察角度によって大きく変化する。
 これに対し、特許文献1の構造では、不規則な凹凸の上に多層膜層が積層されて、干渉によって強められた反射光が多方向に広がるため、観察角度による色の変化が緩やかになる。その結果、モルフォ蝶の翅のように広い観察角度で特定の色を呈する構造体が実現される。
特開2005-153192号公報
 ところで、特許文献1に記載の構造体においては、多層膜層は基材の凹凸に追従した凹凸を有し、この凹凸が構造体の表面を構成している。そのため、外部から構造体に物理的な衝撃や化学的な衝撃が加わると、多層膜層の凹凸構造の変形や変質が生じる場合がある。また、凹凸構造に汚れや異物が詰まることも起こり得る。こうした凹凸構造の崩れが生じると、多層膜層にて反射される光の光路長が変化したり、反射光を多方向に拡散させる効果が低下したりするため、構造体において所望の発色が得られ難くなる。
 本発明は、多層膜層が有する凹凸構造を保護することのできる発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法を提供することを目的とする。
 上記課題を解決する発色構造体は、表面に凹凸構造を有する凹凸層と、前記凹凸構造上に位置して当該凹凸構造の形状に追従した表面形状を有する多層膜層であって、当該多層膜層において相互に隣接する層の屈折率が相互に異なり、当該多層膜層に入射する入射光のうちの特定の波長域での光の反射率が前記特定の波長域以外の他の波長域での光の反射率よりも高い前記多層膜層を含む光学機能層であって、当該光学機能層における前記凹凸層とは反対側の最外層が、当該最外層よりも下層に対する保護機能を有する前記光学機能層と、を備え、第1方向と、前記第1方向と直交する第2方向とは、前記凹凸層の厚さ方向に前記凹凸構造が投影される仮想的な面である仮想平面に沿う方向であり、前記凹凸構造を構成する凸部は1段以上の形状を有し、前記仮想平面において前記凸部の投影像が構成するパターンは、前記第2方向に沿った長さが前記第1方向に沿った長さ以上である図形要素の集合からなるパターンを含み、前記図形要素の前記第1方向に沿った長さはサブ波長以下であり、前記図形要素の集合において、前記第2方向に沿った長さの標準偏差は、前記第1方向に沿った長さの標準偏差よりも大きい。
 上記構成によれば、光学機能層の最外層によって下層が保護されるため、多層膜層の凹凸構造を保護することができる。
 上記発色構造体において、前記凹凸層は、前記入射光に対する光透過性を有し、前記最外層として前記多層膜層の表面を覆う保護層は、前記入射光のうち前記多層膜層を透過する光の少なくとも一部を吸収する光吸収性を有してもよい。
 上記構成によれば、凹凸層の位置する側から発色構造体を観察した場合に、凹凸層側から多層膜層を透過した光の少なくとも一部は保護層によって吸収され、透過光が凹凸層側に返ってくることが抑えられる。したがって、多層膜層からの反射光とは異なる波長域の光が視認されることが抑えられるため、反射光による色の視認性が低下することが抑えられる。
 上記発色構造体において、前記発色構造体を構成する層には、紫外線吸収剤を含む層が含まれてもよい。上記構成によれば、発色構造体を構成する材料が紫外線によって劣化することが抑えられる。
 上記発色構造体において、前記最外層として前記多層膜層の表面を覆う保護層は、2以上の層から構成されてもよい。上記構成によれば、保護層を構成する層が有する機能の組み合わせによって、保護層の多機能化や保護層の機能の増強が可能である。
 上記発色構造体において、前記発色構造体の最外面から測定した硬度は、0.03GPa以上であってもよい。上記構成によれば、発色構造体の耐擦過性が高められる。
 上記発色構造体において、前記発色構造体の最外面における算術平均粗さは、2μm以下であってもよい。上記構成によれば、発色構造体の最外面における光の乱反射を抑えることができるため、多層膜層からの反射光による色の視認性が低下することが抑えられる。
 上記発色構造体において、前記発色構造体の最外面における水接触角は、60度以上であってもよい。上記構成によれば、最外面への水の付着に起因して発色構造体が劣化することが抑えられる。
 上記発色構造体において、前記仮想平面において前記凸部の投影像が構成するパターンは、前記図形要素の集合からなるパターンであり、前記凹凸構造を構成する前記凸部の高さは一定であってもよい。上記構成によれば、凹凸構造を構成する凸部によって反射光の拡散効果が得られ、多層膜層からの反射光として特定の波長域の光が広い角度で観察される。
 上記発色構造体において、前記仮想平面において前記凸部の投影像が構成するパターンは、前記図形要素の集合からなる第1パターンと、前記第2方向に沿って延び、前記第1方向に沿って並ぶ複数の帯状領域からなる第2パターンとが重ねられたパターンであり、前記第1方向に沿った前記帯状領域の配列間隔は、前記複数の帯状領域において一定ではなく、前記配列間隔の平均値が前記入射光に含まれる波長域における最小波長の1/2以上であり、前記凹凸構造を構成する前記凸部は、前記仮想平面における投影像が前記第1パターンを構成する要素であって所定の高さを有する凸部要素と、前記仮想平面における投影像が前記第2パターンを構成する要素であって所定の高さを有する凸部要素とが高さ方向に重ねられた多段形状を有してもよい。
 上記構成によれば、凸部によって反射光の拡散効果と回折効果とが得られ、多層膜層からの反射光として特定の波長域の光が広い観察角度で観察可能であるとともに、この反射光の強度が高められることにより光沢感のある鮮やかな色が視認される。
 上記発色構造体において、前記凹凸層は、前記多層膜層に対して剥離可能に構成されてもよい。上記構成によれば、発色構造体から凹凸層を剥離することが可能となるため、発色構造体の用途を拡張することが可能ともなる。
 上記発色構造体において、前記光学機能層における前記凹凸層とは反対側の面を覆う接着層をさらに備えてもよい。上記構成によれば、発色構造体を被着体に取り付けることが可能ともなる。
 上記課題を解決する表示体は、複数の表示要素を備え、表面と裏面とを有する表示体であって、前記表示要素が、上記発色構造体から構成されている。上記構成によれば、多層膜層の凹凸構造が保護された表示体が実現され、表示体にて、所望の発色が好適に得られやすい。
 上記課題を解決する発色シートは、上記発色構造体から構成された発色シートである。上記構成によれば、多層膜層の凹凸構造が保護された発色シートが実現され、発色シートにて、所望の発色が好適に得られやすい。
 上記課題を解決する成形体は、上記発色シートと、前記発色シートが固定された被着体と、を備え、前記凹凸層に対して前記光学機能層が位置する側に、前記被着体が位置する。上記構成によれば、成形体が、多層膜層の凹凸構造が保護された発色シートを備えるため、発色シートにて所望の発色が好適に得られやすく、成形体の装飾性が高められる。
 上記課題を解決する発色構造体の製造方法は、凹版の有する凹凸を、ナノインプリント法を用いて樹脂に転写することにより、表面に凹凸構造を有する凹凸層を形成する工程と、前記凹凸構造上に、多層膜層を含む光学機能層を、当該多層膜層において相互に隣接する層の屈折率が相互に異なり、当該多層膜層に入射する入射光のうちの特定の波長域での光の反射率が他の波長域での光の反射率よりも高くなるとともに、前記光学機能層における前記凹凸層とは反対側の最外層が、当該最外層よりも下層の保護機能を有するように形成する工程と、を含み、第1方向と、前記第1方向と直交する第2方向とは、前記凹凸層の厚さ方向に前記凹凸構造が投影される仮想的な面である仮想平面に沿う方向であり、前記凹凸層を形成する工程では、前記凹凸構造を構成する1段以上の凸部の投影像が前記仮想平面において構成するパターンが、前記第2方向に沿った長さが前記第1方向に沿った長さ以上である図形要素の集合からなるパターンを含むように前記凹凸構造を形成し、前記図形要素の前記第1方向に沿った長さはサブ波長以下であり、前記図形要素の集合において、前記第2方向に沿った長さの標準偏差は、前記第1方向に沿った長さの標準偏差よりも大きい。
 上記製法によれば、保護機能を有する光学機能層を備える発色構造体の製造に際して、ナノインプリント法を用いて凹凸層の凹凸構造が形成されるため、微細な凹凸構造を好適に、かつ、簡便に形成することができる。
 本発明によれば、発色構造体が備える多層膜層の凹凸構造を保護することができる。
発色構造体の一実施形態について、第1の構造を有する発色構造体の断面構造を示す図。 第1の構造における凹凸構造の平面構造を示す図。 第1の構造における凹凸構造の断面構造を示す図。 第2の構造を有する発色構造体の断面構造を示す図。 第2の構造における第2凸部要素のみからなる凹凸構造の平面構造を示す図。 第2の構造における第2凸部要素のみからなる凹凸構造の断面構造を示す図。 第2の構造における凹凸構造の平面構造を示す図。 第2の構造における凹凸構造の断面構造を示す図。 発色構造体の一実施形態について、変形例の発色構造体の断面構造を示す図。 表示体の一実施形態について、表示体の平面構造を示す図。 表示体の一実施形態について、表示体の断面構造を示す図。 発色シートの一実施形態について、発色シートの断面構造を示す図。 成形体の一実施形態について、成形体の断面構造を示す図。 転写箔の一実施形態について、転写箔の断面構造を示す図。 転写箔を被着体に貼り付けた状態を示す模式図。 発色シートが転写された被着体である成形体を示す模式図。 転写された発色シートの断面構造を示す図。 転写された他の例における発色シートの断面構造を示す図。 転写箔の他の実施形態について、転写箔の断面構造を示す図。 他の実施形態の転写箔における発色シートの断面構造を示す図。
 図1~図10を参照して、発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法の実施形態を説明する。
 [発色構造体]
 本実施形態の発色構造体は、多層膜層を有する凹凸構造体と、凹凸構造体における多層膜層の表面を覆う保護層とを備えている。凹凸構造体が有する凹凸構造としては、第1の構造と第2の構造とのいずれもが適用可能であり、まず、これらの2つの構造の各々について説明する。
 なお、発色構造体に対する入射光および反射光の波長域は特に限定されないが、以下の説明においては、一例として、可視領域の光を対象とした発色構造体について説明する。本実施形態においては、360nm以上830nm以下の波長域の光が可視領域の光である。
 図1は、第1の構造を有する凹凸構造体10と保護層20とを備える発色構造体30を示す。
 <第1の構造>
 凹凸構造体10は、基材15と多層膜層16とを備える。基材15は、可視領域の光を透過する材料から形成されており、表面に凹凸構造を有する凹凸層の一例である。多層膜層16は、基材15の表面に積層されている。すなわち、多層膜層16は、基材15における凹凸の形成されている面を覆っている。基材15の有する凹凸構造は、複数の凸部15aと、複数の凸部15aの間の領域である凹部15bとから構成されている。凸部15aは、不規則な長さを有して略帯状に延びる。
 多層膜層16は、高屈折率層16aと低屈折率層16bとが交互に積層された構造を有する。高屈折率層16aの屈折率は、低屈折率層16bの屈折率よりも大きい。例えば、基材15の表面には、高屈折率層16aが接し、多層膜層16における基材15とは反対側の面を、低屈折率層16bが構成する。
 基材15における凸部15a上と、基材15における凹部15b上とにおいて、多層膜層16の構成、すなわち、多層膜層16を構成する各層の材料や膜厚や積層順序は、相互に一致している。そして、多層膜層16における基材15と接する面(裏面)とは反対側の面である表面は、基材15の凹凸構造に追従した表面形状を有している。表面形状は、基材15に形成された凹凸の配置に対応する配置の凹凸を有している。保護層20は、多層膜層16の表面を覆っている。保護層20と多層膜層16とから光学機能層が構成される。
 こうした構造においては、保護層20に対する多層膜層16の側とは反対側から発色構造体30に光が入射すると、多層膜層16における高屈折率層16aと低屈折率層16bとの各界面で反射した光が、相互に干渉を起こすとともに、多層膜層16の表面における不規則な凹凸に起因して進行方向を変える。その結果、特定の波長域の光が広い角度に出射される。この反射光として強く出射される特定の波長域は、高屈折率層16aと低屈折率層16bとの材料および膜厚、ならびに、凸部15aの幅、高さおよび配置によって決まる。
 そして、多層膜層16の表面が保護層20によって覆われているため、多層膜層16が有する凹凸構造の崩れ、具体的には、凹凸構造の変形や、凹凸構造に汚れや異物が詰まることが抑えられる。
 なお、多層膜層16における基材15と接する面(裏面)も、多層膜層16の表面と同様の凹凸を有する。そのため、基材15に対する多層膜層16の側とは反対側から発色構造体30に光が入射した場合にも、同様に、特定の波長域の反射光が広い角度に出射される。すなわち、発色構造体30は、保護層20に対する多層膜層16の側とは反対側と、基材15に対する多層膜層16の側とは反対側とから観察されてもよい。
 図2を参照して、凹凸層である基材15が有する凹凸構造の詳細について説明する。図2(a)は、基材15を、基材15の表面と対向する方向から見た平面図であり、図2(b)は、図2(a)の2-2線に沿った基材15の断面構造を示す断面図である。図2(a)においては、凹凸構造を構成する凸部15aの表面にドットを付して示している。
 図2(a)が示すように、第1方向Dxと第2方向Dyとは、仮想平面に含まれる方向である。仮想平面は、基材15の厚さ方向に凹凸構造(凸部15aと凹部15bとの境界)が投影される仮想的な面である。第1方向Dxと第2方向Dyとは相互に直交する。仮想平面は、基材15の広がる方向に沿った面であり、基材15の厚さ方向と直交する面である。
 仮想平面において、凸部15aの投影像が構成するパターンは、破線によって示す複数の矩形Rが集合したパターンである。矩形Rは、図形要素の一例である。矩形Rは、第2方向Dyに延びる形状を有する。矩形Rにおいて、第2方向Dyの長さd2は、第1方向Dxの長さd1以上の大きさを有する。各矩形Rは、一例として、第1方向Dxおよび第2方向Dyのいずれにおいても他の矩形Rと重ならないように配置されている。
 複数の矩形Rにおいて、第1方向Dxの長さd1は一定である。複数の矩形Rにおいて、第1方向Dxに、長さd1の配列間隔、すなわち、長さd1の周期で矩形Rは配置されている。
 一方、複数の矩形Rにおいて、第2方向Dyの長さd2は不規則であって、各矩形Rにおける長さd2は、所定の標準偏差を有する母集団から選択された値である。この母集団は、正規分布に従うことが好ましい。
 複数の矩形Rからなるパターンは、例えば、以下の方法で設定される。例えば、所定の標準偏差で分布する長さd2を有する複数の矩形Rが、所定の領域内に仮に敷き詰められる。次いで、仮に敷き詰められた各矩形Rに対する配置の有無を一定の確率に従って決定する。そして、実際に矩形Rの配置される領域と、実際には矩形Rの配置されない領域とを設定する。多層膜層16からの反射光を効率よく散乱させるためには、長さd2は、平均値が4.15μm以下、かつ、標準偏差が1μm以下の分布を有することが好ましい。
 矩形Rの配置されている領域が、凸部15aの配置される領域である。相互に隣接する矩形Rが接する場合には、各矩形Rの配置されている領域が相互に結合された1つの領域に1つの凸部15aが配置される。こうした構成においては、凸部15aの第1方向Dxの長さは、矩形Rの長さd1の整数倍である。
 凹凸の分光によって虹色の光が生じることを抑えるために、矩形Rにおける第1方向Dxの長さd1は可視領域の光の波長以下とされる。換言すれば、長さd1は、サブ波長以下、すなわち、入射光の波長域以下の長さを有する。すなわち、長さd1は830nm以下であることが好ましく、700nm以下であることがより好ましい。
 さらに、長さd1は、多層膜層16から反射される上記特定の波長域の光が有するピーク波長よりも小さいことが好ましい。例えば、発色構造体30にて青色を発色させる場合は、長さd1は300nm程度であることが好ましく、発色構造体30にて緑色を発色させる場合は、長さd1は400nm程度であることが好ましく、発色構造体30にて赤色を発色させる場合は、長さd1は460nm程度であることが好ましい。
 多層膜層16からの反射光の空間的な広がりを大きくするためには、すなわち、反射光の散乱効果を高めるためには、凹凸構造の起伏が多いことが好ましく、基材15の表面と対向する方向から見て、単位面積あたりにおいて凸部15aが占める面積の比率は40%以上60%以下であることが好ましい。例えば、基材15の表面と対向する方向から見て、単位面積あたりにおける凸部15aの面積と凹部15bとの面積の比率は、1:1であることが好ましい。
 図2(b)が示すように、各凸部15aの高さh1は一定である。凸部15aの高さは、発色構造体30にて発色させる所望の色、すなわち、発色構造体30から反射させることの望まれる波長域に応じて設定されればよい。凸部15a上や凹部15b上における多層膜層16の表面粗さよりも、凸部15aの高さh1が大きければ、反射光の散乱効果は得られる。
 ただし、多層膜層16の表面の凹凸での反射に起因した光の干渉を抑えるために、高さh1は可視領域の光の波長の1/2以下であることが好ましく、すなわち、415nm以下であることが好ましい。さらに、上記光の干渉を抑えるために、高さh1は、多層膜層16から反射される上記特定の波長域の光が有するピーク波長の1/2以下であることがより好ましい。
 また、高さh1が過剰に大きいと、反射光の散乱効果が高くなりすぎて、反射光の強度が低くなりやすい。そのため、反射光が可視領域の光である場合、高さh1は10nm以上200nm以下であることが好ましい。例えば、青色を呈する発色構造体30では、効果的な光の広がりを得るためには、高さh1は40nm以上150nm以下の程度であることが好ましく、散乱効果が高くなりすぎることを抑えるためには、高さh1は100nm以下であることが好ましい。
 なお、矩形Rは、第1方向Dxに隣り合う2つの矩形Rの一部が相互に重なるように配置され、仮想平面における凸部15aのパターンを構成することも可能である。すなわち、複数の矩形Rは、第1方向Dxに、長さd1よりも小さい配列間隔で配置されてもよいし、矩形Rの配列間隔は一定でなくてもよい。相互に重なる矩形Rに対応する領域では、各矩形Rの配置されている領域が結合された1つの領域に1つの凸部15aが位置する。この場合、凸部15aの第1方向Dxの長さは、矩形Rの長さd1の整数倍とは異なる長さとなる。また、矩形Rの長さd1は、一定でなくてもよく、各矩形Rにおいて、長さd2が長さd1以上であって、複数の矩形Rにおける長さd2の標準偏差が、複数の矩形Rにおける長さd1の標準偏差よりも大きければよい。こうした構成によっても、反射光の散乱効果は得られる。
 <第2の構造>
 図3は、第2の構造を有する凹凸構造体11と保護層20とを備える発色構造体31を示す。
 第2の構造を有する凹凸構造体11は、第1の構造を有する凹凸構造体10と比較して、基材15における凹凸構造の構成、すなわち、多層膜層16の表面における凹凸構造の構成が異なり、こうした凹凸構造の構成以外については、上述の第1の構造を有する凹凸構造体10と同様の構成を有する。以下では、発色構造体31について、上述の発色構造体30との相違点を中心に説明し、発色構造体30と同様の構成については同じ符号を付してその説明を省略する。
 凹凸構造体11における基材15の凹凸構造を構成する凸部15cは、第1の構造における凸部15aと同様の構成を有する第1凸部要素と、帯状に延びる第2凸部要素とが、基材15の厚さ方向に重畳された構造を有する。
 第1の構造の発色構造体30によれば、反射光の散乱効果によって、視認される色の観察角度による変化は緩やかになるものの、散乱に起因した反射光の強度の低下によって、視認される色の鮮やかさは低下する。発色構造体の用途等によっては、より鮮やかな色を広い観察角度で観察可能な構造体が求められる場合もある。第2の構造において、第2凸部要素は、入射光が特定の方向へ強く回折されるように配置されており、第1凸部要素による光の散乱効果と第2凸部要素による光の回折効果とによって、より鮮やかな色を広い観察角度で観察可能な発色構造体31が実現される。
 図4を参照して、第2凸部要素の構成について説明する。図4(a)は、第2凸部要素のみからなる凹凸構造の平面図であり、図4(b)は、図4(a)の4-4線に沿った断面構造を示す断面図である。図4(a)においては、第2凸部要素の表面にドットを付して示している。
 図4(a)が示すように、平面視において、すなわち、上記仮想平面において、第2凸部要素15Ebは、第2方向Dyに沿って一定の幅で延びる帯状を有し、複数の第2凸部要素15Ebは、第1方向Dxに沿って、間隔をあけて並んでいる。換言すれば、仮想平面において第2凸部要素15Ebの投影像が構成するパターンは、第2方向Dyに沿って延び、第1方向Dxに沿って並ぶ複数の帯状領域からなるパターンである。第2凸部要素15Ebにおける第1方向Dxの長さd3は、第1凸部要素のパターンを決定する上記矩形Rの長さd1と一致していてもよいし、異なっていてもよい。
 第1方向Dxにおける第2凸部要素15Ebの配列間隔de、すなわち、第1方向Dxにおける帯状領域の配列間隔は、第2凸部要素15Ebが構成する凹凸構造の表面での反射光の少なくとも一部が、一次回折光として観測されるように設定される。一次回折光は、回折次数mが1または-1である回折光である。
 すなわち、第2凸部要素15Ebに対する入射光の入射角度をθ、第2凸部要素15Ebによる反射光の反射角度をφ、回折する光の波長をλとした場合、配列間隔deは、de≧λ/(sinθ+sinφ)を満たす。例えば、λ=360nmである可視光線を対象とするとき、第2凸部要素15Ebの配列間隔deは180nm以上であればよく、すなわち、配列間隔deは、入射光に含まれる波長域における最小波長の1/2以上であればよい。なお、配列間隔deは、相互に隣り合う2つの第2凸部要素15Ebの端部間の第1方向Dxに沿った距離である。相互に隣り合う2つの第2凸部要素15Ebの端部は、各第2凸部要素15Ebに対して第1方向Dxにて相互に同一の側(図中の右側)に位置する。
 第2凸部要素15Ebが構成するパターンの周期性は、基材15が有する凹凸構造の周期性、すなわち、多層膜層16の表面における凹凸構造の周期性に反映される。複数の第2凸部要素15Ebにおいて配列間隔deが一定である場合、多層膜層16の表面での回折現象によって、多層膜層16からは、特定の波長の反射光が特定の角度に出射される。この回折による光の反射強度は、上述の第1の構造にて説明した第1凸部要素による光の散乱効果によって生じる反射光の反射強度と比較して非常に高い。そのため、金属光沢のような輝きを有する光が視認されるが、一方で、回折による分光が生じ、観察角度の変化に応じて視認される色が変化してしまう。
 したがって、例えば、青色を呈する発色構造体31が得られるように第1凸部要素が配置されるとしても、第2凸部要素15Ebの配列間隔deが400nm以上5μm以下の一定値であると、観察角度によっては、強い緑色から赤色の表面反射による光が回折に起因して観察されてしまう。これに対し、例えば、第2凸部要素15Ebの配列間隔deが50μm程度に大きければ、可視領域の光が回折される角度の範囲が狭くなるため、回折に起因した色の変化が視認されにくくなるが、金属光沢のような輝きを有する光は特定の観察角度でのみしか観察されない。
 この点、配列間隔deが一定値でない構成、すなわち、第2凸部要素15Ebのパターンが、周期が異なる複数の周期構造を重ね合わされたパターンでは、回折による反射光に複数の波長の光が混じり合うため、分光された単色性の高い光は視認されにくくなる。そして、光沢感のある鮮やかな色が広い観察角度で観察される。この場合、配列間隔deは、例えば、360nm以上5μm以下の範囲から選択され、複数の第2凸部要素15Ebの配列間隔deの平均値が、入射光に含まれる波長域における最小波長の1/2以上であればよい。
 なお、配列間隔deの標準偏差が大きくなるにつれ、第2凸部要素15Ebの配列が不規則となって散乱効果が支配的になり、回折による強い反射が得られにくくなる。そのため、第2凸部要素15Ebの配列間隔deは、第1凸部要素による光の散乱効果によって光が広がる角度に基づき、この光が広がる範囲と同程度の範囲に回折による反射光が出射されるように決定することが好ましい。例えば、青色の反射光が、入射角度に対して±40°の範囲に広がって出射される場合、第2凸部要素15Ebのパターンにおいて、配列間隔deは、その平均値が1μm以上5μm以下の程度であり、標準偏差が1μm程度である。これにより、第1凸部要素の光の散乱効果によって光が広がる角度と同程度の角度に回折による反射光が生じる。
 すなわち、複数の第2凸部要素15Ebからなる構造は、特定の波長域の光を回折させて取り出すための構造とは異なり、配列間隔deの分散により、回折を利用して所定の角度範囲に様々な波長域の光を射出させるための構造である。
 さらに、より長周期の回折現象を生じさせるために、一辺が10μm以上100μm以下の正方形領域を単位領域とし、単位領域ごとの第2凸部要素15Ebのパターンにおいて、配列間隔deを、平均値が1μm以上5μm以下の程度、かつ、標準偏差が1μm程度としてもよい。なお、複数の単位領域のなかには、配列間隔deが1μm以上5μm以下の範囲に含まれる一定の値である領域が含まれてもよい。配列間隔deが一定である単位領域が存在したとしても、この単位領域と隣接する他の単位領域のいずれかにおいて、配列間隔deが標準偏差1μm程度のばらつきを有していれば、人の目の解像度においては、すべての単位領域で配列間隔deがばらつきを有している構成と同等の効果が期待できる。
 なお、図4に示した第2凸部要素15Ebは、第1方向Dxのみに、配列間隔deに起因した周期性を有している。第1凸部要素による光の散乱効果は、主として、基材15の表面と対向する方向から見た場合での第1方向Dxに沿った方向への反射光に作用するが、第2方向Dyに沿った方向への反射光にも一部影響し得る。したがって、第2凸部要素15Ebは、第2方向Dyにも周期性を有してもよい。すなわち、第2凸部要素15Ebのパターンは、第2方向Dyに延びる複数の帯状領域が、第1方向Dxと第2方向Dyとの各々に沿って並ぶパターンであってもよい。
 こうした第2凸部要素15Ebのパターンにおいて、例えば、帯状領域の第1方向Dxに沿った配列間隔と、帯状領域の第2方向Dyに沿った配列間隔との各々は、配列間隔の平均値が1μm以上100μm以下であるようにばらつきを有していればよい。
 また、第1凸部要素による光の散乱効果の第1方向Dxへの影響と、第1凸部要素による光の散乱効果の第2方向Dyへの影響との違いに応じて、第1方向Dxに沿った配列間隔の平均値と、第2方向Dyに沿った配列間隔の平均値とは相互に異なっていてもよい。また、第1凸部要素による光の散乱効果の第1方向Dxへの影響と、第1凸部要素による光の散乱効果の第2方向Dyへの影響との違いに応じて、第1方向Dxに沿った配列間隔の標準偏差と、第2方向Dyに沿った配列間隔の標準偏差とは相互に異なっていてもよい。
 図4(b)が示すように、第2凸部要素15Ebの高さh2は、凸部15c上や凹部15b上における多層膜層16の表面粗さよりも大きければよい。ただし、高さh2が大きくなるほど、凹凸構造が反射光に与える効果において第2凸部要素15Ebによる回折効果が支配的となって、第1凸部要素による光の散乱効果が得られにくくなる。そのため、高さh2は、第1凸部要素の高さh1と同程度であることが好ましく、高さh2は高さh1と一致していてもよい。例えば、第1凸部要素の高さh1と第2凸部要素15Ebの高さh2とは、10nm以上200nm以下の範囲に含まれていることが好ましく、青色を呈する発色構造体31では、第1凸部要素の高さh1と第2凸部要素15Ebの高さh2とは、10nm以上150nm以下の範囲に含まれていることが好ましい。
 図5を参照して、第2の構造の凹凸構造体11が有する凹凸構造の詳細について説明する。図5(a)は、基材15を基材15の表面と対向する方向から見た平面図であり、図5(b)は、図5(a)の5-5線に沿った基材15の断面構造を示す断面図である。図5(a)においては、第1凸部要素が構成するパターンにドットを付し、第2凸部要素が構成するパターンに第1凸部要素が構成するパターンとは異なる密度のドットを付して示している。
 図5(a)が示すように、上記仮想平面にて、凸部15cの投影像が構成するパターンは、第1凸部要素15Eaの投影像が構成するパターンである第1パターンと、第2凸部要素15Ebの投影像が構成するパターンである第2パターンとが重ねられたパターンである。すなわち、凸部15cが位置する領域は、第1凸部要素15Eaのみから構成される領域S1と、第1凸部要素15Eaと第2凸部要素15Ebとが重なる領域S2と、第2凸部要素15Ebのみから構成される領域S3とを含む。なお、図5においては、第1凸部要素15Eaと第2凸部要素15Ebとが、第1方向Dxにおいて相互に端部が揃うように重ねられているが、こうした構成に限らず、第1凸部要素15Eaの端部と第2凸部要素15Ebの端部とはずれていてもよい。
 図5(b)が示すように、領域S1では、凸部15cの高さは、第1凸部要素15Eaの高さh1である。また、領域S2では、凸部15cの高さは、第1凸部要素15Eaの高さh1と第2凸部要素15Ebの高さh2との和である。また、領域S3では、凸部15cの高さは、第2凸部要素15Ebの高さh2である。このように、凸部15cは、第1凸部要素15Eaと、第2凸部要素15Ebとを高さ方向で重ねた多段形状を有する。第1凸部要素15Eaは、第1凸部要素15Eaの仮想平面での投影像が第1パターンを構成し、かつ、所定の高さh1を有する。第2凸部要素15Ebは、第2凸部要素15Ebの仮想平面での投影像が第2パターンを構成し、かつ、所定の高さh2を有する。凸部15cは、第1凸部要素15Eaに第2凸部要素15Ebが重ねられた構造と捉えることも可能であり、第2凸部要素15Ebに第1凸部要素15Eaが重ねられた構造と捉えることも可能である。
 こうした構造においては、第1の構造と比較して、多層膜層16の表面における凹凸構造が複雑であるため、凹凸構造が変形しやすい。したがって、保護層20によって多層膜層16の凹凸構造を保護することの有益性が高い。
 以上のように、第2の構造を有する発色構造体31によれば、凸部15cにおいて第1凸部要素15Eaが構成する部分に起因した光の拡散現象と、凸部15cにおいて第2凸部要素15Ebが構成する部分に起因した光の回折現象との相乗による色が視認される。すなわち、第2の構造を有する発色構造体31によれば、特定の波長域の反射光が広い観察角度で観察可能であるとともに、この反射光の強度が高められることによる光沢感のある鮮やかな色が視認される。換言すれば、第2の構造においては、1つの構造体である凸部15cが、光の拡散機能と光の回折機能との2つの機能を兼ね備えている。
 なお、仮想平面にて、第1凸部要素15Eaが構成するパターンと、第2凸部要素15Ebが構成するパターンとは、第1凸部要素15Eaと第2凸部要素15Ebとが相互に重ならないように配置されてもよい。こうした構造によっても、第1凸部要素15Eaによる光の拡散効果と第2凸部要素15Ebによる光の回折効果とは得られる。ただし、第1凸部要素15Eaと第2凸部要素15Ebとを相互に重ならないように配置しようとすれば、第1の構造と比較して、単位面積あたりにおける第1凸部要素15Eaの配置可能な面積が小さくなり、光の拡散効果が低下する。したがって、凸部要素15Ea,15Ebによる光の拡散効果と回折効果とを高めるためには、図5に示したように、第1凸部要素15Eaと第2凸部要素15Ebとを重ねて凸部15cを多段形状とすることが好ましい。
 [発色構造体の製造方法]
 発色構造体30,31を構成する各層の材料、および、発色構造体30,31の製造方法を説明する。
 基材15は、可視領域の光に対して光透過性を有する材料、すなわち、可視領域の光に対して透明な材料から構成される。例えば、基材15としては、合成石英基板や、ポリエチレンテレフタラート(PET)等の樹脂からなるフィルムが用いられる。基材15の表面の凹凸構造は、例えば、光または荷電粒子線を照射するリソグラフィやドライエッチング等の公知の微細加工技術を利用して形成される。
 第2の構造の凹凸構造は、例えば、上記第1パターンのレジストパターンを用いたエッチングと、上記第2パターンのレジストパターンを用いたエッチングとを順に行うことにより形成される。このとき、第1パターンのエッチングと第2パターンのエッチングとは、いずれが先に行われてもよい。すなわち、第1凸部要素15Eaと第2凸部要素15Ebとは、いずれが先に形成されてもよい。
 多層膜層16を構成する高屈折率層16aと低屈折率層16bとは、可視領域の光に対して光透過性を有する材料、すなわち、可視領域の光に対して透明な材料から構成される。高屈折率層16aの屈折率が、低屈折率層16bの屈折率よりも高い構成であれば、これらの層の材料は限定されないが、高屈折率層16aと低屈折率層16bとの屈折率の差が大きいほど、少ない積層数で高い強度の反射光が得られる。こうした観点から、例えば、高屈折率層16aと低屈折率層16bとを無機材料から構成する場合、高屈折率層16aを二酸化チタン(TiO)から構成し、低屈折率層16bを二酸化珪素(SiO)から構成することが好ましい。こうした無機材料からなる高屈折率層16aおよび低屈折率層16bの各々は、スパッタリング、真空蒸着、あるいは、原子層堆積法等の公知の薄膜形成技術を用いて形成される。また、高屈折率層16aおよび低屈折率層16bの各々は有機材料から構成されてもよく、この場合、高屈折率層16aおよび低屈折率層16bの形成には、自己組織化等の公知の技術が用いられればよい。
 高屈折率層16aおよび低屈折率層16bの各々の膜厚は、発色構造体30,31にて発色させる所望の色に応じて、転送行列法等を用いて設計されればよい。例えば、青色を呈する発色構造体30,31を形成する場合は、TiOからなる高屈折率層16aの膜厚は40nm程度であることが好ましく、SiOからなる低屈折率層16bの膜厚は75nm程度であることが好ましい。
 なお、図1および図3では、多層膜層16として、基材15に近い位置から高屈折率層16aと低屈折率層16bとがこの順に交互に積層された10層からなる多層膜層16を例示したが、多層膜層16が有する層数や積層の順序はこれに限られず、所望の波長域の反射光が得られるように積層されていればよい。例えば、基材15の表面に低屈折率層16bが接し、その上に高屈折率層16aと低屈折率層16bとが交互に積層されている構成でもよい。また、多層膜層16における基材15とは反対側の表面である最表面を構成する層も、高屈折率層16aと低屈折率層16bとのいずれであってもよい。さらに、低屈折率層16bと高屈折率層16aとが交互に積層されていれば、基材15の表面に接する層と、上記最表面を構成する層とを構成する材料が同じであってもよい。さらに、多層膜層16は、相互に異なる3種類以上の層の組み合わせであって、各層の屈折率が相互に異なる構成であってもよい。
 要は、多層膜層16は、相互に隣接する層の屈折率が相互に異なり、多層膜層16に入射する入射光のうち特定の波長域での光の反射率が他の波長域での反射率よりも高いように構成されていればよい。
 保護層20は、発色構造体30,31が保護層20の位置する側から観察される場合には、可視領域の光に対して光透過性を有する材料、すなわち、可視領域の光に対して透明な材料から構成される。こうした材料としては、例えば、アクリル、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、ポリプロピレンやポリエチレン等のポリオレフィン、ポリ塩化ビニル、ポリカーボネート、ポリビニルアルコール、ポリスチレン、ポリアミド等の樹脂が用いられる。
 ここで、凹凸構造体10,11は可視領域の光に対して透明な材料から形成されている。そのため、入射光に含まれる波長域のうち、多層膜層16にて反射される特定の波長域以外の波長域の光の一部は、多層膜層16、さらには、凹凸構造体10,11を透過する。凹凸構造体10,11をその表裏の一方側から観察するとき、凹凸構造体10,11の他方側に、光源や、白色板等の透過光をはね返す構造物が存在すると、上記一方側では、多層膜層16からの特定の波長域の反射光とともに、他方側から多層膜層16を透過した透過光が視認される。上述のように、この透過光の波長域は、反射光の波長域とは異なり、透過光の色は、主として、反射光の色の補色である。そのため、こうした透過光が視認されると、反射光による色の視認性が低下する。
 そこで、反射光による色の視認性が保護層20によって低下することを抑える観点では、保護層20は、多層膜層16を透過した透過光を吸収する材料から構成することが好ましい。この場合、発色構造体30,31は、基材15に対する多層膜層16側とは反対側から観察される態様で用いられる。こうした構成によれば、多層膜層16に対する基材15側から多層膜層16を透過した光は、保護層20によって吸収され、多層膜層16に対する基材15側に透過光が返ってくることが抑えられる。そのため、基材15に対する多層膜層16側とは反対側から発色構造体30,31を観察した場合に、多層膜層16からの反射光とは異なる波長域の光が視認されることが抑えられる。したがって、反射光による色の視認性が保護層20によって低下することが抑えられ、発色構造体30,31において所望の発色が好適に得られる。
 例えば、保護層20は、光吸収剤や黒色顔料等の可視領域の光を吸収する材料を含む層であればよい。具体的には、保護層20は、カーボンブラック、チタンブラック、黒色酸化鉄、黒色複合酸化物等の黒色の無機顔料が樹脂に混合された層であることが好ましい。
 なお、保護層20は、可視領域の光のすべてを吸収せずとも、多層膜層16を透過する光の少なくとも一部を吸収する光吸収性を有する構成であれば、こうした光吸収性を有する層が設けられない構成と比較して、反射光による色の視認性が保護層20によって低下することを抑える効果は得られる。したがって、保護層20は、多層膜層16を透過する光の波長域に応じた色の顔料を含む層であってもよい。なお、保護層20が黒色顔料を含む黒色の層であれば、透過光の波長域に応じた保護層20の色の調整等が不要である。また、保護層20が広い波長域の光を吸収するため、簡便に、かつ、好適に、反射光による色の視認性の低下が抑えられる。
 保護層20は、紫外線吸収剤を含んでいてもよい。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系、サリシレート系、トリアジン系、シアノアクリルレート系等の公知の紫外線吸収剤が使用できる。
 保護層20が紫外線吸収剤を含む構成であれば、発色構造体30,31が、直射日光等に因る紫外線に長時間さらされる場合に、保護層20が紫外線を吸収し続ける。そのため、発色構造体30,31を構成する材料が紫外線によって劣化することが抑えられる。こうした効果は、発色構造体30,31が、保護層20に対する多層膜層16側とは反対側から観察される場合、すなわち、保護層20に対する多層膜層16側とは反対側から入射光が発色構造体30,31に入る態様で発色構造体30,31が用いられる場合に、特に高く得られる。
 保護層20は、例えば、インクジェット法、スプレー法、バーコート法、ロールコート法、スリットコート法、グラビアコート法等の公知の塗工法を用いて、多層膜層16の表面に形成される。保護層20の膜厚は特に限定されないが、例えば、1μm以上100μm以下の程度であることが好ましい。
 保護層20の形成のための塗布液であるインクには、必要に応じて、溶媒が混合されてもよい。溶媒としては、保護層20を構成する樹脂と相性のよい溶媒が選択される。溶媒としては、例えば、酢酸エチル、酢酸ブチル、エチレングリコールモノメチルエーテル、トルエン、キシレン、メチルシクロヘキサン、エチルシクロヘキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等が挙げられる。
 なお、保護層20は、複数の層から構成されていてもよい。例えば、保護層20が、物理的もしくは化学的な刺激に対する耐性が相互に異なる複数の層を備える構成であれば、複数の耐性を有する保護層20が実現できる。また例えば、保護層20が、類似した耐性を有する複数の層を備える構成であれば、複数の層で共通する上記耐性を保護層20にて増強することができる。こうした耐性としては、例えば、耐擦過性や耐水性等が挙げられる。
 [保護層の特性]
 保護層20が有する各種の特性の一例を示す。なお、以下の形態は、発色構造体30,31が、保護層20に対する多層膜層16側とは反対側から観察される場合等、保護層20が発色構造体30,31の最外面で外気に曝される態様で用いられる場合に、特に高い効果を発揮する。なお、以下において、保護層20の表面は、保護層20における多層膜層16に接する面とは反対側の面であって、発色構造体30,31の最外面を構成する面である。
 発色構造体30,31において、保護層20の表面から測定した硬度は、0.03GPa以上である。この硬度は、押し込み硬さであって、ナノインデンテーション法を利用して、押し込み深さを100nmとした場合に計測される硬度である。この硬度は、例えば、MTS社製のナノインデンターを用いて測定することができる。上記硬度が0.03GPa以上であれば、保護層20が十分に硬いため、発色構造体30,31の耐擦過性が高められる。
 発色構造体30,31において、保護層20の表面における表面粗さRaは、2μm以下である。表面粗さRaは、算術平均粗さであり、JIS B 0601:2013に従って算出される。表面粗さRaは、例えば、菱化システム社製の非接触式表面粗さ計(非接触式表面・層断面計測システム)を用いて測定することができる。表面粗さRaが2μm以下であれば、保護層20の表面が十分に平滑であるため、保護層20の表面における光の乱反射を抑えることができる。その結果、多層膜層16からの反射光による色の視認性が保護層20によって低下することが抑えられる。
 発色構造体30,31において、保護層20の表面における水接触角は、60度以上である。この水接触角は、保護層20の表面に水の液滴が着滴してから5秒後に測定した接触角である。接触角は接触角計を用いて公知の手順によって測定できる。上記水接触角が60度以上であれば、保護層20と水との親和性が低く抑えられる。そのため、発色構造体30,31が水に濡れた場合に、保護層20が水分を吸収して劣化することが抑えられる。
 なお、発色構造体30,31が、基材15に対する多層膜層16側とは反対側から観察される場合等、多層膜層16に対する保護層20側とは反対側に位置する最外層の最外面が外気に曝される態様で用いられる場合には、上述した各種の特性は、以下のように適用される。すなわち、上記最外層の上記最外面、例えば基材15における多層膜層16とは反対側の面において、上記硬度が0.03GPa以上であり、上記表面粗さRaが2μm以下であり、上記水接触角が60度以上である。
 [発色構造体の変形例]
 発色構造体は、図6が示す構成を有することも可能である。図6が示す発色構造体32が備える凹凸構造体12は、基材15と、基材15の表面を覆う樹脂層17と、樹脂層17に積層された多層膜層16とを備える。基材15の表面は平坦であり、樹脂層17がその表面に凹凸を有する。図6に示す形態においては、基材15と樹脂層17との積層体が凹凸層である。樹脂層17の表面における凹凸構造には、上述の第1の構造の凹凸構造と第2の構造の凹凸構造とのいずれもが適用可能である。
 樹脂層17の凹凸構造の形成方法としては、例えば、ナノインプリント法が用いられる。例えば、光ナノインプリント法によって樹脂層17の凹凸構造を形成する場合、まず、形成対象の凹凸の反転された凹凸を有する凹版であるモールドの凹凸が形成された面に、樹脂層17を構成する樹脂として、光硬化性樹脂が塗布される。光硬化性樹脂の塗布方法は特に限定されず、インクジェット法、スプレー法、バーコート法、ロールコート法、スリットコート法、グラビアコート法等の公知の塗布法が用いられればよい。
 次いで、光硬化性樹脂からなる塗布層の表面に、基材15が重ねられる。そして、塗布層とモールドとが相互に押し付けられた状態で、塗布層に対する基材15側、もしくは、塗布層に対するモールド側から光が照射される。続いて、硬化した光硬化性樹脂および基材15からモールドが離型される。これによって、モールドの有する凹凸が光硬化性樹脂に転写されて、表面に凹凸を有する樹脂層17が形成される。モールドは、例えば、合成石英やシリコンから構成され、光または荷電粒子線を照射するリソグラフィやドライエッチング等の公知の微細加工技術を利用して形成される。
 なお、光硬化性樹脂は、基材15の表面に塗布され、基材15上の塗布層にモールドが押し当てられた状態で、光の照射が行われてもよい。
 また、光ナノインプリント法に代えて、熱ナノインプリント法が用いられてもよく、この場合、樹脂層17の樹脂としては、熱可塑性樹脂や熱硬化性樹脂等の、製造方法に応じた樹脂が用いられる。
 [発色構造体の適用例]
 上述した発色構造体の具体的な適用例について説明する。以下で説明する適用例には、第1の構造を有する発色構造体30、第2の構造を有する発色構造体31、および、上述の変形例で説明した発色構造体32のいずれもが適用可能である。
 <表示体>
 発色構造体の第1の適用例は、発色構造体を表示体に用いる形態である。表示体は、物品の偽造の困難性を高める目的で用いられてもよいし、物品の意匠性を高める目的で用いられてもよいし、これらの目的を兼ねて用いられてもよい。物品の偽造の困難性を高める目的としては、表示体は、例えば、パスポートや免許証等の認証書類、商品券や小切手等の有価証券類、クレジットカードやキャッシュカード等のカード類、紙幣等に貼り付けられる。また、物品の意匠性を高める目的としては、表示体は、例えば、身に着けられる装飾品や、使用者に携帯される物品、家具や家電等のように据え置かれる物品、壁や扉等の構造物、自動車の内装や外装等に取り付けられる。
 図7が示すように、表示体40は、表面40Fと、表面40Fとは反対側の面である裏面40Rとを有し、表面40Fと対向する方向から見て、表示体40は、第1表示領域41Aと第2表示領域41Bとを含んでいる。第1表示領域41Aは、複数の第1画素42Aが配置されている領域であり、第2表示領域41Bは、複数の第2画素42Bが配置されている領域である。換言すれば、第1表示領域41Aは、複数の第1画素42Aの集合から構成されており、第2表示領域41Bは、複数の第2画素42Bの集合から構成されている。第1画素42Aと第2画素42Bとの各々には、発色構造体の構成が適用されており、第1画素42Aと第2画素42Bとは、相互に異なる色相の色を呈する。すなわち、表示体40の表面40Fと対向する方向から見て、第1表示領域41Aと第2表示領域41Bとには、相互に異なる色相の色が視認される。
 第1表示領域41Aと第2表示領域41Bとの各々は、これらの領域単独、もしくは、これらの領域の2以上の組み合わせによって、文字、記号、図形、模様、絵柄、これらの背景等を表現する。一例として、図7に示す構成では、第1表示領域41Aによって円形の図形が表現され、第2表示領域41Bによって三角形の図形が表現されている。
 なお、表示体40は、表示領域41A,41Bの周囲等に、発色構造体の構成とは異なる構成を有する領域、例えば、表面が平坦な基材に多層膜層が積層された構造を有する領域や、基材に金属薄膜が積層された構造を有する領域等を有していてもよい。
 図8は、第1画素42Aと第2画素42Bとの断面構造を示す図である。図8においては、これらの画素42A,42Bを構成する発色構造体33が、第1の構造を有する発色構造体である例を示している。
 第1画素42Aと第2画素42Bとでは、凸部15aの高さh1が相互に異なっている。一方、第1画素42Aと第2画素42Bとにおいて、多層膜層16の構成は共通している。すなわち、第1画素42Aと第2画素42Bとにおいて、高屈折率層16aの材料や膜厚、低屈折率層16bの材料や膜厚、および、これらの層の層数は、共通している。第1画素42Aと第2画素42Bとで、凸部15aの高さh1が相互に異なることによって、第1画素42Aと第2画素42Bとは相互に異なる色相の色を呈する。各画素42A,42Bにおける凸部15aの高さh1は、各画素42A,42Bに対する所望の色相に応じて設定されればよい。
 ここで、第1画素42Aの凸部15aの高さh1aと、第2画素42Bの凸部15aの高さh1bとの差が大きいほど、第1画素42Aの呈する色相と、第2画素42Bの呈する色相との差が大きくなり、その色相の差が人の目によって認識されやすくなる。例えば、高さh1aと高さh1bとの差は5nm以上であり、多層膜層16が平坦面に積層されている場合における多層膜層16からの反射光のピーク波長の1%以上である。
 例えば、多層膜層16が平坦面に積層されている場合における多層膜層16からの反射光のピーク波長が500nmであり、画素によって緑色を発色させたい場合は、凸部15aの高さh1は100nm程度であり、画素によって赤色を発色させたい場合は、凸部15aの高さh1は200nm程度である。
 上記構成においては、第1表示領域41Aと第2表示領域41Bとで、多層膜層16の表面における凹凸構造の高さが相互に異なり、こうした高さが一定である場合と比較して表示体40の全体における凹凸構造が複雑であるため、凹凸構造が変形しやすい。したがって、保護層20によって多層膜層16の凹凸構造を保護することの有益性が高い。
 なお、画素42A,42Bに適用される発色構造体が、第2の構造を有する発色構造体である場合、以下のような色相の調整が可能である。すなわち、上記仮想平面にて凸部15cの投影像が構成するパターンにおいて、第1凸部要素15Eaが占める割合よりも第2凸部要素15Ebが占める割合が小さい構成では、第2凸部要素15Ebの高さh2が画素42A,42Bの呈する色相に与える影響は微小である。したがって、第2の構造を有する発色構造体においても、第1の構造の凸部15aに相当する第1凸部要素15Eaの高さh1の調整によって、画素42A,42Bの呈する色相の調整が可能である。
 凸部15aのパターンは、例えば、第1画素42Aごと、および、第2画素42Bごとに設定される。すなわち、凸部15aの投影像のパターンを構成する複数の矩形Rにおける長さd1や長さd2の平均値や標準偏差は、画素42A,42Bごとに設定される。凸部15aのパターンは、画素42A,42Bごとに相互に異なっていてもよいし、画素42A,42B間で一致していてもよい。画素42A,42Bの大きさは、表示領域41A,41Bが構成する像についての所望の解像度に応じて設定されればよい。より高精度な像を表示するためには、画素42A,42Bの一辺は10μm以上であることが好ましい。
 なお、画素42A,42Bの製造の際には、例えば、複数の矩形Rからなるパターンに従った凸部を一括して大面積の領域に形成後、このパターンを分割するように凸部を切断等により分割することで、各画素42A,42Bの凹凸構造を形成することも可能である。こうした製造方法は、製造工程が容易となるため好ましい。ここで、凸部の分割によって、複数の画素42A,42Bの一部には、画素42A,42Bの端部に、第2方向Dyの長さd2が、第1方向Dxの長さd1よりも小さい矩形Rを構成する凸部が形成される場合がある。しかし、凸部15aのパターンにこうした矩形Rが含まれたとしても、その割合が十分に小さい場合は当該矩形Rによる光学的影響は無視できるほど小さい。
 保護層20としては、多層膜層16の透過光の吸収性を有する保護層20が用いられる。さらに、画素42A,42Bを構成する発色構造体33は、反射防止層21を備えている。反射防止層21は、基材15における多層膜層16と接する面とは反対側の面、すなわち、凹凸層における多層膜層16とは反対側の面を覆っている。
 画素42A,42Bは、保護層20に対する反射防止層21の側が、表示体40の裏面40Rに対する表面40Fの側となるように配置されている。すなわち、保護層20は表示体40の裏面40Rを構成し、反射防止層21が表面40Fを構成する。そして、表示体40は、表面40F側、すなわち、反射防止層21の位置する側から観察される。
 反射防止層21は、基材15における凹凸を有する面とは反対側の面の表面反射を低減する機能を有する。すなわち、反射防止層21の膜厚は可視領域の光の波長以下であり、表面反射を抑える機能を高めるためには、反射防止層21の膜厚は、200nm以下であることが好ましい。反射防止層21を構成する材料としては、例えば、フッ化マグネシウム(MgF)や二酸化珪素(SiO)等が挙げられる。基材15の表面反射を抑える機能を高めるためには、反射防止層21の屈折率は、基材15の屈折率以下であることが好ましい。なお、反射防止層21は、高屈折率層と低屈折率層とが交互に積層された多層膜からなる層であってもよい。
 表面40F側から表示体40を観察した場合に、基材15の表面反射が大きいと、多層膜層16からの特定の波長域の反射光による色の視認性が低くなる。これに対し、反射防止層21が設けられていることによって、基材15の表面反射が低減されるため、多層膜層16からの反射光による色の視認性が低下することが抑えられ、表示体40において所望の発色が好適に得られる。
 第1画素42Aと第2画素42Bとの間で、基材15は連続しており、すなわち、これらの画素42A,42Bは、共通した1つの基材15を有している。
 基材15における凹凸構造は、例えば、第1画素42Aの位置する第1表示領域41Aに対応する部分と、第2画素42Bの位置する第2表示領域41Bに対応する部分との各々に対して、リソグラフィやドライエッチングを行うことによって形成される。凸部15aの高さh1を変えるためには、エッチング時間を変更すればよい。
 第1表示領域41Aに対応する部分と第2表示領域41Bに対応する部分とに対し、多層膜層16は、同一の工程によって、同時に形成される。同様に、各表示領域41A,41Bに対応する部分に対し、保護層20は同時に形成され、反射防止層21もまた同時に形成される。反射防止層21は、例えば、多層膜層16の形成の前もしくは後に、スパッタリングや真空蒸着によって形成される。
 第1表示領域41Aと第2表示領域41Bとが相互に接している場合、第1画素42Aと第2画素42Bとの間で、多層膜層16、保護層20、および、反射防止層21の各々は連続している。
 なお、第1画素42Aと第2画素42Bとの呈する色相を相互に異ならせることは、第1画素42Aと第2画素42Bとで、多層膜層16を構成する層の材料や膜厚等の構成を相互に異ならせることによっても実現可能ではある。しかしながら、表示領域41A,41Bごとに多層膜層16の構成が相互に異なると、表示領域41A,41Bごとに、領域のマスキングや高屈折率層16aと低屈折率層16bとの成膜を繰り返すことが必要であり、製造工程が複雑になる。結果として、製造コストの増加や歩留まりの低下が引き起こされる。また、微小な領域にマスキングを行うことは困難であるため、精細な像の形成には限界がある。
 これに対し、上記表示体40の構成であれば、第1表示領域41Aに対応する部分と第2表示領域41Bに対応する部分とに対し、多層膜層16を同時に形成することが可能であるため、表示体40の製造に要する負荷が軽減される。また、微小な領域へのマスキングと比較して、微小な領域ごとに凸部15aの高さh1を異ならせることは容易であるため、表示領域41A,41Bを小さくして、より精細な像を形成することもできる。
 なお、第1画素42Aと第2画素42Bとで、多層膜層16の構成を同一として、凸部15aの高さh1を相互に変えることによって色相を相互に異ならせるためには、多層膜層16を以下のように構成することが好ましい。すなわち、平坦面に多層膜層16を積層した場合における多層膜層16からの反射光のピーク波長が、第1画素42Aにて発色させる色相の光の波長と、第2画素42Bにて発色させる色相の光の波長との間に位置するように、多層膜層16を構成することが好ましい。
 凸部15aの高さh1を変えることにより、多層膜層16を構成する各層の形状が変わって光路長が変化することや、凹凸構造が効率的に散乱させる光の波長域が変化することが起こり、こうした現象等に起因して、発色構造体に視認される色相が変化すると考えられる。
 また、画素42A,42Bの構成に、発色構造体32の構成、すなわち、基材15に積層された樹脂層17が凹凸構造を有している構成が適用される場合、この凹凸構造は、例えば、以下のように形成される。すなわち、ナノインプリント法を利用して、各表示領域41A,41Bに対応する部分で凹凸の高さを変えたモールドが用いられ、各画素42A,42Bの樹脂層17の凹凸構造が同時に形成される。
 こうしたモールドは、表示領域41A,41Bに対応する部分ごとに、リソグラフィやドライエッチングを行うことにより形成されてもよい。また例えば、以下の方法によれば、より簡便にモールドの形成が可能である。すなわち、荷電粒子線リソグラフィに用いられるレジストに対して照射する荷電粒子線の線量を表示領域41A,41Bごとに変え、各表示領域41A,41Bについて所望の高さの凹凸が形成されるように現像時間を調整してレジストパターンを形成する。レジストパターンの表面に例えばニッケル等の金属層を電鋳によって形成した後、レジストを溶解することによって、ニッケル製のモールドが得られる。
 なお、表示体40が含む表示領域の数、すなわち、発色構造体から構成される画素が配置されて、相互に異なる色相の色を呈する表示領域の数は、特に限定されず、表示領域の数は、1つであってもよいし、3つ以上であってもよい。さらに、表示領域には、発色構造体から構成された表示要素が含まれればよく、表示要素は、ラスタ画像を形成するための繰返しの最小単位である画素に限らず、ベクタ画像を形成するためのアンカを結んだ領域であってもよい。
 また、表示要素の構成としては、上述した発色構造体の構成であればいずれの構成であっても適用可能であり、例えば、保護層20は、多層膜層16の透過光の吸収性を有さず、多層膜層16における凹凸構造の保護機能のみを有していてもよいし、紫外線吸収剤の含有により紫外線の吸収機能を有していてもよい。これらの場合、保護層20が表示体40の表面40Fを構成し、反射防止層21が裏面40Rを構成し、表示体40は、表面40F側、すなわち、保護層20の位置する側から観察されることが好ましい。また、反射防止層21は設けられていなくてもよい。
 <発色シートおよび成形体>
 発色構造体の第2の適用例は、発色構造体を発色シートに用いる形態である。発色シートは、発色構造体から構成されたシートであり、装飾等のために被着体に固定される。発色シートと被着体とから、成形体が構成される。
 被着体の形状や材料は特に限定されないが、例えば、樹脂製の被着体に発色シートが取り付けられるとき、発色シートは、例えば、フィルムインサート工法、インモールドラミネーション工法、三次元オーバーレイラミネーション工法(TOM)等のラミネート加飾工法を用いて、被着体の表面へ固定される。
 フィルムインサート工法とは、熱真空成形により成形された発色シートを金型に配置した状態で射出成形を行うことによって、被着体と発色シートとを一体化する方法である。インモールドラミネーション工法とは、発色シートの熱真空成形から射出成形による被着体の形成および発色シートとの一体化までを、すべて同じ金型内で行う方法である。三次元オーバーレイラミネーション工法とは、発色シートで上下に隔離した気密空間の気圧差を利用して、被着体と発色シートとを一体化する方法である。
 こうしたラミネート加飾工法では、加熱処理や加圧処理や真空処理が行われるため、発色構造体にかかる物理的あるいは化学的な負荷が大きい。したがって、保護層20によって多層膜層16の凹凸構造が保護されることの有益性が高い。
 発色シートを構成する発色構造体としては、上述した発色構造体のいずれの構成も適用可能である。ただし、発色シートは、被着体の表面に沿って配置されるように用いられるため、発色構造体は、被着体の表面に追従した形状に変形しやすい性質を有することが好ましい。こうした観点においては、発色構造体32の構成、すなわち、基材15に積層された樹脂層17が凹凸構造を有している構成は、基材15として用いることのできる材料についての自由度が高いため好ましい。
 発色シートが、ラミネート加飾工法を用いて樹脂製の被着体に固定される場合、被着体との一体化のための加熱の際に基材15が被着体に追従して変形するように、基材15は、熱可塑性樹脂から構成される。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリメタクリル酸メチル(PMMA)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、ナイロン(PA)等が挙げられる。基材15の膜厚は、発色シートが被着体に追従しやすい観点から、薄いほど好ましく、例えば、20μm以上300μm以下の程度であることが好ましい。
 保護層20としては、多層膜層16の透過光の吸収性を有する保護層20が用いられる。発色シートが、ラミネート加飾工法を用いて樹脂製の被着体に固定される場合、保護層20は、被着体との一体化のための加熱の際における多層膜層16の凹凸構造への追従性が高いことが好ましく、こうした観点から、保護層20は熱可塑性を有していることが好ましい。具体的には、保護層20が、100℃以上160℃以下の温度において熱可塑性を有している構成であれば、ラミネート加飾工法における加熱の際に、多層膜層16の凹凸構造への追従性が好適に得られる。こうした構成の実現のためには、保護層20が黒色顔料と樹脂とを含む構成において、樹脂として熱可塑性樹脂が用いられればよい。熱可塑性樹脂としては、例えば、上述の基材15の材料として例示した熱可塑性樹脂が挙げられる。
 図9が示すように、発色シート50を構成する発色構造体34は、保護層20における多層膜層16と接する面とは反対側の面を覆う接着層22を備えている。接着層22は、発色シート50と被着体とを接着する機能を有する。なお、図9においては、発色シート50を構成する発色構造体34として、基材15に積層された樹脂層17が第2の構造の凹凸構造を有している構成の発色構造体が適用された例を示している。
 発色シートが、ラミネート加飾工法を用いて樹脂製の被着体に固定される場合、被着体との一体化のための加熱の際に接着層22が接着機能を発現するように、接着層22はヒートシール性を有することが好ましい。こうした接着層22を構成するヒートシール剤としては、例えば、ポリエチレン、ポリ酢酸ビニル、アクリル樹脂、ポリアミド、ポリエステル、ポリプロピレン、ポリウレタン等の熱可塑性樹脂が挙げられる。
 接着層22は、例えば、インクジェット法、スプレー法、バーコート法、ロールコート法、スリットコート法、グラビアコート法等の公知の塗布法を用いて形成される。接着層22の膜厚は特に限定されないが、例えば、2μm以上200μm以下の程度であることが好ましい。
 図10が示すように、上記構成の発色シート50は、接着層22が被着体71と接するように、被着体71に固定される。すなわち、発色シート50が被着体71に固定された成形体55において、基材15が外側に向けられ、基材15に対して保護層20の位置する側に、被着体71が位置する。そして、発色シート50は、基材15側から観察される。
 なお、発色シート50を構成する発色構造体34は、上述の表示体40と同様の反射防止層を備えていてもよい。また、発色シートの構成としては、上述した発色構造体の構成であればいずれの構成であっても適用可能であり、例えば、保護層20は、多層膜層16の透過光の吸収性を有さず、多層膜層16における凹凸構造の保護機能のみを有していてもよいし、紫外線吸収剤の含有により紫外線の吸収機能を有していてもよい。これらの場合、保護層20が外側に向けられて発色シートの最外面を構成し、保護層20に対して基材15の位置する側に、被着体71が位置するように、発色シートが被着体71に固定され、発色シートは、保護層20側から観察されることが好ましい。
 以上説明したように、上記実施形態によれば、以下の効果を得ることができる。
 (1)発色構造体において、多層膜層16の表面が保護層20によって覆われるため、多層膜層16における凹凸構造の変形や、凹凸構造の詰まりを抑えることができる。したがって、多層膜層16にて反射される光の光路長が変化することや、凹凸構造による反射光の拡散効果や回折効果が低下することが抑えられるため、発色構造体において所望の発色が好適に得られる。また、多層膜層16に直接に保護層20が積層されているため、接着層等を介して保護層が設けられる構成と比較して、製造工程が簡素になり、製造コストの増大や歩留まりの低下が抑えられる。そして、こうした発色構造体から構成される画素を備える表示体40や、こうした発色構造体から構成される発色シート50であれば、所望の発色が好適に得られる表示体40や発色シート50が実現される。さらに、こうした発色シート50を備える成形体において、装飾性が高められる。
 (2)保護層20が、多層膜層16の透過光の吸収性を有する構成であれば、凹凸層の位置する側から発色構造体を観察した場合に、多層膜層16に対する凹凸層側から多層膜層16を透過した光は保護層20によって吸収され、透過光が凹凸層側に返ってくることが抑えられる。したがって、多層膜層16からの反射光とは異なる波長域の光が視認されることが抑えられるため、反射光による色の視認性が低下することが抑えられ、発色構造体において所望の発色が好適に得られる。
 そして、保護層20が、黒色顔料を含む構成であれば、保護層20が可視領域において広い波長域の光を吸収可能であるため、多層膜層16を透過する光の波長域に関わらず、透過光を吸収する保護層20が好適に実現できる。
 (3)凹凸層における多層膜層16と接する面とは反対側の面に反射防止層21が設けられている構成によれば、凹凸層の位置する側から発色構造体を観察した場合に、凹凸層の表面反射が低減されるため、多層膜層16からの反射光による色の視認性が低下することが抑えられ、発色構造体において所望の発色が好適に得られる。
 (4)保護層20における多層膜層16とは反対側の面に接着層22が設けられている構成では、発色構造体を装飾等のために被着体に好適に取り付けることができる。そして、凹凸層の位置する側から発色構造体を観察させる用途に適した構造が実現される。
 (5)保護層20が紫外線吸収剤を含む構成であれば、保護層20が紫外線を吸収するため、発色構造体30,31を構成する材料が紫外線によって劣化することが抑えられる。
 (6)保護層20が2以上の層から構成される形態であれば、これらの層が有する機能の組み合わせによって、保護層20の多機能化や保護層20の機能の増強が可能である。
 (7)発色構造体の最外面から測定した硬度が0.03GPa以上であれば、発色構造体の耐擦過性が高められる。
 (8)発色構造体の最外面における算術平均粗さが2μm以下であれば、発色構造体の最外面における光の乱反射を抑えることができる。その結果、多層膜層16からの反射光による色の視認性が低下することが抑えられる。
 (9)発色構造体の最外面における水接触角が60度以上であれば、最外面への水の付着に起因して発色構造体が劣化することが抑えられる。
 (10)発色構造体が第1の構造の凹凸構造を有する構成であれば、凸部によって反射光の拡散効果が得られ、多層膜層16からの反射光として特定の波長域の光が広い角度で観察される。
 (11)発色構造体が第2の構造の凹凸構造を有する構成であれば、凸部によって反射光の拡散効果と回折効果とが得られ、多層膜層16からの反射光として特定の波長域の光が広い観察角度で観察可能であるとともに、この反射光の強度が高められることにより光沢感のある鮮やかな色が視認される。
 (12)発色構造体が第2の構造の凹凸構造を有する構成では、第2凸部要素15Ebの投影像が構成する第2パターンにて、以下の形態を実現できる。すなわち、複数の帯状領域が第1方向Dxと第2方向Dyとの各々に沿って並び、帯状領域の配列間隔の平均値および標準偏差の少なくとも一方が、第1方向Dxに沿った配列間隔と第2方向Dyに沿った配列間隔とで相互に異なる。この構成によれば、第1凸部要素15Eaによる反射光の散乱効果の第1方向Dxへの影響と第2方向Dyへの影響との違いに応じて、第2凸部要素15Ebによる反射光の回折効果を調整することができる。また、帯状領域における第1方向Dxの配列間隔の平均値と第2方向Dyの配列間隔の平均値との各々が1μm以上100μm以下である構成では、反射光の回折効果が好適に発現される範囲で上記反射光の回折効果の調整を行うことができる。
 (13)発色構造体から構成される画素を備える表示体40にて、第1画素42Aと第2画素42Bとにおいて、多層膜層16を構成する各層の材料および膜厚は一致し、凹凸層における凸部の高さが異なる構成を実現できる。この構成であれば、第1画素42Aの位置する領域と第2画素42Bの位置する領域とに相互に異なる色相の色が視認される。そして、第1画素42Aと第2画素42Bとにおいては多層膜層16の構成が一致しているため、各画素42A,42Bの位置する領域ごとに多層膜層16を形成する必要がない。結果として、相互に異なる色相を呈する画素42A,42Bを有する表示体40を簡便な製造工程によって形成することができる。
 (14)発色構造体から構成される発色シート50において、保護層20が熱可塑性を有している構成であれば、発色シート50がラミネート加飾工法を用いて被着体71の表面へ固定される際に、多層膜層16の凹凸構造への保護層20の追従性が好適に得られる。したがって、ラミネート加飾工法を用いて被着体の表面へ固定される発色シート50として好適な構成が実現される。
 (15)発色構造体から構成される発色シート50において、接着層22がヒートシール性を有している構成であれば、発色シート50がラミネート加飾工法を用いて被着体71の表面へ固定される際に、接着層22を被着体71に接触させて発色シート50と被着体71とを一体化することが可能である。これにより、発色シート50と被着体71とが好適に接着される。したがって、ラミネート加飾工法を用いて被着体71の表面へ固定される発色シート50として好適な構成が実現される。また、発色シート50における基材15側の面が被着体71に固定される場合、被着体71の表面で基材15が多層膜層16や保護層20を支持する構成となるため、基材15に製造工程において加えられる熱で強度が低下しない程度の高い耐熱性が必要とされる。これに対し、保護層20側の面が被着体71に固定される構成であれば、基材15の材料の選択についての自由度が高まる。
 (16)発色シート50を備える成形体55において、保護層20が多層膜層16の透過光の吸収性を有し、凹凸層に対して保護層20が位置する側に、被着体71が位置する構成であれば、凹凸層の位置する側から発色シート50が観察され、多層膜層16を透過した光は保護層20によって吸収される。そのため、発色シート50において所望の発色が好適に得られる。すなわち、発色シート50が、その発色性を好適に発揮可能な態様で用いられるため、成形体の装飾性が高められる。
 (17)基材15の表面を覆う樹脂層17に凹凸構造が形成されている構成であれば、基材15の材料の選択についての自由度が高まり、また、凹凸構造の形成に、微細な凹凸の形成に適したナノインプリント法の適用が可能である。
 (18)ナノインプリント法を用いて凹凸層の凹凸構造が形成される製造方法によれば、微細な凹凸構造を好適に、かつ、簡便に形成することができる。そして、ナノインプリント法として、光ナノインプリント法もしくは熱ナノインプリント法が用いられる製造方法であれば、ナノインプリント法による凹凸構造の形成が、好適、かつ、簡便に実現される。
 [変形例]
 上記実施形態は、以下のように変更して実施することが可能である。
 ・多層膜層16の透過光の吸収性を有する層が、多層膜層16に対して保護層20とは反対側に設けられてもよい。例えば、基材15や樹脂層17を黒色の層とすることや、基材15における多層膜層16とは反対側の面に黒色の層を配置することによって、こうした構成が実現できる。この場合、保護層20は、可視領域の光に対して透明な材料から構成され、発色構造体は、保護層20の位置する側から観察される。この際、反射防止層21を備える構成では、反射防止層21は保護層20上に設けられればよく、接着層22は、発色構造体における基材15側の最外面を構成するように設けられていればよい。
 なお、例えば、光ナノインプリント法を用いて凹凸構造を形成しようとすれば、樹脂層17として光硬化性を有する黒色の樹脂を用いる必要があり、黒色の基材15や黒色の樹脂層17を用いることは、材料についての制約が大きい。また、多層膜層16と透過光を吸収する層との間に、基材15等の透明な層が挟まれている構成よりも、多層膜層16に透過光を吸収する層が直接に接している構成の方が、この層に、多層膜層16からの透過光がより効率的に吸収されるため、反射光による色の視認性が低下することが好適に抑えられる。
 ・発色構造体は、保護層20とは別の層として、紫外線吸収性を有する層を備えていてもよい。例えば、発色構造体は、基材15に対して多層膜層16とは反対側に、紫外線吸収剤を含む層を備えていてもよい。こうした構成であれば、特に、発色構造体が、基材15の位置する側から観察される場合、すなわち、基材15の位置する側から入射光が発色構造体に入る態様で用いられる場合に、発色構造体を構成する材料が紫外線によって劣化することを抑える効果を高く得られる。
 ・表示体40が含む画素には、上記仮想平面にて凹凸層における凹凸構造の延びる方向が相互に異なる画素が含まれてもよい。具体的には、任意の画素での凸部の延びる方向である第2方向Dyと、この画素とは異なる画素での凸部の延びる方向である第2方向Dyとが、異なる方向であり、例えばこれらの方向が直交する構成であってもよい。こうした構成によれば、画素によって、多層膜層16からの反射光が拡散される方向を変えることが可能であり、多彩な像の表現が可能である。
 なお、多層膜層16は、凹凸層における凸部の側面にも成膜されるため、多層膜層16における凹凸構造の凸部の幅は、凹凸層における凸部の幅よりもやや広がる。凹凸構造の延びる方向が相互に異なる画素が相互に隣接する部分において、延びる方向の異なる凸部の間で多層膜層16における上述のように広がった部分が連なり、多層膜層16における凹凸構造に崩れが生じると、各画素から所望の発色が所望の方向に得られ難くなる。そのため、凹凸構造の延びる方向が相互に異なる画素の間には、凹凸層に凹凸が形成されていない領域が設けられていることが好ましい。また、延びる方向が同一の凹凸構造を有する画素間においても、凹凸層に凹凸が形成されていない領域が設けられていてもよく、こうした構成によれば、多層膜層16の広がりに起因した凹凸構造の崩れが画素の端部にて抑えられ、各画素の全体から所望の発色が得られやすくなる。画素間に設けられる凹凸が形成されていない領域の幅は、例えば、多層膜層16の膜厚の1/2以上であることが好ましい。
 ・凹凸層の凹凸構造を構成する凸部は、基部から頂部に向かって第1方向Dxの幅が徐々に小さくなる構成を有していてもよい。こうした構成によれば、凸部に多層膜層16が成膜されやすくなる。この場合、第1方向Dxの長さd1や長さd3は、凸部の底面が構成するパターンにて規定される。
 ・凹凸層における凹凸構造の第1の構造にて凸部15aの投影像が構成するパターン、および、第2の構造にて第1凸部要素15Eaの投影像が構成するパターンを構成する図形は、矩形に限られない。これらのパターンを構成する図形は、長円等であってもよく、要は、第2方向Dyに沿った長さが第1方向Dxに沿った長さ以上である形状を有する図形要素であればよい。そして、図形要素における第1方向Dxの長さd1と第2方向Dyの長さd2とが、第1の構造の説明にて述べた各種の条件を満たしていればよい。
 ・多層膜層16における最外層、すなわち、多層膜層16における凹凸層とは反対側の最表面を構成する層が、保護層として機能してもよい。この場合、多層膜層16が光学機能層である。そして、保護層として機能する層は、保護層よりも下層における凹凸構造の変形や変質等の、発色構造体において所望の発色を得られ難くする変化を、少なくとも1つの観点において抑えることができればよい。
 具体的には、多層膜層16における最外層は、多層膜層16における最外層以外の層とは異なる特性を有することによって、保護層として機能する。こうした特性は、構造的な特性であっても化学的な特性であっても物理的な特性であってもよく、例えば、硬さ、厚さ、凹凸の高さ、撥水性等である。例えば、最外層における硬さが他の層よりも大きい構成や、最外層における厚さが他の層よりも大きい構成であれば、最外層は他の層よりも衝撃に強くなるため、最外層よりも下層の凹凸構造が保護される。また、最外層における凹凸の高さが他の層よりも小さく、すなわち、最外層における平坦性が他の層よりも高い構成であれば、多層膜層16の表面の凹凸の高さが小さくなることにより衝撃が凹凸の変形を引き起こし難くなるため、最外層よりも下層の凹凸構造が保護される。
 なお、多層膜層16における最外層が最外層以外の層と異なる特性を有する場合であっても、多層膜層16全体としては、凹凸層の凹凸構造に追従した表面形状、すなわち、凹凸層の凹凸構造における凹凸の配置に対応する配置の凹凸を有し、多層膜層16は、多層膜層16に入射する入射光のうちの特定の波長域での光の反射率が他の波長域での光の反射率よりも高いように構成される。
 [実施例]
 上述した発色構造体およびその製造方法について、具体的な実施例を用いて説明する。
 <実施例1>
 実施例1は、発色構造体が画素に適用された表示体である。実施例1の表示体が有する画素は、基材に第1の構造の凹凸構造が形成された発色構造体から構成される。
 まず、光ナノインプリント法で用いる凹版であるモールドを用意した。具体的には、光ナノインプリント法において照射する光として、365nmの波長の光を用いたため、この波長の光を透過する合成石英をモールドの材料として用いた。モールドの形成に際しては、まず、合成石英基板の表面に、クロム(Cr)からなる膜をスパッタリングによって成膜し、電子線リソグラフィによって電子線レジストパターンをCr膜上に形成した。形成したパターンは、図2に示した複数の矩形の集合からなるパターンである。画素となる領域は、一辺が130mmの正方形であり、第1方向における上記矩形の長さは380nmであり、第2方向における上記矩形の長さは、平均値が2400nm、標準偏差が580nmの正規分布から選択される長さである。上記パターンにおいて、複数の矩形は第1方向に重ならないように配列されている。使用したレジストはポジ型であり、膜厚は200nmとした。
 次に、塩素(Cl)と酸素(O)との混合ガスに高周波を印加して発生させたプラズマにより、レジストから露出した領域のCr膜をエッチングした。続いて、六弗化エタンガスに高周波を印加して発生させたプラズマによりレジストおよびCr膜から露出した領域の合成石英基板をエッチングした。これによりエッチングした合成石英基板の深さは70nmであった。残存したレジストおよびCr膜を除去することにより、凹凸構造が形成されたモールドを得た。
 続いて、モールドの表面に、離型剤としてオプツールHD-1100(ダイキン工業製)を塗布した。そして、基材として用いる合成石英ウエハの表面に、光硬化性樹脂(PAK-02、東洋合成製)を塗布し、この樹脂にモールドの凹凸が形成されている面を押し当てて、モールドの裏面側から365nmの光を照射した。この光の照射によって光硬化性樹脂を硬化した後、合成石英ウエハおよび樹脂層をモールドから剥離した。これにより、凹凸構造を有する樹脂層が積層された合成石英ウエハが得られた。
 続いて、合成石英ウエハに対してOガスを用いたプラズマによるエッチングを実施し、凹凸構造の凹部に残存している光硬化性樹脂を除去した。この工程では、Oガスを40sccm導入し、プラズマ放電させた。次に、オクタフルオロシクロブタン(C)とアルゴン(Ar)との混合ガスを用いたプラズマによるエッチングを実施し、樹脂層の有する凹凸構造を合成石英ウエハに転写した。この工程では、Cガスを40sccm、Arガスを60sccm導入し、プラズマチャンバー内の圧力を5mTorrに設定後、RIEパワー75W、ICPパワー400Wを印加して、プラズマ放電させた。合成石英ウエハに形成された凹凸構造における凸部の高さは100nmとした。
 次に、ジメチルスルホキシド:モノエタノールアミン=7:3の混合液(ST-105、関東化学製)を用いた有機洗浄、および、硫酸および過酸化水素水を基本成分とする混合水溶液(SH-303、関東化学製)を用いた酸洗浄を行い、第1の構造である凹凸構造を有する基材である合成石英ウエハを得た。
 次に、上記合成石英ウエハの凹凸を有する表面に、真空蒸着によって、膜厚が205nmである高屈折率層としてのTiO膜と、膜厚が100nmである低屈折率層としてのSiO膜とを交互に成膜し、高屈折率層と低屈折率層との組を5組、すなわち、10層の層を有する多層膜層を形成した。
 次に、合成石英ウエハにおける多層積層を積層した面とは反対側の面に、真空蒸着によって、反射防止層として、膜厚が100nmのSiO膜を成膜した。
 さらに、アクリル系UV硬化樹脂に、4質量%程度のカーボンナノチューブ粉末を混合して黒色インクを調整し、多層膜層の表面に、バーコート法を用いて黒色インクを塗布し、塗布層を乾燥させて保護層を形成した。これにより、実施例1の表示体が得られた。
 実施例1の表示体を反射防止層の位置する側から観察したところ、画素の位置する領域に、緑色が視認性よく確認された。
 <実施例2>
 実施例2は、発色構造体が適用された発色シート、および、この発色シートを用いた成形体である。実施例2の発色シートは、基材上の樹脂層に第2の構造の凹凸構造が形成された発色構造体から構成される。
 まず、光ナノインプリント法で用いる凹版であるモールドを用意した。具体的には、光ナノインプリント法において照射する光として、365nmの波長の光を用いたため、この波長の光を透過する合成石英をモールドの材料として用いた。モールドの形成に際しては、まず、合成石英基板の表面に、クロム(Cr)からなる膜をスパッタリングによって成膜し、電子線リソグラフィによって電子線レジストパターンをCr膜上に形成した。形成したパターンは、図2に示した複数の矩形の集合からなるパターンである。第1方向における上記矩形の長さは300nmであり、第2方向における上記矩形の長さは、平均値が2000nm、標準偏差が500nmの正規分布から選択される長さである。上記パターンにおいて、複数の矩形は第1方向に重ならないように配列されている。使用したレジストはポジ型であり、膜厚は200nmとした。
 続いて、塩素(Cl)と酸素(O)との混合ガスに高周波を印加して発生させたプラズマにより、レジストから露出した領域のCr膜をエッチングした。続いて、六弗化エタンガスに高周波を印加して発生させたプラズマによりレジストおよびCr膜から露出した領域の合成石英基板をエッチングした。これによりエッチングした合成石英基板の深さは70nmであった。残存したレジストおよびCr膜を除去することにより、第1構造に対応する凹凸構造が形成された合成石英基板を得た。
 次に、上記凹凸構造が形成された合成石英基板の表面に、Crからなる膜をスパッタリングによって成膜し、電子線リソグラフィによって電子線レジストパターンをCr膜上に形成した。形成したパターンは、図4に示した複数の帯状領域からなるパターンである。第1方向における上記帯状領域の長さは200nmであり、第2方向における上記帯状領域の長さは94μmであり、第1方向の長さが40μmかつ第2方向の長さが94μmである矩形領域ごとに、第1方向における配列間隔を、平均値が1.5μm、標準偏差が0.5μmとして上記帯状領域が配列されている。使用した電子線レジストはポジ型であり、膜厚は200nmとした。
 続いて、塩素(Cl)と酸素(O)との混合ガスに高周波を印加して発生させたプラズマにより、レジストから露出した領域のCr膜をエッチングした。続いて、六弗化エタンガスに高周波を印加して発生させたプラズマによりレジストおよびCr膜から露出した領域の合成石英基板をエッチングした。これによりエッチングした合成石英基板の深さは65nmであった。残存したレジストおよびCr膜を除去した後、合成石英基板の表面に、離型剤としてオプツールHD-1100(ダイキン工業製)を塗布した。これにより、第2構造に対応する凹凸構造が形成されたモールドを得た。
 次に、片面に易接着処理が施されたポリエステルフィルム(コスモシャインA4100、東洋紡製)の易接着処理が施された面に、光硬化性樹脂(PAK-02、東洋合成製)を塗布し、この樹脂にモールドの凹凸が形成されている面を押し当てて、モールドの裏面側から365nmの光を照射した。この光の照射によって光硬化性樹脂を硬化した後、ポリエステルフィルムおよび樹脂層をモールドから剥離した。これにより、第2の構造の凹凸構造を有する樹脂層が積層された基材であるポリエステルフィルムが得られた。
 次に、得られた基材と樹脂層との積層体の凹凸を有する面に、真空蒸着によって、膜厚が40nmである高屈折率層としてのTiO膜と、膜厚が75nmである低屈折率層としてのSiO膜とを交互に成膜し、高屈折率層と低屈折率層との組を5組、すなわち、10層の層を有する多層膜層を形成した。
 次に、アクリル系UV硬化樹脂に、4質量%程度のカーボンナノチューブ粉末を混合して黒色インクを調整し、多層膜層の表面に、バーコート法を用いて黒色インクを塗布した。塗布層を80℃で2分間乾燥させた後、365nmの光を照射して、膜厚が10μmの保護層を形成した。
 続いて、保護層の表面に、バーコート法を用いてアクリル系樹脂を塗布し、塗布層を80℃で2分間乾燥させて、膜厚が50μm程度の接着層を形成した。これにより、実施例2の発色シートが得られた。
 実施例2の発色シートを、三次元オーバーレイラミネーション工法を用いて、ポリカーボネート製の被着体と一体化させることによって、実施例2の成形体を得た。詳細には、発色シートの接着層を被着体に向けて成形機に設置して、成形機内を真空引きした後に160℃まで加熱し、発色シートと被着体とを接触させた。この状態で、発色シート側から大気圧まで加圧を行うことにより、発色シートと被着体とを一体化した。その後、発色シートのうちの不要な部分を切り取ることによって、発色シートで加飾された実施例2の成形体が得られた。
 実施例2の成形体を観察したところ、発色シートの位置する部分に、光沢感のある青色が視認性よく確認された。
 <転写箔>
 図11~図14を参照して、上述した発色構造体の第3の適用例である転写箔、および、転写箔の製造方法を説明する。転写箔が備える発色構造体は、上述した発色構造体31を用いることができる。
 [転写箔の構成]
 まず、転写箔の構成を説明する。転写箔は、物品等の被着体に発色構造体を貼り付けるために用いられるシートである。詳細には、転写箔は、転写箔が備える発色構造体を被着体に転写するために用いられる。以下では、発色構造体が備える多層膜層以外の構成を中心に説明し、上述した多層膜層と同様の構成については同じ符号を付してその説明を省略する。
 図11が示すように、転写箔60は、凹凸層の一例である剥離層65と、多層膜層16と、アンカー層67と、吸収層68と、接着層69とを備えている。このうち、多層膜層16、アンカー層67、吸収層68、および、接着層69が、発色シート61を構成する。アンカー層67、および、吸収層68が、保護層(最外層)の一例である。すなわち、転写箔60は、剥離層65と発色シート61との積層体である。
 剥離層65は、平坦な層である基材62と、基材62の表面に位置する樹脂層63とを備える。樹脂層63は、基材62と接する面とは反対側の面である表面に、凹凸構造を有する。樹脂層13の有する凹凸構造は、複数の凸部15aと、複数の凸部15aの間の領域である凹部15bとから構成され、凸部15aは、不規則な長さを有して略帯状に延びる部分から構成される。
 剥離層65は可視領域の光を透過する材料から形成されていることが好ましい。基材62としては、例えば、合成石英基板や、ポリエチレンテレフタラート(PET)等の樹脂からなるフィルムが用いられる。転写箔60の可撓性が高められる観点では、基材62は樹脂から構成されていることが好ましい。樹脂層63を構成する樹脂としては、例えば、光硬化性樹脂が用いられる。基材62の膜厚は、例えば、10μm以上100μm以下である。
 剥離層65は、発色シート61の多層膜層16から剥離可能に構成されている。例えば、樹脂層63は、シリコーンオイルやフッ素化合物等の離型剤として機能する成分を含有している。
 多層膜層16は、樹脂層63の表面を覆い、樹脂層63の凹凸構造に追従した表面形状を有している。多層膜層16は、樹脂層63に接する面である第1面16Fと、第1面16Fとは反対側の面である第2面16Sとを有している。第1面16Fは、樹脂層63の凹凸構造における凸部15aと凹部15bとが反転された凹凸からなる凹凸構造を有している。第2面16Sは、樹脂層13の凹凸構造に追従した凹凸構造を有している。樹脂層63における凸部15a上と凹部15b上とで、多層膜層16の構成、すなわち、多層膜層16を構成する各層の材料や膜厚や積層順序は一致している。
 アンカー層67、吸収層68、および、接着層69は、多層膜層16に対して、第2面16Sと対向する側に位置する。
 アンカー層67は、多層膜層16の第2面16Sを覆い、多層膜層16と吸収層68とに挟まれている。アンカー層67は、吸収層68における下層に対する接着性を高める機能を有する。換言すれば、アンカー層67は、多層膜層16に対する吸収層68の固定の強度を高めている。アンカー層67を構成する材料としては、例えば、ビニル樹脂等が用いられる。アンカー層67の膜厚は、例えば、1μm以上10μm以下である。
 吸収層68は、アンカー層67に対して多層膜層16と反対側でアンカー層67に接し、多層膜層16を透過した光を吸収する光吸収性を有する。例えば、吸収層68は、光吸収剤や黒色顔料等の可視領域の光を吸収する材料を含む層である。具体的には、吸収層68は、カーボンブラック、チタンブラック、黒色酸化鉄、黒色複合酸化物等の黒色の無機顔料が樹脂に混合された層であることが好ましい。吸収層68の膜厚は、例えば、1μm以上10μm以下である。
 接着層69は、吸収層68に対して多層膜層16と反対側で吸収層68に接し、接着性を有する。接着層69を構成する材料としては、例えば、アクリル系樹脂等が用いられる。接着層19の膜厚は、例えば、10μm以上100μm以下である。
 なお、接着層69において接着層69に対する多層膜層16とは反対側の表面は、接着層69を保護して接着性の低下を抑えるための保護シートで覆われていてもよい。
 [転写箔の製造方法]
 上記転写箔60の製造方法を説明する。
 まず、剥離層65が形成される。樹脂層63の凹凸構造の形成方法としては、例えば、ナノインプリント法が用いられる。例えば、光ナノインプリント法によって樹脂層63の凹凸構造を形成する場合、まず、形成対象の凹凸の反転された凹凸を有する凹版であるモールドの凹凸が形成された面に、樹脂層13の材料である光硬化性樹脂を含む塗布液が塗布される。塗布液には離型剤も含まれる。塗布液の塗布方法は特に限定されず、インクジェット法、スプレー法、バーコート法、ロールコート法、スリットコート法、グラビアコート法等の公知の塗布法が用いられればよい。
 次いで、塗布液からなる層の表面に、基材62が樹脂層63に重ねられ、基材62とモールドとが相互に押し付けられた状態で、樹脂層63に対する基材62側もしくはモールド側から樹脂層63に光が照射される。続いて、硬化した光硬化性樹脂を含む層および基材62からモールドが離型される。これによって、モールドの有する凹凸が光硬化性樹脂に転写されて、表面に凹凸を有する樹脂層63が形成され、基材62と樹脂層63とからなる剥離層65が形成される。モールドは、例えば、合成石英やシリコンから構成され、光または荷電粒子線を照射するリソグラフィやドライエッチング等の公知の微細加工技術を利用して形成される。
 なお、塗布液は、基材62の表面に塗布され、基材62上の塗布液からなる層にモールドが押し当てられた状態で、光の照射が行われてもよい。
 また、光ナノインプリント法に代えて、熱ナノインプリント法が用いられてもよく、この場合、樹脂層63を構成する樹脂としては、熱可塑性樹脂や熱硬化性樹脂等の、製造方法に応じた樹脂が用いられる。
 続いて、剥離層65の凹凸を有する表面に、多層膜層16を構成する層が順に積層される。
 続いて、多層膜層16の上面である第2面16Sに、アンカー層67が形成される。アンカー層67は、例えば、インクジェット法、スプレー法、バーコート法、ロールコート法、スリットコート法、グラビアコート法等の公知の塗布法を用いて形成される。
 続いて、アンカー層67の表面に、吸収層68が形成される。吸収層68は、例えば、インクジェット法、スプレー法、バーコート法、ロールコート法、スリットコート法、グラビアコート法等の公知の塗布法を用いて形成される。吸収層68の形成のための塗布液であるインクには、必要に応じて、溶媒が混合されてもよい。溶媒としては、吸収層18を構成する樹脂と相性のよい溶媒が選択されればよく、例えば、酢酸エチル、酢酸ブチル、エチレングリコールモノメチルエーテル、トルエン、キシレン、メチルシクロヘキサン、エチルシクロヘキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等が挙げられる。
 続いて、吸収層68の表面に、接着層69が形成される。接着層69は、例えば、インクジェット法、スプレー法、バーコート法、ロールコート法、スリットコート法、グラビアコート法等の公知の塗布法を用いて形成される。
 これにより、転写箔60が形成される。
 上記転写箔60から被着体への発色シート61の転写方法を説明しつつ、発色シート61および成形体の構成について説明する。なお、発色シート61は、例えば、被着体である物品の意匠性を高める目的で用いられてもよいし、物品の偽造の困難性を高める目的で用いられてもよいし、これらの目的を兼ねて用いられてもよい。
 図12が示すように、転写箔60は、接着層69が被着体71と接するように、被着体71に貼り付けられる。すなわち、転写箔60が被着体71に固定されている状態において、剥離層65の基材62が外側に向けられている。被着体71の形状や材料は特に限定されず、被着体71は、接着層69の接着可能な表面を有していればよい。
 図13が示すように、転写箔60が被着体71に固定された後、発色シート61から剥離層65が剥離される。例えば、剥離層65を被着体71と反対側に引っ張る力が剥離層65に加えられることにより、剥離層65が引き剥がされる。
 これにより、転写箔60から被着体71に発色シート61が転写され、発色シート61が被着体71の表面に固定される。そして、発色シート61と被着体71とから構成される成形体80が得られる。
 図14が示すように、被着体71に転写された後において、発色シート61における多層膜層16の第1面16Fは発色シート61の最外面を構成し、外気に露出されている。また、接着層69は、発色シート61における第1面16Fと反対側の最外面を構成する。
 上述のように、第1面16Fが有する凹凸構造は、剥離層65の有する凹凸の凸部15aと凹部15bとが反転された凹凸から構成される。すなわち、第1面16Fと対向する方向から見たとき、第1面16Fが有する凹部11aが構成するパターンは、複数の矩形Rの集合からなるパターンであり、矩形Rの幅の分布や矩形Rの配置について、樹脂層13の表面と対向する方向から見た凸部15aの構成するパターンと同様の特徴を有する。
 また、凹部11aの深さk1は、凸部15aの高さh1と一致し、凹部11aの深さk1は、一定である。すなわち、凹部11aは、凹部11aの開口する平面から1段に窪む形状を有している。
 [作用]
 転写箔の作用について説明する。上述のように、発色シート61の製造時に、多層膜層16の凹凸構造を形成するために用いられた基材62および樹脂層63からなる層は、多層膜層16に対して剥離可能に構成されており、発色シート61が被着体71に貼り付けられた後に、剥離される。このように、発色シート61は製造時の基材を有さないため、発色シート61の柔軟性が高められる。
 例えば、基材62および樹脂層63を含めた構造体から発色シートが構成され、多層膜層16に加えて、基材62および樹脂層63も被着体71に固定される場合、発色シートが被着体71の曲面に固定された状態を保つためには、多層膜層16だけでなく、基材62および樹脂層63も曲面に沿う形状に変形させる必要がある。そのためには、例えば、被着体71が樹脂から構成される場合、ラミネート加飾工法等を用いて、被着体71と発色シートを一体化させることが行われる。しかしながら、ラミネート加飾工法では、加熱処理や加圧処理や真空処理が行われるため、発色シートにかかる物理的あるいは化学的な負荷が大きい。結果として、多層膜層16の有する凹凸構造が崩れて、所望の発色が得られ難くなる場合がある。また、発色シートの取り付け対象として用いることのできる被着体71の材質や表面形状にも制約が生じる。
 また、ラミネート加飾工法が用いられる場合に限らず、基材62および樹脂層63における被着体71の表面への形状の追従性が低いと、発色シートが被着体71から剥がれやすくなる。
 これに対し、上記転写箔によれば、基材62および樹脂層63は剥離されるため、これらの層を塑性変形として被着体71の表面に沿う形状に変形させる必要はない。基材62および樹脂層63は、転写箔60が被着体71に貼り付けられてから剥離層65が剥離されるまでの短期間において被着体71の表面に沿う程度の可撓性は有している。そのため、加熱や加圧等の大きな負荷を発色シート61にかけずとも、転写箔60を用いて発色シート61を被着体71に固定することができる。そして、被着体71に固定された発色シート61は、製造時の基材を有さないが故に柔軟性が高いため、発色シート61と被着体71の表面との密着性が高くなる結果、発色シートが被着体71から剥がれることも抑えられる。
 さらに、製造時の基材を有している場合と比較して、発色シート61の厚さが薄くなる。したがって、成形体80において発色シート61が貼り付けられている部分が盛り上がることが抑えられる。それゆえ、発色シート61が装飾のために用いられる場合には、その装飾性を高めることも可能である。
 また、多層膜層16は可視領域の光に対して透明な材料から形成されているため、入射光に含まれる波長域のうち、多層膜層16にて反射される特定の波長域以外の波長域の光の一部は、多層膜層16を透過する。この透過光の波長域は多層膜層16における反射光の波長域とは異なり、透過光の色は、主として、反射光の色の補色である。そのため、こうした透過光が視認されると、反射光による色の視認性が低下する。
 上記転写箔では、発色シート61が吸収層68を備えていることにより、多層膜層16の透過光は吸収層68に吸収され、この透過光が被着体71の表面等で反射されて多層膜層16の第1面16F側に射出されることが抑えられる。したがって、第1面16F側から見て、多層膜層16からの反射光とは異なる波長域の光が視認されることが抑えられるため、反射光による色の視認性が低下することが抑えられ、発色シート61において所望の発色が好適に得られる。
 なお、上記実施形態では転写箔60を被着体71に貼り付けて固定した後、剥離層65を多層膜層16から剥離する例について説明した。発色シート61の被着体71への固定の手順はこの順に限定されず、例えば、被着体71に貼り付ける前に転写箔60にて剥離層65を剥離し、その後に発色シート61を被着体71に貼り付けてもよい。これにより、柔軟性が高められた状態で発色シート61が被着体71に貼り付けられるため、被着体71における発色シート61の固定される面の形状の自由度がより高まる。この場合、転写箔60は、剥離層65の剥離の際に接着層69を保護して接着性の低下を抑えるための保護シートを備えていることがさらに好ましい。
 発色シート61の変形例について説明する。
 図15が示すように、発色シート61は、多層膜層16の第1面16Fを覆う保護層90を備えていてもよい。この場合、保護層90が、発色シート61の最外面を構成する。保護層90は、樹脂を含む塗布層であり、可視領域の光に対して光透過性を有する材料、すなわち、可視領域の光に対して透明な材料から構成される。保護層90を構成する材料としては、例えば、アクリル系樹脂等が用いられる。例えば、保護層90が、フッ素を含む樹脂から構成される形態であれば、発色シート61の表面に皮脂などの汚れが付着することが抑えられる。保護層90の膜厚は、例えば、1μm以上100μm以下である。
 保護層90は、剥離層65が剥離された後に、形成される。保護層90は、例えば、インクジェット法、スプレー法、バーコート法、ロールコート法、スリットコート法、グラビアコート法等の公知の塗工法を用いて形成される。
 発色シート61が保護層90を備える場合であっても、発色シートが製造時の基材である基材62および樹脂層63を備える構成と比較して、発色シート61全体の厚さを薄くすることが可能であり、発色シート61の柔軟性は高められる。
 以上説明したように、上記転写箔によれば、以下の効果を得ることができる。
 (2-1)発色シート61が、多層膜層16の凹凸構造の形成に用いられた基材を備えていないため、発色シート61の柔軟性が高められる。したがって、被着体71の表面に発色シート61が沿いやすくなるため、発色シート61を被着体71に固定する際に発色シート61にかかる加熱や加圧等の負荷の低減が可能である。また、発色シート61と被着体71との密着性が高められるため、発色シート61が被着体71から剥がれにくくなる。
 また、多層膜層16が発色シート61の最外面を構成する形態であれば、特に発色シート61の厚さを小さく抑えることが可能である。また、多層膜層16が保護層90に覆われ、保護層90が発色シート61の最外面を構成する形態であれば、多層膜層16が有する凹凸構造の保護が可能であり、凹凸構造の変形を抑えられる。そのため、発色シート61において所望の発色が好適に得られる。
 (2-2)発色シート61が、吸収層68を備えているため、多層膜層16を透過した光は吸収層68によって吸収され、透過光が第1面16F側に返ってくることが抑えられる。したがって、第1面16F側から発色シート61を観察した場合に、多層膜層16からの反射光とは異なる波長域の光が視認されることが抑えられるため、反射光による色の視認性が低下することが抑えられる。そして、発色シート61が接着層69とは別に吸収層68を備えるため、接着層69が光吸収性を有する構成と比較して、接着層69の材料の選択や吸収層68の材料の選択の自由度が高まる。したがって、接着層69の接着性や吸収層18の光吸収性の調整の自由度が高く得られる。
 (2-3)吸収層68が黒色顔料を含む層であれば、吸収層68が可視領域において広い波長域の光を吸収可能である。したがって、入射光が可視領域の光である構成において、多層膜層16の透過光が好適に吸収される。そして、アンカー層67によって、顔料を含む吸収層68を多層膜層16の上に好適に固定することができる。
 (2-4)多層膜層16の凹凸構造によって反射光の拡散効果が得られ、多層膜層16からの反射光として特定の波長域の光が広い角度で観察される。
 (2-5)上記発色シート61を備える成形体80によれば、発色シート61の柔軟性が高められているため、被着体71における発色シート61の固定される面の形状の自由度が高まり、また、発色シート61が被着体71から剥がれにくい成形体80が実現される。
 (2-6)転写箔60において、剥離層65が多層膜層16に対して剥離可能に構成されているため、接着層69を被着体71に貼り付けて転写箔60を被着体71に固定した後、剥離層65を多層膜層16から剥離することができる。それゆえ、転写箔60を用いることによって、多層膜層16の凹凸構造の形成に用いられた基材を備えていない、柔軟性の高い発色シート61を被着体71上に配置することができる。
 (2-7)剥離層65において、基材62の表面を覆う樹脂層63に凹凸構造が形成されている構成であれば、凹凸構造の形成に、微細な凹凸の形成に適したナノインプリント法の適用が可能である。そして、樹脂層63に離型剤が含まれる構成であれば、多層膜層16に対して剥離可能な剥離層65が好適に実現される。
 (2-8)ナノインプリント法を用いて剥離層65の凹凸構造が形成される製造方法によれば、微細な凹凸構造を好適に、かつ、簡便に形成することができる。
 なお、転写箔が備える発色構造体は、上述した発色構造体32を用いることができる。
 図16が示すように、転写箔100にて剥離層65が有する凹凸構造、すなわち、多層膜層16の第1面16Fが有する凹凸構造の構成は、上述した転写箔60の凹凸構造の構成とは異なる。こうした凹凸構造の構成以外については、転写箔100および発色シート110は、上述した転写箔60および発色シート61と同様の構成を有する。
 図17が示すように、発色シート110において多層膜層16の第1面16Fが有する凹凸構造は、剥離層65の有する凹凸の凸部15cと凹部15bとが反転された凹凸から構成される。すなわち、第1面16Fと対向する方向から見たとき、第1面16Fが有する凹部31aが構成するパターンは、第1凸部要素15Eaの反転された第1凹部要素が構成するパターンと、第2凸部要素15Ebの反転された第2凹部要素が構成するパターンとが重ね合わされたパターンである。第1凹部要素が構成するパターン、すなわち、第1面16Fと対向する方向への第1凹部要素の投影像が構成するパターンは、矩形Rの幅の分布や矩形Rの配置について上記第1パターンと同様の特徴を有する。第2凹部要素が構成するパターン、すなわち、第1面16Fと対向する方向への第2凹部要素の投影像が構成するパターンは、帯状領域の幅や配置について上記第2パターンと同様の特徴を有する。
 そして、凹部31aは、第1凹部要素と第2凹部要素とが深さ方向に並んだ多段形状を有する。第1凹部要素のみから構成される領域では、凹部31aの深さk1は、第1凸部要素15Eaの高さh1と一致する。また、第1凹部要素と第2凹部要素とが重なっている領域では、凹部31aの深さk3は、第1凸部要素15Eaの高さh1と第2凸部要素15Ebの高さh2との和と一致する。また、第2凹部要素のみから構成される領域では、凹部31aの深さk2は、第2凸部要素15Ebの高さh2と一致する。
 なお、発色シート110は、多層膜層16の第1面16Fを覆う保護層20を備えていてもよい。
 以上のように、発色シート110によれば、凹部31aにおける第1凹部要素が構成する部分に起因した光の拡散現象と、第2凹部要素が構成する部分に起因した光の回折現象との相乗によって、特定の波長域の反射光が広い観察角度で観察可能であるとともに、この反射光の強度が高められることにより光沢感のある鮮やかな色が視認される。
 発色構造体32を備えた転写箔100によれば、上記(2-1)~(2-8)の効果に加えて、以下の効果を得ることができる。
 (2-9)多層膜層16の凹凸構造によって反射光の拡散効果と回折効果とが得られ、多層膜層16からの反射光として特定の波長域の光が広い観察角度で観察可能であるとともに、この反射光の強度が高められることにより光沢感のある鮮やかな色が視認される。
 上述した転写箔60,100は、以下のように変更して実施することが可能である。
 ・剥離層65の樹脂層63が離型剤を含むことにより、剥離層65が多層膜層16から剥離可能に構成されている。これに代えて、転写箔61,100は、剥離層65と多層膜層16との間に、剥離層65の凹凸構造に沿った層であって、離型剤を含む層である離型層をさらに備えていてもよい。離型層は、例えば、多層膜層16の形成前に、樹脂層63に離型剤が塗布されることによって形成される。そして、剥離層65と離型層との界面、もしくは、離型層と多層膜層16との界面にて剥離が生じることにより、剥離層65が多層膜層16から剥離される。剥離層65と離型層との界面にて剥離が生じる場合には、発色シート61,110は、離型層を保護層90として備える。例えば、離型層がフッ素を含む樹脂から構成される形態であれば、離型層によって剥離層65が多層膜層16から剥離可能とされるとともに、剥離層65の剥離後には、離型層は、保護層90として発色シート61,110の表面に皮脂などの汚れが付着することを抑える効果を発揮する。
 ・剥離層65は、基材62のみを備え、基材62の表面に凹凸構造を有していてもよい。基材62の表面の凹凸構造は、例えば、光または荷電粒子線を照射するリソグラフィやドライエッチング等の公知の微細加工技術を利用して形成される。こうした基材62に対しては、例えば、上述の離型層を設けることによって、剥離層65を多層膜層16から剥離可能に構成することができる。
 ・剥離層65は、加熱あるいは冷却等の物理的な外部刺激を受けることに基づいて、多層膜層16に対する剥離性を発現するように構成されていてもよい。こうした構成によれば、外部刺激の有無や外部刺激を与えるタイミングによって、剥離層65の剥離を制御することができる。すなわち、意図しないときに剥離層65が剥離されることが抑えられる。
 ・吸収層68は、可視領域の光のすべてを吸収せずとも、多層膜層16を透過する光の少なくとも一部を吸収する光吸収性を有する構成であれば、こうした光吸収性を有する層が設けられない構成と比較して、反射光による色の視認性が低下することを抑える効果は得られる。例えば、吸収層68は、多層膜層16を透過する光の波長域に応じた色の顔料を含む層であってもよい。ただし、吸収層68が黒色顔料を含む黒色の層であれば、透過光の波長域に応じた吸収層68の色の調整等が不要であり、また、吸収層68が広い波長域の光を吸収するため、簡便に、かつ、好適に、反射光による色の視認性の低下が抑えられる。
 ・発色シート61,110は、接着層69と別体の吸収層68を有さず、接着層69が、多層膜層16を透過する光の少なくとも一部を吸収する光吸収性を有していてもよい。こうした構成によっても、第1面16F側から観察した場合に、多層膜層16からの反射光とは異なる波長域の光が視認されることが抑えられる。そのため、反射光による色の視認性が低下することが抑えられる。接着層69が光吸収性を有している構成であれば、発色シート61,110が接着層69とは別に光吸収性を有する層を備える構成と比較して、発色シート61,110の層構成が簡易になり、発色シート61,110を薄くすることが可能である。なお、吸収層68が設けられない場合には、発色シート61,110はアンカー層67を備えなくてよい。すなわち、接着層69が多層膜層16の第2面16Sを覆っていればよい。
 ・発色シート61,110は、多層膜層16を透過する光の少なくとも一部を吸収する層を備えていなくてもよい。こうした発色シート61,110が利用される場合としては、例えば、反射光による色の視認性が高いことが求められない用途に発色シート61,110が利用される場合が想定される。また、こうした発色シート61,110が利用される場合としては、発色シート61,110が被着体71における黒色の面に貼り付けられる形態等、多層膜層16の透過光が第1面16F側に返ってくることが抑えられる態様で発色シート61,110が利用される場合が想定される。
 ・保護層90は塗布層でなくてもよく、また、保護層90は複数の層から構成されてもよい。
 ・剥離層65の凸部15aが構成するパターン、すなわち、多層膜層16の凹部11aが構成するパターンを構成する図形は、矩形に限られない。換言すれば、第1凸部要素または第1凹部要素が構成するパターンを構成する図形は、矩形に限られない。これらのパターンを構成する図形は、長円等であってもよく、要は、第2方向Dyに沿った長さが第1方向Dxに沿った長さ以上である形状を有する図形要素であればよい。そして、図形要素における第1方向Dxの長さd1と第2方向Dyの長さd2とが、上記第1の構造で説明した条件を満たしていればよい。
 ・剥離層65の凹凸構造を構成する凸部は、基部から頂部に向かって第1方向Dxの幅が徐々に小さくなる構成を有していてもよい。こうした構成によれば、凸部に多層膜層16が成膜されやすくなる。この場合、第1方向Dxの長さd1や長さd3は、凸部の底面が構成するパターンにて規定される。すなわち、多層膜層16の第1面16Fの凹凸構造を構成する凹部は、底部から開口部に向かって第1方向Dxの幅が徐々に大きくなる構成を有していてもよい。凹部における第1方向Dxの長さは、凹部の開口部が構成するパターンにて規定される。
 ・アンカー層67、および、吸収層68は、表示体に適用される上述した保護層20に変更することも可能である。すなわち、多層膜層16と接着層69との間に位置する保護層は、紫外線吸収剤を含んでいてもよい。また、多層膜層16と接着層69との間に位置する保護層では、当該保護層の表面から測定した硬度が、上述した保護層20と同じく、0.03GPa以上とすることも可能である。また、多層膜層16と接着層69との間に位置する保護層では、上述した保護層20と同じく、保護層の表面における表面粗さRaが、2μm以下とすることも可能である。さらに、多層膜層16と接着層69との間に位置する保護層では、保護層20の表面における水接触角が、60度以上とすることも可能である。
 Dx…第1方向、Dy…第2方向、10,11,12…凹凸構造体、15…基材、15a,15c…凸部、15b…凹部、15Ea…第1凸部要素、15Eb…第2凸部要素、16…多層膜層、16a…高屈折率層、16b…低屈折率層、17…樹脂層、20…保護層、21…反射防止層、22…接着層、30,31,32,33,34…発色構造体、40…表示体、40F…表面、40R…裏面、41A,41B…表示領域、42A,42B…画素、50…発色シート、60…成形体、61…被着体。

Claims (15)

  1.  表面に凹凸構造を有する凹凸層と、
     前記凹凸構造上に位置して当該凹凸構造の形状に追従した表面形状を有する多層膜層であって、当該多層膜層において相互に隣接する層の屈折率が相互に異なり、当該多層膜層に入射する入射光のうちの特定の波長域での光の反射率が前記特定の波長域以外の他の波長域での光の反射率よりも高い前記多層膜層を含む光学機能層であって、当該光学機能層における前記凹凸層とは反対側の最外層が、当該最外層よりも下層に対する保護機能を有する前記光学機能層と、を備え、
     第1方向と、前記第1方向と直交する第2方向とは、前記凹凸層の厚さ方向に前記凹凸構造が投影される仮想的な面である仮想平面に沿う方向であり、
     前記凹凸構造を構成する凸部は1段以上の形状を有し、前記仮想平面において前記凸部の投影像が構成するパターンは、前記第2方向に沿った長さが前記第1方向に沿った長さ以上である図形要素の集合からなるパターンを含み、
     前記図形要素の前記第1方向に沿った長さはサブ波長以下であり、前記図形要素の集合において、前記第2方向に沿った長さの標準偏差は、前記第1方向に沿った長さの標準偏差よりも大きい
     発色構造体。
  2.  前記凹凸層は、前記入射光に対する光透過性を有し、
     前記最外層として前記多層膜層の表面を覆う保護層は、前記入射光のうち前記多層膜層を透過する光の少なくとも一部を吸収する光吸収性を有する
     請求項1に記載の発色構造体。
  3.  前記発色構造体を構成する層には、紫外線吸収剤を含む層が含まれる
     請求項1または2に記載の発色構造体。
  4.  前記最外層として前記多層膜層の表面を覆う保護層は、2以上の層から構成される
     請求項1~3のいずれか一項に記載の発色構造体。
  5.  前記発色構造体の最外面から測定した硬度は、0.03GPa以上である
     請求項1~4のいずれか一項に記載の発色構造体。
  6.  前記発色構造体の最外面における算術平均粗さは、2μm以下である
     請求項1~5のいずれか一項に記載の発色構造体。
  7.  前記発色構造体の最外面における水接触角は、60度以上である
     請求項1~6のいずれか一項に記載の発色構造体。
  8.  前記仮想平面において前記凸部の投影像が構成するパターンは、前記図形要素の集合からなるパターンであり、
     前記凹凸構造を構成する前記凸部の高さは一定である
     請求項1~7のいずれか一項に記載の発色構造体。
  9.  前記仮想平面において前記凸部の投影像が構成するパターンは、前記図形要素の集合からなる第1パターンと、前記第2方向に沿って延び、前記第1方向に沿って並ぶ複数の帯状領域からなる第2パターンとが重ねられたパターンであり、
     前記第1方向に沿った前記帯状領域の配列間隔は、前記複数の帯状領域において一定ではなく、前記配列間隔の平均値が前記入射光に含まれる波長域における最小波長の1/2以上であり、
     前記凹凸構造を構成する前記凸部は、前記仮想平面における投影像が前記第1パターンを構成する要素であって所定の高さを有する凸部要素と、前記仮想平面における投影像が前記第2パターンを構成する要素であって所定の高さを有する凸部要素とが高さ方向に重ねられた多段形状を有する
     請求項1~8のいずれか一項に記載の発色構造体。
  10.  前記凹凸層は、前記多層膜層に対して剥離可能に構成されている
     請求項1~9のいずれか一項に記載の発色構造体。
  11.  前記光学機能層における前記凹凸層とは反対側の面を覆う接着層をさらに備える
     請求項1~10のいずれか一項に記載の発色構造体。
  12.  複数の表示要素を備え、表面と裏面とを有する表示体であって、
     前記表示要素が、請求項1~11のいずれか一項に記載の発色構造体から構成されている
     表示体。
  13.  請求項1~11のいずれか一項に記載の発色構造体から構成された発色シート。
  14.  請求項1~11のいずれか一項に記載の発色構造体から構成された発色シートと、
     前記発色シートが固定された被着体と、を備え、
     前記凹凸層に対して前記光学機能層が位置する側に、前記被着体が位置する
     成形体。
  15.  凹版の有する凹凸を、ナノインプリント法を用いて樹脂に転写することにより、表面に凹凸構造を有する凹凸層を形成する工程と、
     前記凹凸構造上に、多層膜層を含む光学機能層を、当該多層膜層において相互に隣接する層の屈折率が相互に異なり、当該多層膜層に入射する入射光のうちの特定の波長域での光の反射率が前記特定の波長域以外の他の波長域での光の反射率よりも高くなるとともに、前記光学機能層における前記凹凸層とは反対側の最外層が、当該最外層よりも下層に対する保護機能を有するように形成する工程と、を含み、
     第1方向と、前記第1方向と直交する第2方向とは、前記凹凸層の厚さ方向に前記凹凸構造が投影される仮想的な面である仮想平面に沿う方向であり、
     前記凹凸層を形成する工程では、前記凹凸構造を構成する1段以上の凸部の投影像が前記仮想平面において構成するパターンが、前記第2方向に沿った長さが前記第1方向に沿った長さ以上である図形要素の集合からなるパターンを含むように前記凹凸構造を形成し、
     前記図形要素の前記第1方向に沿った長さはサブ波長以下であり、前記図形要素の集合において、前記第2方向に沿った長さの標準偏差は、前記第1方向に沿った長さの標準偏差よりも大きい
     発色構造体の製造方法。
PCT/JP2018/000545 2017-01-11 2018-01-11 発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法 WO2018131665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880006290.7A CN110192129B (zh) 2017-01-11 2018-01-11 显色构造体、显示体、显色片材、成型体、以及显色构造体的制造方法
EP18739439.0A EP3570079A4 (en) 2017-01-11 2018-01-11 COLORING STRUCTURE, DISPLAY BODY, COLORING SHEET, MOLDED ELEMENT, AND METHOD FOR MANUFACTURING COLORING STRUCTURE
US16/508,010 US20190329527A1 (en) 2017-01-11 2019-07-10 Color developing structure, display, color-producing sheet, molding, and method for producing color developing structure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-002947 2017-01-11
JP2017002947 2017-01-11
JP2017133774A JP7004134B2 (ja) 2017-07-07 2017-07-07 発色シート、転写箔、成形体、および、転写箔の製造方法
JP2017-133774 2017-07-07
JP2017-220936 2017-11-16
JP2017220936A JP6981194B2 (ja) 2017-01-11 2017-11-16 発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/508,010 Continuation US20190329527A1 (en) 2017-01-11 2019-07-10 Color developing structure, display, color-producing sheet, molding, and method for producing color developing structure

Publications (1)

Publication Number Publication Date
WO2018131665A1 true WO2018131665A1 (ja) 2018-07-19

Family

ID=62839983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000545 WO2018131665A1 (ja) 2017-01-11 2018-01-11 発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法

Country Status (2)

Country Link
CN (1) CN110192129B (ja)
WO (1) WO2018131665A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116095A1 (ja) * 2018-12-06 2020-06-11 凸版印刷株式会社 表示体及び表示体の製造方法
US11491825B2 (en) 2017-10-27 2022-11-08 The Yokohama Rubber Co., Ltd. Structural color developing member and tire
EP4102269A4 (en) * 2020-02-07 2023-08-09 Toppan Inc. OPTICAL DEVICE AND OPTICAL DEVICE MANUFACTURING METHOD

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036616A4 (en) * 2019-09-25 2023-10-04 Toppan Inc. COLOR DISPLAY BODY, AUTHENTICATION MEDIUM AND AUTHENTICITY DETERMINATION METHOD OF A COLOR DISPLAY BODY
CN114555361A (zh) * 2019-10-29 2022-05-27 Agc株式会社 凹凸构造体以及层叠体
CN112612373B (zh) 2020-12-22 2023-04-28 湖北长江新型显示产业创新中心有限公司 一种显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153192A (ja) 2003-11-21 2005-06-16 Kansai Tlo Kk 発色体とその製造方法
JP2005316097A (ja) * 2004-04-28 2005-11-10 Toray Ind Inc ディスプレー用フィルター
JP2008006716A (ja) * 2006-06-29 2008-01-17 Fujifilm Corp 凹凸状シートの製造方法及び装置
JP2008083599A (ja) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd 光学素子およびそれを用いた表示体
JP2014102320A (ja) * 2012-11-19 2014-06-05 Toppan Printing Co Ltd 光学用ハードコート材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269140B2 (ja) * 2001-11-30 2009-05-27 日産自動車株式会社 光反射機能物体
JP4853945B2 (ja) * 2006-02-23 2012-01-11 彰 齋藤 表示装置の製造方法
DE102012105571B4 (de) * 2012-06-26 2017-03-09 Ovd Kinegram Ag Dekorelement sowie Sicherheitsdokument mit einem Dekorelement
US20160146993A1 (en) * 2013-06-14 2016-05-26 Konica Minolta, Inc. Dielectric multilayer coating film
JP6320057B2 (ja) * 2014-01-29 2018-05-09 キヤノン株式会社 光学フィルタおよび光学装置
KR102563399B1 (ko) * 2015-07-13 2023-08-03 도판 인사츠 가부시키가이샤 발색 구조체 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153192A (ja) 2003-11-21 2005-06-16 Kansai Tlo Kk 発色体とその製造方法
JP2005316097A (ja) * 2004-04-28 2005-11-10 Toray Ind Inc ディスプレー用フィルター
JP2008006716A (ja) * 2006-06-29 2008-01-17 Fujifilm Corp 凹凸状シートの製造方法及び装置
JP2008083599A (ja) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd 光学素子およびそれを用いた表示体
JP2014102320A (ja) * 2012-11-19 2014-06-05 Toppan Printing Co Ltd 光学用ハードコート材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491825B2 (en) 2017-10-27 2022-11-08 The Yokohama Rubber Co., Ltd. Structural color developing member and tire
WO2020116095A1 (ja) * 2018-12-06 2020-06-11 凸版印刷株式会社 表示体及び表示体の製造方法
JP2020091430A (ja) * 2018-12-06 2020-06-11 凸版印刷株式会社 表示体及び表示体の製造方法
CN112969577A (zh) * 2018-12-06 2021-06-15 凸版印刷株式会社 显示体以及显示体的制造方法
EP3892458A4 (en) * 2018-12-06 2022-01-26 Toppan Printing Co., Ltd. DISPLAY BODY AND METHOD FOR PRODUCING A DISPLAY BODY
EP4102269A4 (en) * 2020-02-07 2023-08-09 Toppan Inc. OPTICAL DEVICE AND OPTICAL DEVICE MANUFACTURING METHOD

Also Published As

Publication number Publication date
CN110192129B (zh) 2022-03-04
CN110192129A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
JP6981194B2 (ja) 発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法
WO2018131665A1 (ja) 発色構造体、表示体、発色シート、成形体、および、発色構造体の製造方法
JP7192277B2 (ja) 転写シート、発色シート、発色物品、および、転写方法
CN112888974B (zh) 显色结构体
CN110114699B (zh) 显示体以及显示体的制造方法
JP5236342B2 (ja) 加飾材および加飾物品
WO2018070431A1 (ja) 光学デバイス、表示体、カラーフィルタ、および、光学デバイスの製造方法
US20190329527A1 (en) Color developing structure, display, color-producing sheet, molding, and method for producing color developing structure
JP2018063305A (ja) 表示体、および、表示体の製造方法
JP2019159159A (ja) 発色構造体及びその製造方法、並びに、表示体、発色シート及び成形体
JP7004134B2 (ja) 発色シート、転写箔、成形体、および、転写箔の製造方法
JP7326833B2 (ja) 発色構造体、表示体、及び、発色構造体の製造方法
JP7024221B2 (ja) 表示体、表示体付きデバイス、および、表示体の製造方法
JP2022026090A (ja) 発色シート、発色物品、転写箔、および、転写箔の製造方法
JP7225612B2 (ja) 表示体
JP7302277B2 (ja) 表示体及び表示体の製造方法
JP7463733B2 (ja) 発色構造体、および、発色構造体の製造方法
JP2022034246A (ja) 発色構造体
JP6790498B2 (ja) 表示体
JP2023086445A (ja) 発色構造体
JP2019109414A (ja) 発色構造体、表示体、発色構造体の製造方法
JP2024011912A (ja) 発色構造体
KR101836682B1 (ko) 네일 팁 및 네일 팁의 제조방법
JP2019101259A (ja) 表示体、表示体付きデバイス、および、表示体の製造方法
JP2017227837A (ja) 表示体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018739439

Country of ref document: EP

Effective date: 20190812