WO2018128140A1 - 環状ペプチド化合物合成関連遺伝子、これを用いた環状ペプチド化合物の製造方法及びこれを有する形質転換体 - Google Patents

環状ペプチド化合物合成関連遺伝子、これを用いた環状ペプチド化合物の製造方法及びこれを有する形質転換体 Download PDF

Info

Publication number
WO2018128140A1
WO2018128140A1 PCT/JP2017/046858 JP2017046858W WO2018128140A1 WO 2018128140 A1 WO2018128140 A1 WO 2018128140A1 JP 2017046858 W JP2017046858 W JP 2017046858W WO 2018128140 A1 WO2018128140 A1 WO 2018128140A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
seq
sequence shown
identity
Prior art date
Application number
PCT/JP2017/046858
Other languages
English (en)
French (fr)
Inventor
崇 久保
町田 雅之
舞子 梅村
敬悦 阿部
啓 吉見
智則 藤岡
滋生 山口
清 河合
Original Assignee
国立研究開発法人産業技術総合研究所
国立大学法人東北大学
クミアイ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 国立大学法人東北大学, クミアイ化学工業株式会社 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CA3048176A priority Critical patent/CA3048176A1/en
Priority to JP2018560384A priority patent/JP7072750B2/ja
Priority to EP17890648.3A priority patent/EP3567107A4/en
Priority to US16/476,000 priority patent/US11230726B2/en
Priority to KR1020197022776A priority patent/KR102633026B1/ko
Priority to CN201780088071.3A priority patent/CN111684066B/zh
Priority to BR112019013234-1A priority patent/BR112019013234A2/pt
Priority to AU2017391000A priority patent/AU2017391000A1/en
Publication of WO2018128140A1 publication Critical patent/WO2018128140A1/ja
Priority to PH12019501577A priority patent/PH12019501577A1/en
Priority to US17/549,492 priority patent/US11946086B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/02Acid—amino-acid ligases (peptide synthases)(6.3.2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Definitions

  • the present invention relates to a novel cyclic peptide compound synthesis-related gene involved in the synthesis of a cyclic peptide compound produced by Curvularia fungi and having a bactericidal action against fungi, and the production of the cyclic peptide compound using the cyclic peptide compound synthesis-related gene
  • the present invention relates to a method and a transformant having a gene related to synthesis of the cyclic peptide compound.
  • KK-1 A specific cyclic peptide compound (hereinafter referred to as CAS143380-71-6, produced by Curvularia filamentous fungi is known to exhibit a strong bactericidal action against phytopathogenic fungi, especially fungi.
  • Patent Document 1 A specific cyclic peptide compound (hereinafter referred to as CAS143380-71-6), produced by Curvularia filamentous fungi is known to exhibit a strong bactericidal action against phytopathogenic fungi, especially fungi.
  • Patent Document 1 A specific cyclic peptide compound (hereinafter referred to as KK-1), known as CAS143380-71-6, produced by Curvularia filamentous fungi is known to exhibit a strong bactericidal action against phytopathogenic fungi, especially fungi.
  • Patent Document 1 A specific cyclic peptide compound (hereinafter referred to as KK-1), known as CAS143380-71-6, produced by Curvularia filamentous fungi is known to exhibit a strong bacterici
  • Non-patent Document 1 a biosynthetic gene cluster involved in biosynthesis of metabolites exists.
  • Non-patent Document 3 a sufficient amount of secondary metabolism can be achieved by activating the biosynthetic gene cluster (Non-patent Document 3) or expressing it in an appropriate heterologous species such as budding yeast. So-called synthetic biology techniques that try to synthesize products have been attempted.
  • KK-1 produced by Curvularia spp. May be produced by using synthetic biology techniques, similar to the secondary metabolites described above. However, the genome of Curvularia spp. Has hardly been elucidated, and the gene cluster involved in the production of KK-1 has not been elucidated.
  • the present invention aims to identify a gene cluster involved in biosynthesis of KK-1 produced by Curvularia spp. And provide a system for synthesizing KK-1.
  • NRPS nonribosomal peptide synthase
  • the present invention includes the following.
  • a first adenylation domain consisting of the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence having 70% or more identity to the amino acid sequence shown in SEQ ID NO: 1, and the amino acid sequence shown in SEQ ID NO: 2,
  • a second adenylation domain consisting of an amino acid sequence having 70% or more identity to the amino acid sequence, and 70% or more identity to the amino acid sequence shown in SEQ ID NO: 5 or the amino acid sequence shown in SEQ ID NO: 5
  • A a protein comprising the amino acid sequence shown in SEQ ID NO: 37
  • B an amino acid sequence having 70% or more identity to the amino acid sequence shown in SEQ ID NO: 37
  • C a cyclic peptide compound that is encoded by a polynucleotide that hybridizes under stringent conditions to a complementary strand of the base sequence shown in SEQ ID NO: 36 and that is produced by Curvularia spp.
  • the cyclic peptide compound synthesis-related gene according to (1) which is derived from a Curvularia genus filamentous fungus.
  • A a protein consisting of the amino acid sequence shown in SEQ ID NO: 39
  • b a protein consisting of an amino acid sequence having 70% or more identity to the amino acid sequence shown in SEQ ID NO: 39 and having transcription factor activity
  • c SEQ ID NO: A protein encoded by a polynucleotide that hybridizes under stringent conditions to the complementary strand of the base sequence shown in No. 38 and having a transcription factor activity (6) characterized by being derived from Curvularia spp. (5) The cyclic peptide compound synthesis-related gene as described.
  • Amino acid sequence or sequence shown in SEQ ID NO: 43 A gene encoding a protein comprising an amino acid sequence having 70% or more identity to the amino acid sequence shown in No.
  • Amino acid sequence or sequence shown in SEQ ID NO: 43 A gene encoding a protein comprising an amino acid sequence having 70% or more identity to the amino acid sequence shown in No.
  • Curvularia spp. Having the cyclic peptide compound synthesis-related gene according to any one of (1) to (4) above.
  • Curvularia spp. Described in (14), which is Curvularia clavata.
  • a gene encoding a non-ribosomal peptide synthase involved in the synthesis of a cyclic peptide compound produced by Curvularia spp. And a gene group involved in the synthesis of the other cyclic peptide compound are provided.
  • a system for synthesizing a cyclic peptide compound produced by Curvularia spp. Can be constructed, and the cyclic peptide compound can be efficiently produced.
  • FIG. 3 is a characteristic diagram showing the results of examining the production amount of KK-1 separately for the wild type and the high expression factor of the transcription factor separately on the outside and inside of the cells at 3 and 7 days after the main culture. It is a characteristic figure which shows the result of having investigated the production amount of KK-1 when a wild strain and a transcription factor high expression strain are cultured by "culture 3", and the mode of solid culture. It is a figure which shows typically the construction of the plasmid for CcpyrG gene destruction. It is a figure which shows typically the construct for destroying a transcription factor gene (TF068-005 gene).
  • the cyclic peptide compound synthesis-related gene means individual genes included in a gene group (gene cluster) involved in the synthesis of a cyclic peptide compound produced by Curvularia spp.
  • the cyclic peptide compound is represented by the following formula as disclosed in JP-T-8-504165 (or WO93 / 12659).
  • each amino acid residue and lactate residue can independently take L-form or D-form.
  • the compound name of the cyclic peptide compound (hereinafter sometimes referred to as KK-1) is Tyrosine, N- [N- [N- [N- [N- [N- [N- [N- [N-[[1 -(2-hydroxy-1-oxopropyl) -2-piperidinyl] carbonyl] -N-methylvalyl] valyl] -N-methyl-a-aspartyl] -N-methylvalyl] -Nmethylisoleucyl] glycyl] -N-methylvalyl] -O -methyl-, d2-lactone (9CI).
  • Curvularia genus fungus that produces this cyclic peptide compound can typically include Curvularia clavata, but also C. affinis, C. brachyspora, C. caricae-papayae, C. eragrostidis (Cochliobolus eragrostidis), C. fallax, C. geniculata (Cochliobolus geniculatus), C. harveyi, C. lunata (Cochliobolus lunatus), C. ovoidea, C. pallescens, C. penniseti, C. prasadii, C. protuberata, C. senegalensis, C.
  • Curvularia clavata includes Curvularia clavata BAUA-2787 stock sold by Akita Imano Co., Ltd.
  • Curvularia clavata BAUA-2787 dated December 28, 2016, the National Institute of Technology and Evaluation (NPMD) (2-5-Kazusa Kamashi, Kisarazu City, Chiba Prefecture 292-0818, Japan) No. 8 122) was deposited under the accession number NITE BP-02399.
  • the gene group involved in the synthesis of the present cyclic peptide compound can be defined as a gene group containing 10 types of genes, preferably 9 types of genes, as shown in the Examples described later.
  • These 10 genes encode O-methyltransferase gene, non-ribosomal peptide synthase gene (NRPS gene), amidase gene, genes with unknown function (2 types), transcription factor gene, and leptomycin B resistance protein.
  • pmd1 gene pyrroline-5-carboxylic acid reductase-like gene and ⁇ / ⁇ hydrolase gene.
  • O-methyltransferase gene, non-ribosomal peptide synthase gene (NRPS gene), amidase gene, gene with unknown function (1 type) are particularly involved in the synthesis of cyclic peptide compounds.
  • Transcription factor gene encoding leptomycin B resistance protein, pyrroline-5-carboxylate reductase-like gene and ⁇ / ⁇ hydrolase gene are defined as genes involved in the synthesis of this cyclic peptide compound You can also
  • the NRPS gene encodes NRPS having a function of forming the basic skeleton of the present cyclic peptide compound. That is, this NRPS is [alanine (Ala) -pipecolic acid (Pip) -valine (Val) -valine-aspartic acid (Asp) -valine-isoleucine (Ile) -glycine (Gly) -valine-tyrosine (Tyr)] A peptide backbone consisting of 10 amino acids is formed.
  • this NRPS forms a peptide bond between the carboxyl group of alanine and the amino group of pipecolic acid, forms a peptide bond between the carboxyl group of pipecolic acid and the amino group of valine, and A peptide bond is formed between the carboxyl group and the amino group of valine, a peptide bond is formed between the carboxyl group of the valine and the amino group of aspartic acid, and the carboxyl group of the aspartic acid and the amino group of valine A peptide bond is formed between the carboxyl group of the valine and the amino group of isoleucine, a peptide bond is formed between the carboxyl group of the isoleucine and the amino group of glycine, A peptide bond is formed between the carboxyl group of glycine and the amino group of valine.
  • This NRPS also methylates the peptide bond between pipecolic acid and valine, methylates the peptide bond between valine and aspartic acid, methylates the peptide bond between aspartic acid and valine, It has an activity of methylating a peptide bond between isoleucine and methylating a peptide bond between glycine and valine.
  • This NRPS has 10 modules corresponding to 10 amino acids constituting the basic peptide skeleton described above [alanine-pipecolic acid-valine-valine-aspartic acid-valine-isoleucine-glycine-valine-tyrosine]. ing. Each module has an A domain (adenylation domain) that takes in an amino acid of interest and synthesizes an aminoacyl AMP by binding AMP (adenosine monophosphate) to the amino acid. Each module has a phosphopantethein and a PCP domain (peptidyl carrier protein domain) that binds the aminoacyl AMP by a thioester formed between the serine site of phosphopantethein and aminoacyl AMP. Have.
  • each module has a C domain (condensation domain) that forms a peptide bond between aminoacylAMPs bound to adjacent PCP domains. Furthermore, some modules have an nMT domain (N-methyltransferase domain) that methylates the formed peptide bond.
  • NRPS having the activity described above is composed of first to ten modules as shown in FIG.
  • the position of each module of NRPS coincides with the position of the amino acid constituting the peptide skeleton to be synthesized.
  • the position of the module having the nMT domain coincides with the position of the N-methylated peptide bond.
  • the first module has a first A domain consisting of the amino acid sequence shown in SEQ ID NO: 1 and a first PCP domain consisting of the amino acid sequence shown in SEQ ID NO: 2 in this order from the N-terminal side.
  • the first A domain and the first PCP domain in the first module are not limited to the amino acid sequences shown in SEQ ID NOs: 1 and 2, respectively, so long as they function as the A domain and the PCP domain, respectively.
  • Amino acid sequences having the same identity may be used.
  • the second module consists of a first C domain consisting of the amino acid sequence shown in SEQ ID NO: 3, a second A domain consisting of the amino acid sequence shown in SEQ ID NO: 4, and a second PCP consisting of the amino acid sequence shown in SEQ ID NO: 5. Domains in this order from the N-terminal side. However, the first C domain, the second A domain, and the second PCP domain in the second module are not limited to the amino acid sequences shown in SEQ ID NOs: 3, 4, and 5, respectively.
  • identity preferably 80% or more identity, more preferably 90% identity or more, more preferably, to the amino acid sequences shown in SEQ ID NOs: 3, 4 and 5 It may be an amino acid sequence having 95% or more identity, most preferably 97% or more identity.
  • the third module includes a second C domain consisting of the amino acid sequence shown in SEQ ID NO: 6, a third A domain consisting of the amino acid sequence shown in SEQ ID NO: 7, and a first nMT consisting of the amino acid sequence shown in SEQ ID NO: 8. It has a domain and a third PCP domain consisting of the amino acid sequence shown in SEQ ID NO: 9 in this order from the N-terminal side.
  • the second C domain, the third A domain, the first nMT domain, and the third PCP domain in the third module are not limited to the amino acid sequences shown in SEQ ID NOs: 6, 7, 8, and 9, respectively.
  • identity 70% or more identity, preferably 80% or more identity to the amino acid sequences shown in SEQ ID NOs: 6, 7, 8 and 9, if functioning as C domain, A domain, nMT domain and PCP domain, respectively More preferably, it may be an amino acid sequence having 90% or more identity, more preferably 95% or more identity, and most preferably 97% or more identity.
  • the fourth module includes a third C domain consisting of the amino acid sequence shown in SEQ ID NO: 10, a fourth A domain consisting of SEQ ID NO: 11, and a fourth PCP domain consisting of the amino acid sequence shown in SEQ ID NO: 12. It has in this order from the terminal side.
  • the third C domain, the fourth A domain, and the fourth PCP domain in the fourth module are not limited to the amino acid sequences shown in SEQ ID NOs: 10, 11, and 12, respectively, and the C domain, A domain, and PCP, respectively.
  • identity preferably 80% or more identity, more preferably 90% or more identity to the amino acid sequences shown in SEQ ID NOs: 10, 11, and 12, more preferably It may be an amino acid sequence having 95% or more identity, most preferably 97% or more identity.
  • the fifth module includes a fourth C domain consisting of the amino acid sequence shown in SEQ ID NO: 13, a fifth A domain consisting of the amino acid sequence shown in SEQ ID NO: 14, and a second nMT consisting of the amino acid sequence shown in SEQ ID NO: 15. It has a domain and a fifth PCP domain consisting of the amino acid sequence shown in SEQ ID NO: 16 in this order from the N-terminal side.
  • the fourth C domain, the fifth A domain, the second nMT domain and the fifth PCP domain in the fifth module are not limited to the amino acid sequences shown in SEQ ID NOs: 13, 14, 15 and 16, respectively.
  • identity 70% or more identity, preferably 80% or more identity to the amino acid sequences shown in SEQ ID NOs: 13, 14, 15 and 16 if they function as C domain, A domain, nMT domain and PCP domain, respectively. More preferably, it may be an amino acid sequence having 90% or more identity, more preferably 95% or more identity, and most preferably 97% or more identity.
  • the sixth module includes a fifth C domain consisting of the amino acid sequence shown in SEQ ID NO: 17, a sixth A domain consisting of the amino acid sequence shown in SEQ ID NO: 18, and a third nMT consisting of the amino acid sequence shown in SEQ ID NO: 19. It has a domain and a sixth PCP domain consisting of the amino acid sequence shown in SEQ ID NO: 20 in this order from the N-terminal side.
  • the fifth C domain, the sixth A domain, the third nMT domain, and the sixth PCP domain in the sixth module are not limited to the amino acid sequences shown in SEQ ID NOs: 17, 18, 19, and 20, respectively.
  • identity 70% or more identity, preferably 80% or more identity to the amino acid sequence shown in SEQ ID NOs: 17, 18, 19 and 20 if functioning as C domain, A domain, nMT domain and PCP domain, respectively More preferably, it may be an amino acid sequence having 90% or more identity, more preferably 95% or more identity, and most preferably 97% or more identity.
  • the seventh module includes a sixth C domain consisting of the amino acid sequence shown in SEQ ID NO: 21, a seventh A domain consisting of the amino acid sequence shown in SEQ ID NO: 22, and a fourth nMT consisting of the amino acid sequence shown in SEQ ID NO: 23. It has a domain and a seventh PCP domain consisting of the amino acid sequence shown in SEQ ID NO: 24 in this order from the N-terminal side.
  • the sixth C domain, the seventh A domain, the fourth nMT domain, and the seventh PCP domain in the seventh module are not limited to the amino acid sequences shown in SEQ ID NOs: 21, 22, 23, and 24, respectively.
  • identity 70% or more identity, preferably 80% or more identity to the amino acid sequences shown in SEQ ID NOs: 21, 22, 23 and 24, if they function as C domain, A domain, nMT domain and PCP domain, respectively. More preferably, it may be an amino acid sequence having 90% or more identity, more preferably 95% or more identity, and most preferably 97% or more identity.
  • the eighth module includes a seventh C domain consisting of the amino acid sequence shown in SEQ ID NO: 25, an eighth A domain consisting of SEQ ID NO: 26, and an eighth PCP domain consisting of the amino acid sequence shown in SEQ ID NO: 27. It has in this order from the terminal side.
  • the seventh C domain, the eighth A domain, and the eighth PCP domain in the eighth module are not limited to the amino acid sequences shown in SEQ ID NOs: 25, 26, and 27, respectively. If functioning as a domain, 70% or more identity, preferably 80% or more identity, more preferably 90% identity or more, more preferably, to the amino acid sequences shown in SEQ ID NOs: 25, 26 and 27 It may be an amino acid sequence having 95% or more identity, most preferably 97% or more identity.
  • the ninth module includes an eighth C domain consisting of the amino acid sequence shown in SEQ ID NO: 28, a ninth A domain consisting of the amino acid sequence shown in SEQ ID NO: 29, and a fifth nMT consisting of the amino acid sequence shown in SEQ ID NO: 30. It has a domain and a ninth PCP domain consisting of the amino acid sequence shown in SEQ ID NO: 31 in this order from the N-terminal side.
  • the eighth C domain, the ninth A domain, the fifth nMT domain, and the ninth PCP domain in the ninth module are not limited to the amino acid sequences shown in SEQ ID NOs: 28, 29, 30, and 31, respectively.
  • identity 70% or more identity, preferably 80% or more identity to the amino acid sequences shown in SEQ ID NOs: 28, 29, 30 and 31 if functioning as C domain, A domain, nMT domain and PCP domain respectively. More preferably, it may be an amino acid sequence having 90% or more identity, more preferably 95% or more identity, and most preferably 97% or more identity.
  • the tenth module includes a ninth C domain consisting of the amino acid sequence shown in SEQ ID NO: 32, a tenth A domain consisting of the SEQ ID NO: 33, a tenth PCP domain consisting of the amino acid sequence shown in SEQ ID NO: 34, and a sequence It has a 10th C domain consisting of the amino acid sequence shown in No. 35 in this order from the N-terminal side.
  • the ninth C domain, the tenth A domain, the tenth PCP domain, and the tenth C domain in the tenth module are not limited to the amino acid sequences shown in SEQ ID NOs: 32, 33, 34, and 35, respectively.
  • identity 70% or more identity, preferably 80% or more identity to the amino acid sequences shown in SEQ ID NOs: 32, 33, 34 and 35, if functioning as C domain, A domain, PCP domain and C domain respectively. More preferably, it may be an amino acid sequence having 90% or more identity, more preferably 95% or more identity, and most preferably 97% or more identity.
  • a mutant NRPS gene is designed to encode the first mutant A domain designed to be different from the amino acid sequence of SEQ ID NO: 1.
  • This mutant NRPS gene is expressed in an appropriate host, and it is confirmed whether a compound having the basic peptide skeleton of the cyclic peptide compound is synthesized in the metabolite in the host and in the culture supernatant.
  • the designed first mutant A domain functions as an A domain corresponding to alanine. it can.
  • the second to tenth A domains are different from the amino acid sequences of SEQ ID NOs: 4, 7, 11, 14, 18, 22, 26, 29, and 33, it is similarly evaluated whether they can function as A domains. Can do.
  • first PCP domain can function as a PCP domain when it differs from the amino acid sequence of SEQ ID NO: 2
  • a mutant NRPS gene is designed to encode the first mutant PCP domain designed to be different from the amino acid sequence of SEQ ID NO: 2.
  • This mutant NRPS gene is expressed in an appropriate host, and it is confirmed whether a compound having the basic peptide skeleton of the cyclic peptide compound is synthesized in the metabolite in the host and in the culture supernatant.
  • a compound having a basic peptide skeleton of the above cyclic peptide compound is synthesized in a metabolite, it can be evaluated that the designed first mutant PCP domain functions as a PCP domain.
  • even when the second to tenth PCP domains are different from the amino acid sequences of SEQ ID NOs: 5, 9, 12, 16, 20, 24, 27, 31 and 34, it is evaluated whether they can function as PCP domains in the same manner. Can do.
  • first C domain is different from the amino acid sequence of SEQ ID NO: 3
  • whether it can function as the C domain can be evaluated as follows.
  • a mutant NRPS gene is designed to encode a first mutant C domain designed to be different from the amino acid sequence of SEQ ID NO: 3.
  • This mutant NRPS gene is expressed in an appropriate host, and it is confirmed whether a compound having the basic peptide skeleton of the cyclic peptide compound is synthesized in the metabolite in the host and in the culture supernatant.
  • a compound having a basic peptide skeleton of the above cyclic peptide compound is synthesized in a metabolite, it can be evaluated that the designed first mutant C domain functions as a C domain.
  • even when the 2nd to 10th C domains are different from the amino acid sequences of SEQ ID NOs: 6, 10, 13, 17, 21, 25, 28, 32 and 35, it is evaluated whether they can function as C domains in the same manner. Can do.
  • first nMT domain is different from the amino acid sequence of SEQ ID NO: 8
  • whether it can function as an nMT domain can be evaluated as follows.
  • a mutant NRPS gene is designed to encode a first mutant nMT domain designed to be different from the amino acid sequence of SEQ ID NO: 8. This mutant NRPS gene is expressed in an appropriate host, and it is confirmed whether a compound having the basic peptide skeleton of the cyclic peptide compound is synthesized in the metabolite in the host and in the culture supernatant.
  • nMT domain When a compound having a basic peptide skeleton of the above cyclic peptide compound is synthesized in a metabolite, it can be evaluated that the designed first mutant nMT domain functions as an nMT domain. Even when the second to fifth nMT domains are different from the amino acid sequences of SEQ ID NOs: 15, 19, 23 and 30, it can be similarly evaluated whether they can function as nMT domains.
  • the NRPS for synthesizing the basic peptide skeleton of the cyclic peptide compound can be defined by the first module to the tenth module.
  • the amino acid sequence of NRPS derived from Curvularia clavata and having the synthetic activity of the basic peptide skeleton in the cyclic peptide compound is shown in SEQ ID NO: 37, and the base sequence of the coding region corresponding to the amino acid sequence shown in SEQ ID NO: 37 This is shown in SEQ ID NO: 36.
  • the NRPS gene according to the present invention comprises the first module to the tenth module defined by the amino acid sequences shown in SEQ ID NOs: 1 to 35, and is 70% or more with respect to the amino acid sequence shown in SEQ ID NO: 37.
  • Amino acid sequences having the same identity preferably more than 80% identity, more preferably more than 90% identity, still more preferably more than 95% identity, most preferably more than 97% identity, It may be a gene encoding a protein having a synthetic activity of the basic peptide skeleton in the cyclic peptide compound.
  • the value of identity between amino acid sequences can be calculated by a BLASTN or BLASTX program that implements the BLAST algorithm (default setting). The identity value is calculated as a ratio of all amino acid residues compared by calculating the amino acid residues that completely match when a pair of amino acid sequences are subjected to pairwise alignment analysis.
  • the NRPS gene according to the present invention comprises the first module to the tenth module defined by the amino acid sequences shown in SEQ ID NOs: 1 to 35 described above, and is one or several relative to the amino acid sequence of SEQ ID NO: 37. It may have an amino acid sequence in which one amino acid is substituted, deleted, inserted or added, and encodes a protein having a synthetic activity of a basic peptide skeleton in the cyclic peptide compound.
  • the term “several” means, for example, 2 to 1300, preferably 2 to 1000, more preferably 2 to 700, still more preferably 2 to 500, still more preferably 2 to 250, still more preferably 2. ⁇ 100, more preferably 2-50.
  • the NRPS gene according to the present invention comprises the first module to the tenth module defined by the amino acid sequences shown in SEQ ID NOs: 1 to 35 described above, and all the complementary strands of DNA consisting of the base sequence of SEQ ID NO: 36 Alternatively, it may be a protein that hybridizes to a part under stringent conditions and encodes a protein having a synthetic activity of the basic peptide skeleton in the cyclic peptide compound.
  • stringent conditions as used herein means the conditions under which a so-called specific hybrid is formed and a non-specific hybrid is not formed, and is appropriately determined with reference to, for example, Molecular Cloning: A Laboratory Manual (Third Edition) can do.
  • the stringency can be set according to the temperature at the time of Southern hybridization and the salt concentration contained in the solution, and the temperature at the time of the washing step of Southern hybridization and the salt concentration contained in the solution. More specifically, as stringent conditions, for example, the sodium concentration is 25 to 500 mM, preferably 25 to 300 mM, and the temperature is 42 to 68 ° C., preferably 42 to 65 ° C. More specifically, it is 5 ⁇ SSC (83 mM NaCl, 83 mM sodium citrate), and the temperature is 42 ° C.
  • the NRPS gene according to the present invention is not limited to the one encoding a protein comprising the first module to the tenth module defined by the amino acid sequences shown in SEQ ID NOs: 1 to 35 described above.
  • the amino acid sequence of NRPS derived from Curvularia clavata and having the synthetic activity of the basic peptide skeleton in the cyclic peptide compound is shown in SEQ ID NO: 37
  • the base sequence of the coding region corresponding to the amino acid sequence is shown in SEQ ID NO:
  • the NRPS gene according to the present invention can also be defined by these SEQ ID NOs: 36 and 37.
  • the NRPS gene according to the present invention can be a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 37.
  • the NRPS gene according to the present invention has 70% or more identity, preferably 80% or more identity, more preferably 90% or more identity, more preferably 95%, to the amino acid sequence shown in SEQ ID NO: 37. It may be a gene encoding a protein having an amino acid sequence having at least% identity, most preferably at least 97% identity, and having a basic peptide backbone synthesis activity in the cyclic peptide compound.
  • the identity value between amino acid sequences can be calculated by the BLASTN or BLASTX program in which the BLAST algorithm is implemented, as described above (default setting). Similar to the above, the identity value is calculated as a percentage of the total amino acid residues that are calculated by calculating amino acid residues that completely match when a pair of amino acid sequences are subjected to pairwise alignment analysis.
  • the NRPS gene according to the present invention has a high coverage, a low E-value, and a high identity value with respect to the base sequence shown in SEQ ID NO: 36 using a known database storing base sequence information. It is possible to identify genes that satisfy such conditions.
  • the coverage can be 90% or more, preferably 95% or more, more preferably 99% or more.
  • E-value can be 1.0e-5 or less, preferably 1.0e-15 or less, more preferably 0.0.
  • the value of identity can be 70% or more, preferably 75% or more, more preferably 80% or more.
  • a gene identified as satisfying these conditions has a very high probability of being a homologous gene of the NRPS gene consisting of the base sequence of SEQ ID NO: 36, and the cyclic peptide as in the case of the NRPS gene consisting of the base sequence of SEQ ID NO: 36. It can be identified as a gene encoding a protein having a synthetic activity of the basic peptide backbone in the compound.
  • a microorganism having the gene may be obtained, and the ability of the cyclic peptide compound to be synthesized in the microorganism may be verified.
  • the ability of the cyclic peptide compound in the obtained microorganism can be verified by culturing the microorganism and confirming whether the cyclic peptide compound is contained in the cultured microbial cells or in the culture supernatant.
  • the nucleotide sequence of the NRPS gene according to the present invention is determined, it is prepared by chemical synthesis, by PCR using genomic DNA as a template, or by hybridizing a DNA fragment having the nucleotide sequence as a probe. can do. Furthermore, a gene consisting of a base sequence different from SEQ ID NO: 36 or a gene encoding an amino acid sequence different from SEQ ID NO: 37 is synthesized by site-directed mutagenesis or the like with respect to a polynucleotide consisting of the base sequence shown in SEQ ID NO: 36.
  • a known method such as the Kunkel method or the Gapped-duplex method or a method equivalent thereto can be employed.
  • a mutagenesis kit for example, Mutant-K (manufactured by Takara Bio Inc.) or Mutant-G (manufactured by Takara Bio Inc.)
  • Site-directed mutagenesis or LA-PCR by Takara Bio Inc. Mutation is introduced using in vitro Mutagenesis series kit.
  • the NRPS gene according to the present invention can be isolated from microorganisms known to produce the above cyclic peptide compounds.
  • an NRPS gene (an NRPS gene encoding the amino acid sequence shown in SEQ ID NO: 37) can be isolated from Curvularia clavata.
  • the NRPS gene according to the present invention has a high probability of being isolated from Curvularia spp. Other than Curvularia clavata using the nucleotide sequence shown in SEQ ID NO: 36. That is, by using a hybridization reaction using as a probe a polynucleotide comprising a part of a continuous base sequence selected from the base sequence shown in SEQ ID NO: 36, derived from the genome or transcript of Curvularia spp. Other than Curvularia clavata From this cDNA, the NRPS gene according to the present invention can be isolated.
  • Curvularia genus filamentous fungi other than Curvularia clavata may not produce the cyclic peptide compound, or may produce the cyclic peptide compound. This is because even Curvularia spp. That do not produce the cyclic peptide compound may have the NRPS gene according to the present invention.
  • Curvularia sp. Other than Curvularia clavata include, for example, C. affinis, C. brachyspora, C. caricae-papayae, C. eragrostidis (Cochliobolus eragrostidis (Teleomorph)), C. fallax, C. geniculata (Cochliobolus geniculatus (Cochliobolus geniculatus )), C. harveyi, C. lunata (Cochliobolus lunatus (Teleomorph)), C. ovoidea, C. pallescens, C. penniseti, C. prasadii, C. protuberata, C.
  • Curvularia spp. The Curvularia genus fungus according to the present invention is characterized by having the NRPS gene described above. As described above, the NRPS gene according to the present invention is highly likely to be isolated from Curvularia spp. Other than Curvularia clavata. That is, the Curvularia genus fungus according to the present invention is not limited to Curvularia clavata, and C. affinis, C. brachyspora, C. caricae-papayae, C.
  • eragrostidis (Cochliobolus eragrostidis), C. fallax, which produce cyclic peptide compounds.
  • C. geniculata (Cochliobolus geniculatus), C. harveyi, C. lunata (Cochliobolus lunatus), C. ovoidea, C. pallescens, C. penniseti, C. prasadii, C. protuberata, C. senegalensis, C. trifolii, C tuberculata (Cochliobolus tuberculatus) and the like.
  • Curvularia genus fungus according to the present invention is preferably Curvularia clavata.
  • Curvularia genus filamentous fungi according to the present invention include Curvularia clavata BAUA-2787 strain sold by Akita Imano Co., Ltd.
  • NPMD Patent Microorganisms Deposit Center
  • the transcription factor gene contained in the gene group involved in the synthesis of the cyclic peptide compound described above encodes a protein having a function of positively controlling the expression of each gene contained in the gene group at the transcription level.
  • the transcription factor gene according to the present invention is derived from Curvularia clavata as an example, and the amino acid sequence of a protein having transcription promoting activity for genes contained in a group of genes involved in the synthesis of cyclic peptide compounds is shown in SEQ ID NO: 39, The base sequence of the coding region corresponding to the amino acid sequence is shown in SEQ ID NO: 38.
  • the transcription factor gene according to the present invention can be defined by these SEQ ID NOs: 38 and 39.
  • the transcription factor gene according to the present invention can be a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 39.
  • the transcription factor gene according to the present invention has 70% or more identity, preferably 80% or more identity, more preferably 90% or more identity, and still more preferably, to the amino acid sequence shown in SEQ ID NO: 39. It may be an amino acid sequence having 95% or more identity, most preferably 97% or more identity, and may be a gene encoding a protein having the above transcription promoting activity.
  • the identity value between amino acid sequences can be calculated by the BLASTN or BLASTX program in which the BLAST algorithm is implemented, as described above (default setting). Similar to the above, the identity value is calculated as a percentage of the total amino acid residues that are calculated by calculating amino acid residues that completely match when a pair of amino acid sequences are subjected to pairwise alignment analysis.
  • the transcription factor gene according to the present invention has an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added to the amino acid sequence of SEQ ID NO: 39, and has the above-mentioned transcription promoting activity. It may be one that encodes a protein.
  • the term “several” refers to, for example, 2 to 40, preferably 2 to 30, more preferably 2 to 20, further preferably 2 to 10, and further preferably 2 to 5, as described above. It is.
  • the protein that hybridizes under stringent conditions with the transcription factor gene according to the present invention all or part of the complementary strand of DNA consisting of the nucleotide sequence of SEQ ID NO: 38, and has the above-mentioned transcription promoting activity.
  • stringent condition means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed, for example, Molecular Cloning: A Laboratory Manual (Third Edition) Can be determined as appropriate.
  • the stringency is set according to the temperature at the time of Southern hybridization and the salt concentration contained in the solution, and the temperature at the time of the washing step of Southern hybridization and the salt concentration contained in the solution.
  • the sodium concentration is 25 to 500 mM, preferably 25 to 300 mM, and the temperature is 42 to 68 ° C., preferably 42 to 65 ° C. More specifically, it is 5 ⁇ SSC (83 mM NaCl, 83 mM sodium citrate), and the temperature is 42 ° C.
  • a gene having a nucleotide sequence different from SEQ ID NO: 38 or a gene encoding an amino acid sequence different from SEQ ID NO: 39 encodes a protein having transcription promoting activity is determined by determining whether the gene is It can be confirmed by introducing into a host producing a cyclic peptide compound (for example, Curvularia clavata as an example) so that it can be expressed, and verifying the expression of genes involved in the synthesis of the cyclic peptide compound in the host at the transcription level.
  • a cyclic peptide compound for example, Curvularia clavata as an example
  • nucleotide sequence of the transcription factor gene according to the present invention is determined, by chemical synthesis, by PCR using genomic DNA as a template, or by hybridizing a DNA fragment having the nucleotide sequence as a probe. Can be produced.
  • a gene consisting of a base sequence different from SEQ ID NO: 38 or a gene encoding an amino acid sequence different from SEQ ID NO: 39 is synthesized by site-directed mutagenesis or the like with respect to a polynucleotide consisting of the base sequence shown in SEQ ID NO: 38
  • Mutant-K manufactured by Takara Bio Inc.
  • Mutant-G manufactured by Takara Bio Inc.
  • LA-PCR LA-PCR
  • the transcription factor gene according to the present invention can be isolated from microorganisms known to produce the above-mentioned cyclic peptide compounds.
  • a transcription factor gene (a transcription factor gene encoding the amino acid sequence shown in SEQ ID NO: 39) can be isolated from Curvularia clavata.
  • the transcription factor gene according to the present invention has a high probability of being isolated from Curvularia spp. Other than Curvularia clavata using the base sequence shown in SEQ ID NO: 38. That is, by using a hybridization reaction using as a probe a polynucleotide comprising a part of a continuous base sequence selected from the base sequence shown in SEQ ID NO: 38, derived from the genome or transcript of Curvularia spp. Other than Curvularia clavata
  • the transcription factor gene according to the present invention can be isolated from the cDNA.
  • Curvularia genus filamentous fungi other than Curvularia clavata may not produce the cyclic peptide compound, or may produce the cyclic peptide compound. This is because even Curvularia spp. That do not produce the cyclic peptide compound may have the NRPS gene according to the present invention.
  • Curvularia sp. Other than Curvularia clavata include, for example, C. affinis, C. brachyspora, C. caricae-papayae, C. eragrostidis (Cochliobolus eragrostidis (Teleomorph)), C. fallax, C. geniculata (Cochliobolus geniculatus (Cochliobolus geniculatus )), C. harveyi, C. lunata (Cochliobolus lunatus (Teleomorph)), C. ovoidea, C. pallescens, C. penniseti, C. prasadii, C. protuberata, C.
  • a transformant having the ability to synthesize a compound having a basic peptide skeleton in the cyclic peptide compound is prepared by introducing the NRPS gene into a host so that it can be expressed.
  • a transformant having the ability to synthesize a cyclic peptide compound can be prepared by introducing a cyclic peptide compound synthetic gene other than the NRPS gene into a host so that it can be expressed together with the NRPS gene.
  • the transcription factor gene described above may or may not be introduced as a cyclic peptide compound synthesis-related gene other than the NRPS gene.
  • the NRPS gene and other genes may be introduced into the host in a state where they are arranged downstream of a constitutive expression promoter that can function in the host, the expression of these NRPS genes and other genes can be constantly induced. In this case, even if the transcription factor gene described above is not introduced, the cyclic peptide compound synthesis-related gene can be expressed to produce the cyclic peptide compound.
  • the host is not particularly limited, and any organism, particularly any microorganism, can be used as the host.
  • Microorganisms that can be used as a host are not particularly limited, and for example, Escherichia such as Escherichia coli, Corynebacterium such as Corynebacterium glutamicum, and Bacillus such as Bacillus subtilis. Examples include bacteria belonging to the genus, Pseudomonas putida, Pseudomonas genus, Rhizobium meliloti, Rhizobium genus, Saccharomyces cerevisiae, Schicharocyces pom Examples include yeasts such as Pichia pastoris, and fungi including filamentous fungi.
  • the expression vector is preferably composed of a promoter, a ribosome binding sequence, the above-described gene, and a transcription termination sequence as well as being capable of autonomous replication in the bacterium.
  • the expression vector may contain a gene that controls promoter activity.
  • Any promoter may be used as long as it can be expressed in a host such as E. coli.
  • those derived from Escherichia coli such as trp promoter, lac promoter, PL promoter, PR promoter, and those derived from phage such as T7 promoter are used.
  • artificially designed and modified promoters such as the tac promoter may be used.
  • the method for introducing the expression vector is not particularly limited as long as it is a method for introducing DNA into bacteria.
  • a method using calcium ions [Cohen, S.N., et al .: Proc. Natl. Acad. Sci., USA, 69: 2110-2114 (1972)], electroporation method and the like can be mentioned.
  • yeasts that can be used as a host are not particularly limited, but Candida genus yeasts such as Candida Shehatae, Pichia genus yeasts such as Pichia stipitis, Pachysolen genus yeasts such as Pachysolen tannophilus, and Saccharomyces genus yeasts such as Saccharomyces cerevisiae. And yeast belonging to the genus Schizosaccharomyces such as Schizosaccharomyces pombe, and Saccharomyces cerevisiae is particularly preferred.
  • an appropriate promoter having high transcription activity is used.
  • Such promoters are not particularly limited, but include, for example, the glyceraldehyde 3-phosphate dehydrogenase gene (TDH3) promoter, the 3-phosphoglycerate kinase gene (PGK1) promoter, and the hyperosmotic response 7 gene (HOR7). Promoters can be used. Of these, the pyruvate decarboxylase gene (PDC1) promoter is preferred because of its high ability to highly express a downstream target gene.
  • downstream genes can be strongly expressed by using gal1 promoter, gal10 promoter, heat shock protein promoter, MF ⁇ 1 promoter, PHO5 promoter, GAP promoter, ADH promoter, AOX1 promoter and the like.
  • the filamentous fungus that can be used for the host is not particularly limited. Rhizomucor genus fungi such as pusillus and Rhizomucor miehei, Penicillium atumnotatum, Penicillium genus fungi such as Penicillium Rchrysogenum, Rhizopus genus fungi such as Rhizopus oryzae, Acremonium cellulolyticus, Humicola grisea, Thermocusus aurant
  • the host is preferably Aspergillus sp.
  • ⁇ -amylase gene (amyB) promoter When expressing the above-mentioned NRPS gene and other genes in filamentous fungi, ⁇ -amylase gene (amyB) promoter, ⁇ -glucosidase gene (agdA) promoter, glucoamylase gene promoter (glaA), tryptophan biosynthesis Gene (trpC) promoter, alcohol dehydrogenase gene (alcA) promoter, translation elongation factor gene (tef1) promoter, triose phosphate isomerase gene (tpiA) promoter, glyceraldehyde 3-phosphate dehydrogenase (gpdA) gene A promoter, an enolase (enoA) promoter, a pyruvate carboxylase (pdcA) promoter, a cellobiohydrase gene (cbh1) promoter, and the like can be used.
  • ⁇ -amylase gene (amyB) promoter
  • any conventionally known technique known as a method for transforming yeast and filamentous fungi can be applied. Specifically, for example, transformation method, transfection method, conjugation method, protoplast method, spheroplast method, electroporation method, lipofection method, lithium acetate method and the like can be used. (Production of cyclic peptide compound) By using the transformant described above, a target cyclic peptide compound can be produced.
  • a compound having a basic peptide skeleton in the above-mentioned cyclic peptide compound is produced by using a transformant in which the NRPS gene is introduced so that it can be expressed.
  • the cyclic peptide compound can be produced from the obtained compound by a chemical synthesis reaction.
  • the said cyclic peptide compound can be manufactured by utilizing the transformant which introduce
  • the cyclic peptide compound synthesized with the transformant and the compound having the basic peptide skeleton are separated from the culture supernatant with a centrifuge, Miracloth, etc., and then an organic solvent such as ethyl acetate is added. Can be extracted. Also, it is released from the cells by physical destruction methods (homogenizer, glass bead crushing, freeze thawing, etc.) and chemical destruction methods (solvent treatment, acid, base treatment, osmotic pressure treatment, enzyme treatment, etc.). Then, an organic solvent such as ethyl acetate can be added for extraction. Purification of the extracted cyclic peptide compound and the compound having the basic peptide skeleton can be performed by an existing purification method (column chromatography, salt precipitation, etc.). These methods can be implemented in appropriate combination as required.
  • the cyclic peptide compound produced as described above can be used as a bactericidal agent having a bactericidal action against, for example, phytopathogenic fungi, particularly fungi. More specifically, when the above cyclic peptide compound is used as a bactericidal agent, it may be used as it is, but usually mixed with an appropriate solid carrier, liquid carrier, etc., a surfactant and other formulation adjuvants, an emulsion, EW, liquid, suspension, wettable powder, granule wettable powder, powder, DL powder, fine powder, fine powder F, granule, tablet, oil, aerosol, flowable, dry flowable, microcapsule, etc. Any dosage form can be used.
  • solid carriers include animal and vegetable powders such as starch, activated carbon, soybean flour, wheat flour, wood flour, fish flour, and milk powder, talc, kaolin, bentonite, calcium carbonate, zeolite, diatomaceous earth, white carbon, clay, alumina, ammonium sulfate, and urea.
  • animal and vegetable powders such as starch, activated carbon, soybean flour, wheat flour, wood flour, fish flour, and milk powder, talc, kaolin, bentonite, calcium carbonate, zeolite, diatomaceous earth, white carbon, clay, alumina, ammonium sulfate, and urea.
  • Inorganic powders such as
  • liquid carrier examples include water; alcohols such as isopropyl alcohol and ethylene glycol; ketones such as cyclohexanone and methyl ethyl ketone; ethers such as dioxane and tetrahydrofuran; aliphatic hydrocarbons such as kerosene and light oil; xylene, trimethylbenzene, Aromatic hydrocarbons such as tetramethylbenzene, methylnaphthalene and solvent naphtha; Halogenated hydrocarbons such as chlorobenzene; Acid amides such as dimethylacetamide; Esters such as glycerin esters of fatty acids; Nitriles such as acetonitrile; And sulfur-containing compounds such as sulfoxide.
  • alcohols such as isopropyl alcohol and ethylene glycol
  • ketones such as cyclohexanone and methyl ethyl ketone
  • ethers such as dioxane and tetrahydrofuran
  • surfactant examples include alkylbenzene sulfonic acid metal salt, dinaphthylmethane disulfonic acid metal salt, alcohol sulfate ester salt, alkylaryl sulfonate, lignin sulfonate, polyoxyethylene glycol ether, polyoxyethylene alkylaryl ether, Examples include polyoxyethylene sorbitan monoalkylate.
  • adjuvants include, for example, carboxymethyl cellulose, gum arabic, sodium alginate, guar gum, tragacanth gum, polyvinyl alcohol and other sticking agents or thickeners, metal soap and other antifoaming agents, fatty acids, alkyl phosphates, silicones, paraffins And the like, and physical property improvers, colorants and the like can be used.
  • Application of various preparations of a bactericidal agent or dilutions thereof is generally performed by a commonly used application method, that is, spraying (for example, spraying, misting, atomizing, dusting, dusting, water surface application, box application, etc.) , Soil application (for example, mixing, irrigation, etc.), surface application (for example, application, powder coating, coating, etc.), immersion, poison bait, smoke application, etc. It can also be applied by the so-called ultra-high concentration and small quantity spraying method. In this method, it is possible to contain 100% of the active ingredient.
  • the fungicide containing the cyclic peptide compound as an active ingredient is sufficiently effective as an active ingredient when the cyclic peptide compound alone is used.
  • other fertilizers, agricultural chemicals such as insecticides are used.
  • Can be used in combination with or in combination with acaricides, nematicides, other fungicides, antiviral agents, attractants, herbicides, plant growth regulators, etc. is there.
  • KK-1 itself exhibits control effects
  • gray mold fungus Botrytis cinerea
  • powdery mildew fungus Blumeria graminis
  • blast fungus Magnnaporthe oryzae
  • blight fungus Tehanatephorus cucumeris (Frank) Donk
  • Example 1 [Genome analysis of Curvularia clavata] Conidia of C. clavata BAUA-2787 strain distributed from Akita Imano Co., Ltd. were inoculated into a 200 ml CM liquid medium (500 ml Erlenmeyer flask) and cultured at 26 ° C. and 130 rpm for 48 hours. After collecting the cultured cells with Miracloth, the cells were dehydrated by pressing with a spatula, put into a mortar that had been cooled to -20 ° C in advance, and then poured into liquid nitrogen and frozen. After rapidly crushing with a pestle until powdery, genomic DNA was extracted using DNeasy Plant Maxi Kit.
  • Genome analysis was performed using two types of next-generation sequencers (5500xl SOLiD (life technologies) and MiSeq (illumina)). Libraries were created from the prepared genomic DNA of C. clavata using 5500 SOLiD Mate-Paired Library Kit (for 5500xl SOLiD) and Nextera DNA Sample Prep Kit (for MiSeq), and genome analysis was performed using a next-generation sequencer.
  • the cyclic peptide (hereinafter referred to as KK-1) produced by the C. clavata BAUA-2787 strain is a cyclic peptide consisting of 10 amino acids as shown in FIG. 2, characterized by 5 out of 9 peptide bonds.
  • NRPS nonribosomal peptide synthetase
  • the NRPS gene that biosynthesizes the basic skeleton of the peptide was estimated based on the genomic sequence information of the C. clavata BAUA-2787 strain.
  • NRPS is an enzyme that synthesizes a peptide by linking amino acids without using a ribosome, and has a module structure that matches the number of amino acid residues constituting the product peptide in order. Therefore, it can be presumed that an NRPS having a module and domain structure that matches the structural characteristics of a compound is an NRPS that biosynthesizes the peptide skeleton of the compound.
  • filamentous fungi have about 10 NRPS (12 NRPS for C. heterostrophus and 14 NRPS for Asperillus fumigatus), the top 20 genes that were hit for each of the queried genes were extracted. As a result, it was narrowed down to the following 24 genes.
  • TRAF01000140000154 TRAF01000135000001, TRAF01000070000001, TRAF01000068000001, TRAF01000108000067, TRAF01000130000847, TRAF01000117000049, TRAF01000117000050, TRAF01000099000028, TRAF01000088000002, TRAF01000082000001, TRAF01000081000001, TRAF01000117000368, TRAF01000142000376, TRAF01000109000032, TRAF01000142000383, TRAF01000136000233, TRAF01000100000101, TRAF01000061000021, TRAF01000108000142, TRAF01000139000099, TRAF01000140000122, TRAF01000117000201, TRAF01000136000219
  • CDS gene sequence
  • clavata is predicted by a dedicated program based on the genomic DNA sequence analyzed by the next-generation sequencer.
  • this CDS prediction is often wrong, and in particular due to the presence of introns, the 5'-side and 3'-side sequences of the CDS may be deleted and predicted to be shorter than the actual CDS. Many.
  • a blastx search was performed on the GenBank database using a genomic DNA sequence from 3000 bp upstream of the estimated start codon to 3000 bp downstream of the estimated stop codon of each of the 24 selected genes as a query.
  • TRAF01000117000049 and TRAF01000117000050 were estimated as different genes, it became clear that they were actually one gene (referred to as TRAF01000117000049-50). Also, because the genomic DNA sequence surrounding the gene used for the search cannot be obtained sufficiently, the 5'-side is deleted (start codon cannot be found) or the 3'-side is deleted (stop codon cannot be found). Some genes were also present. These genes are shown below.
  • TRAF01000135000001 5 'deletion
  • TRAF01000070000001 Bottom 5 'and 3' are deleted
  • TRAF01000068000001 (3 'deletion)
  • TRAF01000088000002 (3 'deletion)
  • TRAF01000082000001 5 'deletion
  • TRAF01000081000001 3 'deletion
  • TRAF01000117000368 5 'deletion
  • Further analysis of these sequences revealed 2285 bp identical sequences at the 3′-end of TRAF01000068000001, the 5′- and 3′-ends of TRAF01000070000001 and the 5′-end of TRAF01000135000001. That is, it was estimated that these three genes were actually one gene (TRAF01000135000001_J3G) in which TRAF01000068000001, TRAF01000070000001 and TRAF01000135000001 were connected in this order.
  • clavata BAUA-2787 strain has 12 NRPS. It was suggested to have a gene.
  • TRAF01000142000383 was found only in the A domain and C domain by analysis with antiSMASH, but it was estimated to be NRPS from the PCP domain-like sequence found on the N-terminal side from the analysis by InterProScan. did.
  • TRAF01000109000032 was thought to be a PKS-NRPS hybrid because it had a typical PKS (polyketide synthase) domain on the N-terminal side. [Estimation of NRPS involved in KK-1 biosynthesis] Since the C.
  • clavata BAUA-2787 strain was considered to have 12 NRPS genes, a gene that biosynthesizes the basic peptide skeleton of KK-1 was searched for.
  • KK-1 uses a cyclic peptide consisting of 10 amino acids as a basic skeleton.
  • the peptide bond between Tyr and Ala is not a peptide bond but an ester bond.
  • a peptide biosynthesized by NRPS has a feature that the number of amino acids constituting it matches the number of biosynthetic NRPS modules. Therefore, NRPS that biosynthesizes the basic peptide backbone of KK-1 consisting of 10 amino acids is considered to have 10 modules, that is, 10 A domains. Therefore, when the number of A domain of 12 putative NRPS genes of C. clavata was examined, only TRAF01000135000001_J3G had 10 A domains, so this gene is involved in the biosynthesis of KK-1. (Fig. 3-1).
  • TRAF01000135000001_J3G there are five N-methy transferase domain (nMT domain) that N-methylates peptide bonds. Located in the module, the seventh module and the ninth module. The position of each module of NRPS coincides with the position of the amino acid constituting the biosynthesized peptide, and similarly, the position of the N-methylated peptide bond coincides with the module having the nMT domain. Assuming that the first module of TRAF01000135000001_J3G corresponds to the Ala residue of KK-1, the position of the N-methylated peptide bond is exactly the same as the module with the nMT domain. This strongly suggested that TRAF01000135000001_J3G is an NRPS that biosynthesizes the basic peptide skeleton of KK-1.
  • TRAF01000135000001_J3G also has a C domain at the C terminus of the 10th module, and this C domain may be cyclized.
  • KK-1 is biosynthesized by modification with various enzymes.
  • the following table summarizes the domains included in the first to tenth modules constituting the estimated NRPS, the sequence numbers related to the amino acid sequences, and the like.
  • the numerical range described in the column of “amino acid sequence” indicates the position of the amino acid residue in the entire amino acid sequence (SEQ ID NO: 37) of the estimated NRPS.
  • TRAF01000135000002 is annotated as O-methyltransferase, which is thought to be responsible for O-methylation of tyrosine (Tyr) residues in the KK-1 molecule. It was. TRAF01000068000006, which is annotated as pmd1 encoding a leptomycin B resistant protein, is an ABC transporter as a protein function, and may be involved in the export of KK-1 to the outside of the cell. In addition, a transcription factor gene (TRAF01000068000005) was present in the cluster.
  • MIDDAS-M detects gene clusters based on gene expression information.
  • comprehensive expression information of production host genes in each production and non-production conditions of the substance is compared, and a group of genes that move in conjunction with the production conditions Is detected as a cluster.
  • KK-1 production in CM liquid culture of C. clavata BAUA-2786 strain is not confirmed when the culture temperature is raised to 37 °C, so the normal culture temperature is 26 °C, production condition is 37 °C and non-production condition is 37 °C It was.
  • the gene expression of C. clavata under these conditions was comprehensively analyzed by RNA-seq using a next-generation DNA sequencer, and cluster detection by MIDDAS-M was performed. As shown in FIG. The same gene group as the gene cluster estimated in (2) was detected (a and b in FIG. 6). Two peaks are detected because the gene cluster was fragmented in the original genome sequence data as described above.
  • Example 2 the function of the transcription factor gene was analyzed from the gene group included in the KK-1 biosynthetic gene cluster estimated in Example 1.
  • the gene encoding the transcription factor designated TRAF01000068000005 in Example 1 is designated TF068-005.
  • Figure 7 A construct that highly expresses the TF068-005 gene is schematically shown in FIG. In this construct, 1000 bp upstream from the start codon of Ccnmt1 (TRAF01000124000183) gene of C.
  • clavata BAUA-2787 strain is used as a promoter
  • 355 bp downstream of Ccnmt1 gene is a terminator
  • the selection marker is an aureobasidin A (AurA) resistance gene and did.
  • the promoter and terminator of the Ccnmt1 gene are PCR using C. clavata genomic DNA as a template
  • the aureobasidin A (AurA) resistance gene is PCR using the pAUR316 plasmid (TaKaRa) as a template
  • the TF068-005 gene is C. clavata.
  • Amplification was performed by PCR using cDNA as a template.
  • the target plasmid (pUC-Pnmt1-TF-Tnmt1-aurA) was prepared by performing an In-Fusion reaction with linear pUC19 of In-Fusion® HD® Cloning® Kit (Clontech). The used primers and reaction conditions are shown below.
  • nmt1-pro_In-Fus_FW1 5'-cggtacccggggatcTAGTCTGTTGATTACTCG-3 '(SEQ ID NO: 56)
  • nmt1-pro_In-Fus_RV1 5'-ctcgacaaggtcatTTTGACTTTGAATACCGGTG-3 '(SEQ ID NO: 57)
  • nmt1-ter_FW1 5'-GCAGTTGCCGTTGGACCAGAGG-3'
  • nmt1-ter_In-Fus_RV2 5'-atagtcataacaagcCGCGACACTGTAATATTAAAGC-3 '(SEQ ID NO: 59)
  • TF-CDS_FW1 5'-ATGACCTTTGTCGAGACTGTAGCC-3 '(SEQ ID NO: 60)
  • TF-CDS_In-Fus_RV1 5'-TCCAACGGCAACTGCCTATGATATACTCAT
  • initial denaturation 30 ° C. at 98 ° C.
  • denaturation 10 ° C. at 98 ° C.
  • annealing 30 ° C. at 60 ° C.
  • elongation 30 sec at 72 ° C. for 30 cycles
  • final elongation 7 min at 72 ° C. did.
  • AnaurA-mark_In-Fus_FW1 5'-cgactctagaggatcCTGATGGTCAGATGGATCTG-3 '(SEQ ID NO: 62)
  • AnaurA-mark_RV1 5'-GCTTGTTATGACTATGTATACATATGCG-3 '(SEQ ID NO: 63)
  • Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo Fisher Scientific) was used.
  • initial denaturation 30 ° C. at 98 ° C.
  • denaturation 10 ° C. at 98 ° C.
  • annealing 30 ° C.
  • CM + 1.2M sucrose + 10 ⁇ g / ml AbA Place 0.2ml of protoplast suspension on 5 selective plates, 6-7ml (per 90mm ⁇ petri dish) CM + 1.2M sucrose + 10 ⁇ g / ml AbA soft agar (1%) A selective medium was added, the layers were quickly overlaid so that the protoplast was uniform, and cultured at 26 ° C. for 6 days.
  • “Culture 1” The conidia of the wild strain and the high expression strain of TF068-005 were inoculated into 100 ml CM medium (500 mL Erlenmeyer flask) and cultured with shaking at 26 ° C., 160 rpm, 72 h.
  • "Culture 2” Conidia of wild strain and TF068-005 high-expressing strain were inoculated into 30ml K1 medium (conical flask with 100mL baffle), pre-cultured at 26 ° C, 200rpm, 72h, and 500 ⁇ l of culture solution with glucose concentration of 5% CM The medium was transferred to a medium (conical flask with 500 mL baffle) and main culture was performed at 26 ° C.
  • RNA-seq analysis of TF068-005 highly expressing strains The cells cultured in liquid were frozen in liquid nitrogen, ground with a mortar and pestle, and total RNA was prepared using ISOGEN (Nippon Gene).
  • RNA-Seq RNA-Seq library was prepared using the Truseq RNA Sample Prep Kit v2 and subjected to a next-generation sequencer (MiSeq) (Paired-End, Read Length 75). The obtained sequence data was mapped to the genomic sequence of C. clavata using the TopHat program. 5) Extraction and quantification of KK-1 In liquid culture, 15 ml of ethyl acetate was directly added to a 30 ml culture system, shaken at 130 rpm for 1 hour, and then centrifuged at 4,700 xg for 15 minutes. The supernatant was collected and concentrated by centrifugation, and this was used as the extracellular fraction.
  • clavata using this plasmid was carried out in two ways: using the plasmid in a circular form and using the plasmid in a linear form after cutting at one place.
  • RNA-seq analysis and KK-1 productivity were confirmed for one strain (ox_TF_1) introduced with a linear plasmid and one strain (ox_TF_2) introduced with a circular chain.
  • FIG. 9 shows the results of RNA-seq analysis of gene transcription on the 2nd and 4th days after the main culture.
  • the transcription of the KK-1 biosynthetic gene cluster constituent gene in the TF068-005 high expression strain was significantly higher than that in the wild strain.
  • the difference from the expression level in the wild strain was larger after 4 days than after 2 days.
  • the production amount of KK-1 was examined separately on the outside and inside of the cells at 3 and 7 days after the main culture.
  • the results are shown in FIG.
  • the total amount of KK-1 in the culture system increased in the TF068-005 highly expressing strain on both day 3 and day 7, In eyes, it was about twice that of the wild strain. From the results shown in FIG. 10, it was considered that about 20 to 30% of the total amount of KK-1 was accumulated in the microbial cells.
  • FIG. 11 shows a photograph of the state in which the TF068-005 high expression strain is cultured in solid. As shown in FIG. 11, the productivity of KK-1 in the TF068-005 high expression strain was about 6 times that of the wild strain even in solid culture.
  • the pyrG gene-disrupted strain cannot grow 5-fluoroorotic acid (5-FOA) into 5-fluorouridine phosphate (an inhibitor of thymine biosynthetic enzyme) and can therefore grow in a medium containing 5-FOA. .
  • 5-fluoroorotic acid 5-FOA
  • 5-fluorouridine phosphate an inhibitor of thymine biosynthetic enzyme
  • PCR was performed with the following primer set using the genomic DNA of C. clavata BAUA-2787 as a template to amplify the region from 2005 bp upstream of the start codon of CcpyrG gene to 1261 bp downstream of the stop codon. .
  • CcPyrG-del_FW3 5'-GACAGACTCTTCGTCGACGTC-3 '(SEQ ID NO: 64)
  • CcPyrG-del_RV3 5'-GTTGTGGTTGGTGTTCCTGAGG-3 '(SEQ ID NO: 65)
  • Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo Fisher Scientific) was used. Temperature conditions were initial denaturation: 98 ° C for 3 min, denaturation: 98 ° C for 10 sec, annealing: 60 ° C for 30 sec, extension: 72 ° C for 2.5 min for 30 cycles, final extension: 72 ° C for 7 min. did.
  • the end of the amplified DNA fragment (4463 bp) containing the CcpyrG gene was phosphorylated with T4 Polynucleotide Kinase (TOYOBO).
  • pUC18 was digested with Sma I, dephosphorylated with E. coli Alkaline Phosphatase (TOYOBO), and ligated with the phosphorylated DNA fragment containing the CcpyrG gene.
  • the pUC18 side including the upstream and downstream regions of the CcpyrG gene was PCR amplified with the following primer set to delete the region containing the CcpyrG gene.
  • CcPyrG-del_FW2 5'-CACTCGATCTACCAAATCGACG-3 '(SEQ ID NO: 66)
  • CcPyrG-del_RV2 5'-CCTATCCGGATATGCAGTCAC-3 '(SEQ ID NO: 67)
  • Temperature conditions were initial denaturation: 98 ° C for 3 min, denaturation: 98 ° C for 10 sec, annealing: 60 ° C for 30 sec, elongation: 72 ° C for 3 min for 30 cycles, and final elongation: 72 ° C for 7 min. .
  • PCR fragment was phosphorylated with T4 Polynucleotide Kinase and self-ligated to construct a target CcpyrG gene disruption construct (pUC-CcPyrG-del_C1).
  • CcpyrG gene disruption transformation of C. clavata BAUA-2787 strain A fragment obtained by PCR amplification with pUC-CcPyrG-del_C1 as a template and a primer set of CcPyrG-del_FW3 / CcPyrG-del_RV3 was used for CcpyrG gene disruption.
  • Phusion Hot Start II High-Fidelity DNA Polymerase was used for PCR. Temperature conditions were initial denaturation: 98 ° C. for 30 sec, denaturation: 98 ° C. for 10 sec, annealing: 63 ° C. for 30 sec, extension: 72 ° C. for 30 cycles for 35 cycles, and final extension: 72 ° C. for 5 min. .
  • Transformation of the C. clavata BAUA-2787 strain was basically performed according to the protocol described in [Analysis using a Transcription Factor High-Expression Strain]. However, the selection medium was CM + 1 mg / ml 5-FOA + 0.2% Uridine + 0.02% Uracil. 3) Construction of TF068-005 gene disruption construct (Figure 13) A scheme for constructing a construct for disrupting the TF068-005 gene, which was found to encode a transcription factor as described above, is shown in FIG.
  • primers TF068-005_L-arm_FW1 and TF068-005_L-arm_RV1 complementary to the upstream region of the TF068-005 gene were used. (1147 bp) was amplified. Similarly, right arm (1205 bp) was amplified using primers TF068-005_R-arm_FW1 and TF068-005_R-arm_RV1 complementary to the downstream region of the TF068-005 gene.
  • selection marker gene pyrG (2231 bp) was amplified using primers CcPyrG-mark_FW1 and CcPyrG-mark_RV1. An electrophoresis photograph of each amplified fragment is shown in FIG.
  • the left arm, pyrG marker and right arm that were amplified by the PCR were inserted in this order into the linear pUC19 plasmid vector attached to the kit.
  • the obtained vector was introduced into Escherichia coli JM109 strain, and a plasmid was prepared from 3 clones of the transformant and sequenced.
  • TF068-005_L-arm_FW1 5'-cggtacccggggatcCTCTGAAGCGGTCAAGGATAACG-3 '(SEQ ID NO: 68)
  • TF068-005_L-arm_RV1 5'-atgaagcagagcggcGAGCCTAAGATATGCCAGGAGG-3 '(SEQ ID NO: 69)
  • TF068-005_R-arm_FW1 5'-ctagcaaccgtcatgCCATAGACGTGGCACTCGAACG-3 '(SEQ ID NO: 70)
  • TF068-005_R-arm_RV1 5'-cgactctagaggatcCGTCTTAAGGATGGTTCAGCTGC-3 '(SEQ ID NO: 71)
  • CcPyrG-mark_FW1 5'-CATGACGGTTGCTAGGGTCG-3 '(SEQ ID NO: 72
  • FIG. 15 schematically shows a method for transforming the CcpyrG gene disrupted strain of C. clavata BAUA-2787 strain prepared in 2) above with the TF068-005 gene disrupted construct.
  • the TF068-005 gene disruption construct was linearized by digestion with restriction enzyme EcoR I (TaKaRa) and purified using Ethachinimate (Nippon Gene). Subsequently, the linearized construct was introduced into a C. clavata BAUA-2787 pyrG gene disruption strain and transformed. Transformation was basically performed according to the protocol described in [Analysis using a Transcription Factor High-Expression Strain].
  • CM + 5 mM uridine + 5 mM uracil medium is used for culturing C. clavata BAUA-2787 pyrG gene disruption strain, and MM agar medium [1% glucose, 0.6% NaNO 3 , 0.052% KCl, 0.052% MgSO 4 .7H 2 O, 0.152% KH 2 PO 4 , and Hutner's trace elements (pH 6.5)] were used.
  • MM agar medium 1% glucose, 0.6% NaNO 3 , 0.052% KCl, 0.052% MgSO 4 .7H 2 O, 0.152% KH 2 PO 4 , and Hutner's trace elements (pH 6.5)] were used.
  • MM agar medium 1% glucose, 0.6% NaNO 3 , 0.052% KCl, 0.052% MgSO 4 .7H 2 O, 0.152% KH 2 PO 4 , and Hutner's trace elements (pH 6.5)] were used.
  • the culture solution was filtered through Miracloth to remove the bacterial cells, sterilized through a 0.22 ⁇ m filter, and then impregnated into a paper disk.
  • the paper disk and the mycelium of Botrytis cinerea cut out together with the agar medium were placed about 2.5 cm apart on the PDA medium, and cultured at 26 ° C. for 3 days.
  • the positive control was a culture solution of the wild strain C. clavata BAUA-2787, and the negative control was a CM medium in which the cells were not cultured.
  • RNA of the transcription factor gene (TF068-005) disrupted strain Inoculate the TF068-005 gene disrupted strain and wild-type conidial suspension in 30 ml of CM medium and shake at 26 ° C and 130 rpm for 72 hours. Cultured. Subsequently, the culture solution was filtered using Miracloth to collect the cells. 0.8 g of cells were weighed and frozen with liquid nitrogen, and then ground with a mortar and pestle. The cells were suspended in 10 ml of ISOGEN (Nippon Gene) and allowed to stand for 10 minutes. After 2 ml of chloroform was added and vortexed, the mixture was centrifuged at 4,700 ⁇ g for 10 minutes.
  • ISOGEN Natural Gene
  • RNA pellet was dissolved in 200 ⁇ l of Nucrease-free water.
  • the obtained RNA solution was purified again using RNeasy Plant Mini Kit (QIAGEN).
  • RNA-seq analysis of the transcription factor gene (TF068-005) disrupted strain Prepare an RNA-Seq library from total RNA prepared as described above using Truseq RNA Sample Prep Kit v2 (illumina). Used for generation sequencer (MiSeq) (Paired-End, Read Length 75). The obtained sequence data was mapped to the genomic sequence of C. clavata using the TopHat program. 8) Extraction and quantification of KK-1 in transcription factor gene disruption strain and wild strain TF068-005 gene-disrupted strain and wild-type conidial suspension were inoculated into 30 ml of CM medium and cultured with shaking at 26 ° C. and 130 rpm for 10 days.
  • FIG. 16 shows the antibacterial activity test results for three of the five TF068-005 gene disrupted strains obtained.
  • the positive control wild-type culture broth
  • the TF068-005 gene-disrupted culture broth showed inhibitory activity.
  • the negative control culture medium only
  • RNA-seq comprehensive gene expression analysis
  • TK-1 production were analyzed for the TF068-005 gene disrupted strain.
  • TF068-005 gene disruption strains (2 strains) were analyzed using the wild strain as a comparative control.
  • the results are shown in FIG. In FIG. 17, “del_TF” indicates the result of the TF068-005 gene disrupted strain.
  • “RPKM” on the vertical axis in the graph shown in FIG. 17 is reads per kilobase of exon per million mapped sequence ⁇ reads, and the number of mapped sequences (reads) is the total number of reads and the sequence length of transcripts. It is a normalized value.
  • the expression level of the gene contained in the estimated biosynthetic cluster is significantly lower than that in the wild strain, whereas it is contained in this cluster. It was clarified that the expression level of no surrounding gene group was equivalent to that of the wild strain except for the TRAF01000068000011 gene.
  • the function of the TRAF01000068000011 gene is presumed from the annotation information as Nucleotide-sugar transporter involved in transport of sugar nucleotides synthesized in the cytosol or nucleus to the endoplasmic reticulum or Golgi apparatus. Since there was no sugar nucleotide in the structure of KK-1, this gene was thought to be less involved in biosynthesis.
  • Example 3 gene disruption strains were prepared for each gene contained in the KK-1 biosynthesis gene cluster estimated in Example 1, and the function of each gene was analyzed.
  • each cluster gene disruption construct ( Figure 19) Except for TRAF01000068000005 (transcription factor gene) verified in Example 2, for each gene contained in the KK-1 biosynthetic gene cluster, an upstream region of about 1,000 bp is L-arm, and a downstream region of about 1,000 bp is R-arm was obtained, and both gene fragments were obtained by PCR using the genomic DNA of C. clavata BAUA-2787 strain as a template. In addition, the pyrG gene serving as a selection marker for transformants was PCR amplified.
  • the production of KK-1 is completely lost, and this gene is essential for the biosynthesis of KK-1. It has been suggested.
  • the KK-1 production amount of the 5 types of genes (TRAF01000135000002, TRAF01000068000002, TRAF01000068000003, TRAF01000068000007 and TRAF01000068000008) disrupted strains in the gene cluster included in the gene cluster is significantly larger than that of the wild strain. It had fallen to. This suggests that these genes are deeply involved in the production of KK-1 at the stage of modification to the cyclic peptide skeleton biosynthesized by NRPS.
  • the KK-1 production amount of the three types of genes (TRAF01000068000004, TRAF01000068000006 and TRAF01000068000009) disrupted strains is smaller than that of the above five genes, although the fluctuation range is small. Was falling. This suggests that these three genes are also involved in KK-1 production.
  • the protein encoded by TRAF01000068000006 is presumed to be an ABC transporter, and is thought to be involved in the excretion of KK-1 produced in the cells outside the cell.
  • TRAF01000068000009 which is annotated as ⁇ / ⁇ hydrolase, is a thioesterase that hydrolyzes an erroneously incorporated substrate within the polyketide antibiotic lankamycin biosynthetic cluster produced by Streptomyces rochei 7434AN4. Since the gene coding for is included, it is considered that this gene may have the same function. Since TRAF01000068000004 has no similar protein as small as 8.1 kDa, there was a possibility that TRAF01000068000004 does not have a specific function.
  • Example 4 the KK-1 biosynthetic gene cluster whose function was analyzed in Examples 1 to 3 was introduced into Neisseria gonorrhoeae, and heterologous production of KK-1 in Neisseria gonorrhoeae was examined.
  • A. oryzae strain and growth media NS4 ⁇ adeA strain (sC-, niaD-, ⁇ ligD :: sC, ⁇ adeA :: ptrA) was used as a parent strain into which the KK-1 biosynthetic gene cluster was introduced in A. oryzae.
  • Czapek-dox (CD) minimal medium that meets the auxotrophy of the strain was used [0.6% NaNO 3 , 0.052% KCl, 0.152% KH 2 PO 4 , 0.0001% FeSO 4 ⁇ 7H 2 O, 0.00088% ZnSO 4 ⁇ 7H 2 O, 0.00004% CuSO 4 ⁇ 5H 2 O, 0.000015% MnSO 4 ⁇ 4H 2 O, 0.00001% Na 2 B 4 O 7 ⁇ 10H 2 O, 0.000005% (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O, 0.059% MgSO 4 ⁇ 7H 2 O and 2% glucose].
  • CD Czapek-dox
  • FIG. 22 schematically shows a construction scheme of a vector used for introducing the KK-1 biosynthetic gene cluster. As shown in FIG.
  • the NRPS gene was divided into two and introduced into koji molds. That is, the first half (about 20 kb) and the second half (about 20 kb) of the 39-kb full-length gene were separately subcloned into a vector plasmid and introduced into koji molds. Thereafter, transformants in which both fragments were ligated in the koji mold were selected.
  • pAAG-Cre capable of marker recycling by endogenous Cre recombinase expression was used.
  • PCR was performed using primers NRPS-fh-F and NRPS-fh-R to amplify the gene in the first half.
  • genomic DNA of C. clavata BAUA-2787 strain was used.
  • the enzyme used for PCR was PrimeSTAR GXL DNA Polymerase (Takara), and PCR was performed according to the product instructions.
  • the obtained PCR product was once ligated to the Eco RV cleavage site of pZErO-2 (Invitrogen).
  • the first half of the NRPS gene was excised by NotI cleavage and ligated with the same site of pAAG-Cre.
  • a plasmid in which the gonococcal promoter PamyB and the NRPS gene were ligated in the correct orientation was selected and used as the NRPS gene first half introduction vector pAAG-Cre / KK1-F.
  • Each fragment and NotA-I digested pAAG-Cre were ligated by the In-Fusion cloning method, and the correctly ligated plasmid was designated as the NRPS gene latter half introduction vector pAAG-Cre / NRPSrh.
  • In-Fusion cloning was performed using In-Fusion HD Cloning kit (Clontech) according to the method described in the attached product manual. The gene sequences of both the NRPS gene first half transfer vector and the second half transfer vector were confirmed, and it was confirmed that no mutation occurred in NRPS.
  • NRPS-fh-F TCGACAAGCTTGCGGCCGCCACGTGACTAGTATGGCCAGCGACATCAATACTCATCCAG
  • NRPS-fh-R ACTAGTCACGTGGCGGCCGCGCGGCGCGCCAAGATCGTCTTGCTGTACG
  • NRPS-rh-IF-Fa GATGCGCTAGCGGCCGCGAAGTGGTCCTTGTCGCTGGTGAC
  • NRPS-rh-IF-Ra TGCCGTTCGCATTCATAGGCATCTCGTC (SEQ ID NO: 113)
  • NRPS-rh-IF-Fb TGAATGCGAACGGCAAGGTTGACAG
  • NRPS-rh-IF-Rb CTTGGTTGCTGGCTTCGTCGTTGTC
  • NRPS-rh-IF-Fc AAGCCAGCAACCA
  • TRAF01000068000004 is not essential for the biosynthesis of KK-1 among the genes contained in the KK-1 biosynthesis gene cluster.
  • TRAF01000068000005 is a transcription factor that controls the expression of cluster genes, it is expected that it is not necessary when all genes are controlled by a promoter for Neisseria gonorrhoeae.
  • a gene introduction vector carrying these genes was constructed as shown in FIG.
  • This plasmid is also equipped with a Cre-loxP marker recycling system using Cre recombinase and loxP sequences, and is a vector suitable for multi-step gene transfer.
  • PCR was performed using the cDNA of C. clavata BAUA-2787 strain as a template to amplify each gene.
  • a set of primers TR02-SpeI-F and TR02-SpeI-R was used for amplification of the TRAF01000068000002 gene, and a set of primers TR03-NotI-F and TR03-NotI-R was used for amplification of the TRAF01000068000003 gene.
  • the obtained amplified fragments were once ligated to the Eco RV cleavage site of pZErO-2 (named pZTR02 and pZTR03, respectively).
  • TRAF01000068000002 gene was excised from pZTR02 by SpeI digestion
  • TRAF01000068000003 gene was excised from pZTR03 by NotI digestion.
  • the excised genes were introduced into the SpeI and NotI sites of pA3AXPC in the order TRAF01000068000002 (SpeI) and TRAF01000068000003 (NotI).
  • a plasmid with the correct insertion direction of both genes was selected and designated as pATR0203.
  • a set of primers TR06-NheI-F and TR06-NheI-R is used for amplification of the TRAF01000068000006 gene
  • a set of primers TR07-NotI-F and TR07-NotI-R is used for amplification of the TRAF01000068000007 gene
  • a set of TRAF01000068000009 gene is used.
  • the obtained PCR product was once ligated to the Eco RV cleavage site of pZErO-2 (named pZTR06, pZTR07 and pZTR08, respectively).
  • TRAF01000068000006 gene was excised from pZTR06 by NheI digestion, TRAF01000068000007 gene from pZTR07 by NotI digestion, and TRAF01000068000008 gene from pZTR08 by SpeI digestion.
  • the excised genes were introduced into the Nhe I, Spe I and Not I sites of pA3AXPC in the order of TRAF01000068000006 (Nhe I), TRAF01000068000008 (Spe I) and TRAF01000068000007 (Not I), respectively.
  • a plasmid with the correct insertion direction of all genes was selected and designated pATR678.
  • a set of primers TR09-NheI-F and TR09-NheI-R was used for amplification of the TRAF01000068000009 gene, and a set of primers OMT-NotI-F and OMT-NotI-R was used for the TRAF01000135000002 gene.
  • the obtained PCR product was once ligated to the Eco RV cleavage site of pZErO-2 (named pZTR09 and pZOMT, respectively). Thereafter, the TRAF01000068000009 gene was excised from pZTR09 by NheI digestion and the TRAF01000135000001 gene was excised from pZOMT by NotI digestion.
  • the excised genes were introduced into the Nhe I and Not I sites of pA3AXPC in the order TRAF01000068000009 (Nhe I) and TRAF01000135000001OMT (Not I).
  • a plasmid with the correct insertion direction of both genes was selected and designated as pATR09OMT.
  • TR02-SpeI-F GGACTAGTATGACTGAACCCACATGGAAG
  • TR02-SpeI-R GGACTAGTTTAATAATCTACTTCAAGCAC
  • TR03-NotI-F ATAAGAATGCGGCCGCATGGCGTTGCAAGAGCG
  • TR03-NotI-R ATAAGAATGCGGCCGCTCAAGATGGGAAAGCCGCTG
  • TR06-NheI-F CTAGCTAGCATGAGTGCTATCGAGCTGC
  • TR06-NheI-R CTAGCTAGCTCAGCGATTGAGGGCCTGG
  • TR07-NotI-F ATAAGAATGCGGCCGCATGAAGCTCACCGTTTTCAG
  • TR07-NotI-R TR07-NotI-R: ATAAGAATGCGGCCGCTC
  • Protoplasts were prepared by digesting the cell wall by shaking at 30 ° C. and 83 rpm for 3 hours. After the reaction, undigested cells were filtered with sterilized Miracloth, and the filtrate was centrifuged at 2,500 xg for 5 minutes at 4 ° C to recover protoplasts.
  • the collected protoplasts were washed with 10 ml of 0.8 M NaCl, and centrifuged again at 4 ° C. and 2,500 ⁇ g for 5 minutes to precipitate and collect the protoplasts.
  • Sol.I [0.8 M NaCl, 10 mM CaCl 2 , 10 mM Tris-HCl (pH 8.0)] was added so that the protoplast would be 2 ⁇ 10 8 cells / ml, and after suspension, 1/5 volume of Sol. II [40% (w / v) PEG4000, 50 mM CaCl 2 , 50 mM Tris-HCl (pH 8.0)] was added and mixed well.
  • Cre recombinase by placing an adeA selection marker and a Cre recombinase between mutant loxP sequences (lox66 and lox71), expressing the Cre recombinase, inducing a loop-out between the loxP sequences, and extracting the adeA selection marker is there.
  • the expression of Cre recombinase can be induced by an Xylose-inducible promoter. That is, a strain in which Cre recombinase is expressed and an adeA selection marker is lost can be obtained by inoculating a strain incorporating the above system into a medium containing Xylose as a carbon source.
  • FIG. 23 schematically shows a scheme for introducing the first half and the second half of the NRPS gene in two stages using the Cre-loxP system.
  • pAAG-Cre / NRPSfh carrying the first half of the NRPS gene was first introduced when introducing the vector into Neisseria gonorrhoeae.
  • transduction of the vector was confirmed by PCR.
  • Cre-loxP Cre-loxP
  • the cells were grown in a CDE medium containing Xylose and supplemented with adenine, that is, a CDEAX medium. From the grown cells, a reddish colony characteristic of deletion of the marker adeA gene was selected. These strains were subjected to nuclear purification, and it was confirmed that they could not grow on a medium without addition of adenine.
  • the strain was cultured with shaking in a YPM medium (containing 2% maltose as a promoter-inducing substrate) for 24 hours, and then the culture was filtered through Miracloth to recover the cells.
  • the cells were snap frozen with liquid nitrogen and quickly crushed with a mortar and pestle under liquid nitrogen.
  • the disrupted cells were transferred to a 1.5 ml Eppendorf tube, and RNA was extracted according to the protocol of RNeasy Plant Mini Kit (QIAGEN). In order to avoid DNA contamination, DNase treatment was also performed on-column according to the attached protocol. Finally, total RNA was obtained by elution twice with 50 ⁇ l of RNase free water.
  • cDNA was synthesized from the obtained total RNA.
  • High-Capacity cDNA-Reverse Transcription Kit (Applied Biosystem) was used for cDNA synthesis, and the method was performed according to the attached protocol.
  • CDNA was synthesized from mRNA using the obtained total RNA equivalent of 4 ⁇ g in a 40 ⁇ l reaction system.
  • the reverse transcription reaction conditions were preincubation at 25 ° C. for 10 minutes and then reaction at 37 ° C. for 120 minutes. The reaction was stopped by heating at 85 ° C. for 5 seconds.
  • the obtained cDNA was stored at ⁇ 20 ° C. until use.
  • qRT-PCR quantitative real-time PCR
  • TOYOBO THUNDERBIRD SYBR qRCR Mix
  • This mixed solution contains 400 ng equivalent of cDNA synthesized by reverse transcription.
  • Three measurements were performed per sample.
  • Mini Opticon real-time PCR analysis system BioRad
  • BioRad CFX Manager 2.1 was used.
  • the relative expression intensity was calculated as the expression ratio of each gene to the expression level of the internal standard gene (histone H2B) measured under the same conditions.
  • O-MT means TRAF01000135000002 gene
  • NRPS-1 to NRPS-3 mean TRAF01000135000001 gene (NRPS gene of Example 1)
  • TR02 means TRAF01000068000002 gene
  • TR03 means TRAF01000068000003 gene
  • TR06 means the TRAF01000068000006 gene
  • TR07 means the TRAF01000068000007 gene
  • TR08 means the TRAF01000068000008 gene
  • TR09 means the TRAF01000068000009 gene.
  • all the introduced genes showed the same level of expression as histone, and all the genes required for KK-1 biosynthesis were highly expressed in the koji mold into which the cluster gene was introduced. It became clear that 9) Evaluation of KK-1 productivity Further, KK-1 productivity was evaluated for the transformed koji molds into which the KK-1 biosynthetic cluster gene prepared as described above was introduced.
  • the conidia suspension of the transformed koji mold prepared in this example was inoculated into 100 ml of YPM (maltose 2%) or CM (maltose 2%) and cultured with shaking at 26 ° C. and 140 rpm for 5 days. Subsequently, the cultured cells and the culture solution were extracted with acetone / ethyl acetate and concentrated to dryness. This was dissolved in acetonitrile and subjected to LC / MS analysis.
  • the conditions for LC / MS analysis were the same as those for evaluating KK-1 production in Curvularia sp.
  • the antibacterial property of the said extract was evaluated by the growth inhibitory effect with respect to the gray mold which is the object of antibacterial evaluation.
  • the extract was soaked in a paper disc (thin, ⁇ 6 mm), and this paper disc and the mycelium of Botrytis cinerea cut out together with the agar medium were placed on a CM agar medium and subjected to counterculture. Subsequently, the antibacterial activity was evaluated based on the extent of colony growth up to the periphery of the paper disc of gray mold.
  • FIG. 26A shows the LC / MS analysis result
  • B shows the antibacterial activity test result.
  • FIG. 26A in the extract derived from the transformed koji mold prepared in this example, a peak completely matching the retention time and molecular weight of the KK-1 preparation was detected. Furthermore, as shown in B of FIG. 26, the mycelial elongation inhibitory activity of the gray mold fungus was observed in this extract. From these results, the transformed gonococcus prepared in this example was introduced in a form that functions the KK-1 biosynthetic gene cluster identified in C. clavata, and can produce KK-1 heterogeneously. It was proved that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)

Abstract

Curvularia属糸状菌が生産する環状ペプチド化合物の生合成に関与する遺伝子クラスターを同定し、当該環状ペプチド化合物を合成する系を確立する。 第1モジュールから第10モジュールを有し、Curvularia属糸状菌が生産する環状ペプチド化合物の基本ペプチド骨格を形成する非リボソーム型ペプチド合成活性を有するタンパク質をコードする。

Description

環状ペプチド化合物合成関連遺伝子、これを用いた環状ペプチド化合物の製造方法及びこれを有する形質転換体
 本発明は、Curvularia属糸状菌が生産する、菌類に対する殺菌作用を有する環状ペプチド化合物の合成に関与する新規環状ペプチド化合物合成関連遺伝子に関し、当該環状ペプチド化合物合成関連遺伝子を用いた環状ペプチド化合物の製造方法及び当該環状ペプチド化合物合成関連遺伝子を有する形質転換体に関する。
 Curvularia属の糸状菌が生産するCAS143380-71-6として公知になっている特定の環状ペプチド化合物(以下、KK-1と呼ぶ)は、植物病原菌とくに菌類に対して強い殺菌作用を示すことが知られている(特許文献1)。しかしながら、KK-1は強い殺菌作用を示すにも拘わらず、農薬としての商業化には至っていない。その要因としては、KK-1の化学構造が複雑であるため化学合成が困難であること、たとえKK-1の化学合成が可能であったとしても、KK-1の化学構造が複雑であるため高コストとなってしまうことが挙げられる。また、Curvularia属糸状菌の培養によりKK-1を製造しようとしても、十分な生産量が確保できないことが考えられる。
 これまでにも真菌、放線菌及び細菌を含む微生物が産生する二次代謝産物から、医薬品や農薬が開発されてきている。幾つかの真菌、代表的にはCurvularia属と同じ糸状菌であるアスペルギルス(Aspergillus)属のゲノム解析が行われた結果、ポリケタイド化合物、非リボソーム型ペプチド、テルペン類又はアルカロイドなどを含む多様な二次代謝産物の生合成に関与する生合成遺伝子クラスターが存在していることが明らかにされている(非特許文献1)。しかしながら、近年の糸状菌ゲノム解析や分子生物学的研究結果から、一般的な糸状菌の培養法では糸状菌の二次代謝産物生合成遺伝子の転写量は低いことが報告されている(非特許文献2)。
 そこで、潜在的な二次代謝産物の生産能力を発揮させるために、生合成遺伝子クラスターの活性化(非特許文献3)や出芽酵母等の適当な異種での発現によって十分な量の二次代謝産物を合成させようとするいわゆる合成生物学手法が試みられている。
特表平8-504165号公報
Machida, M., et al., Nature, 2005. 438(7071): p. 1157-1161 Georgianna, D.R. et al., : Mol. Plant. Pathol., 11,213(2010) Brakhage, Fungal Genetics and Biology, 2011. 48(1): p. 15-22.
 Curvularia属糸状菌が生産するKK-1についても、上述した二次代謝産物と同様に、合成生物学手法を用いることによって生産できる可能性が考えられる。しかしながら、Curvularia属糸状菌のゲノムはほとんど解明されておらず、KK-1の生産に関与する遺伝子クラスターも明らかとなっていない。
 そこで、本発明は、上述した実情に鑑み、Curvularia属糸状菌が生産するKK-1の生合成に関与する遺伝子クラスターを同定し、KK-1を合成する系を提供することを目的とする。
 上述した目的を達成するため本発明者らが鋭意検討した結果、Curvularia clavataゲノムから複数の非リボソーム型ペプチド合成酵素(nonribosomal peptide synthetase(NRPS))遺伝子を同定することができ、これらの中からKK-1の合成に関与するNRPS遺伝子及び当該NRPS遺伝子を含む遺伝子クラスターを同定することに成功し、本発明を完成するに至った。
 本発明は以下を包含する。
 (1)配列番号1に示すアミノ酸配列又は配列番号1に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第1のアデニレーションドメインと、配列番号2に示すアミノ酸配列又は配列番号2に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第1のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第1モジュールと、
 配列番号3に示すアミノ酸配列又は配列番号3に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第1の縮合ドメインと、配列番号4に示すアミノ酸配列又は配列番号4に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第2のアデニレーションドメインと、配列番号5に示すアミノ酸配列又は配列番号5に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第2のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第2モジュールと、
 配列番号6に示すアミノ酸配列又は配列番号6に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第2の縮合ドメインと、配列番号7に示すアミノ酸配列又は配列番号7に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第3のアデニレーションドメインと、配列番号8に示すアミノ酸配列又は配列番号8に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第1のN-メチルトランスフェラーゼドメインと、配列番号9に示すアミノ酸配列又は配列番号9に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第3のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第3モジュールと、
 配列番号10に示すアミノ酸配列又は配列番号10に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第3の縮合ドメインと、配列番号11に示すアミノ酸配列又は配列番号11に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第4のアデニレーションドメインと、配列番号12に示すアミノ酸配列又は配列番号12に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第4のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第4モジュールと、
 配列番号13に示すアミノ酸配列又は配列番号13に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第4の縮合ドメインと、配列番号14に示すアミノ酸配列又は配列番号14に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第5のアデニレーションドメインと、配列番号15に示すアミノ酸配列又は配列番号15に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第2のN-メチルトランスフェラーゼドメインと、配列番号16に示すアミノ酸配列又は配列番号16に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第5のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第5モジュールと、
 配列番号17に示すアミノ酸配列又は配列番号17に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第5の縮合ドメインと、配列番号18に示すアミノ酸配列又は配列番号18に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第6のアデニレーションドメインと、配列番号19に示すアミノ酸配列又は配列番号19に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第3のN-メチルトランスフェラーゼドメインと、配列番号20に示すアミノ酸配列又は配列番号20に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第6のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第6モジュールと、
 配列番号21に示すアミノ酸配列又は配列番号21に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第6の縮合ドメインと、配列番号22に示すアミノ酸配列又は配列番号22に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第7のアデニレーションドメインと、配列番号23に示すアミノ酸配列又は配列番号23に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第4のN-メチルトランスフェラーゼドメインと、配列番号24に示すアミノ酸配列又は配列番号24に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第7のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第7モジュールと、
 配列番号25に示すアミノ酸配列又は配列番号25に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第7の縮合ドメインと、配列番号26に示すアミノ酸配列又は配列番号26に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第8のアデニレーションドメインと、配列番号27に示すアミノ酸配列又は配列番号27に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第8のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第8モジュールと、
 配列番号28に示すアミノ酸配列又は配列番号28に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第8の縮合ドメインと、配列番号29に示すアミノ酸配列又は配列番号29に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第9のアデニレーションドメインと、配列番号30に示すアミノ酸配列又は配列番号30に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第5のN-メチルトランスフェラーゼドメインと、配列番号31に示すアミノ酸配列又は配列番号31に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第9のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第9モジュールと、
 配列番号32に示すアミノ酸配列又は配列番号32に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第9の縮合ドメインと、配列番号33に示すアミノ酸配列又は配列番号33に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第10のアデニレーションドメインと、配列番号34に示すアミノ酸配列又は配列番号34に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第10のペプチジルキャリアタンパク質ドメインと、配列番号35に示すアミノ酸配列又は配列番号35に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第10の縮合ドメインとをN末端側からこの順で有する第10モジュールと、
 をN末端側からこの順で有し、Curvularia属糸状菌が生産する環状ペプチド化合物の非リボソーム型ペプチド合成活性を有するタンパク質をコードする環状ペプチド化合物合成関連遺伝子。
 (2)上記タンパク質は、以下(a)~(c)のいずれかのタンパク質であることを特徴とする(1)記載の環状ペプチド化合物合成関連遺伝子。
 (a)配列番号37に示すアミノ酸配列からなるタンパク質
 (b)配列番号37に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなり、Curvularia属糸状菌が生産する環状ペプチド化合物の非リボソーム型ペプチド合成活性を有するタンパク質
 (c)配列番号36に示す塩基配列の相補鎖に対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドによりコードされ、Curvularia属糸状菌が生産する環状ペプチド化合物の非リボソーム型ペプチド合成活性を有するタンパク質
 (3)Curvularia属糸状菌由来であることを特徴とする(1)記載の環状ペプチド化合物合成関連遺伝子。
 (4)上記糸状菌は、Curvularia clavataであることを特徴とする(3)記載の環状ペプチド化合物合成関連遺伝子。
 (5)以下(a)~(c)のいずれかのタンパク質をコードする環状ペプチド化合物合成関連遺伝子。
 (a)配列番号39に示すアミノ酸配列からなるタンパク質
 (b)配列番号39に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなり、転写因子活性を有するタンパク質
 (c)配列番号38に示す塩基配列の相補鎖に対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドによりコードされ、転写因子活性を有するタンパク質
 (6)Curvularia属糸状菌由来であることを特徴とする(5)記載の環状ペプチド化合物合成関連遺伝子。
 (7)上記糸状菌は、Curvularia clavataであることを特徴とする(6)記載の環状ペプチド化合物合成関連遺伝子。
 (8)上記(1)乃至(4)いずれか記載の環状ペプチド化合物合成関連遺伝子と、Curvularia属糸状菌における環状ペプチド化合物の生産に関与する遺伝子群とを導入した形質転換体を培養する工程と、
 培養した形質転換体及び/又は培養液から上記環状ペプチド化合物を回収する工程とを含む、
 Curvularia属糸状菌が生産する環状ペプチド化合物の製造方法。
 (9)上記遺伝子群は以下[1]~[7]の遺伝子を含むことを特徴とする(8)記載の環状ペプチド化合物の製造方法。
 [1]配列番号41に示すアミノ酸配列又は配列番号41に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [2]配列番号43に示すアミノ酸配列又は配列番号43に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [3]配列番号45に示すアミノ酸配列又は配列番号45に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [4]配列番号47に示すアミノ酸配列又は配列番号47に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [5]配列番号49に示すアミノ酸配列又は配列番号49に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [6]配列番号51に示すアミノ酸配列又は配列番号51に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [7]配列番号53に示すアミノ酸配列又は配列番号53に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 (10)上記形質転換体は、麹菌(Aspergillus oryzae)を宿主とすることを特徴とする(8)記載の環状ペプチド化合物の製造方法。
 (11)上記(1)乃至(4)いずれか記載の環状ペプチド化合物合成関連遺伝子と、Curvularia属糸状菌における環状ペプチド化合物の生産に関与する遺伝子群とを導入した形質転換体。
 (12)上記遺伝子群は以下[1]~[7]の遺伝子を含むことを特徴とする(11)記載の形質転換体。
 [1]配列番号41に示すアミノ酸配列又は配列番号41に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [2]配列番号43に示すアミノ酸配列又は配列番号43に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [3]配列番号45に示すアミノ酸配列又は配列番号45に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [4]配列番号47に示すアミノ酸配列又は配列番号47に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [5]配列番号49に示すアミノ酸配列又は配列番号49に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [6]配列番号51に示すアミノ酸配列又は配列番号51に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 [7]配列番号53に示すアミノ酸配列又は配列番号53に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
 (13)麹菌(Aspergillus oryzae)を宿主とすることを特徴とする(11)記載の形質転換体。
 (14)上記(1)乃至(4)いずれか記載の環状ペプチド化合物合成関連遺伝子を有するCurvularia属糸状菌。
 (15)Curvularia clavataであることを特徴とする(14)記載のCurvularia属糸状菌。
 (16)受託番号NITE BP-02399であることを特徴とする(14)記載のCurvularia属糸状菌。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2017-000770号の開示内容を包含する。
 本発明によれば、Curvularia属糸状菌が生産する環状ペプチド化合物の合成に関与する非リボソーム型ペプチド合成酵素をコードする遺伝子、及びその他の当該環状ペプチド化合物の合成に関与する遺伝子群を提供することができる。本発明に係る環状ペプチド化合物合成関連遺伝子によれば、Curvularia属糸状菌が生産する環状ペプチド化合物を合成する系を構築することができ、当該環状ペプチド化合物を効率良く製造することができる。
本発明に係る環状ペプチド化合物合成関連遺伝子におけるモジュール構造及びドメイン構造を模式的に説明する図である。 C. clavata BAUA-2787株が産生する環状ペプチド化合物の構造を示す図である。 実施例で推定したNRPSのドメイン構造を、InterProScan及びantiSMASHプログラムを用いてantiSMASHにより解析した結果を示す図である。 実施例で推定したNRPSのドメイン構造を、InterProScan及びantiSMASHプログラムを用いてantiSMASHにより解析した結果を示す図である。 NRPS遺伝子 (TRAF01000135000001_J3G) の上流及び下流に位置する遺伝子のblastp検索結果を示す図である。 KK-1生合成遺伝子クラスターと推定した領域を示す図である。 KK-1産生条件及び非産生条件における遺伝子発現に基づいてMIDDAS-Mによるクラスター検出を行った結果を示す特性図である。 転写因子遺伝子(TF068-005遺伝子)を高発現するコンストラクトを模式的に示す図である。 野生株及び転写因子高発現株を「培養1」で培養したときのKK-1生合成遺伝子クラスター構成遺伝子の転写量を調べた結果を示す特性図である。 野生株及び転写因子高発現株を「培養2」で培養したときのKK-1生合成遺伝子クラスター構成遺伝子の転写量を調べた結果を示す特性図である。 野生株及び転写因子高発現株についてKK-1の生産量を、本培養後3日及び7日の時点で菌体外及び菌体内に分けて調べた結果を示す特性図である。 野生株及び転写因子高発現株を「培養3」で培養したときのKK-1の生産量を調べた結果及び固体培養の様子を示す特性図である。 CcpyrG遺伝子破壊用プラスミドの構築を模式的に示す図である。 転写因子遺伝子(TF068-005遺伝子)を破壊するためのコンストラクトを模式的に示す図である。 PCRにて増幅したTF068-005遺伝子の上流領域、下流領域及び選抜マーカー遺伝子pyrGの電気泳動写真である。 CcpyrG遺伝子破壊株をTF068-005遺伝子破壊コンストラクトで形質転換する方法を模式的に示す図である。 転写因子遺伝子(TF068-005遺伝子)破壊株及び野生株について実施した抗菌活性試験の結果を示す特性図である。 転写因子遺伝子(TF068-005遺伝子)破壊株について実施した網羅的遺伝子発現解析(RNA-seq)の結果を示す特性図である。 転写因子遺伝子(TF068-005遺伝子)破壊株について実施したKK-1生産量分析の結果を示す特性図である。 KK-1生合成遺伝子クラスターに含まれる各遺伝子について作製した遺伝子破壊コンストラクトを模式的に示す図である。 CcpyrG遺伝子破壊株を、KK-1生合成遺伝子クラスターに含まれる各遺伝子について作製した遺伝子破壊コンストラクトで形質転換する方法を模式的に示す図である。 各遺伝子破壊株及び転写因子遺伝子破壊株について、KK-1の生産性を調べた結果を示す特性図である。 KK-1生合成遺伝子クラスターを導入する際に使用するベクターの構築スキームを模式的に示す図である。 Cre-loxPシステムを利用してNRPS遺伝子の前半部分及び後半部分を2段階で導入するスキームを模式的に示す図である。 NRPS遺伝子の前半部分及び後半部分を2段階で導入した後、7遺伝子を搭載した3種のベクターを同時に導入するスキームを模式的に示す図である。 KK-1生合成遺伝子クラスターを導入した麹菌における、導入した遺伝子の発現量を定量リアルタイムPCRにて解析した結果を示す特性図である。 KK-1生合成遺伝子クラスターを導入した麹菌におけるKK-1のLC/MS分析結果及び当該麹菌に対する抗菌活性試験結果を示す特性図である。
 以下、本発明を詳細に説明する。
 本発明に係る環状ペプチド化合物合成関連遺伝子は、Curvularia属糸状菌が生産する環状ペプチド化合物の合成に関与する遺伝子群(遺伝子クラスター)に含まれる個々の遺伝子を意味する。当該環状ペプチド化合物は、特表平8-504165号公報(又はWO93/12659)に開示されるように、次式で表される。
Figure JPOXMLDOC01-appb-C000001
(ここで、式中、各アミノ酸残基およびラクテート残基は独立にL体又はD体をとることができる。)
 なお、環状ペプチド化合物(以下、KK-1と称する場合もある)の化合物名は、Tyrosine,N-[N-[N-[N-[N-[N-[N-[N-[[1-(2-hydroxy-1-oxopropyl)-2-piperidinyl]carbonyl]-N-methylvalyl]valyl]-N-methyl-a-aspartyl]-N-methylvalyl]-Nmethylisoleucyl]glycyl]-N-methylvalyl]-O-methyl-, d2-lactone (9CI)である。
 この環状ペプチド化合物を生産するCurvularia属糸状菌とは、代表的にはCurvularia clavataを挙げることができるが、その他C. affinis、C. brachyspora、C. caricae-papayae、C. eragrostidis (Cochliobolus eragrostidis) 、C. fallax、C. geniculata (Cochliobolus geniculatus)、C. harveyi、C. lunata (Cochliobolus lunatus)、C. ovoidea、C. pallescens、C. penniseti、C. prasadii、C. protuberata、C. senegalensis、C. trifolii、C. tuberculata (Cochliobolus tuberculatus )等を挙げることができる。また、Curvularia clavataとしては、株式会社秋田今野商店から分譲されたCurvularia clavata BAUA-2787株を挙げることができる。Curvularia clavata BAUA-2787については、2016年12月28日付けで、独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD) (〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に受託番号NITE BP-02399として寄託した。
 また、本環状ペプチド化合物の合成に関与する遺伝子群は、後述する実施例に示すように、10種類の遺伝子、好ましくは9種類の遺伝子を含む遺伝子群として定義することができる。
 これら10種類の遺伝子とは、O-メチルトランスフェラーゼ遺伝子、非リボゾーム型ペプチド合成酵素遺伝子(NRPS遺伝子)、アミダーゼ遺伝子、機能未知の遺伝子(2種)、転写因子遺伝子、レプトマイシンB耐性タンパク質をコードするpmd1遺伝子、ピロリン-5-カルボン酸還元酵素様遺伝子及びα/β加水分解酵素遺伝子である。これら10種類の遺伝子のうち、特に、環状ペプチド化合物の合成に強く関与する遺伝子として、O-メチルトランスフェラーゼ遺伝子、非リボゾーム型ペプチド合成酵素遺伝子(NRPS遺伝子)、アミダーゼ遺伝子、機能未知の遺伝子(1種)、転写因子遺伝子、レプトマイシンB耐性タンパク質をコードするpmd1遺伝子、ピロリン-5-カルボン酸還元酵素様遺伝子及びα/β加水分解酵素遺伝子を、本環状ペプチド化合物の合成に関与する遺伝子群と定義することもできる。
 〔NRPS遺伝子〕
 これら遺伝子群のうちNRPS遺伝子は、本環状ペプチド化合物の基本骨格を形成する機能を有するNRPSをコードしている。すなわち、本NRPSは、[アラニン(Ala)-ピペコリン酸(Pip)-バリン(Val)-バリン-アスパラギン酸(Asp)-バリン-イソロイシン(Ile)-グリシン(Gly)-バリン-チロシン(Tyr)]という10個のアミノ酸からなるペプチド骨格を形成する。すなわち、本NRPSは、アラニンのカルボシキル基とピペコリン酸のアミノ基との間にペプチド結合を形成し、当該ピペコリン酸のカルボキシル基とバリンのアミノ基との間にペプチド結合を形成し、当該バリンのカルボキシル基とバリンのアミノ基との間にペプチド結合を形成し、当該バリンのカルボキシル基とアスパラギン酸のアミノ基との間にペプチド結合を形成し、当該アスパラギン酸のカルボキシル基とバリンのアミノ基との間にペプチド結合を形成し、当該バリンのカルボキシル基とイソロイシンのアミノ基との間にペプチド結合を形成し、当該イソロイシンのカルボキシル基とグリシンのアミノ基との間にペプチド結合を形成し、当該グリシンのカルボキシル基とバリンのアミノ基との間にペプチド結合を形成し、当該バリンのカルボキシル基とチロシンのアミノ基との間にペプチド結合を形成し、当該チロシンのカルボキシル基と上記アラニンのアミノ基との間にペプチド結合を形成する活性を有している。また、本NRPSは、ピペコリン酸とバリンとの間のペプチド結合をメチル化し、バリンとアスパラギン酸との間のペプチド結合をメチル化し、アスパラギン酸とバリンとの間のペプチド結合をメチル化し、バリンとイソロイシンとの間のペプチド結合をメチル化し、グリシンとバリンとの間のペプチド結合をメチル化する活性を有している。
 本NRPSは、上述した基本のペプチド骨格[アラニン-ピペコリン酸-バリン-バリン-アスパラギン酸-バリン-イソロイシン-グリシン-バリン-チロシン]を構成する10個のアミノ酸に対応する10個のモジュールを有している。各モジュールは、目的のアミノ酸を取り込むとともにアミノ酸にAMP(アデノシン一リン酸)を結合させてアミノアシルAMPを合成するAドメイン(アデニレーションドメイン: adenylation domain)を有している。また各モジュールは、ホスホパンテテインを有し、ホスホパンテテインのセリン部位とアミノアシルAMPとの間に形成されたチオエステルにより当該アミノアシルAMPを結合するPCPドメイン(ペプチジルキャリアタンパク質ドメイン:peptidyl carrier protein domain)を有している。さらに、各モジュールは、隣接するPCPドメインに結合したアミノアシルAMPの間にペプチド結合を形成するCドメイン(縮合ドメイン:condensation domain)を有している。さらにまた、モジュールの中には、形成されたペプチド結合をメチル化するnMTドメイン(N-メチルトランスフェラーゼドメイン:N-methyltransferase domain)を有しているものもある。
 上述した活性を有するNRPSは、図1に示すように、第1~10モジュールから構成される。ここで、NRPSの各モジュールの位置は、合成されるペプチド骨格を構成するアミノ酸の位置と一致する。また、nMTドメインを持つモジュールの位置は、N-メチル化されたペプチド結合の位置と一致する。
 第1モジュールは、配列番号1に示すアミノ酸配列からなる第1のAドメインと、配列番号2に示すアミノ酸配列からなる第1のPCPドメインとをN末端側からこの順で有している。ただし、第1モジュールにおける第1のAドメイン及び第1のPCPドメインは、それぞれ配列番号1及び2に示すアミノ酸配列に限定されず、それぞれAドメイン及びPCPドメインとして機能するならば、配列番号1及び2に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 第2モジュールは、配列番号3に示すアミノ酸配列からなる第1のCドメインと、配列番号4に示すアミノ酸配列からなる第2のAドメインと、配列番号5に示すアミノ酸配列からなる第2のPCPドメインとをN末端側からこの順で有している。ただし、第2モジュールにおける第1のCドメイン、第2のAドメイン及び第2のPCPドメインは、それぞれ配列番号3、4及び5に示すアミノ酸配列に限定されず、それぞれCドメイン、Aドメイン及びPCPドメインとして機能するならば、配列番号3、4及び5に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 第3モジュールは、配列番号6に示すアミノ酸配列からなる第2のCドメインと、配列番号7に示すアミノ酸配列からなる第3のAドメインと、配列番号8に示すアミノ酸配列からなる第1のnMTドメインと、配列番号9に示すアミノ酸配列からなる第3のPCPドメインとをN末端側からこの順で有している。ただし、第3モジュールにおける第2のCドメイン、第3のAドメイン、第1のnMTドメイン及び第3のPCPドメインは、それぞれ配列番号6、7、8及び9に示すアミノ酸配列に限定されず、それぞれCドメイン、Aドメイン、nMTドメイン及びPCPドメインとして機能するならば、配列番号6、7、8及び9に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 第4モジュールは、配列番号10に示すアミノ酸配列からなる第3のCドメインと、配列番号11からなる第4のAドメインと、配列番号12に示すアミノ酸配列からなる第4のPCPドメインとをN末端側からこの順で有している。ただし、第4モジュールにおける第3のCドメイン、第4のAドメイン及び第4のPCPドメインは、それぞれ配列番号10、11及び12に示すアミノ酸配列に限定されず、それぞれCドメイン、Aドメイン及びPCPドメインとして機能するならば、配列番号10、11及び12に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 第5モジュールは、配列番号13に示すアミノ酸配列からなる第4のCドメインと、配列番号14に示すアミノ酸配列からなる第5のAドメインと、配列番号15に示すアミノ酸配列からなる第2のnMTドメインと、配列番号16に示すアミノ酸配列からなる第5のPCPドメインとをN末端側からこの順で有している。ただし、第5モジュールにおける第4のCドメイン、第5のAドメイン、第2のnMTドメイン及び第5のPCPドメインは、それぞれ配列番号13、14、15及び16に示すアミノ酸配列に限定されず、それぞれCドメイン、Aドメイン、nMTドメイン及びPCPドメインとして機能するならば、配列番号13、14、15及び16に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 第6モジュールは、配列番号17に示すアミノ酸配列からなる第5のCドメインと、配列番号18に示すアミノ酸配列からなる第6のAドメインと、配列番号19に示すアミノ酸配列からなる第3のnMTドメインと、配列番号20に示すアミノ酸配列からなる第6のPCPドメインとをN末端側からこの順で有している。ただし、第6モジュールにおける第5のCドメイン、第6のAドメイン、第3のnMTドメイン及び第6のPCPドメインは、それぞれ配列番号17、18、19及び20に示すアミノ酸配列に限定されず、それぞれCドメイン、Aドメイン、nMTドメイン及びPCPドメインとして機能するならば、配列番号17、18、19及び20に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 第7モジュールは、配列番号21に示すアミノ酸配列からなる第6のCドメインと、配列番号22に示すアミノ酸配列からなる第7のAドメインと、配列番号23に示すアミノ酸配列からなる第4のnMTドメインと、配列番号24に示すアミノ酸配列からなる第7のPCPドメインとをN末端側からこの順で有している。ただし、第7モジュールにおける第6のCドメイン、第7のAドメイン、第4のnMTドメイン及び第7のPCPドメインは、それぞれ配列番号21、22、23及び24に示すアミノ酸配列に限定されず、それぞれCドメイン、Aドメイン、nMTドメイン及びPCPドメインとして機能するならば、配列番号21、22、23及び24に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 第8モジュールは、配列番号25に示すアミノ酸配列からなる第7のCドメインと、配列番号26からなる第8のAドメインと、配列番号27に示すアミノ酸配列からなる第8のPCPドメインとをN末端側からこの順で有している。ただし、第8モジュールにおける第7のCドメイン、第8のAドメイン及び第8のPCPドメインは、それぞれ配列番号25、26及び27に示すアミノ酸配列に限定されず、それぞれCドメイン、Aドメイン及びPCPドメインとして機能するならば、配列番号25、26及び27に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 第9モジュールは、配列番号28に示すアミノ酸配列からなる第8のCドメインと、配列番号29に示すアミノ酸配列からなる第9のAドメインと、配列番号30に示すアミノ酸配列からなる第5のnMTドメインと、配列番号31に示すアミノ酸配列からなる第9のPCPドメインとをN末端側からこの順で有している。ただし、第9モジュールにおける第8のCドメイン、第9のAドメイン、第5のnMTドメイン及び第9のPCPドメインは、それぞれ配列番号28、29、30及び31に示すアミノ酸配列に限定されず、それぞれCドメイン、Aドメイン、nMTドメイン及びPCPドメインとして機能するならば、配列番号28、29、30及び31に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 第10モジュールは、配列番号32に示すアミノ酸配列からなる第9のCドメインと、配列番号33からなる第10のAドメインと、配列番号34に示すアミノ酸配列からなる第10のPCPドメインと、配列番号35に示すアミノ酸配列からなる第10のCドメインとをN末端側からこの順で有している。ただし、第10モジュールにおける第9のCドメイン、第10のAドメイン、第10のPCPドメイン及び第10のCドメインは、それぞれ配列番号32、33、34及び35に示すアミノ酸配列に限定されず、それぞれCドメイン、Aドメイン、PCPドメイン及びCドメインとして機能するならば、配列番号32、33、34及び35に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であっても良い。
 ところで、第1のAドメインが配列番号1のアミノ酸配列と異なる場合に、アラニンに対応するAドメインとして機能しうるかは、以下のように評価することができる。まず、配列番号1のアミノ酸配列と異なるように設計した第1の変異型Aドメインをコードするように変異型NRPS遺伝子を設計する。この変異型NRPS遺伝子を適当な宿主内で発現させ、宿主内及び培養上清中の代謝物中に上記環状ペプチド化合物の基本ペプチド骨格を有する化合物が合成されているか確認する。代謝物中に上記環状ペプチド化合物の基本ペプチド骨格を有する化合物が合成されている場合には、設計した第1の変異型Aドメインがアラニンに対応するAドメインとして機能していると評価することができる。なお、第2~10のAドメインが配列番号4、7、11、14、18、22、26、29及び33のアミノ酸配列と異なる場合においても、同様にしてAドメインとして機能しうるか評価することができる。
 また、第1のPCPドメインが配列番号2のアミノ酸配列と異なる場合に、PCPドメインとして機能しうるかは、以下のように評価することができる。まず、配列番号2のアミノ酸配列と異なるように設計した第1の変異型PCPドメインをコードするように変異型NRPS遺伝子を設計する。この変異型NRPS遺伝子を適当な宿主内で発現させ、宿主内及び培養上清中の代謝物中に上記環状ペプチド化合物の基本ペプチド骨格を有する化合物が合成されているか確認する。代謝物中に上記環状ペプチド化合物の基本ペプチド骨格を有する化合物が合成されている場合には、設計した第1の変異型PCPドメインがPCPドメインとして機能していると評価することができる。なお、第2~10のPCPドメインが配列番号5、9、12、16、20、24、27、31及び34のアミノ酸配列と異なる場合においても、同様にしてPCPドメインとして機能しうるか評価することができる。
 さらに、第1のCドメインが配列番号3のアミノ酸配列と異なる場合に、Cドメインとして機能しうるかは、以下のように評価することができる。まず、配列番号3のアミノ酸配列と異なるように設計した第1の変異型Cドメインをコードするように変異型NRPS遺伝子を設計する。この変異型NRPS遺伝子を適当な宿主内で発現させ、宿主内及び培養上清中の代謝物中に上記環状ペプチド化合物の基本ペプチド骨格を有する化合物が合成されているか確認する。代謝物中に上記環状ペプチド化合物の基本ペプチド骨格を有する化合物が合成されている場合には、設計した第1の変異型CドメインがCドメインとして機能していると評価することができる。なお、第2~10のCドメインが配列番号6、10、13、17、21、25、28、32及び35のアミノ酸配列と異なる場合においても、同様にしてCドメインとして機能しうるか評価することができる。
 さらにまた、第1のnMTドメインが配列番号8のアミノ酸配列と異なる場合に、nMTドメインとして機能しうるかは、以下のように評価することができる。まず、配列番号8のアミノ酸配列と異なるように設計した第1の変異型nMTドメインをコードするように変異型NRPS遺伝子を設計する。この変異型NRPS遺伝子を適当な宿主内で発現させ、宿主内及び培養上清中の代謝物中に上記環状ペプチド化合物の基本ペプチド骨格を有する化合物が合成されているか確認する。代謝物中に上記環状ペプチド化合物の基本ペプチド骨格を有する化合物が合成されている場合には、設計した第1の変異型nMTドメインがnMTドメインとして機能していると評価することができる。なお、第2~5のnMTドメインが配列番号15、19、23及び30のアミノ酸配列と異なる場合においても、同様にしてnMTドメインとして機能しうるか評価することができる。
 以上のように、上記環状ペプチド化合物の基本ペプチド骨格を合成するNRPSは、第1モジュール~第10モジュールで規定することができる。一例として、Curvularia clavata由来であって、上記環状ペプチド化合物における基本ペプチド骨格の合成活性を有するNRPSのアミノ酸配列を配列番号37に示し、配列番号37に示すアミノ酸配列に対応するコーディング領域の塩基配列を配列番号36に示す。
 したがって、本発明に係るNRPS遺伝子は、上述した配列番号1~35に示すアミノ酸配列で規定される第1モジュール~第10モジュールを備え、且つ、配列番号37に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であって、上記環状ペプチド化合物における基本ペプチド骨格の合成活性を有するタンパク質をコードする遺伝子であってもよい。アミノ酸配列間の同一性の値は、BLASTアルゴリズムを実装したBLASTNやBLASTXプログラムにより算出することができる(デフォルトの設定)。なお、同一性の値は、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基を算出し、比較した全アミノ酸残基中の割合として算出される。
 また、本発明に係るNRPS遺伝子は、上述した配列番号1~35に示すアミノ酸配列で規定される第1モジュール~第10モジュールを備え、且つ、配列番号37のアミノ酸配列に対して、1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有し、上記環状ペプチド化合物における基本ペプチド骨格の合成活性を有するタンパク質をコードするものでも良い。ここで、数個とは、例えば、2~1300個、好ましくは2~1000個、より好ましくは2~700個、更に好ましくは2~500個、更に好ましくは2~250個、更に好ましくは2~100個、更に好ましくは2~50個である。
 さらに、本発明に係るNRPS遺伝子、上述した配列番号1~35に示すアミノ酸配列で規定される第1モジュール~第10モジュールを備え、且つ、配列番号36の塩基配列からなるDNAの相補鎖の全部又は一部に対して、ストリンジェントな条件下でハイブリダイズし、且つ上記環状ペプチド化合物における基本ペプチド骨格の合成活性を有するタンパク質をコードするものでもよい。ここでいう「ストリンジェントな条件」とはいわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばMolecular Cloning: A Laboratory Manual(Third Edition)を参照して適宜決定することができる。具体的には、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェンシーを設定することができる。より詳細には、ストリンジェントな条件としては、例えば、ナトリウム濃度が25~500mM、好ましくは25~300mMであり、温度が42~68℃、好ましくは42~65℃である。より具体的には、5×SSC(83mM NaCl、83mMクエン酸ナトリウム)、温度42℃である。
 ところで、本発明に係るNRPS遺伝子は、上述した配列番号1~35に示すアミノ酸配列で規定される第1モジュール~第10モジュールを備えるタンパク質をコードするものに限定されるものではない。上述のように、Curvularia clavata由来であって、上記環状ペプチド化合物における基本ペプチド骨格の合成活性を有するNRPSのアミノ酸配列を配列番号37に示し、当該アミノ酸配列に対応するコーディング領域の塩基配列を配列番号36に示したが、これら配列番号36及び37により本発明に係るNRPS遺伝子を規定することもできる。
 すなわち、本発明に係るNRPS遺伝子は、配列番号37に示すアミノ酸配列からなるタンパク質をコードする遺伝子とすることができる。
 また、本発明に係るNRPS遺伝子は、配列番号37に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であって、上記環状ペプチド化合物における基本ペプチド骨格の合成活性を有するタンパク質をコードする遺伝子であってもよい。アミノ酸配列間の同一性の値は、上記と同様に、BLASTアルゴリズムを実装したBLASTNやBLASTXプログラムにより算出することができる(デフォルトの設定)。なお、同一性の値は、上記と同様に、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基を算出し、比較した全アミノ酸残基中の割合として算出される。
 また、本発明に係るNRPS遺伝子は、塩基配列情報を格納した公知のデータベースを利用して、配列番号36に示す塩基配列に対してカバー率が高く、E-valueが低く、identityの値が高いといった条件を満たす遺伝子を同定することができる。ここで、同定する遺伝子の条件として、カバー率は90%以上とすることができ、好ましくは95%以上、より好ましくは99%以上とする。また、同定する遺伝子の条件として、E-valueが1.0e-5以下とすることができ、好ましくは1.0e-15以下、より好ましくは0.0とする。さらに、また、同定する遺伝子の条件として、identityの値が70%以上とすることができ、好ましくは75%以上、より好ましくは80%以上とする。これらの条件を満たすものとして同定された遺伝子は、配列番号36の塩基配列からなるNRPS遺伝子の相同遺伝子である蓋然性が非常に高く、配列番号36の塩基配列からなるNRPS遺伝子と同様に上記環状ペプチド化合物における基本ペプチド骨格の合成活性を有するタンパク質をコードする遺伝子として同定できる。
 同定した遺伝子が上記環状ペプチド化合物における基本ペプチド骨格の合成活性を有するタンパク質をコードすることは、当該遺伝子を有する微生物を入手し、当該微生物における上記環状ペプチド化合物合成能を検証すればよい。入手した微生物における上記環状ペプチド化合物能は、当該微生物を培養し、培養菌体内又は培養上清に上記環状ペプチド化合物が含まれているか確認することで検証することができる。
 ところで、本発明に係るNRPS遺伝子は、その塩基配列が確定されると、化学合成によって、又はゲノムDNAを鋳型としたPCRによって、あるいは当該塩基配列を有するDNA断片をプローブとしてハイブリダイズさせることによって作製することができる。さらに、配列番号36と異なる塩基配列からなる遺伝子、又は配列番号37とは異なるアミノ酸配列をコードする遺伝子は、配列番号36に示す塩基配列からなるポリヌクレオチドに対して部位特定変異誘発等によって合成することもできる。なお、配列番号36に示す塩基配列からなるポリヌクレオチドに変異を導入するには、Kunkel法、Gapped duplex法等の公知の手法又はこれに準ずる方法を採用することができる。例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(タカラバイオ社製)やMutant-G(タカラバイオ社製))などを用いて、あるいは、タカラバイオ社のLA PCR in vitro Mutagenesis シリーズキットを用いて変異の導入が行われる。
 特に、本発明に係るNRPS遺伝子は、上記環状ペプチド化合物を生産することが知られている微生物から単離することができる。一例としては、Curvularia clavataからNRPS遺伝子(配列番号37に示すアミノ酸配列をコードするNRPS遺伝子)を単離することができる。
 また、本発明に係るNRPS遺伝子は、配列番号36に示す塩基配列を利用して、Curvularia clavata以外のCurvularia属糸状菌からも単離できる蓋然性が高い。すなわち、配列番号36に示す塩基配列から選ばれる連続する一部の塩基配列からなるポリヌクレオチドをプローブとしたハイブリダイズ反応を利用することで、Curvularia clavata以外のCurvularia属糸状菌のゲノム或いは転写産物由来のcDNAから本発明に係るNRPS遺伝子を単離できる。なお、Curvularia clavata以外のCurvularia属糸状菌は、上記環状ペプチド化合物を生産しないものでも良いし、上記環状ペプチド化合物を生産するものでも良い。上記環状ペプチド化合物を生産しないCurvularia属糸状菌であっても、本発明に係るNRPS遺伝子を有している可能性があるからである。
 Curvularia clavata以外のCurvularia属糸状菌としては、例えば、C. affinis、C. brachyspora、C. caricae-papayae、C. eragrostidis (Cochliobolus eragrostidis (Teleomorph))、C. fallax、C. geniculata (Cochliobolus geniculatus (Teleomorph))、C. harveyi、C. lunata (Cochliobolus lunatus (Teleomorph))、C. ovoidea、C. pallescens、C. penniseti、C. prasadii、C. protuberata、C. senegalensis、C. trifolii及びC. tuberculata (Cochliobolus tuberculatus (Teleomorph))等を挙げることができる。
〔Curvularia属糸状菌〕
 本発明に係るCurvularia属糸状菌は、上述したNRPS遺伝子を有するという特徴を有する。上述したように、本発明に係るNRPS遺伝子は、Curvularia clavata以外のCurvularia属糸状菌からも単離できる蓋然性が高い。すなわち、本発明に係るCurvularia属糸状菌は、Curvularia clavataに限定されず、環状ペプチド化合物を生産するC. affinis、C. brachyspora、C. caricae-papayae、C. eragrostidis (Cochliobolus eragrostidis) 、C. fallax、C. geniculata (Cochliobolus geniculatus)、C. harveyi、C. lunata (Cochliobolus lunatus)、C. ovoidea、C. pallescens、C. penniseti、C. prasadii、C. protuberata、C. senegalensis、C. trifolii、C. tuberculata (Cochliobolus tuberculatus)等を挙げることができる。
 特に、本発明に係るCurvularia属糸状菌としては、Curvularia clavataであることが好ましい。さらに、本発明に係るCurvularia属糸状菌としては、株式会社秋田今野商店から分譲されたCurvularia clavata BAUA-2787株を挙げることができる。Curvularia clavata BAUA-2787については、2016年12月28日付けで、独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD) (〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に受託番号NITE BP-02399として寄託した。
〔転写因子遺伝子〕
 上述した、環状ペプチド化合物の合成に関与する遺伝子群に含まれる転写因子遺伝子は、当該遺伝子群に含まれる各遺伝子の発現を転写レベルで正に制御する機能を有するタンパク質をコードする。本発明に係る転写因子遺伝子は、一例としてCurvularia clavata由来であって、環状ペプチド化合物の合成に関与する遺伝子群に含まれる遺伝子に対する転写促進活性を有するタンパク質のアミノ酸配列を配列番号39に示し、当該アミノ酸配列に対応するコーディング領域の塩基配列を配列番号38に示す。本発明に係る転写因子遺伝子は、これら配列番号38及び39により規定することができる。
 すなわち、本発明に係る転写因子遺伝子は、配列番号39に示すアミノ酸配列からなるタンパク質をコードする遺伝子とすることができる。
 また、本発明に係る転写因子遺伝子は、配列番号39に示すアミノ酸配列に対して70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%以上の同一性、最も好ましくは97%以上の同一性を有するアミノ酸配列であって、上記転写促進活性を有するタンパク質をコードする遺伝子であってもよい。アミノ酸配列間の同一性の値は、上記と同様に、BLASTアルゴリズムを実装したBLASTNやBLASTXプログラムにより算出することができる(デフォルトの設定)。なお、同一性の値は、上記と同様に、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基を算出し、比較した全アミノ酸残基中の割合として算出される。
 さらに、本発明に係る転写因子遺伝子は、配列番号39のアミノ酸配列に対して、1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有し、上記転写促進活性を有するタンパク質をコードするものでも良い。ここで、数個とは、上記と同様に、例えば、2~40個、好ましくは2~30個、より好ましくは2~20個、更に好ましくは2~10個、更に好ましくは2~5個である。
 さらにまた、本発明に係る転写因子遺伝子、配列番号38の塩基配列からなるDNAの相補鎖の全部又は一部に対して、ストリンジェントな条件下でハイブリダイズし、且つ上記転写促進活性を有するタンパク質をコードするものでもよい。ここでいう「ストリンジェントな条件」とは、上記と同様に、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばMolecular Cloning: A Laboratory Manual(Third Edition)を参照して適宜決定することができる。具体的には、上記と同様に、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェンシーを設定することができる。より詳細には、ストリンジェントな条件としては、例えば、ナトリウム濃度が25~500mM、好ましくは25~300mMであり、温度が42~68℃、好ましくは42~65℃である。より具体的には、5×SSC(83mM NaCl、83mMクエン酸ナトリウム)、温度42℃である。
 上述したように、配列番号38と異なる塩基配列からなる遺伝子、又は配列番号39とは異なるアミノ酸配列をコードする遺伝子が、転写促進活性を有するタンパク質をコードするか否かは、当該遺伝子を、上記環状ペプチド化合物を生産する宿主(一例としてCurvularia clavata)に発現可能に導入し、当該宿主における環状ペプチド化合物の合成に関与する遺伝子群の発現を転写レベルで検証することで確認できる。
 ところで、本発明に係る転写因子遺伝子は、その塩基配列が確定されると、化学合成によって、又はゲノムDNAを鋳型としたPCRによって、あるいは当該塩基配列を有するDNA断片をプローブとしてハイブリダイズさせることによって作製することができる。さらに、配列番号38と異なる塩基配列からなる遺伝子、又は配列番号39とは異なるアミノ酸配列をコードする遺伝子は、配列番号38に示す塩基配列からなるポリヌクレオチドに対して部位特定変異誘発等によって合成することもできる。なお、配列番号38に示す塩基配列からなるポリヌクレオチドに変異を導入するには、Kunkel法、Gapped duplex法等の公知の手法又はこれに準ずる方法を採用することができる。例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(タカラバイオ社製)やMutant-G(タカラバイオ社製))などを用いて、あるいは、タカラバイオ社のLA PCR in vitro Mutagenesis シリーズキットを用いて変異の導入が行われる。
 特に、本発明に係る転写因子遺伝子は、上述した環状ペプチド化合物を生産することが知られている微生物から単離することができる。一例としては、Curvularia clavataから転写因子遺伝子(配列番号39に示すアミノ酸配列をコードする転写因子遺伝子)を単離することができる。
 また、本発明に係る転写因子遺伝子は、配列番号38に示す塩基配列を利用して、Curvularia clavata以外のCurvularia属糸状菌からも単離できる蓋然性が高い。すなわち、配列番号38に示す塩基配列から選ばれる連続する一部の塩基配列からなるポリヌクレオチドをプローブとしたハイブリダイズ反応を利用することで、Curvularia clavata以外のCurvularia属糸状菌のゲノム或いは転写産物由来のcDNAから本発明に係る転写因子遺伝子を単離できる。なお、Curvularia clavata以外のCurvularia属糸状菌は、上記環状ペプチド化合物を生産しないものでも良いし、上記環状ペプチド化合物を生産するものでも良い。上記環状ペプチド化合物を生産しないCurvularia属糸状菌であっても、本発明に係るNRPS遺伝子を有している可能性があるからである。
 Curvularia clavata以外のCurvularia属糸状菌としては、例えば、C. affinis、C. brachyspora、C. caricae-papayae、C. eragrostidis (Cochliobolus eragrostidis (Teleomorph))、C. fallax、C. geniculata (Cochliobolus geniculatus (Teleomorph))、C. harveyi、C. lunata (Cochliobolus lunatus (Teleomorph))、C. ovoidea、C. pallescens、C. penniseti、C. prasadii、C. protuberata、C. senegalensis、C. trifolii及びC. tuberculata (Cochliobolus tuberculatus (Teleomorph))等を挙げることができる。
〔形質転換体〕
 上述した本発明に係る環状ペプチド化合物合成関連遺伝子のうち、NRPS遺伝子を発現可能に宿主に導入することによって、上記環状ペプチド化合物におおける基本ペプチド骨格を有する化合物合成能を有する形質転換体を作製することができ、また、NRPS遺伝子とともに、NRPS遺伝子以外の環状ペプチド化合物合成遺伝子を発現可能に宿主に導入することによって上記環状ペプチド化合物合成能を有する形質転換体を作製することができる。
 ここで、上記環状ペプチド化合物合成能を有する形質転換体を作製するに際して、NRPS遺伝子以外の環状ペプチド化合物合成関連遺伝子としては、上述した転写因子遺伝子を導入しても良いし、導入しなくとも良い。例えば、NRPS遺伝子及び他の遺伝子を、宿主で機能しうる恒常発現プロモーターの下流に配置した状態で宿主に導入することで、これらNRPS遺伝子及び他の遺伝子を恒常的に発現誘導することができる。この場合、上述した転写因子遺伝子を導入しなくても、環状ペプチド化合物合成関連遺伝子が発現して上記環状ペプチド化合物を生産することができる。
 ここで、宿主としては、特に限定されず、如何なる生物、特に如何なる微生物も宿主とすることができる。宿主として使用できる微生物は、特に限定されないが、例えば、エッシェリヒア・コリ(Escherichia coli)などのエッシェリヒア属、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)などのコリネ菌、バチルス・サブチリス(Bacillus subtilis)などのバチルス属、シュードモナス・プチダ(Pseudomonas putida)などのシュードモナス属、リゾビウム・メリロティ(Rhizobium meliloti)などのリゾビウム属に属する細菌が挙げられ、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)、ピキア・パストリス(Pichia pastoris)などの酵母、糸状菌などを含む真菌が挙げられる。
 大腸菌などの細菌を宿主とする場合、発現ベクターは、該細菌中で自律複製可能であると同時に、プロモーター、リボゾーム結合配列、上述した遺伝子、転写終結配列により構成されていることが好ましい。また、発現ベクターには、プロモーター活性を制御する遺伝子が含まれていてもよい。
 プロモーターとしては、大腸菌などの宿主中で発現できるものであればいずれを用いてもよい。例えばtrpプロモーター、lacプロモーター、PLプロモーター、PRプロモーターなどの大腸菌由来のものやT7プロモーターなどのファージ由来のものが用いられる。さらに、tacプロモーターなどのように人為的に設計改変されたプロモーターを用いてもよい。
 発現ベクターの導入方法としては、細菌にDNAを導入する方法であれば特に限定されるものではない。例えばカルシウムイオンを用いる方法[Cohen, S.N.,et al.:Proc. Natl. Acad. Sci., USA, 69:2110-2114 (1972)]、エレクトロポレーション法などが挙げられる。
 また、宿主として用いることができる酵母としては、特に限定するものではないがCandida Shehatae等のCandida属酵母、Pichia stipitis等のPichia属酵母、Pachysolen tannophilus等のPachysolen属酵母、Saccharomyces cerevisiae等のSaccharomyces属酵母及びSchizosaccharomyces pombe等のSchizosaccharomyces属酵母が挙げられ、特にSaccharomyces cerevisiaeが好ましい。
 また、上述したNRPS遺伝子や他の遺伝子の発現を強化する際には、転写活性の高い適当なプロモーターを使用する。このようなプロモーターとしては、特に限定されないが、例えばグリセルアルデヒド3リン酸デヒドロゲナーゼ遺伝子(TDH3)のプロモーター、3-ホスホグリセレートキナーゼ遺伝子(PGK1)のプロモーター、高浸透圧応答7遺伝子(HOR7)のプロモーターなどが利用可能である。なかでもピルビン酸脱炭酸酵素遺伝子(PDC1)のプロモーターが下流の目的遺伝子を高発現させる能力が高いために好ましい。その他にも、gal1プロモーター、gal10プロモーター、ヒートショックタンパク質プロモーター、MFα1プロモーター、PHO5プロモーター、GAPプロモーター、ADHプロモーター、AOX1プロモーターなどを使用することで、下流の遺伝子を強発現させることができる。
 また、宿主に使用できる糸状菌としては、特に限定されないが、Aspergillus nidulans、Aspergillus niger、Aspergillus oryzae、Aspergillus sojae、Aspergillus glaucus等のAspergillus属糸状菌、Trichoderma reesei、Trichoderma viride等のTrichoderma属糸状菌、Rhizomucor pusillus、Rhizomucor miehei等のRhizomucor属糸状菌、Penicillium notatum、Penicillium chrysogenum等のPenicillium属糸状菌、Rhizopus oryzae等のRhizopus属糸状菌、Acremonium cellulolyticus、Humicola grisea、Thermoaseus aurantiacusを挙げることができる。特に、宿主としては、Aspergillus属糸状菌、中でもAspergillus oryzaeが好ましい。
 上述したNRPS遺伝子や他の遺伝子を糸状菌において発現させる際には、α-アミラーゼ遺伝子(amyB)のプロモーター、α-グルコシダーゼ遺伝子(agdA)のプロモーター、グルコアミラーゼ遺伝子のプロモーター(glaA)、トリプトファン生合成遺伝子(trpC)のプロモーター、アルコール脱水素酵素遺伝子(alcA)のプロモーター、翻訳伸長因子遺伝子(tef1)のプロモーター、トリオースリン酸イソメラーゼ遺伝子(tpiA)のプロモーター、グリセルアルデヒド3リン酸デヒドロゲナーゼ(gpdA)遺伝子のプロモーター、エノラーゼ(enoA)のプロモーター、ピルビン酸カルボキシラーゼ(pdcA)のプロモーター、セロビオハイドラーゼ遺伝子(cbh1)のプロモーター等を使用することができる。
 また、上述した遺伝子を導入する方法としては、酵母及び糸状菌の形質転換方法として知られている従来公知のいかなる手法をも適用することができる。具体的には、例えば、トランスフォーメーション法や、トランスフェクション法、接合法、プロトプラスト法、スフェロプラスト法、エレクトロポレーション法、リポフェクション法、酢酸リチウム法等を用いることができる。
〔環状ペプチド化合物の製造〕
 上述した形質転換体を利用することで、目的とする環状ペプチド化合物を製造することができる。
 すなわち、上述した本発明に係る環状ペプチド化合物合成関連遺伝子のうち、NRPS遺伝子を発現可能に導入した形質転換体を利用することで、上述した環状ペプチド化合物における基本ペプチド骨格を有する化合物を製造することができる。例えば、化学合成反応によって、得られた化合物から上記環状ペプチド化合物を製造することができる。また、NRPS遺伝子及び他の遺伝子を発現可能に導入した形質転換体を利用することによって、上記環状ペプチド化合物を製造することができる。
 形質転換体にて合成された上記環状ペプチド化合物やその基本ペプチド骨格を有する化合物は、培養上清からは、遠心分離機、ミラクロス等で菌体を分離した後、酢酸エチル等の有機溶媒を加え抽出することができる。また、菌体内からは、物理的破壊法(ホモジナイザー、ガラスビーズ破砕、凍結融解など)や化学的破壊法(溶剤処理、酸、塩基処理、浸透圧処理、酵素処理など)によって菌体外に放出させた後、酢酸エチル等の有機溶媒を加え抽出することができる。抽出した上記環状ペプチド化合物やその基本ペプチド骨格を有する化合物の精製については、既存の精製方法(カラムクロマトグラフィー、塩沈降など)によって実施することができる。これらの方法は、必要に応じて適宜組み合わせて実施することが可能である。
 以上のように製造した上記環状ペプチド化合物は、例えば植物病原菌特に菌類に対する殺菌作用を有する殺菌剤として利用することができる。より具体的に上記環状ペプチド化合物を殺菌剤として使用する場合、そのまま用いても良いが、通常は適当な固体担体、液体担体等、界面活性剤及びその他の製剤用補助剤と混合して乳剤、EW剤、液剤、懸濁剤、水和剤、顆粒水和剤、粉剤、DL粉剤、微粒剤、微粒剤F、粒剤、錠剤、油剤、エアゾル、フロアブル剤、ドライフロアブル、マイクロカプセル剤等の任意の剤型にして使用することができる。
 固体担体としては、例えば澱粉、活性炭、大豆粉、小麦粉、木粉、魚粉、粉乳等の動植物性粉末、タルク、カオリン、ベントナイト、炭酸カルシウム、ゼオライト、珪藻土、ホワイトカーボン、クレー、アルミナ、硫安、尿素等の無機物粉末が挙げられる。
 液体担体としては、例えば水;イソプロピルアルコール、エチレングリコール等のアルコール類;シクロヘキサノン、メチルエチルケトン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類;ケロシン、軽油等の脂肪族炭化水素類;キシレン、トリメチルベンゼン、テトラメチルベンゼン、メチルナフタリン、ソルベントナフサ等の芳香族炭化水素類;クロロベンゼン等のハロゲン化炭化水素類;ジメチルアセトアミド等の酸アミド類;脂肪酸のグリセリンエステル等のエステル類;アセトニトリル等のニトリル類;ジメチルスルホキシド等の含硫化合物類等が挙げられる。
 界面活性剤としては、例えばアルキルベンゼンスルホン酸金属塩、ジナフチルメタンジスルホン酸金属塩、アルコール硫酸エステル塩、アルキルアリールスルホン酸塩、リグニンスルホン酸塩、ポリオキシエチレングリコールエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタンモノアルキレート等が挙げられる。
 その他の補助剤としては、例えばカルボキシメチルセルロース、アラビアゴム、アルギン酸ナトリウム、グアーガム、トラガントガム、ポリビニルアルコール等の固着剤あるいは増粘剤、金属石鹸等の消泡剤、脂肪酸、アルキルリン酸塩、シリコーン、パラフィン等の物性向上剤、着色剤等を用いることができる。
 殺菌剤の種々の製剤、またはその希釈物の施用は、通常、一般に行われている施用方法、即ち、散布(例えば噴霧、ミスティング、アトマイジング、散粉、散粒、水面施用、箱施用等)、土壌施用(例えば混入、潅注等)、表面施用(例えば塗布、粉衣、被覆等)、浸漬、毒餌、くん煙施用等により行うことができる。また、いわゆる超高濃度少量散布法により施用することもできる。この方法においては、活性成分を100%含有することが可能である。
 さらに、上記環状ペプチド化合物を有効成分とする殺菌剤は、上記環状ペプチド化合物単独で有効成分としても十分有効であることはいうまでもないが、必要に応じて他の肥料、農薬、例えば殺虫剤、殺ダニ剤、殺線虫剤、他の殺菌剤、抗ウイルス剤、誘引剤、除草剤、植物生長調整剤などと混用、併用することができ、この場合に一層優れた効果を示すこともある。KK-1自体が防除効果を示す植物病原菌として、例えば灰色かび病菌(Botrytis cinerea)、うどんこ病菌(Blumeria graminis)、いもち病菌(Magnaporthe oryzae)、紋枯病菌(Thanatephorus cucumeris (Frank) Donk)等を挙げることができるが、これらに限定されるものではない。
 以下、実施例により本発明を更に詳細に説明するが、本発明の技術範囲は以下の実施例に限定されるものではない。
〔実施例1〕
[Curvularia clavataのゲノム解析]
 株式会社秋田今野商店から分譲されたC. clavata BAUA-2787株の分生子を200ml CM液体培地(500ml 三角フラスコ)に植菌し、26℃、130rpmで48時間培養した。培養菌体をミラクロスで集菌した後、スパーテルで菌体をプレスして脱水し、予め-20℃に冷却しておいた乳鉢に菌体を入れ、液体窒素を注いで凍結させた。粉状になるまで乳棒で素早く破砕した後、DNeasy Plant Maxi Kitを用いてゲノムDNAを抽出した。
 ゲノム解析は、2種類の次世代シークエンサー(5500xl SOLiD(life technologies)及びMiSeq(illumina))を用いて実施した。調製したC. clavataのゲノムDNAから5500 SOLiD Mate-Paired Library Kit(5500xl SOLiD用)、Nextera DNA Sample Prep Kit(MiSeq用)を用いてライブラリーを作成し、次世代シークエンサーによるゲノム解析を行った。
[C. clavataが有するNRPS遺伝子の探索]
 C. clavata BAUA-2787株が産生する環状ペプチド(以下KK-1)は、図2に示すように、10個のアミノ酸からなる環状ペプチドで、特徴としては、9つあるペプチド結合のうち、5つがN-メチル化されている点と、分子内のチロシン(Tyr)残基がO-メチル化されている点が挙げられる。本実施例では、本KK-1の基本骨格を合成する非リボソーム型ペプチド合成酵素(nonribosomal peptide synthetase(NRPS))遺伝子を探索した。
 先ず、KK-1の生合成遺伝子クラスターを推定するにあたり、ペプチドの基本骨格を生合成しているNRPS遺伝子をC. clavata BAUA-2787株のゲノム配列情報を基に推定することとした。
 NRPSは、リボソームを介さずアミノ酸を連結しペプチドを合成する酵素であり、生産物であるペプチドを構成するアミノ酸残基の数と順番に一致したモジュール構造を有している。したがって、化合物の構造的特徴と一致するモジュールおよびドメイン構造を有するNRPSが、その化合物のペプチド骨格を生合成するNRPSであると推定できる。
 C. clavata BAUA-2787株のゲノム解析により、本菌が有する遺伝子とコードされているタンパク質の配列が推定されていることから、C. clavataのゲノム中からNRPSをコードすると推定される遺伝子を全て検索し、それらの推定タンパク質の構造的特徴を基に、KK-1のペプチド基本骨格を生合成する遺伝子の推定を行った。
 まず、近縁の糸状菌であるCochliobolus heterostrophusのNRPSとの相同性検索によって、C. clavataの全NRPS遺伝子を探索することとした。C. heterostrophusにおいては、12のNRPS遺伝子NPS1~12が見出されている。これら12のNRPSのドメイン構造を調べると、NPS7はPKS(polyketide synthase)とのhybridタイプのNRPSであり、NPS10とNPS12はCドメインを持たないNRPS-like proteinであった。そこで、これら3つを除いたNPS1~6、NPS8、NPS9及びNPS11のアミノ酸配列を相同性検索のクエリーとして、C. clavataの推定タンパク質のアミノ酸配列のデータベースに対してblastp検索を行った。糸状菌では、10程度のNRPSを有しているという報告(C. heterostrophusが12個のNRPS、Asperillus fumigatusが14個のNRPS)を考慮し、クエリーとした遺伝子それぞれについてヒットした上位20遺伝子を抽出したところ、以下の24の遺伝子に絞り込まれた。
TRAF01000140000154, TRAF01000135000001, TRAF01000070000001, TRAF01000068000001, TRAF01000108000067, TRAF01000130000847, TRAF01000117000049, TRAF01000117000050, TRAF01000099000028, TRAF01000088000002, TRAF01000082000001, TRAF01000081000001, TRAF01000117000368, TRAF01000142000376, TRAF01000109000032, TRAF01000142000383, TRAF01000136000233, TRAF01000100000101, TRAF01000061000021, TRAF01000108000142, TRAF01000139000099, TRAF01000140000122, TRAF01000117000201, TRAF01000136000219
 C. clavataの遺伝子配列(CDS)は、次世代シークエンサーによって解析されたゲノムDNA配列を基に、専用プログラムによって予測されている。しかしながら、このCDS予測は間違っていることも少なくはなく、特にイントロンの存在などにより、CDSの5'-側及び3'-側の配列が削られ、実際のCDSよりも短く予測されることが多い。より正確なCDSを得るためには、遺伝子が位置するゲノム領域周辺の配列情報などを利用して、ひとつひとつ詳細に検討する必要がある。そこでまず、絞り込んだ24の遺伝子それぞれの推定開始コドンの上流3000bpから推定終止コドンの下流3000bpまでのゲノムDNA配列をクエリーとして、GenBankのデータベースに対してblastx検索をかけた。この検索により、既知のタンパク質配列と相同性を示す領域が明らかになったことから、遺伝子の開始および終止コドンを推定した。また、同じく既知のタンパク質配列との相同性からイントロンが存在する部位が示されたので、GU-AG ruleに従いイントロン部位を予測し、より正確なCDSを推定した。
 この結果、TRAF01000117000049とTRAF01000117000050は別の遺伝子として推定されていたが、実際には一つの遺伝子(TRAF01000117000049-50とする)であることが明らかになった。また、検索に用いた遺伝子の周辺ゲノムDNA配列が十分に得られないという理由から、5'-側が欠失(開始コドンが見出せない)または3'-側が欠失(終止コドンが見出せない)している遺伝子もあった。以下にそれらの遺伝子を示す。
TRAF01000135000001 (5' 欠失)
TRAF01000070000001 (5', 3' ともに欠失)
TRAF01000068000001 (3' 欠失)
TRAF01000088000002 (3' 欠失)
TRAF01000082000001 (5' 欠失)
TRAF01000081000001 (3' 欠失)
TRAF01000117000368 (5' 欠失)
 これらの配列をさらに詳細に解析したところ、TRAF01000068000001の3'-末端、TRAF01000070000001の5'-及び3'-末端、TRAF01000135000001の5'-末端に2285bpの全く同一の配列が見出された。すなわち、これら3つの遺伝子は、実際には、TRAF01000068000001、TRAF01000070000001及びTRAF01000135000001がこの順につながった1つの遺伝子 (TRAF01000135000001_J3Gとする) であると推定された。
 また、同様に、TRAF01000088000002及びTRAF01000081000001の3'-末端とTRAF01000082000001及びTRAF01000117000368の5'-末端に2959bpの全く同一の配列が見出された。すなわち、これら4つの遺伝子は、実際には、2つの遺伝子であると推定された。ただし、これらの遺伝子は、
1) TRAF01000088000002 - TRAF01000082000001
2) TRAF01000088000002 - TRAF01000117000368
3) TRAF01000081000001 - TRAF01000082000001
4) TRAF01000081000001 - TRAF01000117000368
の4通りの組み合わせでつながる可能性があるが、配列情報からでは正しい組み合わせは決定できなかった。
 続いて、CDSの予測を行った遺伝子がコードするタンパク質のドメイン構造を調べた。この解析には、InterProScan及びantiSMASHプログラムを用い、antiSMASHによる解析結果を図3-1及び3-2に示した。NRPSとしての機能に必須なAドメイン、PCPドメイン、Cドメインを有する遺伝子は、TRAF01000140000154, TRAF01000135000001_J3G, TRAF01000108000067, TRAF01000130000847, TRAF01000117000049, TRAF01000117000050, TRAF01000099000028, TRAF01000088000002, TRAF01000082000001, TRAF01000081000001, TRAF01000117000368, TRAF01000142000376, TRAF01000109000032, TRAF01000142000383 の14遺伝子であったが、先述のように、これらのうち4つ (TRAF01000088000002, TRAF01000082000001, TRAF01000081000001, TRAF01000117000368) は2つの遺伝子が分断されたものであることから、C. clavata BAUA-2787株は12個のNRPS遺伝子を有していることが示唆された。なお、TRAF01000142000383はantiSMASHでの解析で見出されたのはAドメインとCドメインのみであったが、InterProScanによる解析からN末端側にPCPドメイン様の配列が見出されたことから、NRPSと推定した。また、TRAF01000109000032はN末端側に典型的なPKS(polyketide synthase)のドメインを有していることから、PKS-NRPS hybridであると考えられた。
[KK-1の生合成に関与するNRPSの推定]
 C. clavata BAUA-2787株が12個のNRPS遺伝子を有していると考えられたことから、この中から、KK-1の基本ペプチド骨格を生合成している遺伝子の探索を行った。KK-1は図2に示したように、10個のアミノ酸からなる環状のペプチドを基本骨格としている。TyrとAlaの間はペプチド結合でなく、エステル結合となっているが、何らかの修飾を受けてこのような形になっていると考えられる。NRPSにより生合成されるペプチドは、構成するアミノ酸の数が生合成NRPSのモジュールの数と一致するという特徴を持つ。ゆえに、10個のアミノ酸からなるKK-1の基本ペプチド骨格を生合成するNRPSは10個のモジュール、すなわち10個のAドメインを有すると考えられる。そこで、C. clavataの12個の推定NRPS遺伝子のAドメインの数を調べたところ、TRAF01000135000001_J3Gのみが10個のAドメインを有していたことから、本遺伝子がKK-1の生合成に関わるNRPSであると考えられた (図3-1)。
 TRAF01000135000001_J3Gのドメイン構造には、図1に示したように、ペプチド結合をN-メチル化するN-methy transferase domain (nMTドメイン) が5つ存在しており、第3モジュール、第5モジュール、第6モジュール、第7モジュール及び第9モジュールに位置している。NRPSの各モジュールの位置は、生合成されるペプチドを構成するアミノ酸の位置と一致しており、同様に、nMTドメインを持つモジュールとN-メチル化されたペプチド結合の位置も一致する。TRAF01000135000001_J3Gの第1モジュールがKK-1のAla残基に対応すると仮定すると、nMTドメインを有するモジュールとN-メチル化されたペプチド結合の位置が完全に一致する。このことから、TRAF01000135000001_J3GがKK-1の基本ペプチド骨格を生合成するNRPSであることが強く示唆された。
 さらに、TRAF01000135000001_J3Gによって、Ala-Pip -(N-methyl)Val-Val-(N-methyl)Asp-(N-methyl)Val-(N-methyl)Ile-Gly-(N-methyl)Val-Tyr というペプチドが合成された後、環化及び修飾がなされると推定された。なお、知見の多いバクテリア由来のNRPSではTEドメインが環化反応を担っていることが知られている。これに対して、糸状菌では、多くのNRPSでTEドメインを欠き、代わりにCドメインが含まれている。近年、糸状菌においては、このCドメインがペプチドの環化を担っていることが明らかになってきている。
 TRAF01000135000001_J3Gにおいても第10モジュールのC末端にCドメインを有しており、このCドメインが環化を行っている可能性が考えられる。また、TRAF01000135000001_J3Gによって基本ペプチド骨格が生合成された後、様々な酵素によって修飾が行われ、KK-1が生合成されると推定される。これらの修飾酵素遺伝子は、TRAF01000135000001_J3GとともにC. clavata BAUA-2787株のゲノム中に遺伝子クラスターを形成していると考えられる。
 推定したNRPSを構成する第1モジュール~第10モジュールに含まれる各ドメイン、そのアミノ酸配列に関する配列番号等を下記表に纏めた。
Figure JPOXMLDOC01-appb-T000002
 なお表1において、「アミノ酸配列」の欄に記載した数値範囲は、推定したNRPSの全アミノ酸配列(配列番号37)におけるアミノ酸残基の位置を示している。
[KK-1の生合成遺伝子クラスターの推定]
 以上のように、KK-1の基本ペプチド骨格を形成するNRPS遺伝子としてTRAF01000135000001_J3Gを推定したことから、このNRPS(TRAF01000135000001_J3G)を含む領域にKK-1生合成遺伝子クラスターを構成する遺伝子群が存在していると考えられた。そこで、当該NRPS周辺に位置する遺伝子に関して、コードするタンパク質のアミノ酸配列と、アミノ酸配列に基づいて推定される機能とを基に、生合成遺伝子クラスターを構成する遺伝子群の推定を試みた。なお、TRAF01000135000001_J3Gは、ゲノムシークエンスおよび遺伝子予測の際に分断されていた3つの配列を結合したものであることから、以下の遺伝子クラスターの予測には結合後の配列を用いた。
 まず、NRPS遺伝子(TRAF01000135000001_J3G)の上流、下流それぞれ14遺伝子を抽出し、続いて、GenBankデータベースに対するblastp検索により、これら遺伝子にアノテーションを付加した。その結果を図4に示した。このアノテーションから二次代謝に関与する可能性のある遺伝子を含む領域(TRAF01000135000002からTRAF01000068000009)をKK-1生合成遺伝子クラスターと推定した。この推定生合成遺伝子クラスターの構造を模式的に図5に示した。本クラスターのサイズは約75kbで、その大部分をNRPS遺伝子が占めている構造となっていた。クラスターを構成する遺伝子の機能を見ると、TRAF01000135000002はO-メチルトランスフェラーゼとアノテーションされていることから、これがKK-1分子内のチロシン(Tyr)残基のO-メチル化を行っていると考えられた。レプトマイシンB耐性タンパク質をコードするpmd1とアノテーションされているTRAF01000068000006はタンパク質の機能としてはABC transporterであり、KK-1の菌体外への排出に関与している可能性が考えられた。また、クラスター内には、転写因子遺伝子 (TRAF01000068000005) が存在していた。一般的に生合成遺伝子クラスターを構成する遺伝子の発現は、クラスター内に存在する転写因子によって共通の制御を受けていることが多く、本遺伝子クラスターにおいても、TRAF01000068000005がクラスター構成遺伝子全体の転写を制御していると推定された。ゆえに、この転写因子の発現を制御することで、遺伝子クラスターの発現を制御することができると考えられ、KK-1の高生産を試みる上で重要な遺伝子であると考えられた。
[遺伝子発現情報を基にしたKK-1の生合成遺伝子クラスターの推定]
 KK-1生合成遺伝子クラスターの推定を行うにあたり、MIDDAS-M(Umemura M. et. al.,Plos one, 8(5), e63673. (2013))アルゴリズムを用いたバイオインフォマティクスの手法によるクラスター検出も行った。
 MIDDAS-Mは、遺伝子の発現情報を基に遺伝子クラスターを検出するものである。二次代謝物の生合成遺伝子クラスターを検出する際には、その物質の産生及び非産生それぞれの条件における産生宿主の遺伝子の網羅的発現情報を比較して、生産条件において連動して動く遺伝子群をクラスターとして検出する。横軸に遺伝子をゲノムの位置の順に並べ、縦軸にスコア(発現量)をプロットすることで、発現量変動がある遺伝子が集まっている領域がピークのように検出される。
 C. clavata BAUA-2786株のCM液体培養におけるKK-1産生は、培養温度を高温の37℃にすると確認されないことから、通常の培養温度である26℃を産生条件、37℃を非産生条件とした。これらの条件におけるC. clavataの遺伝子発現を次世代DNAシークエンサーを用いたRNA-seqにより網羅的に解析し、MIDDAS-Mによるクラスター検出を行ったところ、図6に示すように、配列情報を基に推測した遺伝子クラスターと同一の遺伝子群が検出された (図6中a及びb)。ピークが2つ検出されているのは、この遺伝子クラスターは、先述のように当初のゲノムシークエンスデータでは分断された状態であったためである。なお、手動でつなぎ合わせた推定クラスター配列をゲノム配列の末尾(横軸の右端)に結合した配列でのMIDDAS-Mを用いた解析も同時に行ったところ、この部分の遺伝子も有意に検出された(図6中c)。
 以上の結果から、遺伝子配列情報を基に推定した10遺伝子を含む遺伝子クラスターがKK-1の生合成に関与していることが強く示唆された。推定した遺伝子クラスターに含まれる10遺伝子について、コーディング領域の塩基配列及びアミノ酸配列を下記表に纏めた。
Figure JPOXMLDOC01-appb-T000003
〔実施例2〕
 本実施例では、実施例1で推定したKK-1生合成遺伝子クラスターに含まれる遺伝子群のうち転写因子遺伝子について機能を解析した。なお、本実施例では、実施例1において、TRAF01000068000005と表記した転写因子をコードする遺伝子をTF068-005と表記する。
[転写因子高発現株を用いた解析]
1)TF068-005高発現コンストラクトの構築(図7)
 TF068-005遺伝子を高発現するコンストラクトを図7に模式的に示した。このコンストラクトにおいては、C. clavata BAUA-2787株のCcnmt1(TRAF01000124000183)遺伝子の開始コドンより上流1000bpをプロモーターとし、Ccnmt1遺伝子の下流355bpをターミネーターとし、選抜マーカーをオーレオバシジンA(AurA)耐性遺伝子とした。なお、Ccnmt1遺伝子のプロモーター及びターミネーターはC. clavataゲノムDNAを鋳型としたPCR、オーレオバシジンA(AurA)耐性遺伝子はpAUR316プラスミド(TaKaRa)を鋳型としたPCR、TF068-005遺伝子はC. clavataのcDNAを鋳型としたPCRにより増幅した。
 続いて、In-Fusion HD Cloning Kit(Clontech)の直鎖pUC19とともにIn-Fusion反応し、目的のプラスミド(pUC-Pnmt1-TF-Tnmt1-aurA)を作製した。使用したプライマーと反応条件を以下に示す。
 nmt1-pro_In-Fus_FW1: 5'-cggtacccggggatcTAGTCTGTTGATTACTCG-3'(配列番号56)
 nmt1-pro_In-Fus_RV1: 5'-ctcgacaaaggtcatTTTGACTTTGAATACCGGTG-3'(配列番号57) nmt1-ter_FW1: 5'-GCAGTTGCCGTTGGACCAGAGG-3'(配列番号58)
 nmt1-ter_In-Fus_RV2: 5'-atagtcataacaagcCGCGACACTGTAATATTAAAGC-3'(配列番号59)
 TF-CDS_FW1: 5'-ATGACCTTTGTCGAGACTGTAGCC-3'(配列番号60)
 TF-CDS_In-Fus_RV1: 5'-TCCAACGGCAACTGCCTATGATATACTCATGTTCTCGTC-3'(配列番号61)
 PCRには、Phusion Hot Start II High-Fidelity DNA Polymerase(Thermo Fisher Scientific)を使用した。温度条件としては、初期変性:98℃で30secとし、変性:98℃で10sec、アニーリング:60℃で30sec、伸長:72℃で30secを1サイクルとして30サイクル行い、最終伸長:72℃で7minとした。
 AnaurA-mark_In-Fus_FW1: 5'-cgactctagaggatcCTGATGGTCAGATGGATCTG-3'(配列番号62)
 AnaurA-mark_RV1: 5'-GCTTGTTATGACTATGTATACATATGCG-3'(配列番号63)
 PCRには、Phusion Hot Start II High-Fidelity DNA Polymerase(Thermo Fisher Scientific)を使用した。温度条件としては、初期変性:98℃で30secとし、変性:98℃で10sec、アニーリング:60℃で30sec及び伸長:72℃で2minを1サイクルとして30サイクル行い、最終伸長:72℃で7minとした。
2)C. clavata BAUA-2787株の形質転換
 100mlのCM培地(300 ml三角フラスコ)にC. clavata BAUA-2787株の胞子懸濁液を植菌し、30℃で40時間振盪培養した後、ガラスろ過器(11G1)を用いたろ過により菌糸を集め、滅菌水で洗浄後、スパーテル等で押さえて十分に水分を除いた。菌体を10mlのprotoplast化溶液(YL組成)に加え懸濁し、30℃で3時間ゆるやかに振盪しprotoplast化を行った。ミラクロスでろ過し、ろ液を1,500xgで5分間遠心し、protoplastを集め、0.8M NaClで2回洗浄した。protoplastを2×108/mlとなるようにSolution 1 [0.8M NaCl、10mM CaCl2、10mM Tris-HCl(pH8.0)]に懸濁し、0.2容量のSolution 2[40%(w/v) PEG4000、50mM CaCl2、50mM Tris-HCl(pH8.0)]を加えて緩やかに懸濁し、0.2mlのprotoplast懸濁液にpUC-Pnmt1-TF-Tnmt1-aurA(7.8μg/20μl)を加え、氷中で10分間静置した。1mlのSolution 2を加え、緩やかに懸濁し、室温で15分間静置した。10mlのSolution 1を加えて緩やかに懸濁し、遠心でprotoplastを集め、上清をできるだけ除き、protoplastを1 mlのSolution 1に懸濁した。CM+1.2M sucrose+10μg/ml AbA 選択プレート5枚にprotoplast懸濁液を0.2mlずつのせ、6~7ml(90mmφシャーレ当たり)のCM+1.2M sucrose+10μg/ml AbA軟寒天(1%)選択培地を加え、protoplastが均一になるようにすばやく重層し、26℃で6日間培養した。
 なお、pUC-Pnmt1-TF-Tnmt1-aurAプラスミドを用いたC. clavataの形質転換は、プラスミドを環状のまま用いるものと、制限酵素BamH Iで1ヵ所切断し直鎖状で用いるものの2通りの方法で行った。
3) TF068-005高発現株の培養条件
 TF068-005高発現株は以下の3通りの培養を行い、RNAの調製ならびにKK-1の生産を調べた。
「培養1」
 野生株及びTF068-005高発現株の分生子を100ml CM培地(500mL 三角フラスコ)に植菌し、26℃、160rpm、72h振盪培養した。
「培養2」
 野生株及びTF068-005高発現株の分生子を30ml K1培地(100mL バッフル付三角フラスコ)に植菌し、26℃、200rpm、72h前培養し、培養液500μlをglucose濃度を5%としたCM培地(500mL バッフル付三角フラスコ)に移し、26℃、130rpmで本培養を行った。
「培養3」
 50 mlファルコンチューブに玄米2.5gと水2mlを入れ、オートクレーブした。これに野生株及びTF068-005高発現株の分生子を植菌し、26℃で8日間静置培養した。
4) TF068-005高発現株のRNA-seq解析
 液体培養した菌体を液体窒素で凍結させ、乳鉢と乳棒で摩砕し、ISOGEN(ニッポンジーン)を用いてtotal RNAを調製した。このtotal RNAからTruseq RNA Sample Prep Kit v2を用いて、RNA-Seq用ライブラリーを調製し、次世代シークエンサー(MiSeq)に供した(Paired-End, Read Length 75)。得られた配列データはTopHatプログラムを用いてC. clavataのゲノム配列にマッピングした。
5) KK-1の抽出と定量
 液体培養においては、30mlの培養系に直接15ml酢酸エチル添加し、130rpmで1時間振盪した後、4,700xgで15分間遠心した。上清を回収・遠心濃縮し、これを菌体外画分とした。続いて、酢酸エチル回収後の水層に15mlアセトンを添加し、ボルテックスにて撹拌後、4,700xgで15分間遠心した。デカントで上清を回収し、遠心濃縮でアセトンを除いた。これに酢酸エチルを15ml添加し、4,700xgで15分間遠心した。酢酸エチル層を50mlチューブに回収し、遠心濃縮したものを菌体内画分とした。
 固体培養においては、80%アセトン25mlを培養系に添加し、ボルテックスした。遠心濃縮によりアセトンを除き、10ml酢酸エチルを添加して、ボルテックスで撹拌した。遠心分離により酢酸エチル層を回収し、スピンカラムで精製したものをサンプルとした。
KK-1の定量はUPLCによって行った。条件を以下に示す。
・ 装置:ACQUITY UPLC I-Class システム(Waters)
・ カラム: Acquity UPLC BEH C18 2.1x100mm
・ Solvent: Gradient 50%-98% Acetonitrile+0.1% Fomic Acid(3min)
・ 流速: 0.6ml/min
・ 検出波長: 273nm
<結果と考察>
 本実施例では、C. clavataにおいて高発現している遺伝子として見出したnmt-1遺伝子ホモログ(TRAF01000124000183;Ccnmt1)のプロモーターとターミネーターを用いて転写因子を高発現させるコンストラクト(pUC-Pnmt1-TF-Tnmt1-aurA)を作製した(図7)。このプラスミドを用いたC. clavataの形質転換は、プラスミドを環状のまま用いるものと、1ヵ所切断し直鎖状で用いるものの2通りの方法で行った。その結果得られた、プラスミドを直鎖導入した1株(ox_TF_1)と環状導入した1株(ox_TF_2)についてRNA-seq解析ならびに、KK-1の生産性の確認を行った。
 まず、野生株及びTF068-005高発現株(ox_TF_1及びox_TF_2)の分生子をCM液体培地で26℃、160rpmで72h振盪培養し、RNA-seq解析を行った(方法「培養1」)。KK-1生合成遺伝子クラスター構成遺伝子の転写量を調べた結果を図8に示した。図8に示したように、TF068-005高発現株では、いずれの遺伝子も野生株に比べて8倍程度の増加が確認された。なお、ox_TF_1株とox_TF_2株の転写に差はなかった。
 そこで、これらTF068-005高発現株におけるKK-1の生産性を調べることとし、同時にRNA-seq解析も行った。この際、液体培養時の菌体の形状を安定化させるため、きな粉(Soybean flour)を含むK1培地で前培養した後、CM培地で本培養を行った(方法「培養2」)。本培養後、2日及び4日の遺伝子の転写をRNA-seqにより解析した結果を図9に示した。図9に示したように、TF068-005高発現株のKK-1生合成遺伝子クラスター構成遺伝子の転写は、野生株に比較し有意に高かった。また、2日後よりも4日後の方が、野生株における発現量との差が大きかった。
 続いて、KK-1の生産量を、本培培養後3日及び7日の時点で菌体外及び菌体内に分けて調べた。その結果を図10に示した。図10に示したように、培養系内のKK-1の総量(菌体外+菌体内)は、培養3日及び7日いずれにおいてもTF068-005高発現株で増加しており、7日目では野生株の2倍程度となっていた。また、図10に示した結果から、KK-1総量の20~30%程度が菌体内に蓄積していると考えられた。
 さらに、玄米を用いた固体培養条件におけるKK-1生産性の確認を行った(方法「培養3」)その結果を図11に示した。また、図11には、TF068-005高発現株を固体培養している状態を撮像した写真を示した。図11に示したように、固体培養によっても、TF068-005高発現株におけるKK-1の生産性は、野生株の約6倍となっていた。
 以上の結果より、TF068-005遺伝子を高発現させることにより、推定した遺伝子クラスターに含まれる各遺伝子の発現量が上昇することが示された。よって、TF068-005遺伝子は、特定の遺伝子発現を転写レベルで正に制御する転写因子であることが同定された。そして、転写因子をコードするTF068-005遺伝子を高発現させることで、KK-1の生産性が向上したことから、本転写因子の制御によって発現が上昇した一連の遺伝子群がKK-1の生産に関与している遺伝子クラスターであることが示された。
[転写因子破壊株を用いた解析]
1)CcpyrG遺伝子破壊用プラスミドの構築(図12)
 C. clavata BAUA-2787株におけるpyrG遺伝子(CcpyrG遺伝子)を破壊するためのプラスミド構築のスキームを図12に示した。なお、pyrG遺伝子破壊株は、5-フルオロオロチン酸(5-FOA)を5-フルオロウリジンリン酸(チミン生合成酵素の阻害剤)へ変換できないため5-FOAを含む培地でも生育することができる。
 先ず、図12に示したように、C. clavata BAUA-2787株のゲノムDNAを鋳型に以下のプライマーセットでPCRを行い、CcpyrG遺伝子の開始コドンの上流2005bpから終止コドンの下流1261bpまでを増幅した。
 CcPyrG-del_FW3: 5'-GACAGACTCTTCGTCGACGTC-3'(配列番号64)
 CcPyrG-del_RV3: 5'-GTTGTGGTTGGTGTTCCTGAGG-3'(配列番号65)
 PCRはPhusion Hot Start II High-Fidelity DNA Polymerase(Thermo Fisher Scientific)を使用した。温度条件は、初期変性:98℃で3minとし、変性:98℃で10sec、アニーリング:60℃で30sec、伸長:72℃で2.5minを1サイクルとして30サイクル行い、最終伸長:72℃で7minとした。
 次に、増幅したCcpyrG遺伝子を含むDNA断片(4463bp)の末端をT4 Polynucleotide Kinase(TOYOBO)でリン酸化した。pUC18をSma I消化後、E.coli Alkaline Phosphatase(TOYOBO)で脱リン酸化し、リン酸化したCcpyrG遺伝子を含むDNA断片とライゲーションした。続いて、以下のプライマーセットで、CcpyrG遺伝子の上流および下流域を含むpUC18側をPCR増幅し、CcpyrG遺伝子を含む領域を欠失させた。
 CcPyrG-del_FW2: 5'-CACTCGATCTACCAAATCGACG-3'(配列番号66)
 CcPyrG-del_RV2: 5'-CCTATCCGGATATGCAGTCAC-3'(配列番号67)
 PCRはPhusion Hot Start II High-Fidelity DNA Polymeraseを使用した。温度条件は、初期変性:98℃で3minとし、変性:98℃で10sec、アニーリング:60℃で30sec、伸長:72℃で3minを1サイクルとして30サイクル行い、最終伸長:72℃で7minとした。
 次に、得られたPCR断片をT4 Polynucleotide Kinaseでリン酸化した後、セルフライゲーションし、目的のCcpyrG遺伝子破壊コンストラクト(pUC-CcPyrG-del_C1)を構築した。
2)C. clavata BAUA-2787株のCcpyrG遺伝子破壊形質転換
 pUC-CcPyrG-del_C1を鋳型にCcPyrG-del_FW3/CcPyrG-del_RV3のプライマーセットでPCR増幅した断片をCcpyrG遺伝子破壊に用いた。PCRはPhusion Hot Start II High-Fidelity DNA Polymeraseを使用した。温度条件は、初期変性:98℃で30secとし、変性:98℃で10sec、アニーリング:63℃で30sec、伸長:72℃で30secを1サイクルとして35サイクル行い、最終伸長:72℃で5minとした。
 C. clavata BAUA-2787株の形質転換は、基本的に[転写因子高発現株を用いた解析]で説明したプロトコルに従って行った。ただし、選抜培地はCM+1mg/ml 5-FOA +0.2% Uridine+0.02% Uracilとした。
3)TF068-005遺伝子破壊コンストラクトの構築(図13)
 上述のように転写因子をコードすることが判明したTF068-005遺伝子を破壊するためのコンストラクトを構築するスキームを図13に示した。
 図13に示すように、まず、C. clavata BAUA-2787株のゲノムをテンプレートに、TF068-005遺伝子の上流領域に相補的なプライマーTF068-005_L-arm_FW1及びTF068-005_L-arm_RV1を用いてleft arm(1147bp)を増幅した。同様に、TF068-005遺伝子の下流領域に相補的なプライマーTF068-005_R-arm_FW1及びTF068-005_R-arm_RV1を用いてright arm(1205bp)を増幅した。さらに、プライマーCcPyrG-mark_FW1及びCcPyrG-mark_RV1を用いて選抜マーカー遺伝子pyrG(2231bp)を増幅した。増幅した各断片の電気泳動写真を図14に示した。
 次に、In-Fusion HD cloning Kit(Clontech)のプロトコルに従い、キット付属の直鎖状pUC19プラスミドベクターに、上記PCRにより増幅したleft arm、pyrGマーカー及びright armをこの順になるように挿入した。得られたベクターを大腸菌JM109株に導入し、形質転換体3クローンからプラスミドを調製しシークエンスを行った。
 各DNA断片の増幅に用いたプライマーの配列を以下に示した。
TF068-005_L-arm_FW1:5’-cggtacccggggatcCTCTGAAGCGGTCAAGGATAACG-3’(配列番号68)
TF068-005_L-arm_RV1:5’-atgaagcagagcggcGAGCCTAAGATATGCCAGGAGG-3’(配列番号69)
TF068-005_R-arm_FW1:5’-ctagcaaccgtcatgCCATAGACGTGGCACTCGAACG-3’(配列番号70)
TF068-005_R-arm_RV1:5’-cgactctagaggatcCGTCTTAAGGATGGTTCAGCTGC-3’(配列番号71)
CcPyrG-mark_FW1:5’-CATGACGGTTGCTAGGGTCG-3’(配列番号72)
CcPyrG-mark_RV1:5’-GCCGCTCTGCTTCATTGCTG-3’(配列番号73)
(小文字はIn-Fusion反応のための15 bpのオーバーラップ配列)
4)TF068-005遺伝子破壊コンストラクトでの形質転換(図15)
 図15に、上記2)で作製したC. clavata BAUA-2787株のCcpyrG遺伝子破壊株をTF068-005遺伝子破壊コンストラクトでの形質転換する方法を模式的に示した。先ず、TF068-005遺伝子破壊コンストラクトを制限酵素EcoR I(TaKaRa)消化により直鎖化し、Ethachinimate(ニッポン・ジーン)を用いて精製した。続いて、直鎖化したコンストラクトをC. clavata BAUA-2787 pyrG遺伝子破壊株に導入し形質転換した。形質転換は、基本的に[転写因子高発現株を用いた解析]で説明したプロトコルに従って行った。ただし、C. clavata BAUA-2787 pyrG遺伝子破壊株の培養にはCM+5mM uridine+5mM uracil培地を、形質転換体の選抜にはMM寒天培地[1% glucose、0.6% NaNO3、0.052% KCl、0.052% MgSO4・7H2O、0.152% KH2PO4、and Hutner’s trace elements(pH6.5)]を用いた。
5) TF068-005遺伝子破壊株の抗菌活性試験 
 以上のように作製されたTF068-005遺伝子破壊株の分生子懸濁液を100mlのCM培地に植菌し、26℃、130rpmで72時間培養した。ミラクロスにより培養液を濾過して菌体を除き、0.22μmのフィルターに通して滅菌した後、ペーパーディスクに染み込ませた。このペーパーディスクと、寒天培地ごと切り抜いた灰色かび病菌(Botrytis cinerea)の菌糸をPDA培地上に2.5cm程度離して置き、26℃で3日間対峙培養した。ポジティブコントロールは野生株であるC. clavata BAUA-2787株の培養液、ネガティブコントロールは菌体を培養していないCM培地とした。
6) 転写因子遺伝子(TF068-005)破壊株のtotal RNAの調整
 TF068-005遺伝子破壊株及び野生株の分生子懸濁液を30mlのCM培地に植菌し、26℃、130rpmで72時間振盪培養した。続いて、ミラクロスを用いて培養液濾過し、菌体を回収した。菌体0.8gを秤量して液体窒素で凍結させた後、乳鉢と乳棒で摩砕した。その菌体を10mlのISOGEN(ニッポンジーン)に懸濁して10分間静置し、クロロホルムを2ml添加してボルテックスで撹拌した後、4,700xgで10分間遠心した。水層を回収し、5mlのイソプロパノールを添加してボルテックスで撹拌した後、4,700xgで10分間遠心した。上清を捨て、5mlの75%エタノールを加えて洗浄し4,700xgで10分間遠心した後再度上清を捨て、RNAのペレットを200μlのNucrease-free waterに溶解した。得られたRNA溶液はRNeasy Plant Mini Kit (QIAGEN)を用いて再度精製した。
7) 転写因子遺伝子(TF068-005)破壊株のRNA-seq解析
 以上のように調製したtotal RNAから、Truseq RNA Sample Prep Kit v2 (illumina)を用いてRNA-Seq用ライブラリーを調製し、次世代シーケンサー(MiSeq)に供した (Paired-End, Read Length 75)。得られた配列データはTopHatプログラムを用いてC. clavataのゲノム配列にマッピングした。
8) 転写因子遺伝子破壊株及び野生株におけるKK-1の抽出と定量 
 TF068-005遺伝子破壊株及び野生株の分生子懸濁液を30mlのCM培地に植菌し、26℃、130rpmで10日間振盪培養した。培養液に15mlの酢酸エチルを添加して1時間振盪した後、4,700xgで15分間遠心した。酢酸エチル層を回収し、乾固させて菌体外画分とした。続いて、酢酸エチル層回収後の水層にアセトンを10ml添加し、ボルテックスにて撹拌後、遠心濃縮でアセトンを除いた。これに酢酸エチルを15ml添加し、ボルテックスにて撹拌した後、4,700xgで10分間遠心した。酢酸エチル層を回収して遠心濃縮し、これを菌体内画分とした。得られた抽出物は再度酢酸エチルに溶解した後、LC/MS分析に供した。
<LC>
装置:ACQUITY UPLC I-Classシステム (Waters)
カラム: Acquity UPLC BEH C18 2.1 x 100 mm
移動相: DW+0.1%Formic Acid/アセトニトリル+0.1% Formic Acid=
50/50 (0.5min)→2/98(3.4min)
Gradient 50%-98% Acetonitrile + 0.1% Formic Acid (0.5-3.4 min)
流速: 0.6 ml/min
検出波長: 273 nm
<MS>
装置:Xevo G2 QTof (Waters)
イオン化条件: Negative
<結果と考察>
 本実施例では、TF068-005遺伝子の破壊及び核の純化が確認された株が5株得られたため、これらの株の培養上清における抗菌活性を調べた。上述した抗菌活性試験の結果を図16に示した。図16には、取得した5株のTF068-005遺伝子破壊株のうち3株についての抗菌活性試験の結果を掲載した。図16に示すように、ポジティブコントロール(野生株の培養液)では灰色かび病菌のペーパーディスク側に伸びる菌糸伸長の阻害が見られたのに対し、TF068-005遺伝子破壊株の培養液では阻害活性は検出されず、ネガティブコントロール(培養液のみ)と同様の結果が得られた。このことから、TF068-005遺伝子破壊株においてKK-1生産能が著しく低下していると考えられ、TF068-005遺伝子がKK-1の生合成に深く関与していることが強く示唆された。
 そこで、TF068-005遺伝子破壊株について、網羅的遺伝子発現解析(RNA-seq)及びKK-1生産量の分析を行った。網羅的遺伝子発現解析(RNA-seq)では、野生株を比較対照として、TF068-005遺伝子破壊株(2株)について解析した。その結果を図17に示した。図17において「del_TF」はTF068-005遺伝子破壊株の結果を示している。また、図17に示したグラフにおいて縦軸の「RPKM」は、reads per kilobase of exon per million mapped sequence readsであり、マッピングされた配列(リード)数を全体のリード総数と転写物の配列長で正規化した値である。
 図17に示すように、TF068-005遺伝子破壊株において、推定した生合成クラスターに含まれる遺伝子の発現量は野生株と比較して有意に低下しているのに対して、本クラスターに含まれない周辺遺伝子群の発現量はTRAF01000068000011遺伝子を除いて野生株と同等であることが明らかとなった。なお、TRAF01000068000011遺伝子の機能はアノテーション情報からサイトゾルや核で合成された糖ヌクレオチドの小胞体やゴルジ体への輸送に関与するNucleotide-sugar transporterと推定される。KK-1の構造に糖ヌクレオチドは存在しないため、本遺伝子の生合成への関与は低いと考えられた。
 また、TF068-005遺伝子破壊株(5株)でのKK-1生産量をLC/MSにより測定した結果を図18に示した。図18に示すように、TF068-005遺伝子破壊株(5株)のいずれにおいても、培養上清及び菌体内でKK-1は検出されなかった。
 以上のTF068-005遺伝子破壊株に関する結果と、TF068-005遺伝子高発現株でクラスター内遺伝子発現量及びKK-1生産量が有意に上昇していたことから、推定していた遺伝子クラスターがKK-1の生合成を担っていることに加えて、TF068-005遺伝子がKK-1生合成遺伝子クラスターを構成する各遺伝子の転写を制御していることが明らかとなった。
〔実施例3〕
 本実施例では、実施例1で推定したKK-1生合成遺伝子クラスターに含まれる各遺伝子について遺伝子破壊株を作製し、各遺伝子の機能を解析した。
1) 各クラスター遺伝子破壊コンストラクトの構築(図19)
 実施例2で検証したTRAF01000068000005(転写因子遺伝子)を除いて、KK-1生合成遺伝子クラスターに含まれる各遺伝子について、上流側約1,000bpの領域をL-arm、下流側約1,000bpの領域をR-armとし、両遺伝子断片をC. clavata BAUA-2787株のゲノムDNAを鋳型にしたPCRにより得た。また、形質転換体の選抜マーカーとなるpyrG遺伝子をPCR増幅した。続いてIn-Fusion Cloning Kit (Clontech)を用いて、上記PCRで増幅したL-arm、pyrG遺伝子、R-armをこの順に連結させた遺伝子断片をpUC19に挿入し、各遺伝子破壊コンストラクトを作製した(図19)。
 それぞれのコンストラクトを構成する各DNA断片をPCR増幅する際に用いたプライマーの配列およびPCR条件を以下に示した。なお、In-Fusion反応を行うためのオーバーラップしている配列(15bp)を小文字で示した。
・pyrG選抜マーカー増幅用(実施例2で使用したプライマー)
CcPyrG-mark_FW1:5’-CATGACGGTTGCTAGGGTCG-3’(配列番号72)
CcPyrG-mark_RV1:5’-GCCGCTCTGCTTCATTGCTG-3’(配列番号73)
・TRAF01000135000002破壊コンストラクトL-arm(982bp)増幅用
TRAF135-002_del_L-arm_FW:5’-cggtacccggggatcGACCCATTGCAGCTTGTG-3’ (配列番号74)
TRAF135-002_del_L-arm_RV:5’-atgaagcagagcggcGTGCAGTATGGTGTCTAAAACG-3’ (配列番号75)
・TRAF01000135000002破壊コンストラクトR-arm(950bp)増幅用
TRAF135-002_del_R-arm_FW:5’-ctagcaaccgtcatgGATGAATGAGCACCCTGTTAG-3’ (配列番号76)
TRAF135-002_del_R-arm_RV:5’-cgactctagaggatcGTACATTACAAAAACCTGTTGCAG-3’ (配列番号77)
・TRAF01000135000001破壊コンストラクトL-arm(1,000bp)増幅用
TRAF135-001_del_L-arm_FW:5’-cggtacccggggatcGTCCCACGTGCAGCTTCAAC-3’ (配列番号78)
TRAF135-001_del_L-arm_RV:5’-atgaagcagagcggcCGTGGAGTATCCCAGGATGG-3’ (配列番号79)
・TRAF01000135000001破壊コンストラクトR-arm(982bp)増幅用
TRAF135-001_del_R-arm_FW:5’-ctagcaaccgtcatgCCAGCCAAAGGGTATCATGG-3’ (配列番号80)
TRAF135-001_del_R-arm_RV:5’-cgactctagaggatcTGAGGGCAGCGTAGCCTG-3’ (配列番号81)
・TRAF01000068000002破壊コンストラクトL-arm(992bp)増幅用
TRAF068-002_del_L-arm_FW:5’-cggtacccggggatcGTGGATAAATTCGTACCCTTTG-3’ (配列番号82)
TRAF068-002_del_L-arm_RV:5’-atgaagcagagcggcCTGATCTTTGTTGTGGTCGTG-3’ (配列番号83)
・TRAF01000068000002破壊コンストラクトR-arm(1,014bp)増幅用
TRAF068-002_del_R-arm_FW:5’-ctagcaaccgtcatgCAGTTTGGCACTTGAGCATC-3’ (配列番号84)
TRAF068-002_del_R-arm_RV:5’-cgactctagaggatcCACGGAAAGGAACTCCTACAG-3’ (配列番号85)
・TRAF01000068000003破壊コンストラクトL-arm(912bp)増幅用
TRAF068-003_del_L-arm_FW:5’-cggtacccggggatcCTCTGGGAAAAGCGGTTAG-3’ (配列番号86)
TRAF068-003_del_L-arm_RV:5’-atgaagcagagcggcGAAGAACCGAGAGCGAGAG-3’ (配列番号87)
・TRAF01000068000003破壊コンストラクトR-arm(995bp)増幅用
TRAF068-003_del_R-arm_FW:5’-ctagcaaccgtcatgCTTGCATCTACCTAGATATTTCACG-3’ (配列番号88)
TRAF068-003_del_R-arm_RV:5’-cgactctagaggatcCAGAGAATCAGCAGAGACACC-3’ (配列番号89)
・TRAF01000068000004破壊コンストラクトL-arm(991bp)増幅用
TRAF068-004_del_L-arm_FW:5’-cggtacccggggatcCCCTGGTAGTTCAGTGGAAGTAAG-3’ (配列番号90)
TRAF068-004_del_L-arm_RV:5’-atgaagcagagcggcTGATAGAGGTACGGGGGTG-3’ (配列番号91)
・TRAF01000068000004破壊コンストラクトR-arm(1,003bp)増幅用
TRAF068-004_del_R-arm_FW:5’-ctagcaaccgtcatgTGCTTGGCTGCTTCAAATC-3’ (配列番号92)
TRAF068-004_del_R-arm_RV:5’-CGACTCTAGAGGATCCTAATACTTGTCGTCCCACTGATG-3’ (配列番号93)
・TRAF01000068000006破壊コンストラクトL-arm(993bp)増幅用
TRAF068-006_del_L-arm_FW:5’-cggtacccggggatcGCAGTACATCGTCAGGGTC-3’ (配列番号94)
TRAF068-006_del_L-arm_RV:5’-atgaagcagagcggcGATGAATAAGGCGAAGGAAAG-3’ (配列番号95)
・TRAF01000068000006破壊コンストラクトR-arm (579 bp)増幅用
TRAF068-006_del_R-arm_FW:5’-ctagcaaccgtcatgCCCTCTTTTTTCTTGCTGTCTC-3’ (配列番号96)
TRAF068-006_del_R-arm_RV:5’-cgactctagaggatcGAAGGAAGGACGGATACTGG-3’ (配列番号97)
・TRAF01000068000007破壊コンストラクトL-arm(769bp)増幅用
TRAF068-007_del_L-arm_FW:5’-cggtacccggggatcGATGAGCGTAGAATTCGTAAAAAG-3’ (配列番号98)
TRAF068-007_del_L-arm_RV:5’-atgaagcagagcggcGCGAACGGGCGTTTTTC-3’ (配列番号99)
・TRAF01000068000007破壊コンストラクトR-arm(579bp)増幅用
TRAF068-007_del_R-arm_FW:5’-ctagcaaccgtcatgGAAGGAAGGACGGATACTGG-3’ (配列番号100)
TRAF068-007_del_R-arm_RV:5’-cgactctagaggatcCCCTCTTTTTTCTTGCTGTCTC-3’ (配列番号101)
・TRAF01000068000008破壊コンストラクトL-arm(716bp)増幅用
TRAF068-008_del_L-arm_FW:5’-cggtacccggggatcCTCCTTATTTTGCAACTTCTGATAC-3’ (配列番号102)
TRAF068-008_del_L-arm_RV:5’-atgaagcagagcggcCGTGTTGATTTTGGTAATTTTG-3’ (配列番号103)
・TRAF01000068000008破壊コンストラクトR-arm(769bp)増幅用
TRAF068-008_del_R-arm_FW:5’-ctagcaaccgtcatgGATGAGCGTAGAATTCGTAAAAAG-3’ (配列番号104)
TRAF068-008_del_R-arm_RV:5’-cgactctagaggatcGCGAACGGGCGTTTTTC-3’ (配列番号105)
・TRAF01000068000009破壊コンストラクトL-arm(716bp)増幅用
TRAF068-009_del_L-arm_FW:5’-cggtacccggggatcCGTGTTGATTTTGGTAATTTTG-3’ (配列番号106)
TRAF068-009_del_L-arm_RV:5’-atgaagcagagcggcCTCCTTATTTTGCAACTTCTGATAC-3’ (配列番号107)
・TRAF01000068000009破壊コンストラクトR-arm(989bp)増幅用
TRAF068-009_del_R-arm_FW:5’-ctagcaaccgtcatgCTAGCAGCCATAAGAGACGTAACC-3’ (配列番号108)
TRAF068-009_del_R-arm_RV:5’- cgactctagaggatcGTTTTCATTGCATGCTCCG-3’ (配列番号109)
・PCR反応条件
 PCRには、Phusion High-Fidelity DNA Polymerase(Thermo Fisher Scientific)を使用した。温度条件は、初期変性:98℃で30secとし、変性:98℃で10sec、アニーリング:60℃で30sec及び伸長:72℃で45secを1サイクルとして30サイクル行い、最終伸長:72℃で5min行った。
2) C. clavata pyrG破壊株の形質転換
 図20のAに、実施例2の2)で作製したC. clavata BAUA-2787株のCcpyrG遺伝子破壊株を各遺伝子破壊コンストラクトで形質転換する方法を模式的に示した。構築した各遺伝子破壊コンストラクトを所定の制限酵素(図20のBに示した)により直鎖化した。続いて、実施例2の[転写因子高発現株を用いた解析]で説明したプロトコルに従って、直鎖化したコンストラクトをC. clavata BAUA-2787 pyrG遺伝子破壊株に導入した。宿主のC. clavata BAUA-2787 pyrG遺伝子破壊株を培養する際には、5mMのuridine及びuracilを添加した液体CM培地を用い、形質転換体の選抜はMM寒天培地で行った。
3) クラスター遺伝子破壊株の培養
 上記2)で得られた各遺伝子破壊株の分生子懸濁液を、KM培地30ml(バッフル付き100ml三角フラスコ)に植菌し、26℃、130rpmで3日間振盪培養したものを前培養液とした。続いて、CM培地30ml(バッフル付き100ml三角フラスコ)に前培養液を300μl植菌し、26℃、130rpmで7日間振盪培養した。
4) 培養系内の代謝物の抽出および分析
 上記3)で得られた培養液に15mlの酢酸エチルを添加して130rpmで1時間振盪した後、4,200xgで15分間遠心した。酢酸エチル層を回収し、遠心濃縮したものを菌体外画分とした。続いて、酢酸エチル層回収後の水層にアセトンを10ml添加し、ボルテックスにて撹拌後、遠心濃縮でアセトンを除いた。これに酢酸エチルを15ml添加し、ボルテックスにて撹拌した後、4,200xgで10分間遠心した。酢酸エチル層を回収して遠心濃縮し、これを菌体内画分とした。得られた抽出物は、菌体内外の画分をまとめて500μlの酢酸エチルに溶解した後、1μlをLC/MS分析に供した。
・LC/MS分析条件
<LC>
装置: ACQUITY UPLC I-Classシステム(Waters)
カラム: Acquity UPLC BEH C18 2.1x100mm
移動相: DW/MeCN=50/50(0.5min)→2/98(3.4min) (各溶媒0.1%ギ酸を含む)
流速: 0.6ml/min
検出波長: 273nm
<MS>
装置: Xevo G2 QTof(Waters)
イオン化条件: Negative
<結果と考察>
 本実施例で作製した各遺伝子破壊株及び実施例2で作製した転写因子遺伝子破壊株について、KK-1の生産性を調べた。その結果を図21に示した。図21においては、各株のKK-1生産量(Wild株に対する相対量)を平均±標準偏差(n=2)で示した。図21に示すように、基本骨格の環状ペプチドを生合成するNRPS(TRAF01000135000001)遺伝子を破壊した株ではKK-1の生産が完全に消失し、本遺伝子がKK-1の生合成に必須であることが示唆された。
 また、図21に示したように、遺伝子クラスターに含まれる遺伝子群のうち5種類の遺伝子(TRAF01000135000002、TRAF01000068000002、TRAF01000068000003、TRAF01000068000007及びTRAF01000068000008)破壊株のKK-1生産量は野生株と比較して大幅に低下していた。このことから、これらの遺伝子は、NRPSにより生合成される環状ペプチド骨格への修飾等の段階においてKK-1の生産に深く関与していると考えられた。
 また、図21に示したように、3種類の遺伝子(TRAF01000068000004、TRAF01000068000006及びTRAF01000068000009)破壊株に関しても、野生株と比較して、上記5遺伝子に比べて変動幅は小さいもののKK-1の生産量は低下していた。このことから、これら3種類の遺伝子についても、KK-1の生産に関与していることが示唆された。実際にTRAF01000068000006がコードするタンパク質はABCトランスポーターと推定しており、菌体内で産生されたKK-1の細胞外への排出に関与していると考えられる。また、α/βヒドロラーゼとアノテーションされているTRAF01000068000009については、放線菌Streptomyces rochei 7434AN4株が産生するポリケチド系抗生物質のランカマイシン生合成クラスター内には、誤って取り込まれた基質を加水分解するチオエステラーゼをコードする遺伝子が含まれていることから、本遺伝子も同様な働きをしている可能性が考えられた。なお、TRAF01000068000004はサイズが8.1kDaと小さく類似したタンパク質も存在しないことから、特定の機能を持たない可能性も考えられた。
〔実施例4〕
 本実施例では、実施例1~3で機能解析されたKK-1生合成遺伝子クラスターを麹菌に導入し、麹菌におけるKK-1の異種生産を検討した。
1)麹菌の菌株、培地(A. oryzae strain and growth media)
 麹菌(A. oryzae)においてKK-1生合成遺伝子クラスターを導入する親株としては、NS4 ΔadeA株(sC-、niaD-、ΔligD::sC、ΔadeA::ptrA)を使用した。通常の生育および分生子の形成には、菌株の栄養要求性を満たしたCzapek-dox (CD)最小培地を使用した [0.6% NaNO3、0.052% KCl、0.152% KH2PO4、0.0001% FeSO4・7H2O、0.00088% ZnSO4・7H2O、0.00004% CuSO4・5H2O、0.000015% MnSO4・4H2O、0.00001% Na2B4O7・10H2O、0.000005% (NH4)6Mo7O24・4H2O、0.059% MgSO4・7H2O及び2% glucose]。すなわち、窒素源としてNaNO3の替わりに70mMのグルタミン酸ナトリウムを添加した培地(CDE)あるいはCDEに0.01%アデニンを添加した培地(CDEA)を使用した。麹菌 amyB プロモーターで導入した遺伝子の発現を誘導する際には、YPM 培地(1% yeast extract、2% polypeptone、2% maltose)を使用し、KK-1の生産性を評価する際も同様にYPM 培地を使用した。
2) NRPS遺伝子分割導入ベクターの構築(図22)
 図22に、KK-1生合成遺伝子クラスターを導入する際に使用するベクターの構築スキームを模式的に示した。図22に示すように、KK-1生合成遺伝子クラスターに含まれる遺伝子のうち、NRPS遺伝子については2分割して麹菌に導入した。すなわち、全長39kbの遺伝子を前半部分(約20kb)と後半部分(約20kb)とを別々にベクタープラスミドへサブクローニングし、麹菌に導入した。その後、麹菌内で両断片が連結した形質転換体を選抜した。ベクタープラスミドとして、内在性Creリコンビナーゼ発現によりマーカーリサイクルが可能なpAAG-Creを使用した。
 まず、前半部分の遺伝子を増幅するため、プライマーNRPS-fh-FとNRPS-fh-Rを用いてPCRを行った。PCRの鋳型としては、C. clavata BAUA-2787株のゲノムDNAを使用した。PCRに使用した酵素は、PrimeSTAR GXL DNA Polymerase(Takara)であり、製品説明書にしたがってPCRを実施した。得られたPCR産物は、一旦、pZErO-2(Invitrogen)のEco RV切断サイトに連結した。得られたプラスミドより、NRPS遺伝子前半部分をNot I切断により切出し、pAAG-Creの同サイトと連結した。麹菌用のプロモーターPamyBとNRPS遺伝子が正しい向きで連結されているプラスミドを選抜し、NRPS遺伝子前半導入ベクターpAAG-Cre/KK1-Fとした。
 NRPS遺伝子後半部分の遺伝子増幅は、一度のPCR増幅によるクローニングが困難であったため、さらに3分割して増幅し、In-Fusion クローニング法により連結した。まず、PCRにより後半断片A、B、Cを増幅した。後半断片Aの増幅にはプライマーNRPS-rh-IF-Fa及びNRPS-rh-IF-Raを、後半断片Bの増幅にはNRPS-rh-IF-Fb及びNRPS-rh-IF-Rbを、後半断片Cの増幅にはNRPS-rh-IF-Fc及びNRPS-rh-IF-Rcを使用した。それぞれの断片とNot I消化したpAAG-CreをIn-Fusion クローニング法により連結し、正しく連結されたプラスミドをNRPS遺伝子後半導入ベクターpAAG-Cre/NRPSrhとした。
 In-Fusion クローニングは、In-Fusion HD Cloning kit (Clontech)を用いて、付属の製品説明書に記載のとおりの方法で実施した。NRPS遺伝子前半導入ベクター、後半導入ベクターとも遺伝子配列を確認し、NRPSに変異は生じないことを確認した。
 使用したプライマーの配列を以下に示した。
NRPS-fh-F: TCGACAAGCTTGCGGCCGCCACGTGACTAGTATGGCCAGCGACATCAATACTCATCCAG(配列番号110)
NRPS-fh-R: ACTAGTCACGTGGCGGCCGCGGCGCGCCAAGATCGTCTTGCTGTACG(配列番号111)
NRPS-rh-IF-Fa: GATGCGCTAGCGGCCGCGAAGTGGTCCTTGTCGCTGGTGAC(配列番号112)
NRPS-rh-IF-Ra: TGCCGTTCGCATTCATAGGCATCTCGTC(配列番号113)
NRPS-rh-IF-Fb: TGAATGCGAACGGCAAGGTTGACAG(配列番号114)
NRPS-rh-IF-Rb: CTTGGTTGCTGGCTTCGTCGTTGTC(配列番号115)
NRPS-rh-IF-Fc: AAGCCAGCAACCAAGTCGAAGATTG(配列番号116)
NRPS-rh-IF-Rc: GTCACTAGTGCGGCCGCCTATTTTTGCAAGATCTTGTTCAAAC(配列番号117)
3)クラスター遺伝子導入ベクターの構築(図22)
 実施例2で記載したとおり、KK-1生合成遺伝子クラスターに含まれる遺伝子のうち、TRAF01000068000004はKK-1の生合成に必須ではないことが示唆されている。また、TRAF01000068000005はクラスター遺伝子の発現を制御する転写因子であるため、全遺伝子を麹菌用のプロモーターで制御する場合、必要でないことが予想される。上述したNRPS遺伝子及びこれら2種の遺伝子を除く7遺伝子を麹菌に導入するため、図22に示したように、これらの遺伝子を搭載した遺伝子導入ベクターの構築を実施した。
 遺伝子を搭載するプラスミドとして、同時に最大3遺伝子を搭載可能であり、かつ全ての遺伝子をamyBプロモーターで制御可能であるpA3AXPC(東北大学・遺伝子情報システム学分野、五味勝也教授より供与可能)を選択した。本プラスミドは、CreリコンビナーゼとloxP配列を利用したCre-loxPマーカーリサイクルシステムも搭載しており、多段階遺伝子導入に適したベクターである。
 まず、C. clavata BAUA-2787株のcDNAを鋳型としてPCRを行い、各遺伝子を増幅した。TRAF01000068000002遺伝子の増幅にはプライマーTR02-SpeI-F及びTR02-SpeI-Rのセット、TRAF01000068000003遺伝子の増幅にはプライマーTR03-NotI-F及びTR03-NotI-Rのセットを使用した。得られた増幅断片は、一旦、pZErO-2のEco RV切断サイトに連結した(それぞれ、pZTR02及びpZTR03と命名)。その後、pZTR02からSpe I消化によりTRAF01000068000002遺伝子を切出し、pZTR03からNot I消化によりTRAF01000068000003遺伝子を切出した。切出した遺伝子は、TRAF01000068000002 (Spe I)及びTRAF01000068000003 (Not I)の順に、pA3AXPCのSpe I、Not Iサイトへ導入した。両遺伝子の挿入方向が正しいプラスミドを選抜し、pATR0203とした。
 次に、TRAF01000068000006遺伝子の増幅にはプライマーTR06-NheI-F及びTR06-NheI-Rのセット、TRAF01000068000007遺伝子の増幅にはプライマーTR07-NotI-F及びTR07-NotI-Rのセット、TRAF01000068000009遺伝子の増幅にはプライマーTR08-SpeI-F及びTR08-SpeI-Rのセットを使用した。得られたPCR産物を、一旦、pZErO-2のEco RV切断サイトに連結した(それぞれ、pZTR06、pZTR07及びpZTR08と命名)。その後、pZTR06からNhe I消化によりTRAF01000068000006遺伝子を、pZTR07からNot I消化によりTRAF01000068000007遺伝子を、pZTR08からSpe I消化によりTRAF01000068000008遺伝子を切出した。切出した遺伝子は、TRAF01000068000006 (Nhe I)、TRAF01000068000008 (Spe I)及びTRAF01000068000007 (Not I)の順に、pA3AXPCのNhe I、Spe I及びNot Iサイトへそれぞれ導入した。全遺伝子の挿入方向が正しいプラスミドを選抜し、pATR678とした。
 最後に、TRAF01000068000009遺伝子の増幅にはプライマーTR09-NheI-F及びTR09-NheI-Rのセット、TRAF01000135000002遺伝子については、プライマーOMT-NotI-F及びOMT-NotI-Rのセットを使用した。得られたPCR産物を、一旦、pZErO-2のEco RV切断サイトに連結した(それぞれ、pZTR09及びpZOMTと命名)。その後、pZTR09からNhe I消化によりTRAF01000068000009遺伝子を、pZOMTからNot I消化によりTRAF01000135000001遺伝子を切出した。切出した遺伝子は、TRAF01000068000009 (Nhe I)及びTRAF01000135000001OMT (Not I)の順に、pA3AXPCのNhe I、Not Iサイトへ導入した。両遺伝子の挿入方向が正しいプラスミドを選抜し、pATR09OMTとした。
 使用したプライマーの配列を以下に示した。
TR02-SpeI-F: GGACTAGTATGACTGAACCCACATGGAAG(配列番号118)
TR02-SpeI-R: GGACTAGTTTAATAATCTACTTCAAGCAC(配列番号119)
TR03-NotI-F: ATAAGAATGCGGCCGCATGGCGTTGCAAGAGCG(配列番号120)
TR03-NotI-R: ATAAGAATGCGGCCGCTCAAGATGGGAAAGCCGCTG(配列番号121)
TR06-NheI-F: CTAGCTAGCATGAGTGCTATCGAGCTGC(配列番号122)
TR06-NheI-R: CTAGCTAGCTCAGCGATTGAGGGCCTGG(配列番号123)
TR07-NotI-F: ATAAGAATGCGGCCGCATGAAGCTCACCGTTTTCAG(配列番号124)
TR07-NotI-R: ATAAGAATGCGGCCGCTCAGAGCCGCGCCAAC(配列番号125)
TR08-SpeI-F: GGACTAGTATGACGAAAAGGGAAAGCAAC(配列番号126)
TR08-SpeI-R: GGACTAGTCTACGCGTTTTCTTTCGAC(配列番号127)
TR09-NheI-F: CTAGCTAGCATGGAGAGCGAAGACAATCC(配列番号128)
TR09-NheI-R: CTAGCTAGCTCAGCAGTATCCCATCGG(配列番号129)
OMT-NotI-F: ATTTGCGGCCGCATGGACCCGAGACAGTCACGGATC(配列番号130)
OMT-NotI-R: ATTTGCGGCCGCTTATGGTGTGGTGGGTTGCCATTC(配列番号131)
4) 麹菌への遺伝子導入方法
 上記3)で作製した各種プラスミドを用いた麹菌の形質転換にはプロトプラストPEG法を用いて行った。親株(NS4 ΔadeA株)の分生子1×107個を、200ml容三角フラスコ中の100mlのYPD液体培地(1% yeast extract、2% polypeptone及び2% glucose)に接種し、30℃で20時間、160回転で振盪培養した菌糸をミラクロス(CALIBIOCHEM 社)で濾過、集菌した。滅菌水で洗浄し、乾熱滅菌したスパーテルで菌体をプレスし脱水した。集めた菌糸を50ml容チューブに入れ、0.20μmのフィルターで濾過したプロトプラスト化溶液[10mg/ml Lysing Enzymes (Sigma社)、5mg/ml Cellulase Onozuka (Yakult Pharmaceutical Ind.Co.,Ltd.)、2.5mg/ml Yatalase (TAKARA) in 0.8M NaCl及び10mM Phosphate buffer (pH 6.0)]を25ml加えて懸濁した。30℃、83rpmで3時間振盪し、細胞壁を消化することでプロトプラストを作製した。反応後、滅菌したミラクロスで未消化の菌体を濾過し、濾液を4℃、2,500×gで5分間遠心分離しプロトプラストを回収した。回収したプロトプラストを10mlの0.8M NaClで洗浄し、4℃、2,500×gで5分間再度遠心分離することでプロトプラストを沈殿させ回収した。プロトプラストが2×108個/mlとなるようにSol.I[0.8M NaCl、10mM CaCl2、10mM Tris-HCl (pH 8.0)]を加え、懸濁した後、1/5量のSol.II [40%(w/v) PEG4000、50 mM CaCl2、50 mM Tris-HCl (pH 8.0)]を加え、よく混合した。240μlのプロトプラスト液を15ml容チューブに分注し、DNA溶液を5~20μg分加えよく混合し、氷中で30分放置した。次に、1mlのSol.IIを加え、よく混合した後、室温で20分間放置した。10mlのSol.Iを加え、よく混合した後室温、2,500×gで5分間遠心し、上清を取り除き、300μlのSol.Iを加えた。プロトプラストを均一に懸濁し、0.8M NaClを含むCDE選択寒天培地に散らしてまいた後、55℃に温めておいた同組成の軟寒天培地[0.6%(w/v)Agar]5 mlを周りから注ぎ、プロトプラストを手早く均一に懸濁するように重層した。その後、30℃でコロニーを形成するまで培養した。
5)麹菌におけるマーカーリサイクル
 麹菌におけるマーカーリサイクルは、以下の方法に従って行った。すなわち、変異型loxP配列(lox66とlox71)の間にadeA選抜マーカーとCreリコンビナーゼを配置し、Creリコンビナーゼを発現させることでloxP配列間でのループアウトを誘発し、adeA選抜マーカーを抜取る方法である。ここで、CreリコンビナーゼはXylose誘導型プロモーターで発現を誘導できる。すなわち、上記システムを組込んだ菌株を炭素源をXyloseとした培地に植菌することでCreリコンビナーゼが発現し、adeA選抜マーカーが抜け落ちた菌株を取得することができる。adeA選抜マーカーが抜け落ちた菌株では、アデニン要求性が回復するので、再びadeA選抜マーカーを使用して遺伝子組換え体を選抜することが可能となる。
6) 麹菌内でのKK-1 NRPS遺伝子再構築(図23)
 Cre-loxPシステムを利用してNRPS遺伝子の前半部分及び後半部分を2段階で導入するスキームを模式的に図23に示した。図23に示すように、麹菌へのベクターの導入にあたり、まずはNRPS遺伝子前半部分を搭載したpAAG-Cre/NRPSfhを導入した。得られた形質転換体について、ベクターの導入をPCRにより確認した。本株に対して後半部分を導入するため、Cre-loxPシステムによるマーカーリサイクルを実施した。ベクター内のCreリコンビナーゼを発現させるため(xynG2プロモーターで制御)、Xylose含有かつアデニン添加CDE培地、すなわちCDEAX培地で菌体を生育させた。生育してきた菌体について、マーカーであるadeA遺伝子欠失の特徴である赤みを帯びたコロニーを選抜した。これらの株について核純化を行い、アデニン無添加の培地では生育できないことを確認した。
 次に、得られたマーカーリサイクル株に対して、NRPS後半部分を導入するために、pAAG-Cre/NRPSrhを導入する形質転換操作を行った。得られた栄養要求復帰株について、PCRにより前半-後半部分が連結した株を選抜した。最終的に候補となった菌株からDNAを抽出し、全長が連結しているか否かをPCRにより確認した。その結果、NRPS遺伝子全長の導入が確認できた。
 次に、相同組換えによって連結部分が正しく組変わっているか否かを、連結部分のシーケンスによって確認した。その結果、連結部分に変異やズレなどは確認されなかった。これらの結果から、麹菌内で正しくNRPS遺伝子が再構築されていることが明らかになった。
 そして、本株に対して他のクラスター内遺伝子を導入するため、Cre-loxPシステムによるマーカーリサイクルを実施した。アデニン要求性の復帰を確認後、核純化した株を以後に実施する全遺伝子導入の親株とした。
7) 麹菌内におけるクラスター内必須遺伝子の高発現
 上記3)で作製した、クラスター遺伝子を搭載したプラスミドpATR0203、pATR678及びpATR09OMTを順にマーカーリサイクルを繰返して麹菌へと導入した。しかしながら、全プラスミドを導入した株において、TRAF01000068000009遺伝子の脱落が認められた。また、本系統の株については、NRPS遺伝子についても部分的な脱落が生じていることが明らかになった。さらに別系統の株について、遺伝子脱落の有無を調査したところ、度々遺伝子の脱落が観察された。これらの結果から、マーカーリサイクルあるいは形質転換操作時に近接するプロモーター配列間でループアウトが生じている可能性が考えられた。そこで導入戦略を立て直し、図24に示すように、マーカーリサイクルあるいは形質転換操作を可能な限り減数するため、7遺伝子を搭載した3種のベクターを同時に導入することとした。その結果、全遺伝子の導入が確認できた株が得られた。
8) 転写解析(図25)
 次に、以上のようにして作製されたKK-1生合成クラスター遺伝子を導入した形質転換麹菌について、導入遺伝子の発現解析を実施した。菌株をYPM培地(プロモーター誘導基質としてマルトース2%を含む)で24時間振盪培養した後、培養液をミラクロスによりろ過して菌体を回収した。菌体は、液体窒素で瞬間凍結し、速やかに液体窒素下で乳鉢・乳棒で破砕した。破砕菌体を1.5ml容エッペンドルフチューブに移し、RNeasy Plant Mini Kit(QIAGEN) のプロトコルに従いRNAを抽出した。DNAの混入を避けるため、付属のプロトコルに従いオンカラムでDNase処理も行った。最終的に50μlのRNase free waterで2回溶出することでTotal RNAを取得した。
 次に、取得したTotal RNAからcDNAを合成した。cDNAの合成には、High Capacity cDNA Reverse Transcription Kit(Applied Biosystem)を使用し、付属プロトコルに従った方法で実施した。取得したTotal RNA 4μg相当量を40μlの反応系に用い、mRNAからcDNAを合成した。逆転写の反応条件は、25℃で10分間プレインキュベートした後、37℃で120分間反応させる条件であり、85℃、5秒間の加熱により反応を停止した。得られたcDNAは、使用するまで-20℃で保存した。
 定量リアルタイムPCR(qRT-PCR)には、THUNDERBIRD SYBR qRCR Mix (TOYOBO)を使用し、付属の説明書に従い20μlの系にて反応させた。この混合溶液に逆転写反応で合成したcDNA、400 ng相当量が含まれる。1サンプルあたり3回測定を行った。PCRはMini OpticonリアルタイムPCR解析システム(BioRad)を使用し、解析ソフトはBioRad CFX Manager 2.1を使用した。相対発現強度は、同条件において測定した内部標準遺伝子(ヒストンH2B)の発現量に対する各遺伝子の発現比として算出した。
 使用したプライマーセットを以下に示した。
・TRAF01000135000001遺伝子用
NRPS-RT1-F:GACGCCACGAACGCATAGAC(配列番号132)
NRPS-RT1-R:TTCCCAGAGAGGTAGATCGAC(配列番号133)
・TRAF01000135000001遺伝子用
NRPS-RT2-F:GACCGTTACAGCGAGTTCAG(配列番号134)
NRPS-RT2-R:CTGAATTCCTCGCACAGAAC(配列番号135)
・TRAF01000135000001遺伝子用
NRPS-RT3-F:GAAGTTGAGAACGCCATGCT(配列番号136)
NRPS-RT3-R:GATGCGAGATGGGAGCATGT(配列番号137)
・TRAF01000068000002遺伝子用
TR02-RT-F:GCCCTACTAGATCTGACCAC(配列番号138)
TR02-RT-R:GCTGTTACCTTTTCCTCCTC(配列番号139)
・TRAF01000068000003遺伝子用
TR03-RT-F:AGATCTTAGACGAGCTGCTC(配列番号140)
TR03-RT-R:AAACAGTCGCGAAGCGACTG(配列番号141)
・TRAF01000068000006遺伝子用
TR06-RT-F:ACGTCCAGGAAGCTATCGAG(配列番号142)
TR06-RT-R:ATTGAGGGCCTGGGCTTGAC(配列番号143)
・TRAF01000068000007遺伝子用
TR07-RT-F:GTGATGAAGGCGCTGAAGAG(配列番号144)
TR07-RT-R:CTCCGCAATTTCCGTGAGTG(配列番号145)
・TRAF01000068000008遺伝子用
TR08-RT-F:TGACTCTATGGTGGATGGTG(配列番号146)
TR08-RT-R:CCTTGTTCAAGTGCCAGTAG(配列番号147)
・TRAF01000068000009遺伝子用
TR09-RT-F:GATTCCGTCACGAGACACTG(配列番号148)
TR09-RT-R:AGTATCCCATCGGGCAACAG(配列番号149)
・TRAF01000135000002遺伝子用
OMT-RT-F: ACGTTCAAGACCTTCCAG(配列番号150)
OMT-RT-R:GTTCCGGATGATTTGCAG(配列番号151)
 定量リアルタイムPCRの結果を図25に示した。なお、図25において、O-MTはTRAF01000135000002遺伝子を意味し、NRPS-1~NRPS-3はTRAF01000135000001遺伝子(実施例1のNRPS遺伝子)を意味し、TR02はTRAF01000068000002遺伝子を意味し、TR03はTRAF01000068000003遺伝子を意味し、TR06はTRAF01000068000006遺伝子を意味し、TR07はTRAF01000068000007遺伝子を意味し、TR08はTRAF01000068000008遺伝子を意味し、TR09はTRAF01000068000009遺伝子を意味している。図25に示すように、導入した全ての遺伝子がヒストンと同程度程の発現レベルを示しており、クラスター遺伝子を導入した麹菌において、KK-1生合成に必要な全ての遺伝子が高発現していることが明らかになった。
9) KK-1生産性評価
 また、以上のようにして作製されたKK-1生合成クラスター遺伝子を導入した形質転換麹菌について、KK-1の生産性を評価した。
 本実施例で作製した形質転換麹菌では、導入した全ての遺伝子がPamyBプロモーターで制御できるように設計されているため、炭素源をマルトースとした時に全遺伝子の発現を誘導することができる。まず、本実施例で作製した形質転換麹菌の分生子懸濁液を100mlのYPM(マルトース2%)あるいはCM(マルトース2%)に植菌し、26℃、140rpmで5日間振盪培養した。続いて、培養した菌体および培養液をアセトン・酢酸エチルにて抽出し、濃縮乾枯した。これをアセトニトリルに溶解し、LC/MS分析に供試した。LC/MS分析の条件は、Curvularia sp. においてKK-1生産を評価する条件に従った。また、上記抽出物の抗菌性を、抗菌性評価の対象としている灰色かび病菌に対する生育阻止効果により評価した。まず、抽出物をペーパーディスク(薄手、φ6mm)に染み込ませ、このペーパーディスクと、寒天培地ごと切り抜いた灰色かび病菌(Botrytis cinerea)の菌糸をCM寒天培地上に置き、対峙培養した。続いて、灰色かび病菌のペーパーディスク周辺までのコロニー伸長程度により抗菌活性を評価した。
 結果を図26に示した。図26のAはLC/MS分析結果を示し、Bは抗菌活性試験結果を示している。図26のAに示すように、本実施例で作製した形質転換麹菌由来の抽出物において、KK-1標品の保持時間及び分子量と完全に一致するピークが検出された。さらに、図26のBに示すように、本抽出物に灰色かび病菌の菌糸伸長阻害活性が見られた。これらの結果から、本実施例で作製した形質転換麹菌は、C. clavataにおいて同定されたKK-1生合成遺伝子クラスターを機能する形で導入されたものであり、KK-1の異種生産が可能であることが実証された。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (16)

  1.  配列番号1に示すアミノ酸配列又は配列番号1に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第1のアデニレーションドメインと、配列番号2に示すアミノ酸配列又は配列番号2に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第1のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第1モジュールと、
     配列番号3に示すアミノ酸配列又は配列番号3に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第1の縮合ドメインと、配列番号4に示すアミノ酸配列又は配列番号4に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第2のアデニレーションドメインと、配列番号5に示すアミノ酸配列又は配列番号5に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第2のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第2モジュールと、
     配列番号6に示すアミノ酸配列又は配列番号6に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第2の縮合ドメインと、配列番号7に示すアミノ酸配列又は配列番号7に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第3のアデニレーションドメインと、配列番号8に示すアミノ酸配列又は配列番号8に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第1のN-メチルトランスフェラーゼドメインと、配列番号9に示すアミノ酸配列又は配列番号9に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第3のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第3モジュールと、
     配列番号10に示すアミノ酸配列又は配列番号10に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第3の縮合ドメインと、配列番号11に示すアミノ酸配列又は配列番号11に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第4のアデニレーションドメインと、配列番号12に示すアミノ酸配列又は配列番号12に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第4のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第4モジュールと、
     配列番号13に示すアミノ酸配列又は配列番号13に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第4の縮合ドメインと、配列番号14に示すアミノ酸配列又は配列番号14に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第5のアデニレーションドメインと、配列番号15に示すアミノ酸配列又は配列番号15に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第2のN-メチルトランスフェラーゼドメインと、配列番号16に示すアミノ酸配列又は配列番号16に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第5のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第5モジュールと、
     配列番号17に示すアミノ酸配列又は配列番号17に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第5の縮合ドメインと、配列番号18に示すアミノ酸配列又は配列番号18に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第6のアデニレーションドメインと、配列番号19に示すアミノ酸配列又は配列番号19に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第3のN-メチルトランスフェラーゼドメインと、配列番号20に示すアミノ酸配列又は配列番号20に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第6のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第6モジュールと、
     配列番号21に示すアミノ酸配列又は配列番号21に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第6の縮合ドメインと、配列番号22に示すアミノ酸配列又は配列番号22に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第7のアデニレーションドメインと、配列番号23に示すアミノ酸配列又は配列番号23に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第4のN-メチルトランスフェラーゼドメインと、配列番号24に示すアミノ酸配列又は配列番号24に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第7のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第7モジュールと、
     配列番号25に示すアミノ酸配列又は配列番号25に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第7の縮合ドメインと、配列番号26に示すアミノ酸配列又は配列番号26に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第8のアデニレーションドメインと、配列番号27に示すアミノ酸配列又は配列番号27に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第8のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第8モジュールと、
     配列番号28に示すアミノ酸配列又は配列番号28に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第8の縮合ドメインと、配列番号29に示すアミノ酸配列又は配列番号29に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第9のアデニレーションドメインと、配列番号30に示すアミノ酸配列又は配列番号30に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第5のN-メチルトランスフェラーゼドメインと、配列番号31に示すアミノ酸配列又は配列番号31に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第9のペプチジルキャリアタンパク質ドメインとをN末端側からこの順で有する第9モジュールと、
     配列番号32に示すアミノ酸配列又は配列番号32に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第9の縮合ドメインと、配列番号33に示すアミノ酸配列又は配列番号33に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第10のアデニレーションドメインと、配列番号34に示すアミノ酸配列又は配列番号34に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第10のペプチジルキャリアタンパク質ドメインと、配列番号35に示すアミノ酸配列又は配列番号35に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなる第10の縮合ドメインとをN末端側からこの順で有する第10モジュールと、
     をN末端側からこの順で有し、Curvularia属糸状菌が生産する環状ペプチド化合物の非リボソーム型ペプチド合成活性を有するタンパク質をコードする環状ペプチド化合物合成関連遺伝子。
  2.  上記タンパク質は、以下(a)~(c)のいずれかのタンパク質であることを特徴とする請求項1記載の環状ペプチド化合物合成関連遺伝子。
     (a)配列番号37に示すアミノ酸配列からなるタンパク質
     (b)配列番号37に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなり、Curvularia属糸状菌が生産する環状ペプチド化合物の非リボソーム型ペプチド合成活性を有するタンパク質
     (c)配列番号36に示す塩基配列の相補鎖に対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドによりコードされ、Curvularia属糸状菌が生産する環状ペプチド化合物の非リボソーム型ペプチド合成活性を有するタンパク質
  3.  Curvularia属糸状菌由来であることを特徴とする請求項1記載の環状ペプチド化合物合成関連遺伝子。
  4.  上記糸状菌は、Curvularia clavataであることを特徴とする請求項3記載の環状ペプチド化合物合成関連遺伝子。
  5.  以下(a)~(c)のいずれかのタンパク質をコードする環状ペプチド化合物合成関連遺伝子。
     (a)配列番号39に示すアミノ酸配列からなるタンパク質
     (b)配列番号39に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなり、転写因子活性を有するタンパク質
     (c)配列番号38に示す塩基配列の相補鎖に対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドによりコードされ、転写因子活性を有するタンパク質
  6.  Curvularia属糸状菌由来であることを特徴とする請求項5記載の環状ペプチド化合物合成関連遺伝子。
  7.  上記糸状菌は、Curvularia clavataであることを特徴とする請求項6記載の環状ペプチド化合物合成関連遺伝子。
  8.  請求項1乃至4いずれか一項記載の環状ペプチド化合物合成関連遺伝子と、Curvularia属糸状菌における環状ペプチド化合物の生産に関与する遺伝子群とを導入した形質転換体を培養する工程と、
     培養した形質転換体及び/又は培養液から上記環状ペプチド化合物を回収する工程とを含む、
     Curvularia属糸状菌が生産する環状ペプチド化合物の製造方法。
  9.  上記遺伝子群は以下[1]~[7]の遺伝子を含むことを特徴とする請求項8記載の環状ペプチド化合物の製造方法。
     [1]配列番号41に示すアミノ酸配列又は配列番号41に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [2]配列番号43に示すアミノ酸配列又は配列番号43に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [3]配列番号45に示すアミノ酸配列又は配列番号45に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [4]配列番号47に示すアミノ酸配列又は配列番号47に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [5]配列番号49に示すアミノ酸配列又は配列番号49に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [6]配列番号51に示すアミノ酸配列又は配列番号51に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [7]配列番号53に示すアミノ酸配列又は配列番号53に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
  10.  上記形質転換体は、麹菌(Aspergillus oryzae)を宿主とすることを特徴とする請求項8記載の環状ペプチド化合物の製造方法。
  11.  請求項1乃至4いずれか一項記載の環状ペプチド化合物合成関連遺伝子と、Curvularia属糸状菌における環状ペプチド化合物の生産に関与する遺伝子群とを導入した形質転換体。
  12.  上記遺伝子群は以下[1]~[7]の遺伝子を含むことを特徴とする請求項11記載の形質転換体。
     [1]配列番号41に示すアミノ酸配列又は配列番号41に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [2]配列番号43に示すアミノ酸配列又は配列番号43に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [3]配列番号45に示すアミノ酸配列又は配列番号45に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [4]配列番号47に示すアミノ酸配列又は配列番号47に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [5]配列番号49に示すアミノ酸配列又は配列番号49に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [6]配列番号51に示すアミノ酸配列又は配列番号51に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
     [7]配列番号53に示すアミノ酸配列又は配列番号53に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子
  13.  麹菌(Aspergillus oryzae)を宿主とすることを特徴とする請求項11記載の形質転換体。
  14.  請求項1乃至4いずれか一項記載の環状ペプチド化合物合成関連遺伝子を有するCurvularia属糸状菌。
  15.  Curvularia clavataであることを特徴とする請求項14記載のCurvularia属糸状菌。
  16.  受託番号NITE BP-02399であることを特徴とする請求項14記載のCurvularia属糸状菌。
PCT/JP2017/046858 2017-01-05 2017-12-27 環状ペプチド化合物合成関連遺伝子、これを用いた環状ペプチド化合物の製造方法及びこれを有する形質転換体 WO2018128140A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA3048176A CA3048176A1 (en) 2017-01-05 2017-12-27 Gene involved in synthesis of cyclic peptide compound, method for producing cyclic peptide compound using the same, and transformant comprising the same
JP2018560384A JP7072750B2 (ja) 2017-01-05 2017-12-27 環状ペプチド化合物合成関連遺伝子、これを用いた環状ペプチド化合物の製造方法及びこれを有する形質転換体
EP17890648.3A EP3567107A4 (en) 2017-01-05 2017-12-27 GENE ASSOCIATED WITH THE SYNTHESIS OF A CYCLIC PEPTIDE COMPOUND, PRODUCTION METHOD FOR A CYCLIC PEPTIDE COMPOUND THEREOF AND TRANSFORMANTLY therewith
US16/476,000 US11230726B2 (en) 2017-01-05 2017-12-27 Gene involved in synthesis of cyclic peptide compound, method for producing cyclic peptide compound using the same, and transformant comprising the same
KR1020197022776A KR102633026B1 (ko) 2017-01-05 2017-12-27 환형 펩티드 화합물 합성 관련 유전자, 이를 이용한 환형 펩티드 화합물의 제조방법 및 그것을 가지는 형질전환체
CN201780088071.3A CN111684066B (zh) 2017-01-05 2017-12-27 环状肽化合物合成相关基因、使用该基因的环状肽化合物制造方法以及具有该基因的转化体
BR112019013234-1A BR112019013234A2 (pt) 2017-01-05 2017-12-27 Gene envolvido na síntese de composto peptídico cíclico, método para produção do composto peptídico cíclico usando o mesmo, e transformante compreendendo o mesmo
AU2017391000A AU2017391000A1 (en) 2017-01-05 2017-12-27 Gene involved in synthesis of cyclic peptide compound, method for producing cyclic peptide compound using the same, and transformant comprising the same
PH12019501577A PH12019501577A1 (en) 2017-01-05 2019-07-04 Gene involved in synthesis of cyclic peptide compound, method for producing a cyclic peptide compound using the same, and transformant comprising the same
US17/549,492 US11946086B2 (en) 2017-01-05 2021-12-13 Gene involved in synthesis of cyclic peptide compound, method for producing cyclic peptide compound using the same, and transformant comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017000770 2017-01-05
JP2017-000770 2017-01-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/476,000 A-371-Of-International US11230726B2 (en) 2017-01-05 2017-12-27 Gene involved in synthesis of cyclic peptide compound, method for producing cyclic peptide compound using the same, and transformant comprising the same
US17/549,492 Division US11946086B2 (en) 2017-01-05 2021-12-13 Gene involved in synthesis of cyclic peptide compound, method for producing cyclic peptide compound using the same, and transformant comprising the same

Publications (1)

Publication Number Publication Date
WO2018128140A1 true WO2018128140A1 (ja) 2018-07-12

Family

ID=62790864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046858 WO2018128140A1 (ja) 2017-01-05 2017-12-27 環状ペプチド化合物合成関連遺伝子、これを用いた環状ペプチド化合物の製造方法及びこれを有する形質転換体

Country Status (12)

Country Link
US (2) US11230726B2 (ja)
EP (1) EP3567107A4 (ja)
JP (1) JP7072750B2 (ja)
KR (1) KR102633026B1 (ja)
CN (1) CN111684066B (ja)
AR (1) AR110725A1 (ja)
AU (1) AU2017391000A1 (ja)
BR (1) BR112019013234A2 (ja)
CA (1) CA3048176A1 (ja)
PH (1) PH12019501577A1 (ja)
TW (1) TWI826363B (ja)
WO (1) WO2018128140A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109337916A (zh) * 2018-09-21 2019-02-15 华南农业大学 一种稻瘟菌modip基因及其应用
CN109371044A (zh) * 2018-10-29 2019-02-22 华南农业大学 一种稻瘟菌基因Movan及其应用
WO2023032950A1 (ja) 2021-08-30 2023-03-09 天野エンザイム株式会社 向上したタンパク質生産性を有する微生物及びその利用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853850B (zh) * 2022-06-08 2023-05-02 河南农业大学 一种带正电荷的抗真菌肽qm-18及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134399A (ja) * 1988-09-23 1990-05-23 Sandoz Ag ピペコリン酸含有ペプトリド類、それらの製法および医薬組成物
WO1993012659A1 (en) 1991-12-20 1993-07-08 Novo Nordisk A/S Agricultural use of certain compounds, compositions and methods for producing said compounds
JPH09157168A (ja) * 1995-12-07 1997-06-17 Mitsubishi Chem Corp 抗ヘリコバクター・ピロリ剤及びその製造方法
JP2008524992A (ja) * 2004-12-23 2008-07-17 アイソテクニカ インク. シクロスポリン化合物isa247の生体内変換法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK223690D0 (da) * 1990-09-17 1990-09-17 Novo Nordisk As Hidtil ukendte forbindelser
US8226965B2 (en) * 2008-04-25 2012-07-24 Nanobio Corporation Methods of treating fungal, yeast and mold infections

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134399A (ja) * 1988-09-23 1990-05-23 Sandoz Ag ピペコリン酸含有ペプトリド類、それらの製法および医薬組成物
WO1993012659A1 (en) 1991-12-20 1993-07-08 Novo Nordisk A/S Agricultural use of certain compounds, compositions and methods for producing said compounds
JPH08504165A (ja) 1991-12-20 1996-05-07 ノボ ノルディスク アクティーゼルスカブ 特定の化合物の農業的使用、該化合物を含有する組成物および該化合物の製造方法
JPH09157168A (ja) * 1995-12-07 1997-06-17 Mitsubishi Chem Corp 抗ヘリコバクター・ピロリ剤及びその製造方法
JP2008524992A (ja) * 2004-12-23 2008-07-17 アイソテクニカ インク. シクロスポリン化合物isa247の生体内変換法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BRAKHAGE A. A. ET AL.: "Fungal secondary metabolites - Strategies to activate silent gene clusters", FUNGAL GENETICS AND BIOLOGY, vol. 48, 2011, pages 15 - 22, XP027511241, ISSN: 1087-1845, DOI: 10.1016/j.fgb.2010.04.004 *
BRAKHAGE, FUNGAL GENETICS AND BIOLOGY, vol. 48, no. 1, 2011, pages 15 - 22
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 143380-71-6
COHEN, S. N. ET AL., PROC. NATL. ACAD. SCI., U.S.A., vol. 69, 1972, pages 2110 - 2114
GEORGIANNA, D. R. ET AL., MOL. PLANT. PATHOL., vol. 11, 2010, pages 213
MACHIDA, M. ET AL., NATURE, vol. 438, no. 7071, 2005, pages 1157 - 1161
See also references of EP3567107A4
UMEMURA, M., PLOS ONE, vol. 8, no. 5, 2013, pages e63673
YAMAGUCHI, SHIGEO ET AL.: "Identification of Biosynthetic gene Cluster of Antibacterial Cyclic Peptide Compound Produced by Curvularia clavata", LECTURE ABSTRACTS IN MEETING OF JAPAN SOCIETY OF BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2017, 5 March 2017 (2017-03-05), pages 630, XP009515393 *
YOSHIMI, KEI ET AL.: "Heterologous production of Antibacterial cyclic peptide compound KK-1 in Koji Mold", LECTURE ABSTRACTS IN MEETING OF JAPAN SOCIETY OF BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2017, 5 March 2017 (2017-03-05), pages 631, XP009515390 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109337916A (zh) * 2018-09-21 2019-02-15 华南农业大学 一种稻瘟菌modip基因及其应用
CN109371044A (zh) * 2018-10-29 2019-02-22 华南农业大学 一种稻瘟菌基因Movan及其应用
WO2023032950A1 (ja) 2021-08-30 2023-03-09 天野エンザイム株式会社 向上したタンパク質生産性を有する微生物及びその利用

Also Published As

Publication number Publication date
US20220259634A1 (en) 2022-08-18
EP3567107A4 (en) 2020-07-22
TW201829771A (zh) 2018-08-16
EP3567107A1 (en) 2019-11-13
BR112019013234A2 (pt) 2020-02-11
CN111684066B (zh) 2024-03-08
AR110725A1 (es) 2019-04-24
TWI826363B (zh) 2023-12-21
US11946086B2 (en) 2024-04-02
AU2017391000A1 (en) 2019-07-18
US11230726B2 (en) 2022-01-25
KR20190117511A (ko) 2019-10-16
CA3048176A1 (en) 2018-07-12
JPWO2018128140A1 (ja) 2019-11-07
KR102633026B1 (ko) 2024-02-01
US20190316164A1 (en) 2019-10-17
PH12019501577A1 (en) 2020-02-24
CN111684066A (zh) 2020-09-18
JP7072750B2 (ja) 2022-05-23

Similar Documents

Publication Publication Date Title
WO2018128140A1 (ja) 環状ペプチド化合物合成関連遺伝子、これを用いた環状ペプチド化合物の製造方法及びこれを有する形質転換体
Saloheimo et al. Activation mechanisms of the HACI‐mediated unfolded protein response in filamentous fungi
RU2540017C2 (ru) Выделенный полинуклеотид, кодирующий полипептид, вовлеченный в биосинтез пирипиропена а, вектор и клетка-хозяин содержащие такой полинуклеотид и способ получения предшественника пирипиропена а (варианты)
Nolting et al. A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis
EA029538B1 (ru) Полипептид, обладающий активностью альдолазы, полинуклеотид, кодирующий этот полипептид, и способы получения и применения полинуклеотида и полипептида
Hua et al. GK4, a G‐protein‐coupled receptor with a phosphatidylinositol phosphate kinase domain in P hytophthora infestans, is involved in sporangia development and virulence
Sidhu et al. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici
Shi et al. MoRad6‐mediated ubiquitination pathways are essential for development and pathogenicity in Magnaporthe oryzae
Kramer et al. MAP kinase signalling pathway components and targets conserved between the distantly related plant pathogenic fungi Mycosphaerella graminicola and Magnaporthe grisea
Song et al. Type II myosin gene in Fusarium graminearum is required for septation, development, mycotoxin biosynthesis and pathogenicity
Guillemette et al. Analysis of a nonribosomal peptide synthetase gene from Alternaria brassicae and flanking genomic sequences
EP2922954B1 (en) Gene cluster for biosynthesis of cornexistin and hydroxycornexistin
Yokoyama et al. Homeobox transcription factor CoHox3 is essential for appressorium formation in the plant pathogenic fungus Colletotrichum orbiculare
Yuan et al. ChSte7 is required for vegetative growth and various plant infection processes in Colletotrichum higginsianum
Zhang et al. The roles of actin cytoskeleton and actin-associated protein Crn1p in trap formation of Arthrobotrys oligospora
Matsumoto et al. Tobacco and Arabidiopsis SLT1 mediate salt tolerance of yeast
US20140141440A1 (en) Gene Cluster for Biosynthesis of Cornexistin and Hydroxycornexistin
JPH11512930A (ja) グルコース抑制の修飾法
JP2012110347A (ja) 糸状菌におけるデフェンシンの組換え発現
Wright et al. The biosynthetic genes of pantocin A and pantocin B of Pantoea agglomerans Eh318
WO2017103739A1 (en) Gene cluster for biosynthesis of austinoids
Jungmann Functional characterization of the Ustilago maydis protein Acb1 and its derived peptide SDF-2
Kim Functional Analysis of Secondary Metabolite Biosynthesis-Related Genes in Alternaria brassicicola
JP2003528569A (ja) バチルス・セレアス由来のゼッターマイシンaの生合成遺伝子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018560384

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3048176

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013234

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017391000

Country of ref document: AU

Date of ref document: 20171227

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022776

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017890648

Country of ref document: EP

Effective date: 20190805

ENP Entry into the national phase

Ref document number: 112019013234

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190626