WO2023032950A1 - 向上したタンパク質生産性を有する微生物及びその利用 - Google Patents

向上したタンパク質生産性を有する微生物及びその利用 Download PDF

Info

Publication number
WO2023032950A1
WO2023032950A1 PCT/JP2022/032509 JP2022032509W WO2023032950A1 WO 2023032950 A1 WO2023032950 A1 WO 2023032950A1 JP 2022032509 W JP2022032509 W JP 2022032509W WO 2023032950 A1 WO2023032950 A1 WO 2023032950A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
microorganism
gene
expression
strain
Prior art date
Application number
PCT/JP2022/032509
Other languages
English (en)
French (fr)
Inventor
寛敬 松原
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to JP2023545583A priority Critical patent/JPWO2023032950A1/ja
Priority to CN202280058520.0A priority patent/CN117881785A/zh
Priority to EP22864532.1A priority patent/EP4397763A1/en
Publication of WO2023032950A1 publication Critical patent/WO2023032950A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus

Definitions

  • the present invention relates to microorganisms with improved protein productivity.
  • the present invention further relates to a method for producing protein using the microorganisms described above.
  • Microorganisms such as the Bacillus genus are capable of mass secretion and production of enzymes, capable of ultra-high-density culture, rapid growth, many bacteria belonging to BioSafety Level 1, Gram-positive bacteria, and relatively small genome size (4M bp degree), it has excellent performance in the production of substances utilized in food and pharmaceuticals.
  • Microorganisms such as Bacillus are used for the production of enzymes such as ⁇ -amylase, ⁇ -amylase, neutral protease, alkaline protease and cellulase.
  • enzymes such as ⁇ -amylase, ⁇ -amylase, neutral protease, alkaline protease and cellulase.
  • the acquisition of mutant strains by UV irradiation and the acquisition of transformants by genetic recombination techniques are being studied.
  • An ATP Binding Cassette (ABC) transporter is a transmembrane protein that has a region responsible for ATP hydrolase activity that exhibits a highly common amino acid sequence. ABC transporters can actively transport compounds using the energy obtained by self-hydrolysis of ATP.
  • Patent Document 1 describes that ABC transporters are involved in extracellular excretion of cyclic peptides produced by filamentous fungi of the genus Curvularia (paragraph 0142).
  • Patent Document 2 describes a method for measuring the substrate amount of ABC protein, and describes that porphyrins are preferable as the substrate.
  • Patent Document 3 describes an efficient method for producing taurine, and describes that deletion of the tauABC protein gene reduces the activity of the taurine uptake system.
  • ABC transporters are genes involved in the secretion of small molecules and peptides, but were not known to improve protein secretion.
  • the problem to be solved by the present invention is to provide a microorganism with improved protein secretion.
  • a further problem to be solved by the present invention is to provide a method for producing a protein using the above microorganism.
  • the present inventors found that the enzyme productivity was improved by disrupting the ABCtransporter ATP-binding protein gene in a high enzyme-producing strain of Bacillus amyloliquefaciens.
  • the present invention has been completed based on the above findings.
  • ⁇ 1> A microorganism in which the expression of at least one ABC transporter ATP-binding protein is lost or reduced.
  • ⁇ 2> The microorganism according to ⁇ 1>, wherein the ABC transporter ATP-binding protein is a protein having an amino acid sequence having 90% or more sequence identity with the amino acid sequence of SEQ ID NO:2.
  • ⁇ 3> The microorganism according to ⁇ 1> or ⁇ 2>, which is a microorganism of the genus Bacillus, a microorganism of the genus Cytobacillus, or a microorganism of the genus Paenibacillus.
  • ⁇ 4> The microorganism according to any one of ⁇ 1> to ⁇ 3>, which is Bacillus amyloliquefaciens.
  • ⁇ 5> The microorganism according to any one of ⁇ 1> to ⁇ 4>, wherein expression of at least one ABC transporter ATP-binding protein is lost or reduced, resulting in increased expression of the target protein.
  • ⁇ 6> The microorganism of ⁇ 5>, wherein the target protein is a protein encoded by an endogenous gene or a protein encoded by a foreign gene.
  • ⁇ 7> The microorganism according to ⁇ 5> or ⁇ 6>, wherein the target protein is an enzyme.
  • ⁇ 8> The microorganism according to any one of ⁇ 1> to ⁇ 7>, wherein the gene encoding the ABC transporter ATP-binding protein is disrupted by homologous recombination.
  • a method for producing a protein comprising the steps of culturing the microorganism according to any one of ⁇ 1> to ⁇ 8> to produce the protein, and recovering the obtained protein.
  • protein secretion can be improved.
  • FIG. 1 shows the results of confirming the enzyme productivity of gene-disrupted strains.
  • FIG. 2 shows the results of confirming the disappearance of the effect of enhancing enzyme productivity by gene complementation.
  • FIG. 3 shows the results of confirming the enzyme productivity enhancement effect of a heterologous enzyme by a gene-disrupted strain.
  • the microorganism of the present invention has lost or reduced expression of at least one ABC transporter ATP-binding protein.
  • Microorganisms preferably include Bacillus, Paenibacillus, and Cytobacillus, and more preferably Bacillus.
  • Bacillus genus microorganisms include Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus subtilis, Bacillus velezensis, Bacillus nakamurai, and Bacillus aquiflavi. More preferred are Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus subtilis, and Bacillus velezensis. Especially preferred is Bacillus amyloliquefaciens. As a Paenibacillus genus microorganism, Paenibacillus sp. etc. Examples of Cytobacillus microorganisms include Cytobacillus firmus.
  • the ABC transporter ATP-binding protein is preferably a protein having an amino acid sequence with 70% or more sequence identity with the amino acid sequence of SEQ ID NO: 2, more preferably 75% or more sequence identity, 80% ⁇ 85% sequence identity, ⁇ 90% sequence identity, ⁇ 93% sequence identity, ⁇ 95% sequence identity, ⁇ 97% sequence identity, or ⁇ 99% sequence identity is a protein having an amino acid sequence with the sequence identity of
  • the ABC transporter ATP-binding protein may be any protein that has a structure equivalent to that of the present protein regardless of its function, and includes annotated proteins other than the ABC transporter ATP-binding protein.
  • the ABC transporter ATP binding protein is preferably a protein with ATP binding ability.
  • a protein having an amino acid sequence with 70% or more sequence identity with the amino acid sequence of SEQ ID NO:2 is obtained by making conservative amino acid substitutions with respect to the amino acid sequence of SEQ ID NO:2.
  • conservative amino acid substitution refers to substitution of an amino acid residue with an amino acid residue having a side chain with similar properties.
  • Amino acid residues can have, depending on their side chain, a basic side chain (e.g. lysine, arginine, histidine), an acidic side chain (e.g. aspartic acid, glutamic acid), an uncharged polar side chain (e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine).
  • cysteine nonpolar side chains (e.g. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g. threonine, valine, isoleucine), aromatic side chains (e.g. tyrosine, phenylalanine, Tryptophan, histidine) are classified into several families. Conservative amino acid substitutions are preferably between amino acid residues within the same family.
  • the identity (%) of two amino acid sequences can be determined, for example, by the following procedure. First, the two sequences are aligned for optimal comparison (eg, gaps may be introduced in the first sequence to optimize alignment with the second sequence). When the molecule (amino acid residue) at a particular position in the first sequence is the same as the molecule at the corresponding position in the second sequence, the molecules at that position are said to be identical.
  • the expression of at least one ABC transporter ATP-binding protein is lost or reduced.
  • Loss or reduction in expression means that the activity per cell of the ABC transporter ATP-binding protein is lost or reduced compared to the unmodified strain, and includes cases where the activity is completely lost.
  • Unmodified strain means a control strain that has not been modified to lose or reduce expression of the ABC transporter ATP binding protein.
  • "Loss or reduction in protein expression” specifically refers to a decrease in the number of protein molecules per cell compared to an unmodified strain, and/or the function of the same protein per molecule. is declining. A reduction in the number of molecules of a protein per cell includes the complete absence of the same protein.
  • a case where the function per molecule of the protein is completely lost is included in the case where the function per molecule of the protein is reduced.
  • the activity of the protein is not particularly limited as long as it is reduced compared to the unmodified strain, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0 %.
  • a decrease in protein expression means that the expression level of the same protein per cell is reduced compared to unmodified strains such as wild strains and parent strains.
  • “Reduction in gene expression” specifically means that the transcription level (mRNA level) of the gene is decreased and/or the translation level (protein level) of the gene is decreased.
  • “Reduced gene expression” includes cases where the same gene is not expressed at all.
  • “the expression of a gene is decreased” is also referred to as "the expression of a gene is attenuated”. Expression of the gene may be reduced, for example, by 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • a decrease in protein expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof.
  • Reduction of protein expression can be achieved, for example, by altering expression control sequences such as gene promoters, Shine-Dalgarno (SD) sequences (also referred to as ribosome binding sites (RBS)), and spacer regions between RBS and start codons.
  • SD Shine-Dalgarno
  • RBS ribosome binding sites
  • spacer regions between RBS and start codons can be achieved by When modifying an expression regulatory sequence, preferably 1 or more bases, more preferably 2 or more bases, and particularly preferably 3 or more bases are modified. Also, part or all of the expression control sequence may be deleted.
  • Reduction of protein expression can also be achieved, for example, by manipulating factors involved in expression control.
  • Factors involved in expression control include small molecules (inducing substances, inhibitors, etc.), proteins (transcription factors, etc.), nucleic acids (siRNA, etc.), etc., involved in transcription and translation control.
  • a decrease in protein expression can also be achieved, for example, by introducing a mutation that reduces gene expression to the coding region of the gene.
  • expression of a gene can be reduced by replacing codons in the coding region of the gene with synonymous codons that are used less frequently in the host.
  • gene expression itself can be reduced by disruption of the gene as described later.
  • Modifications that reduce the activity of a protein can be achieved, for example, by disrupting the gene that encodes the same protein.
  • disrupted in a gene is meant that the same gene is altered so that it no longer produces a protein that functions normally.
  • “Not producing a protein that functions normally” includes cases where no protein is produced from the same gene, and cases where the same gene produces a protein with reduced or lost function (activity or property) per molecule.
  • Gene disruption can be achieved, for example, by deleting part or all of the coding region of the gene on the chromosome.
  • the present invention provides a method of producing a microorganism with improved protein productivity comprising disrupting at least one gene encoding an ABC transporter ATP binding protein in the microorganism.
  • the entire gene may be deleted, including sequences before and after the gene on the chromosome.
  • the region to be deleted may be any region such as the N-terminal region, internal region, C-terminal region, etc., as long as the protein activity can be reduced. Generally, the longer the region to be deleted, the more reliably the gene can be inactivated. Moreover, it is preferable that the sequences before and after the region to be deleted do not have the same reading frame.
  • Gene disruption includes, for example, introducing an amino acid substitution (missense mutation) into the coding region of the gene on the chromosome, introducing a stop codon (nonsense mutation), or frameshifting by adding or deleting 1 to 2 bases. It can also be achieved by introducing a mutation or the like.
  • Gene disruption can also be achieved, for example, by inserting other sequences into the coding region of the gene on the chromosome.
  • the insertion site may be any region of the gene, but the longer the sequence to be inserted, the more reliably the gene can be inactivated.
  • Other sequences are not particularly limited as long as they reduce or eliminate the activity of the encoded protein, and examples thereof include marker genes such as antibiotic resistance genes and genes useful for the production of target substances.
  • Modifying a gene on a chromosome as described above involves, for example, creating a deletion-type gene modified so as not to produce a protein that functions normally, and transfecting a host with recombinant DNA containing the deletion-type gene. It can be achieved by replacing the wild-type gene on the chromosome with the deletion-type gene by inverting and causing homologous recombination between the deletion-type gene and the wild-type gene on the chromosome.
  • the recombinant DNA may contain a marker gene according to the host's traits such as auxotrophy.
  • Deletion-type genes include genes in which the entire region or a part of the gene is deleted, genes introduced with missense mutations, genes introduced with nonsense mutations, genes introduced with frameshift mutations, transposons, marker genes, etc. Examples include genes introduced with insertion sequences. Even if the protein encoded by the deleted gene is produced, it has a conformation different from that of the wild-type protein, and its function is reduced or lost. Methods for gene disruption by gene replacement using homologous recombination are known to those skilled in the art.
  • a decrease in protein activity can be confirmed by measuring the activity of the same protein. Decreased protein activity can also be confirmed by confirming decreased expression of the gene encoding the same protein. Decreased gene expression can be confirmed by confirming that the amount of transcription of the gene has decreased or by confirming that the amount of protein expressed from the gene has decreased.
  • Confirmation that the transcription level of the gene has decreased can be made by comparing the amount of mRNA transcribed from the same gene with that of the unmodified strain.
  • Methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR and the like.
  • the amount of mRNA may be reduced, for example, by 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • Confirmation that the amount of protein has decreased can be performed by Western blot using an antibody.
  • the amount of protein may be reduced, for example, by 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • Gene disruption can be confirmed by determining the base sequence, restriction enzyme map, full length, etc. of part or all of the gene, depending on the means used for disruption.
  • expression of the target protein is increased due to loss or reduction in expression of at least one ABC transporter ATP-binding protein.
  • the protein of interest may be either a protein encoded by an endogenous gene or a protein encoded by a foreign gene.
  • the target protein is not particularly limited, and includes a protein that is secreted by a secretory signal or a protein that becomes secretable by imparting a secretory signal.
  • Specific examples include enzymes, hormones, antibodies, growth factors, receptors and the like.
  • the target protein is preferably an enzyme. Enzymes include various industrial enzymes such as food, detergent, textile, feed, chemical, medical, and diagnostic.
  • Enzymes include amylase ( ⁇ -amylase, ⁇ -amylase, etc.), protein glutaminase, protease, xylanase, lipase, laccase, phenol oxidase, oxidase, cutinase, cellulase, hemicellulase, esterase, peroxidase, catalase, glucose oxidase, phytase, Examples include pectinase, glucosidase, isomerase, transferase, galactosidase, carbohydrase, phosphatase, kinase, and the like, but are not particularly limited.
  • the enzyme is an amylase ( ⁇ -amylase, ⁇ -amylase, etc.) or protein glutaminase.
  • the hormone is not particularly limited, but includes follicle-stimulating hormone, luteinizing hormone, adrenocorticotropic hormone-releasing factor, somatostatin, gonadotropin hormone, vasopressin, oxytocin, erythropoietin, insulin, and the like.
  • Antibodies include, but are not limited to, immunoglobulins.
  • Growth factors include, but are not limited to, platelet-derived growth factor, insulin-like growth factor, epidermal growth factor, nerve growth factor, fibroblast growth factor, transforming growth factor, interleukins (for example, IL-1 to IL- 13), interferons, colony-stimulating factors, and the like.
  • a recombinant vector obtained by combining a DNA fragment encoding the target protein and an appropriate vector is transformed by a general transformation method.
  • a recombinant microorganism can be obtained by incorporating it into a host microorganism.
  • Recombinant vectors can include promoters, signal sequences, terminators, and the like.
  • a recombinant microorganism can also be obtained by directly integrating a DNA fragment, which is a DNA fragment encoding a target protein and an appropriate homologous region with the genome of the host microorganism, into the genome of the microorganism.
  • a protein production method comprising the steps of culturing the microorganism of the present invention to produce a protein, and recovering the obtained protein.
  • the culture method and culture conditions in the process of culturing microorganisms to produce proteins are not particularly limited as long as the target protein is produced. That is, on the condition that the target protein is produced, a method and culture conditions suitable for culturing microorganisms can be appropriately set.
  • the culture method may be either liquid culture or solid culture, but liquid culture is preferred.
  • the medium is not particularly limited as long as it is a medium in which microorganisms can grow.
  • carbon sources such as glucose, maltose, sucrose, gentiobiose, soluble starch, glycerin, dextrin, molasses, organic acids, ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or peptone, yeast extract, corn steep liquor , gelatin, casein hydrolyzate, bran, meat extract, etc.
  • inorganic salts such as potassium salt, magnesium salt, sodium salt, phosphate, manganese salt, iron salt, zinc salt, etc. can be done. Vitamins, amino acids, etc. may be added to the medium to promote growth.
  • the pH of the medium is, for example, about 3 to 10, preferably about 7 to 8, and the culture temperature is usually about 10 to 50°C, preferably about 20 to 37°C, for 1 to 7 days under aerobic conditions.
  • the culture method includes, for example, a shake culture method and an aerobic submerged culture method using a jar fermenter.
  • the target protein After culturing, the target protein is recovered from the culture solution or the bacterial cells.
  • the culture solution for example, after removing insoluble matter by filtering or centrifuging the culture supernatant, concentration with an ultrafiltration membrane, salting out such as ammonium sulfate precipitation, dialysis, ion exchange resin, etc.
  • the target protein can be obtained by separating and purifying by appropriately combining various chromatographic techniques.
  • the present enzyme when recovering from the cells, can be obtained by, for example, crushing the cells by pressure treatment, ultrasonic treatment, etc., followed by separation and purification in the same manner as described above.
  • the above series of steps may be performed after previously collecting the bacterial cells from the culture solution by filtration, centrifugation, or the like.
  • an immunological analysis method using protein-specific polyclonal or monoclonal antibodies can be used. Examples include, but are not limited to, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), fluorescence immunoassay (FIA), and fluorescence-activated cell sorting (FACS).
  • ELISA enzyme-linked immunosorbent assay
  • RIA radioimmunoassay
  • FFA fluorescence immunoassay
  • FACS fluorescence-activated cell sorting
  • the expression of the protein of interest can also be measured by measuring the activity of the protein of interest in a microorganism.
  • composition of pre-culture medium Polypeptone 3.0 w/v% Yeast extract 1.0w/v% D-glucose 0.1 w/v%
  • Hippuric acid solution (internal standard) Hippuric acid 6.5 mM Dissolve in 10 ml of 0.2 M monopotassium disodium phosphate (pH 6.5)
  • Example 1 Confirmation of enzyme productivity of gene-disrupted strain (strain used)
  • BA strain is a strain obtained as a strain having high ⁇ -amylase-producing ability by breeding Bacillus amyloliquefaciens (NBRC 15535) strain as a parent strain.
  • the BA strain and the Bacillus amyloliquefaciens (NBRC 15535) strain have almost the same genes, and have the same ABC transporter ATP-binding protein gene. It is inferred that the effect can be obtained.
  • the BA ⁇ 30 strain is the genome number of the BA strain. It is a strain in which 30 genes have been disrupted by homologous recombination. No. above. 30 genes are genes encoding ABC transporter ATP-binding proteins. No. The base sequences of the 30 genes are shown in SEQ ID NO: 1 of the Sequence Listing. The amino acid sequence encoded by the 30 genes is shown in SEQ ID NO: 2 of the Sequence Listing.
  • SEQ ID NO: 1 SEQ ID NO: 2
  • SEQ ID NO: 2 MHAIELKQLTKHYKETAAVDRLEFSIEKGEFFALLGENGAGKTTLIRMLCGLLSPDEGDASVLGHSILTDLDKIKPKMNMSPQETAIAPNLTVRENLEFIAGVYGIPKKEGKKRTDEMLELFQLKEKEREKTKTLSGGMQRRLSIAMGMITKPDIYFLDEPTLGLDVRSRYARELWKNLESLKGDMTIILTTHYLEEAEALADRICILENGTLKALGEAEDLKKQDGSATFEDAFLAIC
  • Example 2 Confirmation of Absence of Enzyme Productivity Enhancement Effect by Gene Complementation
  • the genome number of the BA ⁇ 30 strain was examined. Thirty genes were restored by homologous recombination. No. 4 by homologous recombination.
  • Confirmation of the 30-gene complementation strain BA ⁇ 30::30 strain was confirmed by whole-genome sequencing to be truly complemented without gaps. No. In the same manner as in Example 1, the effect of enhancing enzyme production was confirmed for the BA ⁇ 30::30 strain, which is a genomic complementation strain of 30 genes.
  • Example 3 Confirmation of Enzyme Productivity Enhancement Effect of Heterologous Enzyme by Gene Disruption Strain It was confirmed that the disruption of the 30 genes improved the secretory productivity of endogenous ⁇ -amylase. This No. The following experiment was performed to confirm whether the effect of the 30 gene disruption was limited to the secretory production of ⁇ -amylase.
  • BA ⁇ amyA strain in which the ⁇ -amylase gene on the genome of BA strain was disrupted was used.
  • a disrupted strain BA ⁇ amyA ⁇ 30 was constructed by homologous recombination of 30 genes.
  • pUBCM21 is an E. coli/Bacillus subtilis shuttle vector that combines a pUC-based plasmid commonly used in E. coli and a pUB-based plasmid commonly used in Bacillus subtilis.
  • a ⁇ -amylase/pUBCM21 vector was generated by integrating into .
  • the ⁇ -amylase/pUBCM21 vector was introduced into each of the BA ⁇ amyA strain and the BA ⁇ amyA ⁇ 30 strain by the protoplast-PEG method. After culturing in the same manner as in Example 1, the expression level of ⁇ -amylase was confirmed by SDS-PAGE to determine the amount of the enzyme secreted.
  • a protein glutaminase/pLAM1 vector was prepared by inserting the Chryseobacterium proteolyticum-derived protein glutaminase mature sequence into an expression vector (pLAM1) having an amyA-type expression cassette consisting of an endogenous ⁇ -amylase-derived promoter, signal sequence and terminator.
  • the protein glutaminase/pLAM1 vector was introduced into each of the BA ⁇ amyA strain and the BA ⁇ amyA ⁇ 30 strain by the protoplast-PEG method. After culturing in the same manner as in Example 1, the amount of the enzyme secreted and produced was confirmed from the protein glutaminase activity.
  • the secretion amount of useful proteins such as enzymes can be improved.
  • INDUSTRIAL APPLICABILITY The present invention is useful in producing useful proteins such as enzymes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明の課題は、タンパク質の分泌量を向上させた微生物を提供すること、及び上記の微生物を用いてタンパク質を製造する方法を提供することである。本発明によれば、少なくとも1つのABCトランスポーターATP結合タンパク質の発現が喪失又は低下している、微生物が提供される。

Description

向上したタンパク質生産性を有する微生物及びその利用
 本発明は、向上したタンパク質生産性を有する微生物に関する。本発明はさらに、上記した微生物を用いたタンパク質の製造方法に関する。
 Bacillus属などの微生物は、酵素の大量分泌生産が可能、超高密度培養が可能、生育が早い、BioSafetyLevel 1に属する菌が多い、グラム陽性菌である、及びゲノムサイズが比較的小さい(4M bp程度)という利点を有することから、食品及び医薬品において利用される物質の生産において優れた性能を有している。Bacillus属などの微生物は、例えば、α-アミラーゼ、βアミラーゼ、中性プロテアーゼ、アルカリ性プロテアーゼ及びセルラーゼなどの酵素の生産に利用されている。また、微生物の物質生産能を向上させるため、UV照射による突然変異株の取得や遺伝子組換え技術による形質転換体の取得などが検討されている。
 ATP Binding Cassette(ABC)トランスポーターとは、共通性の高いアミノ酸配列を示すATP加水分解酵素活性を担う領域を持つ膜貫通型タンパク質である。ABCトランスポーターはATPを自ら加水分解して得られるエネルギーを利用して化合物を能動輸送することができる。
 特許文献1には、Curvularia属糸状菌が生産する環状ペプチドの細胞外への排出にABCトランスポーターが関与していることが記載されている(段落0142)。特許文献2には、ABCタンパク質の基質量を測定する方法が記載され、基質として、ポルフィリン類が好ましいことが記載されている。特許文献3には、タウリンの効率的な製造方法が記載され、tauABCタンパク質遺伝子の欠損させることによりタウリン取り込み系の活性が低下することが記載されている。
国際公開WO2018/128140号公報 特開2007-151493号公報 特開2019-129708号公報
 上記の通り、微生物を用いてタンパク質を製造することが行われているが、タンパク質の発現を増加させる方法を開発する必要性が依然としてある。ABCトランスポーターは低分子やペプチドの分泌に関わる遺伝子であるが、タンパク質の分泌を向上させることは知られていなかった。
 本発明が解決しようとする課題は、タンパク質の分泌量を向上させた微生物を提供することである。本発明が解決しようとするさらなる課題は、上記の微生物を用いてタンパク質を製造する方法を提供することである。
 本発明者らは、Bacillus amyloliquefaciensの酵素高生産株においてABCtransporter ATP-binding protein遺伝子を破壊することによって酵素生産性が向上することを見出した。本発明は、上記の知見に基づいて完成したものである。
 本発明によれば、以下の発明が提供される。
<1> 少なくとも1つのABCトランスポーターATP結合タンパク質の発現が喪失又は低下している、微生物。
<2> 前記ABCトランスポーターATP結合タンパク質が、配列番号2のアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有するタンパク質である、<1>に記載の微生物。
<3> Bacillus属微生物、Cytobacillus属微生物、又はPaenibacillus属微生物である、<1>又は<2>に記載の微生物。
<4> Bacillus amyloliquefaciensである、<1>から<3>の何れか一に記載の微生物。
<5> 少なくとも1つのABCトランスポーターATP結合タンパク質の発現が喪失又は低下していることにより、目的タンパク質の発現が増大している、<1>から<4>の何れか一に記載の微生物。
<6> 目的タンパク質が、内因性の遺伝子によりコードされるタンパク質、又は外来遺伝子によりコードされるタンパク質である、<5>に記載の微生物。
<7> 目的タンパク質が、酵素である、<5>又は<6>に記載の微生物。
<8> 前記ABCトランスポーターATP結合タンパク質をコードする遺伝子が、相同組み換えにより破壊されている、<1>から<7>の何れか一に記載の微生物。
<9> <1>から<8>の何れか一に記載の微生物を培養してタンパク質を生産させる工程と、得られたタンパク質を回収する工程とを含む、タンパク質の製造方法。
 本発明の微生物によれば、タンパク質の分泌量を向上することができる。
図1は、遺伝子破壊株の酵素生産性を確認した結果を示す。 図2は、遺伝子相補による酵素生産性増強効果の消失を確認した結果を示す。 図3は、遺伝子破壊株による異種酵素の酵素生産性増強効果を確認した結果を示す。
 本発明の微生物は、少なくとも1つのABCトランスポーターATP結合タンパク質の発現が喪失又は低下している。好ましくは、配列番号2のアミノ酸配列のABCトランスポーターATP結合タンパク質と類縁のタンパク質をコードする遺伝子がゲノム上に存在することがゲノム情報などから明らかな微生物において、少なくとも1つのABCトランスポーターATP結合タンパク質の発現が喪失又は低下している。
 微生物としては、好ましくは、Bacillus属微生物、Paenibacillus属微生物、及びCytobacillus属微生物を挙げることができ、より好ましくはBacillus属微生物である。
 Bacillus属微生物としては、Bacillus amyloliquefaciens、 Bacillus siamensis、Bacillus subtilis、 Bacillus velezensis、 Bacillus nakamurai、 Bacillus aquiflaviなどが挙げられる。より好ましくは、Bacillus amyloliquefaciens、Bacillus siamensis、Bacillus subtilis、Bacillus velezensisが挙げられる。特に好ましくは、Bacillus amyloliquefaciensである。
 Paenibacillus属微生物としては、Paenibacillus sp.などが挙げられる。
 Cytobacillus属微生物としては、Cytobacillus firmusなどが挙げられる。
 ABCトランスポーターATP結合タンパク質としては、配列番号2のアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列を有するタンパク質であることが好ましく、より好ましくは、75%以上の配列同一性、80%以上の配列同一性、85%以上の配列同一性、90%以上の配列同一性、93%以上の配列同一性、95%以上の配列同一性、97%以上の配列同一性、又は99%以上の配列同一性を有するアミノ酸配列を有するタンパク質である。ABCトランスポーターATP結合タンパク質は、機能に関わらず、本タンパク質の構造と同等の構造を持つタンパク質であればよく、ABCトランスポーターATP結合タンパク質以外のアノテーションをされているタンパク質も含まれる。ABCトランスポーターATP結合タンパク質は、好ましくは、ATP結合能を有するタンパク質である。
 好ましくは、配列番号2のアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列を有するタンパク質は、配列番号2のアミノ酸配列に対して保存的アミノ酸置換が生じることによって得られる。ここでの「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えばリシン、アルギニン、ヒスチジン)、酸性側鎖(例えばアスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えばスレオニン、バリン、イソロイシン)、芳香族側鎖(例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)のように、いくつかのファミリーに分類されている。保存的アミノ酸置換は好ましくは、同一のファミリー内のアミノ酸残基間の置換である。
 二つのアミノ酸配列の同一性(%)は例えば以下の手順で決定することができる。まず、最適な比較ができるよう二つの配列を並べる(例えば、第一の配列にギャップを導入して第二の配列とのアライメントを最適化してもよい)。第一の配列の特定位置の分子(アミノ酸残基)が、第二の配列における対応する位置の分子と同じであるとき、その位置の分子が同一であるといえる。二つの配列の同一性は、その二つの配列に共通する同一位置の数の関数であり(すなわち、同一性(%)=同一位置の数/位置の総数× 100)、好ましくは、アライメントの最適化に要したギャップの数およびサイズも考慮に入れる。
 二つの配列の比較及び同一性の決定は数学的アルゴリズムを用いて実現可能である。配列の比較に利用可能な数学的アルゴリズムの具体例としては、KarlinおよびAltschul (1990) Proc. Natl.Acad.Sci. USA 87:2264-68に記載され、KarlinおよびAltschul (1993)Proc. Natl. Acad. Sci. USA 90:5873-77において改変されたアルゴリズムがあるが、これに限定されることはない。アミノ酸配列の同一性は例えば、National Center for Biotechnology Information(NCBI)のblastp(protein-protein BLAST)により得ることが出来る。パラメータはデフォルトのパラメータを用いれば良いが、例えばBLOSUM62マトリックスを使用してGap CostsをExistence:11、Extension:1に設定すればよい。
 本発明の微生物においては、少なくとも1つのABCトランスポーターATP結合タンパク質の発現が喪失又は低下している。
 発現が喪失又は低下とは、ABCトランスポーターATP結合タンパク質の細胞当たりの活性が非改変株と比較して喪失または低下していることを意味し、活性が完全に消失している場合を含む。非改変株とは、ABCトランスポーターATP結合タンパク質の発現が喪失又は低下するように改変されていない対照株を意味する。「タンパク質の発現の喪失又は低下」とは、具体的には、非改変株と比較して、タンパク質の細胞当たりの分子数が低下していること、および/または、同タンパク質の分子当たりの機能が低下していることをいう。タンパク質の細胞当たりの分子数が低下していることには、同タンパク質が全く存在していない場合が含まれる。また、タンパク質の分子当たりの機能が低下していることには、同タンパク質の分子当たりの機能が完全に消失している場合が含まれる。タンパク質の活性は、非改変株と比較して低下していれば特に制限されないが、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 タンパク質の発現の低下とは、同タンパク質の細胞当たりの発現量が野生株や親株等の非改変株と比較して減少することを意味する。「遺伝子の発現が低下する」とは、具体的には、遺伝子の転写量(mRNA量)が低下すること、および/または、遺伝子の翻訳量(タンパク質の量)が低下することを意味する。「遺伝子の発現が低下する」ことには、同遺伝子が全く発現していない場合が含まれる。なお、「遺伝子の発現が低下する」ことを、「遺伝子の発現が弱化される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 タンパク質の発現の低下は、例えば、転写効率の低下によるものであってもよく、翻訳効率の低下によるものであってもよく、それらの組み合わせによるものであってもよい。タンパク質の発現の低下は、例えば、遺伝子のプロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、RBSと開始コドンとの間のスペーサー領域等の発現調節配列を改変することにより達成できる。発現調節配列を改変する場合には、発現調節配列は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上が改変される。また、発現調節配列の一部または全部を欠失させてもよい。
 タンパク質の発現の低下は、例えば、発現制御に関わる因子を操作することによっても達成できる。発現制御に関わる因子としては、転写や翻訳制御に関わる低分子(誘導物質、阻害物質など)、タンパク質(転写因子など)、核酸(siRNAなど)等が挙げられる。
 タンパク質の発現の低下は、例えば、遺伝子のコード領域に遺伝子の発現が低下するような変異を導入することによっても達成できる。例えば、遺伝子のコード領域のコドンを、宿主においてより低頻度で利用される同義コドンに置き換えることによって、遺伝子の発現を低下させることができる。また、例えば、後述するような遺伝子の破壊により、遺伝子の発現自体が低下し得る。
 タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子を破壊することにより達成できる。「遺伝子が破壊される」とは、正常に機能するタンパク質を産生しないように同遺伝子が改変されることを意味する。「正常に機能するタンパク質を産生しない」ことには、同遺伝子からタンパク質が全く産生されない場合や、同遺伝子から分子当たりの機能(活性や性質)が低下又は消失したタンパク質が産生される場合が含まれる。
 遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域の一部又は全部を欠損させることにより達成できる。即ち、本発明によれば、微生物における少なくとも1つのABCトランスポーターATP結合タンパク質をコードする遺伝子を破壊することを含む、向上したタンパク質生産性を有する微生物を製造する方法が提供される。遺伝子の破壊においては、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させてもよい。タンパク質の活性の低下が達成できる限り、欠失させる領域は、N末端領域、内部領域、C末端領域等のいずれの領域であってもよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化することができる。また、欠失させる領域の前後の配列は、リーディングフレームが一致しないことが好ましい。
 遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域にアミノ酸置換(ミスセンス変異) を導入すること、終止コドンを導入すること(ナンセンス変異)、あるいは1~2塩基を付加または欠失するフレームシフト変異を導入すること等によっても達成できる。
 遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域に他の配列を挿入することによっても達成できる。挿入部位は遺伝子のいずれの領域であってもよいが、挿入する配列は長い方が確実に遺伝子を不活化することができる。また、挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、コードされるタンパク質の活性を低下又は消失させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子等のマーカー遺伝子や目的物質の生産に有用な遺伝子が挙げられる。
 染色体上の遺伝子を上記のように改変することは、例えば、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該欠失型遺伝子を含む組換えDNAで宿主を形質転換して、欠失型遺伝子と染色体上の野生型遺伝子とで相同組み換えを起こさせることにより、染色体上の野生型遺伝子を欠失型遺伝子に置換することによって達成できる。その際、組換えDNAには、宿主の栄養要求性等の形質にしたがって、マーカー遺伝子を含ませておいてもよい。欠失型遺伝子としては、遺伝子の全領域あるいは一部の領域を欠失した遺伝子、ミスセンス変異を導入した遺伝子、ナンセンス変異を導入した遺伝子、フレームシフト変異を導入した遺伝子、トランスポゾンやマーカー遺伝子等の挿入配列を導入した遺伝子が挙げられる。欠失型遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。上記した相同組換えを利用した遺伝子置換による遺伝子破壊の方法は、当業者に公知である。
 タンパク質の活性が低下したことは、同タンパク質の活性を測定することで確認できる。
 タンパク質の活性が低下したことは、同タンパク質をコードする遺伝子の発現が低下したことを確認することによっても確認できる。遺伝子の発現が低下したことは、同遺伝子の転写量が低下したことを確認することや、同遺伝子から発現するタンパク質の量が低下したことを確認することにより確認できる。
 遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT-PCR等が挙げられる。mRNAの量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下、または0% に低下してよい。
 タンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る。タンパク質の量は、非改変株と比較して、例えば、50%以下、20% 以下、10%以下、5%以下、または0%に低下してよい。
 遺伝子が破壊されたことは、破壊に用いた手段に応じて、同遺伝子の一部または全部の塩基配列、制限酵素地図、または全長等を決定することで確認できる。
 本発明の微生物においては、少なくとも1つのABCトランスポーターATP結合タンパク質の発現が喪失又は低下していることにより、目的タンパク質の発現が増大している。
 目的タンパク質は、内因性の遺伝子によりコードされるタンパク質、又は外来遺伝子によりコードされるタンパク質のいずれでもよい。
 目的タンパク質は、特に限定されず、分泌シグナルによって分泌されるタンパク質又は分泌シグナルを付与することにより分泌可能となるタンパク質が挙げられる。具体的には、酵素、ホルモン、抗体、成長因子、受容体などが挙げられる。上記の中でも、目的タンパク質は、好ましくは、酵素である。酵素としては、食品、洗剤、繊維、飼料、化学品、医療、診断などの各種の産業用酵素が挙げられる。酵素としては、アミラーゼ(α-アミラーゼ、β-アミラーゼなど)、プロテイングルタミナーゼ、プロテアーゼ、キシラナーゼ、リパーゼ、ラッカーゼ、フェノールオキシダーゼ、オキシダーゼ、クチナーゼ、セルラーゼ、ヘミセルラーゼ、エステラーゼ、ペルオキシダーゼ、カタラーゼ、グルコースオキシダーゼ、フィターゼ、ペクチナーゼ、グルコシダーゼ、イソメラーゼ、トランスフェラーゼ、ガラクトシダーゼ、カルボヒドラーゼ、ホスファターゼ、キナーゼなどが挙げられるが、特に限定されない。好ましくは、酵素は、アミラーゼ(α-アミラーゼ、β-アミラーゼなど)、又はプロテイングルタミナーゼである。
 ホルモンとしては、特に限定されないが、卵胞刺激ホルモン、黄体形成ホルモン、副腎皮質刺激ホルモン放出因子、ソマトスタチン、ゴナドトロピンホルモン、バソプレシン、オキシトシン、エリスロポエチン、インスリン等が挙げられる。抗体としては、特に限定されないが、免疫グロブリンが挙げられる。成長因子としては、特に限定されないが、血小板由来成長因子、インスリン様成長因子、上皮成長因子、神経成長因子、線維芽細胞成長因子、形質転換成長因子、インターロイキン(例えば、IL-1からIL-13)、インターフェロン、コロニー刺激因子等が挙げられる。
 目的タンパク質が、外来遺伝子によりコードされるタンパク質である場合には、目的タンパク質をコードするDNA断片と適当なベクター(プラスミドベクターなど)を結合させた組換えベクターを、一般的な形質転換法によって、宿主である微生物に取り込ませることによって、組換え微生物を得ることができる。組換えベクターには、プロモーター、シグナル配列およびターミネーターなどを含めることができる。また、目的タンパク質をコードするDNA断片に、宿主である微生物ゲノムとの適当な相同領域を結合したDNA断片を用い、微生物ゲノムに直接組み込むことによって組換え微生物を得ることもできる。
<2> タンパク質の製造方法
 本発明によれば、本発明の微生物を培養してタンパク質を生産させる工程と、得られたタンパク質を回収する工程とを含む、タンパク質の製造方法が提供される。
 微生物を培養してタンパク質を生産させる工程における培養方法及び培養条件は、目的タンパク質が生産されるものである限り特に限定されない。即ち、目的タンパク質が生産されることを条件として、微生物の培養に適合した方法や培養条件を適宜設定できる。
 培養方法としては液体培養または固体培養のいずれでもよいが、好ましくは液体培養である。
 培地としては、微生物が生育可能な培地であれば特に限定されない。例えば、グルコース、マルトース、シュクロース、ゲンチオビオース、可溶性デンプン、グリセリン、デキストリン、糖蜜、有機酸等の炭素源、更に硫酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム、あるいは、ペプトン、酵母エキス、コーンスティープリカー、ゼラチン、カゼイン加水分解物、ふすま、肉エキス等の窒素源、更にカリウム塩、マグネシウム塩、ナトリウム塩、リン酸塩、マンガン塩、鉄塩、亜鉛塩等の無機塩を添加したものを用いることができる。生育を促進するためにビタミン、アミノ酸などを培地に添加してもよい。培地のpHは例えば約3~10、好ましくは約7~8であり、培養温度は通常約10~50℃、好ましくは約20~37℃でであり、1~7日間、好気的条件下で培養することができる。培養方法としては、例えば振盪培養法、ジャー・ファーメンターによる好気的深部培養法を挙げることができる。
 培養した後、培養液又は菌体より目的タンパク質を回収する。培養液から回収する場合には、例えば培養上清をろ過、遠心処理等することによって不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析、透析、イオン交換樹脂等の各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことにより目的タンパク質を得ることができる。
 他方、菌体内から回収する場合には、例えば菌体を加圧処理、超音波処理などによって破砕した後、上記と同様に分離、精製を行うことにより本酵素を得ることができる。なお、ろ過、遠心処理などによって予め培養液から菌体を回収した後、上記一連の工程(菌体の破砕、分離、精製)を行ってもよい。
 微生物における目的タンパク質の発現を測定するための方法としては、タンパク質に特異なポリクローナルまたはモノクローナル抗体を用いる免疫学的分析法を使用することができる。例えば、酵素免疫測定法(ELISA)、放射免疫分析法(RIA)、蛍光免疫分析法(FIA)、及び蛍光活性化細胞分類法(FACS)などが挙げられるが、特に限定されない。あるいは、微生物において、目的タンパク質の活性を測定することによって、目的タンパク質の発現を測定することもできる。
<前培養培地の組成>
ポリペプトン  3.0w/v%
酵母エキス   1.0w/v%
D-グルコース 0.1w/v%
<本培養培地の組成>
マルトース              5.00w/v%
酵母エキス              2.00w/v%
フィッシュゼラチン          1.00w/v%
塩化ナトリウム            1.00w/v%
魚肉エキス              0.30w/v%
リン酸二水素ナトリウム十二水和物   0.13w/v%
塩化マンガン四水和物         0.02w/v%
消泡剤                適量
<α-アミラーゼの生産性の評価方法>
 α-アミラーゼは大量に発現するため、適時希釈の上、活性測定を行うことで分泌生産酵素量とした。キッコーマンバイオケミファ社製、α-アミラーゼ測定キットを用い、標準プロトコールの液量1.5mlを、比率を保ったまま240 μlにダウンスケールして活性測定に用いた。
<β-アミラーゼの生産性の評価方法>
 βアミラーゼは発現量が著量であったため、SDS-PAGE上のバンドをデンシトメトリー分析によって定量し、比較に用いた。
<プロテイングルタミナーゼの生産性の評価方法>
 プロテイングルタミナーゼは発現量が少ないため、HPLC法による測定の結果得られた、反応産物のエリア面積で分泌生産酵素量を比較した。HPLC法でのプロテイングルタミナーゼ活性測定法を以下に記載する。
PG活性測定法(HPLC法)
PG活性測定用合成基質溶液
Z-Gln-Gly((株)ペプチド研究所)       5 mM
5 % TritonX-100 sol.              0.0023 % (v/v)
0.2 M リン酸1カリウム2ナトリウム (pH 6.5)  3 mlに溶解
馬尿酸溶液(内部標品)
馬尿酸                    6.5 mM
0.2 M リン酸1カリウム2ナトリウム (pH6.5)  10 mlに溶解
反応
 サンプル溶液10μlと、基質溶液130μlを混合し、37 ℃で任意の時間反応した。反応後内部標品の馬尿酸溶液10 μlを加え、混合後、MF濾過してHPLCに供した。HPLCにて、以下のカラム、およびrun条件で検出した。
Column : ZORBAX SB-C18 2.1 x 50 mm, 1.8 μm 
Solvent A :    0.1 % TFA/ H2O 
Solvent B :    0.1 % TFA/ acetonitrile
Program :     0-0.3 min#B : 10%
          0.3-2.0 min#B : 10-25% 
          2.0-2.2 min#B : 25%
          2.2-3.0 min#B : 100%
Injection volume : 2 μL
Flow rate :     1.0 mL/min
Detection :    UV 205 nm
実施例1:遺伝子破壊株の酵素生産性の確認
(使用菌株)
・BA株
 BA株は、Bacillus amyloliquefaciens (NBRC 15535)株 を親株として、これを育種することにより、α-アミラーゼ生産能が高い株として取得した菌株である。BA株とBacillus amyloliquefaciens(NBRC 15535)株はほぼ同等の遺伝子を有しており、同一のABCトランスポーターATP結合タンパク質遺伝子の有しているため、Bacillus amyloliquefaciens(NBRC 15535)を用いた場合でも同等の効果が得られると推察される。
・BAΔ30株
 BAΔ30株は、BA株のゲノム上No.30遺伝子を相同組み換えにより破壊した株である。上記No.30遺伝子は、ABCトランスポーターATP結合タンパク質をコードする遺伝子である。No.30遺伝子の塩基配列を配列表の配列番号1に示し、No.30遺伝子によりコードされるアミノ酸配列を配列表の配列番号2に示す。
(配列番号1)
atgcacgcgattgagctgaagcaattaactaaacattataaagaaaccgccgctgttgaccgacttgaattttcaattgaaaaaggagaatttttcgctttactcggagagaacggagccggaaaaacgacattaatccggatgctttgcggcctcctttctccagatgaaggtgatgcatcagtgcttggtcacagcattttgactgatttggataaaataaaaccgaaaatgaatatgtctccgcaggaaacagccatcgcccctaatttaaccgtacgggaaaacttagagtttatagccggagtctacggaattccgaaaaaagaaggaaaaaaaagaacggatgagatgctcgaattgtttcaattaaaagaaaaagaaagagaaaaaacaaaaacgttatcaggcggaatgcagcgccggctcagcatcgcaatgggaatgattacaaaaccggatatttatttcttagatgagccgacattaggtctggacgtccgttcacgccgcgagttgtggaaaaatcttgagtcattaaagggagacatgacgatcattttaacgacacactatctagaagaagctgaagccctggcagaccgtatttgcattttagaaaatgggacattaaaagcactgggtacggctgaggacctgaaaaagcaaactcattcagccacatttgaagatgcctttttagcgatttgtgacggggaggcggggctttatgcttga
(配列番号2)
MHAIELKQLTKHYKETAAVDRLEFSIEKGEFFALLGENGAGKTTLIRMLCGLLSPDEGDASVLGHSILTDLDKIKPKMNMSPQETAIAPNLTVRENLEFIAGVYGIPKKEGKKRTDEMLELFQLKEKEREKTKTLSGGMQRRLSIAMGMITKPDIYFLDEPTLGLDVRSRRELWKNLESLKGDMTIILTTHYLEEAEALADRICILENGTLKALGTAEDLKKQTHSATFEDAFLAICDGEAGLYA
 BA株に、相同組み換え用のDNAを導入して形質転換した後、Kanamycin耐性によるセレクションを行い、42℃培養により一次組換え体を選抜した。次いで、Kanamycin感受性を利用した二次選抜を行い、コロニーPCRにより、相同組み換えを確認した。プロトプラスト化による純化(モノセルアイソレーション)を行い、遺伝子破壊株としてBAΔ30株を取得した。
(培養方法)
 5mlの前培養培地を含む試験管に各菌株を接種し、37℃、18時間往復振とう培養した。5mlの本培養培地を含む試験管に前培養液を2%(v/v)量接種し、37℃で往復振とう培養した。培養1日目以降、24時間おきに5日目までサンプリングを行い、培養上清中のα-アミラーゼ生産量を活性測定によって測定し、分泌生産酵素量を確認した。
 結果を図1に示す。No.30遺伝子の破壊により、BA株のα-アミラーゼ生産性は約3倍に増加した。
実施例2:遺伝子相補による酵素生産性増強効果消失の確認
 BAΔ30株の酵素生産性増強効果が確かにNo.30遺伝子破壊によるものであることを確認するために、BAΔ30株のゲノム上No.30遺伝子を相同組み換えにより元通りに修復した。相同組み換えによるNo.30遺伝子の相補株BAΔ30::30株の確認は、全ゲノムシークエンス決定によって、確かにずれなく相補されていることを確認した。No.30遺伝子のゲノム上相補株であるBAΔ30::30株について、実施例1と同様の方法で酵素生産増強効果を確認した。
 結果を図2に示す。No.30遺伝子を相補することにより、酵素生産性増強効果は消失した。
実施例3:遺伝子破壊株による異種酵素の酵素生産性増強効果の確認
 No.30遺伝子破壊により、内在性のα-アミラーゼの分泌生産性が向上することを確認できた。このNo.30遺伝子破壊の効果がα-アミラーゼの分泌生産に限ったものかどうかを確認するため以下の実験を行った。
<3-1>Bacillus flexus由来β-アミラーゼの生産性増強効果の確認
 異種酵素の組換え発現用に、BA株のゲノム上α-アミラーゼ遺伝子を破壊したBAΔamyA株を用いて、No.30遺伝子の相同組み換えによる破壊株BAΔamyAΔ30株を構築した。
 pUBCM21は大腸菌で汎用されるpUC系プラスミドと枯草菌で汎用されるpUB系プラスミドを結合させた大腸菌/枯草菌シャトルベクターである。外来性の遺伝子であるBacillus flexus由来β-アミラーゼを、内在性α-アミラーゼ由来のプロモーターと、Bacillus circulans由来プルラナーゼ由来のシグナル配列およびターミネーターを組み合わせて作成したキメラ型発現カセットをもつ発現ベクター(pUBCM21)に組み込むことにより、β-アミラーゼ/pUBCM21ベクターを作製した。β-アミラーゼ/pUBCM21ベクターをBAΔamyA株、BAΔamyAΔ30株にそれぞれプロトプラスト-PEG法によって導入した。実施例1と同様の方法にて培養後、β-アミラーゼの発現量をSDS-PAGEにて分泌生産酵素量を確認した。
<3-2>Chryseobacterium proteolyticum由来プロテイングルタミナーゼの生産性増強効果の確認
 pLAM1はpUB系プラスミドである。Chryseobacterium proteolyticum由来プロテイングルタミナーゼmature配列を、それぞれ内在性のα-アミラーゼ由来のプロモーター、シグナル配列およびターミネーターからなるamyA型発現カセットをもつ発現ベクター(pLAM1)に組み込んだプロテイングルタミナーゼ/pLAM1ベクターを作製した。プロテイングルタミナーゼ/pLAM1ベクターをBAΔamyA株、BAΔamyAΔ30株にそれぞれプロトプラスト-PEG法によって導入した。実施例1と同様の方法にて培養後、プロテイングルタミナーゼ活性から分泌生産酵素量を確認した。
 結果を図3に示す。
 外来性酵素遺伝子であるβ-アミラーゼ、プロテイングルタミナーゼのいずれもΔ30株にて分泌発現量増大効果が見られた。No.30遺伝子破壊による酵素生産性増強効果は異種酵素発現時にも効果を発することが判明した。
 本発明の微生物によれば、酵素等の有用タンパク質の分泌量を向上することができる。本発明は、酵素等の有用タンパク質の生産において有用である。
 本発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (9)

  1. 少なくとも1つのABCトランスポーターATP結合タンパク質の発現が喪失又は低下している、微生物。
  2. 前記ABCトランスポーターATP結合タンパク質が、配列番号2のアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有するタンパク質である、請求項1に記載の微生物。
  3. Bacillus属微生物、Cytobacillus属微生物、又はPaenibacillus属微生物である、請求項1又は2に記載の微生物。
  4. Bacillus amyloliquefaciensである、請求項1から3の何れか一項に記載の微生物。
  5. 少なくとも1つのABCトランスポーターATP結合タンパク質の発現が喪失又は低下していることにより、目的タンパク質の発現が増大している、請求項1から4の何れか一項に記載の微生物。
  6. 目的タンパク質が、内因性の遺伝子によりコードされるタンパク質、又は外来遺伝子によりコードされるタンパク質である、請求項5に記載の微生物。
  7. 目的タンパク質が、酵素である、請求項5又は6に記載の微生物。
  8. 前記ABCトランスポーターATP結合タンパク質をコードする遺伝子が、相同組み換えにより破壊されている、請求項1から7の何れか一項に記載の微生物。
  9. 請求項1から8の何れか一項に記載の微生物を培養してタンパク質を生産させる工程と、得られたタンパク質を回収する工程とを含む、タンパク質の製造方法。
PCT/JP2022/032509 2021-08-30 2022-08-30 向上したタンパク質生産性を有する微生物及びその利用 WO2023032950A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023545583A JPWO2023032950A1 (ja) 2021-08-30 2022-08-30
CN202280058520.0A CN117881785A (zh) 2021-08-30 2022-08-30 具有提高了的蛋白质生产率的微生物及其利用
EP22864532.1A EP4397763A1 (en) 2021-08-30 2022-08-30 Microorganism having improved protein productivity and use therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-139579 2021-08-30
JP2021139579 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032950A1 true WO2023032950A1 (ja) 2023-03-09

Family

ID=85411233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032509 WO2023032950A1 (ja) 2021-08-30 2022-08-30 向上したタンパク質生産性を有する微生物及びその利用

Country Status (4)

Country Link
EP (1) EP4397763A1 (ja)
JP (1) JPWO2023032950A1 (ja)
CN (1) CN117881785A (ja)
WO (1) WO2023032950A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151493A (ja) 2005-12-07 2007-06-21 Tokyo Institute Of Technology Abcタンパク質が輸送する基質のスクリーニング方法、及びabcタンパク質の輸送活性の測定法
JP2012518388A (ja) * 2009-02-20 2012-08-16 オーストラリアン ポールトリー シーアールシー ピーティーワイ リミテッド 弱毒生ワクチン
WO2018128140A1 (ja) 2017-01-05 2018-07-12 国立研究開発法人産業技術総合研究所 環状ペプチド化合物合成関連遺伝子、これを用いた環状ペプチド化合物の製造方法及びこれを有する形質転換体
JP2019129708A (ja) 2016-06-07 2019-08-08 味の素株式会社 ヒポタウリンまたはタウリンの製造法
WO2020198830A1 (en) * 2019-04-04 2020-10-08 Braskem S.A. Metabolic engineering for simultaneous consumption of xylose and glucose for production of chemicals from second generation sugars

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151493A (ja) 2005-12-07 2007-06-21 Tokyo Institute Of Technology Abcタンパク質が輸送する基質のスクリーニング方法、及びabcタンパク質の輸送活性の測定法
JP2012518388A (ja) * 2009-02-20 2012-08-16 オーストラリアン ポールトリー シーアールシー ピーティーワイ リミテッド 弱毒生ワクチン
JP2019129708A (ja) 2016-06-07 2019-08-08 味の素株式会社 ヒポタウリンまたはタウリンの製造法
WO2018128140A1 (ja) 2017-01-05 2018-07-12 国立研究開発法人産業技術総合研究所 環状ペプチド化合物合成関連遺伝子、これを用いた環状ペプチド化合物の製造方法及びこれを有する形質転換体
WO2020198830A1 (en) * 2019-04-04 2020-10-08 Braskem S.A. Metabolic engineering for simultaneous consumption of xylose and glucose for production of chemicals from second generation sugars

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein 2 October 2020 (2020-10-02), ANONYMOUS: "MULTISPECIES: ABC transporter ATP-binding protein [Bacillus subtilis group]", XP093042516, retrieved from Genbank Database accession no. WP_013351865 *
KARLINALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 68
KARLINALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 77
PODLESEK ZDRAVKO, COMINO ALEKSANDRA, HERZOG-VELIKONJA BLAGAJANA, ŽGUR-BERTOK DARJA, KOMEL RADOVAN, GRABNAR MIKLAVŽ: "Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance", MOLECULAR MICROBIOLOGY, vol. 16, no. 5, 1 June 1995 (1995-06-01), GB , pages 969 - 976, XP093042482, ISSN: 0950-382X, DOI: 10.1111/j.1365-2958.1995.tb02322.x *

Also Published As

Publication number Publication date
CN117881785A (zh) 2024-04-12
JPWO2023032950A1 (ja) 2023-03-09
EP4397763A1 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
KR102375732B1 (ko) 바실러스 리체니포르미스에서 단백질 생산을 증가시키기 위한 조성물 및 방법
Müller et al. The Tat pathway in bacteria and chloroplasts
CN111278852B (zh) 重组欧氏杆菌天冬酰胺酶的生产方法
EP2900689B1 (en) Bacterial mutants with improved transformation efficiency
EP3735478B1 (en) Mutant and genetically modified bacillus cells and methods thereof for increased protein production
US11046964B2 (en) Method for production of recombinant E. coli asparaginase
Christie et al. Mutational analysis of Bacillus megaterium QM B1551 cortex-lytic enzymes
KR20110129991A (ko) 재조합 crm197의 고 수준 발현
US20240002453A1 (en) Compositions and methods using methanotrophic s-layer proteins for expression of heterologous proteins
WO2023032950A1 (ja) 向上したタンパク質生産性を有する微生物及びその利用
KR20160078068A (ko) 목적 단백질의 정제용 폴리펩타이드 및 이의 용도
KR20190027698A (ko) 재조합 단백질의 분비를 증가시키는 방법
US20240124912A1 (en) Protein deamidating enzyme
CN116897160A (zh) 在色素缺陷型芽孢杆菌属细胞中产生目的蛋白的方法和组合物
EP2088192A1 (en) Lytic enzyme inhibitor, lysis inhibitor, inhibitor of degradation of poly- gamma-glutamic acid, and method for production of poly- gamma-glutamic acid
US7037714B2 (en) Expression vectors encoding Bacillus subtilis disulfide bond isomerase and methods of secreting proteins in gram-positive microorganisms using the same
WO2024123627A1 (en) Methods for expression of fusion-free bovine ultralong cdr3 scaffold
JP2004129576A (ja) 超耐熱性エンドグルカナーゼの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545583

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280058520.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022864532

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864532

Country of ref document: EP

Effective date: 20240402