WO2018127073A1 - 一种参数指示及确定方法和接收端设备及发射端设备 - Google Patents

一种参数指示及确定方法和接收端设备及发射端设备 Download PDF

Info

Publication number
WO2018127073A1
WO2018127073A1 PCT/CN2018/071284 CN2018071284W WO2018127073A1 WO 2018127073 A1 WO2018127073 A1 WO 2018127073A1 CN 2018071284 W CN2018071284 W CN 2018071284W WO 2018127073 A1 WO2018127073 A1 WO 2018127073A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment parameter
antenna panel
indication information
antenna
end device
Prior art date
Application number
PCT/CN2018/071284
Other languages
English (en)
French (fr)
Inventor
韩玮
武露
金黄平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18736698.4A priority Critical patent/EP3562051B1/en
Publication of WO2018127073A1 publication Critical patent/WO2018127073A1/zh
Priority to US16/506,995 priority patent/US10917149B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a parameter indication and determination method, and a receiver device and a transmitter device.
  • MIMO Multiple Input Multiple Output
  • MIMO systems typically use precoding techniques to improve the channel to enhance the effect of spatial multiplexing.
  • the precoding technique uses a precoding matrix matched with a channel to process a spatially multiplexed data stream (hereinafter simply referred to as a spatial stream), thereby implementing precoding of the channel and improving reception quality of the spatial stream.
  • the precoding matrix typically includes a plurality of column vectors, each of which may be referred to as a precoding vector, each precoding vector being used to precode a spatial stream.
  • the prior art typically feeds back precoding vectors based on a codebook, constructing precoding vectors using a linear combination of multiple column vectors in the codebook.
  • the above scheme for constructing precoding vectors is often performed only for a single antenna panel, that is, the terminal device is served by a single antenna panel. When the terminal device is served through multiple antenna panels at the same time, it is possible to try to treat the above multiple panels as a virtual antenna panel, and construct a precoding vector based on the above construction scheme.
  • the embodiment of the present invention provides a parameter indication and determination method, and a receiving end device and a transmitting end device.
  • the technical solution is as follows:
  • a parameter indication method comprising:
  • the indication information is used to indicate an adjustment parameter of the antenna panel, and the adjustment parameter includes at least one of an amplitude adjustment parameter and a phase adjustment parameter;
  • the parameter indication method provided by the embodiment of the present invention is configured to generate and send indication information, where the indication information is used to indicate a parameter of each of the plurality of antenna panels, where the parameter includes at least one of amplitude and phase. Therefore, the transmitting end device determines the parameter of the antenna panel corresponding to the indication information according to the indication information, and the technical solution provided by the embodiment of the present invention implements adjustment of multiple antenna panels by feeding back adjustment parameters of multiple antenna panels, thereby Precoding vectors built on multiple antenna panels are more accurate.
  • the adjustment parameter of each antenna panel is generated according to the comparison result of the channel information corresponding to the antenna panel and the channel information corresponding to the reference antenna panel.
  • the adjustment parameter is used to adjust the antenna panel when the antenna panel corresponding to the adjustment parameter is combined with other antenna panels.
  • the value of the amplitude adjustment parameter is selected from a set of amplitude values.
  • the value of the phase adjustment parameter is selected from a set of phase values.
  • the indication information is sent by a precoding matrix indication.
  • a method for determining a parameter comprising:
  • the indication information is used to indicate an adjustment parameter of the antenna panel, and the adjustment parameter includes at least one of an amplitude adjustment parameter and a phase adjustment parameter;
  • the parameter determining method provided by the embodiment of the present invention is configured to receive the indication information, where the indication information is used to indicate an adjustment parameter of each of the plurality of antenna panels, where the adjustment parameter includes an amplitude adjustment parameter and a phase adjustment parameter. At least one type, the transmitting end device determines the adjustment parameter of the antenna panel corresponding to the indication information according to the indication information, and the technical solution provided by the embodiment of the present invention implements the adjustment parameters of the multiple antenna panels to implement the multiple antenna panels. Adjustments to make precoding vectors based on multiple antenna panels more accurate.
  • the adjustment parameter of each antenna panel is generated according to the comparison result of the channel information corresponding to the antenna panel and the channel information corresponding to the reference antenna panel.
  • the adjustment parameter is used to adjust the antenna panel when the antenna panel corresponding to the adjustment parameter is combined with other antenna panels.
  • the value of the amplitude adjustment parameter is selected from a set of amplitude values.
  • the value of the phase adjustment parameter is selected from a set of phase values.
  • the indication information is sent by a precoding matrix indication.
  • a third aspect provides a receiving end device, where the receiving end device includes:
  • Generating a module configured to generate indication information for each of the plurality of antenna panels, where the indication information is used to indicate an adjustment parameter of the antenna panel, where the adjustment parameter includes at least one of an amplitude adjustment parameter and a phase adjustment parameter One type;
  • a sending module configured to send the indication information.
  • the adjustment parameter of each antenna panel is generated according to the comparison result of the channel information corresponding to the antenna panel and the channel information corresponding to the reference antenna panel.
  • the adjustment parameter is used to adjust the antenna panel when the antenna panel corresponding to the adjustment parameter is combined with other antenna panels.
  • the value of the amplitude adjustment parameter is selected from a set of amplitude values.
  • the value of the phase adjustment parameter is selected from a set of phase values.
  • the indication information is sent by a precoding matrix indication.
  • a fourth aspect provides a receiving end device, where the receiving end device includes:
  • a receiving module configured to receive indication information generated by each of the plurality of antenna panels, where the indication information is used to indicate an adjustment parameter of the antenna panel, where the adjustment parameter includes an amplitude adjustment parameter and a phase adjustment parameter At least one
  • a determining module configured to determine, according to the indication information, an adjustment parameter corresponding to the antenna panel.
  • the adjustment parameter of each antenna panel is generated according to the comparison result of the channel information corresponding to the antenna panel and the channel information corresponding to the reference antenna panel.
  • the adjustment parameter is used to adjust the antenna panel when the antenna panel corresponding to the adjustment parameter is combined with other antenna panels.
  • the value of the amplitude adjustment parameter is selected from a set of amplitude values.
  • the value of the phase adjustment parameter is selected from a set of phase values.
  • the indication information is sent by a precoding matrix indication.
  • the parameter indication and determination method and the receiving and transmitting end device provided by the embodiment of the present invention enable the transmitting end device to adjust the antenna panel by generating and indicating to the transmitting end device the adjustment parameters of each of the plurality of antenna panels. .
  • the above adjustments help to reduce the difference between the different antenna panels that are combined, thereby improving the accuracy of the precoding vector.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present invention
  • FIG. 2 is an exemplary schematic view of an antenna panel in accordance with an embodiment of the present invention.
  • FIG. 3 is an exemplary flowchart of a parameter indication method according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram showing the logical structure of a receiving end device according to an embodiment of the invention.
  • FIG. 6 is a schematic diagram showing the logical structure of a transmitting end device according to an embodiment of the invention.
  • FIG. 7 is a schematic structural diagram of hardware of a receiving end device according to an embodiment of the invention.
  • FIG. 8 is a schematic structural diagram of hardware of a transmitting end device according to an embodiment of the invention.
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122, wherein the base stations 102-106 can pass backhaul links with each other (e.g., lines between base stations 102-106) Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 108-122 can communicate with the corresponding base stations 102-106 via a wireless link (as indicated by the broken line between the base stations 102-106 and the terminal devices 108-122).
  • the base stations 102-106 are configured to provide wireless access services for the terminal devices 108-122.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 1), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 102 overlaps with the service coverage area of the base station 104, and the terminal device 112 is within the overlapping area, so the terminal device 112 can receive the wireless signals from the base station 102 and the base station 104.
  • Base station 102 and base station 104 can simultaneously provide services to terminal device 112.
  • the service coverage areas of the base station 102, the base station 104, and the base station 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive the base station.
  • the wireless signals 102, 104, and 106, the base stations 102, 104, and 106 can simultaneously serve the terminal device 120.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station.
  • future base stations may use other names.
  • the terminal devices 108-118 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • a data card a modem (Modulator demodulator, Modem), or a wearable device such as a smart watch.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 108-118 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 102-106 and the terminal devices 108-122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the terminal devices 108-122 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO, MU-MIMO), where MU-MIMO can be based on Implemented by Space Division Multiple Access (SDMA) technology. Due to the configuration of multiple antennas, the base stations 102-106 and the terminal devices 108-122 can also flexibly support Single Input Single Output (SISO) technology, Single Input Multiple Output (SIMO) and multiple input.
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • MIMO Multiple Input Single Output
  • multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • SC Multiple Input Single Output
  • currently used transmit diversity may include, for example, but not limited to, Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (Space-Frequency Transmit).
  • STTD Space-Time Transmit Diversity
  • Space-Frequency Transmit Diversity Space-Frequency Transmit
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Cyclic Delay Diversity
  • the base station 102 and the terminal devices 104-110 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (FDMA). Technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) technology Single carrier frequency division multiple access (Single Carrier FDMA, SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Single carrier frequency division multiple access Single Carrier FDMA
  • SC-FDMA Space Division Multiple Access
  • SDMA Space Division Multiple Access
  • the above wireless communication technology is adopted as a radio access technology (RAT) by many wireless communication standards, thereby constructing various wireless communication systems (or networks) well known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.11 series of standards, Worldwide Interoperability for Microwave Access (WiMAX), long-term Evolution (Long Term Evolution, LTE), LTE-Advanced (LTE-A), and evolution systems of these wireless communication systems.
  • the wireless communication network shown in FIG. 1 may be any system or network in the above wireless communication system.
  • the technical solutions provided by the embodiments of the present invention are applicable to the above various wireless communication technologies and wireless communication systems, unless otherwise specified.
  • the terms "system” and “network” can be replaced with each other.
  • the wireless communication network 100 shown in FIG. 1 is for example only and is not intended to limit the technical solution of the present invention. It should be understood by those skilled in the art that, in a specific implementation process, the wireless communication network 100 further includes other devices, such as but not limited to a base station controller (BSC), and the base station and the terminal device may also be configured according to specific needs. quantity.
  • BSC base station controller
  • the receiving end device determines the channel matrix according to the reference signal transmitted by the transmitting device, determines the precoding matrix based on the channel matrix and the codebook, and feeds back the precoding matrix to the transmitting device.
  • the transmitting device precodes the data to be transmitted according to the precoding matrix, and sends the precoded data to the receiving device.
  • the receiving device may be the terminal devices 108-122 shown in FIG. 1
  • the transmitting device may be the base stations 102-106 shown in FIG. 1.
  • the receiving device may be the base station shown in FIG. 102-106
  • the transmitting end device may be the terminal devices 108-122 shown in FIG.
  • the embodiments of the present invention provide a method for parameter indication and determination, and a corresponding receiving device and a transmitting device. The technical solutions provided by the embodiments of the present invention are described in detail below.
  • the antenna panel 200 includes a plurality of antenna panels 202 that are evenly arranged on a rectangular plane.
  • d g, H represents the uniform spacing of the two antenna panels 202 in the horizontal direction
  • d g, V represents the uniform spacing of the two antenna panels 202 in the horizontal direction.
  • the antenna panel 202 includes a plurality of vibrating elements 204 that are arranged in a matrix.
  • each row of the matrix contains a plurality of elements 204, each column containing a plurality of elements 204.
  • Each of the vibrating elements 204 includes two antennas, an antenna 206 operating in a first polarization direction and an antenna 208 operating in a second polarization direction.
  • the plurality of antenna panels 202 as shown in FIG. 2 can be regarded as a unified non-uniform array, and the non-uniform array needs to consider the antenna when channel information is fed back. Amplitude error information and phase error information between panels.
  • the technical solution provided by the embodiment of the present invention will be described in detail below with reference to FIG. 2 .
  • FIG. 3 is a flowchart of a parameter indication method 300 according to an embodiment of the present invention.
  • the method 300 may be performed by a receiving end device.
  • Step 302 Generate indication information for each of the plurality of antenna panels, where the indication information is used to indicate an adjustment parameter of the antenna panel, where the adjustment parameter includes at least one of an amplitude adjustment parameter and a phase adjustment parameter. .
  • Step 304 Send the indication information.
  • the parameter indication method provided by the embodiment of the present invention is configured to generate and send indication information, where the indication information is used to indicate a parameter of each of the plurality of antenna panels, where the parameter includes at least one of amplitude and phase. Therefore, the transmitting end device determines the parameter of the antenna panel corresponding to the indication information according to the indication information, and the technical solution provided by the embodiment of the present invention implements adjustment of multiple antenna panels by feeding back adjustment parameters of multiple antenna panels, thereby Precoding vectors built on multiple antenna panels are more accurate.
  • the adjustment parameter of each antenna panel is generated according to the comparison result of the channel information corresponding to the antenna panel and the channel information corresponding to the reference antenna panel.
  • the adjustment parameter may be an amplitude error and a phase error of each antenna panel relative to the reference antenna panel.
  • the channel information corresponding to each antenna panel is channel information of a channel between the antenna panel and a terminal device
  • the channel information corresponding to the reference antenna panel is channel information of a channel between the reference antenna panel and the terminal device.
  • the above channel information may be channel information of a channel between an antenna port and a terminal device on the antenna panel.
  • each antenna panel in the above is referred to as an nth antenna panel hereinafter
  • an antenna port is selected on the reference antenna panel, and the antenna port and the receiving end are measured on the antenna port.
  • the channel information of the channel between the devices is used as the channel information of the reference antenna panel, and an antenna port is also selected on the nth antenna panel, and the antenna port may be, for example but not limited to, the selected antenna port on the reference antenna panel.
  • Corresponding antenna port (for example, located at the same position in the antenna panel), using channel information of the channel between the antenna port and the receiving end device measured on the antenna port as channel information of the antenna panel, according to two antenna ports
  • the measured channel information determines the amplitude error and phase error of the nth antenna panel relative to the reference antenna panel.
  • the antenna panel 202 shown in FIG. 2 is a 4 ⁇ 4 antenna array, and an antenna port on the reference antenna panel is selected, and the channel information corresponding to the antenna port is measured by a reference signal.
  • an antenna port on the nth antenna panel is selected, and the channel information corresponding to the antenna port is measured by the reference signal as Then the amplitude error of the nth antenna panel relative to the reference antenna panel can be expressed as ⁇ n / ⁇ 1 , and the phase error can be expressed as ⁇ n - ⁇ 1 or
  • the adjustment parameter of the nth antenna panel that is, the adjustment parameter of each antenna panel, may be generated according to the amplitude error and the phase error of the nth antenna panel with respect to the reference antenna panel.
  • the adjustment parameters of each antenna panel are used to adjust the antenna panel when the antenna panel is combined with other antenna panels.
  • the combination of the above antenna panel and other antenna panels means that these antenna panels serve the same end user.
  • panel 1 and panel 2 collectively serve terminal 1 (SU-MIMO), or jointly serve terminal 1 and terminal 2 (MU-MIMO).
  • the transmission signal of each antenna of the antenna panel is adjusted by using the adjustment parameter of each antenna panel, and the adjustment may be specifically performed by adjusting the codebook of each antenna panel participating in the combination.
  • the codebook is used. Can be expressed as follows:
  • W 1 may be referred to as a long-term/wideband codebook
  • W 2 may be referred to as a short-term/narrowband codebook.
  • the adjustment parameters are weighted to the above W 1 W 2 , and other technical features of the W 1 W 2 codebook can refer to the prior art, and details are not described herein again.
  • the above adjustment parameters may be expressed in the form of a W 3 codebook, in which case, for example:
  • I n is a unit matrix.
  • x n represents an amplitude value
  • N is a positive integer, 1 ⁇ n ⁇ N
  • N is a positive integer, 1 ⁇ n ⁇ M, or
  • the value of the amplitude adjustment parameter is selected from the set of amplitude values
  • the value of the phase adjustment parameter is selected from the set of phase values.
  • the amplitude adjustment parameter may be relative to the reference antenna of each antenna panel.
  • the amplitude error of the panel, the phase adjustment parameter may be a phase error of each antenna panel relative to the reference antenna panel, that is, selecting the value of the amplitude error in the preset amplitude value set, and feeding back the index of the amplitude error
  • the value of the phase error is selected in a preset set of phase values, and the index of the phase error is fed back.
  • phase value Indicates a phase value
  • M is a positive integer, 1 ⁇ m ⁇ M
  • p m represents the phase value Index, p m ⁇ 12...M ⁇
  • the above-mentioned amplitude error value is selected in the amplitude value set, and when the phase error value is selected in the phase value set, the amplitude value closest to the amplitude error value may be selected as the amplitude error value, and similarly, The phase value which is the closest to the phase error value is selected as the phase error value.
  • the specific selection operation reference may be made to the description of the prior art, and details are not described herein again.
  • the indication information is sent by a precoding matrix indication.
  • the codebook W 3 can be used to feedback channel information corresponding to the plurality of antenna panel, in this case, a plurality of antenna panel corresponding precoding matrix can be expressed as follows:
  • ⁇ n represents an adjustment parameter of the nth panel, such as a phase phase characteristic.
  • the phase feature can be further expressed as
  • I n is a unit matrix.
  • ⁇ n represents a amplitude phase characteristic factor, and Where ⁇ n is the amplitude portion of the amplitude phase characteristic factor, Is the phase portion of the amplitude phase characteristic factor.
  • each column vector contains only one non-zero element, and the non-zero element can be further represented as
  • each column vector contains more than one non-zero element, which may be further represented as Where ⁇ n is amplitude information and ⁇ n is phase information.
  • the codebook W 3 can be used to feedback channel information of a plurality of antenna panel, in this case, a plurality of antenna panel precoding matrix can be expressed as follows:
  • ⁇ n represents an adjustment parameter of the nth panel, such as a phase phase characteristic.
  • the phase feature can be further expressed as
  • I n is a unit matrix.
  • ⁇ n represents a amplitude phase characteristic factor, and Where ⁇ n is the amplitude portion of the amplitude phase characteristic factor, Is the phase portion of the amplitude phase characteristic factor.
  • each column vector contains only one non-zero element, and the non-zero element can be further represented as
  • each column vector contains more than one non-zero element, which may be further represented as Where ⁇ n is amplitude information and ⁇ n is phase information.
  • the plurality of antenna panels channel information may be represented by a multi-stage codebook, wherein the codebook comprises W 1, W 2 and W 3 codebook the codebook, the codebook in feedback to the transmitting end of the above-described device, by The pre-coding matrix indicator (PMI) corresponding to the W 1 codebook, the W 2 codebook, and the W 3 codebook is used for feedback, specifically, To carry the information of W 1 through To carry the information of W 2 , pass To carry the information of W 3 .
  • PMI pre-coding matrix indicator
  • Index information indicating at least one base vector selected from the W 1 codebook the at least one base vector may be derived from at least one Index information indicating at least one non-zero element selected from the W 2 codebook, the at least one non-zero element may be derived from at least one It may represent at least one non-zero element index information selected from the codebook W 3, which may be at least one non-zero element from at least one ⁇ n.
  • the above with Can be simultaneous feedback, or feedback at different times, ie with The feedback cycles can be the same or different.
  • the above with It may be at least one of periodic, semi-persistent, and aperiodic.
  • the above with Feedback can be made at the same frequency bandwidth or at different bandwidths.
  • the above bandwidth includes at least one of a wideband, a partial band, and a subband.
  • the above with Can feedback on the broadband can also feedback on part of the bandwidth, but also Feedback on broadband, Feedback on part of the bandwidth, Feedback on the subband.
  • the feedback method can be specifically determined according to actual needs, and is not limited herein.
  • the receiving end device sends the indication information to the transmitting end device by using the determined signaling
  • the indication information may be a set of indication information corresponding to each antenna panel, that is, The indication information generated for each antenna panel is sent together to the transmitting device by the determined signaling.
  • the indication information can be sent by one of the following signaling:
  • L1 signaling Physical layer signaling is also referred to as Layer 1 (L1) signaling, which can typically be carried by a control portion in a physical layer frame.
  • a typical example of L1 signaling is Downlink Control Information (DCI) carried in a physical downlink control channel (PDCCH) defined in the LTE standard.
  • DCI Downlink Control Information
  • PDCCH physical downlink control channel
  • L1 signaling may also be carried by the data portion of the physical layer frame. It is not difficult to see that the transmission period or signaling period of L1 signaling is usually the period of the physical layer frame. Therefore, such signaling is usually used to implement some dynamic control to transmit some frequently changing information, for example, through the physical layer. Signaling resource allocation information.
  • Media Access Control (MAC) layer signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the MAC Control Entity (MAC) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the foregoing precoding configuration information may also be sent through other Layer 2 signaling other than the medium access control layer signaling.
  • Radio Resource Control (RRC) signaling belongs to Layer 3 signaling, which is usually some control message, and L3 signaling can usually be carried in the frame body of the second layer frame.
  • the transmission period or control period of the L3 signaling is usually long, and is suitable for transmitting information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the foregoing precoding configuration information may also be sent through other layer 3 signaling other than RRC signaling.
  • FIG. 4 is a flowchart of a parameter determining method 400 according to an embodiment of the present invention.
  • the method 400 may be performed by a transmitting device.
  • Step 402 Receive indication information generated by each of the plurality of antenna panels, where the indication information is used to indicate an adjustment parameter of the antenna panel, where the adjustment parameter includes at least one of an amplitude adjustment parameter and a phase adjustment parameter. kind.
  • Step 404 Determine, according to the indication information, an adjustment parameter corresponding to the antenna panel.
  • the specific adjustment parameter may be determined by receiving the indication information and parsing the adjustment parameter information carried in the indication information.
  • the indication information is used to indicate an adjustment parameter of each of the plurality of antenna panels, the adjustment parameter includes at least one of an amplitude adjustment parameter and a phase adjustment parameter, and the transmitting end
  • the device determines, according to the indication information, an adjustment parameter of the antenna panel corresponding to the indication information, and the technical solution provided by the embodiment of the present invention implements adjustment of multiple antenna panels by determining adjustment parameters of multiple antenna panels, thereby making The precoding vectors constructed by the antenna panels are more accurate.
  • FIG. 5 is a schematic diagram showing the logical structure of a receiving end device 500 according to an embodiment of the invention. As shown in FIG. 5, the device 500 includes a generating module 502 and a transmitting module 504.
  • the generating module 502 is configured to generate indication information for each of the plurality of antenna panels, where the indication information is used to indicate an adjustment parameter of the antenna panel, where the adjustment parameter includes at least one of an amplitude adjustment and a phase adjustment parameter. .
  • the sending module 504 is configured to send the indication information.
  • Apparatus 500 is for performing method 300 shown in FIG.
  • the related technical features related to the device 500 have been described in detail above with reference to the accompanying drawings, such as, but not limited to, the foregoing method 300 and FIG. 3, and thus are not described herein again.
  • FIG. 6 is a schematic diagram showing the logical structure of a transmitting end device 600 according to an embodiment of the invention. As shown in FIG. 6, device 600 includes a receiving module 602 and a determining module 604.
  • the receiving module 602 is configured to receive indication information generated by each of the plurality of antenna panels, where the indication information is used to indicate an adjustment parameter of the antenna panel, where the adjustment parameter includes an amplitude adjustment parameter and a phase adjustment parameter. At least one.
  • the determining module 604 is configured to determine, according to the indication information, an adjustment parameter corresponding to the antenna panel.
  • Apparatus 600 is for performing method 400 shown in FIG.
  • the related technical features related to the device 600 have been described in detail above with reference to the accompanying drawings, such as, but not limited to, the method 300 described above, and thus are not described herein again.
  • FIG. 7 is a schematic structural diagram of hardware of a receiving end device 700 according to an embodiment of the invention.
  • device 700 includes a processor 702, a transceiver 704, a plurality of antennas 707, a memory 708, an I/O (Input/Output) interface 710, and a bus 712.
  • the transceiver 704 further includes a transmitter 7042 and a receiver 7044 that is further configured to store instructions 7082 and data 7084.
  • the processor 702, the transceiver 704, the memory 708, and the I/O interface 710 are communicatively coupled to one another via a bus 712, and the plurality of antennas 706 are coupled to the transceiver 704.
  • the processor 702 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor, such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 702 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 702 may be configured to perform, for example, step 302 in the parameter indication method 300 shown in FIG. 3, and generate in the receiving end device 500 shown in FIG. The operations performed by module 502.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor 702 may be a processor specifically designed to perform the above steps and/or operations, or may be a processor that performs the above steps and/or operations by reading and executing the instructions 7072 stored in the memory 708, the processor 702 Data 7084 may be required during the execution of the above steps and/or operations.
  • the transceiver 704 includes a transmitter 7042 and a receiver 7044, wherein the transmitter 7042 is configured to transmit signals through at least one of the plurality of antennas 706.
  • Receiver 7044 is configured to receive signals through at least one of the plurality of antennas 706.
  • the transmitter 7042 may be specifically configured to be executed by at least one of the plurality of antennas 706. For example, step 304 in the parameter indication method 300 shown in FIG. And the operations performed by the transmitting module 504 in the receiving device 500 shown in FIG.
  • the memory 708 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory, and registers.
  • the memory 708 is specifically configured to store instructions 7082 and data 7084, and the processor 702 can perform the steps and/or operations described above by reading and executing the instructions 7082 stored in the memory 708, performing the steps and/or operations described above. The process may require the use of data 7084.
  • the I/O interface 710 is for receiving instructions and/or data from peripheral devices and outputting instructions and/or data to peripheral devices.
  • the device 700 may also include other hardware devices, which are not enumerated herein.
  • FIG. 8 is a schematic structural diagram of hardware of a receiving end device 800 according to an embodiment of the invention.
  • device 800 includes a processor 802, a transceiver 804, a plurality of antennas 806, a memory 808, an I/O (Input/Output) interface 810, and a bus 812.
  • the transceiver 804 further includes a transmitter 8042 and a receiver 8044 that is further configured to store instructions 8082 and data 8084.
  • processor 802, transceiver 804, memory 808, and I/O interface 810 are communicatively coupled to one another via bus 812, and a plurality of antennas 806 are coupled to transceiver 804.
  • the processor 802 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 802 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 802 is configured to perform, for example, step 404 in the parameter determining method 400 shown in FIG. 4, and the determining module in the transmitting device 600 shown in FIG. 604 operations performed.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • Processor 802 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing instructions 8082 stored in memory 808, processor 802 Data 8084 may be required during the execution of the above steps and/or operations.
  • the transceiver 804 includes a transmitter 8042 and a receiver 8044, wherein the transmitter 8042 is configured to transmit signals through at least one of the plurality of antennas 806.
  • the receiver 8044 is configured to receive a signal through at least one of the plurality of antennas 806.
  • the receiver 8044 may be specifically configured to be executed by at least one of the plurality of antennas 806. For example, step 402 in the parameter determining method 400 shown in FIG. And the operation performed by the receiving module 602 in the transmitting device 600 shown in FIG.
  • the memory 808 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 808 is specifically configured to store instructions 8082 and data 8084, and the processor 802 can perform the steps and/or
  • the I/O interface 810 is configured to receive instructions and/or data from peripheral devices and to output instructions and/or data to peripheral devices.
  • the device 800 may also include other hardware devices, which are not enumerated herein.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供了一种参数指示及确定方法以及接收端设备和发射端设备。参数指示方法包括:对对多个天线面板中的每个天线面板,生成指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种;发送所述指示信息。本发明实施例还提供了一种参数确定方法、接收端设备和发射端设备。本发明实施例提供的技术方案通过反馈多个天线面板的调整参数,来实现对多个天线面板的调整,从而使得基于多个天线面板构建的预编码向量更加精确。

Description

一种参数指示及确定方法和接收端设备及发射端设备 技术领域
本发明涉及通信技术领域,特别涉及一种参数指示及确定方法和接收端设备及发射端设备。
背景技术
多入多出(Multiple Input Multiple Output,MIMO)技术的出现,给无线通信带来了革命性的变化。通过在发射端设备和接收端设备上部署多根天线,MIMO技术可以显著提高无线通信系统的性能。例如,在分集场景下,MIMO技术可有效提升传输可靠性;在复用场景下,MIMO技术可成倍提升传输吞吐量。
MIMO系统通常使用预编码技术来改善信道,以提升空间复用(Spatial Multiplexing)的效果。具体来说,预编码技术使用与信道相匹配的预编码矩阵来对空间复用的数据流(下文简称空间流)进行处理,借此来实现对信道的预编码,提升空间流的接收质量。
预编码矩阵通常包括多个列向量,每个列向量又可称为预编码向量,每个预编码向量用于对一个空间流进行预编码。现有技术通常基于码本来反馈预编码向量,利用码本中多个列向量的线性组合来构建预编码向量。上述构建预编码向量的方案往往只针对单一天线面板进行,即终端设备由单一天线面板来服务。当同时通过多块天线面板来为终端设备服务时,可以尝试将上述多块面板视为一块虚拟天线面板,并基于上述构建方案来构建预编码向量。然而,不同天线面板之间往往存在差异,由此导致由上述天线面板组合而构建的上述虚拟面板,无法简单的视为规模扩大后得到的单块天线面板。如此一来,基于上述针对单一天线面板而设计的预编码向量构建方案所确定的多天线面板对应的预编码向量,精确程度难以保证。
发明内容
为了提高应用于多个天线面板的预编码向量的精确度,本发明实施例提供了一种参数指示及确定方法和接收端设备及发射端设备。所述技术方案如下:
第一方面,提供一种参数指示方法,该方法包括:
对多个天线面板中的每个天线面板,生成指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种;
发送所述指示信息。
本发明实施例提供的参数指示方法,通过生成并发送指示信息,所述指示信息用于指示多个天线面板中的每个天线面板的参数,所述参数包括幅度和相位中的至少一种,以便发射端设备根据所述指示信息确定该指示信息对应的天线面板的参数,本发明实施例提供的技术方案通过反馈多个天线面板的调整参数,来实现对多个天线面板的调整,从而使得基于多个天线面板构建的预编码向量更加精确。
在一种可能的设计中,每个天线面板的调整参数是根据该天线面板对应的信道信息与参考天线面板对应的信道信息的比较结果来生成的。
在一种可能的设计中,所述调整参数用于在该调整参数所对应的天线面板与其他天线面板组合时对该天线面板进行调整。
在一种可能的设计中,所述幅度调整参数的值选自幅度值集合。
在一种可能的设计中,所述相位调整参数的值选自相位值集合。
在一种可能的设计中,所述指示信息通过预编码矩阵指示发送。
第二方面,提供一种参数确定方法,该方法包括:
接收对多个天线面板中的每个天线面板生成的指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种;
根据所述指示信息确定该天线面板对应的调整参数。
本发明实施例提供的参数确定方法,通过接收指示信息,所述指示信息用于指示多个天线面板中的每个天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种,发射端设备根据所述指示信息确定该指示信息对应的天线面板的调整参数,本发明实施例提供的技术方案通过确定多个天线面板的调整参数,来实现对多个天线面板的调整,从而使得基于多个天线面板构建的预编码向量更加精确。
在一种可能的设计中,每个天线面板的调整参数是根据该天线面板对应的信道信息与参考天线面板对应的信道信息的比较结果来生成的。
在一种可能的设计中,所述调整参数用于在该调整参数所对应的天线面板与其他天线面板组合时对该天线面板进行调整。
在一种可能的设计中,所述幅度调整参数的值选自幅度值集合。
在一种可能的设计中,所述相位调整参数的值选自相位值集合。
在一种可能的设计中,所述指示信息通过预编码矩阵指示发送。
第三方面,提供一种接收端设备,该接收端设备包括:
生成模块,用于生成对多个天线面板中的每个天线面板的指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种;
发送模块,用于发送所述指示信息。
在一种可能的设计中,每个天线面板的调整参数是根据该天线面板对应的信道信息与参考天线面板对应的信道信息的比较结果来生成的。
在一种可能的设计中,所述调整参数用于在该调整参数所对应的天线面板与其他天线面板组合时对该天线面板进行调整。
在一种可能的设计中,所述幅度调整参数的值选自幅度值集合。
在一种可能的设计中,所述相位调整参数的值选自相位值集合。
在一种可能的设计中,所述指示信息通过预编码矩阵指示发送。
第四方面,提供一种接收端设备,该接收端设备包括:
接收模块,用于接收对多个天线面板中的每个天线面板生成的指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种;
确定模块,用于根据所述指示信息确定该天线面板对应的调整参数。
在一种可能的设计中,每个天线面板的调整参数是根据该天线面板对应的信道信息与参考天线面板对应的信道信息的比较结果来生成的。
在一种可能的设计中,所述调整参数用于在该调整参数所对应的天线面板与其他天线面板组合时对该天线面板进行调整。
在一种可能的设计中,所述幅度调整参数的值选自幅度值集合。
在一种可能的设计中,所述相位调整参数的值选自相位值集合。
在一种可能的设计中,所述指示信息通过预编码矩阵指示发送。
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例提供的参数指示及确定方法和接收及发射端设备,通过生成以及向发射端设备指示多个天线面板中的每个天线面板的调整参数,使得发射端设备可以对天线面板进行调整。上述调整有助于缩小进行组合的不同天线面板之间的差异,从而提升预编码向量的精确度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是依照本发明一实施例的无线通信网络的示范性示意图;
图2是依照本发明一实施例的天线面板的示范性示意图;
图3是依照本发明一实施例的参数指示方法的示范性流程图;
图4是依照本发明一实施例的参数确定方法的示范性流程图;
图5是依照本发明一实施例的接收端设备的逻辑结构示意图;
图6是依照本发明一实施例的发射端设备的逻辑结构示意图;
图7是依照本发明一实施例的接收端设备的硬件结构示意图;
图8是依照本发明一实施例的发射端设备的硬件结构示意图。
具体实施方式
下面就结合相应的附图对本发明实施例提供的技术方案进行详细的描述。
图1是依照本发明一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间可通过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106用于为终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此可以同时由多个基站为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以同时为终端设备112提供服务。又例如,如图1所示,基站102、 基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站102、104和106可以同时为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备108~118可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~118还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如目前常用的发射分集可以包括,例如但不限于,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。
此外,基站102与终端设备104~110可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single  Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准中定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。图1所示的无线通信网络便可以是上述无线通信系统中的任意系统或者网络。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还包括其他设备,例如但不限于基站控制器(Base Station Controller,BSC),同时也可根据具体需要来配置基站和终端设备的数量。
通常来说,在通信过程中,接收端设备根据发射端设备发射的参考信号确定信道矩阵,并基于信道矩阵和码本确定预编码矩阵,以及将预编码矩阵反馈给发射端设备。发射端设备根据预编码矩阵对待发射数据进行预编码,并将预编码后的数据发往接收端设备。在本文中,上述接收端设备可以是图1所示的终端设备108~122,发射端设备可以是图1所示的基站102~106;或者,上述接收端设备可以是图1所示的基站102~106,发射端设备可以是图1所示的终端设备108~122。本发明实施例提供了一种参数指示及确定的方法,以及相应的接收端设备和发射端设备,下面就对本发明实施例提供的技术方案进行详细描述。
图2是依照本发明一实施例的天线面板200的示范性示意图。如图2所示,天线面板200包含多个天线面板202,这些天线面板202均匀地排布在矩形平面上。其中,d g,H表示两个天线面板202在水平方向上的均匀间距,d g,V表示两个天线面板202在水平方向上的均匀间距。天线面板202包含多个振元204,这些振元204以矩阵方式进行排布。具体来说,该矩阵的每一行包含多个振元204,每一列包含多个振元204。每个振元204包含两根天线,分别为工作在第一极化方向的天线206和工作在第二极化方向的天线208。
在实际通信过程中,由于载频波长与天线面板间距的相对大小关系,如图2所示的多个天线面板202可视为统一的非均匀阵列,非均匀阵列在信道信息反馈时需要考虑天线面板间的幅度误差信息和相位误差信息。下面将结合图2对本发明实施例提供的技术方案进行详细的描述。
图3是依照本发明一实施例的参数指示方法300的流程图,在具体实现过程中,方法300可以由接收端设备来执行。
步骤302、对多个天线面板中的每个天线面板,生成指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种。
步骤304、发送所述指示信息。
本发明实施例提供的参数指示方法,通过生成并发送指示信息,所述指示信息用于 指示多个天线面板中的每个天线面板的参数,所述参数包括幅度和相位中的至少一种,以便发射端设备根据所述指示信息确定该指示信息对应的天线面板的参数,本发明实施例提供的技术方案通过反馈多个天线面板的调整参数,来实现对多个天线面板的调整,从而使得基于多个天线面板构建的预编码向量更加精确。
在一种可能的设计设计中,每个天线面板的调整参数是根据该天线面板对应的信道信息与参考天线面板对应的信道信息的比较结果来生成的。
在具体实现过程中,该调整参数可以是每个天线面板相对于参考天线面板的幅度误差和相位误差。每个天线面板对应的信道信息是该天线面板与一终端设备之间信道的信道信息,参考天线面板对应的信道信息是该参考天线面板与上述终端设备之间信道的信道信息。上述信道信息可以是天线面板上的一个天线端口与终端设备之间信道的信道信息。举例来说(为了便于描述,上文中的每个天线面板在下文中称为第n个天线面板),在参考天线面板上选取一个天线端口,以该天线端口上测量到的该天线端口与接收端设备之间的信道的信道信息作为参考天线面板的信道信息,同样在第n个天线面板上选取一个天线端口,该天线端口可以是,例如但不限于,与参考天线面板上选取的天线端口相对应的天线端口(例如位于天线面板中的相同位置),以该天线端口上测量到的该天线端口与接收端设备之间的信道的信道信息作为该天线面板的信道信息,根据两个天线端口上测量到的信道信息确定第n个天线面板相对于参考天线面板的幅度误差和相位误差。例如图2所示的天线面板202为4x4的天线阵列,选取参考天线面板上的一个天线端口,通过参考信号测得该天线端口对应的信道信息为
Figure PCTCN2018071284-appb-000001
同样选取第n个天线面板上的一个天线端口,通过参考信号测得该天线端口对应的信道信息为
Figure PCTCN2018071284-appb-000002
则第n个天线面板相对于参考天线面板的幅度误差可以表示为γ n1,相位误差可以表示为φ n1
Figure PCTCN2018071284-appb-000003
可以根据上述第n个天线面板相对于参考天线面板的幅度误差和相位误差生成第n个天线面板的调整参数,即每个天线面板的调整参数。
在一种可能的设计中,每个天线面板的调整参数用于在该天线面板与其他天线面板组合时对该天线面板进行调整。上述该天线面板与其他天线面板组合是指这些天线面板为相同的终端用户服务。例如面板1和面板2共同为终端1服务(SU-MIMO),或者共同为终端1和终端2服务(MU-MIMO)。利用每个天线面板的调整参数对该天线面板每根天线的发射信号进行调整,这种调整可以具体体现为对参与组合的每个天线面板的码本进行调整,在现有技术中,码本可以表示为如下形式:
W=W 1W 2
其中W 1可以称为长时/宽带码本,W 2可以称为短时/窄带码本。例如在构建每个天线面板 的预编码向量时,将调整参数加权到上述W 1W 2上,其中W 1W 2码本的其它技术特征可以参考现有技术,在此不再赘述。参考上述W 1W 2的表现形式,上述调整参数可以表现为W 3码本的形式,在这种情况下,例如:
Figure PCTCN2018071284-appb-000004
Figure PCTCN2018071284-appb-000005
其中
Figure PCTCN2018071284-appb-000006
表示克罗内克乘积,I n为一单位阵。
Figure PCTCN2018071284-appb-000007
x n表示一种幅度取值,N为正整数,1≤n≤N,
Figure PCTCN2018071284-appb-000008
表示一种相位取值,N为正整数,1≤n≤M,
Figure PCTCN2018071284-appb-000009
Figure PCTCN2018071284-appb-000010
在一种可能的设计中,幅度调整参数的值选自幅度值集合,相位调整参数的值选自相位值集合,在具体实现过程中,该幅度调整参数可以是每个天线面板相对于参考天线面板的幅度误差,该相位调整参数可以是每个天线面板相对于参考天线面板的相位误差,即在预设的幅度值集合中选取上述幅度误差的取值,并反馈该幅度误差的取值索引;在预设的相位值集合中选取上述相位误差的取值,并反馈该相位误差的取值索引。举例来说,幅度值集合可以定义为
Figure PCTCN2018071284-appb-000011
其中x n表示一种幅度取值,i n表示幅度取值x n的索引,i n∈{12…N},N为正整数,1≤n≤N,则反馈的幅度误差信息为γ n1取值对应的索引,反馈该幅度误差信息占用
Figure PCTCN2018071284-appb-000012
具体地,可定义
Figure PCTCN2018071284-appb-000013
则N=4,每个i n占用2bits。相位值集合可以定义为
Figure PCTCN2018071284-appb-000014
其中y m表示一种相位取值,且0≤y m≤2π或-π≤y m≤π,p m表示相位取值y m的索引,p m∈{12…M},M为正整数,1≤m≤M,则反馈的相位误差信息为φ n1取值对应的索引,反馈该相位误差信息占用
Figure PCTCN2018071284-appb-000015
具体地,可定义
Figure PCTCN2018071284-appb-000016
则M=4,每个p m占用2bits。需要指出的是,上述相位值集合还可以定义为
Figure PCTCN2018071284-appb-000017
其中
Figure PCTCN2018071284-appb-000018
表示一种相位取值,M为正整数,1≤m≤M,
Figure PCTCN2018071284-appb-000019
Figure PCTCN2018071284-appb-000020
p m表示相位取值
Figure PCTCN2018071284-appb-000021
的索引,p m∈{12…M},具体地, 可以定义
Figure PCTCN2018071284-appb-000022
可以理解的是,在这种情况下,
Figure PCTCN2018071284-appb-000023
为相位取值的一种表现形式,具体的相位变化为
Figure PCTCN2018071284-appb-000024
Figure PCTCN2018071284-appb-000025
还需要指出的是,上述在幅度值集合中选取幅度误差取值,在相位值集合中选取相位误差取值时,可以是选取与幅度误差值最接近的幅度值作为幅度误差值,同样,可以是选取与相位误差值最接近的相位值作为相位误差值,具体地选取操作可以参考现有技术的描述,在此不再赘述。
在一种可能的设计中,所述指示信息通过预编码矩阵指示发送。
在一种可能的设计中,上述码本W 3可以用来反馈多个天线面板所对应的信道信息,在这种情况下,多个天线面板所对应的预编码矩阵可以表示为如下形式:
Figure PCTCN2018071284-appb-000026
其中,
Figure PCTCN2018071284-appb-000027
Figure PCTCN2018071284-appb-000028
β n表示第n个面板的调整参数,例如幅相特征。该幅相特征可以进一步表示为
Figure PCTCN2018071284-appb-000029
其中
Figure PCTCN2018071284-appb-000030
表示克罗内克乘积,I n为一单位阵。β n表示一个幅相特征因子,且
Figure PCTCN2018071284-appb-000031
其中γ n是幅相特征因子的幅度部分,
Figure PCTCN2018071284-appb-000032
是幅相特征因子的相位部分。
其中,
Figure PCTCN2018071284-appb-000033
Figure PCTCN2018071284-appb-000034
表示第n个天线面板所对应的预编码矩阵。一种
Figure PCTCN2018071284-appb-000035
的构造方式可以是
Figure PCTCN2018071284-appb-000036
包含至少一个基底(比如DFT向量),
Figure PCTCN2018071284-appb-000037
为至少一个列矢量,每个列向量仅包含一个非零元素,该非零元素可进一步表示为
Figure PCTCN2018071284-appb-000038
另一种
Figure PCTCN2018071284-appb-000039
的构造方式可以是
Figure PCTCN2018071284-appb-000040
包含至少一个基底(比如DFT向量),
Figure PCTCN2018071284-appb-000041
为至少一个列矢量,每个列向量包含大于一个非零元素,该非零元素可进一步表示为
Figure PCTCN2018071284-appb-000042
其中α n为幅度信息,θ n为相位信息。
在一种可能的设计中,上述码本W 3可以用来反馈多个天线面板的信道信息,在这种情况下,多个天线面板的预编码矩阵可以表示为如下形式:
Figure PCTCN2018071284-appb-000043
其中,
Figure PCTCN2018071284-appb-000044
Figure PCTCN2018071284-appb-000045
β n表示第n个面板的调整参数,例如幅相特征。该幅相特征可以进一步表示为
Figure PCTCN2018071284-appb-000046
其中
Figure PCTCN2018071284-appb-000047
表示克罗内克乘积,I n为一单位阵。β n表示一个幅相特征因子,且
Figure PCTCN2018071284-appb-000048
其中γ n是幅相特征因子的幅度部分,
Figure PCTCN2018071284-appb-000049
是幅相特征因子的相位部分。
其中
Figure PCTCN2018071284-appb-000050
表示第n个天线面板所对应的预编码矩阵。一种
Figure PCTCN2018071284-appb-000051
的构造方式可以是
Figure PCTCN2018071284-appb-000052
包含至少一个基底(比如DFT向量),
Figure PCTCN2018071284-appb-000053
为至少一个列矢量,每个列向量仅包含一个非零元素,该非零元素可进一步表示为
Figure PCTCN2018071284-appb-000054
另一种
Figure PCTCN2018071284-appb-000055
的构造方式可以是
Figure PCTCN2018071284-appb-000056
包含至少一个基底(比如DFT向量),
Figure PCTCN2018071284-appb-000057
为至少一个列矢量,每个列向量包含大于一个非零元素,该非零元素可进一步表示为
Figure PCTCN2018071284-appb-000058
其中α n为幅度信息,θ n为相位信息。
可以看出,上述多个天线面板的信道信息可以用多级码本来表示,其中包括W 1码本、W 2码本和W 3码本,在向发射端设备反馈上述码本时,可以通过W 1码本、W 2码本和W 3码本对应的预编码矩阵指示(Pre-coding Matrix Indicator,PMI)来反馈,具体来说,可通过
Figure PCTCN2018071284-appb-000059
来携带W 1的信息,通过
Figure PCTCN2018071284-appb-000060
来携带W 2的信息,通过
Figure PCTCN2018071284-appb-000061
来携带W 3的信息。需要指出的是,
Figure PCTCN2018071284-appb-000062
可以表示从W 1码本中选取的至少一个基底向量的索引信息,该至少一个基底向量可以来自于至少一个
Figure PCTCN2018071284-appb-000063
可以表示从W 2码本中选取的至少一个非零元素的索引信息,该至少一个非零元素可以来自于至少一个
Figure PCTCN2018071284-appb-000064
可以表示从W 3码本中选取的至少一个非零元素的索引信息,该至少一个非零元素可以来自于至少一个β n
需要指出的是,上述
Figure PCTCN2018071284-appb-000065
Figure PCTCN2018071284-appb-000066
可以是同时反馈,也可以不同时反馈,即
Figure PCTCN2018071284-appb-000067
Figure PCTCN2018071284-appb-000068
的反馈周期可以相同,也可以不同。此外,上述
Figure PCTCN2018071284-appb-000069
Figure PCTCN2018071284-appb-000070
可以是周期性反馈(periodic),半持续性反馈(semi-persistent)和非周期性反馈(aperiodic)的中的至少一种。
还需要指出的是,上述
Figure PCTCN2018071284-appb-000071
Figure PCTCN2018071284-appb-000072
可以在相同频带宽度下反馈,也可以在不同的频带宽度下反馈。上述频带宽度包括宽带(wideband)、部分带宽(partial band)、子带(subband)的中的至少一种。举例来说,上述
Figure PCTCN2018071284-appb-000073
Figure PCTCN2018071284-appb-000074
可以都在宽带上反馈,也可以都在部分带宽上反馈,还也可以
Figure PCTCN2018071284-appb-000075
在宽带上反馈,
Figure PCTCN2018071284-appb-000076
在部分带宽上反馈,
Figure PCTCN2018071284-appb-000077
在子带上反馈。上述
Figure PCTCN2018071284-appb-000078
Figure PCTCN2018071284-appb-000079
的反馈方式可以根据实际需要具体确定,在此不作限定。
在具体实现过程中,在步骤304中,接收端设备通过确定的信令向发射端设备发送指示信息,可以理解的是,所述指示信息可以为每个天线面板对应的指示信息的集合,即通过确定的信令将对每个天线面板生成的指示信息一起发送给发射端设备。指示信息可以通过如下信令之中的一种进行发送:
物理层信令;
媒体访问控制层信令;
无线资源控制信令。
物理层信令也称为第一层(Layer 1,L1)信令,其通常可以由物理层帧中的控制部分来承载。L1信令的典型例子是LTE标准中定义的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的下行控制信息(Downlink Control Information,DCI)。在一些情况下,L1信令也可以由物理层帧中的数据部分来承载。不难看出,L1信令的发送周期或者信令周期通常为物理层帧的周期,因此这种信令通常用于实现一些动态的控制,以传递一些变化频繁的信息,例如,可以通过物理层信令传送资源分配信息。
媒体访问控制(Media Access Control,MAC)层信令属于第二层(Layer 2)信令, 其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC)。第二层帧通常可以携带在物理层帧的数据部分。上述预编码配置信息也可以通过媒体访问控制层信令之外的其他第二层信令发送。
无线资源控制(Radio Resource Control,RRC)信令属于第三层(Layer 3)信令,其通常是一些控制消息,L3信令通常可以携带在第二层帧的帧体中。L3信令的发送周期或者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现有的一些通信标准中,L3信令通常用于承载一些配置信息。上述预编码配置信息也可以通过RRC信令之外的其他第三层信令发送。
上文所述仅为物理层信令、MAC层信令、RRC信令、第一层信令、第二层信令和第三层信令的原理性描述,有关三种信令的具体细节可以参考现有技术,因此本文不再赘述。
图4是依照本发明一实施例的参数确定方法400的流程图,在具体实现过程中,方法400可以由发射端设备来执行。
步骤402、接收对多个天线面板中的每个天线面板生成的指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种。
步骤404、根据所述指示信息确定该天线面板对应的调整参数。
在具体实现过程中,可以通过接收指示信息,并解析出指示信息中携带的上述调整参数信息,来确定具体的调整参数。
上述方法400中涉及的具体技术内容已经在上文结合附图,例如但不限于上述方法300和图3,进行了清楚的描述,因此此处不再赘述。
可以看出,通过接收指示信息,所述指示信息用于指示多个天线面板中的每个天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种,发射端设备根据所述指示信息确定该指示信息对应的天线面板的调整参数,本发明实施例提供的技术方案通过确定多个天线面板的调整参数,来实现对多个天线面板的调整,从而使得基于多个天线面板构建的预编码向量更加精确。
图5是依照本发明一实施例的接收端设备500的逻辑结构示意图。如图5所示,设备500包括生成模块502和发送模块504。
生成模块502用于对多个天线面板中的每个天线面板生成指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整和相位调整参数中的至少一种。
发送模块504用于发送所述指示信息。
设备500用于执行图3所示的方法300。设备500涉及的相关技术特征已经在上文结合附图,例如但不限于上述方法300和图3,进行了详细的描述,因此此处不再赘述。
图6是依照本发明一实施例的发射端设备600的逻辑结构示意图。如图6所示,设备600包括接收模块602和确定模块604。
接收模块602用于接收对多个天线面板中的每个天线面板生成的指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种。
确定模块604用于根据所述指示信息确定该天线面板对应的调整参数。
设备600用于执行图4所示的方法400。设备600涉及的相关技术特征已经在上文结合附图,例如但不限于上述方法300,进行了详细的描述,因此此处不再赘述。
图7是依照本发明一实施例的接收端设备700的硬件结构示意图。如图7所示,设备700包括处理器702、收发器704、多根天线707,存储器708、I/O(输入/输出,Input/Output)接口710和总线712。收发器704进一步包括发射器7042和接收器7044,存储器708进一步用于存储指令7082和数据7084。此外,处理器702、收发器704、存储器708和I/O接口710通过总线712彼此通信连接,多根天线706与收发器704相连。
处理器702可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器702还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器702可以用于执行,例如,图3所示的参数指示方法300中的步骤302,和图5所示的接收端设备500中生成模块502所执行的操作。处理器702可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器708中存储的指令7072来执行上述步骤和/或操作的处理器,处理器702在执行上述步骤和/或操作的过程中可能需要用到数据7084。
收发器704包括发射器7042和接收器7044,其中,发射器7042用于通过多根天线706之中的至少一根天线发送信号。接收器7044用于通过多根天线706之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,发射器7042具体可以用于通过多根天线706之中的至少一根天线执行,例如,图3所示的参数指示方法300中的步骤304,以及图5所示的接收端设备500中发送模块504所执行的操作。
存储器708可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器708具体用于存储指令7082和数据7084,处理器702可以通过读取并执行存储器708中存储的指令7082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据7084。
I/O接口710用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,设备700还可以包括其他硬件器件,本文不再一一列举。
图8是依照本发明一实施例的接收端设备800的硬件结构示意图。如图8所示,设备800包括处理器802、收发器804、多根天线806,存储器808、I/O(输入/输出,Input/Output)接口810和总线812。收发器804进一步包括发射器8042和接收器8044,存储器808进一步用于存储指令8082和数据8084。此外,处理器802、收发器804、存储器808和I/O 接口810通过总线812彼此通信连接,多根天线806与收发器804相连。
处理器802可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器802还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器802用于执行,例如,图4所示的参数确定方法400中的步骤404,以及图6所示的发射端设备600中确定模块604所执行的操作。处理器802可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器808中存储的指令8082来执行上述步骤和/或操作的处理器,处理器802在执行上述步骤和/或操作的过程中可能需要用到数据8084。
收发器804包括发射器8042和接收器8044,其中,发射器8042用于通过多根天线806之中的至少一根天线发送信号。接收器8044用于通过多根天线806之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,接收器8044具体可以用于通过多根天线806之中的至少一根天线执行,例如,图4所示的参数确定方法400中的步骤402,以及图6所示的发射端设备600中接收模块602所执行的操作。
存储器808可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器808具体用于存储指令8082和数据8084,处理器802可以通过读取并执行存储器808中存储的指令8082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据8084。
I/O接口810用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,设备800还可以包括其他硬件器件,本文不再一一列举。
以上所述仅为本发明的一些实施例,并不用以限制本发明的范围,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。例如,在本发明实施例提供的各方法的步骤之前、之间和/或之后添加其他的处理步骤,在本发明实施例提供的各装置中添加其他的处理模块以完成额外的处理,将本发明实施例提供的技术方案应用在特定场景或者特定条件下,均应视为在本发明实施例提供的技术方案基础上所做的进一步的改进,因此均落入本发明的范围之内。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认 为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种参数指示方法,其特征在于,所述方法包括:
    对多个天线面板中的每个天线面板,生成指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种;
    发送所述指示信息。
  2. 如权利要求1所述的方法,其特征在于,每个天线面板的调整参数是根据该天线面板对应的信道信息与参考天线面板对应的信道信息的比较结果来生成的。
  3. 如权利要求1所述的方法,其特征在于,所述调整参数用于在该调整参数所对应的天线面板与其他天线面板组合时对该天线面板进行调整。
  4. 如权利要求1所述的方法,其特征在于所述幅度调整参数的值选自幅度值集合。
  5. 如权利要求1所述的方法,其特征在于所述相位调整参数的值选自相位值集合。
  6. 如权利要求1所述的方法,其特征在于,所述指示信息通过预编码矩阵指示发送。
  7. 一种参数确定方法,其特征在于,所述方法包括:
    接收对多个天线面板中的每个天线面板生成的指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种;
    根据所述指示信息确定该天线面板对应的调整参数。
  8. 如权利要求7所述的方法,其特征在于,每个天线面板的调整参数是根据该天线面板对应的信道信息与参考天线面板对应的信道信息的比较结果来生成的。
  9. 如权利要求7所述的方法,其特征在于,所述调整参数用于在该调整参数所对应的天线面板与其他天线面板组合时对该天线面板进行调整。
  10. 如权利要求7所述的方法,其特征在于所述幅度调整参数的值选自幅度值集合。
  11. 如权利要求7所述的方法,其特征在于所述相位调整参数的值选自相位值集合。
  12. 如权利要求7所述的方法,其特征在于,所述指示信息通过预编码矩阵指示发送。
  13. 一种接收端设备,其特征在于,所述接收端设备包括:
    生成模块,用于生成对多个天线面板中的每个天线面板的指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种;
    发送模块,用于发送所述指示信息。
  14. 如权利要求13所述的接收端设备,其特征在于,每个天线面板的调整参数是根据该天线面板对应的信道信息与参考天线面板对应的信道信息的比较结果来生成的。
  15. 如权利要求13所述的接收端设备,其特征在于,所述调整参数用于在该调整参数所对应的天线面板与其他天线面板组合时对该天线面板进行调整。
  16. 如权利要求13所述的接收端设备,其特征在于所述幅度调整参数的值选自幅度值集合。
  17. 如权利要求13所述的接收端设备,其特征在于所述相位调整参数的值选自相位值集合。
  18. 如权利要求13所述的接收端设备,其特征在于,所述指示信息通过预编码矩阵 指示发送。
  19. 一种发射端设备,其特征在于,所述发射端设备包括:
    接收模块,用于接收对多个天线面板中的每个天线面板生成的指示信息,所述指示信息用于指示该天线面板的调整参数,所述调整参数包括幅度调整参数和相位调整参数中的至少一种;
    确定模块,用于根据所述指示信息确定该天线面板对应的调整参数。
  20. 如权利要求19所述的发射端设备,其特征在于,每个天线面板的调整参数是根据该天线面板对应的信道信息与参考天线面板对应的信道信息的比较结果来生成的。
  21. 如权利要求19所述的发射端设备,其特征在于,所述调整参数用于在该调整参数所对应的天线面板与其他天线面板组合时对该天线面板进行调整。
  22. 如权利要求19所述的发射端设备,其特征在于所述幅度调整参数的值选自幅度值集合。
  23. 如权利要求19所述的发射端设备,其特征在于所述相位调整参数的值选自相位值集合。
  24. 如权利要求19所述的发射端设备,其特征在于,所述指示信息通过预编码矩阵指示发送。
PCT/CN2018/071284 2017-01-09 2018-01-04 一种参数指示及确定方法和接收端设备及发射端设备 WO2018127073A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18736698.4A EP3562051B1 (en) 2017-01-09 2018-01-04 Parameter indication method and corresponding receive-end device
US16/506,995 US10917149B2 (en) 2017-01-09 2019-07-09 Parameter indication and determining methods, receive device, and transmit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710015118.5A CN108288984B (zh) 2017-01-09 2017-01-09 一种参数指示及确定方法和接收端设备及发射端设备
CN201710015118.5 2017-01-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/506,995 Continuation US10917149B2 (en) 2017-01-09 2019-07-09 Parameter indication and determining methods, receive device, and transmit device

Publications (1)

Publication Number Publication Date
WO2018127073A1 true WO2018127073A1 (zh) 2018-07-12

Family

ID=62789019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071284 WO2018127073A1 (zh) 2017-01-09 2018-01-04 一种参数指示及确定方法和接收端设备及发射端设备

Country Status (4)

Country Link
US (1) US10917149B2 (zh)
EP (1) EP3562051B1 (zh)
CN (1) CN108288984B (zh)
WO (1) WO2018127073A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412582A (zh) * 2019-02-14 2021-09-17 索尼集团公司 用于波束对应信号通知的方法、相关无线设备和相关网络节点

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288984B (zh) * 2017-01-09 2022-05-10 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
CN110768701B (zh) * 2018-07-27 2022-10-28 中兴通讯股份有限公司 信道状态处理方法及装置、系统、终端、基站、存储介质
CN110838856B (zh) * 2018-08-17 2021-11-26 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
CN110417525B (zh) * 2018-09-28 2021-05-04 华为技术有限公司 一种通信方法、装置、处理装置及存储介质
CN112073129B (zh) * 2019-06-10 2022-03-29 成都华为技术有限公司 确定天线面板状态的方法和装置
CN112751598B (zh) * 2019-10-31 2022-11-11 华为技术有限公司 一种预编码矩阵的处理方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330507B2 (en) * 2004-02-03 2008-02-12 United States Of America As Represented By The Secretary Of The Army Apparatus and method for multi-channel equalization
CN101674140A (zh) * 2008-09-08 2010-03-17 大唐移动通信设备有限公司 天线校准方法及装置
CN102413077A (zh) * 2010-09-25 2012-04-11 大唐移动通信设备有限公司 一种天线发送信号幅度调整方法及装置
CN103814529A (zh) * 2011-07-15 2014-05-21 三星电子株式会社 在无线通信系统中用于波束锁定的装置和方法

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260336B2 (en) * 2007-06-21 2012-09-04 Telefonaktiebolaget L M Ericsson (Publ) Method for compensating a radiation beam by beam steering
CN101308177B (zh) * 2008-07-11 2010-08-25 西安电子科技大学 主动反射面天线的电性能预测方法
JP5161904B2 (ja) * 2010-02-22 2013-03-13 三菱重工業株式会社 フェーズドアレイアンテナ及びその位相制御方法
JP5578885B2 (ja) * 2010-02-26 2014-08-27 三菱重工業株式会社 フェーズドアレイアンテナ及びその制御方法
FR2971654B1 (fr) * 2011-02-10 2013-03-15 Thales Sa Dispositif de reception large bande par autotransposition et application a la detection et et a la caracterisation d'emissions radioelectriques
US9048894B2 (en) * 2012-05-22 2015-06-02 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation
US10381880B2 (en) * 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10439284B2 (en) * 2013-01-28 2019-10-08 Tubis Technology Inc. Hierarchically elaborated phased-array antenna modules and method of operation
US20170005712A1 (en) * 2014-01-22 2017-01-05 Nec Corporation Method and apparatus for channel measurement and feedback
WO2015167119A1 (en) * 2014-05-02 2015-11-05 Lg Electronics Inc. Method and apparatus for channel estimation
US9537552B2 (en) * 2014-09-12 2017-01-03 Samsung Electronics Co., Ltd. Method and apparatus for channel state information based on antenna mapping and subsampling
JPWO2016084182A1 (ja) * 2014-11-27 2017-08-31 富士通株式会社 基地局、通信システム及び参照信号送信方法
WO2016109561A1 (en) * 2015-01-02 2016-07-07 Cellphone-Mate, Inc. Apparatus for radio frequency signal boosters
CN105822125B (zh) * 2015-01-04 2018-07-31 华为技术有限公司 一种基站
WO2016122393A1 (en) * 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Estimating joint csi based on multiple csi reports
US10020865B2 (en) * 2015-03-19 2018-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Phase rotation and amplitude control unit
US10338214B2 (en) * 2015-04-03 2019-07-02 Evolv Technologies, Inc. Modular imaging system
US10236951B2 (en) * 2015-04-10 2019-03-19 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
CN107155402B (zh) * 2015-04-10 2020-09-25 华为技术有限公司 数据传输的方法和设备
WO2017010753A1 (ko) * 2015-07-10 2017-01-19 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
US11018737B2 (en) * 2015-07-23 2021-05-25 Lg Electronics Inc. Codebook-based signal transmission and reception method in multi-antenna wireless communication system and apparatus therefor
US10374839B2 (en) * 2015-08-13 2019-08-06 Lg Electronics Inc. Operation method of user equipment in relation to CSI-RS in wireless communication system and apparatus supporting the same
EP3363122A4 (en) * 2015-10-12 2018-12-05 Telefonaktiebolaget LM Ericsson (PUBL) Pmi reporting for a set of ports
US10581503B2 (en) * 2015-10-21 2020-03-03 Apple Inc. Method, apparatus and system for reporting beam reference signal receiving power
TWI767306B (zh) * 2015-11-10 2022-06-11 美商Idac控股公司 波束成形系統下行控制頻道設計及傳訊
EP3382903B1 (en) * 2015-11-23 2020-12-30 LG Electronics Inc. -1- Method for transmitting and receiving channel state information in wireless communication system, and apparatus therefor
US10439663B2 (en) * 2016-04-06 2019-10-08 Qualcomm Incorporated Methods and apparatus for phase noise estimation in data symbols for millimeter wave communications
CN109478908B (zh) * 2016-07-22 2021-07-27 Lg 电子株式会社 无线通信系统中的上行链路多天线传输方法及其装置
US10834716B2 (en) * 2016-07-28 2020-11-10 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and device therefor
KR102414697B1 (ko) * 2016-07-29 2022-06-29 삼성전자 주식회사 다수의 배열 안테나를 사용하는 이동통신 시스템에서 csi-rs 포트 공유를 위한 기준신호 설정 방법 및 장치
US11290160B2 (en) * 2016-08-02 2022-03-29 Lg Electronics Inc. Method for transmitting feedback information for three-dimensional MIMO on basis of beamformed reference signal in wireless communication system, and apparatus therefor
JP6761108B2 (ja) * 2016-08-03 2020-09-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムで端末により遂行されるアップリンク通信遂行方法、及び前記方法を用いる端末
CN106229637A (zh) * 2016-08-12 2016-12-14 南京肯微弗通信技术有限公司 平板天线阵列及带极化调整的平板天线
WO2018030752A1 (ko) * 2016-08-12 2018-02-15 엘지전자 주식회사 위상 피드백을 위한 시그널링을 위한 방법 및 이를 위한 장치
US9813269B1 (en) * 2016-10-13 2017-11-07 Movandi Corporation Wireless transceiver having a phased array antenna panel for transmitting circularly-polarized signals with modulated angular speed
WO2018084622A1 (ko) * 2016-11-03 2018-05-11 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
CN108023624B (zh) * 2016-11-03 2021-10-01 华为技术有限公司 一种预编码矩阵指示方法、装置和系统
CN109150250B (zh) * 2016-11-04 2020-03-10 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
JP6961938B2 (ja) * 2016-12-26 2021-11-05 ソニーグループ株式会社 基地局、方法及び記録媒体
CN108259071B (zh) * 2016-12-28 2019-02-26 上海朗帛通信技术有限公司 一种被用于多天线传输的ue、基站中的方法和装置
US11082286B2 (en) * 2017-01-06 2021-08-03 Sony Corporation Beam failure recovery
US11038566B2 (en) * 2017-01-06 2021-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Precoding a transmission from a multi-panel antenna array
CN108288984B (zh) * 2017-01-09 2022-05-10 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
CN108288983B (zh) * 2017-01-09 2022-01-28 中兴通讯股份有限公司 信道状态信息的反馈、确定方法及装置
US10574308B2 (en) * 2017-01-24 2020-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Managing of channel state information in a multiple-antenna communication system
US11140706B2 (en) * 2017-02-01 2021-10-05 Qualcomm Incorporated Data transmissions during base station beamsweep
CN108400853B (zh) * 2017-02-06 2020-01-10 中兴通讯股份有限公司 参考信号的配置方法、配置装置及通信节点
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
KR102364258B1 (ko) * 2017-03-23 2022-02-17 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
US10536205B2 (en) * 2017-04-26 2020-01-14 Samsung Electronics Co., Ltd. Method and apparatus to CSI reporting using multiple antenna panels in advanced wireless communication systems
US10616896B2 (en) * 2017-05-05 2020-04-07 National Instruments Corporation Wireless communication system that performs beam management using nested reference signals
CN108112075B (zh) * 2017-05-05 2023-05-02 中兴通讯股份有限公司 上行传输参数的确定方法及配置信息的发送方法
US10554262B2 (en) * 2017-05-12 2020-02-04 Qualcomm Incorporated Cross-sub-band quasi co-location signaling
CN111213325B (zh) * 2017-06-14 2023-06-20 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法及其装置
CN109150256B (zh) * 2017-06-16 2022-01-14 华为技术有限公司 通信方法、通信装置和系统
CN109302220B (zh) * 2017-07-25 2021-12-28 华为技术有限公司 用于数据传输的方法、装置和系统
CN108111278B (zh) * 2017-08-11 2020-09-18 中兴通讯股份有限公司 信息上报方法及装置、信息传输的方法及装置
CN109391296A (zh) * 2017-08-11 2019-02-26 索尼公司 用于无线通信的电子设备、方法和介质
CN109495149B (zh) * 2017-09-11 2021-10-15 华为技术有限公司 通信方法、网络设备、终端设备和系统
JP7032433B2 (ja) * 2017-09-29 2022-03-08 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるチャネル状態情報を報告するための方法及びそのための装置
US10374768B2 (en) * 2017-10-02 2019-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Efficient SRS resource indication methods
US10715369B2 (en) * 2017-10-11 2020-07-14 Qualcomm Incorporated Phase tracking reference signal
US10965421B2 (en) * 2017-11-16 2021-03-30 Lg Electronics Inc. Method for transmitting and receiving uplink phase tracking reference signal and devices supporting the same
CN110062397B (zh) * 2018-01-19 2023-02-28 华硕电脑股份有限公司 无线通信中在多小区配置下波束故障报告的方法和设备
US10797810B2 (en) * 2018-08-21 2020-10-06 Futurewei Technologies, Inc. System and method for communications with multi-antenna panel devices
CN110417525B (zh) * 2018-09-28 2021-05-04 华为技术有限公司 一种通信方法、装置、处理装置及存储介质
US10469146B1 (en) * 2018-09-28 2019-11-05 Qualcomm Incorporated Reducing hypothesis search for multi-panel precoder selection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330507B2 (en) * 2004-02-03 2008-02-12 United States Of America As Represented By The Secretary Of The Army Apparatus and method for multi-channel equalization
CN101674140A (zh) * 2008-09-08 2010-03-17 大唐移动通信设备有限公司 天线校准方法及装置
CN102413077A (zh) * 2010-09-25 2012-04-11 大唐移动通信设备有限公司 一种天线发送信号幅度调整方法及装置
CN103814529A (zh) * 2011-07-15 2014-05-21 三星电子株式会社 在无线通信系统中用于波束锁定的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3562051A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412582A (zh) * 2019-02-14 2021-09-17 索尼集团公司 用于波束对应信号通知的方法、相关无线设备和相关网络节点

Also Published As

Publication number Publication date
EP3562051A1 (en) 2019-10-30
EP3562051A4 (en) 2019-12-18
CN108288984B (zh) 2022-05-10
CN108288984A (zh) 2018-07-17
EP3562051B1 (en) 2023-04-05
US20190334592A1 (en) 2019-10-31
US10917149B2 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
CN110419170B (zh) 一种指示及确定预编码向量的方法和设备
JP7121408B2 (ja) Lteにおける4txコードブックエンハンスメント
KR102618282B1 (ko) Mimo 측정 기준 신호 및 피드백을 동작시키기 위한 방법 및 장치
WO2018127073A1 (zh) 一种参数指示及确定方法和接收端设备及发射端设备
CN106165314B (zh) 用于在无线通信系统中报告信道状态信息的方法和装置
JP2019537874A (ja) プリコーディング行列指示方法、装置、及びシステム
JP2019050586A (ja) 4TxMIMOのためのPUCCHでのCSIフィードバックのためのコードブックサブサンプリング
CN115428507A (zh) 信道状态信息报告
US11115091B2 (en) Channel state information feedback and receiving methods, transmit-end device and receive-end device
WO2019196768A1 (zh) 通信的方法和通信装置
KR102132808B1 (ko) 어레이 안테나를 위한 채널 정보 피드백 방법 및 장치
WO2018127110A1 (zh) 指示、确定预编码矩阵的方法以及接收、发射端设备
WO2019085637A1 (zh) 一种信道测量方法和用户设备
WO2018127106A1 (zh) 指示及确定预编码向量的方法和接收及发射端设备
CN109802712B (zh) 一种用户设备、接入设备和预编码方法
WO2020015874A1 (en) Exploiting receiver antenna correlation in spatial compression based csi feedback scheme
US10594369B2 (en) Channel information feedback method, channel information determining method, receive end device, and transmit end device
CN117561682A (zh) 发送信道状态信息报告
WO2019095973A1 (zh) 一种用户设备和信道测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018736698

Country of ref document: EP

Effective date: 20190723