WO2018127106A1 - 指示及确定预编码向量的方法和接收及发射端设备 - Google Patents

指示及确定预编码向量的方法和接收及发射端设备 Download PDF

Info

Publication number
WO2018127106A1
WO2018127106A1 PCT/CN2018/071459 CN2018071459W WO2018127106A1 WO 2018127106 A1 WO2018127106 A1 WO 2018127106A1 CN 2018071459 W CN2018071459 W CN 2018071459W WO 2018127106 A1 WO2018127106 A1 WO 2018127106A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
diagonal matrix
vector
matrix
preset value
Prior art date
Application number
PCT/CN2018/071459
Other languages
English (en)
French (fr)
Inventor
金黄平
韩玮
毕晓艳
尚鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18736091.2A priority Critical patent/EP3531598B1/en
Publication of WO2018127106A1 publication Critical patent/WO2018127106A1/zh
Priority to US16/459,581 priority patent/US11063640B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the embodiments of the present invention relate to precoding technologies, and in particular, to a method for indicating and determining a precoding vector, and a receiving and transmitting device.
  • MIMO Multiple Input Multiple Output
  • MIMO systems typically use precoding techniques to improve the channel to enhance the effect of spatial multiplexing.
  • the precoding technique uses a precoding matrix matched with a channel to process a spatially multiplexed data stream (hereinafter simply referred to as a spatial stream), thereby implementing precoding of the channel and improving reception quality of the spatial stream.
  • Each spatial stream that performs spatial multiplexing corresponds to a column vector of the precoding matrix.
  • the transmitting end device precodes the spatial stream by using the column vector. Therefore, the above column vector may also be referred to as Precoding vector.
  • the precoding vector can be determined by the receiving device based on the codebook and fed back to the transmitting device.
  • a codebook is a set of candidate vectors in which a candidate vector that best matches the channel, or a weighted sum of multiple candidate vectors, can be used as a precoding vector.
  • the real channel environment is very complicated, and the channel environment cannot be accurately described based on the existing codebook. Therefore, the precoding vector determined based on the existing codebook can only achieve a rough matching with the channel, and the precoding effect is very limited. It can be seen that a codebook is needed to describe the channel environment more accurately.
  • a method of determining a precoding vector is provided to improve the precoding effect.
  • a receiving device is provided to improve the precoding effect.
  • a transmitter device is provided to improve the precoding effect.
  • a method of indicating a precoding vector comprising:
  • each component vector is a column vector of one of the at least one base codebook
  • a method of determining a precoding vector comprising:
  • the precoding vector indicates a plurality of component vectors for indicating an ideal precoding vector determined based on the at least one base codebook and a weight of each component vector, each component vector being the at least a column vector of one of the base codebooks;
  • the ideal precoding vector is determined from the plurality of component vectors and the weight of each component vector.
  • a receiving end device including:
  • a determining module configured to determine a plurality of component vectors of the ideal precoding vector and a weight of each component vector based on the at least one base codebook, wherein each component vector is a column vector of one of the at least one base codebook;
  • a sending module configured to send a precoding vector indication, where the precoding vector indicates a weight used to indicate the multiple component vectors and each component vector.
  • a transmitting device including:
  • a receiving module configured to receive a precoding vector indication, where the precoding vector indicates a plurality of component vectors for indicating an ideal precoding vector determined based on the at least one base codebook, and a weight of each component vector, each component a vector is a column vector of one of the at least one base codebook;
  • a determining module configured to determine the ideal precoding vector according to the plurality of component vectors and weights of each component vector.
  • the at least one base codebook is a base codebook.
  • the base codebook is:
  • B is the base codebook and:
  • N 1 O 1 and O 1 is a preset value, and are positive integers and N 1, 0 ⁇ m 1 ⁇ N 1 -1,0 ⁇ n 1 ⁇ O 1 N 1 -1;
  • N 2 are positive integers, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ O 2 N 2 -1;
  • is a diagonal matrix
  • the i-th element ⁇ ii on the main diagonal of the diagonal matrix is:
  • x is a codebook parameter, and 0 ⁇ x ⁇ 2 ⁇ .
  • the base codebook is:
  • B is the base codebook and:
  • N 1 and N 1 is a positive integer, 0 ⁇ m 1 ⁇ N 1 -1,0 ⁇ n 1 ⁇ N 1 -1;
  • N 2 and N 2 is a preset value is a positive integer, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ N 2 -1;
  • O 1 and O 1 is a preset value is a positive integer, k 1 is an a first codebook parameters and k 1 is an integer and 0 ⁇ k 1 ⁇ O 1 -1;
  • the diagonal array for:
  • the diagonal array for:
  • O 2 and O 2 is a preset value is a positive integer
  • k 2 is the second parameter codebook and k 2 is an integer and 0 ⁇ k 2 ⁇ O 2 -1;
  • is a diagonal matrix, the diagonal matrix
  • the i-th element ⁇ ii on the main diagonal is:
  • x is the third codebook parameter, and 0 ⁇ x ⁇ 2 ⁇ .
  • the base codebook is:
  • N 1 and N 1 is a positive integer, 0 ⁇ m 1 ⁇ N 1 -1,0 ⁇ n 1 ⁇ N 1 -1;
  • N 2 and N 2 is a preset value is a positive integer, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ N 2 -1;
  • O 1 and O 1 is a preset value is a positive integer, k 1 is an a first codebook parameters and k 1 is an integer and 0 ⁇ k 1 ⁇ O 1 -1;
  • O 2 and O 2 is a preset value is a positive integer, k 2 is the second parameter codebook and k 2 is an integer and 0 ⁇ k 2 ⁇ O 2 -1;
  • Q 1 is a preset value and Q 1 is a positive integer
  • q 1 is a third codebook parameter and q 1 is an integer
  • Q 2 is a preset value and Q 2 is a positive integer
  • q 2 is a fourth codebook parameter and q 2 is an integer
  • the base codebook is:
  • N 1 and N 1 is a positive integer, 0 ⁇ m 1 ⁇ N 1 -1,0 ⁇ n 1 ⁇ N 1 -1;
  • N 2 and N 2 is a preset value is a positive integer, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ N 2 -1;
  • O 1 and O 1 is a preset value is a positive integer, k 1 is an a first codebook parameters and k 1 is an integer and 0 ⁇ k 1 ⁇ O 1 -1;
  • O 2 and O 2 is a preset value is a positive integer, k 2 is the second parameter codebook and k 2 is an integer and 0 ⁇ k 2 ⁇ O 2 -1;
  • Q 1 is a preset value and Q 1 is a positive integer
  • p 1 is a third codebook parameter and p 1 is an integer, and 0 ⁇ p 1 ⁇ (Q 1 -1);
  • Q 2 is a preset value and Q 2 is a positive integer
  • p 2 is a fourth codebook parameter and p 2 is an integer, and 0 ⁇ p 2 ⁇ (Q 2 -1);
  • Q 3 is a preset value and Q 3 is a positive integer
  • q 1 is a fifth codebook parameter and q 1 is an integer, and 0 ⁇ q 1 ⁇ (Q 3 -1);
  • the base codebook is:
  • N 1 and N 1 is a positive integer, 0 ⁇ m 1 ⁇ N 1 -1,0 ⁇ n 1 ⁇ N 1 -1;
  • N 2 and N 2 is a preset value is a positive integer, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ N 2 -1;
  • O 1 and O 1 is a preset value is a positive integer, k 1 is an a first codebook parameters and k 1 is an integer and 0 ⁇ k 1 ⁇ O 1 -1;
  • O 2 and O 2 is a preset value is a positive integer, k 2 is the second parameter codebook and k 2 is an integer and 0 ⁇ k 2 ⁇ O 2 -1;
  • Q 1 is a preset value and Q 1 is a positive integer
  • q 1 is a third codebook parameter and q 1 is an integer
  • Q 2 is a preset value and Q 2 is a positive integer
  • q 2 is a fourth codebook parameter and q 2 is an integer
  • At least one of the block matrices in the base codebook is configured with additional coefficients.
  • At least one of the at least one component matrix in the base codebook is configured with additional coefficients.
  • the technical solution provided by the embodiment of the present invention constructs a basic codebook based on multiple parameters, which enables the basic codebook to describe the channel environment more accurately.
  • the precoding vector determined by the basic codebook provided by the embodiment of the present invention can more accurately match the channel, thereby improving the precoding effect.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present invention
  • FIG. 2 is an exemplary flowchart of a method of indicating a precoding vector, in accordance with an embodiment of the present invention
  • FIG. 3 is an exemplary schematic diagram of an antenna array in accordance with an embodiment of the present invention.
  • FIG. 4 is an exemplary flow chart of a method of determining a precoding vector in accordance with an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing an exemplary logical structure of a receiving end device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing an exemplary logical structure of a transmitting device according to an embodiment of the invention.
  • FIG. 7 is a schematic diagram showing an exemplary hardware structure of a receiving end device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing an exemplary hardware structure of a transmitting device according to an embodiment of the invention.
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122, wherein the base stations 102-106 can pass backhaul links with each other (e.g., lines between base stations 102-106) Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 108-122 can communicate with the corresponding base stations 102-106 via a wireless link (as indicated by the broken line between the base stations 102-106 and the terminal devices 108-122).
  • the base stations 102-106 are configured to provide wireless access services for the terminal devices 108-122.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 1), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 102 overlaps with the service coverage area of the base station 104, and the terminal device 112 is within the overlapping area, so the terminal device 112 can receive the wireless signals from the base station 102 and the base station 104.
  • the base station 102 and the base station 104 can cooperate with each other to provide services to the terminal device 112.
  • the service coverage areas of the base station 102, the base station 104, and the base station 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive the base station.
  • the wireless signals 102, 104, and 106, the base stations 102, 104, and 106 can cooperate with each other to provide services to the terminal device 120.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station, etc.
  • future base stations may use other names.
  • the terminal devices 108-122 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 108-122 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 102-106 and the terminal devices 108-122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the base stations 102-106 and the terminal devices 108-122 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO, MU-MIMO). MU-MIMO can be implemented based on Space Division Multiple Access (SDMA) technology. Due to the configuration of multiple antennas, the base stations 102-106 and the terminal devices 108-122 can also flexibly support Single Input Single Output (SISO) technology, Single Input Multiple Output (SIMO) and multiple input.
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • the multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • the transmit diversity technology may include: Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (SFTD), and time switching. Time Switched Transmit Diversity (TSTD), Frequency Switching Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD), etc.
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Code Division Multiple Access
  • the base stations 102-106 and the terminal devices 108-122 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (Frequency Division Multiple Access, FDMA) technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) Technology, Single Carrier FDMA (SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • SDMA Space Division Multiple Access
  • the above wireless communication technology is adopted as a radio access technology (RAT) by many wireless communication standards, thereby constructing various wireless communication systems (or networks) well known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.11 family of standards, Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (Long Term Evolution, LTE), LTE-Advanced (LTE-A), and an evolution system of these wireless communication systems.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband CDMA
  • WiFi defined by the 802.11 family of standards
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • the wireless communication network 100 shown in FIG. 1 is for example only and is not intended to limit the technical solution of the present invention. It should be understood by those skilled in the art that in a specific implementation process, the wireless communication network 100 may also include other devices, such as but not limited to a Base Station Controller (BSC), and may also configure the base station and the terminal according to specific needs. The number of devices.
  • BSC Base Station Controller
  • the receiving end device determines the channel matrix according to the reference signal transmitted by the transmitting device, determines the precoding matrix based on the channel matrix and the codebook, and feeds back the precoding matrix to the transmitting device.
  • the transmitting device precodes the data to be transmitted according to the precoding matrix, and sends the precoded data to the receiving device.
  • the receiving device may be the terminal devices 108-122 shown in FIG. 1
  • the transmitting device may be the base stations 102-106 shown in FIG. 1.
  • the receiving device may be the base station shown in FIG. 102-106
  • the transmitting end device may be the terminal devices 108-122 shown in FIG.
  • the embodiments of the present invention provide a scheme for indicating and determining a precoding vector, and a corresponding receiving device and a transmitting device. The technical solutions provided by the embodiments of the present invention are described in detail below.
  • method 200 is an exemplary flow diagram of a method 200 of indicating a precoding vector, in accordance with an embodiment of the present invention.
  • method 200 can be performed by, for example, but not limited to, a receiving end device.
  • Step 202 Determine a plurality of component vectors of the ideal precoding vector and weights of each component vector based on the at least one base codebook, wherein each component vector is a column vector of one of the at least one base codebook.
  • Step 204 Send a precoding vector indication, where the precoding vector indicates a weight used to indicate the multiple component vectors and each component vector.
  • the above ideal precoding vector can be obtained by various methods, and the ideal precoding vectors obtained by different methods can be different.
  • the above ideal precoding vector can be obtained by performing Singular Value Decomposition (SVD) on the channel matrix.
  • SVD Singular Value Decomposition
  • the conjugate transposed matrix of the right chirp matrix can be used as an ideal precoding matrix
  • the column vector of the ideal precoding matrix can be used as an ideal precoding vector.
  • the above-described ideal precoding matrix obtained according to the singular value decomposition may also be obtained by, for example, but not limited to, eigenvalue decomposition of the correlation matrix of the channel matrix.
  • the specific value of the ideal precoding vector and its acquisition method can be determined according to the overall needs of the system design. The technical details of the ideal precoding vector have been clearly described in the prior art, and therefore will not be described here.
  • the ideal precoding vector may be approximated in the form of a weighted sum of a plurality of component vectors, namely:
  • the number m of component vectors (m is a positive integer) may be set according to specific needs (such as but not limited to the need of precision).
  • the number of component vectors may be a preset number.
  • the component vector is selected from the base codebook.
  • the base codebook can usually be represented in the form of a matrix, so the base codebook can also be referred to as the base codebook matrix.
  • the base codebook referred to herein may be interchanged with the base codebook matrix unless otherwise specified or if it does not contradict its actual role or internal logic in the relevant description.
  • the base codebook matrix contains multiple column vectors, some of which can be selected as component vectors. There are many ways to select component vectors, and you can choose the appropriate method according to your specific needs. For example, a component vector may be determined from a plurality of column vectors according to how close the column vector of the base codebook matrix is to the ideal precoding vector, wherein a plurality of column vectors that are closest to the ideal precoding vector may be selected. As a component vector. In a specific implementation process, the proximity may be embodied by, for example but not limited to, an inner product or an Euclidean distance of a column vector of the basic codebook matrix and an ideal precoding vector.
  • a plurality of column vectors having the largest inner product of the ideal precoding vector may be used as component vectors.
  • the plurality of column vectors may belong to different ones.
  • the base codebook Furthermore, the inner product of each component vector and the ideal precoding vector can be further used as the weight of the component vector. The method of determining the component vector and its weight has been clearly described in the prior art, and will not be further described herein.
  • the embodiment of the present invention provides a plurality of basic codebooks, which are described in detail below.
  • the base codebook is typically associated with an antenna array.
  • many of the parameters involved in the base codebook expression can be understood to be different attributes used to characterize the antenna array. Therefore, in order to facilitate understanding of the basic codebook provided by the embodiment of the present invention, the basic codebook will be described below in conjunction with the antenna array.
  • the basic codebook provided by the embodiment of the present invention is not limited to a specific antenna array. In a specific implementation process, a suitable antenna array may be selected according to specific needs, and various parameters involved in the basic codebook provided by the embodiments of the present invention are set based on the selected antenna array, so as to be applicable to the embodiments of the present invention.
  • the base codebook determines the precoding vector.
  • FIG. 3 is an exemplary schematic diagram of an antenna array 300 in accordance with an embodiment of the present invention.
  • the antenna array 300 includes a plurality of elements 300, which are arranged in a matrix.
  • each row of the matrix includes a plurality of sets of elements 302, each of which contains a plurality of sets of elements 302.
  • Each of the vibrating element groups 302 includes two vibrating elements, respectively, a vibrating element 304 operating in a first polarization direction and a vibrating element 306 operating in a second polarization direction.
  • DFT Discrete Fourier Transform
  • N 1 O 1 and O 1 is a preset value, and are positive integers and N 1, 0 ⁇ m 1 ⁇ N 1 -1,0 ⁇ n 1 ⁇ O 1 N 1 -1.
  • the value of the element d(m 2 , n 2 ) can be:
  • N 2 O 2 and N 2 and O 2 to a preset value
  • N 2 are positive integers, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ O 2 N 2 -1.
  • is a diagonal matrix, and the value of the i-th element ⁇ ii on the main diagonal of the diagonal matrix is:
  • x is a codebook parameter
  • the codebook parameter is a variable
  • the roles of O 1 and O 2 can be understood as oversampling, and N 1 and N 2 can be used to represent the number of groups of vibration elements 302 in each row (or column) of the antenna array 300 in the antenna array 300 described above.
  • the number of the vibration element groups 302 in each column (or row) of the vibration element group 302, ⁇ ii can be used to set the polarization phase difference between the vibration elements working in different polarization directions in the vibration element group 302, in a specific implementation
  • you can take a preset number of preset values for example Among them, the value of the codebook parameter x is selected.
  • the method 200 shown in FIG. 2 is performed based on the first basic codebook, when indicating the determined component vector, it is necessary to indicate the value of the codebook parameter x, and from the codebook based parameter x.
  • the value is determined by the component vector selected in the base codebook, and the component vector can be further indicated by the index of the component vector.
  • the indicated codebook parameter x may have at least one value, so the selected component vector may come from at least one base codebook.
  • the value of the indicated codebook parameter x is multiple, when indicating the determined component vector, it is also necessary to indicate a correspondence between the component vector and the value of the codebook parameter x.
  • N 1 is a preset value and N 1 is a positive integer, 0 ⁇ m 1 ⁇ N 1 -1 , 0 ⁇ n 1 ⁇ N 1 -1.
  • the value of the element d(m 2 , n 2 ) can be:
  • N 2 and N 2 is a preset value is a positive integer, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ N 2 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • O 1 and O 1 is a preset value is a positive integer
  • k 1 is an a first codebook parameters
  • the first parameter is a variable codebook
  • k 1 is an integer and 0 ⁇ k 1 ⁇ O 1 -1.
  • the diagonal array Can be expressed as:
  • the diagonal array Can be expressed as:
  • O 2 and O 2 is a preset value is a positive integer
  • k 2 is the second parameter codebook
  • the second codebook is a variable parameter
  • k 2 is an integer and 0 ⁇ k 2 ⁇ O 2 -1.
  • is a diagonal matrix
  • the value of the i-th element ⁇ ii on the main diagonal of the diagonal matrix is:
  • x is the third codebook parameter
  • the third codebook parameter is a variable, 0 ⁇ x ⁇ 2 ⁇ .
  • the roles of O 1 and O 2 can be understood as oversampling, and the first codebook parameter k 1 and the second codebook parameter k 2 can be used to set each column vector in the generated base codebook B.
  • N 1 and N 2 can be used to represent the number of groups of vibration elements 302 in each row (or column) of the antenna array 300 and the array of elements in each column (or row) of the vibration element group 302.
  • the number of 302, ⁇ ii can be used to set the polarization phase difference between the vibration elements working in different polarization directions in the vibration element group 302.
  • a preset number of preset values can be taken. (E.g Among them, the value of the codebook parameter x is selected.
  • the method 200 shown in FIG. 2 is performed based on the second basic codebook, when indicating the determined component vector, it is necessary to indicate the codebook parameter group and the basis determined from the codebook parameter group.
  • components of a vector selected from the codebook wherein the codebook each parameter set comprising a first value of a parameter k. 1 the codebook, second codebook parameter k is a value of 2 and a third codebook parameter x The value is taken, and the component vector can be further indicated by the index of the component vector.
  • there may be at least one set of codebook parameters indicated so the selected component vector may come from at least one base codebook.
  • the indicated codebook parameter group is multiple, when indicating the determined component vector, it is also required to indicate a correspondence relationship between the component vector and the codebook parameter group.
  • the matrix with Can be called a two-dimensional DFT matrix
  • the value of the element d(m 1 , n 1 ) in the can can be:
  • N 1 is a preset value and N 1 is a positive integer, 0 ⁇ m 1 ⁇ N 1 -1 , 0 ⁇ n 1 ⁇ N 1 -1.
  • the value of the element d(m 2 , n 2 ) can be:
  • N 2 and N 2 is a preset value is a positive integer, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ N 2 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • O 1 and O 1 is a preset value is a positive integer
  • k 1 is an a first codebook parameters
  • the first parameter of this code is a variable
  • k 1 is an integer and 0 ⁇ k 1 ⁇ O 1 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • O 2 and O 2 is a preset value is a positive integer
  • k 2 is the second parameter codebook
  • the second codebook is a variable parameter
  • k 2 is an integer and 0 ⁇ k 2 ⁇ O 2 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • Q 1 is a preset value and Q 1 is a positive integer
  • q 1 is a third codebook parameter
  • the third codebook parameter is a variable and q 1 is an integer
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • Q 2 is a preset value and Q 2 is a positive integer
  • q 2 is a fourth codebook parameter
  • the fourth codebook parameter is a variable and q 2 is an integer
  • the roles of O 1 and O 2 can be understood as oversampling, and the first codebook parameter k 1 and the second codebook parameter k 2 can be used to set each column vector in the generated base codebook B.
  • N 1 and N 2 can be used to represent the number of groups of vibration elements 302 in each row (or column) of the antenna array 300 and the array of elements in each column (or row) of the vibration element group 302.
  • the number of 302, Q 1 , Q 2 , the third codebook parameter q 1 and the fourth codebook parameter q 2 can be used to set the polarization phase of the elements in the array of elements 302.
  • components of a vector selected from the codebook wherein the codebook each parameter set comprising a first value of a codebook parameters k 1, k a second codebook parameter value of 2, the third codebook parameters Q 1
  • the codebook each parameter set comprising a first value of a codebook parameters k 1, k a second codebook parameter value of 2, the third codebook parameters Q 1
  • One value and one value of the fourth codebook parameter q 2 , and the component vector can be further indicated by the index of the component vector.
  • there may be at least one set of codebook parameters indicated so the selected component vector may come from at least one base codebook.
  • the indicated codebook parameter group is multiple, when indicating the determined component vector, it is also required to indicate a correspondence relationship between the component vector and the codebook parameter group.
  • the matrix with Can be called a two-dimensional DFT matrix
  • the value of the element d(m 1 , n 1 ) in the can can be:
  • N 1 is a positive integer, 0 ⁇ m 1 ⁇ N 1 -1,0 ⁇ n 1 ⁇ N 1 -1.
  • the value of the element d(m 2 , n 2 ) can be:
  • N 2 and N 2 is a preset value is a positive integer, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ N 2 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • O 1 and O 1 is a preset value is a positive integer
  • k 1 is an a first codebook parameters
  • the first parameter is a variable codebook
  • k 1 is an integer and 0 ⁇ k 1 ⁇ O 1 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • O 2 and O 2 is a preset value is a positive integer
  • k 2 is the second parameter codebook
  • the second codebook is a variable parameter
  • k 2 is an integer and 0 ⁇ k 2 ⁇ O 2 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • Q 1 is a preset value and Q 1 is a positive integer
  • p 1 is a third codebook parameter
  • the third codebook parameter is a variable and p 1 is an integer, and 0 ⁇ p 1 ⁇ (Q 1 -1) .
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • Q 2 is a preset value and Q 2 is a positive integer
  • p 2 is a fourth codebook parameter
  • the fourth codebook parameter is a variable and p 2 is an integer, and 0 ⁇ p 2 ⁇ (Q 2 -1) .
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • Q 3 is a preset value and Q 3 is a positive integer
  • q 1 is a fifth codebook parameter
  • the fifth codebook parameter is a variable and q 1 is an integer, and 0 ⁇ q 1 ⁇ (Q 3 -1) .
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • Q 4 is a preset value and Q 4 is a positive integer
  • q 2 is a sixth codebook parameter
  • the sixth codebook parameter is a variable and q 2 is an integer, and 0 ⁇ q 2 ⁇ (Q 4 -1) .
  • N 1 and N 2 can be used to represent the number of groups of vibration elements 302 in each row (or column) of the antenna array 300 and the elements in each column (or row) of the vibration element group 302.
  • the number of groups 302, Q 1 , Q 2 , Q 3 , Q 4 , third codebook parameter p 1 , fourth codebook parameter p 2 , fifth codebook parameter q 1 and sixth codebook parameter q 2 can be used for The polarization phase of the element in the array element 302 is set.
  • components of a vector selected from the codebook wherein the codebook each parameter set comprising a first value of a codebook parameters k 1, k a second codebook parameter value of 2, the third codebook parameters p 1 is a value, a value of the fourth codebook parameter p 2 , a value of the fifth codebook parameter q 1 , and a value of the sixth codebook parameter q 2 , and the component vector may further pass the component vector Index to indicate.
  • the selected component vector may come from at least one base codebook.
  • the indicated codebook parameter group is multiple, when indicating the determined component vector, it is also required to indicate a correspondence relationship between the component vector and the codebook parameter group.
  • the matrix with Can be called a two-dimensional DFT matrix
  • the value of the element d(m 1 , n 1 ) in the can can be:
  • N 1 is a positive integer, 0 ⁇ m 1 ⁇ N 1 -1,0 ⁇ n 1 ⁇ N 1 -1.
  • the value of the element d(m 2 , n 2 ) can be:
  • N 2 and N 2 is a preset value is a positive integer, 0 ⁇ m 2 ⁇ N 2 -1,0 ⁇ n 2 ⁇ N 2 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • O 1 and O 1 is a preset value is a positive integer
  • k 1 is an a first codebook parameters
  • the first parameter is a variable codebook
  • k 1 is an integer and 0 ⁇ k 1 ⁇ O 1 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • O 2 and O 2 is a preset value is a positive integer
  • k 2 is the second parameter codebook
  • the second codebook is a variable parameter
  • k 2 is an integer and 0 ⁇ k 2 ⁇ O 2 -1.
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • Q 1 is a preset value and Q 1 is a positive integer
  • q 1 is a third codebook parameter
  • the third codebook parameter is a variable and q 1 is an integer
  • the diagonal matrix can be expressed as:
  • the diagonal matrix can be expressed as:
  • Q 2 is a preset value and Q 2 is a positive integer
  • q 2 is a fourth codebook parameter
  • the fourth codebook parameter is a variable and q 2 is an integer
  • the roles of O 1 and O 2 can be understood as oversampling, and the first codebook parameter k 1 and the second codebook parameter k 2 can be used to set each column vector in the generated base codebook B.
  • N 1 and N 2 can be used to represent the number of groups of vibration elements 302 in each row (or column) of the antenna array 300 and the array of elements in each column (or row) of the vibration element group 302.
  • the number of 302, Q 1 , Q 2 , the third codebook parameter q 1 and the fourth codebook parameter q 2 can be used to set the polarization phase of the elements in the array of elements 302.
  • the method 200 shown in FIG. 2 when indicating the determined component vector, it is necessary to indicate the codebook parameter group and the basis determined from the codebook parameter group.
  • components of a vector selected from the codebook wherein the codebook each parameter set comprising a first codebook parameters k a value of 1, a second codebook parameter value k 2, and a third codebook parameters Q 1
  • One value and one value of the fourth codebook parameter q 2 , and the component vector can be further indicated by the index of the component vector.
  • there may be at least one set of codebook parameters indicated so the selected component vector may come from at least one base codebook.
  • the indicated codebook parameter group is multiple, when indicating the determined component vector, it is also required to indicate a correspondence relationship between the component vector and the codebook parameter group.
  • the indication may be performed by using a codebook parameter or an index of a codebook parameter group.
  • the transmitting end device and the receiving end device may determine the codebook parameter or the codebook parameter group in advance by negotiation.
  • any one of the transmitting device and the receiving device may also indicate the codebook parameter or the codebook parameter group to the peer device.
  • the codebook parameter or the codebook parameter set may be preset in the communication system design. In this way, the receiving device can predetermine the basic codebook for determining the component vector and its weight.
  • the receiving device may not need to indicate the codebook parameter or the codebook parameter set when indicating the component vector and its weight. Even if the determined component vector is from a plurality of base codebooks, the receiving device can explicitly display the component vector and its weight by using an index of the codebook parameter or the codebook parameter group, or a preset order of the component vectors. Or implicitly indicate the codebook parameter or the codebook parameter set. It can be seen that the codebook parameter or the codebook parameter set does not have to be indicated when indicating the component vector and its weight.
  • all component vectors and the weights of these component vectors can be determined based on only one basic codebook.
  • the component vector can be indicated by various other means, in addition to being indicated by an index of the component vector, such as, but not limited to, the component vector itself can be directly indicated.
  • the weight may be quantized to reduce the overhead generated by indicating the weight of the component vector.
  • the weights determined and indicated in the method 200 shown in FIG. 2 can be understood as the quantized values of the weights.
  • the quantized value can be expressed in the form of a binary sequence or an index, and the length of the binary sequence or index can be set according to specific needs (eg, feedback overhead).
  • the weights determined and indicated in the method 200 shown in FIG. 2 can also be understood as a binary sequence or index corresponding to the weighted value.
  • other processing can be performed on the above weights to reduce the overhead caused by indicating the weights.
  • the weights determined and indicated in the method 200 shown in FIG. 2 can understand the weights after the above processing. Of course, you can also directly indicate the weight itself.
  • At least one component matrix for example, but not limited to, a DFT matrix and a diagonal matrix, etc.
  • the coefficient of the coefficient, the specific value of the coefficient can be set as needed.
  • an appropriate coefficient may be set to at least one block matrix of the basic codebook according to specific needs.
  • the determination of the component vector and the determination period and the weight determination and indication period may be the same or different.
  • the determination and indication period of the component vector may be longer or shorter than the determination and indication period of the weight.
  • the operation of determining and indicating the component vector in method 200, and the operation of determining and indicating the weight should be understood to be done in the same feedback cycle, or may be done in different feedback cycles.
  • the component vector and its weight may be determined and indicated based on a wideband (eg, the entire system bandwidth, such as 20M or 10M), or may be based on a narrowband (eg, a subband within the entire system bandwidth, such as 2M or 1M).
  • the codebook can be expressed as follows:
  • W 1 may be referred to as a long-term/wideband codebook
  • W 2 may be referred to as a short-term/narrowband codebook.
  • W 1 indicating acknowledgment mode component of the vector
  • indicating acknowledgment mode component of the vector with reference to the prior art can identify and indication manner W 1, indicating acknowledgment mode and acknowledgment weights indicated refer to the prior art W 2 confirmation and indication manner, and these confirmation and indication manner it is also understood to be encompassed within the scope of the method 200.
  • the technical solution provided by the embodiment of the present invention constructs a basic codebook based on multiple parameters, which enables the basic codebook to describe the channel environment more accurately.
  • the precoding vector determined by the basic codebook provided by the embodiment of the present invention can more accurately match the channel, thereby improving the precoding effect.
  • an ideal precoding vector approximated by the sum of multiple component vector weights may need to be reconstructed for precoding.
  • the transmitting end device needs to perform a reconstructing operation according to the ideal precoding vector of the above-mentioned approximate representation of multiple receiving end devices that are simultaneously scheduled to obtain true precoding for each receiving end device.
  • Precoding vector wherein the purpose of the reconstruction may be, for example, but not limited to, reducing the signal sent to one receiving device to the other receiving end by setting the precoding vectors of different receiving end devices to be orthogonal to each other. Interference caused by equipment.
  • the above reconstruction process may be performed based on various algorithms, such as, but not limited to, Zero-Forcing (ZF) algorithm, Minimum Mean Square Error (MMSE) algorithm, and Block Diagonalization (Block Diagonalization, BD) algorithm.
  • ZF Zero-Forcing
  • MMSE Minimum Mean Square Error
  • BD Block Diagonalization
  • method 400 is an exemplary flow diagram of a method 400 of determining a precoding vector, in accordance with an embodiment of the present invention.
  • method 400 can be performed by, for example, but not limited to, a transmitting device.
  • Step 402 Receive a precoding vector indication, where the precoding vector indicates a plurality of component vectors for indicating an ideal precoding vector determined based on the at least one base codebook, and a weight of each component vector, where each component vector is a column vector of one of the at least one base codebook.
  • Step 404 Determine the ideal precoding vector according to the plurality of component vectors and the weight of each component vector.
  • an ideal precoding vector may be determined by weighting and summing a plurality of component vectors based on respective weights of the component vectors.
  • FIG. 5 is a schematic diagram showing an exemplary logical structure of a receiving end device 500 according to an embodiment of the invention. As shown in FIG. 5, the receiving end device 500 includes a determining module 502 and a transmitting module 504.
  • the determining module 502 is configured to determine a plurality of component vectors of the ideal precoding vector and a weight of each component vector based on the at least one base codebook, wherein each component vector is a column vector of one of the at least one base codebook.
  • the sending module 504 is configured to send a precoding vector indication, where the precoding vector indicates a weight used to indicate the multiple component vectors and each component vector.
  • the foregoing receiving device 500 is configured to perform the foregoing method 200.
  • the related technical content has been clearly described above in connection with the method 200 and the antenna array 300, and thus is not described herein again.
  • FIG. 6 is a schematic diagram showing an exemplary logical structure of a transmitting device 600 according to an embodiment of the invention. As shown in FIG. 6, the transmitting device 600 includes a receiving module 602 and a determining module 604.
  • the receiving module 602 is configured to receive a precoding vector indication, where the precoding vector indicates a plurality of component vectors for indicating an ideal precoding vector determined based on the at least one base codebook, and a weight of each component vector, each component a vector is a column vector of one of the at least one base codebook;
  • a determination module 604 is operative to determine the ideal precoding vector based on the plurality of component vectors and the weight of each component vector.
  • the determination module 604 can determine the ideal precoding vector by weighting the plurality of component vectors based on respective weights of the component vectors.
  • the foregoing transmitting device 600 is configured to perform the foregoing method 400.
  • the related art has been clearly described above in connection with the method 200, the antenna array 300, and the method 400, and thus is not described herein again.
  • FIG. 7 is a schematic diagram showing an exemplary hardware structure of a receiving end device 700 according to an embodiment of the invention.
  • communication device 700 includes a processor 702, a transceiver 704, a plurality of antennas 706, a memory 708, an I/O (Input/Output) interface 710, and a bus 712.
  • the transceiver 704 further includes a transmitter 7042 and a receiver 7044 that is further configured to store instructions 7082 and data 7084.
  • the processor 702, the transceiver 704, the memory 708, and the I/O interface 710 are communicatively coupled to one another via a bus 712, and the plurality of antennas 706 are coupled to the transceiver 704.
  • the processor 702 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor, such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 702 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 702 can be used to perform, for example, step 202 in the method 200 shown in FIG. 2, and the determining module 502 of the receiving end device 500 shown in FIG. Operation.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor 702 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing the instructions 7082 stored in the memory 708, the processor 702 Data 7084 may be required during the execution of the above steps and/or operations.
  • the transceiver 704 includes a transmitter 7042 and a receiver 7044, wherein the transmitter 7042 is configured to transmit signals through at least one of the plurality of antennas 706.
  • Receiver 7044 is configured to receive signals through at least one of the plurality of antennas 706.
  • the transmitter 7042 may be specifically configured to be executed by at least one of the plurality of antennas 706, for example, step 204 in the method 200 shown in FIG. 2, and The operation performed by the transmitting module 504 of the receiving device 500 is shown.
  • the memory 708 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory, and registers.
  • the memory 708 is specifically configured to store instructions 7082 and data 7084, and the processor 702 can perform the steps and/or operations described above by reading and executing the instructions 7082 stored in the memory 708, performing the operations and/or steps described above. The process may require the use of data 7084.
  • the I/O interface 710 is for receiving instructions and/or data from peripheral devices and outputting instructions and/or data to peripheral devices.
  • the communication device 700 may also include other hardware devices, which are not enumerated herein.
  • FIG. 8 is a schematic diagram showing an exemplary hardware structure of a transmitting device 800 according to an embodiment of the invention.
  • communication device 800 includes a processor 802, a transceiver 804, a plurality of antennas 806, a memory 808, an I/O (Input/Output) interface 810, and a bus 812.
  • the transceiver 804 further includes a transmitter 8042 and a receiver 8044 that is further configured to store instructions 8082 and data 8084.
  • processor 802, transceiver 804, memory 808, and I/O interface 810 are communicatively coupled to each other via bus 812, and a plurality of antennas 806 are coupled to transceiver 804.
  • the processor 802 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 802 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 802 can be used to perform, for example, step 404 in the method 400 shown in FIG. 4, and the determining module 604 of the transmitting device 600 shown in FIG. Operation.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • Processor 802 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing instructions 8082 stored in memory 808, processor 802 Data 8084 may be required during the execution of the above steps and/or operations.
  • the transceiver 804 includes a transmitter 8042 and a receiver 8044, wherein the transmitter 8042 is configured to transmit signals through at least one of the plurality of antennas 806.
  • the receiver 8044 is configured to receive a signal through at least one of the plurality of antennas 806.
  • the receiver 8044 is specifically configured to be executed by at least one of the plurality of antennas 806, step 402 in the method 400 shown in FIG. 4, and FIG. The operations performed by the receiving module 602 of the transmitting device 600.
  • the memory 808 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 808 is specifically configured to store instructions 8082 and data 8084, and the processor 802 can perform the steps and/or
  • the I/O interface 810 is configured to receive instructions and/or data from peripheral devices and to output instructions and/or data to peripheral devices.
  • the communication device 800 may also include other hardware devices, which are not enumerated herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Error Detection And Correction (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供了一种指示及确定预编码向量的方法和接收及发射端设备。指示预编码向量的方法包括:基于至少一个基础码本确定理想预编码向量的多个分量向量以及每一分量向量的权重,其中每一分量向量为所述至少一个基础码本其中之一的一个列向量;发送预编码向量指示,其中,所述预编码向量指示用于指示所述多个分量向量以及每一分量向量的权重。本发明实施例还提供了一种确定预编码向量的方法、接收端设备和发射端设备。本发明实施例提供的技术方案基于多种参数来构建基础码本,这使得该基础码本可以更加准确的描述信道环境。如此一来,基于本发明实施例提供的基础码本确定的预编码向量,可以更加准确的匹配信道,从而提升预编码效果。

Description

指示及确定预编码向量的方法和接收及发射端设备
本申请要求于2017年1月5日提交中国专利局、申请号为201710008458.5、发明名称为“指示及确定预编码向量的方法和接收及发射端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及预编码技术,尤其涉及一种指示及确定预编码向量的方法和接收及发射端设备。
背景技术
多入多出(Multiple Input Multiple Output,MIMO)技术的出现,给无线通信带来了革命性的变化。通过在发射端设备和接收端设备上部署多根天线,MIMO技术可以显著提高无线通信系统的性能。例如,在分集场景下,MIMO技术可有效提升传输可靠性;在复用场景下,MIMO技术可以大大提升传输吞吐量。
MIMO系统通常使用预编码技术来改善信道,以提升空间复用(Spatial Multiplexing)的效果。具体来说,预编码技术使用与信道相匹配的预编码矩阵来对空间复用的数据流(下文简称空间流)进行处理,借此来实现对信道的预编码,提升空间流的接收质量。
进行空间复用的每个空间流与预编码矩阵的一个列向量相对应,在预编码过程中,发射端设备通过该列向量对该空间流进行预编码,因此,上述列向量也可称为预编码向量。预编码向量可以由接收端设备基于码本来确定,并反馈给发射端设备。码本是一系列候选向量的集合,其中与信道最为匹配的一个候选向量,或者多个候选向量的加权之和,便可被用作预编码向量。然而,真实的信道环境非常复杂,基于现有码本无法精确的描述信道环境,因此,基于现有码本确定的预编码向量仅能实现与信道之间的粗略匹配,预编码效果十分有限。由此可见,需要一种码本,可以更加准确的描述信道环境。
发明内容
有鉴于此,实有必要提供一种指示预编码向量的方法,可改善预编码效果。
同时,提供一种确定预编码向量的方法,可改善预编码效果。
同时,提供一种接收端设备,可改善预编码效果。
同时,提供一种发射端设备,可改善预编码效果。
根据本发明的第一方面,提供一种指示预编码向量的方法,包括:
基于至少一个基础码本确定理想预编码向量的多个分量向量以及每一分量向量的权重,其中每一分量向量为所述至少一个基础码本其中之一的一个列向量;
发送预编码向量指示,其中,所述预编码向量指示用于指示所述多个分量向量以及每一分量向量的权重。
根据本发明的第二方面,提供一种确定预编码向量的方法,包括:
接收预编码向量指示,其中,所述预编码向量指示用于指示基于至少一个基础码本确 定的理想预编码向量的多个分量向量以及每一分量向量的权重,每一分量向量为所述至少一个基础码本其中之一的一个列向量;
根据所述多个分量向量以及每一分量向量的权重确定所述理想预编码向量。
根据本发明的第三方面,提供一种接收端设备,包括:
确定模块,用于基于至少一个基础码本确定理想预编码向量的多个分量向量以及每一分量向量的权重,其中每一分量向量为所述至少一个基础码本其中之一的一个列向量;
发送模块,用于发送预编码向量指示,其中,所述预编码向量指示用于指示所述多个分量向量以及每一分量向量的权重。
根据本发明的第四方面,提供一种发射端设备,其特征在于,包括:
接收模块,用于接收预编码向量指示,其中,所述预编码向量指示用于指示基于至少一个基础码本确定的理想预编码向量的多个分量向量以及每一分量向量的权重,每一分量向量为所述至少一个基础码本其中之一的一个列向量;
确定模块,用于根据所述多个分量向量以及每一分量向量的权重确定所述理想预编码向量。
在一种可能的设计中,上述至少一个基础码本为一个基础码本。
在一种可能的设计中,所述基础码本为:
Figure PCTCN2018071459-appb-000001
其中B为所述基础码本,且:
Figure PCTCN2018071459-appb-000002
矩阵
Figure PCTCN2018071459-appb-000003
中的元素d(m 1,n 1)为:
Figure PCTCN2018071459-appb-000004
或者
Figure PCTCN2018071459-appb-000005
O 1和N 1为预设值且O 1和N 1均为正整数,0≤m 1≤N 1-1,0≤n 1≤O 1N 1-1;
矩阵
Figure PCTCN2018071459-appb-000006
中的元素d(m 2,n 2)为:
Figure PCTCN2018071459-appb-000007
或者
Figure PCTCN2018071459-appb-000008
O 2和N 2为预设值且O 2和N 2均为正整数,0≤m 2≤N 2-1,0≤n 2≤O 2N 2-1;
ψ为对角矩阵,该对角矩阵的主对角线上的第i个元素Λ ii为:
Λ ii=e jx
其中1≤i≤O 1O 2N 1N 2,x为码本参数,且0≤x≤2π。
在一种可能的设计中,所述基础码本为:
Figure PCTCN2018071459-appb-000009
其中B为所述基础码本,且:
Figure PCTCN2018071459-appb-000010
矩阵
Figure PCTCN2018071459-appb-000011
中的元素d(m 1,n 1)为:
Figure PCTCN2018071459-appb-000012
或者
Figure PCTCN2018071459-appb-000013
N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1;
矩阵
Figure PCTCN2018071459-appb-000014
中的元素d(m 2,n 2)为:
Figure PCTCN2018071459-appb-000015
或者
Figure PCTCN2018071459-appb-000016
N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1;
Figure PCTCN2018071459-appb-000017
为对角矩阵,若:
Figure PCTCN2018071459-appb-000018
则该对角矩阵
Figure PCTCN2018071459-appb-000019
为:
Figure PCTCN2018071459-appb-000020
若:
Figure PCTCN2018071459-appb-000021
则该对角矩阵
Figure PCTCN2018071459-appb-000022
为:
Figure PCTCN2018071459-appb-000023
其中O 1为预设值且O 1为正整数,k 1为第一码本参数且k 1为整数,且0≤k 1≤O 1-1;
Figure PCTCN2018071459-appb-000024
为对角矩阵,若:
Figure PCTCN2018071459-appb-000025
则该对角阵
Figure PCTCN2018071459-appb-000026
为:
Figure PCTCN2018071459-appb-000027
若:
Figure PCTCN2018071459-appb-000028
则该对角阵
Figure PCTCN2018071459-appb-000029
为:
Figure PCTCN2018071459-appb-000030
其中O 2为预设值且O 2为正整数,k 2为第二码本参数且k 2为整数,且0≤k 2≤O 2-1;ψ为对角矩阵,该对角矩阵的主对角线上的第i个元素Λ ii为:
Λ ii=e jx
其中1≤i≤O 1O 2N 1N 2,x为第三码本参数,且0≤x≤2π。
在一种可能的设计中,所述基础码本为:
Figure PCTCN2018071459-appb-000031
其中B为所述基础码本,且矩阵
Figure PCTCN2018071459-appb-000032
中的元素d(m 1,n 1)为:
Figure PCTCN2018071459-appb-000033
或者
Figure PCTCN2018071459-appb-000034
N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1;
矩阵
Figure PCTCN2018071459-appb-000035
中的元素d(m 2,n 2)为:
Figure PCTCN2018071459-appb-000036
或者
Figure PCTCN2018071459-appb-000037
N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1;
Figure PCTCN2018071459-appb-000038
为对角矩阵,若:
Figure PCTCN2018071459-appb-000039
则该对角矩阵
Figure PCTCN2018071459-appb-000040
为:
Figure PCTCN2018071459-appb-000041
若:
Figure PCTCN2018071459-appb-000042
则该对角矩阵
Figure PCTCN2018071459-appb-000043
为:
Figure PCTCN2018071459-appb-000044
其中O 1为预设值且O 1为正整数,k 1为第一码本参数且k 1为整数,且0≤k 1≤O 1-1;
Figure PCTCN2018071459-appb-000045
为对角矩阵,若:
Figure PCTCN2018071459-appb-000046
则该对角矩阵
Figure PCTCN2018071459-appb-000047
为:
Figure PCTCN2018071459-appb-000048
若:
Figure PCTCN2018071459-appb-000049
则该对角矩阵
Figure PCTCN2018071459-appb-000050
为:
Figure PCTCN2018071459-appb-000051
其中O 2为预设值且O 2为正整数,k 2为第二码本参数且k 2为整数,且0≤k 2≤O 2-1;
Figure PCTCN2018071459-appb-000052
为对角矩阵,若:
Figure PCTCN2018071459-appb-000053
则该对角矩阵
Figure PCTCN2018071459-appb-000054
为:
Figure PCTCN2018071459-appb-000055
若:
Figure PCTCN2018071459-appb-000056
则该对角矩阵
Figure PCTCN2018071459-appb-000057
为:
Figure PCTCN2018071459-appb-000058
其中Q 1为预设值且Q 1为正整数,q 1为第三码本参数且q 1为整数,且-(Q 1-1)≤q 1≤(Q 1-1);
Figure PCTCN2018071459-appb-000059
为对角矩阵,若:
Figure PCTCN2018071459-appb-000060
则该对角矩阵
Figure PCTCN2018071459-appb-000061
为:
Figure PCTCN2018071459-appb-000062
若:
Figure PCTCN2018071459-appb-000063
则该对角矩阵
Figure PCTCN2018071459-appb-000064
为:
Figure PCTCN2018071459-appb-000065
其中Q 2为预设值且Q 2为正整数,q 2为第四码本参数且q 2为整数,且-(Q 2-1)≤q 2≤(Q 2-1)。
在一种可能的设计中,所述基础码本为:
Figure PCTCN2018071459-appb-000066
其中B为所述基础码本,且矩阵
Figure PCTCN2018071459-appb-000067
中的元素d(m 1,n 1)为:
Figure PCTCN2018071459-appb-000068
或者
Figure PCTCN2018071459-appb-000069
N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1;
矩阵
Figure PCTCN2018071459-appb-000070
中的元素d(m 2,n 2)为:
Figure PCTCN2018071459-appb-000071
或者
Figure PCTCN2018071459-appb-000072
N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1;
Figure PCTCN2018071459-appb-000073
为对角矩阵,若:
Figure PCTCN2018071459-appb-000074
则该对角矩阵
Figure PCTCN2018071459-appb-000075
为:
Figure PCTCN2018071459-appb-000076
若:
Figure PCTCN2018071459-appb-000077
则该对角矩阵
Figure PCTCN2018071459-appb-000078
为:
Figure PCTCN2018071459-appb-000079
其中O 1为预设值且O 1为正整数,k 1为第一码本参数且k 1为整数,且0≤k 1≤O 1-1;
Figure PCTCN2018071459-appb-000080
为对角矩阵,若:
Figure PCTCN2018071459-appb-000081
则该对角矩阵
Figure PCTCN2018071459-appb-000082
为:
Figure PCTCN2018071459-appb-000083
若:
Figure PCTCN2018071459-appb-000084
则该对角矩阵
Figure PCTCN2018071459-appb-000085
为:
Figure PCTCN2018071459-appb-000086
其中O 2为预设值且O 2为正整数,k 2为第二码本参数且k 2为整数,且0≤k 2≤O 2-1;
Figure PCTCN2018071459-appb-000087
为对角矩阵,若:
Figure PCTCN2018071459-appb-000088
则该对角矩阵
Figure PCTCN2018071459-appb-000089
为:
Figure PCTCN2018071459-appb-000090
若:
Figure PCTCN2018071459-appb-000091
则该对角矩阵
Figure PCTCN2018071459-appb-000092
为:
Figure PCTCN2018071459-appb-000093
其中Q 1为预设值且Q 1为正整数,p 1为第三码本参数且p 1为整数,且0≤p 1≤(Q 1-1);
Figure PCTCN2018071459-appb-000094
为对角矩阵,若:
Figure PCTCN2018071459-appb-000095
则该对角矩阵
Figure PCTCN2018071459-appb-000096
为:
Figure PCTCN2018071459-appb-000097
若:
Figure PCTCN2018071459-appb-000098
则该对角矩阵
Figure PCTCN2018071459-appb-000099
为:
Figure PCTCN2018071459-appb-000100
其中Q 2为预设值且Q 2为正整数,p 2为第四码本参数且p 2为整数,且0≤p 2≤(Q 2-1);
Figure PCTCN2018071459-appb-000101
为对角矩阵,若:
Figure PCTCN2018071459-appb-000102
则该对角矩阵
Figure PCTCN2018071459-appb-000103
为:
Figure PCTCN2018071459-appb-000104
若:
Figure PCTCN2018071459-appb-000105
则该对角矩阵
Figure PCTCN2018071459-appb-000106
为:
Figure PCTCN2018071459-appb-000107
其中Q 3为预设值且Q 3为正整数,q 1为第五码本参数且q 1为整数,且0≤q 1≤(Q 3-1);
Figure PCTCN2018071459-appb-000108
为对角矩阵,若:
Figure PCTCN2018071459-appb-000109
则该对角矩阵
Figure PCTCN2018071459-appb-000110
为:
Figure PCTCN2018071459-appb-000111
若:
Figure PCTCN2018071459-appb-000112
则该对角矩阵
Figure PCTCN2018071459-appb-000113
为:
Figure PCTCN2018071459-appb-000114
其中Q 4为预设值且Q 4为正整数,q 2为第六码本参数且q 2为整数,且0≤q 2≤(Q 4-1)。在一种可能的设计中,所述基础码本为:
Figure PCTCN2018071459-appb-000115
其中B为所述基础码本,且矩阵
Figure PCTCN2018071459-appb-000116
中的元素d(m 1,n 1)为:
Figure PCTCN2018071459-appb-000117
或者
Figure PCTCN2018071459-appb-000118
N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1;
矩阵
Figure PCTCN2018071459-appb-000119
中的元素d(m 2,n 2)为:
Figure PCTCN2018071459-appb-000120
或者
Figure PCTCN2018071459-appb-000121
N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1;
Figure PCTCN2018071459-appb-000122
为对角矩阵,若:
Figure PCTCN2018071459-appb-000123
则该对角矩阵
Figure PCTCN2018071459-appb-000124
为:
Figure PCTCN2018071459-appb-000125
若:
Figure PCTCN2018071459-appb-000126
则该对角矩阵
Figure PCTCN2018071459-appb-000127
为:
Figure PCTCN2018071459-appb-000128
其中O 1为预设值且O 1为正整数,k 1为第一码本参数且k 1为整数,且0≤k 1≤O 1-1;
Figure PCTCN2018071459-appb-000129
为对角矩阵,若:
Figure PCTCN2018071459-appb-000130
则该对角矩阵
Figure PCTCN2018071459-appb-000131
为:
Figure PCTCN2018071459-appb-000132
若:
Figure PCTCN2018071459-appb-000133
则该对角矩阵
Figure PCTCN2018071459-appb-000134
为:
Figure PCTCN2018071459-appb-000135
其中O 2为预设值且O 2为正整数,k 2为第二码本参数且k 2为整数,且0≤k 2≤O 2-1;
Figure PCTCN2018071459-appb-000136
为对角矩阵,若:
Figure PCTCN2018071459-appb-000137
则该对角矩阵
Figure PCTCN2018071459-appb-000138
为:
Figure PCTCN2018071459-appb-000139
若:
Figure PCTCN2018071459-appb-000140
则该对角矩阵
Figure PCTCN2018071459-appb-000141
为:
Figure PCTCN2018071459-appb-000142
其中,Q 1为预设值且Q 1为正整数,q 1为第三码本参数且q 1为整数,且-(Q 1-1)≤q 1≤(Q 1-1);
Figure PCTCN2018071459-appb-000143
为对角矩阵,若:
Figure PCTCN2018071459-appb-000144
则该对角矩阵
Figure PCTCN2018071459-appb-000145
为:
Figure PCTCN2018071459-appb-000146
若:
Figure PCTCN2018071459-appb-000147
则该对角矩阵
Figure PCTCN2018071459-appb-000148
为:
Figure PCTCN2018071459-appb-000149
其中,Q 2为预设值且Q 2为正整数,q 2为第四码本参数且q 2为整数,且-(Q 2-1)≤q 2≤(Q 2-1)。
在一种可能的设计中,对于上述任一种基础码本,该基础码本中的至少一个分块矩阵配置有额外的系数。
在一种可能的设计中,对于上述任一种基础码本,该基础码本中的至少一个分块矩阵中的至少一个组成矩阵配置有额外的系数。
本发明实施例提供的技术方案基于多种参数来构建基础码本,这使得该基础码本可以更加准确的描述信道环境。如此一来,基于本发明实施例提供的基础码本确定的预编码向量,可以更加准确的匹配信道,从而提升预编码效果。
附图说明
图1是依照本发明一实施例的无线通信网络的示范性示意图;
图2是依照本发明一实施例的指示预编码向量的方法的示范性流程图;
图3是依照本发明一实施例的天线阵列的示范性示意图;
图4是依照本发明一实施例的确定预编码向量的方法的示范性流程图;
图5是依照本发明一实施例的接收端设备的示范性逻辑结构示意图;
图6是依照本发明一实施例的发射端设备的示范性逻辑结构示意图;
图7是依照本发明一实施例的接收端设备的示范性硬件结构示意图;
图8是依照本发明一实施例的发射端设备的示范性硬件结构示意图。
具体实施方式
图1是依照本发明一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间可通过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106用于为终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端 设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此这些基站可以进行相互协同,以此来为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以进行相互协同,来为终端设备112提供服务。又例如,如图1所示,基站102、基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站102、104和106可以进行相互协同,来为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备108~122可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~122还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,基站102~106和终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过 衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。
此外,基站102~106与终端设备108~122可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还可能包括其他设备,例如但不限于基站控制器(Base Station Controller,BSC),同时也可根据具体需要来配置基站和终端设备的数量。
通常来说,在通信过程中,接收端设备根据发射端设备发射的参考信号确定信道矩阵,并基于信道矩阵和码本确定预编码矩阵,以及将预编码矩阵反馈给发射端设备。发射端设备根据预编码矩阵对待发射数据进行预编码,并将预编码后的数据发往接收端设备。在本文中,上述接收端设备可以是图1所示的终端设备108~122,发射端设备可以是图1所示的基站102~106;或者,上述接收端设备可以是图1所示的基站102~106,发射端设备可以是图1所示的终端设备108~122。本发明实施例提供了一种用于指示以及确定预编码向量的方案,以及相应的接收端设备和发射端设备,下面就对本发明实施例提供的技术方案进行详细描述。
图2是依照本发明一实施例的指示预编码向量的方法200的示范性流程图。在具体实现过程中,方法200可由例如但不限于接收端设备来执行。
步骤202,基于至少一个基础码本确定理想预编码向量的多个分量向量以及每一分量向量的权重,其中每一分量向量为所述至少一个基础码本其中之一的一个列向量。
步骤204,发送预编码向量指示,其中,所述预编码向量指示用于指示所述多个分量向量以及每一分量向量的权重。
在具体实现过程中,上述理想预编码向量可以通过多种方法来获得,且通过不同方法获得的理想预编码向量可以不同。例如,上述理想预编码向量可通过对信道矩阵进行奇异值分解(Singular Value Decomposition,SVD)来获得。具体来说,对信道矩阵进行奇异 值分解(Singular Value Decomposition,SVD),可以将信道矩阵分解为左酉矩阵、对角矩阵和右酉矩阵三者乘积的形式。在具体实现过程中,可以将右酉矩阵的共轭转置矩阵作为理想预编码矩阵,该理想预编码矩阵的列向量即可作为理想预编码向量。此外,上述依照奇异值分解获得的理想预编码矩阵,也可以通过,例如但不限于,对信道矩阵的相关矩阵进行特征值分解来获得。在具体实现过程中,可以根据系统设计的整体需要,确定理想预编码向量的具体值及其获取方法。有关理想预编码向量的技术细节已经在现有技术中进行了清楚的描述,因此此处不再赘述。
在获得上述理想预编码向量之后,可以将该理想预编码向量近似表示成多个分量向量加权之和的形式,即:
Figure PCTCN2018071459-appb-000150
其中P代表理想预编码向量,b i代表分量向量i,a i代表分量向量i的权重。在具体实现过程中,可以根据具体需要(例如但不限于精确度的需要),设置分量向量的数量m(m为正整数),例如,分量向量的数量可以为预设的数量。
分量向量选自基础码本。基础码本通常可以表现为矩阵的形式,因此也可将基础码本称为基础码本矩阵。对于本文提到的基础码本,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可与基础码本矩阵互换。
基础码本矩阵包含多个列向量,其中的一些列向量,可以被选中作为分量向量。分量向量的选择方法有多种,可以根据具体的需要选择合适的方法。举例来说,可以根据基础码本矩阵的列向量与理想预编码向量的接近程度,从多个列向量中确定分量向量,其中与理想预编码向量接近程度最高的多个列向量即可被选中作为分量向量。在具体实现过程中,上述接近程度可以具体体现为,例如但不限于,基础码本矩阵的列向量与理想预编码向量的内积或者欧氏距离。以内积为例,在确定分量向量时,可以将与理想预编码向量的内积最大的多个列向量作为分量向量,当存在多个基础码本矩阵时,上述多个列向量可以属于不同的基础码本。此外,还可以进一步将每一分量向量与理想预编码向量的内积作为该分量向量的权重。确定分量向量及其权重的方法在现有技术中已经做了清楚的描述,本文不再一一赘述。
为更加准确的描述信道环境,本发明实施例提供了多种基础码本,下面就对这些基础码本进行详细的描述。
基础码本通常与天线阵列相关联,举例来说,基础码本表达式所涉及的许多参数可以理解为是用于表征天线阵列的不同属性。因此,为便于理解本发明实施例提供的基础码本,下文将结合天线阵列对基础码本进行描述。尽管如此,本领域的技术人员应当明白,本发明实施例提供的基础码本并非仅限于特定的天线阵列。在具体实现过程中,可以按照具体的需要,选择合适的天线阵列,并基于所选的天线阵列,设置本发明实施例提供的基础码本中涉及的各种参数,以便应用本发明实施例提供的基础码本确定预编码向量。
图3是依照本发明一实施例的天线阵列300的示范性示意图。如图3所示,天线阵列300包含多个振元组302,这些振元组302以矩阵方式进行排布。具体来说,该矩阵的每一行包含多个振元组302,每一列包含多个振元组302。每个振元组302包含两个振元,分别为工作在第一极化方向的振元304和工作在第二极化方向的振元306。
在本文描述中,
Figure PCTCN2018071459-appb-000151
代表克罗内克乘积。
本发明实施例提供的第一种基础码本B可以表示为如下形式:
Figure PCTCN2018071459-appb-000152
其中:
Figure PCTCN2018071459-appb-000153
矩阵
Figure PCTCN2018071459-appb-000154
Figure PCTCN2018071459-appb-000155
可以称为经过过采样的二维离散傅里叶变换(Discrete Fourier Transform,DFT)矩阵,且
Figure PCTCN2018071459-appb-000156
中的元素d(m 1,n 1)的值可以为:
Figure PCTCN2018071459-appb-000157
或者
Figure PCTCN2018071459-appb-000158
O 1和N 1为预设值且O 1和N 1均为正整数,0≤m 1≤N 1-1,0≤n 1≤O 1N 1-1。
Figure PCTCN2018071459-appb-000159
中的元素d(m 2,n 2)的值可以为:
Figure PCTCN2018071459-appb-000160
或者
Figure PCTCN2018071459-appb-000161
O 2和N 2为预设值且O 2和N 2均为正整数,0≤m 2≤N 2-1,0≤n 2≤O 2N 2-1。ψ为对角矩阵,该对角矩阵的主对角线上的第i个元素Λ ii的值为:
Λ ii=e jx
其中1≤i≤O 1O 2N 1N 2,x为码本参数,该码本参数是一个变量,且0≤x≤2π。
在具体实现过程中,O 1和O 2的作用可以理解为进行过采样,N 1和N 2可用于表示上述天线阵列300中每一行(或者列)振元组302中振元组302的数量和每一列(或者行)振元组302中振元组302的数量,Λ ii可用于设置振元组302中工作在不同极化方向上的振元之间的极化相位差,在具体实现过程中,可以从一组预设数量的预设取值(例如
Figure PCTCN2018071459-appb-000162
)之中选择码本参数x的取值。
不难理解,若图2所示的方法200是基于第一种基础码本进行的,则在指示确定的分量向量时,需要指示码本参数x的取值,以及从基于该码本参数x的取值确定的基础码本中选择的分量向量,而分量向量可以进一步通过该分量向量的索引来指示。应注意,所指示的码本参数x的取值可能有至少一个,因此选择的分量向量可能来自至少一个基础码本。当所指示的码本参数x的取值为多个时,在指示确定的分量向量时,还需要指示分量向量与码本参数x的取值之间的对应关系。
本发明实施例提供的第二种基础码本B可以表示为如下形式:
Figure PCTCN2018071459-appb-000163
其中:
Figure PCTCN2018071459-appb-000164
矩阵
Figure PCTCN2018071459-appb-000165
Figure PCTCN2018071459-appb-000166
可以称为二维DFT矩阵,且
Figure PCTCN2018071459-appb-000167
中的元素d(m 1,n 1)的值可以为:
Figure PCTCN2018071459-appb-000168
或者
Figure PCTCN2018071459-appb-000169
N 1为预设值且N 1为正整数,0≤m 1≤N 1-1 0≤n 1≤N 1-1。
Figure PCTCN2018071459-appb-000170
中的元素d(m 2,n 2)的值可以为:
Figure PCTCN2018071459-appb-000171
或者
Figure PCTCN2018071459-appb-000172
N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1。
Figure PCTCN2018071459-appb-000173
为对角矩阵,若:
Figure PCTCN2018071459-appb-000174
则该对角矩阵
Figure PCTCN2018071459-appb-000175
可表示为:
Figure PCTCN2018071459-appb-000176
若:
Figure PCTCN2018071459-appb-000177
则该对角矩阵
Figure PCTCN2018071459-appb-000178
可表示为:
Figure PCTCN2018071459-appb-000179
其中O 1为预设值且O 1为正整数,k 1为第一码本参数,该第一码本参数是一个变量且k 1为整数,且0≤k 1≤O 1-1。
Figure PCTCN2018071459-appb-000180
为对角矩阵,若:
Figure PCTCN2018071459-appb-000181
则该对角阵
Figure PCTCN2018071459-appb-000182
可表示为:
Figure PCTCN2018071459-appb-000183
若:
Figure PCTCN2018071459-appb-000184
则该对角阵
Figure PCTCN2018071459-appb-000185
可表示为:
Figure PCTCN2018071459-appb-000186
其中O 2为预设值且O 2为正整数,k 2为第二码本参数,该第二码本参数是一个变量且k 2为整数,且0≤k 2≤O 2-1。ψ为对角矩阵,该对角矩阵的主对角线上的第i个元素Λ ii的值为:
Λ ii=e jx
其中1≤i≤O 1O 2N 1N 2,x为第三码本参数,该第三码本参数是一个变量,0≤x≤2π。
在具体实现过程中,O 1和O 2的作用可以理解为进行过采样,第一码本参数k 1和第二码本参数k 2可用于将生成的基础码本B内的各个列向量设置成彼此正交,N 1和N 2可用于表示上述天线阵列300中每一行(或者列)振元组302中振元组302的数量和每一列(或者行)振元组302中振元组302的数量,Λ ii可用于设置振元组302中工作在不同极化方向上的振元之间的极化相位差,在具体实现过程中,可以从一组预设数量的预设取值(例 如
Figure PCTCN2018071459-appb-000187
)之中选择码本参数x的取值。
不难理解,若图2所示的方法200是基于第二种基础码本进行的,则在指示确定的分量向量时,需要指示码本参数组,以及从基于该码本参数组确定的基础码本中选择的分量向量,其中,每个码本参数组中包含第一码本参数k 1的一个取值、第二码本参数k 2的一个取值以及第三码本参数x的一个取值,而分量向量可以进一步通过该分量向量的索引来指示。应注意,所指示的码本参数组可能有至少一个,因此选择的分量向量可能来自至少一个基础码本。当所指示的码本参数组为多个时,在指示确定的分量向量时,还需要指示分量向量与码本参数组之间的对应关系。
本发明实施例提供的第三种基础码本B可以表示为如下形式:
Figure PCTCN2018071459-appb-000188
其中,矩阵
Figure PCTCN2018071459-appb-000189
Figure PCTCN2018071459-appb-000190
可以称为二维DFT矩阵,且
Figure PCTCN2018071459-appb-000191
中的元素d(m 1,n 1)的值可以为:
Figure PCTCN2018071459-appb-000192
或者
Figure PCTCN2018071459-appb-000193
N 1为预设值且N 1为正整数,0≤m 1≤N 1-1 0≤n 1≤N 1-1。
Figure PCTCN2018071459-appb-000194
中的元素d(m 2,n 2)的值可以为:
Figure PCTCN2018071459-appb-000195
或者
Figure PCTCN2018071459-appb-000196
N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1。
Figure PCTCN2018071459-appb-000197
为对角矩阵,若:
Figure PCTCN2018071459-appb-000198
则该对角矩阵
Figure PCTCN2018071459-appb-000199
可表示为:
Figure PCTCN2018071459-appb-000200
若:
Figure PCTCN2018071459-appb-000201
则该对角矩阵
Figure PCTCN2018071459-appb-000202
可表示为:
Figure PCTCN2018071459-appb-000203
其中O 1为预设值且O 1为正整数,k 1为第一码本参数,该第一码本参数是一个变且k 1为整数,且0≤k 1≤O 1-1。
Figure PCTCN2018071459-appb-000204
为对角矩阵,若:
Figure PCTCN2018071459-appb-000205
则该对角矩阵
Figure PCTCN2018071459-appb-000206
可表示为:
Figure PCTCN2018071459-appb-000207
若:
Figure PCTCN2018071459-appb-000208
则该对角矩阵
Figure PCTCN2018071459-appb-000209
可表示为:
Figure PCTCN2018071459-appb-000210
其中O 2为预设值且O 2为正整数,k 2为第二码本参数,该第二码本参数是一个变量且k 2为整数,且0≤k 2≤O 2-1。
Figure PCTCN2018071459-appb-000211
为对角矩阵,若:
Figure PCTCN2018071459-appb-000212
则该对角矩阵
Figure PCTCN2018071459-appb-000213
可表示为:
Figure PCTCN2018071459-appb-000214
若:
Figure PCTCN2018071459-appb-000215
则该对角矩阵
Figure PCTCN2018071459-appb-000216
可表示为:
Figure PCTCN2018071459-appb-000217
其中Q 1为预设值且Q 1为正整数,q 1为第三码本参数,该第三码本参数是一个变量且q 1为整数,且-(Q 1-1)≤q 1≤(Q 1-1)。
Figure PCTCN2018071459-appb-000218
为对角矩阵,若:
Figure PCTCN2018071459-appb-000219
则该对角矩阵
Figure PCTCN2018071459-appb-000220
可表示为:
Figure PCTCN2018071459-appb-000221
若:
Figure PCTCN2018071459-appb-000222
则该对角矩阵
Figure PCTCN2018071459-appb-000223
可表示为:
Figure PCTCN2018071459-appb-000224
其中Q 2为预设值且Q 2为正整数,q 2为第四码本参数,该第四码本参数是一个变量且q 2为整数,且-(Q 2-1)≤q 2≤(Q 2-1)。
在具体实现过程中,O 1和O 2的作用可以理解为进行过采样,第一码本参数k 1和第二码本参数k 2可用于将生成的基础码本B内的各个列向量设置成彼此正交,N 1和N 2可用于表示上述天线阵列300中每一行(或者列)振元组302中振元组302的数量和每一列(或者行)振元组302中振元组302的数量,Q 1、Q 2、第三码本参数q 1和第四码本参数q 2可用于设置阵元组302内振元的极化相位。
不难理解,若图2所示的方法200是基于第三种基础码本进行的,则在指示确定的分量向量时,需要指示码本参数组,以及从基于该码本参数组确定的基础码本中选择的分量向量,其中,每个码本参数组中包含第一码本参数k 1的一个取值、第二码本参数k 2的一个取值、第三码本参数q 1的一个取值和第四码本参数q 2的一个取值,而分量向量可以进一步通过该分量向量的索引来指示。应注意,所指示的码本参数组可能有至少一个,因此选择的分量向量可能来自至少一个基础码本。当所指示的码本参数组为多个时,在指示确定的分量向量时,还需要指示分量向量与码本参数组之间的对应关系。
本发明实施例提供的第四种基础码本B可以表示为如下形式:
Figure PCTCN2018071459-appb-000225
其中,矩阵
Figure PCTCN2018071459-appb-000226
Figure PCTCN2018071459-appb-000227
可以称为二维DFT矩阵,且
Figure PCTCN2018071459-appb-000228
中的元素d(m 1,n 1)的值可以为:
Figure PCTCN2018071459-appb-000229
或者
Figure PCTCN2018071459-appb-000230
N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1。
Figure PCTCN2018071459-appb-000231
中的元素d(m 2,n 2)的值可以为:
Figure PCTCN2018071459-appb-000232
或者
Figure PCTCN2018071459-appb-000233
N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1。
Figure PCTCN2018071459-appb-000234
为对角矩阵,若:
Figure PCTCN2018071459-appb-000235
则该对角矩阵
Figure PCTCN2018071459-appb-000236
可表示为:
Figure PCTCN2018071459-appb-000237
若:
Figure PCTCN2018071459-appb-000238
则该对角矩阵
Figure PCTCN2018071459-appb-000239
可表示为:
Figure PCTCN2018071459-appb-000240
其中O 1为预设值且O 1为正整数,k 1为第一码本参数,该第一码本参数是一个变量且k 1为整数,且0≤k 1≤O 1-1。
Figure PCTCN2018071459-appb-000241
为对角矩阵,若:
Figure PCTCN2018071459-appb-000242
则该对角矩阵
Figure PCTCN2018071459-appb-000243
可表示为:
Figure PCTCN2018071459-appb-000244
若:
Figure PCTCN2018071459-appb-000245
则该对角矩阵
Figure PCTCN2018071459-appb-000246
可表示为:
Figure PCTCN2018071459-appb-000247
其中O 2为预设值且O 2为正整数,k 2为第二码本参数,该第二码本参数是一个变量且k 2为整数,且0≤k 2≤O 2-1。
Figure PCTCN2018071459-appb-000248
为对角矩阵,若:
Figure PCTCN2018071459-appb-000249
则该对角矩阵
Figure PCTCN2018071459-appb-000250
可表示为:
Figure PCTCN2018071459-appb-000251
若:
Figure PCTCN2018071459-appb-000252
则该对角矩阵
Figure PCTCN2018071459-appb-000253
可表示为:
Figure PCTCN2018071459-appb-000254
其中Q 1为预设值且Q 1为正整数,p 1为第三码本参数,该第三码本参数是一个变量且p 1为整数,且0≤p 1≤(Q 1-1)。
Figure PCTCN2018071459-appb-000255
为对角矩阵,若:
Figure PCTCN2018071459-appb-000256
则该对角矩阵
Figure PCTCN2018071459-appb-000257
可表示为:
Figure PCTCN2018071459-appb-000258
若:
Figure PCTCN2018071459-appb-000259
则该对角矩阵
Figure PCTCN2018071459-appb-000260
可表示为:
Figure PCTCN2018071459-appb-000261
其中Q 2为预设值且Q 2为正整数,p 2为第四码本参数,该第四码本参数是一个变量且p 2为整数,且0≤p 2≤(Q 2-1)。
Figure PCTCN2018071459-appb-000262
为对角矩阵,若:
Figure PCTCN2018071459-appb-000263
则该对角矩阵
Figure PCTCN2018071459-appb-000264
可表示为:
Figure PCTCN2018071459-appb-000265
若:
Figure PCTCN2018071459-appb-000266
则该对角矩阵
Figure PCTCN2018071459-appb-000267
可表示为:
Figure PCTCN2018071459-appb-000268
其中Q 3为预设值且Q 3为正整数,q 1为第五码本参数,该第五码本参数是一个变量且q 1为整数,且0≤q 1≤(Q 3-1)。
Figure PCTCN2018071459-appb-000269
为对角矩阵,若:
Figure PCTCN2018071459-appb-000270
则该对角矩阵
Figure PCTCN2018071459-appb-000271
可表示为:
Figure PCTCN2018071459-appb-000272
若:
Figure PCTCN2018071459-appb-000273
则该对角矩阵
Figure PCTCN2018071459-appb-000274
可表示为:
Figure PCTCN2018071459-appb-000275
其中Q 4为预设值且Q 4为正整数,q 2为第六码本参数,该第六码本参数是一个变量且q 2为整数,且0≤q 2≤(Q 4-1)。
在具体实现过程中,O 1和O 2的作用可以理解为进行过采样,第一码本参数k 1和第二码本参数k 2,可用于将生成的基础码本B内的各个列向量设置成彼此正交,N 1和N 2可用于表示上述天线阵列300中每一行(或者列)振元组302中振元组302的数量和每一列(或者行)振元组302中振元组302的数量,Q 1、Q 2、Q 3、Q 4、第三码本参数p 1、第四码本参数p 2、第五码本参数q 1和第六码本参数q 2可用于设置阵元组302内振元的极化相位。
不难理解,若图2所示的方法200是基于第四种基础码本进行的,则在指示确定的分量向量时,需要指示码本参数组,以及从基于该码本参数组确定的基础码本中选择的分量向量,其中,每个码本参数组中包含第一码本参数k 1的一个取值、第二码本参数k 2的一个取值、第三码本参数p 1的一个取值、第四码本参数p 2的一个取值、第五码本参数q 1的一个取值和第六码本参数q 2的一个取值,而分量向量可以进一步通过该分量向量的索引 来指示。应注意,所指示的码本参数组可能有至少一个,因此选择的分量向量可能来自至少一个基础码本。当所指示的码本参数组为多个时,在指示确定的分量向量时,还需要指示分量向量与码本参数组之间的对应关系。
本发明实施例提供的第五种基础码本B可以表示为如下形式:
Figure PCTCN2018071459-appb-000276
其中,矩阵
Figure PCTCN2018071459-appb-000277
Figure PCTCN2018071459-appb-000278
可以称为二维DFT矩阵,且
Figure PCTCN2018071459-appb-000279
中的元素d(m 1,n 1)的值可以为:
Figure PCTCN2018071459-appb-000280
或者
Figure PCTCN2018071459-appb-000281
N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1。
Figure PCTCN2018071459-appb-000282
中的元素d(m 2,n 2)的值可以为:
Figure PCTCN2018071459-appb-000283
或者
Figure PCTCN2018071459-appb-000284
N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1。
Figure PCTCN2018071459-appb-000285
为对角矩阵,若:
Figure PCTCN2018071459-appb-000286
则该对角矩阵
Figure PCTCN2018071459-appb-000287
可表示为:
Figure PCTCN2018071459-appb-000288
若:
Figure PCTCN2018071459-appb-000289
则该对角矩阵
Figure PCTCN2018071459-appb-000290
可表示为:
Figure PCTCN2018071459-appb-000291
其中O 1为预设值且O 1为正整数,k 1为第一码本参数,该第一码本参数是一个变量且k 1为整数,且0≤k 1≤O 1-1。
Figure PCTCN2018071459-appb-000292
为对角矩阵,若:
则该对角矩阵
Figure PCTCN2018071459-appb-000294
可表示为:
Figure PCTCN2018071459-appb-000295
Figure PCTCN2018071459-appb-000296
则该对角矩阵
Figure PCTCN2018071459-appb-000297
可表示为:
Figure PCTCN2018071459-appb-000298
其中O 2为预设值且O 2为正整数,k 2为第二码本参数,该第二码本参数是一个变量且k 2为整数,且0≤k 2≤O 2-1。
Figure PCTCN2018071459-appb-000299
为对角矩阵,若:
Figure PCTCN2018071459-appb-000300
则该对角矩阵
Figure PCTCN2018071459-appb-000301
可表示为:
Figure PCTCN2018071459-appb-000302
若:
Figure PCTCN2018071459-appb-000303
则该对角矩阵
Figure PCTCN2018071459-appb-000304
可表示为:
Figure PCTCN2018071459-appb-000305
其中,Q 1为预设值且Q 1为正整数,q 1为第三码本参数,该第三码本参数是一个变量且q 1为整数,且-(Q 1-1)≤q 1≤(Q 1-1)。
Figure PCTCN2018071459-appb-000306
为对角矩阵,若:
Figure PCTCN2018071459-appb-000307
则该对角矩阵
Figure PCTCN2018071459-appb-000308
可表示为:
Figure PCTCN2018071459-appb-000309
若:
Figure PCTCN2018071459-appb-000310
则该对角矩阵
Figure PCTCN2018071459-appb-000311
可表示为:
Figure PCTCN2018071459-appb-000312
其中,Q 2为预设值且Q 2为正整数,q 2为第四码本参数,该第四码本参数是一个变量且q 2为整数,且-(Q 2-1)≤q 2≤(Q 2-1)。
在具体实现过程中,O 1和O 2的作用可以理解为进行过采样,第一码本参数k 1和第二码本参数k 2可用于将生成的基础码本B内的各个列向量设置成彼此正交,N 1和N 2可用于表示上述天线阵列300中每一行(或者列)振元组302中振元组302的数量和每一列(或者行)振元组302中振元组302的数量,Q 1、Q 2、第三码本参数q 1和第四码本参数q 2可用于设置阵元组302内振元的极化相位。
不难理解,若图2所示的方法200是基于第五种基础码本进行的,则在指示确定的分量向量时,需要指示码本参数组,以及从基于该码本参数组确定的基础码本中选择的分量 向量,其中,每个码本参数组中包含第一码本参数k 1的一个取值、第二码本参数k 2的一个取值以及第三码本参数q 1的一个取值和第四码本参数q 2的一个取值,而分量向量可以进一步通过该分量向量的索引来指示。应注意,所指示的码本参数组可能有至少一个,因此选择的分量向量可能来自至少一个基础码本。当所指示的码本参数组为多个时,在指示确定的分量向量时,还需要指示分量向量与码本参数组之间的对应关系。
应注意,在具体实现过程中,如果需要指示码本参数或者码本参数组,可以通过码本参数或者码本参数组的索引来进行指示。此外,在具体实现过程中,发射端设备和接收端设备可以预先协商确定码本参数或者码本参数组。又或者,发射端设备和接收端设备之中的任一设备还可以向对端设备指示码本参数或者码本参数组。再或者,可以在进行通信系统设计时,预先设定码本参数或者码本参数组。如此一来,接收端设备便可预先确定用于确定分量向量及其权重的基础码本。在这种情况下,当确定的分量向量来自一个基础码本时,接收端设备在指示分量向量及其权重时,可以无需指示码本参数或者码本参数组。即使确定的分量向量来自多个基础码本,接收端设备在指示分量向量及其权重时,也可以通过码本参数或码本参数组的索引,或者分量向量的预设排列顺序,来显式或者隐式的指示码本参数或者码本参数组。由此可见,在指示分量向量及其权重时,码本参数或者码本参数组并非必须指示。不难理解,为降低处理及反馈开销,在具体实现过程中,可以仅仅基于一个基础码本确定所有分量向量以及这些分量向量的权重。此外,分量向量除了可以通过分量向量的索引进行指示之外,还可以通过多种其他方式进行指示,例如但不限于,可以直接指示分量向量本身。
此外,在具体实现过程中,为降低指示分量向量的权重而产生的开销,可以对上述权重进行量化。在这种情况下,图2所示方法200中确定以及指示的权重可以理解为权重的量化值。更进一步的说,可以将该量化值表示为二进制序列或者索引的形式,并可以根据具体的需要(例如反馈开销)来设置该二进制序列或者索引的长度。如此一来,图2所示方法200中确定以及指示的权重还可以理解为权重量化值对应的二进制序列或者索引。此外,还可以对上述权重进行其他处理,以降低指示该权重所带来的开销。在这种情况下,图2所示方法200中确定以及指示的权重可以理解经过上述处理之后的权重。当然,也可以直接指示权重本身。
对于上文所述的各种基础码本,在具体实现过程中,还可以对基础码本的至少一个分块矩阵的至少一个组成矩阵(例如但不限于DFT矩阵和对角矩阵等)设置相应的系数,该系数的具体取值可以根据需要进行设置。此外,在具体实现过程中,还可以根据具体的需要,对基础码本的至少一个分块矩阵设置合适的系数。
应注意,在具体实现过程中,分量向量的确定和指示周期与权重的确定和指示周期可以相同,也可以不同。举例来说,分量向量的确定和指示周期可以长于或者短于权重的确定和指示周期。在这种情况下,方法200中确定和指示分量向量的操作,与确定和指示权重的操作,应当理解为可以是在相同反馈周期内完成的,也可以是在不同反馈周期内完成。此外,分量向量及其权重既可以是基于宽带(例如整个系统带宽,例如20M或者10M)来确定和指示的,也可以是基于窄带(例如整个系统带宽内的一个子带,例如2M或者1M)来确定和指示的。事实上,在现有技术中,码本可以表示为如下形式:
W=W 1W 2
其中W 1可以称为长时/宽带码本,W 2可以称为短时/窄带码本。在本发明实施例提供的技术方案中,分量向量的确认和指示方式,可以参考现有技术中W 1的确认和指示方式,权重的确认和指示的确认和指示方式,可以参考现有技术中W 2的确认和指示方式,而这些确认和指示方式也应当理解为涵盖在方法200的范围之内。
本发明实施例提供的技术方案基于多种参数来构建基础码本,这使得该基础码本可以更加准确的描述信道环境。如此一来,基于本发明实施例提供的基础码本确定的预编码向量,可以更加准确的匹配信道,从而提升预编码效果。
应注意,在一些情况下,通过多个分量向量加权之和来近似表示的理想预编码向量可能需要进行重构才能用于进行预编码。例如,在MU-MIMO场景下,发射端设备需要根据同时调度的多个接收端设备的上述近似表示的理想预编码向量进行重构操作,来获得针对每个接收端设备的真正用于预编码的预编码向量,其中,重构的目的可以是,例如但不限于,通过将不同接收端设备的预编码向量设置成彼此正交,来降低发往一个接收端设备的信号对另一接收端设备造成的干扰。上述重构过程可基于多种算法来进行,例如但不限于,迫零(Zero-Forcing,ZF)算法、最小均方误差(Minimum Mean Square Error,MMSE)算法和块对角化(Block Diagonalization,BD)算法。
图4是依照本发明一实施例的确定预编码向量的方法400的示范性流程图。在具体实现过程中,方法400可由例如但不限于发射端设备来执行。
步骤402,接收预编码向量指示,其中,所述预编码向量指示用于指示基于至少一个基础码本确定的理想预编码向量的多个分量向量以及每一分量向量的权重,每一分量向量为所述至少一个基础码本其中之一的一个列向量。
步骤404,根据所述多个分量向量以及每一分量向量的权重确定所述理想预编码向量。
在具体实现过程中,可以通过对多个分量向量基于这些分量向量各自的权重进行加权求和,来确定理想预编码向量。
上述方法400中涉及的具体技术内容已经在上文结合方法200和天线阵列300进行了清楚的描述,因此此处不再赘述。
图5是依照本发明一实施例的接收端设备500的示范性逻辑结构示意图。如图5所示,接收端设备500包括确定模块502和发送模块504。
确定模块502用于基于至少一个基础码本确定理想预编码向量的多个分量向量以及每一分量向量的权重,其中每一分量向量为所述至少一个基础码本其中之一的一个列向量。
发送模块504用于发送预编码向量指示,其中,所述预编码向量指示用于指示所述多个分量向量以及每一分量向量的权重。
上述接收端设备500用于执行上述方法200,相关技术内容已经在上文结合方法200和天线阵列300进行了清楚的描述,因此此处不再赘述。
图6是依照本发明一实施例的发射端设备600的示范性逻辑结构示意图。如图6所示,发射端设备600包括接收模块602和确定模块604。
接收模块602用于接收预编码向量指示,其中,所述预编码向量指示用于指示基于至少一个基础码本确定的理想预编码向量的多个分量向量以及每一分量向量的权重,每一分量向量为所述至少一个基础码本其中之一的一个列向量;
确定模块604用于根据所述多个分量向量以及每一分量向量的权重确定所述理想预 编码向量。
在具体实现过程中,确定模块604可以通过对多个分量向量基于这些分量向量各自的权重进行加权求和,来确定理想预编码向量。
上述发射端设备600用于执行上述方法400,相关技术内容已经在上文结合方法200、天线阵列300和方法400中进行了清楚的描述,因此此处不再赘述。
图7是依照本发明一实施例的接收端设备700的示范性硬件结构示意图。如图7所示,通信设备700包括处理器702、收发器704、多根天线706,存储器708、I/O(输入/输出,Input/Output)接口710和总线712。收发器704进一步包括发射器7042和接收器7044,存储器708进一步用于存储指令7082和数据7084。此外,处理器702、收发器704、存储器708和I/O接口710通过总线712彼此通信连接,多根天线706与收发器704相连。
处理器702可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器702还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器702可以用于执行,例如,图2所示方法200中的步骤202,以及图5所示接收端设备500的确定模块502所执行的操作。处理器702可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器708中存储的指令7082来执行上述步骤和/或操作的处理器,处理器702在执行上述步骤和/或操作的过程中可能需要用到数据7084。
收发器704包括发射器7042和接收器7044,其中,发射器7042用于通过多根天线706之中的至少一根天线发送信号。接收器7044用于通过多根天线706之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,发射器7042具体可以用于通过多根天线706之中的至少一根天线执行,例如,图2所示方法200中的步骤204,以及图5所示接收端设备500的发送模块504所执行的操作。
存储器708可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器708具体用于存储指令7082和数据7084,处理器702可以通过读取并执行存储器708中存储的指令7082,来执行上文所述的步骤和/或操作,在执行上述操作和/或步骤的过程中可能需要用到数据7084。
I/O接口710用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,通信设备700还可以包括其他硬件器件,本文不再一一列举。
图8是依照本发明一实施例的发射端设备800的示范性硬件结构示意图。如图8所示,通信设备800包括处理器802、收发器804、多根天线806,存储器808、I/O(输入/输出,Input/Output)接口810和总线812。收发器804进一步包括发射器8042和接收器8044,存储器808进一步用于存储指令8082和数据8084。此外,处理器802、收发器804、存 储器808和I/O接口810通过总线812彼此通信连接,多根天线806与收发器804相连。
处理器802可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器802还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器802可以用于执行,例如,图4所示方法400中的步骤404,以及图6所示发射端设备600的确定模块604所执行的操作。处理器802可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器808中存储的指令8082来执行上述步骤和/或操作的处理器,处理器802在执行上述步骤和/或操作的过程中可能需要用到数据8084。
收发器804包括发射器8042和接收器8044,其中,发射器8042用于通过多根天线806之中的至少一根天线发送信号。接收器8044用于通过多根天线806之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,接收器8044具体用于通过多根天线806之中的至少一根天线执行,图4所示方法400中的步骤402,以及图6所示发射端设备600的接收模块602所执行的操作。
存储器808可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器808具体用于存储指令8082和数据8084,处理器802可以通过读取并执行存储器808中存储的指令8082,来执行上文所述的步骤和/或操作,在执行上述操作和/或步骤的过程中可能需要用到数据8084。
I/O接口810用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,通信设备800还可以包括其他硬件器件,本文不再一一列举。
本领域普通技术人员可知,上述方法中的全部或部分步骤可以通过程序指令相关的硬件完成,该程序可以存储于一计算机可读存储介质中,该计算机可读存储介质如ROM、RAM和光盘等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种指示预编码向量的方法,其特征在于,包括:
    基于至少一个基础码本确定理想预编码向量的多个分量向量以及每一分量向量的权重,其中每一分量向量为所述至少一个基础码本其中之一的一个列向量;
    发送预编码向量指示,其中,所述预编码向量指示用于指示所述多个分量向量以及每一分量向量的权重。
  2. 一种确定预编码向量的方法,其特征在于,包括:
    接收预编码向量指示,其中,所述预编码向量指示用于指示基于至少一个基础码本确定的理想预编码向量的多个分量向量以及每一分量向量的权重,每一分量向量为所述至少一个基础码本其中之一的一个列向量;
    根据所述多个分量向量以及每一分量向量的权重确定所述理想预编码向量。
  3. 一种接收端设备,其特征在于,包括:
    确定模块,用于基于至少一个基础码本确定理想预编码向量的多个分量向量以及每一分量向量的权重,其中每一分量向量为所述至少一个基础码本其中之一的一个列向量;
    发送模块,用于发送预编码向量指示,其中,所述预编码向量指示用于指示所述多个分量向量以及每一分量向量的权重。
  4. 一种发射端设备,其特征在于,包括:
    接收模块,用于接收预编码向量指示,其中,所述预编码向量指示用于指示基于至少一个基础码本确定的理想预编码向量的多个分量向量以及每一分量向量的权重,每一分量向量为所述至少一个基础码本其中之一的一个列向量;
    确定模块,用于根据所述多个分量向量以及每一分量向量的权重确定所述理想预编码向量。
  5. 如权利要求1至4中任一项所述的方法或者设备,其特征在于,所述基础码本为:
    Figure PCTCN2018071459-appb-100001
    其中B为所述基础码本,且:
    Figure PCTCN2018071459-appb-100002
    矩阵
    Figure PCTCN2018071459-appb-100003
    中的元素d(m 1,n 1)为:
    Figure PCTCN2018071459-appb-100004
    或者
    Figure PCTCN2018071459-appb-100005
    O 1和N 1为预设值且O 1和N 1均为正整数,0≤m 1≤N 1-1,0≤n 1≤O 1N 1-1;
    矩阵
    Figure PCTCN2018071459-appb-100006
    中的元素d(m 2,n 2)为:
    Figure PCTCN2018071459-appb-100007
    或者
    Figure PCTCN2018071459-appb-100008
    O 2和N 2为预设值且O 2和N 2均为正整数,0≤m 2≤N 2-1,0≤n 2≤O 2N 2-1;
    ψ为对角矩阵,该对角矩阵的主对角线上的第i个元素Λ ii为:
    Λ ii=e jx
    其中1≤i≤O 1O 2N 1N 2,x为码本参数,且0≤x≤2π。
  6. 如权利要求1至4中任一项所述的方法或者设备,其特征在于,所述基础码本为:
    Figure PCTCN2018071459-appb-100009
    其中B为所述基础码本,且:
    Figure PCTCN2018071459-appb-100010
    矩阵
    Figure PCTCN2018071459-appb-100011
    中的元素d(m 1,n 1)为:
    Figure PCTCN2018071459-appb-100012
    或者
    Figure PCTCN2018071459-appb-100013
    N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1;
    矩阵
    Figure PCTCN2018071459-appb-100014
    中的元素d(m 2,n 2)为:
    Figure PCTCN2018071459-appb-100015
    或者
    Figure PCTCN2018071459-appb-100016
    N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1;
    Figure PCTCN2018071459-appb-100017
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100018
    则该对角矩阵
    Figure PCTCN2018071459-appb-100019
    为:
    Figure PCTCN2018071459-appb-100020
    若:
    Figure PCTCN2018071459-appb-100021
    则该对角矩阵
    Figure PCTCN2018071459-appb-100022
    为:
    Figure PCTCN2018071459-appb-100023
    其中O 1为预设值且O 1为正整数,k 1为第一码本参数且k 1为整数,且0≤k 1≤O 1-1;
    Figure PCTCN2018071459-appb-100024
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100025
    则该对角阵
    Figure PCTCN2018071459-appb-100026
    为:
    Figure PCTCN2018071459-appb-100027
    若:
    Figure PCTCN2018071459-appb-100028
    则该对角阵
    Figure PCTCN2018071459-appb-100029
    为:
    Figure PCTCN2018071459-appb-100030
    其中O 2为预设值且O 2为正整数,k 2为第二码本参数且k 2为整数,且0≤k 2≤O 2-1;
    ψ为对角矩阵,该对角矩阵的主对角线上的第i个元素Λ ii为:
    Λ ii=e jx
    其中1≤i≤O 1O 2N 1N 2,x为第三码本参数,且0≤x≤2π。
  7. 如权利要求1至4中任一项所述的方法或者设备,其特征在于,所述基础码本为:
    Figure PCTCN2018071459-appb-100031
    其中B为所述基础码本,且矩阵
    Figure PCTCN2018071459-appb-100032
    中的元素d(m 1,n 1)为:
    Figure PCTCN2018071459-appb-100033
    或者
    Figure PCTCN2018071459-appb-100034
    N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1;
    矩阵
    Figure PCTCN2018071459-appb-100035
    中的元素d(m 2,n 2)为:
    Figure PCTCN2018071459-appb-100036
    或者
    Figure PCTCN2018071459-appb-100037
    N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1;
    Figure PCTCN2018071459-appb-100038
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100039
    则该对角矩阵
    Figure PCTCN2018071459-appb-100040
    为:
    Figure PCTCN2018071459-appb-100041
    若:
    Figure PCTCN2018071459-appb-100042
    则该对角矩阵
    Figure PCTCN2018071459-appb-100043
    为:
    Figure PCTCN2018071459-appb-100044
    其中O 1为预设值且O 1为正整数,k 1为第一码本参数且k 1为整数,且0≤k 1≤O 1-1;
    Figure PCTCN2018071459-appb-100045
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100046
    则该对角矩阵
    Figure PCTCN2018071459-appb-100047
    为:
    Figure PCTCN2018071459-appb-100048
    若:
    Figure PCTCN2018071459-appb-100049
    则该对角矩阵
    Figure PCTCN2018071459-appb-100050
    为:
    Figure PCTCN2018071459-appb-100051
    其中O 2为预设值且O 2为正整数,k 2为第二码本参数且k 2为整数,且0≤k 2≤O 2-1;
    Figure PCTCN2018071459-appb-100052
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100053
    则该对角矩阵
    Figure PCTCN2018071459-appb-100054
    为:
    Figure PCTCN2018071459-appb-100055
    若:
    Figure PCTCN2018071459-appb-100056
    则该对角矩阵
    Figure PCTCN2018071459-appb-100057
    为:
    Figure PCTCN2018071459-appb-100058
    其中Q 1为预设值且Q 1为正整数,q 1为第三码本参数且q 1为整数,且-(Q 1-1)≤q 1≤(Q 1-1);
    Figure PCTCN2018071459-appb-100059
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100060
    则该对角矩阵
    Figure PCTCN2018071459-appb-100061
    为:
    Figure PCTCN2018071459-appb-100062
    若:
    Figure PCTCN2018071459-appb-100063
    则该对角矩阵
    Figure PCTCN2018071459-appb-100064
    为:
    Figure PCTCN2018071459-appb-100065
    其中Q 2为预设值且Q 2为正整数,q 2为第四码本参数且q 2为整数,且-(Q 2-1)≤q 2≤(Q 2-1)。
  8. 如权利要求1至4中任一项所述的方法或者设备,其特征在于,所述基础码本为:
    Figure PCTCN2018071459-appb-100066
    其中B为所述基础码本,且矩阵
    Figure PCTCN2018071459-appb-100067
    中的元素d(m 1,n 1)为:
    Figure PCTCN2018071459-appb-100068
    或者
    Figure PCTCN2018071459-appb-100069
    N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1;
    矩阵
    Figure PCTCN2018071459-appb-100070
    中的元素d(m 2,n 2)为:
    Figure PCTCN2018071459-appb-100071
    或者
    Figure PCTCN2018071459-appb-100072
    N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1;
    Figure PCTCN2018071459-appb-100073
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100074
    则该对角矩阵
    Figure PCTCN2018071459-appb-100075
    为:
    Figure PCTCN2018071459-appb-100076
    若:
    Figure PCTCN2018071459-appb-100077
    则该对角矩阵
    Figure PCTCN2018071459-appb-100078
    为:
    Figure PCTCN2018071459-appb-100079
    其中O 1为预设值且O 1为正整数,k 1为第一码本参数且k 1为整数,且0≤k 1≤O 1-1;
    Figure PCTCN2018071459-appb-100080
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100081
    则该对角矩阵
    Figure PCTCN2018071459-appb-100082
    为:
    Figure PCTCN2018071459-appb-100083
    若:
    Figure PCTCN2018071459-appb-100084
    则该对角矩阵
    Figure PCTCN2018071459-appb-100085
    为:
    Figure PCTCN2018071459-appb-100086
    其中O 2为预设值且O 2为正整数,k 2为第二码本参数且k 2为整数,且0≤k 2≤O 2-1;
    Figure PCTCN2018071459-appb-100087
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100088
    则该对角矩阵
    Figure PCTCN2018071459-appb-100089
    为:
    Figure PCTCN2018071459-appb-100090
    若:
    Figure PCTCN2018071459-appb-100091
    则该对角矩阵
    Figure PCTCN2018071459-appb-100092
    为:
    Figure PCTCN2018071459-appb-100093
    其中Q 1为预设值且Q 1为正整数,p 1为第三码本参数且p 1为整数,且0≤p 1≤(Q 1-1);
    Figure PCTCN2018071459-appb-100094
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100095
    则该对角矩阵
    Figure PCTCN2018071459-appb-100096
    为:
    Figure PCTCN2018071459-appb-100097
    若:
    Figure PCTCN2018071459-appb-100098
    则该对角矩阵
    Figure PCTCN2018071459-appb-100099
    为:
    Figure PCTCN2018071459-appb-100100
    其中Q 2为预设值且Q 2为正整数,p 2为第四码本参数且p 2为整数,且0≤p 2≤(Q 2-1);
    Figure PCTCN2018071459-appb-100101
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100102
    则该对角矩阵
    Figure PCTCN2018071459-appb-100103
    为:
    Figure PCTCN2018071459-appb-100104
    若:
    Figure PCTCN2018071459-appb-100105
    则该对角矩阵
    Figure PCTCN2018071459-appb-100106
    为:
    Figure PCTCN2018071459-appb-100107
    其中Q 3为预设值且Q 3为正整数,q 1为第五码本参数且q 1为整数,且0≤q 1≤(Q 3-1);
    Figure PCTCN2018071459-appb-100108
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100109
    则该对角矩阵
    Figure PCTCN2018071459-appb-100110
    为:
    Figure PCTCN2018071459-appb-100111
    若:
    Figure PCTCN2018071459-appb-100112
    则该对角矩阵
    Figure PCTCN2018071459-appb-100113
    为:
    Figure PCTCN2018071459-appb-100114
    其中Q 4为预设值且Q 4为正整数,q 2为第六码本参数且q 2为整数,且0≤q 2≤(Q 4-1)。
  9. 如权利要求1至4中任一项所述的方法或者设备,其特征在于,所述基础码本为:
    Figure PCTCN2018071459-appb-100115
    其中B为所述基础码本,且矩阵
    Figure PCTCN2018071459-appb-100116
    中的元素d(m 1,n 1)为:
    Figure PCTCN2018071459-appb-100117
    或者
    Figure PCTCN2018071459-appb-100118
    N 1为预设值且N 1为正整数,0≤m 1≤N 1-1,0≤n 1≤N 1-1;
    矩阵
    Figure PCTCN2018071459-appb-100119
    中的元素d(m 2,n 2)为:
    Figure PCTCN2018071459-appb-100120
    或者
    Figure PCTCN2018071459-appb-100121
    N 2为预设值且N 2为正整数,0≤m 2≤N 2-1,0≤n 2≤N 2-1;
    Figure PCTCN2018071459-appb-100122
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100123
    则该对角矩阵
    Figure PCTCN2018071459-appb-100124
    为:
    Figure PCTCN2018071459-appb-100125
    若:
    Figure PCTCN2018071459-appb-100126
    则该对角矩阵
    Figure PCTCN2018071459-appb-100127
    为:
    Figure PCTCN2018071459-appb-100128
    其中O 1为预设值且O 1为正整数,k 1为第一码本参数且k 1为整数,且0≤k 1≤O 1-1;
    Figure PCTCN2018071459-appb-100129
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100130
    则该对角矩阵
    Figure PCTCN2018071459-appb-100131
    为:
    Figure PCTCN2018071459-appb-100132
    若:
    Figure PCTCN2018071459-appb-100133
    则该对角矩阵
    Figure PCTCN2018071459-appb-100134
    为:
    Figure PCTCN2018071459-appb-100135
    其中O 2为预设值且O 2为正整数,k 2为第二码本参数且k 2为整数,且0≤k 2≤O 2-1;
    Figure PCTCN2018071459-appb-100136
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100137
    则该对角矩阵
    Figure PCTCN2018071459-appb-100138
    为:
    Figure PCTCN2018071459-appb-100139
    若:
    则该对角矩阵
    Figure PCTCN2018071459-appb-100141
    为:
    Figure PCTCN2018071459-appb-100142
    其中,Q 1为预设值且Q 1为正整数,q 1为第三码本参数且q 1为整数,且-(Q 1-1)≤q 1≤(Q 1-1);
    Figure PCTCN2018071459-appb-100143
    为对角矩阵,若:
    Figure PCTCN2018071459-appb-100144
    则该对角矩阵
    Figure PCTCN2018071459-appb-100145
    为:
    Figure PCTCN2018071459-appb-100146
    若:
    Figure PCTCN2018071459-appb-100147
    则该对角矩阵
    Figure PCTCN2018071459-appb-100148
    为:
    Figure PCTCN2018071459-appb-100149
    其中,Q 2为预设值且Q 2为正整数,q 2为第四码本参数且q 2为整数,且-(Q 2-1)≤q 2≤(Q 2-1)。
PCT/CN2018/071459 2017-01-05 2018-01-04 指示及确定预编码向量的方法和接收及发射端设备 WO2018127106A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18736091.2A EP3531598B1 (en) 2017-01-05 2018-01-04 Precoding vector indicating method, precoding vector determining method, receive-end device, and transmit-end device
US16/459,581 US11063640B2 (en) 2017-01-05 2019-07-01 Precoding vector indicating method, precoding vector determining method, receive end device, and transmit end device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008458.5 2017-01-05
CN201710008458.5A CN108282197B (zh) 2017-01-05 2017-01-05 指示及确定预编码向量的方法和接收及发射端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/459,581 Continuation US11063640B2 (en) 2017-01-05 2019-07-01 Precoding vector indicating method, precoding vector determining method, receive end device, and transmit end device

Publications (1)

Publication Number Publication Date
WO2018127106A1 true WO2018127106A1 (zh) 2018-07-12

Family

ID=62790950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071459 WO2018127106A1 (zh) 2017-01-05 2018-01-04 指示及确定预编码向量的方法和接收及发射端设备

Country Status (4)

Country Link
US (1) US11063640B2 (zh)
EP (1) EP3531598B1 (zh)
CN (1) CN108282197B (zh)
WO (1) WO2018127106A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435850B (zh) * 2019-01-11 2022-06-14 华为技术有限公司 用于构建预编码向量的向量指示方法和通信装置
US11314844B1 (en) * 2021-03-12 2022-04-26 Sas Institute Inc. Incremental singular value decomposition in support of machine learning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274227A1 (en) * 2008-04-30 2009-11-05 Samsung Electronics Co. Ltd. Apparatuses and methods for transmission and reception in a codebook based closed-loop (cl)-multiple input multiple output (mimo) system
CN102246480A (zh) * 2008-12-11 2011-11-16 爱立信电话股份有限公司 用于下行链路上的协调多点传输的反馈减少的预编码
CN102571295A (zh) * 2010-12-09 2012-07-11 上海贝尔股份有限公司 用于确定预编码信息的方法、设备及系统
CN103795450A (zh) * 2012-10-29 2014-05-14 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN106160926A (zh) * 2015-04-08 2016-11-23 中兴通讯股份有限公司 在多输入多输出系统中反馈信道状态信息的方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782573B2 (en) * 2005-11-17 2010-08-24 University Of Connecticut Trellis-based feedback reduction for multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) with rate-limited feedback
CN101442349B (zh) 2007-11-21 2013-02-20 三星电子株式会社 多用户mimo码本子集选择方法
KR100995045B1 (ko) * 2007-12-31 2010-11-19 엘지전자 주식회사 협동 다중 입출력 통신 시스템에서, 프리코딩된 신호를송신하는 방법
TWI562554B (en) * 2009-12-30 2016-12-11 Sony Corp Communications system and device using beamforming
US8687727B2 (en) * 2010-11-05 2014-04-01 Intel Corporation Coordinated multi-point transmission using interference feedback
WO2014035102A1 (ko) * 2012-08-26 2014-03-06 엘지전자 주식회사 무선 통신 시스템에서 코드북 기반 신호 전송 방법 및 장치
CN103780331B (zh) * 2012-10-19 2017-08-18 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
US9036608B2 (en) * 2012-11-09 2015-05-19 Telefonaktiebolaget L M Ericsson (Publ) Adaptive transmission mode switching
JP5850872B2 (ja) * 2013-03-07 2016-02-03 株式会社Nttドコモ ユーザ装置及び基地局
EP3117530B1 (en) * 2014-03-14 2020-06-24 Telefonaktiebolaget LM Ericsson (publ) Technique for precoder determination
US9654195B2 (en) * 2014-11-17 2017-05-16 Samsung Electronics Co., Ltd. Methods to calculate linear combination pre-coders for MIMO wireless communication systems
CN106301506B (zh) * 2015-05-15 2020-03-13 电信科学技术研究院 一种码本子集约束的方法及装置
WO2017030300A1 (ko) * 2015-08-18 2017-02-23 엘지전자 주식회사 무선 통신 시스템에서 코드북을 이용한 빔 스캐닝 수행 방법
EP3373468B1 (en) * 2015-11-04 2021-02-24 LG Electronics Inc. Method for transmitting synchronization signal using codebook in wireless communication system
WO2019055474A1 (en) * 2017-09-15 2019-03-21 Blue Danube Systems, Inc. PORT-BEAM PRECODING FOR ENABLING MU-MIMO OPERATION BASED ON A CODES BOOK IN ACTIVE ANTENNA SYSTEMS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274227A1 (en) * 2008-04-30 2009-11-05 Samsung Electronics Co. Ltd. Apparatuses and methods for transmission and reception in a codebook based closed-loop (cl)-multiple input multiple output (mimo) system
CN102246480A (zh) * 2008-12-11 2011-11-16 爱立信电话股份有限公司 用于下行链路上的协调多点传输的反馈减少的预编码
CN102571295A (zh) * 2010-12-09 2012-07-11 上海贝尔股份有限公司 用于确定预编码信息的方法、设备及系统
CN103795450A (zh) * 2012-10-29 2014-05-14 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN106160926A (zh) * 2015-04-08 2016-11-23 中兴通讯股份有限公司 在多输入多输出系统中反馈信道状态信息的方法和装置

Also Published As

Publication number Publication date
EP3531598B1 (en) 2023-10-18
CN108282197A (zh) 2018-07-13
CN108282197B (zh) 2021-08-27
US11063640B2 (en) 2021-07-13
US20190326962A1 (en) 2019-10-24
EP3531598A1 (en) 2019-08-28
EP3531598A4 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
CN110419170B (zh) 一种指示及确定预编码向量的方法和设备
CN110100393B (zh) 基于码本的信道状态信息反馈方法及设备
EP3672095A1 (en) Method and device for indicating and determining precoding matrix
CN111342873A (zh) 一种信道测量方法和通信装置
EP3562051B1 (en) Parameter indication method and corresponding receive-end device
CN109560847B (zh) 信道状态信息反馈和接收方法、发送端设备和接收端设备
WO2020125511A1 (zh) 一种信道测量方法和通信装置
US10756793B2 (en) Precoding matrix indicating method, precoding matrix determining method, receive end device, and transmit end device
WO2020244496A1 (zh) 一种信道测量方法和通信装置
US11063640B2 (en) Precoding vector indicating method, precoding vector determining method, receive end device, and transmit end device
US20220286324A1 (en) Channel prediction framework for radio communication
WO2019095970A1 (zh) 一种用户设备、接入设备和预编码方法
CN112398516A (zh) 一种码本子集限制的方法和通信装置
WO2018127072A1 (zh) 一种信道信息反馈及确定方法、接收端和发射端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018736091

Country of ref document: EP

Effective date: 20190521

NENP Non-entry into the national phase

Ref country code: DE