WO2018127072A1 - 一种信道信息反馈及确定方法、接收端和发射端设备 - Google Patents

一种信道信息反馈及确定方法、接收端和发射端设备 Download PDF

Info

Publication number
WO2018127072A1
WO2018127072A1 PCT/CN2018/071283 CN2018071283W WO2018127072A1 WO 2018127072 A1 WO2018127072 A1 WO 2018127072A1 CN 2018071283 W CN2018071283 W CN 2018071283W WO 2018127072 A1 WO2018127072 A1 WO 2018127072A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
offset
parameter
base
description
Prior art date
Application number
PCT/CN2018/071283
Other languages
English (en)
French (fr)
Inventor
韩玮
金黄平
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18736344.5A priority Critical patent/EP3550735B1/en
Publication of WO2018127072A1 publication Critical patent/WO2018127072A1/zh
Priority to US16/504,354 priority patent/US10594369B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel information feedback and determination method, a receiving end, and a transmitting end device.
  • MIMO Multiple Input Multiple Output
  • MIMO systems typically use precoding techniques to improve the channel to enhance the effect of spatial multiplexing.
  • the precoding technique uses a precoding matrix matched with a channel to process a spatially multiplexed data stream (hereinafter simply referred to as a spatial stream), thereby implementing precoding of the channel and improving reception quality of the spatial stream.
  • the precoding matrix typically includes a plurality of column vectors, each of which may be referred to as a precoding vector, each precoding vector being used to precode a spatial stream.
  • the ideal precoding vector used to describe the channel matrix can be obtained by performing Singular Value Decomposition (SVD) on the channel matrix. If the ideal precoding vector is directly fed back, the feedback overhead is too large.
  • the prior art determines a precoding vector based on a codebook, selects a column vector from the codebook as a precoding vector directly, and feeds back using the identification of the selected column vector.
  • the deviation between the precoding vector based on the codebook selection and the ideal precoding vector is large, resulting in limited precoding effect. It can be seen that a new feedback mechanism is needed to improve the precoding effect.
  • the embodiment of the present invention provides a channel information feedback and determination method, a receiving end and a transmitting end device, and a channel information feedback system.
  • the technical solution is as follows:
  • a channel information feedback method comprising:
  • each description information is used to describe a description vector of a channel matrix corresponding to the subband, where the description information includes a vector parameter and a weight parameter.
  • At least one of the vector parameters for indicating at least two component vectors of the description vector, the weight parameter being used to indicate a weight of each of the at least two component vectors, the at least two The component vectors are selected from the base codebook;
  • the channel information feedback method provided by the embodiment of the present invention generates and sends at least one piece of description information, where each description information is used to describe a description vector of a channel matrix corresponding to the subband, and the transmitting device may determine the description according to each description information.
  • the at least one column vector is selected from the codebook to perform weighted merging to generate a description vector of the channel matrix.
  • the technical solution provided by the embodiment of the present invention can expand the codebook space by using the column vector in the codebook as the description vector.
  • the precoding performed based on the description vector fed back by the technical solution provided by the embodiment of the present invention can improve the precoding effect.
  • the at least two component vectors comprise a start vector and at least one offset vector, the vector parameter being used to indicate a base vector parameter (1, m) and each of the start vector
  • the offset parameter of the offset vector (a, b) where the base vector parameter of each offset vector is (l+aL, m+bM), 0 ⁇ l ⁇ O 1 N 1 -1, 0 ⁇ m ⁇ O 2 N 2 -1, L and M are preset positive integers, and L ⁇ O 1 , M ⁇ O 2 , Both a and b are integers and are not 0 at the same time.
  • the offset step size (L, M) can be preset by the standard.
  • the at least two component vectors comprise a start vector and at least one offset vector
  • the vector parameter is used to indicate a base vector parameter (1, m), offset of the start vector Step size (L, M) and offset parameter (a, b) of each offset vector, where the base vector parameter of each offset vector is (l+aL, m+bM), and 1 ⁇ L ⁇ O 1 , 1 ⁇ M ⁇ O 2 , 0 ⁇ l ⁇ O 1 N 1 -1, 0 ⁇ m ⁇ O 2 N 2 -1, Both a and b are integers and are not 0 at the same time.
  • the offset step size (L, M) is one of a preset plurality of sets of offset steps.
  • the offset step size (L, M) is an offset of a preset plurality of sets of offset step sizes corresponding to a base vector parameter (l, m) of the start vector. Step size.
  • a channel information feedback method comprising:
  • each description information is used to describe a description vector of a channel matrix corresponding to the subband, the description information including a vector parameter and a weight parameter At least one of the vector parameters for indicating at least two component vectors of the description vector, the weight parameter being used to indicate a weight of each of the at least two component vectors, wherein The at least two component vectors are selected from a base codebook;
  • the channel information determining method provided by the embodiment of the present invention receives at least one piece of description information, where each description information is used to describe a description vector of a channel matrix corresponding to the subband, and the transmitting device may determine, according to each description information, the description information. Description vector.
  • the at least one column vector is selected from the codebook to perform weighted merging to generate a description vector of the channel matrix.
  • the technical solution provided by the embodiment of the present invention can expand the codebook space by using the column vector in the codebook as the description vector.
  • the precoding performed based on the description vector fed back by the technical solution provided by the embodiment of the present invention can improve the precoding effect.
  • the at least two component vectors comprise a start vector and at least one offset vector, the vector parameter being used to indicate a base vector parameter (1, m) and each of the start vector
  • the offset parameter of the offset vector (a, b) where the base vector parameter of each offset vector is (l+aL, m+bM), 0 ⁇ l ⁇ O 1 N 1 -1, 0 ⁇ m ⁇ O 2 N 2 -1, L and M are preset positive integers, and L ⁇ O 1 , M ⁇ O 2 , Both a and b are integers and are not 0 at the same time.
  • the offset step size (L, M) can be preset by the standard.
  • the at least two component vectors comprise a start vector and at least one offset vector
  • the vector parameter is used to indicate a base vector parameter (1, m), offset of the start vector Step size (L, M) and offset parameter (a, b) of each offset vector, where the base vector parameter of each offset vector is (l+aL, m+bM), and 1 ⁇ L ⁇ O 1 , 1 ⁇ M ⁇ O 2 , 0 ⁇ l ⁇ O 1 N 1 -1, 0 ⁇ m ⁇ O 2 N 2 -1, Both a and b are integers and are not 0 at the same time.
  • the offset step size (L, M) is one of a preset plurality of sets of offset steps.
  • the offset step size (L, M) is an offset of a preset plurality of sets of offset step sizes corresponding to a base vector parameter (l, m) of the start vector. Step size.
  • a third aspect provides a receiving end device, where the receiving end device includes:
  • a generating module configured to generate at least one piece of description information for each of the plurality of subbands included in the broadband, where each description information is used to describe a description vector of a channel matrix corresponding to the subband, where the description information includes a vector parameter and At least one of the weight parameters, the vector parameter is used to indicate at least two component vectors of the description vector, the weight parameter is used to indicate a weight of each of the at least two component vectors, Wherein the at least two component vectors are selected from a base codebook;
  • a sending module configured to send the at least one piece of description information.
  • the at least two component vectors comprise a start vector and at least one offset vector, the vector parameter being used to indicate a base vector parameter (1, m) and each of the start vector
  • the offset parameter of the offset vector (a, b) where the base vector parameter of each offset vector is (l+aL, m+bM), 0 ⁇ l ⁇ O 1 N 1 -1, 0 ⁇ m ⁇ O 2 N 2 -1, L and M are preset positive integers, and L ⁇ O 1 , M ⁇ O 2 , Both a and b are integers and are not 0 at the same time.
  • the offset step size (L, M) can be preset by the standard.
  • the at least two component vectors comprise a start vector and at least one offset vector
  • the vector parameter is used to indicate a base vector parameter (1, m), offset of the start vector Step size (L, M) and offset parameter (a, b) of each offset vector, where the base vector parameter of each offset vector is (l+aL, m+bM), and 1 ⁇ L ⁇ O 1 , 1 ⁇ M ⁇ O 2 , 0 ⁇ l ⁇ O 1 N 1 -1, 0 ⁇ m ⁇ O 2 N 2 -1, Both a and b are integers and are not 0 at the same time.
  • the offset step size (L, M) is one of a preset plurality of sets of offset steps.
  • the offset step size (L, M) is an offset of a preset plurality of sets of offset step sizes corresponding to a base vector parameter (l, m) of the start vector. Step size.
  • a fourth aspect provides a receiving end device, where the receiving end device includes:
  • a receiving module configured to receive at least one piece of description information generated for each of the plurality of subbands included in the broadband, where each description information is used to describe a description vector of a channel matrix corresponding to the subband, where the description information includes At least one of a vector parameter and a weight parameter, the vector parameter being used to indicate at least two component vectors of the description vector, the weight parameter being used to indicate each component vector of the at least two component vectors Weight, wherein the at least two component vectors are selected from a base codebook;
  • a determining module configured to determine, according to each description information, a description vector corresponding to the description information.
  • the at least two component vectors comprise a start vector and at least one offset vector, the vector parameter being used to indicate a base vector parameter (1, m) and each of the start vector
  • the offset parameter of the offset vector (a, b) where the base vector parameter of each offset vector is (l+aL, m+bM), 0 ⁇ l ⁇ O 1 N 1 -1, 0 ⁇ m ⁇ O 2 N 2 -1, L and M are preset positive integers, and L ⁇ O 1 , M ⁇ O 2 , Both a and b are integers and are not 0 at the same time.
  • the offset step size (L, M) can be preset by the standard.
  • the at least two component vectors comprise a start vector and at least one offset vector
  • the vector parameter is used to indicate a base vector parameter (1, m), offset of the start vector Step size (L, M) and offset parameter (a, b) of each offset vector, where the base vector parameter of each offset vector is (l+aL, m+bM), and 1 ⁇ L ⁇ O 1 , 1 ⁇ M ⁇ O 2 , 0 ⁇ l ⁇ O 1 N 1 -1, 0 ⁇ m ⁇ O 2 N 2 -1, Both a and b are integers and are not 0 at the same time.
  • the offset step size (L, M) is one of a preset plurality of sets of offset steps.
  • the offset step size (L, M) is an offset of a preset plurality of sets of offset step sizes corresponding to a base vector parameter (l, m) of the start vector. Step size.
  • a channel information feedback system is provided.
  • the channel information feedback system includes: the third aspect and a receiving end device provided in any possible design; and the fourth aspect and a transmitting end device provided in any possible design;
  • the channel information feedback and determination method, the receiving end and the transmitting end device, and the channel information feedback system provided by the embodiment of the present invention generate, by the receiving end device, at least one piece of description information for each of the plurality of subbands included in the broadband.
  • Each description information is used to describe a description vector of the channel matrix corresponding to the subband, and the transmitting device may determine the description vector corresponding to the description information according to each description information.
  • the at least one column vector is selected from the codebook to perform weighted merging to generate a description vector of the channel matrix.
  • the technical solution provided by the embodiment of the present invention can expand the codebook space by using the column vector in the codebook as the description vector.
  • the precoding performed based on the description vector fed back by the technical solution provided by the embodiment of the present invention can improve the precoding effect.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present invention
  • FIG. 2A is an exemplary schematic diagram of an antenna array in accordance with an embodiment of the present invention.
  • 2B is a schematic diagram of a basic codebook according to an embodiment of the invention.
  • 2C is another schematic diagram of a basic codebook according to an embodiment of the invention.
  • FIG. 3 is an exemplary flowchart of a channel information feedback method according to an embodiment of the invention.
  • FIG. 4 is an exemplary flowchart of a channel information determining method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the logical structure of a receiving end device according to an embodiment of the invention.
  • FIG. 6 is a schematic diagram showing the logical structure of a transmitting end device according to an embodiment of the invention.
  • FIG. 7 is a schematic structural diagram of hardware of a receiving end device according to an embodiment of the invention.
  • FIG. 8 is a schematic structural diagram of hardware of a transmitting end device according to an embodiment of the invention.
  • FIG. 9 is a schematic structural diagram of a channel information feedback system according to an embodiment of the invention.
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122, wherein the base stations 102-106 can pass backhaul links with each other (e.g., lines between base stations 102-106) Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 108-122 can communicate with the corresponding base stations 102-106 via a wireless link (as indicated by the broken line between the base stations 102-106 and the terminal devices 108-122).
  • the base stations 102-106 are configured to provide wireless access services for the terminal devices 108-122.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 1), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 102 overlaps with the service coverage area of the base station 104, and the terminal device 112 is within the overlapping area, so the terminal device 112 can receive the wireless signals from the base station 102 and the base station 104.
  • Base station 102 and base station 104 can simultaneously provide services to terminal device 112.
  • the service coverage areas of the base station 102, the base station 104, and the base station 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive the base station.
  • the wireless signals 102, 104, and 106, the base stations 102, 104, and 106 can simultaneously serve the terminal device 120.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station.
  • future base stations may use other names.
  • the terminal devices 108-118 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • a data card a modem (Modulator demodulator, Modem), or a wearable device such as a smart watch.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 108-118 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 102-106 and the terminal devices 108-122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the terminal devices 108-122 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO, MU-MIMO), where MU-MIMO can be based on Implemented by Space Division Multiple Access (SDMA) technology. Due to the configuration of multiple antennas, the base stations 102-106 and the terminal devices 108-122 can also flexibly support Single Input Single Output (SISO) technology, Single Input Multiple Output (SIMO) and multiple input.
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • MIMO Multiple Input Single Output
  • multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • SC Multiple Input Single Output
  • currently used transmit diversity may include, for example, but not limited to, Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (Space-Frequency Transmit).
  • STTD Space-Time Transmit Diversity
  • Space-Frequency Transmit Diversity Space-Frequency Transmit
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Cyclic Delay Diversity
  • the base station 102 and the terminal devices 104-110 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (FDMA). Technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) technology Single carrier frequency division multiple access (Single Carrier FDMA, SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Single carrier frequency division multiple access Single Carrier FDMA
  • SC-FDMA Space Division Multiple Access
  • SDMA Space Division Multiple Access
  • the above wireless communication technology is adopted as a radio access technology (RAT) by many wireless communication standards, thereby constructing various wireless communication systems (or networks) well known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.11 series of standards, Worldwide Interoperability for Microwave Access (WiMAX), long-term Evolution (Long Term Evolution, LTE), LTE-Advanced (LTE-A), and evolution systems of these wireless communication systems.
  • the wireless communication network shown in FIG. 1 may be any system or network in the above wireless communication system.
  • the technical solutions provided by the embodiments of the present invention are applicable to the above various wireless communication technologies and wireless communication systems, unless otherwise specified.
  • the terms “system” and “network” can be replaced with each other. .
  • wireless communication network 100 shown in FIG. 1 is for example only and is not intended to limit the technical solution of the present invention.
  • the receiving end device determines a channel matrix according to a reference signal transmitted by the transmitting device, determines a description matrix of the channel matrix based on the channel matrix and the codebook, and feeds the description matrix to the transmitting device.
  • the transmitting device pre-codes the data to be transmitted according to the description matrix, and sends the pre-coded data to the receiving device.
  • the receiving device may be the terminal devices 108-122 shown in FIG. 1
  • the transmitting device may be the base stations 102-106 shown in FIG. 1.
  • the receiving device may be the base station shown in FIG. 102-106
  • the transmitting end device may be the terminal devices 108-122 shown in FIG.
  • the embodiments of the present invention provide a scheme for the feedback and the determination of the channel information, and the corresponding receiving device and the transmitting device. The technical solutions provided by the embodiments of the present invention are described in detail below.
  • the base codebook is typically associated with an antenna array.
  • many of the parameters involved in the base codebook expression can be understood to be different attributes used to characterize the antenna array. Therefore, in order to facilitate understanding of the basic codebook provided by the embodiment of the present invention, the basic codebook will be described below in conjunction with the antenna array.
  • the basic codebook provided by the embodiment of the present invention is not limited to a specific antenna array. In a specific implementation process, a suitable antenna array may be selected according to specific needs, and various parameters involved in the basic codebook provided by the embodiments of the present invention are set based on the selected antenna array, so as to be applicable to the embodiments of the present invention.
  • the base codebook determines the description vector.
  • the antenna array 200 includes a plurality of vibrating elements 202, which are arranged in a matrix.
  • each row of the matrix contains a plurality of elements 202, each column containing a plurality of elements 202.
  • Each of the vibrating elements 202 includes two antennas, an antenna 204 operating in a first polarization direction and an antenna 206 operating in a second polarization direction.
  • the base codebook includes a plurality of base vectors, each of which is:
  • N 1 , N 2 , O 1 , O 2 are preset values and N 1 , N 2 , O 1 , O 2 are positive integers, 0 ⁇ x ⁇ O 1 N 1 -1, 0 ⁇ y ⁇ O 2 N 2 -1.
  • v x may be, for example but not limited to, a first dimension Discrete Fourier Transform (DFT) vector, where N 1 is the first dimension of the array element, and O 1 is the first dimension of the oversampled number;
  • u y may be, for example but not limited to, a second dimensional DFT vector, N 2 is a second dimensional array element, and O 2 is a second dimensional oversampling number.
  • DFT Discrete Fourier Transform
  • N 1 and N 2 can be used to represent the number of (or column) vibrating elements 202 in each row of the antenna array 200 described above. And the number of vibrators 202 in each column (or row).
  • (L, M) represents the offset step between two base vectors, L, M are positive integers, where L is the offset step of the two base vectors in the horizontal axis direction, and M is the two base vectors
  • L is the offset step of the two base vectors in the horizontal axis direction
  • M is the two base vectors
  • the offset step size is 4.
  • the value of a can be ⁇ 0, 1, 2, 3 ⁇
  • the value of b can be ⁇ 0, 1 ⁇
  • FIG. 3 is a flowchart of a channel information feedback method 300 according to an embodiment of the present invention.
  • the method 300 may be performed by a receiving end device.
  • Step 302 Generate, for each of the plurality of subbands included in the broadband, at least one piece of description information, where each description information is used to describe a description vector of a channel matrix corresponding to the subband, where the description information includes a vector parameter. And at least one of a weight parameter, the vector parameter is used to indicate at least two component vectors of the description vector, the weight parameter is used to indicate a weight of each of the at least two component vectors, Said at least two component vectors are selected from a base codebook;
  • Step 304 Send the at least one piece of description information.
  • the description information includes at least one of a vector parameter and a weight parameter
  • the vector parameter is used to indicate at least two component vectors of the description vector
  • the weight parameter is used to indicate the at least two components The weight of each component vector in the vector, the at least two component vectors being selected from the base codebook.
  • the broadband may refer to a frequency band corresponding to the entire system bandwidth
  • the subband may refer to a frequency band corresponding to a part of the system bandwidth, for example, the entire system bandwidth is 20M
  • the broadband may refer to the entire system bandwidth.
  • the corresponding frequency band 20M, the sub-band may refer to a part of the bandwidth of the entire system bandwidth, for example 5M.
  • the channel matrix corresponding to the subbands may also be referred to as a subband channel matrix. It should also be noted that, in addition to generating at least one piece of description information for each of the plurality of sub-bands included in the broadband, at least one piece of description information may be generated for the merging sub-band, the merging sub-band including the plurality of the above-mentioned broadband
  • a contiguous sub-band, for example, the above-mentioned wideband includes sub-band 1, sub-band 2, sub-band 3, sub-band 4, sub-band 5, and the merging sub-band may include sub-band 1 and sub-band 2.
  • the above description vector that is, the ideal precoding vector
  • the description vectors obtained by different methods can be different.
  • the above description vector can be obtained by performing Singular Value Decomposition (SVD) on the channel matrix.
  • SVD Singular Value Decomposition
  • the conjugate transposed matrix of the right ⁇ matrix can be used as a description matrix
  • the column vector of the description matrix can be used as a description vector.
  • the description matrix obtained according to the singular value decomposition described above can also be obtained by, for example, but not limited to, eigenvalue decomposition of the correlation matrix of the channel matrix.
  • the specific value of the description vector and its acquisition method can be determined according to the overall needs of the system design. The technical details regarding the description vector have been clearly described in the prior art, and therefore will not be described again here.
  • the description vector can be approximated in the form of a weighted sum of a plurality of component vectors, namely:
  • the number of component vectors K (K is a positive integer) may be set according to specific needs (such as but not limited to the need of precision).
  • the number of component vectors may be a preset number.
  • the at least two component vectors include a start vector and at least one offset vector, the vector parameter including a base vector parameter (1, m) of the start vector and each offset vector Offset parameter (a, b), where the base vector parameter of each offset vector is (l+aL, m+bM), in which case the offset step size (L, M) can be pre-set by the standard set.
  • the receiving end device needs to determine the base vector parameter (1, m) of the starting vector and the offset parameter (a, b) of each offset vector, that is, determine the starting vector sum. At least one offset vector.
  • the base codebook includes a plurality of base vectors in which a base vector closest to a description vector of the sub-band channel matrix can be selected as the above-mentioned start vector, the closest
  • the position information (l, m) of the base vector in the base codebook can be determined as the base vector parameter (l, m) of the start vector.
  • the closeness of the base vector in the base codebook to a description vector of the subband channel matrix can be embodied as the inner product of the two.
  • the receiving end device obtains a description vector of the subband channel matrix according to the subband channel matrix, and calculates an inner product of the description vector and the plurality of base vectors in the base codebook, and the base vector corresponding to the maximum inner product can be determined as The starting vector, its corresponding base vector parameter can be determined as the base vector parameter of the starting vector.
  • the above description of determining the starting vector is merely an example and is not intended to limit the scope of the present invention. In a specific implementation process, a person skilled in the art can select a suitable method for determining a starting vector according to specific needs.
  • the receiving end device may determine, in the base codebook, a vector group including a start vector and at least one offset vector according to the start vector and the offset step size (L, M), specifically determining the above.
  • a vector group including a start vector and at least one offset vector according to the start vector and the offset step size (L, M), specifically determining the above.
  • L, M the offset step size
  • the method for selecting the component vector may be, for example, but not limited to, the method described below, for example, mapping each description vector of the sub-band channel matrix to each substrate in the vector group based on each vector in the vector group, according to The size of the component of the description vector on each substrate is selected from the front K (K is a positive integer greater than 2) and the corresponding base vector, and the K base vectors are K component vectors to be selected.
  • the K largest components are the weights of the corresponding component vectors.
  • the base vector is used as the first component vector of the selection.
  • the K component vectors selected by the above method include the above starting vector and (K-1) offset vectors, and (K-1) offsets corresponding to the (K-1) offset vectors.
  • the parameter (a, b) is the offset parameter of the offset vector that the receiving end device needs to determine, and the K component vectors corresponding to the K weighting parameters x k are used to indicate the weights of the K component vectors.
  • the specific number of the component vectors selected herein may be determined by the communication protocol, or may be determined according to the performance requirements of the actual communication system, and is not limited herein.
  • the at least two component vectors include a start vector and at least one offset vector
  • the vector parameter includes a base vector parameter (1, m) and an offset step (L) of the start vector.
  • M) and the offset parameter (a, b) of each offset vector, where the base vector parameter of each offset vector is (l+aL, m+bM), the base vector parameter of the start vector (l, m) and the determination process of the offset parameter (a, b) of each offset vector have been described in detail above and will not be described herein.
  • the offset step size (L, M) is selected from a preset set of offset step values, where the preset set of offset step values can be preset by the standard, or Different receiving devices are preset according to their own performance, and may also be determined by the receiving device and the transmitting device.
  • the value of the offset step (L, M) carried in the description information generated by the receiving device can be selected from the preset offset step value set.
  • the preset offset step (L, M) has a set of values of (1, 1), (2, 1), (2, 3), (4, 4), and the offset step size (L, The value of M) is selected from the above four values.
  • the offset step (L, M) carried in the description information generated by the receiving device may be the offset step (L, M).
  • the offset step (L, M) carried in the description information generated by the receiving device may be an offset step when the offset step size set is preset by the different receiving device according to its own performance. Long value.
  • the method for selecting the offset step size (L, M) from the set of offset step values may be that the receiving device sequentially selects the value of (L, M) according to the offset step set.
  • the starting vector (l, m) determines a corresponding vector group, and according to a description vector of the sub-band channel matrix to be described, selects an optimal vector group for describing the description vector, and selects an optimal vector group criterion. For example, but not limited to, a least squares criterion and a maximum inner product criterion, etc., taking the maximum inner product criterion as an example, selecting one of the plurality of vector groups determined according to different offset steps (L, M),
  • the K component vectors of the above description vector (the description vector is hereinafter referred to as the original description vector) and the weights corresponding to each component vector may be selected in the vector group by referring to the method described above, and the K component vectors are weighted.
  • the summed and derived description vector is obtained, and the inner product of the original description vector and the estimated description vector is calculated. Repeat the above operation for other vector groups to obtain multiple inner products. On this basis, the vector group corresponding to the largest inner product is selected as the optimal vector group. After selecting the optimal vector group, record the offset step size (L, M) corresponding to it, and the offset step size (L, M) is the offset step size to be selected. It can be seen that the value of the offset step (L, M) is selected from a preset set of offset step values, which can reduce the calculation amount of the receiving device when determining the offset step size (L, M). At the same time, the accuracy of one description vector of each description information describing the sub-band channel matrix can be improved.
  • the offset step size (L, M) may correspond to a base vector parameter (l, m) of the start vector, where the offset step size (L, M) and the base vector parameter of the start vector ( The correspondence between l, m) may be determined in the communication protocol, or may be determined according to the performance requirements of the actual system.
  • the base vector parameter (l, m) of the start vector and the offset step size (L, M) may be one-to-one correspondence, or may be base vector parameters of multiple start vectors (l, m). ) corresponds to an offset step (L, M).
  • the base vector parameter (l, m) of the starting vector is (0, 0)
  • the corresponding offset step size (L, M) is (4, 4), or the base vector parameter of the starting vector (
  • the base vector parameter of the starting vector to be carried is (0, 0)
  • the required offset step size is also determined as (4, 4)
  • the starting vector to be carried is determined.
  • the base vector parameter is one of (0,0), (1,1), (2,2), and the offset parameters to be carried are all (4,4).
  • the vector parameter carried in the description information generated by the receiving device may be a start vector.
  • the base vector parameter (l, m) and the offset parameter (a, b) of each offset vector that is, information that does not need to carry the offset step size (L, M), because the basis vector parameter (l , m) and the above correspondence can determine the information of the offset step size (L, M).
  • the offset step size (L, M) corresponds to the base vector parameter (l, m) of the start vector, and the receiving end device can quickly determine after the base vector parameter (l, m) of the start vector is determined.
  • the offset step size (L, M) reduces the amount of computation of the receiving device, and also helps reduce the feedback overhead and improves the efficiency of the receiving device.
  • the description information includes at least one of a vector parameter and a weight parameter, the weight parameter being used to indicate a weight of each of the at least two component vectors.
  • the method for determining the weight parameter has been described in detail above and will not be described herein.
  • the determination and indication period of the component vector and the weight determination and the indication period may be the same or different.
  • the determination and indication period of the component vector may be longer or shorter than the determination and indication period of the weight.
  • the operation of determining and indicating the component vector in method 300, and the operation of determining and indicating the weight should be understood to be done in the same feedback cycle, or may be done in different feedback cycles.
  • at least one of a vector parameter and a weight parameter is included in a piece of description information generated by the receiving device.
  • the codebook can be expressed as follows:
  • W 1 may be referred to as a long-term/wideband codebook
  • W 2 may be referred to as a short-term/narrowband codebook.
  • the components of the vector is determined and the indication manner may be determined with reference to embodiment 1 and instructions prior art W, determining and indicating the weight, it can be determined with reference to the prior art 2 W And indicating manners, and such determinations and indications should also be understood to be encompassed within the scope of method 300.
  • the receiving device sends the description information to the transmitting device by using the determined signaling.
  • the description information may be the description information of the channel matrix corresponding to each subband.
  • the set that is, the description information generated by the channel matrix corresponding to each subband is sent to the transmitting device together through the determined signaling.
  • each subband may have multiple pieces of description information, and the description information also passes the determined signaling. Send it to the transmitting device together.
  • the above description information can be sent by one of the following signaling:
  • L1 signaling is also referred to as Layer 1 (L1) signaling, which can typically be carried by a control portion in a physical layer frame.
  • L1 signaling is the Downlink Control Information (DCI) and the Physical Uplink Control Channel (PUCCH) carried in the physical downlink control channel (PDCCH) defined in the LTE standard.
  • DCI Downlink Control Information
  • PUCCH Physical Uplink Control Channel
  • UCI Uplink Control Information
  • L1 signaling may also be carried by the data portion of the physical layer frame. It is not difficult to see that the transmission period or signaling period of L1 signaling is usually the period of the physical layer frame. Therefore, such signaling is usually used to implement some dynamic control to transmit some frequently changing information, for example, through the physical layer. Signaling resource allocation information.
  • Media Access Control (MAC) layer signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the MAC Control Entity (MAC) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the foregoing precoding configuration information may also be sent through other Layer 2 signaling other than the medium access control layer signaling.
  • Radio Resource Control (RRC) signaling belongs to Layer 3 signaling, which is usually some control message, and L3 signaling can usually be carried in the frame body of the second layer frame.
  • the transmission period or control period of the L3 signaling is usually long, and is suitable for transmitting information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the foregoing precoding configuration information may also be sent through other layer 3 signaling other than RRC signaling.
  • the description vector approximated by the sum of the weights of the plurality of component vectors can be used as a precoding vector by the transmitting device to precode the transmitted data. It should be noted that in some cases, a description vector that is approximated by the sum of multiple component vector weights may need to be reconstructed for precoding. For example, in the MU-MIMO scenario, the transmitting end device needs to perform a reconstructing operation according to the description vector of the above-mentioned approximate representation of the plurality of receiving end devices that are simultaneously scheduled to obtain a pre-pre-coding pre-preparation for each receiving end device.
  • a coding vector wherein the purpose of the reconstruction may be, for example, but not limited to, reducing the signal sent to one receiving device to another receiving device by setting the precoding vectors of different receiving devices to be orthogonal to each other. Interference.
  • the above reconstruction process may be performed based on various algorithms, such as, but not limited to, Zero-Forcing (ZF) algorithm, Minimum Mean Square Error (MMSE) algorithm, and Block Diagonalization (Block Diagonalization, BD) algorithm.
  • ZF Zero-Forcing
  • MMSE Minimum Mean Square Error
  • BD Block Diagonalization
  • each description information is used to describe a description vector of a channel matrix corresponding to the subband
  • the receiving end device may determine a description vector corresponding to the description information according to each description information.
  • the at least one column vector is selected from the codebook to perform weighted merging to generate a description vector of the channel matrix.
  • the technical solution provided by the embodiment of the present invention feeds back the description vector of the channel matrix corresponding to the sub-band on each sub-band, thereby improving the feedback accuracy of the channel matrix corresponding to the sub-band.
  • FIG. 4 is a flowchart of a channel information determining method 400 according to an embodiment of the present invention.
  • the method 400 may be performed by a transmitting device.
  • Step 402 Receive at least one piece of description information generated for each of the plurality of subbands included in the broadband, where each description information is used to describe a description vector of a channel matrix corresponding to the subband, where the description information includes a vector parameter. And at least one of a weight parameter for indicating at least two component vectors of the description vector, the weight parameter being used to indicate a weight of each of the at least two component vectors Wherein the at least two component vectors are selected from a base codebook.
  • Step 404 Determine, according to each description information, a description vector corresponding to the description information.
  • At least two component vectors may be determined by using a vector parameter, and weights of each of the at least two component vectors are determined by weight parameters, and then the weights of the component vectors are based on respective weights of the component vectors. Weighted summation is performed to determine the description vector.
  • each description information is used to describe a description vector of a channel matrix corresponding to the subband, and the transmitting end device can determine a description vector corresponding to the description information according to each description information.
  • the at least one column vector is selected from the codebook to perform weighted merging to generate a description vector of the channel matrix.
  • the technical solution provided by the embodiment of the present invention can expand the codebook space by using the column vector in the codebook as the description vector.
  • the precoding performed based on the description vector fed back by the technical solution provided by the embodiment of the present invention can improve the precoding effect.
  • the technical solution provided by the embodiment of the present invention feeds back the description vector of the channel matrix corresponding to the sub-band on each sub-band, thereby improving the feedback accuracy of the channel matrix corresponding to the sub-band.
  • FIG. 5 is a schematic diagram showing the logical structure of a receiving end device 500 according to an embodiment of the invention. As shown in FIG. 5, the device 500 includes a generating module 502 and a transmitting module 504.
  • the generating module 502 is configured to generate at least one piece of description information for each of the plurality of subbands included in the broadband, where each description information is used to describe a description vector of a channel matrix corresponding to the subband, where the description information includes At least one of a vector parameter and a weight parameter, the vector parameter being used to indicate at least two component vectors of the description vector, the weight parameter being used to indicate a weight of each of the at least two component vectors
  • the at least two component vectors are selected from a base codebook;
  • the sending module 504 is configured to send the at least one piece of description information.
  • Apparatus 500 is for performing method 300 shown in FIG.
  • Related technical features related to the device 500 have been described in detail above with reference to the accompanying drawings, such as but not limited to FIG. 3, and thus are not described herein again.
  • FIG. 6 is a schematic diagram showing the logical structure of a transmitting end device 600 according to an embodiment of the invention. As shown in FIG. 6, device 600 includes a receiving module 602 and a determining module 604.
  • the receiving module 602 is configured to receive at least one piece of description information generated for each of the plurality of subbands included in the broadband, where each description information is used to describe a description vector of a channel matrix corresponding to the subband, where the description information includes At least one of a vector parameter and a weight parameter, the vector parameter being used to indicate at least two component vectors of the description vector, the weight parameter being used to indicate each component vector of the at least two component vectors The weight, wherein the at least two component vectors are selected from a base codebook.
  • the determining module 604 is configured to determine, according to each description information, a description vector corresponding to the description information.
  • Apparatus 600 is for performing method 400 shown in FIG.
  • the related technical features related to the device 600 have been described in detail above with reference to the accompanying drawings, such as but not limited to FIG. 4, and thus are not described herein again.
  • FIG. 7 is a schematic structural diagram of hardware of a receiving end device 700 according to an embodiment of the invention.
  • device 700 includes a processor 702, a transceiver 704, a plurality of antennas 707, a memory 708, an I/O (Input/Output) interface 710, and a bus 712.
  • the transceiver 704 further includes a transmitter 7042 and a receiver 7044 that is further configured to store instructions 7082 and data 7084.
  • the processor 702, the transceiver 704, the memory 708, and the I/O interface 710 are communicatively coupled to one another via a bus 712, and the plurality of antennas 706 are coupled to the transceiver 704.
  • the processor 702 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor, such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 702 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 702 can be used to perform, for example, step 302 in the channel information feedback method 300 shown in FIG. 3, and in the receiving device 500 shown in FIG. The operations performed by module 502 are generated.
  • a general-purpose processor such as, but not limited to, a central processing unit (CPU), or a dedicated processor, such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA).
  • processor 702 can also be a combination of multiple processors.
  • the processor 702 can be used to
  • the processor 702 may be a processor specifically designed to perform the above steps and/or operations, or may be a processor that performs the above steps and/or operations by reading and executing the instructions 7072 stored in the memory 708, the processor 702 Data 7084 may be required during the execution of the above steps and/or operations.
  • the transceiver 704 includes a transmitter 7042 and a receiver 7044, wherein the transmitter 7042 is configured to transmit signals through at least one of the plurality of antennas 706.
  • Receiver 7044 is configured to receive signals through at least one of the plurality of antennas 706.
  • the transmitter 7042 may be specifically configured to be executed by at least one of the plurality of antennas 706, for example, the steps in the channel information feedback method 300 shown in FIG. 304, and the operations performed by the transmitting module 504 in the receiving device 500 shown in FIG.
  • the memory 708 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory, and registers.
  • the memory 708 is specifically configured to store instructions 7082 and data 7084, and the processor 702 can perform the steps and/or operations described above by reading and executing the instructions 7082 stored in the memory 708, performing the steps and/or operations described above. The process may require the use of data 7084.
  • the I/O interface 710 is for receiving instructions and/or data from peripheral devices and outputting instructions and/or data to peripheral devices.
  • the device 700 may also include other hardware devices, which are not enumerated herein.
  • FIG. 8 is a schematic structural diagram of hardware of a receiving end device 800 according to an embodiment of the invention.
  • device 800 includes a processor 802, a transceiver 804, a plurality of antennas 806, a memory 808, an I/O (Input/Output) interface 810, and a bus 812.
  • the transceiver 804 further includes a transmitter 8042 and a receiver 8044 that is further configured to store instructions 8082 and data 8084.
  • the processor 802, the transceiver 804, the memory 808, and the I/O interface 810 are communicatively coupled to one another via a bus 812, and the plurality of antennas 806 are coupled to the transceiver 804.
  • the processor 802 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 802 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 802 is configured to perform, for example, step 404 in the channel information determining method 400 shown in FIG. 4, and determine in the transmitting device 600 shown in FIG. The operations performed by module 604.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • processor 802 can also be a combination of multiple processors.
  • the processor 802 is configured to perform, for example, step 404 in the channel information determining method 400 shown in FIG. 4, and determine in the transmitting device 600 shown in FIG. The operations performed by module 604.
  • Processor 802 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing instructions 8082 stored in memory 808, processor 802 Data 8084 may be required during the execution of the above steps and/or operations.
  • the transceiver 804 includes a transmitter 8042 and a receiver 8044, wherein the transmitter 8042 is configured to transmit signals through at least one of the plurality of antennas 806.
  • the receiver 8044 is configured to receive a signal through at least one of the plurality of antennas 806.
  • the receiver 8044 may be specifically configured to be executed by at least one of the plurality of antennas 806, for example, the steps in the channel information determining method 400 shown in FIG. 402, and the operations performed by the receiving module 602 in the transmitting device 600 shown in FIG.
  • the memory 808 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 808 is specifically configured to store instructions 8082 and data 8084, and the processor 802 can perform the steps and/or
  • the I/O interface 810 is configured to receive instructions and/or data from peripheral devices and to output instructions and/or data to peripheral devices.
  • the device 800 may also include other hardware devices, which are not enumerated herein.
  • FIG. 9 is a schematic structural diagram of a channel information feedback system 900 according to an embodiment of the invention.
  • the channel feedback system 900 may include: a receiving end device 910 and a transmitting end device 920.
  • the receiving end device 910 is the receiving end device 500 shown in FIG. 5;
  • the transmitting end device 920 is the transmitting end device 600 shown in FIG. 6;
  • the receiving end device 910 is the receiving end device 700 shown in FIG. 7; the transmitting end device 920 is the transmitting end device 800 shown in FIG. 8.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供了一种信道信息反馈及确定方法、接收端和发射端设备。信道信息反馈方法包括:对于宽带所包含的多个子带中的每个子带,生成至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,所述描述信息包括向量参数和权重参数中的至少一种;发送所述至少一条描述信息。本发明实施例还提供了一种信道信息确定方法、接收端设备和发射端设备。基于本发明实施例提供的技术方案所反馈的描述向量进行预编码能够提升预编码效果。

Description

一种信道信息反馈及确定方法、接收端和发射端设备 技术领域
本发明涉及通信技术领域,特别涉及一种信道信息反馈及确定方法、接收端和发射端设备。
背景技术
多入多出(Multiple Input Multiple Output,MIMO)技术的出现,给无线通信带来了革命性的变化。通过在发射端设备和接收端设备上部署多根天线,MIMO技术可以显著提高无线通信系统的性能。例如,在分集场景下,MIMO技术可有效提升传输可靠性;在复用场景下,MIMO技术可大大提升传输吞吐量。
MIMO系统通常使用预编码技术来改善信道,以提升空间复用(Spatial Multiplexing)的效果。具体来说,预编码技术使用与信道相匹配的预编码矩阵来对空间复用的数据流(下文简称空间流)进行处理,借此来实现对信道的预编码,提升空间流的接收质量。
预编码矩阵通常包括多个列向量,每个列向量又可称为预编码向量,每个预编码向量用于对一个空间流进行预编码。用于描述信道矩阵的理想预编码向量可以通过对信道矩阵进行奇异值分解(Singular Value Decomposition,SVD)获得,如果直接反馈理想预编码向量,反馈开销过大。现有技术基于码本来确定预编码向量,从码本中选择列向量直接作为预编码向量,并且使用所选列向量的标识进行反馈。然而,由于码本空间有限,基于码本选择的预编码向量与理想预编码向量之间的偏差较大,导致预编码效果受限。由此可见,需要一种新的反馈机制,可以提升预编码效果。
发明内容
为了能够提升预编码效果,本发明实施例提供了一种信道信息反馈及确定方法、接收端和发射端设备以及信道信息反馈系统。所述技术方案如下:
第一方面,提供一种信道信息反馈方法,该方法包括:
对于宽带所包含的多个子带中的每个子带,生成至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,所述描述信息包括向量参数和权重参数中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量中每个分量向量的权重,所述至少两个分量向量选自基础码本;
发送所述至少一条描述信息。
本发明实施例提供的信道信息反馈方法,生成并发送至少一条描述信息,每一描述信息用于描述子带所对应的信道矩阵的一个描述向量,发射端设备可以根据每一描述信息确定该描述信息对应的描述向量。从码本中选取至少一个列向量进行加权合并来生成信道矩阵的描述向量,相比现有技术直接使用码本中的列向量作为描述向量,本发明实施例提供的技术方案能够扩大码本空间,基于本发明实施例提供的技术方案所反馈的描述向量进行预编码能够提升预编码效果。
在一种可能的设计中,所述至少两个分量向量包括起始向量和至少一个偏移向量, 所述向量参数用于指示所述起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,L和M为预设正整数,且L≤O 1,M≤O 2
Figure PCTCN2018071283-appb-000001
Figure PCTCN2018071283-appb-000002
a和b均为整数且不同时为0。在这种情况下,偏移步长(L,M)可以由标准预先设定。
在一种可能的设计中,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数用于指示所述起始向量的基础向量参数(l,m)、偏移步长(L,M)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),且1≤L≤O 1,1≤M≤O 2,0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,
Figure PCTCN2018071283-appb-000003
a和b均为整数且不同时为0。在这种情况下,偏移步长(L,M)为预设的多组偏移步长其中之一。
在一种可能的设计中,所述偏移步长(L,M)为预设的多组偏移步长中与所述起始向量的基础向量参数(l,m)相对应的偏移步长。
第二方面,提供一种信道信息反馈方法,该方法包括:
接收对于宽带所包含的多个子带中的每个子带生成的至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,该描述信息包括向量参数和权重参数之中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量之中每个分量向量的权重,其中,所述至少两个分量向量选自基础码本;
根据所述每一描述信息确定该描述信息对应的描述向量。
本发明实施例提供的信道信息确定方法,接收至少一条描述信息,每一描述信息用于描述子带所对应的信道矩阵的一个描述向量,发射端设备可以根据每一描述信息确定该描述信息对应的描述向量。从码本中选取至少一个列向量进行加权合并来生成信道矩阵的描述向量,相比现有技术直接使用码本中的列向量作为描述向量,本发明实施例提供的技术方案能够扩大码本空间,基于本发明实施例提供的技术方案所反馈的描述向量进行预编码能够提升预编码效果。
在一种可能的设计中,所述至少两个分量向量包括起始向量和至少一个偏移向量, 所述向量参数用于指示所述起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,L和M为预设正整数,且L≤O 1,M≤O 2
Figure PCTCN2018071283-appb-000004
Figure PCTCN2018071283-appb-000005
a和b均为整数且不同时为0。在这种情况下,偏移步长(L,M)可以由标准预先设定。
在一种可能的设计中,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数用于指示所述起始向量的基础向量参数(l,m)、偏移步长(L,M)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),且1≤L≤O 1,1≤M≤O 2,0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,
Figure PCTCN2018071283-appb-000006
a和b均为整数且不同时为0。在这种情况下,偏移步长(L,M)为预设的多组偏移步长其中之一。
在一种可能的设计中,所述偏移步长(L,M)为预设的多组偏移步长中与所述起始向量的基础向量参数(l,m)相对应的偏移步长。
第三方面,提供一种接收端设备,该接收端设备包括:
生成模块,用于对宽带包含的多个子带中的每个子带生成至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,该描述信息包括向量参数和权重参数之中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量之中每个分量向量的权重,其中,所述至少两个分量向量选自基础码本;
发送模块,用于发送所述至少一条描述信息。
在一种可能的设计中,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数用于指示所述起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,L和M为预设正整数,且L≤O 1,M≤O 2
Figure PCTCN2018071283-appb-000007
Figure PCTCN2018071283-appb-000008
a和b均为整数且不同时为0。在这种情况下,偏移步长(L,M) 可以由标准预先设定。
在一种可能的设计中,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数用于指示所述起始向量的基础向量参数(l,m)、偏移步长(L,M)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),且1≤L≤O 1,1≤M≤O 2,0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,
Figure PCTCN2018071283-appb-000009
a和b均为整数且不同时为0。在这种情况下,偏移步长(L,M)为预设的多组偏移步长其中之一。
在一种可能的设计中,所述偏移步长(L,M)为预设的多组偏移步长中与所述起始向量的基础向量参数(l,m)相对应的偏移步长。
第四方面,提供一种接收端设备,该接收端设备包括:
接收模块,用于接收对于宽带所包含的多个子带中的每个子带生成的至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,该描述信息包括向量参数和权重参数之中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量之中每个分量向量的权重,其中,所述至少两个分量向量选自基础码本;
确定模块,用于根据所述每一描述信息确定该描述信息对应的描述向量。
在一种可能的设计中,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数用于指示所述起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,L和M为预设正整数,且L≤O 1,M≤O 2
Figure PCTCN2018071283-appb-000010
Figure PCTCN2018071283-appb-000011
a和b均为整数且不同时为0。在这种情况下,偏移步长(L,M)可以由标准预先设定。
在一种可能的设计中,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数用于指示所述起始向量的基础向量参数(l,m)、偏移步长(L,M)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),且1≤L≤O 1,1≤M≤O 2,0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,
Figure PCTCN2018071283-appb-000012
a和b均为整数且不同时为0。在这种情况下,偏移步长(L,M)为预设的多组偏移步长其中之一。
在一种可能的设计中,所述偏移步长(L,M)为预设的多组偏移步长中与所述起始向量的基础向量参数(l,m)相对应的偏移步长。
第五方面,提供一种信道信息反馈系统,
在一种可能的实现方式中,该信道信息反馈系统包括:第三方面及其任一可能设计中提供的接收端设备;和,第四方面及其任一可能设计中提供的发射端设备;
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例提供的信道信息反馈及确定方法、接收端和发射端设备以及信道信息反馈系统,通过接收端设备生成并发送对于宽带所包含的多个子带中的每个子带的至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,发射端设备可以根据每一描述信息确定该描述信息对应的描述向量。从码本中选取至少一个列向量进行加权合并来生成信道矩阵的描述向量,相比现有技术直接使用码本中的列向量作为描述向量,本发明实施例提供的技术方案能够扩大码本空间,基于本发明实施例提供的技术方案所反馈的描述向量进行预编码能够提升预编码效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是依照本发明一实施例的无线通信网络的示范性示意图;
图2A是依照本发明一实施例的天线阵列的示范性示意图;
图2B是依照本发明一实施例的基础码本示意图;
图2C是依照本发明一实施例的基础码本另一示意图;
图3是依照本发明一实施例的信道信息反馈方法的示范性流程图;
图4是依照本发明一实施例的信道信息确定方法的示范性流程图;
图5是依照本发明一实施例的接收端设备的逻辑结构示意图;
图6是依照本发明一实施例的发射端设备的逻辑结构示意图;
图7是依照本发明一实施例的接收端设备的硬件结构示意图;
图8是依照本发明一实施例的发射端设备的硬件结构示意图;
图9是依照本发明一实施例的信道信息反馈系统的结构示意图。
具体实施方式
下面就结合相应的附图对本发明实施例提供的技术方案进行详细的描述。
图1是依照本发明一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间 可通过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106用于为终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此可以同时由多个基站为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以同时为终端设备112提供服务。又例如,如图1所示,基站102、基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站102、104和106可以同时为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备108~118可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~118还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现 方案,例如目前常用的发射分集可以包括,例如但不限于,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。
此外,基站102与终端设备104~110可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准中定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。图1所示的无线通信网络便可以是上述无线通信系统中的任意系统或者网络。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。
通常来说,在通信过程中,接收端设备根据发射端设备发射的参考信号确定信道矩阵,并基于信道矩阵和码本确定该信道矩阵的描述矩阵,以及将该描述矩阵反馈给发射端设备。发射端设备根据描述矩阵对待发射数据进行预编码,并将预编码后的数据发往接收端设备。在本文中,上述接收端设备可以是图1所示的终端设备108~122,发射端设备可以是图1所示的基站102~106;或者,上述接收端设备可以是图1所示的基站102~106,发射端设备可以是图1所示的终端设备108~122。本发明实施例提供了一种反馈以及确定信道信息的方案,以及相应的接收端设备和发射端设备,下面就对本发明实施例提供的技术方案进行详细描述。
基础码本通常与天线阵列相关联,举例来说,基础码本表达式所涉及的许多参数可以理解为是用于表征天线阵列的不同属性。因此,为便于理解本发明实施例提供的基础码本,下文将结合天线阵列对基础码本进行描述。尽管如此,本领域的技术人员应当明白,本发明实施例提供的基础码本并非仅限于特定的天线阵列。在具体实现过程中,可以按照具体的需要,选择合适的天线阵列,并基于所选的天线阵列,设置本发明实施例提供的基础码本中涉及的各种参数,以便应用本发明实施例提供的基础码本确定描述向 量。
图2A是依照本发明一实施例的天线阵列200的示范性示意图。如图2A所示,天线阵列200包含多个振元202,这些振元202以矩阵方式进行排布。具体来说,该矩阵的每一行包含多个振元202,每一列包含多个振元202。每个振元202包含两根天线,分别为工作在第一极化方向的天线204和工作在第二极化方向的天线206。
图2B是依照本发明一实施例的基础码本示意图。该基础码本中包括多个基础向量,每一基础向量为:
Figure PCTCN2018071283-appb-000013
其中,
Figure PCTCN2018071283-appb-000014
代表克罗内克积,且
Figure PCTCN2018071283-appb-000015
Figure PCTCN2018071283-appb-000016
其中,(x,y)为基础向量参数,N 1,N 2,O 1,O 2为预设值且N 1,N 2,O 1,O 2均为正整数,0≤x≤O 1N 1-1,0≤y≤O 2N 2-1。
具体来说,v x可以是例如但不限于第一维离散傅里叶变换(Discrete Fourier Transform,DFT)向量,其中N 1为第一维阵元数,O 1为第一维过采样数;u y可以是例如但不限于第二维DFT向量,N 2为第二维阵元数,O 2为第二维过采样数。如图2B所示为第一维阵元数N 1=4,过采样数O 1=4,第二维阵元数N 2=2,过采样数O 2=4时所构造出的基础码本的示意图,其中,图2B中示出的每一个圆点代表基础码本中的一个基础向量。
在具体实现过程中,上述基础码本中O 1和O 2的作用可以理解为进行过采样,N 1和N 2可用于表示上述天线阵列200中每一行中(或者列)振元202的数量和每一列中(或者行)振元202的数量。
图2C为上述基础码本的另一示意图,该示意图将上述基础码本中的基础向量表示在横轴为l,纵轴为m的坐标系中,(l,m)为基础向量参数且l和m均为非负整数,同时(l,m)也用来表示基础向量在基础码本中的位置信息,记为基础向量(l,m),如图2B所示,(l,m)=(0,0),(l,m)=(1,2),(l,m)=(2,1)表示图中对应的基础向量。(L,M)表示两个基础向量之间的偏移步长,L、M为正整数,其中L为两个基础向量在横轴方向上的偏移步长,M为两个基础向量在纵轴方向上的偏移步长,如图2C所示,L=4表示两个基础向量在横轴方向上的偏移步长为4,M=4表示两个基础向量在纵轴方向上的偏移步长为4。 当一个基础向量的位置信息(l,m)和偏移步长(L,M)确定后,以该基础向量(l,m)作为起始向量(l,m),可以确定一个包含起始向量(l,m)和至少一个偏移向量(l i,m i)的向量组,这里的至少一个偏移向量(l i,m i)可以是基础码本中区别于起始向量(l,m)的任一基础向量,每个偏移向量的基础向量参数可以表示为:l i=l+aL,m i=m+bM,
Figure PCTCN2018071283-appb-000017
a,b均为非负整数且a,b不同时为零,(a,b)为每个偏移向量的偏移参数。示例地,当起始向量为(0,0),即如图2C所示左下角第一个第一类圆点代表的向量,偏移步长为(4,4),(O 1N 1=16,O 2N 2=8在图2B的描述中已示出),则
Figure PCTCN2018071283-appb-000018
a的取值可以为{0,1,2,3},b的取值可以为{0,1},满足条件的偏移参数(a,b)的取值为(1,0)、(2,0)、(3,0)、(0,1)、(1,1)、(2,1)、(3,1),即满足条件的偏移向量为:基础向量(4,0)、基础向量(8,0)、基础向量(12,0)、基础向量(0,4)、基础向量(4,4)、基础向量(8,4)和基础向量(12,4),即如图2C所示的其它第一类圆点代表的向量。需要指出的是,这里将基础码本中的基础向量表示在坐标系中是为了方便描述不同向量间的位置关系,非用于限制本发明的保护范围,在具体实现过程中,本领域的技术人员可以根据实际的需要采用其他的描述方式,在此不做限定。
图3是依照本发明一实施例的信道信息反馈方法300的流程图,在具体实现过程中,方法300可以由接收端设备来执行。
步骤302、对于宽带所包含的多个子带中的每个子带,生成至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,所述描述信息包括向量参数和权重参数中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量中每个分量向量的权重,所述至少两个分量向量选自基础码本;
步骤304、发送所述至少一条描述信息。
在上述方法300中,描述信息包括向量参数和权重参数中的至少一种,该向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量中每个分量向量的权重,所述至少两个分量向量选自基础码本。其中,上述方法300中,宽带可以是指整个系统带宽所对应的频带范围,子带可以是指一部分系统带宽所对应的频带范围,例如整个系统带宽为20M,宽带可以是指该整个系统带宽所对应的频带20M,子带可以是指该整个系统带宽中的一部分带宽,例如5M。子带所对应的信道矩阵也可以称为子带信道矩阵。还需要指出的是,除了对于宽带所包含的多个子带中的每个子带生成至少一条描述信息,还可以是对于合并子带生成至少一条描述信息,所述合并子带包含上述宽带中的多个连续子带,例如,上述宽带包含子带1、子带2、子带3、子 带4、子带5,合并子带可以包含子带1和子带2。
在具体实现过程中,上述描述向量,即理想的预编码向量,可以通过多种方法来获得,且通过不同方法获得的描述向量可以不同。例如,上述描述向量可通过对信道矩阵进行奇异值分解(Singular Value Decomposition,SVD)来获得。具体来说,对信道矩阵进行奇异值分解(Singular Value Decomposition,SVD),可以将信道矩阵分解为左酉矩阵、对角矩阵和右酉矩阵三者乘积的形式。在具体实现过程中,可以将右酉矩阵的共轭转置矩阵作为描述矩阵,该描述矩阵的列向量即可作为描述向量。此外,上述依照奇异值分解获得的描述矩阵,也可以通过,例如但不限于,对信道矩阵的相关矩阵进行特征值分解来获得。在具体实现过程中,可以根据系统设计的整体需要,确定描述向量的具体值及其获取方法。有关描述向量的技术细节已经在现有技术中进行了清楚的描述,因此此处不再赘述。
在获得上述描述向量之后,可以将该描述向量近似表示成多个分量向量加权之和的形式,即:
Figure PCTCN2018071283-appb-000019
其中p代表描述向量,c k代表分量向量k,x k代表分量向量k的权重。在具体实现过程中,可以根据具体需要(例如但不限于精确度的需要),设置分量向量的数量K(K为正整数),例如,分量向量的数量可以为预设的数量。
在一种可能的设计中,上述至少两个分量向量包括起始向量和至少一个偏移向量,上述向量参数包括所述起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),在这种情况下,偏移步长(L,M)可以由标准预先设定。可以理解的是,接收端设备在生成描述信息之前,需要确定起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),即确定起始向量和至少一个偏移向量。在上文中提到,基础码本中包括多个基础向量,在这些基础向量中,与子带信道矩阵的一个描述向量最为接近的基础向量即可被选为上述起始向量,该最接近的基础向量在基础码本中的位置信息(l,m)即可被确定为起始向量的基础向量参数(l,m)。基础码本中的基础向量与子带信道矩阵的一个描述向量的接近程度可以具体体现为二者的内积。例如,接收端设备根据子带信道矩阵获得子带信道矩阵的一个描述向量,计算该描述向量与基础码本中的多个基础向量的内积,最大内积对应的基础向量即可被确定为起始向量,其对应的基础向量参数即可被确定为起始向量的基础向量参数。需要指出的是,以上对确定起始向量的描述仅为举例,并非用于限制本发明的保护范围。在具体实现过程中,本领域的技术人员可以根据具体的需要,选择合适的确定起始向量的方法。
在确定了起始向量之后,接收端设备可以根据起始向量和偏移步长(L,M)在基础码本中确定一个包含起始向量和至少一个偏移向量的向量组,具体确定上述向量组的方法可以参考图2B的描述,在此不再赘述。在确定了向量组之后,需要在上述确定的向量组中选取用于描述子带信道矩阵的一个描述向量的分量向量。选取分量向量的方法可以是例如但不限于下面介绍的方法,例如,以向量组中的各向量为基底,将上述子带信道矩阵的一个描述向量映射到上述向量组中的各基底上,根据该描述向量在各基底上的分量 的大小,选取前K(K为大于2的正整数)个最大的分量及其所对应的基底向量,上述K个基底向量即为需要选取的K个分量向量,该K个最大的分量即为对应分量向量的权重。或者以向量组中的各向量为基底,将上述信道矩阵的一个描述向量映射到上述向量组的各基底上,根据该描述向量在各基底上的分量的大小,选取最大的一个分量及其对应的基底向量,将该基底向量作为选取的第一个分量向量。然后从该描述向量中删去上述选取的最大的一个分量,重复上述选取操作,选出第二个分量向量,直到获得K个分量向量,该K个分量向量对应的分量即为分量向量的权重。可以理解的是,通过上述方法选取的K个分量向量包括上述起始向量和(K-1)个偏移向量,该(K-1)个偏移向量对应的(K-1)个偏移参数(a,b)即为接收端设备需要确定的偏移向量的偏移参数,同时,上述K个分量向量对应K个权重参数x k,用于指示K个分量向量的权重。需要指出的是,这里选取的分量向量的具体个数可以由通信协议确定,也可以根据实际的通信系统的性能需求进行确定,在此不作限定。
在一种可能的设计中,上述至少两个分量向量包括起始向量和至少一个偏移向量,上述向量参数包括所述起始向量的基础向量参数(l,m)、偏移步长(L,M)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b)的确定过程在上文中已经有详细描述,在此不再赘述。在这种情况下,偏移步长(L,M)选自预先设定的偏移步长取值集合,这里预先设定的偏移步长取值集合可以由标准预先设定,也可以是不同的接收端设备根据自身的性能预先设定的,还可以是接收端设备和发射端设备协商确定。换句话说,接收端设备生成的描述信息中携带的偏移步长(L,M)的取值可以从该预设偏移步长取值集合中选取。例如预设的偏移步长(L,M)的取值集合为(1,1),(2,1),(2,3),(4,4),则偏移步长(L,M)的取值从上述四个取值中选取。需要指出的是,当偏移步长取值集合由标准预先设定时,接收端设备生成的描述信息中携带的偏移步长(L,M)可以是偏移步长(L,M)的索引;当偏移步长取值集合由不同的接收端设备根据自身的性能预先设定时,接收端设备生成的描述信息中携带的偏移步长(L,M)可以是偏移步长的取值。在具体实现过程中,从偏移步长取值集合中选取偏移步长(L,M)的方法可以是接收端设备依次根据上述偏移步长集合中(L,M)的取值及起始向量(l,m)确定相对应的向量组,再根据所要描述的子带信道矩阵的一个描述向量,选取最优的用于描述该描述向量的向量组,选取最优向量组的准则可以是例如但不限于最小二乘准则和最大内积准则等,以最大内积准则为例,选取上述根据不同偏移步长(L,M)确定的多个向量组其中的一个向量组,可以参考上文中介绍的方法在该向量组中选取上述描述向量(该描述向量在下文中称为原描述向量)的K个分量向量及每个分量向量对应的权重,对该K个分量向量进行加权求和得到估算后的描述向量,计算原描述向量和估算后的描述向量的内积。对其它向量组重复上述操作,得到多个内积。在此基础上,选取最大的内积所对应的向量组作为最优的向量组。选取最优的向量组之后,记录与之对应的偏移步长(L,M),该偏移步长(L,M)即为需要选取的偏移步长。可以看出,偏移步长(L,M)的取值选自预设的偏移步长取值集合,可以减少接收端设备在确定偏移步长(L,M)时的计算量,同时可以提高每一描述信息描述子带信道矩阵的一个描述向量的精确度。
进一步的,上述偏移步长(L,M)可以和上述起始向量的基础向量参数(l,m)相对应,这里偏移步长(L,M)和起始向量的基础向量参数(l,m)的对应关系可以是通信协议中确 定的,也可以是根据实际系统的性能需求确定的。在这种情况下,起始向量的基础向量参数(l,m)和偏移步长(L,M)可以是一一对应,也可以是多个起始向量的基础向量参数(l,m)对应一个偏移步长(L,M)。例如当起始向量的基础向量参数(l,m)为(0,0)时,对应的偏移步长(L,M)为(4,4),或者当起始向量的基础向量参数(l,m)为(0,0),(1,1),(2,2)时,对应的偏移步长(L,M)都为(4,4),即接收端设备生成一条描述信息时,确定了需要携带的起始向量的基础向量参数为(0,0),则需要携带的偏移步长也随之确定为(4,4),或者确定了需要携带的起始向量的基础向量参数为(0,0),(1,1),(2,2)中的一个,则需要携带的偏移参数都为(4,4)。可以理解的是,当偏移步长(L,M)和起始向量的基础向量参数(l,m)存在对应关系时,接收端设备生成的描述信息中携带的向量参数可以是起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),即不需要携带偏移步长(L,M)的信息,这是因为通过基础向量参数(l,m)以及上述对应关系即可确定偏移步长(L,M)的信息。不难看出,偏移步长(L,M)和起始向量的基础向量参数(l,m)相对应,接收端设备在起始向量的基础向量参数(l,m)确定之后可以快速确定偏移步长(L,M),减少了接收端设备的计算量,同时还有助于降低反馈开销,提升了接收端设备的效率。
在上述方法300中,描述信息包括向量参数和权重参数中的至少一种,该权重参数用于指示所述至少两个分量向量中每个分量向量的权重。权重参数的确定方法在上文中已经有详细的描述,在此不再赘述。
需要指出的是,在具体实现过程中,分量向量的确定和指示周期与权重的确定和指示周期可以相同,也可以不同。举例来说,分量向量的确定和指示周期可以长于或者短于权重的确定和指示周期。在这种情况下,方法300中确定和指示分量向量的操作,与确定和指示权重的操作,应当理解为可以是在相同反馈周期内完成的,也可以是在不同反馈周期内完成。换句话说,在接收端设备生成的一条描述信息中包括向量参数和权重参数中的至少一种。事实上,在现有技术中,码本可以表示为如下形式:
W=W 1W 2
其中W 1可以称为长时/宽带码本,W 2可以称为短时/窄带码本。在本发明实施例提供的技术方案中,分量向量的确定和指示方式,可以参考现有技术中W 1的确定和指示方式,权重的确定和指示方式,可以参考现有技术中W 2的确定和指示方式,而这些确定和指示方式也应当理解为涵盖在方法300的范围之内。
在具体实现过程中,在步骤304中,接收端设备通过确定的信令向发射端设备发送描述信息,可以理解的是,所述描述信息可以为每个子带所对应的信道矩阵的描述信息的集合,即通过确定的信令将对每个子带所对应的信道矩阵生成的描述信息一起发送给发射端设备,此外,每个子带可能有多条描述信息,这些描述信息也通过确定的信令一起发送给发射端设备。上述描述信息可以通过如下信令之中的一种进行发送:
物理层信令;
媒体访问控制层信令;
无线资源控制信令。
物理层信令也称为第一层(Layer 1,L1)信令,其通常可以由物理层帧中的控制部分来承载。L1信令的典型例子是LTE标准中定义的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的下行控制信息(Downlink Control Information,DCI) 和物理上行控制信道(Physical Uplink Control Channel,PUCCH)中承载的上行控制信息(Uplink Control Information,UCI)。在一些情况下,L1信令也可以由物理层帧中的数据部分来承载。不难看出,L1信令的发送周期或者信令周期通常为物理层帧的周期,因此这种信令通常用于实现一些动态的控制,以传递一些变化频繁的信息,例如,可以通过物理层信令传送资源分配信息。
媒体访问控制(Media Access Control,MAC)层信令属于第二层(Layer 2)信令,其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC)。第二层帧通常可以携带在物理层帧的数据部分。上述预编码配置信息也可以通过媒体访问控制层信令之外的其他第二层信令发送。
无线资源控制(Radio Resource Control,RRC)信令属于第三层(Layer 3)信令,其通常是一些控制消息,L3信令通常可以携带在第二层帧的帧体中。L3信令的发送周期或者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现有的一些通信标准中,L3信令通常用于承载一些配置信息。上述预编码配置信息也可以通过RRC信令之外的其他第三层信令发送。
上文所述仅为物理层信令、MAC层信令、RRC信令、第一层信令、第二层信令和第三层信令的原理性描述,有关三种信令的具体细节可以参考现有技术,因此本文不再赘述。
在具体实现过程中,上述通过多个分量向量加权之和来近似表示的描述向量即可被发射端设备用作预编码向量来对带发射数据进行预编码。应注意,在一些情况下,通过多个分量向量加权之和来近似表示的描述向量可能需要进行重构才能用于进行预编码。例如,在MU-MIMO场景下,发射端设备需要根据同时调度的多个接收端设备的上述近似表示的描述向量进行重构操作,来获得针对每个接收端设备的真正用于预编码的预编码向量,其中,重构的目的可以是,例如但不限于,通过将不同接收端设备的预编码向量设置成彼此正交,来降低发往一个接收端设备的信号对另一接收端设备造成的干扰。上述重构过程可基于多种算法来进行,例如但不限于,迫零(Zero-Forcing,ZF)算法、最小均方误差(Minimum Mean Square Error,MMSE)算法和块对角化(Block Diagonalization,BD)算法。
不难看出,通过信令发送至少一条描述信息,每一描述信息用于描述子带所对应的信道矩阵的一个描述向量,接收端设备可以根据每一描述信息确定该描述信息对应的描述向量。从码本中选取至少一个列向量进行加权合并来生成信道矩阵的描述向量,相比现有技术直接使用码本中的列向量作为描述向量,本发明实施例提供的技术方案能够扩大码本空间,基于本发明实施例提供的技术方案所反馈的描述向量进行预编码能够提升预编码效果。
此外,本发明实施例提供的技术方案在每个子带上反馈该子带所对应的信道矩阵的描述向量,从而提高了子带所对应的信道矩阵的反馈精确度。
图4是依照本发明一实施例的信道信息确定方法400的流程图,在具体实现过程中, 方法400可以由发射端设备来执行。
步骤402、接收对于宽带所包含的多个子带中的每个子带生成的至少一条描述信息,每条描述信息用于描述该子带所对应的信道矩阵的一个描述向量,该描述信息包括向量参数和权重参数之中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量之中每个分量向量的权重,其中,所述至少两个分量向量选自基础码本。
步骤404、根据所述每一描述信息确定该描述信息对应的描述向量。
在具体实现过程中,可以通过向量参数确定至少两个分量向量,通过权重参数确定上述至少两个分量向量之中的每个分量向量的权重,再通过对这些分量向量基于这些分量向量各自的权重进行加权求和,来确定描述向量。
上述方法400中涉及的具体技术内容已经在上文结合附图,例如但不限于图2C和图3,进行了清楚的描述,因此此处不再赘述。
可以看出,接收至少一条描述信息,每一描述信息用于描述子带所对应的信道矩阵的一个描述向量,发射端设备可以根据每一描述信息确定该描述信息对应的描述向量。从码本中选取至少一个列向量进行加权合并来生成信道矩阵的描述向量,相比现有技术直接使用码本中的列向量作为描述向量,本发明实施例提供的技术方案能够扩大码本空间,基于本发明实施例提供的技术方案所反馈的描述向量进行预编码能够提升预编码效果。
此外,本发明实施例提供的技术方案在每个子带上反馈该子带所对应的信道矩阵的描述向量,从而提高了子带所对应的信道矩阵的反馈精确度。
图5是依照本发明一实施例的接收端设备500的逻辑结构示意图。如图5所示,设备500包括生成模块502和发送模块504。
生成模块502用于生成对于宽带所包含的多个子带中的每个子带的至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,所述描述信息包括向量参数和权重参数中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量中每个分量向量的权重,所述至少两个分量向量选自基础码本;
发送模块504用于发送所述至少一条描述信息。
设备500用于执行图3所示的方法300。设备500涉及的相关技术特征已经在上文结合附图,例如但不限于图3,进行了详细的描述,因此此处不再赘述。
图6是依照本发明一实施例的发射端设备600的逻辑结构示意图。如图6所示,设备600包括接收模块602和确定模块604。
接收模块602用于接收对于宽带所包含的多个子带中的每个子带生成的至少一条描述信息,每条描述信息用于描述该子带所对应的信道矩阵的一个描述向量,该描述信息包括向量参数和权重参数之中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量之中每个分量向量的权重,其中,所述至少两个分量向量选自基础码本。
确定模块604用于根据所述每一描述信息确定该描述信息对应的描述向量。
设备600用于执行图4所示的方法400。设备600涉及的相关技术特征已经在上文结合附图,例如但不限于图4,进行了详细的描述,因此此处不再赘述。
图7是依照本发明一实施例的接收端设备700的硬件结构示意图。如图7所示,设备700包括处理器702、收发器704、多根天线707,存储器708、I/O(输入/输出,Input/Output)接口710和总线712。收发器704进一步包括发射器7042和接收器7044,存储器708进一步用于存储指令7082和数据7084。此外,处理器702、收发器704、存储器708和I/O接口710通过总线712彼此通信连接,多根天线706与收发器704相连。
处理器702可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器702还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器702可以用于执行,例如,图3所示的信道信息反馈方法300中的步骤302,和图5所示的接收端设备500中生成模块502所执行的操作。处理器702可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器708中存储的指令7072来执行上述步骤和/或操作的处理器,处理器702在执行上述步骤和/或操作的过程中可能需要用到数据7084。
收发器704包括发射器7042和接收器7044,其中,发射器7042用于通过多根天线706之中的至少一根天线发送信号。接收器7044用于通过多根天线706之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,发射器7042具体可以用于通过多根天线706之中的至少一根天线执行,例如,图3所示的信道信息反馈方法300中的步骤304,以及图5所示的接收端设备500中发送模块504所执行的操作。
存储器708可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器708具体用于存储指令7082和数据7084,处理器702可以通过读取并执行存储器708中存储的指令7082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据7084。
I/O接口710用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,设备700还可以包括其他硬件器件,本文不再一一列举。
图8是依照本发明一实施例的接收端设备800的硬件结构示意图。如图8所示,设备800包括处理器802、收发器804、多根天线806,存储器808、I/O(输入/输出,Input/Output)接口810和总线812。收发器804进一步包括发射器8042和接收器8044,存储器808进一步用于存储指令8082和数据8084。此外,处理器802、收发器804、存储器808和I/O接口810通过总线812彼此通信连接,多根天线806与收发器804相连。
处理器802可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器802还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器802用于执行,例如, 图4所示的信道信息确定方法400中的步骤404,以及图6所示的发射端设备600中确定模块604所执行的操作。处理器802可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器808中存储的指令8082来执行上述步骤和/或操作的处理器,处理器802在执行上述步骤和/或操作的过程中可能需要用到数据8084。
收发器804包括发射器8042和接收器8044,其中,发射器8042用于通过多根天线806之中的至少一根天线发送信号。接收器8044用于通过多根天线806之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,接收器8044具体可以用于通过多根天线806之中的至少一根天线执行,例如,图4所示的信道信息确定方法400中的步骤402,以及图6所示的发射端设备600中接收模块602所执行的操作。
存储器808可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器808具体用于存储指令8082和数据8084,处理器802可以通过读取并执行存储器808中存储的指令8082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据8084。
I/O接口810用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,设备800还可以包括其他硬件器件,本文不再一一列举。
图9是依照本发明一实施例的信道信息反馈系统900的结构示意图。在具体实现过程中,如图9所示,该信道反馈系统900可以包括:接收端设备910和发射端设备920。
在一种可能的实现方式中,接收端设备910为图5所示的接收端设备500;发射端设备920为图6所示的发射端设备600;
在另一种可能的实现方式中,接收端设备910为图7所示的接收端设备700;发射端设备920为图8所示的发射端设备800。
以上所述仅为本发明的一些实施例,并不用以限制本发明的范围,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明实施例的保护范围之内。例如,在本发明实施例提供的各方法的步骤之前、之间和/或之后添加其他的处理步骤,在本发明实施例提供的各装置中添加其他的处理模块以完成额外的处理,将本发明实施例提供的技术方案应用在特定场景或者特定条件下,均应视为在本发明实施例提供的技术方案基础上所做的进一步的改进,因此均落入本发明的范围之内。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种信道信息反馈方法,其特征在于,所述方法包括:
    对于宽带所包含的多个子带中的每个子带,生成至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,所述描述信息包括向量参数和权重参数中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量中每个分量向量的权重,所述至少两个分量向量选自基础码本;
    发送所述至少一条描述信息。
  2. 如权利要求1所述的方法,其特征在于,所述基础码本包括多个基础向量,所述每一分量向量为所述多个基础向量其中之一,所述基础向量为:
    Figure PCTCN2018071283-appb-100001
    且:
    Figure PCTCN2018071283-appb-100002
    Figure PCTCN2018071283-appb-100003
    其中(x,y)为基础向量参数,O 1、N 1、O 2和N 2为预设正整数,0≤x≤O 1N 1-1,0≤y≤O 2N 2-1。
  3. 如权利要求2所述的方法,其特征在于,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数包括起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,L和M为预设正整数,且L≤O 1,M≤O 2
    Figure PCTCN2018071283-appb-100004
    Figure PCTCN2018071283-appb-100005
    a和b均为整数且不同时为0。
  4. 如权利要求2所述的方法,其特征在于,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数包括起始向量的基础向量参数(l,m)、偏移步长(L,M)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),偏移步长(L,M)为预设的多组偏移步长其中之一,且1≤L≤O 1,1≤M≤O 2,0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,
    Figure PCTCN2018071283-appb-100006
    a和b均为整数且不同时为0。
  5. 如权利要求4所述的方法,其特征在于,所述偏移步长(L,M)为预设的多组偏移步长中与所述起始向量的基础向量参数(l,m)相对应的偏移步长。
  6. 一种信道信息确定方法,其特征在于,所述方法包括:
    接收对于宽带所包含的多个子带中的每个子带生成的至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,该描述信息包括向量参数和权重参数之中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量之中每个分量向量的权重,其中,所述至少两个分量向量选自基础码本;
    根据所述每一描述信息确定该描述信息对应的描述向量。
  7. 如权利要求6所述的方法,其特征在于,所述基础码本包括多个基础向量,所述每一分量向量为所述多个基础向量其中之一,所述基础向量为:
    且:
    Figure PCTCN2018071283-appb-100008
    Figure PCTCN2018071283-appb-100009
    其中(x,y)为基础向量参数,O 1、N 1、O 2和N 2为预设正整数,0≤x≤O 1N 1-1,0≤y≤O 2N 2-1。
  8. 如权利要求7所述的方法,其特征在于,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数包括起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,L和M为预设正整数,且L≤O 1,M≤O 2
    Figure PCTCN2018071283-appb-100010
    Figure PCTCN2018071283-appb-100011
    a和b均为整数且不同时为0。
  9. 如权利要求7所述的方法,其特征在于,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数包括起始向量的基础向量参数(l,m)、偏移步长(L,M)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),偏移步长(L,M)为预设的多组偏移步长其中之一,且1≤L≤O 1,1≤M≤O 2,0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,
    Figure PCTCN2018071283-appb-100012
    a 和b均为整数且不同时为0。
  10. 如权利要求9所述的方法,其特征在于,所述偏移步长(L,M)为预设的多组偏移步长中与所述起始向量的基础向量参数(l,m)相对应的偏移步长。
  11. 一种接收端设备,其特征在于,包括:
    生成模块,用于对宽带包含的多个子带中的每个子带生成至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,该描述信息包括向量参数和权重参数之中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量之中每个分量向量的权重,其中,所述至少两个分量向量选自基础码本;
    发送模块,用于发送所述至少一条描述信息。
  12. 如权利要求11所述的接收端设备,其特征在于,所述基础码本包括多个基础向量,所述每一分量向量为所述多个基础向量其中之一,所述基础向量为:
    Figure PCTCN2018071283-appb-100013
    且:
    Figure PCTCN2018071283-appb-100014
    Figure PCTCN2018071283-appb-100015
    其中(x,y)为基础向量参数,O 1、N 1、O 2和N 2为预设正整数,0≤x≤O 1N 1-1,0≤y≤O 2N 2-1。
  13. 如权利要求12所述的接收端设备,其特征在于,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数包括起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,L和M为预设正整数,且L≤O 1,M≤O 2
    Figure PCTCN2018071283-appb-100016
    a和b均为整数且不同时为0。
  14. 如权利要求12所述的接收端设备,其特征在于,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数包括起始向量的基础向量参数(l,m)、偏移步长(L,M)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),偏移步长(L,M)为预设的多组偏移步长其中之一,且1≤L≤O 1,1≤M≤O 2,0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,
    Figure PCTCN2018071283-appb-100017
    a和b均为整数且不同时为0。
  15. 如权利要求14所述的接收端设备,其特征在于,所述偏移步长(L,M)为预设的多组偏移步长中与所述起始向量的基础向量参数(l,m)相对应的偏移步长。
  16. 一种发射端设备,其特征在于,包括:
    接收模块,用于接收对于宽带所包含的多个子带中的每个子带生成的至少一条描述信息,每一描述信息用于描述该子带所对应的信道矩阵的一个描述向量,该描述信息包括向量参数和权重参数之中的至少一种,所述向量参数用于指示所述描述向量的至少两个分量向量,所述权重参数用于指示所述至少两个分量向量之中每个分量向量的权重,其中,所述至少两个分量向量选自基础码本;
    确定模块,用于根据所述每一描述信息确定该描述信息对应的描述向量。
  17. 如权利要求16所述的发射端设备,其特征在于,所述基础码本包括多个基础向量,所述每一分量向量为所述多个基础向量其中之一,所述基础向量为:
    Figure PCTCN2018071283-appb-100018
    且:
    Figure PCTCN2018071283-appb-100019
    Figure PCTCN2018071283-appb-100020
    其中(x,y)为基础向量参数,O 1、N 1、O 2和N 2为预设正整数,0≤x≤O 1N 1-1,0≤y≤O 2N 2-1。
  18. 如权利要求17所述的发射端设备,其特征在于,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数包括起始向量的基础向量参数(l,m)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,L和M为预设正整数,且L≤O 1,M≤O 2
    Figure PCTCN2018071283-appb-100021
    a和b均为整数且不同时为0。
  19. 如权利要求17所述的发射端设备,其特征在于,所述至少两个分量向量包括起始向量和至少一个偏移向量,所述向量参数包括起始向量的基础向量参数(l,m)、偏移步长(L,M)和每个偏移向量的偏移参数(a,b),其中每个偏移向量的基础向量参数为(l+aL,m+bM),偏移步长(L,M)为预设的多组偏移步长其中之一,且1≤L≤O 1,1≤M≤O 2,0≤l≤O 1N 1-1,0≤m≤O 2N 2-1,
    Figure PCTCN2018071283-appb-100022
    a和b均为整数且不同时为0。
  20. 如权利要求19所述的发射端设备,其特征在于,述偏移步长(L,M)为预设的多组偏移步长中与所述起始向量的基础向量参数(l,m)相对应的偏移步长。
PCT/CN2018/071283 2017-01-07 2018-01-04 一种信道信息反馈及确定方法、接收端和发射端设备 WO2018127072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18736344.5A EP3550735B1 (en) 2017-01-07 2018-01-04 Channel information feedback method, channel information determining method, receive-end device, and transmit-end device
US16/504,354 US10594369B2 (en) 2017-01-07 2019-07-08 Channel information feedback method, channel information determining method, receive end device, and transmit end device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710011654.8 2017-01-07
CN201710011654.8A CN108288981B (zh) 2017-01-07 2017-01-07 一种信道信息反馈及确定方法、接收端和发射端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/504,354 Continuation US10594369B2 (en) 2017-01-07 2019-07-08 Channel information feedback method, channel information determining method, receive end device, and transmit end device

Publications (1)

Publication Number Publication Date
WO2018127072A1 true WO2018127072A1 (zh) 2018-07-12

Family

ID=62789201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071283 WO2018127072A1 (zh) 2017-01-07 2018-01-04 一种信道信息反馈及确定方法、接收端和发射端设备

Country Status (4)

Country Link
US (1) US10594369B2 (zh)
EP (1) EP3550735B1 (zh)
CN (1) CN108288981B (zh)
WO (1) WO2018127072A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771442A (zh) * 2008-12-30 2010-07-07 华为技术有限公司 选择预编码向量的方法、系统、装置和移动终端
CN102545979A (zh) * 2010-12-08 2012-07-04 上海贝尔股份有限公司 一种在通信系统中用于规划用户的方法、设备及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351544B2 (en) * 2008-12-15 2013-01-08 Motorola Mobility Llc Method and apparatus for codebook-based feedback in a closed loop wireless communication system
CN101854236B (zh) * 2010-04-05 2015-04-01 中兴通讯股份有限公司 一种信道信息反馈方法和系统
WO2012130075A1 (zh) * 2011-03-25 2012-10-04 北京新岸线无线技术有限公司 无线通信系统与设备
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US9401749B2 (en) * 2013-03-08 2016-07-26 Google Technology Holdings LLC Method for codebook enhancement for multi-user multiple-input multiple-output systems
US9667328B2 (en) * 2014-03-31 2017-05-30 Samsung Electronics Co., Ltd. Precoding matrix codebook design and periodic channel state information feedback for advanced wireless communication systems
KR102398220B1 (ko) * 2014-10-31 2022-05-16 삼성전자주식회사 개선된 무선 통신 시스템을 위한 코드북 디자인 및 구조
US9654195B2 (en) * 2014-11-17 2017-05-16 Samsung Electronics Co., Ltd. Methods to calculate linear combination pre-coders for MIMO wireless communication systems
US10659118B2 (en) * 2016-04-19 2020-05-19 Samsung Electronics Co., Ltd. Method and apparatus for explicit CSI reporting in advanced wireless communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771442A (zh) * 2008-12-30 2010-07-07 华为技术有限公司 选择预编码向量的方法、系统、装置和移动终端
CN102545979A (zh) * 2010-12-08 2012-07-04 上海贝尔股份有限公司 一种在通信系统中用于规划用户的方法、设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOOMAN, SHIRANI-MEHR: "Channel State Feedback Schemes for Multiuser MIMO- OFDM Downlink", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 57, no. 9, September 2009 (2009-09-01), XP080407255 *

Also Published As

Publication number Publication date
US20190334588A1 (en) 2019-10-31
CN108288981A (zh) 2018-07-17
EP3550735B1 (en) 2020-09-09
US10594369B2 (en) 2020-03-17
EP3550735A4 (en) 2019-10-09
EP3550735A1 (en) 2019-10-09
CN108288981B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN110419170B (zh) 一种指示及确定预编码向量的方法和设备
RU2565001C2 (ru) Cообщение обратной связи и обработка связи с многими степенями детализации для предварительного кодирования в системах связи
JP6750926B2 (ja) プリコーディング行列インジケータフィードバック方法および装置
CN112751592B (zh) 上报信道状态信息的方法和通信装置
WO2018127073A1 (zh) 一种参数指示及确定方法和接收端设备及发射端设备
US20230361842A1 (en) Improving precoding
CN111342873A (zh) 一种信道测量方法和通信装置
US20190081680A1 (en) Channel state information feedback method, base station, terminal device, and system
US20190245608A1 (en) Method of constructing codebook with multiple resolution and user equipment
CN109560847B (zh) 信道状态信息反馈和接收方法、发送端设备和接收端设备
KR20190104597A (ko) 채널 상태 정보 피드백 방법, 단말 디바이스, 및 네트워크 디바이스
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
US10756793B2 (en) Precoding matrix indicating method, precoding matrix determining method, receive end device, and transmit end device
CN115315906B (zh) 一种信道测量方法和通信装置
WO2020244496A1 (zh) 一种信道测量方法和通信装置
WO2018127106A1 (zh) 指示及确定预编码向量的方法和接收及发射端设备
CN109802712B (zh) 一种用户设备、接入设备和预编码方法
US20220286324A1 (en) Channel prediction framework for radio communication
WO2018127072A1 (zh) 一种信道信息反馈及确定方法、接收端和发射端设备
EP4040699A1 (en) Method for configuring transmission port of a downlink reference signal, and communication apparatus
CN112398516A (zh) 一种码本子集限制的方法和通信装置
CN114070436A (zh) 一种信道测量方法和通信装置
CN112840577A (zh) 用于下行链路传输的方法、设备以及计算机可读介质
WO2022227976A1 (zh) 通信方法和通信装置
CN109802786B (zh) 一种用户设备和信道测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018736344

Country of ref document: EP

Effective date: 20190704