WO2018124571A1 - 전력설비의 자산관리 방법 - Google Patents

전력설비의 자산관리 방법 Download PDF

Info

Publication number
WO2018124571A1
WO2018124571A1 PCT/KR2017/014871 KR2017014871W WO2018124571A1 WO 2018124571 A1 WO2018124571 A1 WO 2018124571A1 KR 2017014871 W KR2017014871 W KR 2017014871W WO 2018124571 A1 WO2018124571 A1 WO 2018124571A1
Authority
WO
WIPO (PCT)
Prior art keywords
reliability
maintenance
sub
reliability model
asset management
Prior art date
Application number
PCT/KR2017/014871
Other languages
English (en)
French (fr)
Inventor
서황동
류은태
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to US16/473,074 priority Critical patent/US11429092B2/en
Publication of WO2018124571A1 publication Critical patent/WO2018124571A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to an asset management method of a power facility and a device for executing the same, the asset management method of the power facility that can derive an optimized management method for each power facility according to the soundness of the lower devices constituting the power facility and the execution It relates to a device to.
  • Substations are installed in the power transmission system or distribution system of the power system in order to step up or step down the output of the generator or to step down the voltage of the system.
  • substations are provided with devices for concentrating and distributing electric power, devices for controlling current, or devices for protecting and controlling devices in systems or substations.
  • a circuit breaker used in a gas insulated switchgear is provided with a gas pressure sensor for detecting gas pressure, an acceleration sensor for detecting a signal according to an abnormality, a current / voltage detector, and the transformer for detecting a state of a transformer.
  • Thermometers, pressure gauges, oil level sensors and current detectors are installed as sensors.
  • sensors are connected to a protective device, a measuring device, a control device and a device monitoring device via a cable for transmitting an electrical signal.
  • the protection device, the measurement device, the control device and the device monitoring device are each connected to the upper level substation monitoring control device via a cable for transmitting an electric signal.
  • the substation is equipped with a very complicated facility for supplying electricity stably, and monitors the operation status of various devices such as breakers installed in the substation to detect and prepare for the signs of failure in advance or to respond quickly to the failure.
  • the monitoring system is provided to recover.
  • the present invention enables to derive an optimized reliability model for each lower device through a process of compensating a previously generated standard reliability model for each lower device of the power facility, and simultaneously compensates the reliability model for the power facility. It is an object of the present invention to provide an asset management method and an apparatus for implementing the same, which can derive an optimized reliability model for each star.
  • the present invention provides a power management asset management method and apparatus for performing the same to satisfy the needs of the customer for the request of the replacement cycle, maintenance method and asset management techniques of the power equipment and its subordinate devices. It aims to do it.
  • An asset management method of a power facility includes the steps of: generating health of each sub device by using state data and real-time monitoring information for each sub device of the power facility; Compensating the reference reliability model for each lower device by generating the reliability of the reference reliability model for each lower device and the health of the lower device, and generating a unique reliability model for each lower device; Calculating reliability of the power equipment by applying a system relation model reflecting a specific weight and a failure rate between power equipment and sub-devices; Deriving a maintenance scenario for each lower device and calculating a quotation; And performing maintenance according to a predetermined priority and updating a reliability model unique to each of the lower devices according to the execution result of the maintenance, and updating the reliability model for the power equipment.
  • the reference reliability model for each lower device is based on at least one of installation and inspection history data, deterioration analysis data, and accelerated life test data for each lower device. Can be generated.
  • the generating of the soundness of each of the sub-devices using the state data of each of the sub-devices and the real-time monitoring information of the power facility may include: online monitoring state data of the sub-devices, offline monitoring state data of the sub-devices, and remote Generating soundness for each of the lower devices by using the monitoring data, and the offline monitoring state data may include at least one of installation history, inspection history, failure history, operating environment, and operation history data for each of the lower devices. Can be.
  • each sub-device health using the status data and real-time monitoring information for each sub-device of the power equipment, operating environment, insulation deterioration, electrical risk, thermal risk, chemical risk and mechanical
  • compensating the reference reliability model for each lower device by comparing the reliability of the reference reliability model for each lower device and the health of each lower device and generating a unique reliability model for each lower device may include: Compensating the reference reliability model for each of the lower devices by applying the diagram, and calculating the reliability.
  • calculating the reliability of the power equipment by applying a system relationship model reflecting a specific weight and failure rate between the power equipment and the lower devices, applying a specific weight and failure rate to each of the lower devices to calculate the failure rate of the power equipment may include the step.
  • the step of deriving and estimating the maintenance scenarios for each of the sub-devices may include: sub-devices according to reliability evaluation output values, technical evaluation output values, economic evaluation output values, and maintenance check cost items for each maintenance scenario.
  • Deriving and estimating maintenance scenarios for each sub-device including maintenance strategy methods by cost, cost, priority, maintenance cycle by device, estimated cost, maintenance scheduling, maintenance effectiveness estimation, and expected replacement time by device It may include.
  • the maintenance is performed according to the predetermined priority, and updating the unique reliability model for each of the lower devices according to the execution result of the maintenance, while updating the reliability model for the power equipment, the power And selecting a maintenance scenario for each of the lower devices in which the reliability of the facility rises above a certain reliability.
  • the method may include selecting a total maintenance cost to be below a certain amount.
  • an optimized reliability model for each lower device can be derived through a process of compensating a previously generated reference reliability model for each lower device of the power facility, while simultaneously compensating for a reliability model for the power facility. There is an advantage to derive the optimized reliability model for each facility.
  • FIG. 1 is a flow chart for explaining the asset management method of the power equipment according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an internal structure of an asset management apparatus of a power facility according to an embodiment of the present invention.
  • FIG. 3 is a graph illustrating a process of determining whether to compensate a reference reliability model for each lower device according to an embodiment of the present invention.
  • FIG. 4 is an exemplary diagram for describing in detail a process of selecting a maintenance scenario according to an embodiment of the present invention.
  • FIG. 5 is a graph illustrating a change in reliability according to a maintenance scenario for each lower device according to an embodiment of the present invention.
  • 6 and 7 are exemplary diagrams for describing in detail the process of calculating the reliability of the power equipment by using the reliability for each lower device according to an embodiment of the present invention.
  • FIG. 1 is a flow chart for explaining the asset management method of the power equipment according to an embodiment of the present invention.
  • the asset management apparatus 100 of a power facility generates health for each lower device using state data and real-time monitoring information for each lower device of the power facility (step S110).
  • the status data and real-time monitoring information for each lower device of the power equipment includes the online monitoring status data for each lower device, offline monitoring status data for each lower device and remote monitoring data.
  • the offline monitoring state data may include at least one of installation history, inspection history, failure history, operating environment, and operation history data for each lower device.
  • the asset management device 100 of the power equipment is operating environment, insulation deterioration, electrical risk, thermal risk, chemical risk and mechanical risk, airtight performance, insulation performance, breaking performance and energization for each sub-device
  • a total of technical risk assessment points and measures can be created according to performance.
  • the asset management device 100 of the power plant uses the state data and real-time monitoring information of the transformer TR to operate the transformer TR, the insulation degradation, the electrical risk, the thermal risk, the chemical risk, and the mechanical risk.
  • a total of technical risk assessment points and measures can be created.
  • the asset management device 100 of the power facility uses the state data and the real-time monitoring information of the gas insulation switchgear (GIS), the operation history data of the gas insulation switchgear (GIS), airtight performance, insulation performance, Breaking and energizing capabilities can be used to create a total of technical risk assessment points and measures for GIS.
  • GIS gas insulation switchgear
  • GIS operation history data of the gas insulation switchgear
  • GIS airtight performance
  • insulation performance Breaking and energizing capabilities
  • the asset management apparatus 100 of the power facility compares the reliability of the reference reliability model for each lower device with the health of the lower device to compensate for the reference reliability model for each lower device and generates a unique reliability model for each lower device. It generates (S120).
  • the reference reliability model for each lower device is a reference reliability model for each lower device generated based on installation and inspection history data, deterioration analysis data, and accelerated life test data for each device.
  • the asset management apparatus 100 of the power equipment determines that the reference reliability model for each sub-device currently used is an optimized reliability model if the soundness of each sub-device is the same as that of the reference reliability model for each sub-device. Do not perform compensation for the reliability model.
  • the asset management apparatus 100 of the power facility performs compensation for the reference reliability model for each sub-device to generate a unique reliability model for each sub-device.
  • the asset management apparatus 100 of the power facility determines that the currently used reference reliability model for each sub-device is not an optimized reliability model.
  • the unique reliability model for each lower device is calculated by performing compensation for the reference reliability model for each lower device by using the respective health.
  • the reliability model of the power equipment can be optimized by compensating the reference reliability model for each lower device according to the soundness of each lower device.
  • the asset management apparatus 100 of the power equipment calculates the reliability of the power equipment by applying a system relationship model reflecting a specific weight and a failure rate between the power equipment and sub-devices (step S130).
  • the asset management apparatus 100 of the power facility calculates the failure rate of the entire lower device by applying conditional probability and failure rate to each of the lower devices, and adds the failure rate of the entire lower device to the power facility by the entire lower device. Calculate the failure rate of. Such contents are shown in Equation 1 below.
  • the asset management apparatus 100 of the power equipment calculates a failure rate of the entire lower device by applying a weight and a failure rate to each of the lower devices, and adds the failure rate of the lower device as a whole. Calculate the failure rate of. Such contents are shown in Equation 2 below.
  • the asset management apparatus 100 of the power facility derives a maintenance scenario for each lower device and calculates an estimate (step S140).
  • the asset management apparatus 100 of the power facility is for each sub-device according to the reliability evaluation output value, technical evaluation output value, economic evaluation output value and maintenance check cost item for each maintenance scenario.
  • the asset management apparatus 100 of the electric power facility selects and executes the maintenance scenario according to a predetermined priority (step S150).
  • the predetermined priority for selecting a maintenance scenario may be to increase the reliability of the power equipment above a certain value, or may lower the total maintenance cost to a certain amount or less. Different priorities may apply.
  • the asset management apparatus 100 of the power equipment updates the reliability model unique to each of the lower devices according to the execution result of the maintenance, and updates the reliability model of the power equipment (step S160).
  • FIG. 2 is a block diagram illustrating an internal structure of an asset management apparatus of a power facility according to an embodiment of the present invention.
  • the asset management apparatus 100 of a power facility includes a soundness generation unit 110, a lower device reliability model management unit 120, a power facility reliability model prediction unit 130, and a maintenance plan generation unit 140. And the maintenance execution unit 150.
  • the soundness generating unit 110 generates soundness for each of the lower devices by using state data and real-time monitoring information for each of the lower devices of the power facility.
  • the status data and real-time monitoring information for each lower device of the power equipment includes the online monitoring status data for each lower device, offline monitoring status data for each lower device and remote monitoring data.
  • the offline monitoring state data may include at least one of installation history, inspection history, failure history, operating environment, and operation history data for each lower device.
  • the soundness generating unit 110 may operate based on the state data and real-time monitoring information for each of the lower devices, and the operating environment for each lower device, insulation degradation, electrical risk, thermal risk, chemical risk, and mechanical risk, airtight performance, and insulation.
  • a total of technical risk assessment points and measures can be created based on performance, breaking performance and current carrying performance.
  • the health generating unit 110 uses the state data and real-time monitoring information for each subordinate device of the transformer TR to operate the transformer TR, the insulation degradation, the electrical risk, the thermal risk, the chemical risk, and the mechanical.
  • a total of technical risk assessment points and measures can be created according to the risk.
  • the soundness generating unit 110 is a gas history switchgear (GIS) operation history data, gas tight performance, insulation performance by using the state data and real-time monitoring information for each sub-device of the gas insulation switchgear (GIS).
  • GIS gas history switchgear
  • the breakdown performance and the energization performance can be used to generate the total technical risk assessment points and measures for the GIS.
  • the lower device reliability model manager 120 compares the reference reliability model for each lower device with the soundness for each lower device generated by the soundness generating unit 110 to determine whether the reference reliability model for each lower device is compensated.
  • the reference reliability model for each lower device may be generated based on installation and inspection history data, deterioration analysis data, and accelerated life test data for each lower device.
  • the lower device reliability model management unit 120 determines that the reference reliability model for each sub-device currently used is an optimized reliability model if the soundness of each lower device is the same as that of the reference reliability model for each lower device. Do not perform compensation for the model.
  • the lower device reliability model manager 120 performs compensation for the reference reliability model for each lower device and calculates a unique reliability model for each lower device when the soundness of each lower device is different from that of the reference reliability model for each lower device. do.
  • the lower device reliability model manager 120 determines that the currently used reference reliability model for each lower device is not an optimized reliability model when the soundness of each lower device differs from that of the reference reliability model for each lower device.
  • the unique reliability model for each lower device is calculated by performing compensation for the reference reliability model for each lower device using the soundness.
  • the reliability model of the power equipment can be optimized by compensating the reference reliability model for each lower device according to the soundness for each lower device rather than continuously using the reference reliability model for each lower device.
  • the power equipment reliability model predictor 130 calculates the reliability of the power equipment by applying a system relationship model in which specific weights and failure rates between power equipment and sub-devices are reflected.
  • the power equipment reliability model predicting unit 130 calculates the reliability of the entire sub-device by using the reliability of each sub-device and then calculates the reliability of the power facility.
  • the power equipment reliability model predictor 130 calculates a failure rate of the entire lower device by applying conditional probabilities and a failure rate to each of the lower devices, as shown in Equation 1 above, and adds the failure rate of the lower device as a whole.
  • the failure rate of the power plant by the whole apparatus can be calculated.
  • the power equipment reliability model predictor 130 calculates a failure rate of the entire lower device by applying a weight and a failure rate to each of the lower devices, as shown in Equation 2 above, and adds the failure rate of the lower device as a whole.
  • the failure rate of the power plant by the whole apparatus can be calculated.
  • the maintenance plan generation unit 140 derives a maintenance scenario for each lower device and calculates an estimate.
  • the maintenance plan generation unit 140 according to the maintenance scenario, reliability evaluation output value, technical evaluation output value, economic evaluation output value and maintenance check cost item, maintenance strategy method for each sub-device, Subsequent maintenance scenarios can be derived and quoted, including costs, priorities, device-specific inspection intervals, estimated costs, inspection scheduling, maintenance effectiveness estimates, and expected replacement times by device.
  • the maintenance execution unit 150 selects maintenance scenarios according to predetermined priorities for maintenance scenarios and quotations for lower devices generated by the maintenance plan generation unit 140 and executes maintenance.
  • the predetermined priority for selecting a maintenance scenario may be to increase the reliability of the power equipment to a specific value or more, as described above, or to lower the overall maintenance cost to a certain amount or less.
  • various priorities may be applied depending on the situation.
  • FIG. 3 is a graph illustrating a process of determining whether to compensate a reference reliability model for each lower device according to an embodiment of the present invention.
  • the asset management apparatus 100 of a power facility includes reliability 310 of a reference reliability model of each lower device, reliability according to soundness of each lower device generated based on state data and real-time monitoring information of each lower device. By comparing the 320 and 330, it is determined whether the reference reliability model of each lower device is compensated.
  • the reference reliability model for each lower device may be generated based on installation and inspection history data, deterioration analysis data, accelerated life test data, etc. for each device as described above.
  • reference numeral 320 denotes a state in which the reliability according to the health of each sub-device is higher than the reliability 310 of the reference reliability model of each sub-device. The state is lower than the reliability 310 of the model.
  • the asset management apparatus 100 of the power facility may include the reliability according to the soundness of each lower device based on the reliability 310 of the reference reliability model for each lower device, the state data for each lower device, and real-time monitoring information. If 320 and 330 are different from each other, compensation for the reference reliability model for each lower device is performed to calculate a unique reliability model for each lower device.
  • the asset management apparatus 100 of a power facility has a reference reliability model for each sub-device currently used when the reliability 320, 330 according to the soundness of each sub-device differs from the reliability 310 of the reference reliability model for each sub-device. It is determined that this is not an optimized reliability model, and a compensation for the reference reliability model for each lower device is calculated using the soundness of each lower device to calculate a unique reliability model for each lower device.
  • an optimized reliability model for each lower device may be derived by compensating a reference reliability model for each lower device through the above process.
  • FIG. 4 is an exemplary view for explaining in detail the process of selecting a maintenance scenario according to an embodiment of the present invention.
  • GIS gas insulated switchgear
  • the gas insulated switchgear 400 includes ten sub devices.
  • the subordinate device consists of a CB-breaker 410 with 60% reliability, a CB-operator 420 with 65% reliability, an ES 430 with 80% reliability, and seven other sub-devices with 100% reliability. do.
  • the asset management device 100 of the power facility derives the reliability of the gas insulation switchgear 400 by applying the reliability for each lower device to the system relationship model between the power facility and the sub devices. To this end, the asset management apparatus 100 of the power facility calculates the reliability of all the lower devices by using the reliability of each lower device, and then determines the reliability of the power facility based on this.
  • the asset management apparatus 100 of the power plant has a reliability of 0.6 for the CB-breaker 410, a 0.65 for the CB-operator 420, a 0.8 for the ES 430, and a reliability for the seven subordinate devices.
  • the reliability of the plant can be determined by 38%.
  • the reliability of each subordinate device is multiplied, but the present invention is not limited thereto, and as described above, the reliability of the entire subordinate device may be calculated by summing the reliability of each subordinate device.
  • the asset management apparatus 100 of the power facility may derive a maintenance scenario for each lower device, for example, may derive a maintenance strategy A to strategy C.
  • the maintenance method applied at this time may be made of equipment replacement, overhaul, normal inspection, and the like.
  • Reliability improvement criteria for each maintenance method can be set to 100% for equipment replacement, 30% for precise inspection, and 15% for normal inspection, and it is possible to derive a failure rate improvement value by improving reliability.
  • FIG. 5 is a graph for describing a change in reliability according to a maintenance scenario for each lower device according to an embodiment of the present invention, which will be described later.
  • the reliability improvement criteria according to the maintenance of the precision inspection and the normal inspection may be changed according to the actual maintenance performance history.
  • the maintenance strategy C increases the reliability of the CB-breaker 410 to 90% through the overhaul of the CB-breaker 410 and the CB-manipulator 420 through the overhaul of the CB-operator 420.
  • the asset management apparatus 100 of the power equipment selects a maintenance scenario according to a predetermined priority, and the predetermined priority applied to increase the reliability of the power equipment to a specific value or more as described above.
  • the overall maintenance cost may be lowered below a certain amount.
  • various priorities may be applied depending on circumstances.
  • FIG. 5 is a graph illustrating a change in reliability according to a maintenance scenario for each lower device according to an embodiment of the present invention.
  • the reliability improvement criteria according to the maintenance method may be set differently, and the maintenance method may be set to 100% for the replacement of the device, 30% for the detailed inspection, and 15% for the general inspection, but the actual maintenance is performed. Depending on the history, the reliability of the maintenance of overhaul and normal inspection may change.
  • the maintenance strategy A determined through the process of FIG. 4 is the greatest in the reliability improvement as the maintenance scenario including the device replacement, and the maintenance strategy B determined through the process of FIG. 4 is precise.
  • the extent of reliability improvement is moderate.
  • 6 and 7 are exemplary diagrams for explaining in detail the process of calculating the reliability of the power equipment using the failure rate for each lower device according to an embodiment of the present invention.
  • the asset management apparatus 100 of a power facility derives a failure rate of the power facility by applying a failure rate for each lower device to a system relationship model between a power facility and a child device.
  • the asset management apparatus 100 of the power equipment calculates a failure rate of the entire lower equipment by applying the conditional probability (P) and the failure rate ( ⁇ ) to each of the lower equipment, and then calculates the failure rate of the power equipment by the entire lower equipment. This can be determined by reliability.
  • conditional probability (P) is applied to lower devices (CB operation unit, CB blocking unit, CHD bushing, Comp., CT, PT, DS, ES, GIB, PNL) of the gas insulated switchgear 600.
  • lower devices CB operation unit, CB blocking unit, CHD bushing, Comp., CT, PT, DS, ES, GIB, PNL
  • failure rate
  • the asset management apparatus 100 of the power facility calculates a failure rate of the entire lower device by applying a weight (w) and a failure rate ( ⁇ ) to each of the lower devices, and then calculates the failure rate of the entire lower device. This can be determined by the reliability of the installation.
  • the weight (w) and the failure rate ( ⁇ ) are applied to the lower devices (OLTC / NLTC, TR main body, PNL, cooling device, protective relay, bushing, and conservator) of the transformer 700.
  • the failure rate of the entire device it is determined by the reliability of the transformer 700 by the entire lower device.
  • the present invention relates to an asset management method for an electric power plant and an apparatus for executing the same, which can be used in the electric power field.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Accounting & Taxation (AREA)
  • Game Theory and Decision Science (AREA)
  • Finance (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Automation & Control Theory (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

본 발명에 의한 전력설비의 자산관리 방법은, 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 상기 하위 기기 별 건전도를 생성하는 단계; 하위 기기 별 기준 신뢰도 모델의 신뢰도 및 상기 하위 기기 별 건전도를 비교하여 상기 하위 기기별 기준 신뢰도 모델을 보상하고 상기 하위 기기별 고유의 신뢰도 모델을 생성하는 단계; 전력설비-하위 기기 간 특정 가중치 및 고장률이 반영된 시스템 관계모델을 적용하여 상기 전력설비의 신뢰도를 산출하는 단계; 하위 기기 별 유지보수 시나리오를 도출하고 견적을 산출하는 단계; 및 소정의 우선순위에 따라 유지보수가 실행되고 상기 유지보수의 실행 결과에 따라 상기 하위 기기 별 고유의 신뢰도 모델을 갱신하는 한편, 상기 전력설비에 대한 신뢰도 모델을 갱신하는 단계를 포함한다.

Description

전력설비의 자산관리 방법
본 발명은 전력설비의 자산관리 방법 및 이를 실행하는 장치에 관한 것으로, 전력설비를 이루는 하위 기기의 건전도에 따라 전력설비 별 최적화된 관리 방안을 도출할 수 있는 전력설비의 자산관리 방법 및 이를 실행하는 장치에 관한 것이다.
전력계통 중 송전계통이나 배전계통에는 발전기의 출력을 승압 또는 강압하거나, 계통의 전압을 강압하거나 하기 위하여 변전소가 설치되어 있다. 변전소에는 전압을 승압 또는 강압하기 위한 변압기 외에, 전력을 집중·배분하기 위한 기기나 조류(潮流)를 제어하기 위한 기기 또는 계통이나 변전소내의 기기를 보호·제어하기 위한 기기가 설치되어 있다.
예를 들면, 가스절연개폐장치(GIS)에 사용되는 차단기에는 가스압을 검출하는 가스압센서, 이상에 따른 신호를 검출하는 가속도센서, 전류·전압검출기 등이 설치되고, 변압기에는 변압기의 상태를 검출하는 센서로서 온도계, 압력계, 유면(油面)센서, 전류검출기 등이 설치되어 있다
이들 센서는 전기신호를 전송하는 케이블을 거쳐 보호장치, 계측장치, 제어장치 및 기기 감시장치에 접속되어 있다. 다시 보호장치, 계측장치, 제어장치 및 기기 감시장치는 각각 전기신호를 전송하는 케이블을 거쳐 상위의 변전소 감시제어장치에 접속되어 있다.
상기의 변전소에는 전기를 안정적으로 공급하기 위한 아주 복잡한 설비가 갖추어지게 되며, 이러한 변전소에 설치된 차단기와 같은 각종 장치의 동작상태를 모니터링 하여 고장의 징후를 미리 발견하여 대비하거나 아니면 발생된 고장에 신속히 대응하여 복구할 수 있도록 모니터링시스템이 제공되고 있다.
하지만, 변전소의 전력설비에 대한 정확한 상태를 파악하여 관리하는데 어려움이 있어, 기기 별 교체주기, 유지보수방안 등에 있어서 최적화된 자산 관리 기법에 대한 필요성이 대두되고 있으며 이러한 요구사항을 해결하기 위한 방안이 필요한 실정이다.
본 발명은 미리 생성된, 전력설비의 하위 기기 별 기준 신뢰도 모델을 보상하는 과정을 통해 하위 기기 별 최적화된 신뢰도 모델을 도출할 수 있도록 하는 한편, 이와 함께 전력설비에 대한 신뢰도 모델을 보상하여 전력설비 별 최적화된 신뢰도 모델을 도출할 수 있도록 하는 전력설비의 자산관리 방법 및 이를 실행하는 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 전력설비 및 이를 구성하는 하위 기기의 교체 주기, 유지보수 방안 및 자산 관리 기법의 요청에 대한 고객의 니즈를 만족시킬 수 있도록 하는 전력설비의 자산관리 방법 및 이를 실행하는 장치를 제공하는 것을 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명에 의한 전력설비의 자산관리 방법은, 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 상기 하위 기기 별 건전도를 생성하는 단계; 하위 기기 별 기준 신뢰도 모델의 신뢰도 및 상기 하위 기기 별 건전도를 비교하여 상기 하위 기기별 기준 신뢰도 모델을 보상하고 상기 하위 기기별 고유의 신뢰도 모델을 생성하는 단계; 전력설비-하위 기기 간 특정 가중치 및 고장률이 반영된 시스템 관계모델을 적용하여 상기 전력설비의 신뢰도를 산출하는 단계; 하위 기기 별 유지보수 시나리오를 도출하고 견적을 산출하는 단계; 및 소정의 우선순위에 따라 유지보수가 실행되고 상기 유지보수의 실행 결과에 따라 상기 하위 기기 별 고유의 신뢰도 모델을 갱신하는 한편, 상기 전력설비에 대한 신뢰도 모델을 갱신하는 단계를 포함한다.
여기서, 상기 하위 기기 별 기준 신뢰도 모델은, 상기 하위 기기 별 설치 및 점검 이력 데이터, 노후 철거품 분석 데이터, 가속수명시험 데이터 중 적어도 하나를 토대로 생성될 수 있다.
또한, 상기 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 상기 하위 기기 별 건전도를 생성하는 단계는, 상기 하위 기기 별 온라인 감시 상태 데이터, 상기 하위 기기 별 오프라인 감시 상태 데이터, 및 원격 감시 데이터를 이용하여 하위 기기 별 건전도를 생성하는 단계를 포함하고, 상기 오프라인 감시 상태 데이터는, 상기 하위 기기 별 설치 이력, 점검 이력, 고장 이력, 운영 환경 및 운전 이력 데이터 중 적어도 하나를 포함할 수 있다.
또한, 상기 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 상기 하위 기기 별 건전도를 생성하는 단계는, 상기 하위 기기 별 운영 환경, 절연물 열화, 전기적 위험도, 열적 위험도, 화학적 위험도 및 기계적 위험도, 기밀 성능, 절연 성능, 차단 성능 및 통전 성능에 따른 기술적 위험도 평가 총점 및 조치사항을 생성하는 단계를 포함할 수 있다.
또한, 상기 하위 기기 별 기준 신뢰도 모델의 신뢰도 및 상기 하위 기기 별 건전도를 비교하여 상기 하위 기기별 기준 신뢰도 모델을 보상하고 상기 하위 기기별 고유의 신뢰도 모델을 생성하는 단계는, 상기 하위 기기 별 건전도를 적용하여 상기 하위 기기 별 기준 신뢰도 모델을 보상하고 신뢰도를 산출하는 단계를 포함할 수 있다.
또한, 상기 전력설비-하위 기기 간 특정 가중치 및 고장률이 반영된 시스템 관계모델을 적용하여 상기 전력설비의 신뢰도를 산출하는 단계는, 상기 하위 기기 각각에 특정 가중치 및 고장률을 적용하여 전력설비의 고장률을 산출하는 단계를 포함할 수 있다.
또한, 상기 하위 기기별 유지보수 시나리오를 도출하고 견적을 산출하는 단계는, 상기 유지보수 시나리오 별 신뢰도 평가 출력 값, 기술적 평가 출력 값, 경제성 평가 출력 값 및 유지보수 점검 별 비용 항목에 따라, 하위 기기 별 유지보수 전략 방법, 비용, 우선 순위, 기기 별 점검 주기, 예상 비용, 점검 스케줄링, 유지보수 효과 추정, 기기 별 예상 교체 시점을 포함하는 하위 기기별 유지보수 시나리오를 도출하고 견적을 산출하는 단계를 포함할 수 있다.
또한, 상기 소정의 우선순위에 따라 유지보수가 실행되고 상기 유지보수의 실행 결과에 따라 상기 하위 기기 별 고유의 신뢰도 모델을 갱신하는 한편, 상기 전력설비에 대한 신뢰도 모델을 갱신하는 단계는, 상기 전력설비의 신뢰도가 특정 신뢰도 이상으로 상승하는 상기 하위 기기 별 유지보수 시나리오를 선정하는 단계를 포함할 수 있다.
또한, 상기 소정의 우선순위에 따라 유지보수가 실행되고 상기 유지보수의 실행 결과에 따라 상기 하위 기기 별 고유의 신뢰도 모델을 갱신하는 한편, 상기 전력설비에 대한 신뢰도 모델을 갱신하는 단계는, 상기 전력설비의 하위 기기별 유지보수 시나리오를 선정함에 있어, 전체 유지보수 비용이 특정 금액 이하가 되도록 선정하는 단계를 포함할 수 있다.
본 발명에 따르면, 미리 생성된, 전력설비의 하위 기기 별 기준 신뢰도 모델을 보상하는 과정을 통해 하위 기기 별 최적화된 신뢰도 모델을 도출할 수 있는 한편, 이와 함께 전력설비에 대한 신뢰도 모델을 보상하여 전력설비 별 최적화된 신뢰도 모델을 도출할 수 있는 장점이 있다.
또한 본 발명에 따르면, 전력설비 및 이를 구성하는 하위 기기의 교체 주기, 유지보수 방안 및 자산 관리 기법의 요청에 대한 고객의 니즈를 만족시킬 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 전력설비의 자산관리 방법을 설명하기 위한 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 전력설비의 자산 관리 장치의 내부 구조를 설명하기 위한 블럭도이다.
도 3은 본 발명의 일 실시예에 따른 하위 기기 별 기준 신뢰도 모델의 보상 여부 판단 과정을 설명하기 위한 그래프이다.
도 4는 본 발명의 일 실시예에 따른 유지보수 시나리오 선정 과정을 상세히 설명하기 위한 예시도이다.
도 5은 본 발명의 일 실시예에 따른 하위 기기 별 유지보수 시나리오에 따른 신뢰도 변화를 설명하기 위한 그래프이다.
도 6 및 도 7는 본 발명의 일 실시예에 따른 하위 기기 별 신뢰도를 이용하여 전력설비의 신뢰도를 산출하는 과정을 상세히 설명하기 위한 예시도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다.
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
도 1은 본 발명의 일 실시예에 따른 전력설비의 자산관리 방법을 설명하기 위한 흐름도이다.
도 1을 참조하면, 전력설비의 자산 관리 장치(100)는 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 하위 기기 별 건전도를 생성한다(단계 S110). 이때, 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보는 하위 기기 별 온라인 감시 상태 데이터, 하위 기기 별 오프라인 감시 상태 데이터 및 원격 감시 데이터를 포함한다. 상기의 오프라인 감시 상태 데이터는 하위 기기 별 설치 이력, 점검 이력, 고장 이력, 운영 환경 및 운전 이력 데이터 중 적어도 하나를 포함할 수 있다.
단계 S110에 대한 일 실시예에서, 전력설비의 자산 관리 장치(100)는 하위 기기 별 운영 환경, 절연물 열화, 전기적 위험도, 열적 위험도, 화학적 위험도 및 기계적 위험도, 기밀 성능, 절연 성능, 차단 성능 및 통전 성능에 따른 기술적 위험도 평가 총점 및 조치사항을 생성할 수 있다.
예를 들어, 전력설비의 자산 관리 장치(100)는 변압기(TR)의 상태 데이터와 실시간 모니터링 정보를 이용하여 변압기(TR)의 운영 환경, 절연물 열화, 전기적 위험도, 열적 위험도, 화학적 위험도 및 기계적 위험도에 따른 기술적 위험도 평가 총점 및 조치 사항을 생성할 수 있다.
다른 예를 들어, 전력설비의 자산 관리 장치(100)는 가스절연개폐장치(GIS)의 상태 데이터와 실시간 모니터링 정보를 이용하여 가스절연개폐장치(GIS)의 운전 이력 데이터, 기밀 성능, 절연 성능, 차단 성능 및 통전 성능을 이용하여 가스절연개폐장치(GIS)의 기술적 위험도 평가 총점 및 조치 사항을 생성할 수 있다.
그 다음, 전력설비의 자산 관리 장치(100)는 하위 기기 별 기준 신뢰도 모델의 신뢰도 및 상기 하위 기기 별 건전도를 비교하여 상기 하위 기기별 기준 신뢰도 모델을 보상하고 상기 하위 기기별 고유의 신뢰도 모델을 생성한다(S120).
여기서, 하위 기기 별 기준 신뢰도 모델은 기기별 설치 및 점검 이력 데이터, 노후 철거품 분석 데이터, 가속수명시험 데이터 등을 토대로 생성된 하위 기기 별 기준 신뢰도 모델이다.
이때, 전력설비의 자산 관리 장치(100)는 하위 기기 별 건전도가 하위 기기 별 기준 신뢰도 모델의 신뢰도와 동일하면 현재 사용되는 하위기기 별 기준 신뢰도 모델이 최적화된 신뢰도 모델이라고 판단하여 하위 기기 별 기준 신뢰도 모델에 대한 보상을 실행하지 않는다.
또한, 전력설비의 자산 관리 장치(100)는 하위기기 별 건전도가 하위 기기 별 기준 신뢰도 모델의 신뢰도와 상이하면, 하위 기기 별 기준 신뢰도 모델에 대한 보상을 실행하여 하위 기기별 고유의 신뢰도 모델을 생성한다.
즉, 전력설비의 자산 관리 장치(100)는 하위 기기 별 건전도가 하위 기기 별 기준 신뢰도 모델의 신뢰도와 상이하면 현재 사용된 하위 기기 별 기준 신뢰도 모델이 최적화된 신뢰도 모델이 아니라고 판단하고, 하위 기기 별 건전도를 이용해 하위 기기 별 기준 신뢰도 모델에 대한 보상을 실행하여 하위 기기별 고유의 신뢰도 모델을 산출하는 것이다.
상기와 같은 과정을 통해 하위 기기 별 기준 신뢰도 모델을 계속적으로 이용하는 것이 아니라, 하위 기기 별 기준 신뢰도 모델을 하위 기기 별 건전도에 따라 보상함으로써 전력설비의 신뢰도 모델을 최적화할 수 있다.
다음, 전력설비의 자산 관리 장치(100)는 전력설비-하위 기기 간 특정 가중치 및 고장률이 반영된 시스템 관계모델을 적용하여 전력설비의 신뢰도를 산출한다(단계 S130).
일 실시예에서, 전력설비의 자산 관리 장치(100)는 하위 기기 각각에 조건부 확률 및 고장률을 적용하여 하위 기기 전체의 고장률을 산출하고, 하위 기기 전체의 고장률을 합산하여 하위 기기 전체에 의한 전력설비의 고장률을 산출한다. 이와 같은 내용을 나타낸 것이 아래의 수학식 1 이다.
[수학식 1]
Figure PCTKR2017014871-appb-I000001
λassembled: 하위 기기 전체에 대한 전력설비의 고장률
Pi: 하위 기기 별 조건부 확률
λi: 하위 기기 별 고장률
i: 하위 기기 각각을 지시하는 변수
다른 일 실시예에서, 전력설비의 자산 관리 장치(100)는 하위 기기 각각에 가중치 및 고장률을 적용하여 하위 기기 전체의 고장률을 산출하고, 하위 기기 전체의 고장률을 합산하여 하위 기기 전체에 의한 전력설비의 고장률을 산출한다. 이와 같은 내용을 나타낸 것이 아래의 수학식 2 이다.
[수학식 2]
Figure PCTKR2017014871-appb-I000002
λassembled: 하위 기기 전체에 대한 전력설비의 고장률
wi: 하위 기기 별 가중치
λi: 하위 기기 별 고장률
i: 하위 기기 각각을 지시하는 변수
이상에서는 하위 기기 전체에 대한 고장률을 합산하여 전력설비의 고장률을 산출하는 방법을 일예로 설명하고 있으나, 본 발명은 이에 한정되는 것은 아니며 상황에 따라 다양한 방식을 적용할 수 있다.
다음, 전력설비의 자산 관리 장치(100)는 하위 기기 별 유지보수 시나리오를 도출하고 견적을 산출한다(단계 S140).
단계 S140에 대한 일 실시예에서, 전력설비의 자산 관리 장치(100)는 유지보수 시나리오 별 신뢰도 평가 출력 값, 기술적 평가 출력 값, 경제성 평가 출력 값 및 유지보수 점검 별 비용 항목에 따라, 하위 기기 별 유지보수 전략 방법, 비용, 우선 순위, 하위기기 별 점검 주기, 예상 비용, 점검 스케줄링, 유지보수 효과 추정, 하위 기기 별 예상 교체 시점을 포함하는 하위 기기 별 유지보수 시나리오를 도출하고 견적을 산출할 수 있다.
그리고, 전력설비의 자산 관리 장치(100)는 소정의 우선순위에 따라 유지보수 시나리오를 선정하고 실행한다(단계 S150). 이때, 유지보수 시나리오를 선정하는 소정의 우선순위는 전력설비의 신뢰도를 특정값 이상으로 상승시키도록 하는 것일 수도 있고, 또는 전체 유지보수 비용이 특정 금액 이하로 낮아지도록 하는 것일 수도 있으며, 이외에 상황에 따라 다양한 우선순위를 적용할 수도 있다.
마지막으로, 전력설비의 자산 관리 장치(100)는 유지보수의 실행 결과에 따라 상기 하위 기기 별 고유의 신뢰도 모델을 갱신하는 한편, 전력설비에 대한 신뢰도 모델을 갱신한다(단계 S160).
도 2는 본 발명의 일 실시예에 따른 전력설비의 자산 관리 장치의 내부 구조를 설명하기 위한 블럭도이다.
도 2를 참조하면, 전력설비의 자산 관리 장치(100)는 건전도 생성부(110), 하위 기기 신뢰도 모델 관리부(120), 전력설비 신뢰도 모델 예측부(130), 유지보수 방안 생성부(140) 및 유지보수 실행부(150)를 포함한다.
건전도 생성부(110)는 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 상기 하위 기기 별 건전도를 생성한다. 이때, 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보는 하위 기기 별 온라인 감시 상태 데이터, 하위 기기 별 오프라인 감시 상태 데이터 및 원격 감시 데이터를 포함한다. 상기의 오프라인 감시 상태 데이터는 하위 기기 별 설치 이력, 점검 이력, 고장 이력, 운영 환경 및 운전 이력 데이터 중 적어도 하나를 포함할 수 있다.
일 실시예에서, 건전도 생성부(110)는 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 기초로 하위 기기 별 운영 환경, 절연물 열화, 전기적 위험도, 열적 위험도, 화학적 위험도 및 기계적 위험도, 기밀 성능, 절연 성능, 차단 성능 및 통전 성능에 따른 기술적 위험도 평가 총점 및 조치사항을 생성할 수 있다.
예를 들어, 건전도 생성부(110)는 변압기(TR)의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 변압기(TR)의 운영 환경, 절연물 열화, 전기적 위험도, 열적 위험도, 화학적 위험도 및 기계적 위험도에 따른 기술적 위험도 평가 총점 및 조치 사항을 생성할 수 있다.
다른 예를 들어, 건전도 생성부(110)는 가스절연개폐장치(GIS)의 하위기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 가스절연개폐장치(GIS)의 운전 이력 데이터, 기밀 성능, 절연 성능, 차단 성능 및 통전 성능을 이용하여 가스절연개폐장치(GIS)의 기술적 위험도 평가 총점 및 조치 사항을 생성할 수 있다.
하위 기기 신뢰도 모델 관리부(120)는 하위 기기 별 기준 신뢰도 모델과 건전도 생성부(110)에 의해 생성된 하위 기기 별 건전도를 비교하여 하위 기기 별 기준 신뢰도 모델의 보상 여부를 판단한다. 여기서, 하위 기기 별 기준 신뢰도 모델은 하위 기기별 설치 및 점검 이력 데이터, 노후 철거품 분석 데이터, 가속수명시험 데이터 등을 토대로 생성될 수 있다.
이때, 하위 기기 신뢰도 모델 관리부(120)는 하위 기기 별 건전도가 하위 기기 별 기준 신뢰도 모델의 신뢰도와 동일하면 현재 사용되는 하위기기 별 기준 신뢰도 모델이 최적화된 신뢰도 모델이라고 판단하여 하위 기기 별 기준 신뢰도 모델에 대한 보상을 실행하지 않는다.
또한, 하위 기기 신뢰도 모델 관리부(120)는 하위기기 별 건전도가 하위 기기 별 기준 신뢰도 모델의 신뢰도와 상이하면, 하위 기기 별 기준 신뢰도 모델에 대한 보상을 실행하고 하위 기기 별 고유의 신뢰도 모델을 산출한다.
즉, 하위 기기 신뢰도 모델 관리부(120)는 하위 기기 별 건전도가 하위 기기 별 기준 신뢰도 모델의 신뢰도와 상이하면 현재 사용된 하위 기기 별 기준 신뢰도 모델이 최적화된 신뢰도 모델이 아니라고 판단하여, 하위 기기 별 건전도를 이용하여 하위 기기 별 기준 신뢰도 모델에 대한 보상을 실행하여 하위 기기 별 고유의 신뢰도 모델을 산출하는 것이다.
상기와 같은 과정을 통해 하위 기기 별 기준 신뢰도 모델을 계속적으로 이용하는 것이 아니라 하위 기기 별 기준 신뢰도 모델을 하위 기기 별 건전도에 따라 보상함으로써 전력설비의 신뢰도 모델을 최적화할 수 있다.
전력설비 신뢰도 모델 예측부(130)는 전력설비-하위 기기 간 특정 가중치 및 고장률이 반영된 시스템 관계모델을 적용하여 전력설비의 신뢰도를 산출한다.
일 실시예에서, 전력설비 신뢰도 모델 예측부(130)는 하위 기기 별 신뢰도를 이용하여 전체 하위 기기의 신뢰도를 산출한 후 이를 토대로 전력설비의 신뢰도를 산출한다.
예를 들어, 전력설비 신뢰도 모델 예측부(130)는 상술한 수학식 1과 같이 하위 기기 각각에 조건부 확률 및 고장률을 적용하여 하위 기기 전체의 고장률을 산출하고, 하위 기기 전체의 고장률을 합산하여 하위 기기 전체에 의한 전력설비의 고장률을 산출할 수 있다.
다른 예를 들어, 전력설비 신뢰도 모델 예측부(130)는 상술한 수학식 2와 같이 하위 기기 각각에 가중치 및 고장률을 적용하여 하위 기기 전체의 고장률을 산출하고, 하위 기기 전체의 고장률을 합산하여 하위 기기 전체에 의한 전력설비의 고장률을 산출할 수 있다.
한편, 유지보수 방안 생성부(140)는 하위 기기 별로 유지보수 시나리오를 도출하고 견적을 산출한다.
일 실시예에서, 유지보수 방안 생성부(140)는 유지보수 시나리오 별 신뢰도 평가 출력 값, 기술적 평가 출력 값, 경제성 평가 출력 값 및 유지보수 점검 별 비용 항목에 따라, 하위 기기 별 유지보수 전략 방법, 비용, 우선 순위, 기기 별 점검 주기, 예상 비용, 점검 스케줄링, 유지보수 효과 추정, 기기 별 예상 교체 시점을 포함하는 하위 기기 별 유지보수 시나리오를 도출하고 견적을 산출할 수 있다.
유지보수 실행부(150)는 유지보수 방안 생성부(140)에서 생성된 하위 기기 별 유지보수 시나리오 및 견적에 대해 소정의 우선 순위에 따라 유지보수 시나리오를 선정 및 유지보수가 실행되도록 한다. 이때, 유지보수 시나리오를 선정하는 소정의 우선순위는, 상술한 바와 같이 전력설비의 신뢰도를 특정값 이상으로 상승시키도록 하는 것일 수도 있고, 또는 전체 유지보수 비용이 특정 금액 이하로 낮아지도록 하는 것일 수도 있으며, 이외에 상황에 따라 다양한 우선순위를 적용할 수도 있다.
도 3은 본 발명의 일 실시예에 따른 하위 기기 별 기준 신뢰도 모델의 보상 여부 판단 과정을 설명하기 위한 그래프이다.
도 3을 참조하면, 전력설비의 자산 관리 장치(100)는 하위 기기 별 기준 신뢰도 모델의 신뢰도(310) 및 하위 기기 별 상태 데이터 및 실시간 모니터링 정보를 기초로 생성된 하위 기기 별 건전도에 따른 신뢰도(320, 330)를 비교하여, 하위 기기 별 기준 신뢰도 모델의 보상 여부를 판단한다. 이때, 하위 기기 별 기준 신뢰도 모델은 상술한 바와 같이 기기 별 설치 및 점검 이력 데이터, 노후 철거품 분석 데이터, 가속수명시험 데이터 등을 토대로 생성될 수 있다.
여기서, 도면부호 320은 하위 기기 별 건전도에 따른 신뢰도가 하위 기기 별 기준 신뢰도 모델의 신뢰도(310) 보다 높은 상태를 나타내며, 도면부호 330은 하위 기기 별 건전도에 따른 신뢰도가 하위 기기 별 기준 신뢰도 모델의 신뢰도(310) 보다 낮은 상태를 나타낸 것이다.
일 실시예에서, 전력설비의 자산 관리 장치(100)는 하위 기기 별 기준 신뢰도 모델의 신뢰도(310) 및 하위 기기 별 상태 데이터 및 실시간 모니터링 정보를 기초로 생성된 하위 기기 별 건전도에 따른 신뢰도(320, 330)가 상이하면, 하위 기기 별 기준 신뢰도 모델에 대한 보상을 실행하여 하위 기기 별 고유의 신뢰도 모델을 산출한다.
즉, 전력설비의 자산 관리 장치(100)는 하위 기기 별 건전도에 따른 신뢰도(320, 330)가 하위 기기 별 기준 신뢰도 모델의 신뢰도(310)와 상이하면, 현재 사용된 하위 기기 별 기준 신뢰도 모델이 최적화된 신뢰도 모델이 아니라고 판단하여 하위 기기 별 건전도를 이용하여 하위 기기 별 기준 신뢰도 모델에 대한 보상을 실행하여 하위 기기 별 고유의 신뢰도 모델을 산출하는 것이다.
본 발명에서는, 상기와 같은 과정을 통해 하위 기기 별 기준 신뢰도 모델을 보상함으로써 하위 기기 별 최적화된 신뢰도 모델을 도출할 수 있다.
도 4는 본 발명의 일 실시예에 따른 유지보수 시나리오 선정과정을 상세히 설명하기 위한 예시도이다.
이하에서는, 가스절연개폐장치(GIS)를 예로 들어 본 발명에 의해 유지보수 시나리오를 선정하는 과정을 설명한다.
도 4를 참조하면, 가스절연개폐장치(400)는 10개의 하위 기기로 구성된다. 예를 들어, 하위 기기는 신뢰도 60%의 CB-차단기(410), 신뢰도 65%의 CB-조작기(420), 신뢰도 80%의 ES(430), 및 신뢰도 100%의 기타 7개의 하위 기기로 구성된다.
전력설비의 자산 관리 장치(100)는 전력설비-하위 기기 간 시스템 관계모델에 하위 기기 별 신뢰도를 적용하여 가스절연개폐장치(400)의 신뢰도를 도출한다. 이를 위해, 전력설비의 자산 관리 장치(100)는 하위 기기 별 신뢰도를 이용하여 전체 하위 기기의 신뢰도를 산출한 후 이를 토대로 전력설비의 신뢰도를 결정한다.
즉, 전력설비의 자산 관리 장치(100)는 CB-차단기(410)에 대한 신뢰도 0.6, CB-조작기(420)에 대한 신뢰도 0.65, ES(430)에 대한 신뢰도 0.8, 7개의 하위 기기에 대한 신뢰도 1 × 7을 토대로, 전체 하위 기기의 신뢰도를 각 하위 기기의 신뢰도를 승산한 0.6 × 0.65 × 0.8 × 1 × 1 × 1 × 1 × 1 × 1 × 1= 38% 로 산출할 수 있고, 이를 전력설비의 신뢰도 38%로 결정할 수 있다. 여기서는 각 하위 기기의 신뢰도를 승산 하였으나, 본 발명은 이에 한정되는 것은 아니며 상술한 바와 같이 각 하위 기기의 신뢰도를 합산하는 방식으로 하위 기기 전체의 신뢰도를 산출할 수도 있다.
또한, 전력설비의 자산 관리 장치(100)는 하위 기기 별 유지보수 시나리오를 도출하게 되며, 예를 들어 유지보수 전략 A 내지 전략 C 를 도출할 수 있다.
이때 적용되는 유지보수 방식은 기기 교체, 정밀점검, 보통점검 등으로 이루어질 수 있다. 각 유지보수 방식을 통한 신뢰도 향상 기준은 기기 교체의 경우 100%, 정밀점검은 30%, 보통점검은 15%로 설정할 수 있으며 신뢰도 향상에 따른 고장률 개선값의 도출이 가능하다. 이를 나타낸 것이 도 5 로서, 도 5는 본 발명의 일 실시예에 따른 하위 기기 별 유지보수 시나리오에 따른 신뢰도 변화를 설명하기 위한 그래프이며, 상세한 설명은 후술한다. 이때, 실제 유지보수 수행 이력에 따라 정밀점검 및 보통점검의 유지보수에 따른 신뢰도 향상 기준은 변화될 수 있다.
유지보수 전략 A는, CB-차단기(410)의 교체를 통해 CB-차단기(410)의 신뢰도를 100%로 상승시키고, CB-조작기(420)의 정밀점검을 통해 CB-조작기(420)의 신뢰도를 95%로 상승시키고, ES(430)의 보통 점검을 통해 ES(430)의 신뢰도를 95%로 상승시켜, 전력설비의 신뢰도를 0.95 × 0.95 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 = 90%로 상승시키는 전략이다.
유지보수 전략 B는, CB-차단기(410)의 정밀점검을 통해 CB-차단기(410)의 신뢰도를 90%로 상승시키고, CB-조작기(420)의 정밀점검을 통해 CB-조작기(420)의 신뢰도를 95%로 상승시키고, ES(430)의 정밀점검을 통해 ES(430)의 신뢰도를 100%로 상승시켜, 전력설비의 신뢰도를 0.95 × 0.9 × 0.95 × 1 × 1 × 1 × 1 × 1 × 1 × 1 = 85%로 상승시키는 전략이다.
한편, 유지보수 전략 C는, CB-차단기(410)의 정밀점검을 통해 CB-차단기(410)의 신뢰도를 90%로 상승시키고, CB-조작기(420)의 정밀점검을 통해 CB-조작기(420)의 신뢰도를 95%로 상승시키고, ES(430)의 보통점검을 통해 ES(430)의 신뢰도를 95%로 상승시켜, 전력설비의 신뢰도를 0.9 × 0.95 × 0.95 × 1 × 1 × 1 × 1 × 1 × 1 × 1 = 81%로 상승시키는 전략이다.
이후, 전력설비의 자산 관리 장치(100)는 소정의 우선순위에 따라 유지보수 시나리오를 선정하게 되며, 이때 적용되는 소정의 우선순위는 상술한 바와 같이 전력설비의 신뢰도를 특정값 이상으로 상승시키도록 하는 것일 수도 있고, 또는 전체 유지보수 비용이 특정 금액 이하로 낮아지도록 하는 것일 수도 있으며, 이외에 상황에 따라 다양한 우선순위를 적용할 수도 있다.
도 5은 본 발명의 일 실시예에 따른 하위 기기 별 유지보수 시나리오에 따른 신뢰도 변화를 설명하기 위한 그래프이다.
일 실시예로서, 유지보수 방식에 따른 신뢰도 향상 기준을 달리 설정할 수 있으며, 유지보수 방식이 기기 교체의 경우 100%, 정밀점검은 30%, 보통점검은 15%로 설정할 수 있지만, 실제 유지보수 수행 이력에 따라 정밀점검 및 보통점검의 유지보수에 따른 신뢰도는 변화될 수 있다.
도 5에서, 도 4의 과정을 통해 결정된 유지보수 전략 A는 기기 교체를 포함하는 유지보수 시나리오로서 신뢰도 향상의 폭이 가장 큰 것을 알 수 있으며, 도 4의 과정을 통해 결정된 유지보수 전략 B는 정밀점검을 중심으로 하는 유지보수 시나리오로서 신뢰도 향상의 폭은 중간 정도이다.
한편, 도 4의 과정을 통해 결정된 유지보수 전략 C는 보통점검 위주의 유지보수 시나리오를 적용한 경우로서 신뢰도 향상의 폭이 가장 작음을 알 수 있다.
도 6 및 도 7는 본 발명의 일 실시예에 따른 하위 기기 별 고장률을 이용하여 전력설비의 신뢰도를 산출하는 과정을 상세히 설명하기 위한 예시도이다.
도 6 및 도 7을 참조하면, 전력설비의 자산 관리 장치(100)는 전력설비-하위 기기 간 시스템 관계모델에 상기 하위 기기 별 고장률을 적용하여 상기 전력설비의 고장률을 도출한다.
일 실시예에서, 전력설비의 자산 관리 장치(100)는 하위 기기 각각에 조건부 확률(P) 및 고장률(λ)을 적용하여 하위 기기 전체의 고장률을 산출한 후 이를 하위 기기 전체에 의한 전력설비의 신뢰도로 결정할 수 있다.
예를 들어, 도 6과 같이 가스절연개폐장치(600)의 하위 기기(CB 조작부, CB 차단부, CHD 부싱, Comp., CT, PT, DS, ES, GIB, PNL)에 조건부 확률(P) 및 고장률(λ)을 적용하여 하위 기기 전체의 고장률을 산출한 후 이를 하위 기기 전체에 의한 가스절연개폐장치(600)의 신뢰도로 결정한다.
또한, 다른 일 실시예에서, 전력설비의 자산 관리 장치(100)는 하위 기기 각각에 가중치(w) 및 고장률(λ)을 적용하여 하위 기기 전체의 고장률을 산출한 후 이를 하위 기기 전체에 의한 전력설비의 신뢰도로 결정할 수 있다.
예를 들어, 도 7과 같이 변압기(700)의 하위 기기(OLTC/NLTC, TR 본체, PNL, 냉각 장치, 보호 계전기, 부싱, 콘서베이터)에 가중치(w) 및 고장률(λ)을 적용하여 하위 기기 전체의 고장률을 산출한 후 이를 하위 기기 전체에 의한 변압기(700)의 신뢰도로 결정한다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.
* 부호의 설명
100: 전력설비의 자산 관리 장치
110: 건전도 생성부
120: 하위 기기 신뢰도 모델 관리부
130: 전력설비 신뢰도 모델 예측부
140: 유지보수 방안 생성부
150: 유지보수 실행부
본 발명은 전력설비의 자산관리 방법 및 이를 실행하는 장치에 관한 것으로서, 전력설비 분야에 이용 가능하다.

Claims (9)

  1. 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 상기 하위 기기 별 건전도를 생성하는 단계;
    하위 기기 별 기준 신뢰도 모델의 신뢰도 및 상기 하위 기기 별 건전도를 비교하여 상기 하위 기기별 기준 신뢰도 모델을 보상하고 상기 하위 기기별 고유의 신뢰도 모델을 생성하는 단계;
    전력설비-하위 기기 간 특정 가중치 및 고장률이 반영된 시스템 관계모델을 적용하여 상기 전력설비의 신뢰도를 산출하는 단계;
    하위 기기 별 유지보수 시나리오를 도출하고 견적을 산출하는 단계; 및
    소정의 우선순위에 따라 유지보수가 실행되고 상기 유지보수의 실행 결과에 따라 상기 하위 기기 별 고유의 신뢰도 모델을 갱신하는 한편, 상기 전력설비에 대한 신뢰도 모델을 갱신하는 단계를 포함하는 것을 특징으로 하는
    전력설비의 자산관리 방법.
  2. 제1항에 있어서,
    상기 하위 기기 별 기준 신뢰도 모델은
    상기 하위 기기 별 설치 및 점검 이력 데이터, 노후 철거품 분석 데이터, 가속수명시험 데이터 중 적어도 하나를 토대로 생성되는 것을 특징으로 하는
    전력설비의 자산관리 방법.
  3. 제1항에 있어서,
    상기 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 상기 하위 기기 별 건전도를 생성하는 단계는
    상기 하위 기기 별 온라인 감시 상태 데이터, 상기 하위 기기 별 오프라인 감시 상태 데이터, 및 원격 감시 데이터를 이용하여 하위 기기 별 건전도를 생성하는 단계를 포함하고,
    상기 오프라인 감시 상태 데이터는
    상기 하위 기기 별 설치 이력, 점검 이력, 고장 이력, 운영 환경 및 운전 이력 데이터 중 적어도 하나를 포함하는 것을 특징으로 하는
    전력설비의 자산관리 방법.
  4. 제1항에 있어서,
    상기 전력설비의 하위 기기 별 상태 데이터와 실시간 모니터링 정보를 이용하여 상기 하위 기기 별 건전도를 생성하는 단계는
    상기 하위 기기 별 운영 환경, 절연물 열화, 전기적 위험도, 열적 위험도, 화학적 위험도 및 기계적 위험도, 기밀 성능, 절연 성능, 차단 성능 및 통전 성능에 따른 기술적 위험도 평가 총점 및 조치사항을 생성하는 단계를 포함하는 것을 특징으로 하는
    전력설비의 자산관리 방법.
  5. 제1항에 있어서,
    상기 하위 기기 별 기준 신뢰도 모델의 신뢰도 및 상기 하위 기기 별 건전도를 비교하여 상기 하위 기기별 기준 신뢰도 모델을 보상하고 상기 하위 기기별 고유의 신뢰도 모델을 생성하는 단계는
    상기 하위 기기 별 건전도를 적용하여 상기 하위 기기 별 기준 신뢰도 모델을 보상하고 신뢰도를 산출하는 단계를 포함하는 것을 특징으로 하는
    전력설비의 자산관리 방법.
  6. 제1항에 있어서,
    상기 전력설비-하위 기기 간 특정 가중치 및 고장률이 반영된 시스템 관계모델을 적용하여 상기 전력설비의 신뢰도를 산출하는 단계는
    상기 하위 기기 각각에 특정 가중치 및 고장률을 적용하여 전력설비의 고장률을 산출하는 단계를 포함하는 것을 특징으로 하는
    전력설비의 자산관리 방법.
  7. 제1항에 있어서,
    상기 하위 기기별 유지보수 시나리오를 도출하고 견적을 산출하는 단계는,
    상기 유지보수 시나리오 별 신뢰도 평가 출력 값, 기술적 평가 출력 값, 경제성 평가 출력 값 및 유지보수 점검 별 비용 항목에 따라, 하위 기기 별 유지보수 전략 방법, 비용, 우선 순위, 기기 별 점검 주기, 예상 비용, 점검 스케줄링, 유지보수 효과 추정, 기기 별 예상 교체 시점을 포함하는 하위 기기별 유지보수 시나리오를 도출하고 견적을 산출하는 단계를 포함하는 것을 특징으로 하는
    전력설비의 자산관리 방법.
  8. 제1항에 있어서,
    상기 소정의 우선순위에 따라 유지보수가 실행되고 상기 유지보수의 실행 결과에 따라 상기 하위 기기 별 고유의 신뢰도 모델을 갱신하는 한편, 상기 전력설비에 대한 신뢰도 모델을 갱신하는 단계는,
    상기 전력설비의 신뢰도가 특정 신뢰도 이상으로 상승하는 상기 하위 기기 별 유지보수 시나리오를 선정하는 단계를 포함하는 것을 특징으로 하는
    전력설비의 자산관리 방법.
  9. 제1항에 있어서,
    상기 소정의 우선순위에 따라 유지보수가 실행되고 상기 유지보수의 실행 결과에 따라 상기 하위 기기 별 고유의 신뢰도 모델을 갱신하는 한편, 상기 전력설비에 대한 신뢰도 모델을 갱신하는 단계는,
    상기 전력설비의 하위 기기별 유지보수 시나리오를 선정함에 있어, 전체 유지보수 비용이 특정 금액 이하가 되도록 선정하는 단계를 포함하는 것을 특징으로 하는
    전력설비의 자산관리 방법.
PCT/KR2017/014871 2016-12-28 2017-12-15 전력설비의 자산관리 방법 WO2018124571A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/473,074 US11429092B2 (en) 2016-12-28 2017-12-15 Asset management method for power equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160181585A KR101943438B1 (ko) 2016-12-28 2016-12-28 전력설비의 자산관리 방법
KR10-2016-0181585 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124571A1 true WO2018124571A1 (ko) 2018-07-05

Family

ID=62709692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014871 WO2018124571A1 (ko) 2016-12-28 2017-12-15 전력설비의 자산관리 방법

Country Status (4)

Country Link
US (1) US11429092B2 (ko)
KR (1) KR101943438B1 (ko)
SA (1) SA519402018B1 (ko)
WO (1) WO2018124571A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109359829A (zh) * 2018-09-26 2019-02-19 全球能源互联网研究院有限公司 基于历史大数据的电力突发事件辅助决策方法及系统
CN109711637A (zh) * 2019-01-09 2019-05-03 国家电网有限公司 新型电力设备接入电网可靠性评估及其优化方法和系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101904868B1 (ko) 2017-04-28 2018-10-10 효성중공업 주식회사 변전소의 자산 관리 방법
KR102067831B1 (ko) * 2018-07-11 2020-01-17 효성중공업 주식회사 전력계통 신뢰도 지수를 토대로 한 변전소 자산 관리 방법 및 장치
KR102369984B1 (ko) * 2019-05-27 2022-04-05 (주)에이트원 중장비 관리 방법 및 이를 실행하기 위하여 기록매체에 기록된 컴퓨터 프로그램
KR102309979B1 (ko) * 2020-01-16 2021-10-07 효성중공업 주식회사 전력설비의 자산관리 방법
CN112345874B (zh) * 2021-01-11 2021-04-20 北京三维天地科技股份有限公司 一种基于5g的实验室仪器设备在线故障诊断方法及系统
KR102484041B1 (ko) * 2021-03-18 2023-01-02 한국항공대학교산학협력단 시스템 레벨 상태 예측 장치 및 방법
KR102662702B1 (ko) * 2021-06-17 2024-05-07 한국전력공사 정보통신 설비 점검 시스템 및 방법
US20220414616A1 (en) * 2021-06-24 2022-12-29 Copperleaf Technologies Inc. Methods and apparatus for creating asset reliability models
CN114781657B (zh) * 2022-03-15 2023-09-26 江苏贺鸿电子有限公司 一种基于人工智能的电力设备检修系统及方法
KR102560260B1 (ko) * 2022-11-21 2023-07-31 주식회사 크로커스 산업체 관리 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090001148A (ko) * 2007-06-29 2009-01-08 삼성전자주식회사 가상 계측 시스템 및 가상 계측 방법
KR20110076451A (ko) * 2009-12-29 2011-07-06 한국전력공사 설비 고장 정비 시스템 및 설비 고장 정비 방법
KR20120128504A (ko) * 2011-05-17 2012-11-27 한국전력공사 개폐장치 건전도 평가 시스템 및 그 방법
KR20130014023A (ko) * 2011-07-27 2013-02-06 토토 가부시키가이샤 토수 장치
KR20160093119A (ko) * 2014-12-31 2016-08-08 주식회사 효성 전력 설비 자산 관리 시스템 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003026A1 (en) 1985-11-17 1987-05-21 Darya Paye Jetty Co., Ltd. Method of constructing a rigid structure upon the bottom of a body of water as well as lost casing for performing said method
KR20130140237A (ko) * 2012-06-14 2013-12-24 주식회사 파워이십일 배전 계통의 최적 신뢰도 평가 시스템 및 그 방법
EP2951653B1 (en) 2013-02-01 2019-11-13 Tetra Laval Holdings & Finance S.A. A method for providing maintenance data
FR3023390B1 (fr) 2014-07-01 2018-04-20 Blue Solutions Procede et systeme de surveillance d'une installation de stockage d'energie, et installation equipee d'un tel systeme
KR101683262B1 (ko) 2014-12-31 2016-12-21 주식회사 효성 전력 설비 관리 시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090001148A (ko) * 2007-06-29 2009-01-08 삼성전자주식회사 가상 계측 시스템 및 가상 계측 방법
KR20110076451A (ko) * 2009-12-29 2011-07-06 한국전력공사 설비 고장 정비 시스템 및 설비 고장 정비 방법
KR20120128504A (ko) * 2011-05-17 2012-11-27 한국전력공사 개폐장치 건전도 평가 시스템 및 그 방법
KR20130014023A (ko) * 2011-07-27 2013-02-06 토토 가부시키가이샤 토수 장치
KR20160093119A (ko) * 2014-12-31 2016-08-08 주식회사 효성 전력 설비 자산 관리 시스템 및 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109359829A (zh) * 2018-09-26 2019-02-19 全球能源互联网研究院有限公司 基于历史大数据的电力突发事件辅助决策方法及系统
CN109711637A (zh) * 2019-01-09 2019-05-03 国家电网有限公司 新型电力设备接入电网可靠性评估及其优化方法和系统

Also Published As

Publication number Publication date
KR101943438B1 (ko) 2019-01-29
SA519402018B1 (ar) 2023-02-08
US11429092B2 (en) 2022-08-30
KR20180076906A (ko) 2018-07-06
US20190354095A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018124571A1 (ko) 전력설비의 자산관리 방법
WO2018199659A1 (ko) 변전소 자산 관리 방법
WO2018199656A1 (ko) 변전소의 자산 관리 방법
WO2018199658A1 (ko) 전력설비의 자산관리 방법
WO2013032044A1 (ko) 배전계통 관리 시스템 및 방법
US20110153236A1 (en) Electrical anomaly detection method and system
WO2013047927A1 (ko) 스마트 배전 운영시스템의 보호기기 자동정정 장치 및 방법
WO2020013619A1 (ko) 전력계통 신뢰도 지수를 토대로 한 변전소 자산 관리 방법 및 장치
WO2020138623A1 (ko) 배전반 감시 시스템 및 그것의 동작방법
WO2022154207A1 (ko) 온도변화 추세 비교분석을 통한 고장예측이 가능한 배전반
WO2022085833A1 (ko) 태양광발전 노후 진단 시스템
WO2022191374A1 (ko) 고장 진단 사전예측을 위한 iot기반 통합 모니터링 배전반
WO2016032130A1 (ko) Ami 전력 사용량 기반의 배전 구간부하 산출 시스템
CN112994248B (zh) 一种配电网母线故障预警装置及方法
WO2022163994A1 (ko) 지역 단위 재생 에너지 통합 관제 시스템
WO2020138573A1 (ko) Iot 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치
WO2024071607A1 (ko) 산업현장 방폭검사용 스마트 플랫폼
WO2023090876A1 (ko) 선제적 풍력발전 유지관리 시스템
WO2012043938A1 (ko) 전력조류 제어 시스템 및 방법
WO2021145636A1 (ko) 변전소의 자산 관리 방법
WO2018124570A1 (ko) 변전소의 자산 관리 방법
WO2024071608A1 (ko) 방폭 진단을 위한 안전검사 솔루션
WO2021060772A1 (ko) 머신러닝기반 태양광발전운영 관리시스템 및 관리방법
WO2019189950A1 (ko) 설비의 원격 진단 방법, 시스템 및 프로그램
Chimunda et al. A reliability assessment model for an outdoor 88 kV XLPE cable termination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886866

Country of ref document: EP

Kind code of ref document: A1