WO2016032130A1 - Ami 전력 사용량 기반의 배전 구간부하 산출 시스템 - Google Patents

Ami 전력 사용량 기반의 배전 구간부하 산출 시스템 Download PDF

Info

Publication number
WO2016032130A1
WO2016032130A1 PCT/KR2015/007736 KR2015007736W WO2016032130A1 WO 2016032130 A1 WO2016032130 A1 WO 2016032130A1 KR 2015007736 W KR2015007736 W KR 2015007736W WO 2016032130 A1 WO2016032130 A1 WO 2016032130A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
section
current
ami
transformer
Prior art date
Application number
PCT/KR2015/007736
Other languages
English (en)
French (fr)
Inventor
신진호
노재구
김준성
최승환
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2016032130A1 publication Critical patent/WO2016032130A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/10Drives of distributors or of circuit-makers or -breakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B7/00Enclosed substations, e.g. compact substations
    • H02B7/06Distribution substations, e.g. for urban network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a distribution section load calculation system based on AMI power usage, and more particularly, to measurement information of SCADA (Supervisory Control And Data Acquisition) and DAS (Distributive on Automation System).
  • SCADA Supervisory Control And Data Acquisition
  • DAS Distributive on Automation System
  • the section load of the distribution system In general, the section load of the distribution system, fault handling, load switching such as power outages, system optimization and reconfiguration, protection coordination review and correction, linkage calculation between substations, loss and voltage drop improvement, and distribution investment planning, etc. As the basis for this, it is very important for system operation and planning.
  • the lower sections conventionally calculate the section load after uniformly allocating the same load considering only the positive (that is, the horizontal distance of the designated section of the cable line), and thus the calculated section load is too different from the actual site. There is a problem that the reliability of the loss, voltage drop, and system reconstruction using the section load are unreliable.
  • the conventional section load calculation of the DAS is based on the power supply side breaker current and the load side of the load side breaker based on the part of the circuit breaker of the distribution line that measures the current on an hourly basis. All sections between the automated switchgear sections are redistributed in positive contrast.
  • the switch current at this time is based on the last five days of data on weekdays, the weekend is based on the four weeks immediately before the Saturday / Sunday, section intervals are calculated using the third data of the large order by time zone.
  • a 35 (A) is allocated to the intervals between the automatic switchgear (eg 18 intervals) by the ratio of each positive.
  • some of the sections may be a section without the low-voltage transformer, the high-voltage consumer may use most of the power, the conventional automation system was used to distribute the section load only positive.
  • the division loads distributed as described above are used to quickly recover the electrostatic load except the failure section in case of failure of the distribution line.
  • the load of the electrostatic section load and the line load of the connecting line should be 14,000 kW or less, which is an emergency operating condition.
  • the transfer plan is established so that the connecting line can operate under emergency operation conditions.
  • the section load is also used in applications such as distribution system optimization and protection coordination of the distribution automation system.
  • the distribution system optimization function calculates voltage drop, load, and loss to always move the open point, which is better than the current system. Finding a system
  • the rather high section loads are positively distributed and used for calculation as described above, the load of the system is greatly different from the loads seen in the conventional automation system, resulting in a problem of inadequate reliability from the operator's point of view regarding the result of the application. do.
  • the voltage drop or power loss is calculated by assuming all loads in the section as the average load. All are not distributed on average.
  • the present invention was created to solve the above problems, and the characteristics of the power consumption of AMI (Advanced Metering Infrastructure), which is the actual load of the system, as well as the measurement information of the substation automation system (SCADA) and the distribution automation system (DAS). It is an object of the present invention to provide a distribution section load calculation system that can more accurately calculate section loads to manual switchgear and branch sections.
  • AMI Advanced Metering Infrastructure
  • SCADA substation automation system
  • DAS distribution automation system
  • Distribution distribution load calculation system based on the AMI power consumption according to an aspect of the present invention, by subdividing the current of the first specific time unit measured in the second specific time unit measured in the automatic switchgear, eliminating errors, distributed power supply and loop
  • An automatic switchgear section current correcting unit configured to correct current in the automatic switchgear section by performing a tidal current calculation reflecting a system characteristic of a driving system;
  • the transformer current which is the sum of the high-voltage customer load and the low-voltage customer load, is substituted into the effective / reactive power value of each section by using the corrected current of the automatic switch section, and the AMI (Advanced Metering Infrastructure) power consumption of each section is used.
  • a lower section customer load processing unit for calculating a load area for the load; An algae calculation unit performing algae calculation based on a load area calculation result for the AMI power consumption of the lower section; And a section load generation unit for classifying the use of the load according to the classification criteria of the section load based on the algal calculation result and generating a section load suitable for each use.
  • the automatic switchgear section current correction unit the circuit breaker measured in the SCADA (Supervisory Control And Data Acquisition), excluding the fault current generated in the substation and distribution system and the load current due to the work outage during the section load calculation process ( CB) Calculate the load deviation of the measurement current of the automatic switchgear (GA) with the same load deviation as the current pattern, subdivide the load in the automatic switchgear section by the second specific time unit, and then load-side load current rather than the power-side load current in each section.
  • SCADA Supervisory Control And Data Acquisition
  • the lower section customer load processing unit searches for the high-voltage customer and the transformer in the lower section, and calculates the section load by substituting the position and the metering information of the high-voltage customer as the effective / invalid power value in the lower section.
  • the load monitoring data and position are substituted into the corresponding lower section as the effective / reactive power value. It is characterized by calculating the load area.
  • the lower section customer load processing unit performs automatic meter reading (AMR) / Advanced Metering Infrastructure (AMI) for all low voltage customers below the transformer and adds the meter reading information when the meter reading information exists.
  • AMR automatic meter reading
  • AMI Advanced Metering Infrastructure
  • the load area of each section is calculated by substituting the transformer position and the load information into an effective / reactive power value in a corresponding lower section.
  • the lower section customer load processing unit except in the case where the transformer is subjected to load monitoring and the AMR / AMI for all low-voltage customers below the transformer and the meter information is present except
  • the load area of each section is calculated by substituting the transformer pull composite load and the transformer position information as the effective / reactive power values in the corresponding lower section.
  • the use of the section load when the maximum value of the section in the unit of D / L (distribution line) is required, the maximum load of the peripheral pressure transformer / substation unit CB is required, and The case where the maximum load is required is characterized by the classification criteria.
  • the section load generation unit by querying the section load of the result of calculating the tidal current by the third predetermined time unit to generate the section load in a predetermined period unit according to the classification criteria for each application of the section load, D
  • D In the case of / L (distribution line) maximum load reference, calculate the maximum value of the section in which the voltage drop and overvoltage occur for the purpose of improving the voltage drop and overvoltage, to generate the other section load at that time, and to improve the loss. If the purpose is to calculate the maximum loss and generate the corresponding time and section load, and if the purpose to improve the power factor is characterized by generating the corresponding time and section load by calculating the minimum power factor.
  • the section load generation unit if the classification criteria for each use of the section load is the peripheral pressure transformer or substation maximum load criteria, after calculating the maximum load time for each of the peripheral pressure transformer or substation, and then for each peripheral pressure or substation It is characterized in that the supply section is calculated, all the section loads are generated on the basis of the time point, and thereafter, the section loads are additionally generated.
  • the section load generation unit when the classification criteria for each use of the section load is the maximum load criterion for the link line group unit CB, after calculating the maximum load time point for each link line group unit CB, the one of the CB It is characterized by generating all the section loads based on the maximum load time point by calculating the supply section for each of the connected lines based on the maximum load time point, and additionally generating the section load of the missing section.
  • the present invention enables the calculation of the section loads to the manual switchgear and the branch section more accurately by using the AMI power usage which is the actual load of the system, and the intensive load and distribution load considering the position and size of the AMI power usage in the system. By reflecting the characteristics, it is possible to calculate the flow, voltage drop, and loss of the load closer to the site situation.
  • FIG. 1 is an exemplary view for explaining a section configuration and a section load calculation method of a conventional distribution system.
  • Figure 2 is an exemplary view showing a schematic configuration of a distribution section load calculation system based on AMI power usage according to an embodiment of the present invention.
  • FIG. 3 is a table showing details of load data managed by a load data management unit in FIG.
  • FIG. 4 is a flowchart illustrating an operation process of the automatic switchgear section current corrector of FIG. 2.
  • FIG. 5 is an exemplary view showing a SCADA measurement load pattern for explaining the section load error in accordance with an embodiment of the present invention.
  • FIG. 6 is an exemplary view showing a measured value table and a SCADA current graph of a distribution automation system for explaining a conventional problem in connection with the present embodiment.
  • FIG. 7 is an exemplary view illustrating a result of subdividing a load current in FIG. 6.
  • FIG. 8 is a flowchart illustrating a process in which a lower section customer load processing unit processes the AMI power usage of the lower section in FIG. 2.
  • FIG 9 is an exemplary view showing a load distribution form of the lower section used in the distribution automation system in accordance with the present embodiment.
  • FIG. 10 is an exemplary diagram for comparing and comparing a conventional load distribution method and a load distribution method according to an embodiment of the present invention.
  • FIG. 11 is a table comparing and comparing the results of calculating voltage drop and loss based on the system and load shown in FIG. 10 according to the conventional method and the method according to the present embodiment.
  • FIG. 12 is a flowchart for explaining a tidal current calculation method using the Newton Labson algorithm of the tidal current calculation unit in FIG. 2.
  • FIG. 13 is a table for classifying section loads and their respective uses for generating section loads in the section load generation unit for each facility and system in FIG. 2.
  • FIG. 14 is a flowchart illustrating a method of generating section loads on a monthly basis in accordance with the classification criteria for each use in the section load generation unit for each facility and system in FIG. 2.
  • FIG. 2 is an exemplary view showing a schematic configuration of a distribution section load calculation system based on AMI power usage according to an embodiment of the present invention.
  • the distribution section load calculation system based on the AMI power usage includes a load data management unit 110, an automatic switchgear section current corrector 120, and a lower section customer load processor 130. , A bird calculation unit 140, and section load generation unit 150 for each facility and system.
  • the load data management unit 110 manages a distribution system and load information (ie, load data) (see FIG. 3).
  • FIG. 3 is a table showing details of load data managed by the load data management unit in FIG. 2.
  • the load data includes substation measurement information, distribution values of a distribution system and an automatic switchgear, monthly meter reading information of a low voltage customer, and a distribution transformer pull composite load calculated by a correlation coefficient for a lamp, and a measurement of a transformer load monitoring system.
  • Information eg, SCADA, DAS, NDIS, transformer load monitoring system, AMI).
  • the automatic switch section current corrector 120 subdivides the current of the first specific time (eg 1 hour) unit measured by the automatic switchgear by the second specific time (eg 5 minutes) unit to correct an error (or error). It performs the function of compensating the current in the automatic switchgear section by removing the current and calculating the algae reflecting the system characteristics of the distributed power supply and loop operation system.
  • FIG. 4 is a flowchart illustrating an operation process of the automatic switchgear section current corrector of FIG. 2.
  • the automatic switchgear section current corrector 120 is an exception since the fault current generated in the substation and the distribution system and the load current (that is, fault / interruption current) due to a work interruption (interruption) are exceptional. Excluded (or removed) in the load calculation process (S101).
  • the measurement cycle of the automatic switchgear of the DAS is 1 hour unit. Therefore, in the present embodiment, when trying to calculate the section load at different time intervals (eg, 5 minutes, 15 minutes, etc.), an error may occur as much (see FIG. 5). Therefore, it is necessary to correct the current in the same time zone using the SCADA data in order to reduce the section load error caused by the difference in the measurement time as described above.
  • FIG. 5 is an exemplary view showing a SCADA measurement load pattern for explaining the section load error in accordance with an embodiment of the present invention.
  • Figure 5 (a) is an exemplary view showing the load pattern of the SCADA measurement current of 5 minutes period during the day
  • Figure 5 (b) is a data 12 for one hour from 8 pm to 9 pm in (a) It is an exemplary view showing only the dog enlarged.
  • the measurement of the switchgear of the distribution automation system is not measured at the same time, but is determined by the communication infrastructure, and thus there is a problem that a large difference occurs in the switchgear measurement time within 1 hour (see FIG. 6). .
  • FIG. 6 is an exemplary view showing a measured value table and a SCADA current graph of a DAS for explaining a conventional problem in connection with the present embodiment.
  • the time and measured values measured by the DAS are about 10 minutes in each section (eg, CB section and GA section). It can be seen that there is a difference (actually, there is a line with a larger measurement time difference than this case), and referring to the SCADA current graph shown in FIG. 6 (b), even during the measurement time difference (about 10 minutes) It can be seen that the SCADA current varies greatly.
  • the above problems may result in a case where the load-side switch current is larger than the power-side switch current even in the dendritic system, and accordingly, a conventional distribution automation system (In some cases, the load side breaker current is larger than the power side breaker current.
  • a load side load current (eg, 195) may be larger than a load side load current (eg, 180), such as 2GA. It can be seen that this is not actually a larger load-side current but a problem due to the difference in measurement time.
  • GA GasSwitch Auto
  • CB Circuit Breaker
  • the load current is affected by the section load, but generally has the same pattern. Therefore, in the present embodiment, the load deviation of the GA (automatic switchgear) measurement current is calculated using the same load deviation as the CB (breaker) current pattern measured by the SCADA (S102), and the load of the automatic switchgear section is determined in a second specific time unit (eg (5 minutes), the result of the segmented load pattern of the automatic switchgear section as shown in FIG. 7 can be obtained.
  • the GA automatic switchgear
  • FIG. 7 is an exemplary view showing a result of subdividing a load current in FIG. 6.
  • the switchgear of the conventional automation system does not provide directional information except for the bidirectional protection device. Therefore, in a situation where distributed power sources such as renewable energy are increasing, the current value of a switch with no direction indicates whether the load current is provided by an electricity supplier (for example, KEPCO) or distributed power. I can't.
  • KEPCO electricity supplier
  • the algae calculation is performed for the purpose of current correction only in the automatic switchgear section in order to reflect the algae direction and the loop operation system of the distributed power supply system.
  • the algae calculation is performed using the Newton Labson algorithm as an input value of the current in the automatic switchgear section (S106).
  • the automatic switchgear correction current may be stored in a third specific time unit (for example, 15 minutes).
  • a ratio for comparing with the ratio of the sum of the section loads based on the CB (breaker) current (that is, a reference ratio) ) Is set to 10% or less considering the divergence degree and error rate.
  • the lower section customer load processor 130 substitutes a transformer load that is the sum of the high-voltage customer load and the low-voltage customer load in the lower section (that is, substitutes the effective / reactive power value of each section). (See Figure 8).
  • the distribution system is quite complicated even if only the section between the automated switch and the other switch.
  • the low-voltage transformer passes without any one, such as a trunk line, and a section in which only a low-voltage transformer exists, or there may be a high-pressure acceptor in the section between the automatic switch, and also a high pressure and a low pressure. There may also be this mixed section.
  • the section load is calculated using the metering information of the high voltage customer, the load monitoring data of the low voltage transformer, the low pressure AMI metering information, or the transformer pull load information in the section.
  • FIG. 8 is a flowchart illustrating a process in which the lower section customer load processor processes the AMI power usage of the lower section.
  • the lower section customer load processing unit 130 searches for a high voltage customer and a transformer in units of lower sections (S201).
  • the metering information is an amount of active power and reactive power in units of a third specific time (for example, 15 minutes)
  • the metering information is multiplied by 4 to convert the metering information into active power and reactive power, and then 60 to remove time components. Divide by minutes.
  • the lower section customer load processing unit 130 distinguishes the transformer applied load in order to substitute the load of the low pressure customer (S203).
  • the lower section customer load processing unit 130 in the case of the transformer that is performing the transformer load monitoring (S204), the load monitoring data and the position of each section is valid / invalid Substitute the power value (S205).
  • the transformer load information is generated by summing the meter reading information (that is, Next, the transformer position and load information are substituted into the effective / reactive power values of the respective sections (S208).
  • AMR Automatic Meter Reading
  • AMI Advanced Metering Infrastructure
  • the transformer pull composite load and the transformer position information are substituted as the effective / reactive power value of each section (S210).
  • the load area is calculated to calculate the load of the lower section in consideration of the AMI power usage characteristics as described above (S211).
  • the present embodiment uses a high-voltage customer and a low-voltage transformer position information in the lower section to determine whether the load is distributed or concentrated, and analyze the system in a highly accurate load (LP: active power, LQ: reactive power). Can be calculated.
  • LP active power
  • LQ reactive power
  • FIG 9 is an exemplary view showing a load distribution form of the lower section used in the distribution automation system in accordance with the present embodiment.
  • FIG. 9 shows a distribution load form which means that the load is equally used in the lower section
  • FIG. 9 (b) shows the end concentration section load form
  • FIG. 9 (c) shows the distribution load. And section load with mixed end load.
  • FIG. 10 is an exemplary diagram for comparing and comparing a conventional load distribution method with a load distribution method according to an embodiment of the present invention.
  • sections such as 1, 4, and 6 have uniform load distribution regardless of the actual load position and size. There is a problem in that the load is uniformly performed even in a section without an actual load, such as sections 2, 3, and 5, to calculate that there is a load.
  • load distribution is performed only in the section with the actual load. That is, since section 1 is the terminal concentrated load, section 1 calculates the load area at 11A, section 4 is the section where the concentrated load and the distribution load are mixed, and section 6 is the distribution load section with the low voltage transformer only. Calculate the load area reflecting the location and size of the load. And 2, 3, 5 section is no load section, so do not calculate the load area.
  • the load area may be calculated by constructing a matrix as follows.
  • the method for calculating the load area is an example described method.
  • the conventional method is 50%, and the method according to the present embodiment is 100%. That is, in the conventional method, the load area of all sections becomes 50%, but the method (improved method) according to the present embodiment calculates the actual load area.
  • each line type is ACSR-95mm
  • neutral wire is ACSR-58mm
  • impedance Z 0.33195 ⁇
  • resistance R 0.30415 ⁇ .
  • FIG. 11 is a table illustrating comparison of the results of calculating the voltage drop and the loss based on the system and the load shown in FIG. 10 by the conventional method and the method according to the present embodiment.
  • the voltage drop was calculated to be 379V in the conventional method (the existing method) and 289V in the method (the improvement method) according to the present embodiment. Because the concentrated load and the no-load section has a small voltage drop, the method according to the present embodiment is calculated small.
  • the difference was nearly twice that of the conventional method (existing method) of 80,617W, and the present method (improving method) of 43,508W. This is because the loss is increased in the case of a load concentrated at the end of the distribution line.
  • the line illustrated in FIG. 10 has a large AMI power consumption and a no-load section in front of the section, and thus the loss in the scheme according to the present embodiment. The calculation result is small.
  • the tidal current calculation unit 140 performs tidal current calculation based on the load area calculation result for the AMI power usage of the lower section.
  • the algal calculation may be calculated using the Newton Labson algorithm, but is not limited to the Newton Labson algorithm.
  • FIG. 12 is a flowchart for explaining a bird calculating method using the Newton Labson algorithm of the bird calculating unit in FIG. 2.
  • the tidal current calculation unit 140 receives system data (eg, section configuration, section length, line information, load data, etc.) of a system to calculate an admittance matrix Y (S301).
  • system data eg, section configuration, section length, line information, load data, etc.
  • the voltage of each bus which can be received from SCADA
  • the initial value of the iteration calculation the iteration can be infinite loop in some cases because the bird calculation has to be performed until the current converges)
  • Is set S302
  • the tidal current calculator 140 outputs a result value (bus voltage and line tidal current) (S305). However, if the maximum effective / reactive power is not below the end limit (No in S304), the tidal current calculation unit 140 calculates the change amount of the bus voltage through the calculation using the Jacobian matrix (S306) (S307). Update (S308).
  • a result value (a bus voltage and a line tide calculation result for each phase) is output (S305).
  • the number of iterations (h) is less than the maximum number of iterations, go back to step S303 to the effective / reactive power of each section ( ) Is checked (judged) for divergence (mismatch).
  • the section load generation unit 150 for each facility and system divides the classification criteria and the use of the section loads, and generates (ie, calculates) section loads suitable for each application (see FIG. 13).
  • FIG. 13 is a table for classifying section loads and their respective uses for generating section loads in the section load generation unit for each facility and system.
  • the use is a case where a maximum value of a section is required in units of D / L (distribution lines), a case where a maximum load of a peripheral pressure / station unit CB (breaker) is required, and The case where the maximum load is required is classified based on the classification criteria.
  • FIG. 14 is a flowchart illustrating a method of generating section loads on a monthly basis in accordance with the classification criteria for each use in the section load generation unit for each facility and system in FIG. 2.
  • the section load generation unit 150 for each facility and the system inquires section loads of the algae calculation result in units of 15 minutes (S401) and sections on a monthly basis according to the four usage classification criteria for each use.
  • a load is generated (that is, calculated) (S402).
  • the maximum value of the section in which the voltage drop and the overvoltage are generated is calculated for the purpose of improving the voltage drop or the overvoltage, thereby generating another section load at that time ( That is, calculating (S404), if the purpose is to improve the loss to calculate the maximum loss value to generate the time and the section load (that is, calculate) (S405), if the purpose to improve the power factor, calculate the minimum power factor By generating (ie, calculating) the time point and the section load (S406).
  • the supply section for each of the peripheral pressure (MTR) or substation at that time Calculate and generate (ie, calculate) all section loads based on the time point (S409).
  • the interval load of the missing section is generated (that is, calculated) (S410).
  • the AMI Advanced Metering Infrastructure
  • the accuracy of the section load calculation is more effective as it is expanded and distributed. Since the meter reading success rate and timely reception rate of the transformer measurement cannot be 100%, there is a limit to improving the accuracy of the section load calculation.
  • the present embodiment can calculate the section load more accurately by combining the distribution automation measurement information, customer metering information, and transformer measurement information as described above to calculate the section load.
  • this embodiment can be used for the selection of the optimum position of the automated switchgear considering the concentrated load, and can also be used for load prediction in relation to the power distribution system operation process, using the section load, the substation-MTR-CB-section By predicting the load, overload can be prevented in advance.
  • it can be used for power distribution planning tasks such as overload elimination and voltage drop elimination, and can be used for transmission substation planning work through substation linkage and utilization analysis.
  • the embodiment according to the present invention is effective in improving power quality and optimal operation of the distribution system through calculation of the section load with improved accuracy up to the distribution system automatic switchgear section and the lower section, such as voltage drop and overvoltage, loss, power factor, etc.
  • Helps to improve quality helps to reduce overload and accuracy of load transfer schemes, improves the accuracy of linkage and resilience calculations between substations, and reliability of system optimization (load leveling, loss minimization) simulations It can reflect the site situation when establishing fault recovery SOP (D / L, peripheral pressure transformer, substation recovery plan) operation procedure, improve reliability when establishing operation procedures for substation and distribution ceasefire, review protection coordination and correct accuracy Has the effect of improving.
  • SOP fault recovery SOP

Abstract

본 발명은 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템에 관한 것으로, 자동화개폐기에서 계측된 제1 특정시간 단위의 전류를 제2 특정시간 단위로 세분화하여 오차를 제거하고, 분산형 전원과 루프 운전계통의 계통 특성을 반영한 조류계산을 수행하여 자동화개폐기 구간의 전류를 보정하는 자동화개폐기 구간 전류 보정부, 상기 자동화개폐기 구간의 보정된 전류를 이용하여 하부구간에 고압고객 부하와 저압고객 부하의 합인 변압기 부하를 각 구간의 유효/무효 전력 값으로 대입하여 각 하부구간의 AMI(Advanced Metering Infrastructure) 전력 사용량에 대한 부하면적을 산출하는 하부구간 고객부하 처리부, 상기 하부구간의 AMI 전력 사용량에 대한 부하면적 계산결과를 기초로 조류계산을 수행하는 조류 계산부, 및 상기 조류계산 결과를 바탕으로 구간부하의 분류 기준에 따라 부하의 용도를 구분하고, 각 용도에 적합한 구간부하를 생성하는 구간부하 생성부를 포함한다.

Description

AMI 전력 사용량 기반의 배전 구간부하 산출 시스템
본 발명은 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템에 관한 것으로, 보다 상세하게는 SCADA(Supervisory Control And Data Acquisition, 변전자동화시스템), DAS(Distributive on Automation System, 배전자동화시스템)의 계측정보뿐만 아니라, 계통의 실제 부하인 AMI(Advanced Metering Infrastructure, 지능형 원격검침 인프라) 전력 사용량의 특성을 고려하여 수동개폐기 및 분기 구간까지의 구간부하를 보다 정확하게 산출할 수 있도록 하는 배전 구간부하 산출 시스템에 관한 것이다.
일반적으로 배전계통의 구간부하는, 고장처리, 작업정전(휴전)과 같은 부하절체, 계통 최적화 및 재구성, 보호협조 검토 및 정정, 변전소간 연계력 계산, 손실 및 전압강하 개선, 배전투자계획 수립 등을 위한 근간이 되는 데이터로서, 계통운영 및 계획에 있어서 매우 중요하다.
그러나 종래의 구간부하 계산 방법은 배전자동화시스템(DAS)의 계측 데이터를 이용하여 자동화개폐기 구간(또는 자동화 구간)까지는 부하계산이 가능한데, 상기 자동화개폐기 구간(또는 자동화 구간) 하부의 수동개폐기와 그 이외의 분리된 많은 구간들은 사실상 구간부하 계산이 불가능하다.
또한 종래에 하부 구간들은 긍장(즉, 전선로의 지정된 구간의 수평 거리)만 고려하여 일률적으로 동일한 부하를 배분한 다음 구간부하를 계산하고 있으며, 이에 따라 계산된 구간부하가 실제 현장과 너무 다르기 때문에 상기 구간부하를 이용한 손실, 전압강하, 및 계통 재구성 결과를 신뢰하지 못하는 문제점이 발생하고 있다.
보다 구체적으로, 종래에 배전자동화시스템(DAS)의 구간부하 산정은, 1시간 단위로 전류를 측정하고 있는 배전선로의 일부 자동화개폐기를 기반으로 전원측 자동화개폐기 전류와 부하측 자동화개폐기의 부하편차를 이용하여 자동화개폐기 구간 사이의 모든 구간을 긍장 대비로 재분배하는 방식으로 산정한다.
참고로, 이때의 개폐기 전류는 평일은 직전 5일치 데이터를 기준으로, 주말은 토/일요일 직전 4주치를 기준으로, 시간대별로 큰 순서 중 3번째 데이터를 이용하여 구간부하를 산정하고 있다.
도 1은 종래의 배전계통의 구간 구성 및 구간부하 산출 방법을 설명하기 위한 예시도로서, 이에 도시된 바와 같이 전원측 개폐기가 55(A)로 선택되고 부하측 개폐기가 20(A)로 선택되면 그 차이인 35(A)가 자동화개폐기 사이의 구간들(예 : 18개 구간)로 각 긍장의 비율만큼 할당된다.
그러나 상기 구간들 중 일부 구간은 저압용 변압기도 없는 구간이 있을 수 있고, 고압수용가가 대부분의 전력을 사용할 수도 있는데, 종래 자동화 시스템에서는 긍장으로만 구간부하를 분배하는 방식이 사용되었다.
상기와 같이 분배된 구간부하는 배전선로의 고장시에 고장구간을 제외한 정전부하를 신속히 복구하기 위하여 사용되는데, 이를 위해서는 정전구간부하와 연계선로의 선로부하가 비상시 운전조건인 14,000kW 이하이어야 한다.
통상적으로 배전계통의 사고 시 고장구간의 복구까지 대략 3시간 정도가 소요되는데, 도 1에 도시된 바와 같이, 연계선로로 절체된 전체부하가 비상운전조건을 넘으면 안 된다. 따라서 현재부하보다는 최근 부하전류 중 다소 높은 부하전류를 선택함으로써 연계선로가 비상운전조건 이하로 운전할 수 있도록 절체방안을 수립하게 된다.
또한 상기 구간부하는 배전자동화시스템의 배전계통 최적화, 보호협조 등 응용프로그램에서도 사용되는데, 상기 배전계통 최적화 기능은 전압강하분석, 부하량, 및 손실량을 산출하여 상시 개방점을 이동하여 현재계통보다 더 나은 계통을 찾는 기능이다. 그런데 상기와 같이 다소 높은 구간부하량이 긍장으로 분배되어 산출에 사용되기 때문에 계통의 부하량이 종래의 자동화시스템에서 보는 부하량과 많은 차이가 발생하여 응용프로그램의 결과에 대해 운영자 입장에서 신뢰성이 떨어지는 문제점이 발생한다.
또한 배전자동화시스템에서 전압강하 또는 전력손실을 계산하는데 있어서, 주어진 구간부하만 있기 때문에 구간에서 소요되는 부하를 모두 평균부하로 가정하여 전압강하 또는 전력손실을 산출하게 되는데, 실제 계통에서는 구간에 부하가 모두 평균적으로 분배되지 않는다.
예컨대 도 1을 참조하면, 고압고객이 말단에 집중된 구간도 있고, 저압고객이 분포된 구간도 있으며, 고압과 저압고객이 혼재된 구간도 있다. 따라서 종래에는 상기와 같은 구간의 부하특성을 고려하지 않고 있기 때문에 현장에서 활용하는데 어려움이 있는 것이다.
본 발명의 배경기술은 대한민국 공개특허 10-2014-0032138호(2014.03.14.공개 배전계통의 구간부하 추정 장치 및 방법)에 개시되어 있다. 그러나 상기 배경기술은 자동개폐기 구간만을 대상으로 하는 구간부하 추정 기술로서, 하부의 구간부하를 추정하지는 못하기 때문에, 특히, 자동화개폐기 구간이 배전설계 기준에 따라 2km 이상으로서, 가령 5km 이상의 장긍장인 경우에는 손실과 전압강하의 오차율이 크게 나타나게 되는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창작된 것으로서, 변전자동화시스템(SCADA), 배전자동화시스템(DAS)의 계측정보뿐만 아니라, 계통의 실제 부하인 AMI(Advanced Metering Infrastructure) 전력 사용량의 특성을 고려하여 수동개폐기 및 분기 구간까지의 구간부하를 보다 정확하게 산출할 수 있도록 하는 배전 구간부하 산출 시스템을 제공하는데 그 목적이 있다.
본 발명의 일 측면에 따른 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템은, 자동화개폐기에서 계측된 제1 특정시간 단위의 전류를 제2 특정시간 단위로 세분화하여 오차를 제거하고, 분산형 전원과 루프 운전계통의 계통 특성을 반영한 조류계산을 수행하여 자동화개폐기 구간의 전류를 보정하는 자동화개폐기 구간 전류 보정부; 상기 자동화개폐기 구간의 보정된 전류를 이용하여 하부구간에 고압고객 부하와 저압고객 부하의 합인 변압기 부하를 각 구간의 유효/무효 전력 값으로 대입하여 각 하부구간의 AMI(Advanced Metering Infrastructure) 전력 사용량에 대한 부하면적을 산출하는 하부구간 고객부하 처리부; 상기 하부구간의 AMI 전력 사용량에 대한 부하면적 계산결과를 기초로 조류계산을 수행하는 조류 계산부; 및 상기 조류계산 결과를 바탕으로 구간부하의 분류 기준에 따라 부하의 용도를 구분하고, 각 용도에 적합한 구간부하를 생성하는 구간부하 생성부;를 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 자동화개폐기 구간 전류 보정부는, 변전소 및 배전계통에서 발생한 고장전류와 작업정전으로 인한 부하전류를 구간부하 산출 과정에서 제외하고, SCADA(Supervisory Control And Data Acquisition)에서 계측된 차단기(CB) 전류패턴과 동일한 부하편차로 자동화개폐기(GA) 계측 전류의 부하편차를 산정하고, 자동화개폐기 구간의 부하를 제2 특정시간 단위로 세분화한 후, 각 구간 단위로 전원측 부하전류보다 부하측 부하전류가 더 큰 경우는 오류 전류로 판단하여 제거하고, 분산형전원의 역조류를 반영한 후 자동화개폐기 구간의 전류를 입력값으로 조류를 계산하고, 상기 자동화개폐기 구간의 조류계산이 완료되면 D/L(배전선로) 단위로 모든 구간부하를 합산하고, CB 전류를 기준으로 상기 합산된 구간부하의 비율이 기설정된 비율 보다 작으면 자동화개폐기 구간 보정전류를 저장하는 것을 특징으로 한다.
본 발명에 있어서, 상기 하부구간 고객부하 처리부는, 하부구간 단위로 고압고객 및 변압기를 검색하고, 상기 고압고객의 위치와 계량정보를 해당 하부구간에 유효/무효 전력 값으로 대입하여 구간부하를 산출한 후, 변압기 적용부하를 구분하여 저압고객의 구간부하를 산출하되, 변압기가 부하감시를 시행하고 있는 경우에는 그 부하감시 데이터와 위치를 해당 하부구간에 유효/무효 전력 값으로 대입하여 각 구간의 부하면적을 계산하는 것을 특징으로 한다.
본 발명에 있어서, 상기 하부구간 고객부하 처리부는, 변압기 이하 모든 저압고객을 대상으로 AMR(Automatic Meter Reading)/AMI(Advanced Metering Infrastructure)를 시행하여 검침정보가 존재하는 경우에는 상기 검침정보를 합산하여 변압기 부하정보를 생성한 다음, 상기 변압기 위치와 부하정보를 해당 하부구간에 유효/무효 전력 값으로 대입하여 각 구간의 부하면적을 계산하는 것을 특징으로 한다.
본 발명에 있어서, 상기 하부구간 고객부하 처리부는, 변압기가 부하감시를 시행하고 있는 경우 및 변압기 이하 모든 저압고객을 대상으로 AMR/AMI를 시행하여 검침정보가 존재하는 경우를 제외한 그 이외의 경우에는 변압기 당기합성부하와 변압기 위치 정보를 해당 하부구간에 유효/무효 전력 값으로 대입하여 각 구간의 부하면적을 계산하는 것을 특징으로 한다.
본 발명에 있어서, 상기 구간부하의 용도는, D/L(배전선로) 단위로 구간의 최대값이 필요한 경우, 주변압기/변전소 단위 CB의 최대부하가 필요한 경우, 및 연계선로그룹 단위로 CB의 최대부하가 필요한 경우를 분류 기준으로 하여 구분되는 것을 특징으로 한다.
본 발명에 있어서, 상기 구간부하 생성부는, 기 설정된 제3 특정시간 단위로 조류 계산한 결과의 구간부하를 조회하여 상기 구간부하의 용도별 분류 기준에 따라 기 설정된 기간 단위로 구간부하를 생성하되, D/L(배전선로) 최대부하 기준의 경우, 전압강하 및 과전압을 개선하기 위한 목적으로 전압강하와 과전압이 발생하는 구간의 최대값을 산출하여 해당 시점으로 다른 구간 부하를 생성하고, 손실을 개선하기 위한 목적이면 손실 최대값을 산출하여 해당 시점과 구간부하를 생성하고, 역률을 개선하기 위한 목적이면 역률 최소값을 산출하여 해당 시점과 구간부하를 생성하는 것을 특징으로 한다.
본 발명에 있어서, 상기 구간부하 생성부는, 상기 구간부하의 용도별 분류 기준이 주변압기 또는 변전소 최대부하 기준의 경우, 주변압기 또는 변전소별로 최대부하 시점을 산출한 후, 해당 시점에 주변압기 또는 변전소별로 공급구간을 산정하고, 상기 시점을 기준으로 모든 구간부하를 생성하며, 이후 누락구간의 구간부하를 추가로 생성하는 것을 특징으로 한다.
본 발명에 있어서, 상기 구간부하 생성부는, 상기 구간부하의 용도별 분류 기준이 연계선로그룹 단위 CB 최대부하 기준의 경우, 연계선로그룹 단위 CB별로 최대부하 시점을 산출한 후, 그 중에서 하나의 CB의 최대부하 시점을 기준으로 연계선로별 공급구간을 산정하여 상기 최대부하 시점을 기준으로 모든 구간부하를 생성하며, 누락구간의 구간부하를 추가로 생성하는 것을 특징으로 한다.
본 발명은 계통의 실제부하인 AMI 전력 사용량을 이용하여 수동개폐기 및 분기 구간까지의 구간부하를 보다 정확하게 산출할 수 있도록 하며, 계통에서의 AMI 전력 사용량의 위치와 크기를 고려한 집중부하 및 분포부하의 특성을 반영하여 보다 현장상황에 가까운 부하의 흐름과 전압강하, 손실 등을 계산할 수 있도록 한다.
도 1은 종래의 배전계통의 구간 구성 및 구간부하 산출 방법을 설명하기 위한 예시도.
도 2는 본 발명의 일 실시예에 따른 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템의 개략적인 구성을 보인 예시도.
도 3은 상기 도 2에 있어서, 부하 데이터 관리부에서 관리하는 부하 데이터의 내역을 보인 테이블.
도 4는 상기 도 2에 있어서, 자동화개폐기 구간 전류 보정부의 동작 과정을 설명하기 위한 흐름도.
도 5는 본 발명의 일 실시예에 관련하여 구간부하 오차를 설명하기 위한 SCADA 계측 부하패턴을 보인 예시도.
도 6은 본 실시예와 관련하여 종래의 문제점을 설명하기 위한 배전자동화시스템의 계측값 테이블과 SCADA 전류 그래프를 보인 예시도.
도 7은 상기 도 6에 있어서, 부하전류를 세분화 한 결과를 보인 예시도.
도 8은 상기 도 2에 있어서, 하부구간 고객부하 처리부가 하부구간의 AMI 전력 사용량을 처리하는 과정을 설명하기 위한 흐름도.
도 9는 본 실시예와 관련하여 배전자동화시스템에서 사용되고 있는 하부구간의 부하분포 형태를 보인 예시도.
도 10은 종래의 부하분배 방식과 본 발명의 실시예에 따른 부하분배 방식을 비교하여 설명하기 위한 예시도.
도 11은 상기 도 10에 도시된 계통과 부하를 기준으로 전압강하와 손실을 종래의 방식과 본 실시예에 따른 방식(개선 방식)으로 계산한 결과를 비교하여 보인 테이블.
도 12는 상기 도 2에 있어서, 조류 계산부의 뉴튼랩슨 알고리즘을 이용한 조류 계산 방법을 설명하기 위한 흐름도.
도 13은 상기 도 2에 있어서, 설비 및 계통별 구간부하 생성부에서 구간부하를 생성하기 위한 구간부하의 분류 기준 및 각각의 용도를 구분한 테이블.
도 14는 상기 도 2에 있어서, 설비 및 계통별 구간부하 생성부에서 용도별 분류기준에 따라 월 단위로 구간부하를 생성하는 방법을 설명하기 위한 흐름도.
이하, 첨부된 도면을 참조하여 본 발명에 따른 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템의 일 실시예를 설명한다.
이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 2는 본 발명의 일 실시예에 따른 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템의 개략적인 구성을 보인 예시도이다.
도 2에 도시된 바와 같이, 본 실시예에 따른 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템은, 부하 데이터 관리부(110), 자동화개폐기 구간 전류 보정부(120), 하부구간 고객부하 처리부(130), 조류 계산부(140), 및 설비 및 계통별 구간부하 생성부(150)를 포함한다.
상기 부하 데이터 관리부(110)는 배전계통 및 부하 정보(즉, 부하 데이터)를 관리한다(도 3 참조).
도 3은 상기 도 2에 있어서, 부하 데이터 관리부에서 관리하는 부하 데이터의 내역을 보인 테이블이다.
도 3을 참조하면, 상기 부하 데이터는, 변전소 계측정보, 배전계통 및 자동화개폐기의 계측값, 저압고객의 월별 검침정보 및 전등용 상관계수로 산정된 배전변압기 당기합성부하, 변압기 부하감시시스템의 계측정보, 고압 및 저압 고객의 AMI 계량정보 등을 포함한다. 상기 부하 데이터는 적어도 하나 이상의 연계 시스템(예 : SCADA, DAS, NDIS, 변압기 부하감시시스템, AMI)으로부터 전달받을 수 있다.
상기 자동화개폐기 구간 전류 보정부(120)는 자동화개폐기에서 계측된 제1 특정시간(예 : 1시간) 단위의 전류를 제2 특정시간(예 : 5분) 단위로 세분화하여 오류(또는 오차)를 제거하고, 분산형 전원과 루프(Loop) 운전계통의 계통 특성을 반영한 조류계산을 수행하여 자동화개폐기 구간의 전류를 보정하는 기능을 수행한다.
도 4는 상기 도 2에 있어서, 자동화개폐기 구간 전류 보정부의 동작 과정을 설명하기 위한 흐름도이다.
도 4를 참조하면, 상기 자동화개폐기 구간 전류 보정부(120)는, 먼저 변전소 및 배전계통에서 발생한 고장전류와 작업정전(휴전)으로 인한 부하전류(즉, 고장/휴전 전류)는 예외 상황이므로 구간부하 산출 과정에서 제외(또는 제거)한다(S101).
이때 배전자동화시스템(DAS)의 자동화개폐기의 계측주기는 1시간 단위이다. 따라서 본 실시예에서 다른 시간 간격(예 : 5분, 15분 등)으로 구간부하를 산출하고자 할 경우에는 그 만큼 오차가 발생할 수 있다(도 5 참조). 따라서 상기와 같은 계측 시간의 차이에서 발생하는 구간부하 오차를 줄이기 위하여 SCADA 데이터를 이용하여 동일 시간대의 전류를 보정할 필요가 있다.
도 5는 본 발명의 일 실시예에 관련하여 구간부하 오차를 설명하기 위한 SCADA 계측 부하패턴을 보인 예시도이다.
도 5의 (a)는 하루 동안 5분 주기의 SCADA 계측 전류의 부하패턴을 보인 예시도이고, 도 5의 (b)는 상기 (a)에서 오후 8시부터 9시까지의 1시간 동안의 데이터 12개만 확대하여 보인 예시도이다.
상기 도 5의 (b)에 도시된 바와 같이, 1시간 동안의 계측 전류가 많이 흔들리기 때문에 배전자동화시스템(DAS)의 계측 데이터를 그대로 사용한다는 것은 그만큼 오차가 많이 포함된다는 것을 의미한다.
상기와 같이 배전자동화시스템(DAS)의 개폐기 계측은 동일 시점에 계측하는 것이 아니라, 통신 인프라에 의해 결정되기 때문에 개폐기 계측시간이 1시간 이내에서도 많은 차이가 발생하게 되는 문제점이 있다(도 6 참조).
도 6은 본 실시예와 관련하여 종래의 문제점을 설명하기 위한 배전자동화시스템(DAS)의 계측값 테이블과 SCADA 전류 그래프를 보인 예시도이다.
도 6의 (a)에 도시된 테이블을 참조하면, 실제 배전자동화시스템(DAS)에서 계측된 시간과 계측값을 살펴보면, 각 구간(예 : CB 구간, GA 구간)에서 계측 시간차가 약 10분정도 차이가 있음을 알 수 있으며(실제로는 이 경우보다 계측 시간차가 더 큰 선로도 존재함), 도 6의 (b)에 도시된 SCADA 전류 그래프를 참조하면, 상기 계측 시간차(약 10분) 동안에도 SCADA 전류가 많이 변동되는 것을 알 수 있다.
따라서 상기와 같은 문제점(개폐기 계측시간이 1시간 이내에서도 많은 차이가 발생하는 문제점)은 결국 수지상의 계통에서도 전원측개폐기 전류보다 부하측개폐기 전류가 더 큰 경우가 발생하게 되고, 그에 따라 종래 배전자동화시스템(DAS)에서는 전원측개폐기 전류보다 부하측개폐기 전류가 더 큰 경우가 발생되는 경우도 있다.
예컨대 도 6에 도시된 바와 같이, 특정시간에 계측된 SCADA와 DAS 시스템의 데이터를 비교해 보면, 2GA와 같이 전원측 부하전류(예 : 180)보다 부하측 부하전류(예 : 195)가 더 큰 경우가 발생할 수 있으며, 이는 실제로 부하측 전류가 더 큰 것이 아니라 계측시간의 차이에 의한 문제임을 알 수 있다. 도 6에서 GA(GasSwitch Auto)는 자동화개폐기이고 CB(Circuit Breaker)는 차단기이다.
이때 상기 부하전류는 구간부하의 영향을 받지만 대체로 같은 패턴을 갖는 특성이 있다. 따라서 본 실시예에서는 SCADA에서 계측된 CB(차단기) 전류패턴과 동일한 부하편차로 GA(자동화개폐기) 계측 전류의 부하편차를 산정하고(S102), 자동화개폐기 구간의 부하를 제2 특정시간 단위(예 : 5분)로 세분화하면(S103), 도 7에 도시된 바와 같은 자동화개폐기 구간의 세분화된 부하패턴의 결과를 얻을 수 있다.
도 7은 상기 도 6에 있어서, 부하전류를 세분화한 결과를 보인 예시도이다.
비록, 상기 도 7에 도시된 바와 같은 보정이 정확하지는 않지만, 자동화개폐기 사이의 부하편차는 확실히 구분할 수 있는 형태가 된다.
다음, 각 구간 단위로 전원측 부하전류보다 부하측 부하전류가 더 큰 경우는 오류 전류로 판단하여 제거한다(S104).
한편 종래 자동화시스템의 개폐기는 양방향 보호기기를 제외하고는 방향성 정보를 제공하지 않는다. 따라서 신재생에너지와 같은 분산형 전원이 증가하고 있는 상황에서 방향성이 없는 개폐기의 전류값으로는 그 부하전류가 전기공급자(예 : 한국전력)가 제공하는 전력인지 분산형 전원에서 제공하는 전력인지 알 수가 없다.
이에 따라 분산형 전원과 배전계통 연결점에서 자동화개폐기가 있는 경우에는 이 계측전류가 발전량이므로 분산형전원의 역조류를 반영한다(S105).
즉, 아래에 설명하는 조류계산시 발전량 전류를 마이너스(감산) 처리해 주고, 만약 조류계산 결과 발산(mismatch)한 경우에는 분산형 전원 앞단의 자동화개폐기를 순차적으로 마이너스(감산) 처리해 준다.
상기 조류계산 시 분산형 전원이 연계된 계통의 조류방향과 루프(Loop) 운전 계통을 반영해 주기 위하여 자동화개폐기 구간만을 대상으로 전류 보정의 목적으로 조류계산을 수행한다. 상기 조류계산은 자동화개폐기 구간의 전류를 입력값으로 뉴튼랩슨 알고리즘을 이용하여 수행한다(S106).
상기 자동화개폐기 구간의 조류계산이 완료되면, D/L(배전선로) 단위로 모든 구간부하를 합산하고, CB(차단기) 전류를 기준으로 상기 합산된 구간부하의 비율이 기설정된 비율(예 : 10%) 보다 작으면(S107), 이 과정(자동화개폐기 구간 전류 보정부의 동작)의 마지막 단계인 자동화개폐기 구간 보정전류를 저장하고(S108), 그렇지 않으면 오류전류 제거 단계(S104)부터 반복 수행한다. 이때 상기 자동화개폐기 구간 보정전류는 제3 특정시간 단위(예 : 15분)로 저장할 수 있다.
여기서 상기 과정(자동화개폐기 구간 전류 보정부의 동작)은 자동화개폐기 구간의 전류 보정이 목적이므로, 상기 CB(차단기) 전류를 기준으로 상기 합산된 구간부하의 비율과 비교하기 위한 비율(즉, 기준비율)은 발산 정도와 오차율을 고려하여 10% 이하로 설정한다.
다시 도 2에서, 상기 하부구간 고객부하 처리부(130)는 하부구간에 고압고객 부하와 저압고객 부하의 합인 변압기 부하를 대입(즉, 각 구간의 유효/무효 전력 값으로 대입)하는 동작을 수행한다(도 8 참조).
한편 상기 배전계통은 자동화개폐기와 다른 자동화개폐기 사이의 구간만 보더라도 상당히 복잡하다. 예컨대 상기 자동화개폐기 사이의 구간에는 간선처럼 저압용 변압기가 하나도 없이 통과하는 구간도 있을 수 있고, 저압변압기만 존재하는 구간도 있을 수 있고, 고압수용가만 존재하는 경우도 있을 수 있으며, 또한 고압과 저압이 혼재된 구간도 있을 수 있다.
따라서 종래의 자동화시스템에서는 상기 자동화개폐기 사이의 구간에 저압용 변압기가 있는지 알 수 없기 때문에 단순하게 긍장으로 부하를 분배하였다.
그러나 본 실시예에서는 상기 구간에 고압고객의 계량정보, 저압용 변압기의 부하감시 데이터, 저압 AMI 계량정보, 또는 변압기 당기합성 부하정보를 이용하여 구간부하를 산출한다.
도 8은 상기 도 2에 있어서, 하부구간 고객부하 처리부가 하부구간의 AMI 전력 사용량을 처리하는 과정을 설명하기 위한 흐름도이다.
도 8에 도시된 바와 같이, 상기 하부구간 고객부하 처리부(130)는 하부구간 단위로 고압고객 및 변압기를 검색한다(S201).
다음 상기 고압고객의 위치와 계량정보를 해당 하부구간에 대입한다(S202).
이때 상기 계량정보는 제3 특정시간(예 : 15분) 단위의 유효전력량과 무효전력량이므로, 상기 계량정보를 유효전력과 무효전력으로 변환시켜 주기 위해 4를 곱한 다음, 시간 성분을 제거하기 위해 60(분)으로 나눈다.
다음 상기 하부구간 고객부하 처리부(130)는 저압고객의 부하를 대입하기 위해 변압기 적용부하를 구분한다(S203).
상기 변압기 적용부하를 구분한 결과에 따라, 상기 하부구간 고객부하 처리부(130)는, 먼저 변압기 부하감시를 시행하고 있는 변압기의 경우(S204)에는 그 부하감시 데이터와 위치를 각 구간의 유효/무효 전력 값으로 대입한다(S205).
다음, 변압기 이하 모든 저압고객을 대상으로 AMR(Automatic Meter Reading)/AMI(Advanced Metering Infrastructure)를 시행하여 검침정보가 존재하는 경우(S206)에는 상기 검침정보를 합산하여 변압기 부하정보를 생성(즉, 산출)한 다음(S207), 상기 변압기 위치와 부하정보를 각 구간의 유효/무효 전력 값으로 대입한다(S208).
그리고 상기 두 가지를 제외한 그 이외의 경우(S209)에는 변압기 당기합성부하와 변압기 위치 정보를 각 구간의 유효/무효 전력 값으로 대입한다(S210).
그리고 상기와 같은 AMI 전력 사용량 특성을 고려한 하부구간의 부하를 산출하기 위해서 부하면적을 계산한다(S211).
상기와 같이 본 실시예는 하부구간 내에 고압고객 및 저압용 변압기 위치정보를 이용하여 분포부하인지 집중부하인지를 판단하고 계통해석을 하는 방식으로 정확도 높은 부하(LP : 유효전력, LQ : 무효전력)를 계산할 수 있다.
도 9는 본 실시예와 관련하여 배전자동화시스템에서 사용되고 있는 하부구간의 부하분포 형태를 보인 예시도이다.
도 9의 (a)는 하부구간에서 부하를 균등하게 사용하고 있음을 의미하는 분포부하 형태를 나타내고, 도 9의 (b)는 말단집중 구간부하 형태를 나타내고, 도 9의 (c)는 분포부하와 말단집중 부하가 혼재된 구간부하를 나타낸다.
도 10은 종래의 부하분배 방식과 본 발명의 실시예에 따른 부하분배 방식을 비교하여 설명하기 위한 예시도이다.
도 10의 (a)를 참조하면, 종래의 배전자동화시스템은 하부구간별 부하 특성을 고려하지 않고 있으므로, ①, ④, ⑥번 같은 구간은 실제 부하의 위치와 크기에 관계없이 일률적인 부하분배가 수행되고, ②, ③, ⑤번 구간과 같이 실제 부하가 없는 구간에도 일률적으로 부하분배를 수행하여 부하가 있는 것으로 계산하는 문제점이 있다.
도 10의 (b)를 참조하면, 본 발명에 따른 실시예에서는 실제 부하가 있는 구간에만 부하분배를 수행한다. 즉, ①번 구간은 말단집중부하이므로 ①번 구간은 11A로 부하면적을 산정하고, ④번 구간은 집중부하와 분포부하가 혼재된 구간이고, ⑥번 구간은 저압용 변압기만 있는 분포부하 구간이므로, 부하의 위치와 크기를 반영하여 부하면적을 계산한다. 그리고 ②, ③, ⑤번 구간은 무부하 구간이므로 부하면적을 계산하지 않는다.
이하, 상기 하부구간의 부하면적(즉, 부하율)을 계산하는 방법을 설명한다.
예컨대 상기 ④번 구간과 같이 8개의 점으로 구성된 폴리곤인 경우, 아래와 같이 행렬을 구성하여 부하면적(즉, 부하율)을 계산할 수 있다.
Figure PCTKR2015007736-appb-I000001
즉,
Figure PCTKR2015007736-appb-I000002
하면 폴리곤에 대한 면적이 계산된다.
상기 부하면적을 계산하는 방법은 일 예시적으로 기재된 방법이다.
상기 ①번 구간에 대하여 종래의 방식과 본 실시예에 따른 방식(개선 방식)을 비교하면, 종래의 방식은 50%가 되고, 본 실시예에 따른 방식은 100%가 된다. 즉, 종래의 방식은 모든 구간의 부하면적이 50%가 되지만, 본 실시예에 따른 방식(개선 방식)은 실제 부하면적이 계산된다.
상기 도 10에 도시된 바와 같은 계통과 부하를 기준으로 전압강하와 손실을 아래의 간이계산식으로 산정해 보면 도 11과 같은 결과를 얻을 수 있다.
전압강하식 :
Figure PCTKR2015007736-appb-I000003
손실계산식 :
Figure PCTKR2015007736-appb-I000004
여기서, 상별 선종은 ACSR-95mm, 중성선은 ACSR-58mm, 긍장은 각 하부구간을 1km로 가정하며, 임피던스 Z=0.33195Ω, 레지스턴스(Registance) R=0.30415Ω이다.
도 11은 상기 도 10에 도시된 계통과 부하를 기준으로 전압강하와 손실을 종래의 방식과 본 실시예에 따른 방식(개선 방식)으로 계산한 결과를 비교하여 보인 테이블이다.
도 11에 도시된 테이블을 참조하면, 본 실시예에 따른 AMI 전력 사용량 특성을 고려할 경우 전압강하 및 손실 계산의 정확도가 향상된 것을 알 수 있다.
더 구체적으로, 전압강하는 종래의 방식(기존 방식)이 379V, 본 실시예에 따른 방식(개선 방식)이 289V로 계산되었다. 왜냐하면 집중부하와 무부하 구간은 전압강하의 발생이 적기 때문에 본 실시예에 따른 방식이 작게 계산되었다.
그리고 손실은 종래의 방식(기존 방식)이 80,617W, 본 실시예에 따른 방식(개선 방식)이 43,508W로 2배 가까이 차이가 발생하였다. 왜냐하면 배전선로의 말단에 집중된 부하의 경우에 손실이 커지는 특징이 있기 때문인데, 도 10에 예시된 선로는 구간 앞단에 큰 AMI 전력 사용량이 있고 무부하 구간이 존재하기 때문에 본 실시예에 따른 방식에서 손실 계산결과가 작게 나타난다.
다시 도 2에서, 상기 조류 계산부(140)는 하부구간의 AMI 전력 사용량에 대한 부하면적 계산결과를 기초로 조류계산을 수행한다.
예컨대 상기 조류계산은 뉴튼랩슨 알고리즘으로 계산할 수 있으나 상기 뉴튼랩슨 알고리즘으로 한정하는 것은 아니다.
도 12는 상기 도 2에 있어서, 조류 계산부의 뉴튼랩슨 알고리즘을 이용한 조류계산 방법을 설명하기 위한 흐름도이다.
도 12를 참조하면, 상기 조류 계산부(140)는, 계통 데이터(예 : 계통의 구간 구성, 구간 길이, 선로 정보, 부하 데이터 등)를 입력받아 어드미턴스 행렬(Y)을 계산하고(S301), 각 모선의 전압(SCADA에서 받을 수 있음) 및 반복 계산 초기값(조류 계산은 수렴할 때까지 반복 계산을 수행해야 하기 때문에 경우에 따라서는 무한 루프가 될 수 있으므로 반복 회수(h)를 지정하는 값)을 설정한다(S302).
그리고 각 구간의 유효/무효 전력(
Figure PCTKR2015007736-appb-I000005
)을 계산해서 발산(mismatch : 해를 못 찾은 경우) 여부를 체크(판단)한다(S303).
이때, 반복 계산 수(h), 종료 한계치(tolerance) 등이 초기화된다. 여기서, k=1~n, h=iteration counter, #은 넘버, 구간(Branch)을 의미한다.
상기 어드미턴스 행렬을 계산할 때 집중부하와 분포부하가 반영된다.
집중부하 : Node(LP,LQ), Branch(R,X)
분포부하 : Node(LP×ratio, LQ×ratio),
Branch(R-0.00045×LP×ratio X - 0.0009×LQ×ratio) (ratio : 부하율)
다음으로, 만약
Figure PCTKR2015007736-appb-I000006
<tolerance 이면, 즉, 최대 유효/무효 전력이 종료 한계치 이하이면(S304의 예) 상기 조류 계산부(140)는 결과값(모선 전압 및 선로 조류)을 출력한다(S305). 그러나 상기 최대 유효/무효 전력이 종료 한계치 이하가 아니면(S304의 아니오), 상기 조류 계산부(140)는 자코비안 행렬을 이용한 계산을 통해(S306) 모선 전압의 변화량을 계산하여(S307) 모선 전압을 업데이트 한다(S308).
이때 만약, 반복 계산 수(h)가 최대 반복 계산 수 이상이면, 결과값(모선 전압 및 각 상별 선로 조류 계산 결과)를 출력한다(S305). 그러나 상기 반복 계산 수(h)가 최대 반복 계산 수보다 작으면 상기 S303 단계로 돌아가 각 구간의 유효/무효 전력(
Figure PCTKR2015007736-appb-I000007
)을 계산해서 발산(mismatch : 해를 못 찾은 경우) 여부를 체크(판단)한다.
다시 도 2에서, 상기 설비 및 계통별 구간부하 생성부(150)는 구간부하의 분류 기준 및 용도를 구분하고, 각 용도에 적합한 구간부하를 생성(즉, 산출)한다(도 13 참조).
도 13은 상기 도 2에 있어서, 설비 및 계통별 구간부하 생성부에서 구간부하를 생성하기 위한 구간부하의 분류 기준 및 각각의 용도를 구분한 테이블이다.
도 13을 참조하면, 상기 용도는 D/L(배전선로) 단위로 구간의 최대값이 필요한 경우, 주변압기/변전소 단위 CB(차단기)의 최대부하가 필요한 경우, 및 연계선로그룹 단위로 CB의 최대부하가 필요한 경우를 분류 기준으로 하여 구분된다.
도 14는 상기 도 2에 있어서, 설비 및 계통별 구간부하 생성부에서 용도별 분류기준에 따라 월 단위로 구간부하를 생성하는 방법을 설명하기 위한 흐름도이다.
도 14에 도시된 바와 같이, 상기 설비 및 계통별 구간부하 생성부(150)는 15분 단위로 조류 계산한 결과의 구간부하를 조회하여(S401) 상기 4가지 용도별 분류기준에 따라 월 단위로 구간부하를 생성(즉, 산출)한다(S402).
먼저, D/L(배전선로) 최대부하 기준의 경우(S403)에는 전압강하나 과전압을 개선하기 위한 목적으로 전압강하와 과전압이 발생하는 구간의 최대값을 산출하여 해당 시점으로 다른 구간 부하를 생성(즉, 산출)하고(S404), 손실을 개선하기 위한 목적이면 손실 최대값을 산출하여 해당 시점과 구간부하를 생성(즉, 산출)하고(S405), 역률을 개선하기 위한 목적이면 역률 최소값을 산출하여 해당 시점과 구간부하를 생성(즉, 산출)한다(S406).
다음, 주변압기(MTR) 또는 변전소 최대부하 기준의 경우(S407)에는 주변압기(MTR) 또는 변전소별로 최대부하 시점을 산출한 후(S408), 해당 시점에 주변압기(MTR) 또는 변전소별로 공급구간을 산정하고, 그 시점을 기준으로 모든 구간부하를 생성(즉, 산출)한다(S409). 그리고 누락구간의 구간부하를 생성(즉, 산출)한다(S410).
다음, 연계선로그룹 단위 CB(차단기) 최대부하 기준의 경우(S411)에는 연계선로그룹 단위로 CB별로 최대부하 시점을 산출한 후(S412), 그 중에서 하나의 CB의 최대부하 시점을 기준으로 연계선로별 공급구간을 산정하여 그 시점을 기준으로 모든 구간부하를 생성(즉, 산출)한다(S413). 그리고 누락구간의 구간부하를 생성(즉, 산출)한다(S414).
이때 상기 누락구간의 구간부하 생성(S410, S414) 시, 주변압기, 변전소, 연계선로그룹별로 최대부하 시점이 다르기 때문에 공급구간이 누락되는 구간이 발생할 수 있으므로, 이 경우에는 연결된 인근구간의 두 시점을 기준으로 누락구간의 부하중에서 더 큰 값을 선택하여 생성(즉, 산출)한다.
상기와 같이 본 실시예에 관련된 AMI(Advanced Metering Infrastructure)는 향후 2020년까지 전체 고객 및 변압기를 대상으로 구축될 예정으로 확대보급 될수록 구간부하 산출의 정확도가 더욱 높아지는 효과가 있지만, 실질적으로 고객 계량 및 변압기 계측의 검침성공률 및 적시수신율이 100%가 되기는 어렵기 때문에 구간부하 산출의 정확도를 향상시키는데 한계가 있다.
하지만 본 실시예는 상기와 같이 배전자동화 계측정보, 고객 계량 정보, 및 변압기 계측정보를 조합하여 구간부하를 산출하도록 함으로써 보다 정확하게 구간부하를 산출할 수 있도록 한다.
한편 본 실시예는 배전계통 운영업무 처리와 관련하여, 집중부하를 고려한 자동화개폐기 최적 위치 선정에 활용할 수 있으며, 부하예측에도 활용이 가능하며, 이 구간부하를 이용하여 변전소-MTR-CB-구간의 부하를 예측할 수 있음으로써 과부하 등을 사전에 예방할 수 있다. 또한 과부하 해소 및 전압강하 해소 등 배전계획 업무에 확대 활용이 가능하고, 변전소 연계력 및 이용률 분석을 통한 송변전 계획업무에 활용이 가능하다.
상기와 같이 본 발명에 따른 실시예는 배전계통 자동화개폐기 구간 및 하부구간까지 정확도가 향상된 구간부하 산출을 통해 전력품질 향상 및 배전계통 최적 운영 등에 효과가 있으며, 전압강하 및 과전압, 손실, 역률 등 전력품질을 개선하는데 도움을 주며, 과부하 해소 및 부하절체 방안의 정확성을 향상시키는데 도움을 주고, 변전소간 연계력 계산 및 복구도 계산의 정확도를 향상시키며, 계통 최적화(부하평준화, 손실최소화) 시뮬레이션의 신뢰도를 향상시키고, 고장복구 SOP(D/L, 주변압기, 변전소 복구방안) 조작절차 수립 시 현장상황을 반영할 수 있으며, 변전 및 배전 휴전 조작절차 수립 시 신뢰도를 향상시키고, 보호협조 검토 및 정정 정확도를 향상시키는 효과가 있다.
이상으로 본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.

Claims (9)

  1. 자동화개폐기에서 계측된 제1 특정시간 단위의 전류를 제2 특정시간 단위로 세분화하여 오차를 제거하고, 분산형 전원과 루프 운전계통의 계통 특성을 반영한 조류계산을 수행하여 자동화개폐기 구간의 전류를 보정하는 자동화개폐기 구간 전류 보정부;
    상기 자동화개폐기 구간의 보정된 전류를 이용하여 하부구간에 고압고객 부하와 저압고객 부하의 합인 변압기 부하를 각 구간의 유효/무효 전력 값으로 대입하여 각 하부구간의 AMI(Advanced Metering Infrastructure) 전력 사용량에 대한 부하면적을 산출하는 하부구간 고객부하 처리부;
    상기 하부구간의 AMI 전력 사용량에 대한 부하면적 계산결과를 기초로 조류계산을 수행하는 조류 계산부; 및
    상기 조류계산 결과를 바탕으로 구간부하의 분류 기준에 따라 부하의 용도를 구분하고, 각 용도에 적합한 구간부하를 생성하는 구간부하 생성부;를 포함하는 것을 특징으로 하는 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템.
  2. 제 1항에 있어서, 상기 자동화개폐기 구간 전류 보정부는,
    변전소 및 배전계통에서 발생한 고장전류와 작업정전으로 인한 부하전류를 구간부하 산출 과정에서 제외하고, SCADA(Supervisory Control And Data Acquisition)에서 계측된 차단기(CB) 전류패턴과 동일한 부하편차로 자동화개폐기(GA) 계측 전류의 부하편차를 산정하고, 자동화개폐기 구간의 부하를 제2 특정시간 단위로 세분화한 후, 각 구간 단위로 전원측 부하전류보다 부하측 부하전류가 더 큰 경우는 오류 전류로 판단하여 제거하고, 분산형전원의 역조류를 반영한 후 자동화개폐기 구간의 전류를 입력값으로 조류를 계산하고, 상기 자동화개폐기 구간의 조류계산이 완료되면 D/L(배전선로) 단위로 모든 구간부하를 합산하고, CB 전류를 기준으로 상기 합산된 구간부하의 비율이 기설정된 비율 보다 작으면 자동화개폐기 구간 보정전류를 저장하는 것을 특징으로 하는 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템.
  3. 제 1항에 있어서, 상기 하부구간 고객부하 처리부는,
    하부구간 단위로 고압고객 및 변압기를 검색하고, 상기 고압고객의 위치와 계량정보를 해당 하부구간에 유효/무효 전력 값으로 대입하여 구간부하를 산출한 후, 변압기 적용부하를 구분하여 저압고객의 구간부하를 산출하되,
    변압기가 부하감시를 시행하고 있는 경우에는 그 부하감시 데이터와 위치를 해당 하부구간에 유효/무효 전력 값으로 대입하여 각 구간의 부하면적을 계산하는 것을 특징으로 하는 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템.
  4. 제 3항에 있어서, 상기 하부구간 고객부하 처리부는,
    변압기 이하 모든 저압고객을 대상으로 AMR(Automatic Meter Reading)/AMI(Advanced Metering Infrastructure)를 시행하여 검침정보가 존재하는 경우에는 상기 검침정보를 합산하여 변압기 부하정보를 생성한 다음, 상기 변압기 위치와 부하정보를 해당 하부구간에 유효/무효 전력 값으로 대입하여 각 구간의 부하면적을 계산하는 것을 특징으로 하는 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템.
  5. 제 4항에 있어서, 상기 하부구간 고객부하 처리부는,
    변압기가 부하감시를 시행하고 있는 경우 및 변압기 이하 모든 저압고객을 대상으로 AMR/AMI를 시행하여 검침정보가 존재하는 경우를 제외한 그 이외의 경우에는 변압기 당기합성부하와 변압기 위치 정보를 해당 하부구간에 유효/무효 전력 값으로 대입하여 각 구간의 부하면적을 계산하는 것을 특징으로 하는 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템.
  6. 제 1항에 있어서, 상기 구간부하의 용도는,
    D/L(배전선로) 단위로 구간의 최대값이 필요한 경우, 주변압기/변전소 단위 CB의 최대부하가 필요한 경우, 및 연계선로그룹 단위로 CB의 최대부하가 필요한 경우를 분류 기준으로 하여 구분되는 것을 특징으로 하는 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템.
  7. 제 1항에 있어서, 상기 구간부하 생성부는,
    기 설정된 제3 특정시간 단위로 조류 계산한 결과의 구간부하를 조회하여 상기 구간부하의 용도별 분류 기준에 따라 기 설정된 기간 단위로 구간부하를 생성하되,
    D/L(배전선로) 최대부하 기준의 경우, 전압강하 및 과전압을 개선하기 위한 목적으로 전압강하와 과전압이 발생하는 구간의 최대값을 산출하여 해당 시점으로 다른 구간 부하를 생성하고, 손실을 개선하기 위한 목적이면 손실 최대값을 산출하여 해당 시점과 구간부하를 생성하고, 역률을 개선하기 위한 목적이면 역률 최소값을 산출하여 해당 시점과 구간부하를 생성하는 것을 특징으로 하는 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템.
  8. 제 7항에 있어서, 상기 구간부하 생성부는,
    상기 구간부하의 용도별 분류 기준이 주변압기 또는 변전소 최대부하 기준의 경우,
    주변압기 또는 변전소별로 최대부하 시점을 산출한 후, 해당 시점에 주변압기 또는 변전소별로 공급구간을 산정하고, 상기 시점을 기준으로 모든 구간부하를 생성하며, 이후 누락구간의 구간부하를 추가로 생성하는 것을 특징으로 하는 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템.
  9. 제 7항에 있어서, 상기 구간부하 생성부는,
    상기 구간부하의 용도별 분류 기준이 연계선로그룹 단위 CB 최대부하 기준의 경우,
    연계선로그룹 단위 CB별로 최대부하 시점을 산출한 후, 그 중에서 하나의 CB의 최대부하 시점을 기준으로 연계선로별 공급구간을 산정하여 상기 최대부하 시점을 기준으로 모든 구간부하를 생성하며, 누락구간의 구간부하를 추가로 생성하는 것을 특징으로 하는 AMI 전력 사용량 기반의 배전 구간부하 산출 시스템.
PCT/KR2015/007736 2014-08-27 2015-07-24 Ami 전력 사용량 기반의 배전 구간부하 산출 시스템 WO2016032130A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0112541 2014-08-27
KR1020140112541A KR101625064B1 (ko) 2014-08-27 2014-08-27 Ami 전력 사용량 기반의 배전 구간부하 산출 시스템

Publications (1)

Publication Number Publication Date
WO2016032130A1 true WO2016032130A1 (ko) 2016-03-03

Family

ID=55399985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007736 WO2016032130A1 (ko) 2014-08-27 2015-07-24 Ami 전력 사용량 기반의 배전 구간부하 산출 시스템

Country Status (2)

Country Link
KR (1) KR101625064B1 (ko)
WO (1) WO2016032130A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108536917A (zh) * 2018-03-15 2018-09-14 河海大学 一种输配电网全局电压稳定控制的分布式计算方法
US20190148940A1 (en) * 2016-05-24 2019-05-16 Mitsubishi Electric Corporation Power distribution system state estimation device and power distribution system state estimation method
CN112564115A (zh) * 2020-12-18 2021-03-26 中国电建集团贵阳勘测设计研究院有限公司 一种适用于均衡控制的多端sop自适应下垂控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098436B1 (ko) * 2016-07-29 2020-04-08 한국전력공사 계량데이터 관리 장치, 계량데이터 관리 시스템 및 컴퓨터 판독가능 기록 매체
KR102485075B1 (ko) * 2020-12-03 2023-01-09 한국전력공사 배전계통 구간부하 추정을 이용한 자동화개폐기 이설 및 추가 여부 판단장치
KR102537638B1 (ko) * 2022-11-18 2023-05-31 주식회사 크로커스 실계측된 설비 부하 전압에 기초한 전압 제어 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217742A (ja) * 2005-02-04 2006-08-17 Fuji Electric Systems Co Ltd 配電系統の電圧分布計算装置、区間負荷計算装置およびその方法
JP2007082346A (ja) * 2005-09-15 2007-03-29 Central Res Inst Of Electric Power Ind 配電系統の負荷分布推定方法、装置及びプログラム、並びに電圧推定方法、装置及びプログラム
KR20140032138A (ko) * 2012-09-06 2014-03-14 한국전력공사 배전계통의 구간부하 추정 장치 및 방법
KR101382478B1 (ko) * 2012-05-23 2014-04-08 연세대학교 산학협력단 전력 계통 변화에 대응하는 적응 보호 과전류 제어 시스템 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217742A (ja) * 2005-02-04 2006-08-17 Fuji Electric Systems Co Ltd 配電系統の電圧分布計算装置、区間負荷計算装置およびその方法
JP2007082346A (ja) * 2005-09-15 2007-03-29 Central Res Inst Of Electric Power Ind 配電系統の負荷分布推定方法、装置及びプログラム、並びに電圧推定方法、装置及びプログラム
KR101382478B1 (ko) * 2012-05-23 2014-04-08 연세대학교 산학협력단 전력 계통 변화에 대응하는 적응 보호 과전류 제어 시스템 및 방법
KR20140032138A (ko) * 2012-09-06 2014-03-14 한국전력공사 배전계통의 구간부하 추정 장치 및 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190148940A1 (en) * 2016-05-24 2019-05-16 Mitsubishi Electric Corporation Power distribution system state estimation device and power distribution system state estimation method
US10847974B2 (en) * 2016-05-24 2020-11-24 Mitsubishi Electric Corporation Device and method for estimating a voltage distribution along a power distribution line in a high-voltage system
CN108536917A (zh) * 2018-03-15 2018-09-14 河海大学 一种输配电网全局电压稳定控制的分布式计算方法
CN112564115A (zh) * 2020-12-18 2021-03-26 中国电建集团贵阳勘测设计研究院有限公司 一种适用于均衡控制的多端sop自适应下垂控制方法

Also Published As

Publication number Publication date
KR101625064B1 (ko) 2016-05-27
KR20160025367A (ko) 2016-03-08

Similar Documents

Publication Publication Date Title
WO2016032130A1 (ko) Ami 전력 사용량 기반의 배전 구간부하 산출 시스템
Billinton et al. Distribution system reliability cost/worth analysis using analytical and sequential simulation techniques
WO2013032044A1 (ko) 배전계통 관리 시스템 및 방법
AU2012216391B2 (en) Systems, methods, and apparatus for locating faults on an electrical distribution network
CN103548228B (zh) 用于保护电力网络的系统和方法
CN114114003A (zh) 一种基于数据监测的断路器运行检测系统
WO2013047927A1 (ko) 스마트 배전 운영시스템의 보호기기 자동정정 장치 및 방법
CN1427520A (zh) 电力输送网状态估计
WO2018105989A1 (ko) 마이크로그리드 시스템 및 고장 처리 방법
WO2018124571A1 (ko) 전력설비의 자산관리 방법
CN108551166B (zh) 一种电网设备及断面超短期负荷预测、告警及稳控方法
CN113283041B (zh) 基于多源信息融合感知算法的停电区域快速研判方法
WO2012015101A1 (ko) 급전 시스템의 토폴로지 처리 방법
WO2018199659A1 (ko) 변전소 자산 관리 방법
JP5147739B2 (ja) 配電系統の地絡保護システム、配電系統の地絡保護方法、プログラム
Soonee et al. The view from the wide side: wide-area monitoring systems in India
WO2018199656A1 (ko) 변전소의 자산 관리 방법
WO2020013619A1 (ko) 전력계통 신뢰도 지수를 토대로 한 변전소 자산 관리 방법 및 장치
CN114971168A (zh) 基于多系统交互的电缆线路同期线损率异常分析方法
CN110458334B (zh) 一种限制短路电流运行方式辅助决策方法
CN112564108A (zh) 一种考虑复电效益的配电网自适应重构策略
KR100527435B1 (ko) 배전손실율을 이용한 배전선로 등가 임피던스 결정방법
Ivanković et al. Line differential protection with synchrophasor data in WAMPAC system in control room
KR20210023128A (ko) 배전계통의 전압 및 구간 부하 추정 시스템 및 방법
CN106569083B (zh) 三相电力仪表接线异常识别方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835784

Country of ref document: EP

Kind code of ref document: A1