CN108536917A - 一种输配电网全局电压稳定控制的分布式计算方法 - Google Patents

一种输配电网全局电压稳定控制的分布式计算方法 Download PDF

Info

Publication number
CN108536917A
CN108536917A CN201810212746.7A CN201810212746A CN108536917A CN 108536917 A CN108536917 A CN 108536917A CN 201810212746 A CN201810212746 A CN 201810212746A CN 108536917 A CN108536917 A CN 108536917A
Authority
CN
China
Prior art keywords
power
distribution network
network
transmission
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810212746.7A
Other languages
English (en)
Inventor
赵晋泉
林青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201810212746.7A priority Critical patent/CN108536917A/zh
Publication of CN108536917A publication Critical patent/CN108536917A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

本发明公开了一种输配电网全局电压稳定控制的分布式计算方法,本发明针对输配电网由多级调度中心分层管理架构,该发明方法以输、配电网总控制代价最小为目标,通过引入边界影响因子将全局优化问题分解为输电网和各配电网电压稳定控制子问题;通过不断交换输配网边界连接点的电压、等值功率和边界影响因子实现全网控制的分布式计算。由于边界影响因子需由各子优化问题求解中的对偶乘子来构造,输、配电网稳定控制子问题需采用对偶乘子类优化控制算法求解。本发明无需建立输电网或配电网等值模型,只需交换少量的边界节点信息即可实现输配电网电压稳定控制分布式计算。

Description

一种输配电网全局电压稳定控制的分布式计算方法
技术领域
[0001] 本发明涉及电力系统稳定分析和控制技术领域,特别是一种输配电网全局电压稳 定控制的分布式计算方法。
背景技术
[0002] 近年来,我国电网的发展显现出特高压交直流混联、远距离交直流输送、间歇性新 能源大规模汇集接入输网和小容量分散接入配网并存的特征。这给电力系统的经济运行和 安全稳定提出了新的问题,其中之一就是电压稳定问题。电压稳定分析包含稳定指标计算、 快速预想故障筛选与排序、提高稳定裕度的优化控制三个任务。其中电压稳定控制是电压 稳定分析的最终目的,也是电网调度人员最为关心的模块。
[0003] 当前对电压稳定评估与控制的研究已取得了丰硕的成果,但还存在两个问题,一 是重输电网、轻配电网;二是将输、配电网电压稳定评估与控制孤立开来进行。由于传统的 电力系统中,配电网没有电源,是纯被动的,因此利用“只分解、不协调”的输电网、配电网相 互独立计算模式可基本满足分析需求。但随着配电网向包含大量不同类型分布式电源、储 能装置的主动配电网转变,各级电网间相互融合、互为支撑,潮流呈现双向性。在此新的电 网形态下,配电网不再适于被简单等值为负荷,输电网的电压稳定精确评估与控制需要严 格计及配电网的无功电压支撑作用,以获得更大的经济效益。考虑到输配电网由不同层级 控制中心监控和管理,且在网络结构、电压等级、功率大小和阻抗参数上有很大的差异,将 输、配电网集中分析和计算势必会遇到建模困难和网络计算规模庞大等问题。
[0004] 电力系统电压稳定优化控制问题可分为预防控制和紧急控制。当存在失稳型故障 或故障后稳定裕度不满足要求的严重故障时,必须对基态电网采取措施防止潜在的电压崩 溃,称为预防控制。而大多数实际电网采用的是一种最简单的预防性控制,即提高或确保当 前系统的稳定裕度达到某设定值,可称之为“增强控制”,本发明仅针对这一问题开展研究。
[0005] 电力系统电压稳定预防控制问题的求解方法可分为两类。第一类方法是将整个问 题分解为稳定裕度计算子问题、灵敏度分析子问题和简单优化控制子问题进行迭代求解, 该方法的关键是计算灵敏度。如文献《An approach for real time voltage stability margin control via reactive power reserve sensitivities》(IEEE Trans on Power System,2012年第28卷第2期第615页)所述。第二类方法是针对所建立的特殊最优潮流问题 的数学模型,采用牛顿法或内点法等非线性规划技术直接求解。对于本发明所研究的单潮 流态稳定控制问题更适合采用该类技术。如文献《在线多预想故障静态电压崩溃预防控制》 (中国电机工程学报,2006年第26卷第19期第1页)所述。对于本发明所研究的单潮流态稳定 控制问题更适合采用第二类技术求解,但是以上文献都只针对输电网的预防控制问题,并 未考虑到配电网的影响。为了有效促进新能源在配电网的分散接入,实现输配电网的协调 优化控制,需要研究输配电网全局电压稳定增强控制的分布式方法。
发明内容
[0006] 本发明所要解决的技术问题是克服现有技术的不足而提供一种输配电网全局电 压稳定控制的分布式计算方法,本发明有效促进新能源在配电网的分散接入,实现输配电 网的协调优化控制。
[0007] 本发明为解决上述技术问题采用以下技术方案:
[0008] 根据本发明提出的一种输配电网全局电压稳定控制的分布式计算方法,包括以下 步骤:
[0009] 步骤一、求解输配电网一体化分布式潮流,获得输配电网各节点状态变量;
[0010] 步骤二、给配电网的边界影响因子和状态变量赋初始值;
[0011] 步骤三、各配电网控制中心采用对偶类优化算法计算电压稳定控制子问题,并向 输电网控制中心传递边界协调变量;
[0012] 步骤四、输电网控制中心收到来自各配电网控制中心的边界协调变量后,输电网 采用对偶类优化算法计算输电网电压稳定控制子问题,并向下级配电网传递边界协调变 量;
[0013] 步骤五、输电网控制中心判断输配电网间是否满足边界节点收敛条件,若不满足 则转步骤二,否则优化结束,输出优化结果。
[0014] 作为本发明所述一种输配电网全局电压稳定控制的分布式计算方法进一步优化 方案,所述步骤一中,求解输配电网一体化分布式潮流,具体步骤如下:
[0015] (11)输电网和配电网潮流计算的功率平衡方程为:
Figure CN108536917AD00061
[0017]式中,Δ PjP AQj别为输电网或配电网中第m节点的不平衡有功和无功功率;Pms 和Qms分别为输电网或配电网中第m节点的注入有功和无功功率;Vm和Vj分别是输电网或配 电网中第m节点和第j节点电压幅值;是第m节点和第j节点电压的相角差;Gmj和Bmj分别是 导纳矩阵中第m节点和第j节点间的电导和电纳;展开泰勒级数,忽略二次项以及更高次项, 即得到修正方程式:
Figure CN108536917AD00062
[0019] 式中,Δ P和AQ分别是不平衡有功和无功功率组成的矩阵,H、N、J和L分别是雅克 比矩阵中各元素组;A Θ和AV分别是电压相角和幅值修正量矩阵;V是电压幅值矩阵;
[0020] (12)输配电网间潮流迭代过程如下:
[0021] (1)赋初值:输配电网间迭代次数k = 0和第k = 0次迭代的边界节点电压户《 =丨.〇 ;
[0022] (2)以第k次迭代的边界节点电压Pil为配电网的平衡电压,求解配电网潮流方程, 得到配电网第k+Ι次迭代的平衡节点功率分作为协调变量,并传递给输电网侧;
[0023] (3)将协调变量作为输电网侧边界节点的等值负荷,求解输电网潮流方程,得 到输电网各状态变量,并向配电网侧传递边界节点电压卢;
[0024] (4)判断两次迭代的边界节点协调变量偏差是否小于收敛精度ε,若I ΔΡ@,AQ
Figure CN108536917AD00063
,则一体化分布式潮流迭代收敛,输出输、配电网各节点状态变量;否则,k = k+l,转步骤(2);其中,Δ 和Δ 分别是第k次与第k+1次协调变量中有功和无功 偏差,AV(k)是第k次与第k+Ι次边界节点电压偏差。
[0025] 作为本发明所述一种输配电网全局电压稳定控制的分布式计算方法进一步优化 方案,步骤二中,在计算配电网潮流时,边界节点作为配电网的平衡节点,取电压状态变量 初始值为
Figure CN108536917AD00071
首次计算配电网子控制优化问题时,取第i个输电网控制结果对配电 网边界节点等值功率产生变化的边界影响因子初始值为〇。
[0026] 作为本发明所述一种输配电网全局电压稳定控制的分布式计算方法进一步优化 方案,所述步骤三中,其具体步骤如下:
[0027] 各配电网建立电压稳定控制子问题的模型如下表示:
Figure CN108536917AD00072
[0035] 式中=C0为第i个配电网的控制目标函数;%^为第i个输电网控制结果对配电网 边界节点等值功率产生变化的边界影响因子,上标T为转置;
Figure CN108536917AD00073
bv别为配电网 当前运行状态和鼻点运行状态下的边界节点处的等值负荷功率作为边界协调变量,
Figure CN108536917AD00074
为第i个配电网的控制变量,包含了分布式电源有功和无功出 力、投切电容器;xM π和'A,;«分别为第i个配电网当前运行状态和鼻点运行状态下的边 界节点状态变量,
Figure CN108536917AD00075
ΐ和X*.A为第i个配电网当前运行状态和鼻点运 行状态下的状态变量;Areq为全局系统负荷裕度期望值;ASdi为预定义的第i个配电网有功、 无功负荷增长量.为第i个配电网当前运行状态和鼻点运行状态下的潮流方程; g(U^和g*A为第i个配电网当前运行状态和鼻点运行状态下的不等式约束方程;
Figure CN108536917AD00076
Figure CN108536917AD00077
为第1个配电网当前运行状态和鼻点运行状态下的平衡节点功率计算方程;
[0036] 其中边界协调变灑
Figure CN108536917AD00078
.由配电网潮流计算容易求得,的求解公式如 下:
Figure CN108536917AD00079
[0038] 其中,ZT,P。。对应输电网电压稳定控制子优化问题中边界节点潮流方程对应的拉格 朗日乘子。
[0039] 作为本发明所述一种输配电网全局电压稳定控制的分布式计算方法进一步优化 方案,步骤四中,输电网电压稳定控制子问题的模型如下:
Figure CN108536917AD00081
[0047] 式中,Ct为输电网的控制目标函数;为第i个配电网控制结果对输电网侧边界 节点状态变量产生变化的边界影响因子,上标T为转置;XQ,P。。和x*,P。。为输电网当前运行状 态和鼻点运行状态下的边界节点状态变量,即边界协调变量,Χρ。。= [ΧΟ,Ρ。。; X*,P。。] ; UT为输电 网的控制变量,包含了发电机有功和无功出力、投切电容器和电抗器、调压变压器分接头;η 为配电网数量;XQ,τ和X*,τ分别为输电网当前运行状态和鼻点运行状态下的状态变量;A Pt,g 为预定义的输电网有功发电增长向量;f〇,τ和f*,τ分别为输电网当前运行状态和鼻点运行状 态下的潮流方程;go,τ和g*,τ分别为输电网当前运行状态和鼻点运行状态下的不等式约束方 程;fo,P。。和f*,P。。分别为边界节点当前运行状态和鼻点运行状态下的潮流方程,体现了输配 电网间的功率主从关系;
[0048] 其中边界协调变量XQ, pcc和X*, pcc由输电网潮流计算求得,的求解公式如下:
Figure CN108536917AD00082
[0050] 式中
Figure CN108536917AD00083
和化,^分别为第i个配电网电压 稳定子优化问题中等式、不等式约束方程和平衡节点功率计算方程对应的拉格朗日乘子。
[0051] 作为本发明所述一种输配电网全局电压稳定控制的分布式计算方法进一步优化 方案,步骤五中,输电网控制中心判断输配电网间是否满足边界节点收敛条件具体如下:
[0052] A、在输配电网一体化分布式控制计算当中,输电网侧计算出各节点状态变量及边 界影响因子,并传递边界协调变给下级配电网,配电网收到来自输电网的交 互信息后再计算出边界节点等值功及边界影响因子I#,并传递给上级输电网;
[0053] B、输配电网重复步骤A不断交互协调,直至满足如下的收敛条件:
Figure CN108536917AD00084
[0059] 式中
Figure CN108536917AD00085
分别为第k次迭代的边界节点等值有功和无功功率
Figure CN108536917AD00086
为第k 次迭代的边界节点状态变量;
Figure CN108536917AD00091
为第k次迭代的边界影响因子。
[0060] 本发明采用以上技术方案与现有技术相比,具有以下技术效果:
[0061] (1)本发明充分考虑了我国输配电网分别由两级电网公司运营和维护,其分析计 算分别由上、下两级控制中心负责的现状,建立了输配电网全局电压稳定控制的分布式求 解模型;
[0062] (2)该方法无需建立输电网或配电网等值模型,将输配电网全局电压稳定控制问 题分解为独立的输、配电网电压稳定控制计算子问题及边界节点信息交互三个部分组成;
[0063] (3)输、配电网电压稳定控制计算子问题无需统一的求解算法,可支持并行运行, 使电网的控制手段更为灵活,稳定;
[0064] (4)参与计算的输配电网仅需交换少量的边界节点信息,无需获取输网或配网的 运行数据即可协调地进行优化计算,优化结果更准确,也更贴近实际;
[0065] (5)该发明所建立的模型具有良好的适应性,算法具有良好的鲁棒性。
附图说明
[0066] 图1是本发明输配全局系统示意图。
[0067] 图2为本发明全局系统分解协调示意图。
[0068] 图3为本发明输配网一体化分布式潮流计算流程图。
[0069] 图4为本发明输配网一体化分布式电压稳定控制计算流程图。
具体实施方式
[0070] 为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例 对本发明进行详细描述。
[0071] 本发明的思路为:以某一方向下的输配全局负荷裕度为稳定性指标,以输、配电网 总控制代价最小为目标,通过引入边界影响因子将全局优化问题分解为输网和各配网电压 稳定控制子问题;通过不断交换输配网边界连接点的电压、等值功率和边界影响因子实现 全网控制的分布式计算。由于边界影响因子需由各子优化问题求解中的对偶乘子来构造, 输、配电网稳定控制子问题需采用对偶乘子类优化控制算法求解。具体按照以下步骤:
[0072] 步骤1、输配电网一体化分布式潮流计算问题:
[0073] 输电网和配电网通过边界节点组成了输配全局系统,如图1所示。将输配全局系统 问题分解为输电网与配电网子问题进行分布式计算,通过交换边界节点变量进行协调,分 解协调架构如图2所示。
[0074] 牛顿拉夫逊法的基本原理是将非线性方程组的求解过程反复转化为相应线性方 程组的求解过程,是求解非线性方程组的有效方法。牛顿拉夫逊法具有收敛速度快,收敛可 靠性高的优点,是求解电力系统潮流问题的常用方法。
[0075] 步骤101.输网和配网潮流方程:
[0076] 输电网和配电网潮流计算的功率平衡方程为:
Figure CN108536917AD00092
[0078] 式中,Δ PjP Δ Qm分别为输电网或配电网中第m节点的不平衡有功和无功功率;Pms 和Qms分别为输电网或配电网中第m节点的注入有功和无功功率;Vm和Vj分别是输电网或配 电网中第m节点和第j节点电压幅值;是第m节点和第j节点电压的相角差;Gmj和Bmj分别是 导纳矩阵中第m节点和第j节点间的电导和电纳;展开泰勒级数,忽略二次项以及更高次项, 即得到修正方程式:
Figure CN108536917AD00101
[0080] 式中,Δ P和AQ分别是不平衡有功和无功功率组成的矩阵,H、N、J和L分别是雅克 比矩阵中各元素组;A Θ和AV分别是电压相角和幅值修正量矩阵;V是电压幅值矩阵;
[0081] 步骤102.输配电网间潮流迭代过程:
[0082] 整体计算流程图如图3所示。
[0083] (1)赋初值:输配电网间迭代次数k = 0和第k = 0次迭代的边界节点电压P =丨
[0084] (2)以第k次迭代的边界节点电压卢《为配电网的平衡电压,求解配电网潮流方程, 得到配电网第k+Ι次迭代的平衡节点功率舍作为协调变量,并传递给输电网侧;
[0085] (3)将协调变量乍为输电网侧边界节点的等值负荷,求解输电网潮流方程,得 到输电网各状态变量,并向配电网侧传递边界节点电压01+1);
[0086] (4)判断两次迭代的边界节点协调变量偏差是否小于收敛精度ε,若
Figure CN108536917AD00102
Figure CN108536917AD00103
则一体化分布式潮流迭代收敛,输出输、配电网各节点状态变量;否则,k = k+l,转步骤(2);其中,Δ P(k)和Δ Q(k)分别是第k次与第k+Ι次协调变量妒+1>中有功和无功 偏差,AV(k)是第k次与第k+Ι次边界节点电压偏差。
[0087] 步骤2、以步骤1得到的潮流解为初始态,为配网电压稳定控制计算变量赋初始值:
[0088] 在计算配电网潮流时,边界节点作为配电网的平衡节点,取电压状态变量初始值 为:
Figure CN108536917AD00104
;首次计算配电网子控制优化问题时,取第i个输电网控制结果对配电网边界 节点等值功率产生变化的边界影响因子化^初始值为0;
[0089] 步骤3、配电网电压稳定控制子优化问题:
[0090] 步骤301.数学模型建立:
[0091] 各配电网建立电压稳定控制子问题的模型如下表示:
Figure CN108536917AD00105
[0099] 式中:%为第i个配电网的控制目标函数;%#为第i个输电网控制结果对配电网 边界节点等值功率产生变化的边界影响因子,上标T为转置;
Figure CN108536917AD00111
分别为配电网 当前运行状态和鼻点运行状态下的边界节点处的等值负荷功率作为边界协调变量,
Figure CN108536917AD00112
为第i个配电网的控制变量,包含了分布式电源有功和无功出 力、投切电容器:
Figure CN108536917AD00113
分别为第i个配电网当前运行状态和鼻点运行状态下的边 界节点状态变量......
Figure CN108536917AD00114
......和X*A为第i个配电网当前运行状态和鼻点运 行状态下的状态变量;Areq为全局系统负荷裕度期望值:
Figure CN108536917AD00115
为预定义的第i个配电网有功、 无功负荷增长量
Figure CN108536917AD00116
为第i个配电网当前运行状态和鼻点运行状态下的潮流方程; A和Aa为第i个配电网当前运行状态和鼻点运行状态下的不等式约束方程;
Figure CN108536917AD00117
和 t/w«为第i个配电网当前运行状态和鼻点运行状态下的平衡节点功率计算方程;
[0100] 步骤302.边界协调变量求取:
[0101] 其中边界协调变量
Figure CN108536917AD00118
.由配电网潮流计算容易求得,%7的求解公式如 下:
Figure CN108536917AD00119
[0103] 其中,ζτ,Ρ。。对应输电网电压稳定控制子优化问题中边界节点潮流方程对应的拉格 朗日乘子。
[0104] 步骤4、输电网电压稳定控制子优化问题:
[0105] 步骤401.数学模型建立:
[0106] 输电网电压稳定控制子问题的模型如下:
Figure CN108536917AD001110
[0114] 式中,Ct为输电网的控制目标函数;为第i个配电网控制结果对输电网侧边界 节点状态变量产生变化的边界影响因子,上标T为转置;XQ,P。。和x*,P。。为输电网当前运行状 态和鼻点运行状态下的边界节点状态变量,即边界协调变量,Χρ。。= [ΧΟ,Ρ。。; X*,P。。] ; UT为输电 网的控制变量,包含了发电机有功和无功出力、投切电容器和电抗器、调压变压器分接头;η 为配电网数量;XQ,τ和X*,τ分别为输电网当前运行状态和鼻点运行状态下的状态变量;A Pt,g 为预定义的输电网有功发电增长向量;f〇,τ和f*,τ分别为输电网当前运行状态和鼻点运行状 态下的潮流方程;go,τ和g*,τ分别为输电网当前运行状态和鼻点运行状态下的不等式约束方 程;fo,P。。和f*,P。。分别为边界节点当前运行状态和鼻点运行状态下的潮流方程,体现了输配 电网间的功率主从关系;
[0115] 步骤402.边界协调变量求取:
[0116] 其中边界协调变量XQ, pcc和X*, pcc由输电网潮流计算求得,的求解公式如下:
Figure CN108536917AD00121
[0118] 式中
Figure CN108536917AD00122
分别为第i个配电网电压 稳定子优化问题中等式、不等式约束方程和平衡节点功率计算方程对应的拉格朗日乘子。
[0119] 步骤5、输电网控制中心判断输配电网间是否满足边界节点收敛条件:
[0120] A、在输配电网一体化分布式控制计算当中,输电网侧计算出各节点状态变量及边 界影响因子,并传递边界协调变量巧^和eA,r给下级配电网,配电网收到来自输电网的交 互信息后再计算出边界节点等值功率及边界影响因子,并传递给上级输电网;
[0121] B、输配电网重复步骤A不断交互协调,直至满足如下的收敛条件:
Figure CN108536917AD00123
[0127] 式中
Figure CN108536917AD00124
bv别为第k次迭代的边界节点等值有功和无功功率;为第k 次迭代的边界节点状态变量;1%,和4,,y为第k次迭代的边界影响因子。
[0128] 针对输电网和配电网电压稳定控制子问题,采用对偶乘子类优化算法进行求解, 输配电网一体化分布式电压稳定控制的整体计算步骤如图4所示。
[0129] 以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何 熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应 涵盖在本发明的保护范围内。

Claims (6)

1. 一种输配电网全局电压稳定控制的分布式计算方法,其特征在于,包括以下步骤: 步骤一、求解输配电网一体化分布式潮流,获得输配电网各节点状态变量; 步骤二、给配电网的边界影响因子和状态变量赋初始值; 步骤三、各配电网控制中心采用对偶类优化算法计算电压稳定控制子问题,并向输电 网控制中心传递边界协调变量; 步骤四、输电网控制中心收到来自各配电网控制中心的边界协调变量后,输电网采用 对偶类优化算法计算输电网电压稳定控制子问题,并向下级配电网传递边界协调变量; 步骤五、输电网控制中心判断输配电网间是否满足边界节点收敛条件,若不满足则转 步骤二,否则优化结束,输出优化结果。
2. 根据权利要求1所述一种输配电网全局电压稳定控制的分布式计算方法,其特征在 于,所述步骤一中,求解输配电网一体化分布式潮流,具体步骤如下: (11) 输电网和配电网潮流计算的功率平衡方程为:
Figure CN108536917AC00021
式中,△ Pm和△ Qm分别为输电网或配电网中第m节点的不平衡有功和无功功率;Pms和Qms 分别为输电网或配电网中第m节点的注入有功和无功功率;VjPVj分别是输电网或配电网中 第m节点和第j节点电压幅值;0mj是第m节点和第j节点电压的相角差;Gmj和Bmj分别是导纳矩 阵中第m节点和第j节点间的电导和电纳;展开泰勒级数,忽略二次项以及更高次项,即得到 修正方程式:
Figure CN108536917AC00022
式中,△ P和△ Q分别是不平衡有功和无功功率组成的矩阵,H、N、J和L分别是雅克比矩 阵中各元素组;A Θ和AV分别是电压相角和幅值修正量矩阵;V是电压幅值矩阵; (12) 输配电网间潮流迭代过程如下: (1) 赋初值:输配电网间迭代次数k = 0和第k = 0次迭代的边界节点电压
Figure CN108536917AC00023
(2) 以第k次迭代的边界节点电压
Figure CN108536917AC00024
为配电网的平衡电压,求解配电网潮流方程,得到 配电网第k+Ι次迭代的平衡节点功率
Figure CN108536917AC00025
作为协调变量,并传递给输电网侧; (3) 将协调变量,
Figure CN108536917AC00026
1作为输电网侧边界节点的等值负荷,求解输电网潮流方程,得到输 电网各状态变量,并向配电网侧传递边界节点电压
Figure CN108536917AC00027
⑷判断两次迭代的边界节点协调变量偏差是否小于收敛精度ε,若I A P(k),A Q(k),A V
Figure CN108536917AC00028
:,则一体化分布式潮流迭代收敛,输出输、配电网各节点状态变量;否则,k = k+l, 转步骤(2);其中,Δ P(k)和Δ Q(k)分别是第k次与第k+1次协调变量,
Figure CN108536917AC00029
中有功和无功偏差, AV(k)是第k次与第k+Ι次边界节点电压偏差。
3. 根据权利要求2所述一种输配电网全局电压稳定控制的分布式计算方法,其特征在 于,步骤二中,在计算配电网潮流时,边界节点作为配电网的平衡节点,取电压状态变量初 始值为:
Figure CN108536917AC000210
首次计算配电网子控制优化问题时,取第i个输电网控制结果对配电网 边界节点等值功率产生变化的边界影响因子
Figure CN108536917AC00031
初始值为0。
4. 根据权利要求3所述一种输配电网全局电压稳定控制的分布式计算方法,其特征在 于,所述步骤三中,其具体步骤如下: 各配电网建立电压稳定控制子问题的模型如下表示:
Figure CN108536917AC00032
式中:
Figure CN108536917AC00033
为第i个配电网的控制目标函数;
Figure CN108536917AC00034
为第i个输电网控制结果对配电网边界节 点等值功率产生变化的边界影响因子,上标T为转置;
Figure CN108536917AC00035
分别为配电网当前运 行状态和鼻点运行状态下的边界节点处的等值负荷功率作为边界协调变量,
Figure CN108536917AC00036
为第i个配电网的控制变量,包含了分布式电源有功和无功出 力、投切电容器;
Figure CN108536917AC00037
分别为第i个配电网当前运行状态和鼻点运行状态下的边界 节点状态变量,
Figure CN108536917AC00038
为第i个配电网当前运行状态和鼻点运行 状态下的状态变量;Areq为全局系统负荷裕度期望值;
Figure CN108536917AC00039
为预定义的第i个配电网有功、无 功负荷增长量;
Figure CN108536917AC000310
为第i个配电网当前运行状态和鼻点运行状态下的潮流方程;
Figure CN108536917AC000311
Figure CN108536917AC000312
为第i个配电网当前运行状态和鼻点运行状态下的不等式约束方程;
Figure CN108536917AC000313
为 第i个配电网当前运行状态和鼻点运行状态下的平衡节点功率计算方程; 其中边界协调变量
Figure CN108536917AC000314
由配电网潮流计算容易求得,
Figure CN108536917AC000315
,的求解公式如下:
Figure CN108536917AC000316
其中,ζτ,Ρ。。对应输电网电压稳定控制子优化问题中边界节点潮流方程对应的拉格朗日 乘子。
5. 根据权利要求4所述一种输配电网全局电压稳定控制的分布式计算方法,其特征在 于,步骤四中,输电网电压稳定控制子问题的模型如下:
Figure CN108536917AC000317
Figure CN108536917AC00041
式中,Ct为输电网的控制目标函数;
Figure CN108536917AC00042
为第i个配电网控制结果对输电网侧边界节点 状态变量产生变化的边界影响因子,上标T为转置;XQ,P。。和x*,P。。为输电网当前运行状态和 鼻点运行状态下的边界节点状态变量,即边界协调变量,Xpcx;= [XQ, pm; X*, pcj ; UT为输电网的 控制变量,包含了发电机有功和无功出力、投切电容器和电抗器、调压变压器分接头;η为配 电网数量;ΧΟ,Τ和Χ*,Τ分别为输电网当前运行状态和鼻点运行状态下的状态变量;△ PT,g为预 定义的输电网有功发电增长向量;f〇,T和f*,T分别为输电网当前运行状态和鼻点运行状态下 的潮流方程;go,T和g*,T分别为输电网当前运行状态和鼻点运行状态下的不等式约束方程; f〇,P。。和f*,P。。分别为边界节点当前运行状态和鼻点运行状态下的潮流方程,体现了输配电 网间的功率主从关系; 其中边界协调变量XQ,P。。和X*,P。。由输电网潮流计算求得,
Figure CN108536917AC00043
的求解公式如下:
Figure CN108536917AC00044
式中,
Figure CN108536917AC00045
分别为第i个配电网电压稳定 子优化问题中等式、不等式约束方程和平衡节点功率计算方程对应的拉格朗日乘子。
6.根据权利要求5所述一种输配电网全局电压稳定控制的分布式计算方法,其特征在 于,步骤五中,输电网控制中心判断输配电网间是否满足边界节点收敛条件具体如下: A、 在输配电网一体化分布式控制计算当中,输电网侧计算出各节点状态变量及边界影 响因子,并传递边界协调变量、
Figure CN108536917AC00046
給下级配电网,配电网收到来自输电网的交互信 息后再计算出边界节点等值功率
Figure CN108536917AC00047
及边界影响因子
Figure CN108536917AC00048
,并传递给上级输电网; B、 输配电网重复步骤A不断交互协调,直至满足如下的收敛条件:
Figure CN108536917AC00049
式中,
Figure CN108536917AC000410
分别为第k次迭代的边界节点等值有功和无功功率;
Figure CN108536917AC000411
为第k次迭 代的边界节点状态变量;
Figure CN108536917AC000412
为第k次迭代的边界影响因子。
CN201810212746.7A 2018-03-15 2018-03-15 一种输配电网全局电压稳定控制的分布式计算方法 Pending CN108536917A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810212746.7A CN108536917A (zh) 2018-03-15 2018-03-15 一种输配电网全局电压稳定控制的分布式计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810212746.7A CN108536917A (zh) 2018-03-15 2018-03-15 一种输配电网全局电压稳定控制的分布式计算方法

Publications (1)

Publication Number Publication Date
CN108536917A true CN108536917A (zh) 2018-09-14

Family

ID=63483542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810212746.7A Pending CN108536917A (zh) 2018-03-15 2018-03-15 一种输配电网全局电压稳定控制的分布式计算方法

Country Status (1)

Country Link
CN (1) CN108536917A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120673A (zh) * 2019-05-09 2019-08-13 山东大学 基于戴维南等值参数辨识的分布式输配协同无功优化方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319780A (zh) * 2014-10-29 2015-01-28 国家电网公司 一种输配电网全局无功电压优化方法
CN105048468A (zh) * 2015-07-27 2015-11-11 河海大学 基于分布式计算的输配电网一体化电压稳定评估方法
WO2016032130A1 (ko) * 2014-08-27 2016-03-03 한국전력공사 Ami 전력 사용량 기반의 배전 구간부하 산출 시스템
CN105811420A (zh) * 2016-05-05 2016-07-27 国网江苏省电力公司南京供电公司 一种分解协调式主配网一体化潮流计算方法
CN106159955A (zh) * 2016-07-14 2016-11-23 嘉兴国电通新能源科技有限公司 基于连续惩罚对偶分解的电力系统分布式最优潮流方法
CN107171341A (zh) * 2017-06-15 2017-09-15 河海大学 一种基于分布式计算的输配电网一体化无功优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016032130A1 (ko) * 2014-08-27 2016-03-03 한국전력공사 Ami 전력 사용량 기반의 배전 구간부하 산출 시스템
CN104319780A (zh) * 2014-10-29 2015-01-28 国家电网公司 一种输配电网全局无功电压优化方法
CN105048468A (zh) * 2015-07-27 2015-11-11 河海大学 基于分布式计算的输配电网一体化电压稳定评估方法
CN105811420A (zh) * 2016-05-05 2016-07-27 国网江苏省电力公司南京供电公司 一种分解协调式主配网一体化潮流计算方法
CN106159955A (zh) * 2016-07-14 2016-11-23 嘉兴国电通新能源科技有限公司 基于连续惩罚对偶分解的电力系统分布式最优潮流方法
CN107171341A (zh) * 2017-06-15 2017-09-15 河海大学 一种基于分布式计算的输配电网一体化无功优化方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JINQUAN ZHAO等: "A Distributed Voltage Stability Control Method for Integrated Transmission and Distribution Grids", 《2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2)》 *
TARIK ZABAIOU等: "VSC-OPF based on line voltage indices for power system losses minimization and voltage stability improvement", 《2013 IEEE POWER & ENERGY SOCIETY GENERAL MEETING》 *
李娟等: "动态连续潮流与自适应混沌粒子群结合计算静态电压稳定裕度", 《电工电能新技术》 *
贾学涵等: "一种计及分布式电源的配电网潮流算法研究", 《电气应用》 *
郭志红等: "适应分布式电源的输配电网协调潮流算法", 《山东电力技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120673A (zh) * 2019-05-09 2019-08-13 山东大学 基于戴维南等值参数辨识的分布式输配协同无功优化方法及系统
CN110120673B (zh) * 2019-05-09 2020-10-02 山东大学 基于戴维南等值参数辨识的分布式输配协同无功优化方法及系统

Similar Documents

Publication Publication Date Title
CN103020853B (zh) 一种短期交易计划安全校核的方法
CN106026169B (zh) 一种基于多微电网并入配电网的分解协调优化方法
CN103928940A (zh) 一种分布式光伏电站有功功率控制装置及控制方法
CN105978016B (zh) 一种基于最优潮流的多端柔性直流输电系统优化控制方法
CN106505632B (zh) 中压独立微电网系统的分布式电源位置和容量的规划方法
CN102930141B (zh) 一种电网复杂监控断面潮流控制的快速计算方法
CN103593711B (zh) 一种分布式电源优化配置方法
CN103490428B (zh) 微电网无功补偿容量配置方法及系统
CN105305463B (zh) 计及光伏发电和谐波污染的基于随机潮流的无功优化方法
Sreejith et al. Analysis of FACTS devices on security constrained unit commitment problem
CN104767412B (zh) 智能型逆变器的初级、次级控制系统、控制系统及控制方法
CN103401249B (zh) 一种基于无功设备可用资源的无功自动安排方法
CN107947192A (zh) 一种下垂控制型孤岛微电网的无功优化配置方法
CN106208099A (zh) 一种基于二层规划的电力系统无功优化方法及其应用
CN105207274A (zh) 一种自适应调节无功输出的分布式光伏发电控制方法
CN107039981A (zh) 一种拟直流线性化概率最优潮流计算方法
CN108536917A (zh) 一种输配电网全局电压稳定控制的分布式计算方法
CN103730900A (zh) 电力系统多时间尺度的省地县一体化无功优化方法
CN105071397A (zh) 风电外送的多类型无功补偿设备的协调无功电压控制方法
Akbari-Zadeh et al. Dstatcom allocation in the distribution system considering load uncertainty
CN110071503B (zh) 分布式输配协同无功优化的二次规划模型构建方法及系统
CN105162129A (zh) 计及分布式电源最优配置的配网无功电压控制方法
Yan et al. A quasi-automated generation control strategy for multiple energy storage systems to optimize low-carbon benefits
Alsafasfeh et al. A robust decentralized power flow optimization for dynamic PV system
Li et al. A control method of voltage stability for distributed DC microgrid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination