WO2018124557A1 - 이차전지용 전해액 및 이를 포함하는 이차전지 - Google Patents

이차전지용 전해액 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2018124557A1
WO2018124557A1 PCT/KR2017/014713 KR2017014713W WO2018124557A1 WO 2018124557 A1 WO2018124557 A1 WO 2018124557A1 KR 2017014713 W KR2017014713 W KR 2017014713W WO 2018124557 A1 WO2018124557 A1 WO 2018124557A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
weight
carbonate
compound
electrolyte
Prior art date
Application number
PCT/KR2017/014713
Other languages
English (en)
French (fr)
Inventor
고종관
신정주
방지민
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160180026A external-priority patent/KR20180075996A/ko
Priority claimed from KR1020160180054A external-priority patent/KR20180076010A/ko
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Publication of WO2018124557A1 publication Critical patent/WO2018124557A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery electrolyte and a secondary battery comprising the same, the secondary battery electrolyte improves the output characteristics of the secondary battery, and the storage characteristics at high and low temperatures, and the electrical resistance and charge-discharge capacity characteristics of the battery even at high voltage Can be kept stable.
  • Secondary batteries are used as a power source for everyday electronic devices such as smartphones, tablet PCs, and laptops, and their sizes and shapes are very diverse according to the purpose of each product and the needs of consumers. For this reason, there is a demand for the development of a secondary battery that can be used anytime and anywhere and can continue its function for a long time. Meanwhile, applications of secondary batteries are not limited to small electronic devices, but are being applied to various fields such as drones, cleaners, and robots, and are being applied to power sources of automobiles, which are representative vehicles. In particular, pure electric vehicles using a secondary battery as a main power source are in the spotlight as a next-generation vehicle that replaces coal raw materials that cause environmental pollution problems. In the secondary battery applied to such an electric vehicle, high output characteristics and storage characteristics at high and low temperatures are important.
  • US Patent No. 8,617,749 improves the battery high temperature performance of a secondary battery electrolyte comprising a salt selected from the group consisting of lithium difluorobis (oxalato) phosphate, lithium tetrafluoro (oxalato) phosphate, and the like. The effect is started.
  • International Patent Nos. 2013-031551 and 2011-125397 use an electrolyte solution containing (oxalato) phosphate or (oxalato) borate to improve the performance of a battery at high temperature or low temperature below 0 ° C. The effect of improving is disclosed.
  • the secondary battery technology to date does not satisfy the requirements of the rapidly changing industry.
  • high temperature and low temperature required in the field of unmanned vehicles and smart cars based on electric vehicles high power characteristics and storage characteristics of secondary batteries are not satisfied.
  • an object of the present invention to provide an electrolyte solution for a secondary battery that can improve the output characteristics of the secondary battery at high temperatures and the storage characteristics at high temperatures and low temperatures and at the same time improve the output characteristics of the battery at high voltages.
  • the present invention to achieve the above object
  • n is an integer of 1-4.
  • the present invention provides a secondary battery comprising the secondary battery electrolyte.
  • the secondary battery electrolyte of the present invention maximizes the output characteristics of the secondary battery by lowering the resistance of the electrode interface and protecting the electrode during charge and discharge of the battery in a high temperature and low temperature environment, improve the storage characteristics at high and low temperatures, high voltage Also, the electrical resistance and charge / discharge capacity characteristics of the battery can be stably maintained.
  • the secondary battery electrolyte according to the present invention is a carbonate solvent; Lithium salts; A compound of Formula 1; And a mixture of a compound of Formula 2 and a compound of Formula 3, or at least one nitrile compound selected from the group consisting of compounds represented by Formulas 4 and 5:
  • n is an integer of 1-4.
  • the compound of formula 1 is a known compound (CAS No. 496-45-7), bicyclo-glyoxal sulfate, glyoxal sulfate, or 3a, 6a-dihydro- [1,3,2] dioxathiolo [4,5-d] [1,3,2] dioxathiol 2,2,5,5-tetraoxide (3a, 6a-dihydro- [1,3, 2] dioxathiolo [4,5-d] [1,3,2] dioxathiole 2,2,5,5-tetraoxide), etc., and can be purchased commercially.
  • the compound of Formula 1 may be prepared by a known synthesis method, for example, by reacting fuming sulfuric acid with 1,1,2,2-tetrachloroethane as a starting material (US Patent No. 1,999,995 and US Registration). Patent 2,415,397).
  • the compound of Chemical Formula 3 is a known compound (CAS No. 521065-36-1), which is called lithium tetrafluoro (oxalato) phosphate, is commercially available or known synthesis method. It can be manufactured as (see Japanese Patent No. 6031828).
  • the compound of m is 1 is a known compound called malononitrile (CAS No, 109-77-3), and the compound of m is 2 succinonitrile, butanedi.
  • Known compounds called CAS No, 110-61-2, such as nitrile (butanedinitrile), and the compound having m of 3 are known compounds called glutaronitrile, pentanedinitrile, and the like. (CAS No. 544-13-8), and a compound whose m is 4 is a known compound (CAS No. 111-69-3) called adiponitrile, hexanedinitrile, or the like. . All of these compounds can be purchased commercially or prepared by known synthetic methods.
  • the compound of Formula 5 is a known compound (CAS No. 3386-87-6), ethylene glycol bis (propionitrile) ether, 1,2-bis (2-cyano Ethoxy) ethane (1,2-bis (2-cyanoethoxy) ethane) etc. are called, and it can be purchased commercially or manufactured by a well-known synthetic method.
  • the electrolyte may include 0.05 to 10% by weight of the compound of Formula 1, and a mixture of 0.05 to 10% by weight of the compound of Formula 2 and the compound of Formula 3 with respect to the total weight.
  • the electrolyte is 0.1 to 10% by weight, 0.1 to 5% by weight, 0.5 to 3% by weight, 1 to 3% by weight, or 1 to 2% by weight of the compound of Formula 1 relative to the total weight; And 0.1 to 10% by weight, 0.1 to 5% by weight, 0.5 to 3% by weight, or 1 to 2% by weight of the mixture of the compound of Formula 2 and the compound of Formula 3.
  • the compound of Formula 1 When the compound of Formula 1 is included in the above content range, a high power effect of the battery may be obtained at a high temperature, and an excessive increase in the initial resistance of the battery may be prevented at room temperature.
  • a mixture of the compound of Formula 2 and the compound of Formula 3 in the above content range it is possible to reduce the initial resistance of the battery, there is an effect that prevents excessive reduction of long-term storage characteristics at high and low temperatures.
  • the mixture may include a compound of Formula 2 and a compound of Formula 3 in a weight ratio of 0.1 to 5.0: 0.01 to 1.0.
  • the electrolyte may include 0.05 to 10 wt% of the compound of Formula 1, and 0.05 to 10 wt% of nitrile compound based on the total weight.
  • the electrolyte is 0.1 to 10% by weight, 0.1 to 5% by weight, 0.5 to 3% by weight, 1 to 3% by weight, or 1 to 2% by weight, and the nitrile based on the total weight of the compound of Formula 1
  • the compound may comprise 0.1 to 10% by weight, 0.1 to 5% by weight, 0.5 to 3% by weight or 1 to 2% by weight.
  • the carbonate solvent has high solubility in the lithium salt, the compounds of Formulas 1 to 3, and the nitrile compound.
  • the carbonate solvent is diethyl carbonate, ethylmethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate. (ethylpropyl carbonate), methylethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate and fluoroethylene carbonate selected from the group consisting of It may contain the above.
  • the positive electrode includes a positive electrode active material capable of reversibly occluding and desorbing lithium ions.
  • the positive electrode active material may be at least one metal selected from the group consisting of cobalt, manganese and nickel; And it may be a composite metal oxide including lithium.
  • the solid solution ratio between the metals may be various, and the cathode active material may be formed of Mg, Al, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Cr, It may further include at least one element selected from the group consisting of Fe, Sr and rare earth elements.
  • the crystalline carbon may be a graphite material, and examples thereof include natural graphite, artificial graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like.
  • Other elements constituting the alloy with lithium of the lithium alloy may be aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium or indium.
  • the negative electrode active material may be a mixture of 0.1 to 100% by weight of silicon oxide or silicon alloy and the carbon-based negative electrode active material.
  • a compound having m of 2 in the formula (4) (compound represented by formula 7): succinonitrile, CAS No. 110-61-2.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that glyoxal sulfate represented by Chemical Formula 1 was added in an amount of 2% by weight.
  • An electrolytic solution was prepared in the same manner as in Example 1, except that glyoxal sulfate represented by Formula 1 was added in an amount of 1.5 wt% and a mixture of the compounds represented by Formulas 2 and 3 was added in an amount of 1.5 wt%. It was.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that glyoxal sulfate represented by Chemical Formula 1 was added in a content of 0.05% by weight.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that no additives represented by Chemical Formulas 1 to 3 were added.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that the compound represented by Formulas 2 and 3 was not added.
  • lithium difluorobis (oxalato) phosphate represented by the formula (2) lithium difluorobis (oxalato) borate was added in an amount of 2% by weight Except that, an electrolytic solution was prepared in the same manner as in Example 1.
  • An electrolyte solution was prepared in the same manner as in Comparative Example 3, except that lithium di (oxalato) borate was added instead of lithium difluorobis (oxalato) borate.
  • the impedance was measured by the charger / discharger (using the same equipment as above) in the fully charged state of the same battery. Then, stored in a 70 °C high temperature oven for 4 weeks and measured the discharge impedance after 4 weeks are shown in Table 1.
  • Example 1 A mixture of 1% by weight of the compound of Formulas 1 + 1% by weight of the compounds of Formulas 2 and 3 33 40
  • Example 2 2% by weight of the mixture of the compounds of formulas 2 + 3 32 38
  • Example 3 1.5% by weight of a mixture of the compounds of formulas 2 and 3 33 36
  • Example 4 A mixture of 1% by weight of the compound of Formulas 2 and 3 in Formula 1 + 2% by weight 32 39
  • Example 5 A mixture of 0.05% by weight of the compound of Formulas 2 + 3 in Formula 1 + 1% by weight 34 46 Comparative Example 1 No addition 33 63 Comparative Example 2 1 weight% of formula 1 34 43 Comparative Example 3 2% by weight of lithium difluorobis (oxalato) borate 34 50 Comparative Example 4 2% by weight of lithium di (oxalato) borate 35 59
  • Example 1 A mixture of 1% by weight of the compound of Formulas 1 + 1% by weight of the compounds of Formulas 2 and 3 100 88
  • Example 2 2% by weight of the mixture of the compounds of formulas 2 + 3 100 92
  • Example 3 1.5% by weight of a mixture of the compounds of formulas 2 and 3 100 89
  • Example 4 A mixture of 1% by weight of the compound of Formulas 2 and 3 in Formula 1 + 2% by weight 100 88
  • Example 5 A mixture of 0.05% by weight of the compound of Formulas 2 + 3 in Formula 1 + 1% by weight 100 81 Comparative Example 1 No addition 100 61 Comparative Example 2 1 weight% of formula 1 100 86 Comparative Example 3 2% by weight of lithium difluorobis (oxalato) borate 100 80 Comparative Example 4 2% by weight of lithium di (oxalato) borate 100 83
  • Example 1 A mixture of 1% by weight of the compound of Formulas 1 + 1% by weight of the compounds of Formulas 2 and 3 100 63
  • Example 2 2% by weight of the mixture of the compounds of formulas 2 + 3 100 61
  • Example 3 1.5% by weight of a mixture of the compounds of formulas 2 and 3 100 70
  • Example 4 A mixture of 1% by weight of the compound of Formulas 2 and 3 in Formula 1 + 2% by weight 100 72
  • Example 5 A mixture of 0.05% by weight of the compound of Formulas 2 + 3 in Formula 1 + 1% by weight 100 59 Comparative Example 1 No addition 100 40 Comparative Example 2 1 weight% of formula 1 100 57 Comparative Example 3 2% by weight of lithium difluorobis (oxalato) borate 100 55 Comparative Example 4 2% by weight of lithium di (oxalato) borate 100 51
  • ethylene carbonate (EC), 589 g of ethylmethyl carbonate (EMC), and 380 g of diethyl carbonate (DEC) were mixed to prepare a mixed solution, and 151.9 g of LiPF 6 was added to the mixed solution, thereby adding 1 mol / A LiPF 6 solution at a concentration of l was prepared. Thereafter, 1% by weight of glyoxal sulfate represented by Chemical Formula 1 and 1% by weight of malononitrile represented by Chemical Formula 6 were added and mixed to prepare a secondary battery electrolyte.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that succinonitrile represented by Formula 7 was added instead of malononitrile represented by Formula 6.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that glutaronitrile represented by Formula 8 was added instead of malononitrile represented by Formula 6.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that adiponitril represented by Formula 9 was added instead of malononitrile represented by Formula 6.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that the ethylene glycol bis (propionitrile) ether represented by Formula 5 was added instead of the malononitrile represented by Formula 6.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that 0.5 wt% was added.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that 0.5 wt% was added.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that 0.5 wt% was added.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that 0.5 wt% was added.
  • Example 6 and except that the glyoxal sulfate represented by the formula (1) is added in an amount of 1% by weight, and the ethylene glycol bis (propionitrile) ether represented by the formula (5) is added in an amount of 2% by weight An electrolytic solution was prepared in the same manner.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that glyoxal sulfate represented by Chemical Formula 1 was added in an amount of 1% by weight, and succinonitrile represented by Chemical Formula 7 was added in an amount of 2% by weight. Prepared.
  • An electrolyte solution was prepared in the same manner as in Example 6, except that the compound (additive) represented by Formulas 1, 4, and 5 was not included at all.
  • An electrolytic solution was prepared in the same manner as in Example 6, except that glyoxal sulfate represented by Chemical Formula 1 was not added and malononitrile represented by Chemical Formula 6 was added in an amount of 2% by weight.
  • An electrolyte solution was prepared in the same manner as in Comparative Example 6, except that succinonitrile represented by Chemical Formula 7 was added instead of malononitrile represented by Chemical Formula 6.
  • An electrolyte was prepared in the same manner as in Comparative Example 6 except that glutaronitrile represented by Formula 8 was added instead of malononitrile represented by Formula 6.
  • An electrolyte was prepared in the same manner as in Comparative Example 6 except that adiponitril represented by Formula 9 was added instead of malononitrile represented by Formula 6.

Abstract

본 발명은 이차전지용 전해액 및 이를 포함하는 이차전지에 관한 것으로서, 상기 이차전지용 전해액은 이차전지의 출력특성, 및 고온 및 저온에서의 저장 특성을 개선시키고, 고전압에서도 전지의 전기 저항 및 충방전 용량 특성을 안정적으로 유지할 수 있다.

Description

이차전지용 전해액 및 이를 포함하는 이차전지
본 발명은 이차전지용 전해액 및 이를 포함하는 이차전지에 관한 것으로서, 상기 이차전지용 전해액은 이차전지의 출력특성, 및 고온 및 저온에서의 저장 특성을 개선시키고, 고전압에서도 전지의 전기 저항 및 충방전 용량 특성을 안정적으로 유지할 수 있다.
이차전지는 스마트폰, 태블릿 PC, 노트북 등 일상 속에서 사용하는 전자 기기들의 전원으로 이용되며, 각 제품의 용도와 소비자의 필요에 따라 그 크기와 모양이 매우 다양해지고 있다. 이로 인해, 언제 어디서나 이용이 가능하고 장시간 그 기능을 지속할 수 있는 이차전지의 개발이 요구되고 있다. 한편, 최근 이차전지의 적용분야가 소형 전자 기기들에 국한되지 않고, 드론, 청소기, 로봇 등 다양한 분야에 응용되고 있으며, 대표적인 이동수단인 자동차의 전원으로까지 응용되고 있다. 특히 이차전지를 주전원으로 이용하는 순수 전기차는 환경오염 문제를 유발하는 석탄 원료를 대체하는 차세대 운송 수단으로 각광받고 있다. 이러한 전기차에 적용되는 이차전지는 고출력 특성과 고온 및 저온에서의 저장 특성이 중요하다.
이에, 이차전지 연구 분야에서는 고출력 특성을 부여함과 동시에 고온 및 저온에서 저장특성 개선에 효과적인 이차전지용 전해액 개발에 대한 연구가 지속되고 있다.
일례로, 미국 등록특허 제8,617,749호는 리튬 디플루오로비스(옥살라토) 인산염 및 리튬 테트라플루오로(옥살라토) 인산염 등으로 이루어진 군으로부터 선택된 염을 포함하는 이차전지용 전해액의 전지 고온 성능 개선 효과를 개시하고 있다. 또한, 국제 공개특허 제2013-031551호 및 제2011-125397호는 (옥살라토) 인산염 또는 (옥살라토) 붕산염을 포함하는 전해액을 사용하여 고온 또는 0 ℃ 이하의 저온 상태에서 전지의 성능을 개선시키는 효과를 개시하고 있다.
그러나, 현재까지의 이차전지 기술은 빠르게 변화하는 산업의 요구 조건을 만족시키지 못하고 있다. 특히, 전기 자동차를 기반으로 한 무인자동차와 스마트카 분야에서 요구되는 고온 및 저온 같은 특수한 환경에서 이차전지의 고출력 특성이나 저장 특성 등이 안정적으로 유지되는 특성을 만족시키지 못하고 있다.
따라서, 온도 변화 같은 주변 환경에 구애받지 않고 고출력 및 고전압 특성을 유지할 수 있는 이차전지 전해액의 개발이 필요하다.
이에, 본 발명의 목적은 이차전지의 고온에서의 출력 특성, 및 고온 및 저온에서의 저장특성을 개선시킴과 동시에 고전압에서 전지의 출력 특성을 개선시킬 수 있는 이차전지용 전해액을 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명은
카보네이트계 용매;
리튬염;
하기 화학식 1의 화합물; 및
하기 화학식 2의 화합물과 하기 화학식 3의 화합물의 혼합물, 또는 하기 화학식 4 및 5로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상의 나이트릴계 화합물을 포함하는, 이차전지용 전해액을 제공한다:
Figure PCTKR2017014713-appb-C000001
Figure PCTKR2017014713-appb-C000002
Figure PCTKR2017014713-appb-C000003
Figure PCTKR2017014713-appb-C000004
Figure PCTKR2017014713-appb-C000005
상기 화학식 4에서,
m은 1 내지 4의 정수이다.
또한, 본 발명은 상기 이차전지용 전해액을 포함하는 이차전지를 제공한다.
본 발명의 이차전지용 전해액은 고온과 저온의 환경에서 전지의 충방전시에 전극 계면의 저항을 낮추고 전극을 보호하여 이차전지의 출력특성을 극대화하고, 고온 및 저온에서의 저장 특성을 개선시키고, 고전압에서도 전지의 전기 저항 및 충방전 용량 특성을 안정적으로 유지할 수 있다.
본 발명에 따른 이차전지용 전해액은 카보네이트계 용매; 리튬염; 하기 화학식 1의 화합물; 및 하기 화학식 2의 화합물과 하기 화학식 3의 화합물의 혼합물, 또는 하기 화학식 4 및 5로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상의 나이트릴계 화합물을 포함하는, 이차전지용 전해액을 제공한다:
[화학식 1]
Figure PCTKR2017014713-appb-I000001
[화학식 2]
Figure PCTKR2017014713-appb-I000002
[화학식 3]
Figure PCTKR2017014713-appb-I000003
[화학식 4]
Figure PCTKR2017014713-appb-I000004
[화학식 5]
Figure PCTKR2017014713-appb-I000005
상기 화학식 4에서,
m은 1 내지 4의 정수이다.
상기 화학식 1의 화합물은 공지의 화합물(CAS No. 496-45-7)로서, 바이사이클로-글리옥살 설페이트(bicyclo-glyoxal sulfate), 글리옥살 설페이트(glyoxal sulfate), 또는 3a,6a-디하이드로-[1,3,2]디옥사티올로[4,5-d][1,3,2]디옥사티올 2,2,5,5-테트라옥사이드(3a,6a-dihydro-[1,3,2]dioxathiolo[4,5-d][1,3,2]dioxathiole 2,2,5,5-tetraoxide) 등의 명칭으로 불리며, 시중에서 구매할 수 있다. 또한 상기 화학식 1의 화합물은 예를 들어, 1,1,2,2-테트라클로로에탄을 출발물질로 하여 발연 황산 등과 반응시키는 공지의 합성법으로 제조될 수 있다(미국 등록특허 제1,999,995호 및 미국 등록특허 제2,415,397호 참조).
상기 화학식 2의 화합물은 공지의 화합물(CAS No. 678966-16-0)로서, 리튬 디플루오로비스(옥살라토)인산염(lithium difluorobis(oxalato)phosphate)으로 불리며, 시중에서 구매 가능하거나 공지의 합성법으로 제조될 수 있다(일본 등록특허 제 5315971 호 참조).
상기 화학식 3의 화합물은 공지의 화합물(CAS No. 521065-36-1)로서, 리튬 테트라플루오로(옥살라토)인산염(lithium tetrafluoro(oxalato)phosphate)으로 불리며, 시중에서 구매 가능하거나 공지의 합성법으로 제조될 수 있다(일본 등록특허 제 6031828 호 참조).
상기 화학식 4에서 m이 1인 화합물은 말로노나이트릴(malononitrile)로 불리는 공지의 화합물(CAS No, 109-77-3)이고, m이 2인 화합물은 숙시노나이트릴(succinonitrile), 부탄디나이트릴(butanedinitrile) 등으로 불리는 공지의 화합물(CAS No, 110-61-2)이고, m이 3인 화합물은 글루타로나이트릴(glutaronitrile), 펜탄디나이트릴(pentanedinitrile) 등으로 불리는 공지의 화합물(CAS No. 544-13-8)이며, m이 4인 화합물은 아디포나이트릴(adiponitrile), 헥산디나이트릴(hexanedinitrile) 등으로 불리는 공지의 화합물(CAS No. 111-69-3)이다. 상기 화합물들은 모두 시중에서 구매하거나 공지의 합성법으로 제조될 수 있다.
상기 화학식 5의 화합물은 공지의 화합물(CAS No. 3386-87-6)로서, 에틸렌 글리콜 비스(프로피오나이트릴) 에테르(ethylene glycol bis(propionitrile) ether), 1,2-비스(2-시아노에톡시)에탄(1,2-bis(2-cyanoethoxy)ethane) 등의 명칭으로 불리며, 시중에서 구매하거나 공지의 합성법으로 제조될 수 있다.
상기 전해액은 총 중량 대비 0.05 내지 10 중량%의 상기 화학식 1의 화합물, 및 총 중량 대비 0.05 내지 10 중량%의 상기 화학식 2의 화합물과 화학식 3의 화합물의 혼합물을 포함할 수 있다. 구체적으로, 상기 전해액은 총 중량 대비 상기 화학식 1의 화합물을 0.1 내지 10 중량%, 0.1 내지 5 중량%, 0.5 내지 3 중량%, 1 내지 3 중량%, 또는 1 내지 2 중량%; 및 상기 화학식 2의 화합물과 화학식 3의 화합물의 혼합물을 0.1 내지 10 중량%, 0.1 내지 5 중량%, 0.5 내지 3 중량% 또는 1 내지 2 중량%로 포함할 수 있다. 화학식 1의 화합물을 상기 함량 범위 내로 포함할 경우, 고온에서 전지의 고출력 효과를 수득할 수 있으며, 상온에서 전지의 초기 저항의 과도한 증가가 방지되는 효과가 있다. 또한, 화학식 2의 화합물과 화학식 3의 화합물의 혼합물을 상기 함량 범위 내로 포함할 경우, 전지의 초기 저항을 줄일 수 있으며, 고온 및 저온에서 장기 저장 특성의 과도한 감소가 방지되는 효과가 있다.
상기 혼합물은 화학식 2의 화합물과 화학식 3의 화합물을 0.1 내지 5.0 : 0.01 내지 1.0의 중량비로 포함할 수 있다.
상기 전해액은 총 중량 대비 0.05 내지 10 중량%의 상기 화학식 1의 화합물, 및 총 중량 대비 0.05 내지 10 중량%의 나이트릴계 화합물을 포함할 수 있다. 구체적으로, 상기 전해액은 총 중량 대비 상기 화학식 1의 화합물을 0.1 내지 10 중량%, 0.1 내지 5 중량%, 0.5 내지 3 중량%, 1 내지 3 중량%, 또는 1 내지 2 중량%, 및 상기 나이트릴계 화합물을 0.1 내지 10 중량%, 0.1 내지 5 중량%, 0.5 내지 3 중량% 또는 1 내지 2 중량%로 포함할 수 있다. 상기 나이트릴계 화합물을 상기 함량 범위 내로 포함할 경우, 고온 및 고전압 환경에서 전지의 안정성이 증가하는 효과 및 전지 저항의 과도한 증가가 방지되는 효과가 있다.
카보네이트계 용매
상기 카보네이트계 용매는 상기 리튬염 및 상기 화학식 1 내지 3의 화합물 및 상기 나이트릴계 화합물에 대한 용해도가 높은 것이 바람직하다. 구체적으로, 상기 카보네이트계 용매는 디에틸 카보네이트(diethyl carbonate), 에틸메틸 카보네이트(ethylmethyl carbonate), 디메틸 카보네이트(dimethyl carbonate), 디프로필 카보네이트(dipropyl carbonate), 메틸프로필 카보네이트(methylpropyl carbonate), 에틸프로필 카보네이트(ethylpropyl carbonate), 메틸에틸 카보네이트(methylethyl carbonate), 에틸렌 카보네이트(ethylene carbonate), 프로필렌 카보네이트(propylene carbonate), 부틸렌 카보네이트(butylene carbonate) 및 플루오로에틸렌 카보네이트(fluoroethylene carbonate)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 보다 구체적으로, 상기 카보네이트계 용매는 디에틸 카보네이트, 에틸메틸 카보네이트, 디메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트 및 메틸에틸 카보네이트로 이루어진 군으로부터 선택된 1종 이상의 선형 카보네이트계 용매; 및 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트 및 플루오로에틸렌 카보네이트로 이루어진 군으로부터 선택된 1종 이상의 환형 카보네이트계 용매를 포함할 수 있다.
상기 카보네이트계 용매는 탈수된 것을 사용할 수 있으며, 구체적으로, 카보네이트계 용매는 50 중량ppm 이하, 또는 30 중량ppm 이하의 수분을 포함할 수 있다.
리튬염
상기 리튬염은 이차전지용 전해액에 통상 사용되는 것이라면 특별히 한정하지 않는다. 구체적으로, 상기 리튬염은 LiPF6, LiBF4, LiBF6, LiSO3CF3, LiN(CF3SO2)2, LiN(C2F5SO2)2 및 LiN(SO2F)2로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 전해액은 상기 카보네이트계 용매 1 리터를 기준으로 0.1 내지 5.0 몰의 리튬염을 포함할 수 있다. 구체적으로, 상기 전해액은 상기 카보네이트계 용매 1 리터를 기준으로 0.1 내지 4.0 몰, 0.1 내지 3.0 몰, 0.5 내지 4.0 몰, 0.5 내지 3.0 몰 또는 0.5 내지 2.0 몰의 리튬염을 포함할 수 있다. 리튬염을 상기 범위 내로 포함할 경우, 전해액의 이온 전도도가 적절하게 확보되며, 리튬염의 용해도 문제를 방지할 수 있고, 첨가한 리튬염의 농도대비 수득할 수 있는 전해액의 이온 전도도 향상 효과가 높아 경제적이다.
본 발명에 따른 이차전지용 전해액은 카보네이트계 용매; 리튬염; 상기 화학식 1로 표시되는 글리옥살 설페이트; 및 상기 화학식 2 및 3으로 표시되는 화합물, 또는 상기 화학식 4 및/또는 5로 표시되는 나이트릴계 화합물을 단순히 혼합하고 교반함으로써 제조될 수 있다.
본 발명의 이차전지용 전해액은 전지의 충/방전시에 전극 계면에 피막을 형성하여 전지의 저항을 낮춰주고 전극을 보호하여, 전지의 출력 특성을 개선함과 동시에 고온 및 저온에서의 출력 특성과 저장 특성을 안정적으로 유지 및 개선할 수 있다.
이차전지
본 발명은 상기 이차전지용 전해액을 포함하는 이차전지를 제공한다. 구체적으로, 상기 이차전지는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극과 음극 사이에 배치되는 분리막; 및 상기 이차전지용 전해액을 포함할 수 있다.
상기 양극은 리튬 이온을 가역적으로 흡장 및 탈리할 수 있는 양극 활물질을 포함한다. 상기 양극 활물질은 코발트, 망간 및 니켈로 이루어진 군으로부터 선택된 1종 이상의 금속; 및 리튬을 포함하는 복합 금속 산화물일 수 있다. 상기 금속 사이의 고용율은 다양하게 이루어질 수 있으며, 상기 양극 활물질은 상술한 금속 외에 Mg, Al, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Cr, Fe, Sr 및 희토류 원소로 이루어진 군에서 선택되는 1종 이상의 원소를 더 포함할 수 있다.
상기 음극은 리튬 이온을 자유롭게 저장 및 탈리할 수 있는 음극 활물질을 포함한다. 상기 음극 활물질은 결정질 또는 비정질의 탄소, 또는 탄소 복합체의 탄소계 음극 활물질(열적으로 분해된 탄소, 코크, 흑연); 연소된 유기 중합체 화합물; 탄소 섬유; 산화 주석 화합물; 리튬 금속; 또는 리튬 합금일 수 있다. 예를 들어, 상기 비정질 탄소는 하드 카본, 코크스, 1500 ℃ 이하에서 소성한 메조카본 마이크로비드(mesocarbon microbead; MCMB), 메조페이스 피치계 탄소 섬유(mesophase pitch-based carbon fiber; MPCF) 등일 수 있다. 상기 결정질 탄소는 흑연계 재료일 수 있으며, 예를 들어, 천연흑연, 인조흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등을 들 수 있다. 상기 리튬 합금 중 리튬과 합금을 이루는 다른 원소는 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐일 수 있다. 또한, 상기 음극 활물질은 0.1 내지 100 중량%의 실리콘 산화물 또는 실리콘 합금과 탄소계 음극 활물질을 혼합한 것일 수 있다.
상기 분리막은 양극과 음극 사이의 직접적인 접촉으로 인한 단락을 방지하기 위한 것으로, 예를 들어, 폴리올레핀, 폴리프로필렌, 폴리에틸렌 등의 고분자막 또는 이들의 다중막; 미세다공성 필름; 직포; 및 부직포 등을 들 수 있다. 상기 분리막은 단면 혹은 양면에 금속 산화물 등이 코팅된 것일 수 있다.
이하, 구체적인 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
이하의 실시예 및 비교예에서 사용되는 화학식 1 내지 5의 화합물들은 모두 공지의 화합물로서, 이들의 구조식, 화학명 및 CAS No.는 아래와 같다:
(1) 화학식 1의 화합물: 글리옥살 설페이트, glyoxal sulfate, CAS No. 496-45-7.
[화학식 1]
Figure PCTKR2017014713-appb-I000006
(2) 화학식 2의 화합물: 리튬 디플루오로비스(옥살라토)인산염(lithium difluorobis(oxalato)phosphate), CAS No. 678966-16-0.
[화학식 2]
Figure PCTKR2017014713-appb-I000007
(3) 화학식 3의 화합물: 리튬 테트라플루오로(옥살라토)인산염(lithium tetrafluoro(oxalato)phosphate), CAS No. 521065-36-1.
[화학식 3]
Figure PCTKR2017014713-appb-I000008
(4) 화학식 4에서 m이 1인 화합물(하기 화학식 6으로 표시되는 화합물): 말로노나이트릴(malononitrile), CAS No. 109-77-3.
Figure PCTKR2017014713-appb-C000006
(5) 화학식 4에서 m이 2인 화합물(하기 화학식 7로 표시되는 화합물): 숙시노나이트릴(succinonitrile), CAS No. 110-61-2.
Figure PCTKR2017014713-appb-C000007
(6) 화학식 4에서 m이 3인 화합물(하기 화학식 8로 표시되는 화합물): 글루타로나이트릴(glutaronitrile), CAS No. 544-13-8.
Figure PCTKR2017014713-appb-C000008
(7) 화학식 4에서 m이 4인 화합물(하기 화학식 9로 표시되는 화합물): 아디포나이트릴(adiponitrile), CAS No. 111-69-3.
Figure PCTKR2017014713-appb-C000009
(8) 화학식 5의 화합물: 에틸렌 글리콜 비스(프로피오나이트릴) 에테르(ethylene glycol bis(propionitrile) ether), CAS No. 3386-87-6.
[화학식 5]
Figure PCTKR2017014713-appb-I000009
제조예 1. 글리옥살 설페이트의 제조
상기 화학식 1의 화합물은 다음과 같은 공지의 합성법에 따라 제조될 수 있다.
먼저, 60℃의 오일 배쓰에 1,000 ㎖의 3구 플라스크와 컨덴서를 장착하였다. 상기 3구 플라스크에 1,1,2,2-테트라클로로에탄 70g을 넣고 온도를 60℃로 안정화시킨 후, 황산(60% fuming grade) 320g을 투입하여 반응을 개시하였다. 반응액은 초기에 투명 내지 연한 갈색의 점성을 나타내었으며, 반응 개시로부터 4시간 경과 후에 결정성 고체가 생성되었다. 오일 배쓰를 상온으로 식히고 추가 3시간 동안 저속 교반하였다. 이후 5~7℃의 냉수 배쓰로 교체하고 추가 2시간 동안 저속 교반하였다. 결정성 고체의 추가 생성이 없을 때 반응을 종결시켰다. 수득한 슬러리 용액을 여과기로 고액 분리한 후, 20 Torr 하에서 12시간 동안 진공 건조하였다. 그 결과 상기 화학식 1로 표시되는 글리옥살 설페이트 72.8g을 수득하였다(수율: 84.4%).
전해액의 제조-A
실시예 1.
에틸렌 카보네이트(EC) 429 g, 에틸메틸 카보네이트(EMC) 589 g, 및 디에틸 카보네이트(DEC) 380 g을 혼합하여 혼합액을 제조하고, 상기 혼합액에 151.9 g의 LiPF6을 투입하여, 1.0 M의 LiPF6 용액을 제조하였다. 이후, 상기 용액에 1 중량%의 상기 화학식 1로 표시되는 글리옥살 설페이트 및 화학식 2 및 3으로 표시되는 화합물들의 혼합물(상기 화학식 2의 화합물과 화학식 3의 화합물을 3:1의 중량비로 포함)을 1 중량%로 첨가하여, 이차전지용 전해액(전해질 용액)을 제조하였다.
실시예 2.
화학식 1로 표시되는 글리옥살 설페이트를 2 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
실시예 3.
화학식 1로 표시되는 글리옥살 설페이트를 1.5 중량%의 함량으로, 화학식 2 및 3으로 표시되는 화합물들의 혼합물을 1.5 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
실시예 4.
화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 화학식 2 및 3으로 표시되는 화합물들의 혼합물을 2 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
실시예 5.
화학식 1로 표시되는 글리옥살 설페이트를 0.05 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
비교예 1.
화학식 1 내지 3으로 표시되는 첨가제를 전혀 첨가하지 않는 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
비교예 2.
화학식 2 및 3으로 표시되는 화합물을 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
비교예 3.
화학식 1 및 3으로 표시되는 화합물을 첨가하지 않고, 화학식 2로 표시되는 리튬 디플루오로비스(옥살라토)인산염 대신 리튬 디플루오로비스(옥살라토)붕산염을 2 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
비교예 4.
리튬 디플루오로비스(옥살라토) 붕산염 대신 리튬 디(옥살라토) 붕산염을 첨가한 것을 제외하고는, 비교예 3과 동일한 방법으로 전해액을 제조하였다.
실험예 1. 리튬 이차전지의 고온/고전압 환경하에서의 임피던스(mΩ) 측정
양극 활물질인 LiNi0 . 5Co0 . 2Mn0 .3과 LiMn2O4을 1:1 중량비로 혼합한 양극재, 및 음극 활물질인 인조흑연과 천연흑연을 1:1 중량비로 사용한 음극재를 사용하여 통상의 방법으로 1.3 Ah 파우치 전지를 조립하고, 상기 실시예 1 내지 5 및 비교예 1 내지 4의 전해액을 각각 6 g씩 주입하여 이차전지를 완성하였다. 전지 화성 공정을 수행한 후, 상온에서 1.3 Ah 파우치 전지의 만충전 대비 60 %의 충전상태 전압을 유지한 채 3 C(쿨롱)로 10 초간 방전시켰을 때 얻어지는 임피던스를 PNE-0506 충방전기(제조사: (주)PNE 솔루션)로 측정하여 하기 표 1에 나타내었다.
또한, 동일 전지를 만충전 상태에서, 충방전기(상기와 동일한 장비 사용)로 임피던스를 측정하였다. 이후 70 ℃ 고온 오븐에 4 주 동안 저장하고 4 주 후의 방전 임피던스를 측정하여 표 1에 나타내었다.
전해액 중 첨가제의 함량 임피던스 (mΩ)
상온 (초기) 70℃ (4주 경과 후)
실시예 1 1 중량%의 화학식 1 + 1 중량%의 화학식 2 및 3의 화합물의 혼합물 33 40
실시예 2 2 중량%의 화학식 1 + 1 중량%의 화학식 2 및 3의 화합물의 혼합물 32 38
실시예 3 1.5 중량%의 화학식 1 + 1.5 중량%의 화학식 2 및 3의 화합물의 혼합물 33 36
실시예 4 1 중량%의 화학식 1 + 2 중량%의 화학식 2 및 3의 화합물의 혼합물 32 39
실시예 5 0.05 중량%의 화학식 1 + 1 중량%의 화학식 2 및 3의 화합물의 혼합물 34 46
비교예 1 무첨가 33 63
비교예 2 1 중량%의 화학식 1 34 43
비교예 3 2 중량%의 리튬 디플루오로비스(옥살라토)붕산염 34 50
비교예 4 2 중량%의 리튬 디(옥살라토)붕산염 35 59
표 1에서 보는 바와 같이, 실시예 1 내지 5의 전해액은, 첨가제를 첨가하지 않거나(비교예 1), 다른 종류의 첨가제를 첨가한 경우(비교예 2 내지 4)와 비교하여, 전지 방전시 임피던스가 낮아짐을 확인할 수 있었다. 이는 본 발명의 첨가제 조합(화학식 1 내지 3의 화합물)을 포함하는 전해액을 사용함으로써 전지방전 과정에서 전극과 전해질 계면의 낮은 저항 특성으로 인해 전지의 출력 특성이 향상됨을 보여주는 결과이다.
실험예 2. 리튬 이차전지의 고온 환경하에서의 저장특성 (용량회복성 %)
상기 실험예 1과 동일한 방법으로 전지 화성공정을 수행하여 이차전지(1.3 Ah 파우치 전지)를 얻은 후, 1.3 Ah 파우치 전지를 만충전 상태로 70 ℃ 오븐에 4 주 동안 저장한 후 4주 경과 후 초기 충전용량 대비 방전용량을 PNE-0506 충방전기(제조사: (주)PNE 솔루션)로 측정하여 하기 표 2에 나타내었다.
전해액 중 첨가제의 함량 70℃ 저장 용량회복성 (%)
초기 4주 경과 후
실시예 1 1 중량%의 화학식 1 + 1 중량%의 화학식 2 및 3의 화합물의 혼합물 100 88
실시예 2 2 중량%의 화학식 1 + 1 중량%의 화학식 2 및 3의 화합물의 혼합물 100 92
실시예 3 1.5 중량%의 화학식 1 + 1.5 중량%의 화학식 2 및 3의 화합물의 혼합물 100 89
실시예 4 1 중량%의 화학식 1 + 2 중량%의 화학식 2 및 3의 화합물의 혼합물 100 88
실시예 5 0.05 중량%의 화학식 1 + 1 중량%의 화학식 2 및 3의 화합물의 혼합물 100 81
비교예 1 무첨가 100 61
비교예 2 1 중량%의 화학식 1 100 86
비교예 3 2 중량%의 리튬 디플루오로비스(옥살라토)붕산염 100 80
비교예 4 2 중량%의 리튬 디(옥살라토)붕산염 100 83
표 2에서 보는 바와 같이, 실시예 1 내지 5의 전해액은, 첨가제를 첨가하지 않거나(비교예 1), 다른 종류의 첨가제를 첨가한 경우(비교예 2 내지 4)와 비교하여, 전지 초기 충전량 대비한 고온(70 ℃) 저장 이후의 방전량이 현저히 안정한 것을 확인할 수 있었다. 이는 본 발명의 첨가제를 포함하는 전해액을 사용함으로써 전지의 고온 저장 중 발생하는 전기화학적 전극용량 감소가 현저히 줄어들었음을 보여주는 결과이다. 이로써 본 발명의 전해액을 포함하는 이차전지는 고온에서도 안정적인 충방전 용량을 구현함을 확인할 수 있었다.
실험예 3. 리튬 이차전지의 저온 수명 특성 (용량회복성 %)
상기 실험예 1과 동일한 방법으로 전지 화성공정을 수행하여 이차전지(1.3 Ah 파우치 전지)를 얻은 후, 1.3 Ah 파우치 전지를 만충전 상태로 -15℃ 오븐에서 10 시간 동안 방치하는 것을 1 사이클로, 5 사이클 후 초기 충전용량 대비 방전용량을 PNE-0506 충방전기(제조사: (주)PNE 솔루션)로 측정하여 하기 표 3에 나타내었다.
전해액 중 첨가제의 함량 -15℃ 저장 용량회복성 (%)
초기 5 사이클 경과 후
실시예 1 1 중량%의 화학식 1 + 1 중량%의 화학식 2 및 3의 화합물의 혼합물 100 63
실시예 2 2 중량%의 화학식 1 + 1 중량%의 화학식 2 및 3의 화합물의 혼합물 100 61
실시예 3 1.5 중량%의 화학식 1 + 1.5 중량%의 화학식 2 및 3의 화합물의 혼합물 100 70
실시예 4 1 중량%의 화학식 1 + 2 중량%의 화학식 2 및 3의 화합물의 혼합물 100 72
실시예 5 0.05 중량%의 화학식 1 + 1 중량%의 화학식 2 및 3의 화합물의 혼합물 100 59
비교예 1 무첨가 100 40
비교예 2 1 중량%의 화학식 1 100 57
비교예 3 2 중량%의 리튬 디플루오로비스(옥살라토)붕산염 100 55
비교예 4 2 중량%의 리튬 디(옥살라토)붕산염 100 51
표 3에서 보는 바와 같이, 실시예 1 내지 5의 전해액은, 첨가제를 첨가하지 않거나(비교예 1), 다른 종류의 첨가제를 첨가한 경우(비교예 2 내지 4)와 비교하여, 전지 초기 충전량 대비한 저온(-15 ℃) 저장 이후의 방전량이 상당히 안정한 것을 확인할 수 있었다. 이는 본 발명의 첨가제 조합을 포함하는 전해액을 사용함으로써 전지의 저온 저장 중 발생하는 전기화학적 전극용량 감소가 현저히 개선되었음을 보여주는 결과이다. 이로써 본 발명의 전해액을 포함하는 이차전지는 저온에서 비교적 안정적인 충방전 용량을 구현함을 확인할 수 있었다.
전해액의 제조-B
실시예 6.
429 g의 에틸렌 카보네이트(EC), 589 g의 에틸메틸 카보네이트(EMC) 및 380 g의 디에틸 카보네이트(DEC)를 혼합하여 혼합액을 제조하고, 상기 혼합액에 151.9 g의 LiPF6을 투입하여 1 몰/ℓ의 농도의 LiPF6 용액을 제조하였다. 이후, 전해액 총 중량에 대하여 1 중량%의 상기 화학식 1로 표시되는 글리옥살 설페이트 및 1 중량%의 상기 화학식 6으로 표시되는 말로노나이트릴을 첨가하고 혼합하여, 이차전지용 전해액을 제조하였다.
실시예 7.
상기 화학식 6으로 표시되는 말로노나이트릴 대신 상기 화학식 7로 표시되는 숙시노나이트릴을 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 8.
상기 화학식 6으로 표시되는 말로노나이트릴 대신 상기 화학식 8로 표시되는 글루타로나이트릴을 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 9.
상기 화학식 6으로 표시되는 말로노나이트릴 대신 상기 화학식 9로 표시되는 아디포나이트릴을 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 10.
상기 화학식 6으로 표시되는 말로노나이트릴 대신 상기 화학식 5로 표시되는 에틸렌 글리콜 비스(프로피오나이트릴) 에테르를 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 11.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 6으로 표시되는 말로노나이트릴을 0.5 중량%의 함량으로, 상기 화학식 7로 표시되는 숙시노나이트릴을 0.5 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 12.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 6으로 표시되는 말로노나이트릴을 0.5 중량%의 함량으로, 상기 화학식 8로 표시되는 글루타로나이트릴을 0.5 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 13.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 7로 표시되는 숙시노나이트릴을 0.5 중량%의 함량으로, 상기 화학식 8로 표시되는 글루타로나이트릴을 0.5 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 14.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 6으로 표시되는 말로노나이트릴을 0.5 중량%의 함량으로, 상기 화학식 5로 표시되는 에틸렌 글리콜 비스(프로피오나이트릴) 에테르를 0.5 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 15.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 7로 표시되는 숙시노나이트릴을 0.5 중량%의 함량으로, 상기 화학식 5로 표시되는 에틸렌 글리콜 비스(프로피오나이트릴) 에테르를 0.5 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 16.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 8로 표시되는 글루타로나이트릴을 0.5 중량%의 함량으로, 상기 화학식 5로 표시되는 에틸렌 글리콜 비스(프로피오나이트릴) 에테르를 0.5 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 17.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 9로 표시되는 아디포나이트릴을 0.5 중량%의 함량으로, 상기 화학식 5로 표시되는 에틸렌 글리콜 비스(프로피오나이트릴) 에테르를 0.5 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 18.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 7로 표시되는 숙시노나이트릴을 0.5 중량%의 함량으로, 상기 화학식 9로 표시되는 아디포나이트릴을 0.5 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 19.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 5로 표시되는 에틸렌 글리콜 비스(프로피오나이트릴) 에테르를 2 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 20.
상기 화학식 1로 표시되는 글리옥살 설페이트를 1 중량%의 함량으로, 상기 화학식 7로 표시되는 숙시노나이트릴을 2 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
실시예 21.
상기 화학식 1로 표시되는 글리옥살 설페이트를 0.005 중량%의 함량으로, 상기 화학식 7로 표시되는 숙시노나이트릴을 1 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
비교예 5.
상기 화학식 1, 4 및 5로 표시되는 화합물(첨가제)을 전혀 포함하지 않는 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
비교예 6.
상기 화학식 1로 표시되는 글리옥살 설페이트를 첨가하지 않고, 상기 화학식 6으로 표시되는 말로노나이트릴을 2 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 6과 동일한 방법으로 전해액을 제조하였다.
비교예 7.
상기 화학식 6으로 표시되는 말로노나이트릴 대신 상기 화학식 7로 표시되는 숙시노나이트릴을 첨가한 것을 제외하고는, 비교예 6과 동일한 방법으로 전해액을 제조하였다.
비교예 8.
상기 화학식 6으로 표시되는 말로노나이트릴 대신 상기 화학식 8로 표시되는 글루타로나이트릴을 첨가한 것을 제외하고는, 비교예 6과 동일한 방법으로 전해액을 제조하였다.
비교예 9.
상기 화학식 6으로 표시되는 말로노나이트릴 대신 상기 화학식 9로 표시되는 아디포나이트릴을 첨가한 것을 제외하고는, 비교예 6과 동일한 방법으로 전해액을 제조하였다.
비교예 10.
상기 화학식 6으로 표시되는 말로노나이트릴 대신 상기 화학식 5로 표시되는 에틸렌 글리콜 비스(프로피오나이트릴) 에테르를 첨가한 것을 제외하고는, 비교예 6과 동일한 방법으로 전해액을 제조하였다.
실험예 4. 리튬 이차전지의 고온/고전압 환경하에서의 임피던스( ) 측정
양극 활물질인 LiNi0 . 5Co0 . 2Mn0 .3과 LiMn2O4을 1:1 중량비로 혼합한 양극재, 및 음극 활물질인 인조흑연과 천연흑연을 1:1 중량비로 사용한 음극재를 사용하여 통상의 방법으로 1.3 Ah 파우치 전지를 조립하고, 상기 실시예 6 내지 21 및 비교예 5 내지 10의 전해액을 각각 6 g씩 주입하여 이차전지를 완성하였다. 전지 화성 공정을 수행한 후, 상온에서 1.3 Ah 파우치 전지의 4.4 V 만충전 대비 60 %의 충전상태 전압을 유지한 채 3 C(쿨롱)로 10 초간 방전시켰을 때 얻어지는 임피던스를 PNE-0506 충방전기(제조사: (주)PNE 솔루션)로 측정하여 하기 표 4에 나타내었다.
또한, 동일 전지를 4.4 V 만충전 상태에서, 충방전기(상기와 동일한 장비 사용)로 임피던스를 측정하였다. 이후 60 ℃ 고온 오븐에 4 주 동안 저장하고 4 주 후의 방전 임피던스를 측정하여 표 4에 나타내었다.
전해액 중 첨가제의 함량 임피던스 (mΩ)
상온 (초기) 60℃ (4주경과)
실시예 6 1 중량%의 화학식 1 + 1 중량%의 화학식 6 35 47
실시예 7 1 중량%의 화학식 1 + 1 중량%의 화학식 7 34 43
실시예 8 1 중량%의 화학식 1 + 1 중량%의 화학식 8 35 49
실시예 9 1 중량%의 화학식 1 + 1 중량%의 화학식 9 36 50
실시예 10 1 중량%의 화학식 1 + 1 중량%의 화학식 5 35 41
실시예 11 1 중량%의 화학식 1 + 0.5 중량%의 화학식 6 + 0.5 중량%의 화학식 7 36 45
실시예 12 1 중량%의 화학식 1 + 0.5 중량%의 화학식 6 + 0.5 중량%의 화학식 8 37 47
실시예 13 1 중량%의 화학식 1 + 0.5 중량%의 화학식 7 + 0.5 중량%의 화학식 8 36 48
실시예 14 1 중량%의 화학식 1 + 0.5 중량%의 화학식 6 + 0.5 중량%의 화학식 5 37 45
실시예 15 1 중량%의 화학식 1 + 0.5 중량%의 화학식 7 + 0.5 중량%의 화학식 5 35 46
실시예 16 1 중량%의 화학식 1 + 0.5 중량%의 화학식 8 + 0.5 중량%의 화학식 5 36 48
실시예 17 1 중량%의 화학식 1 + 0.5 중량%의 화학식 9 + 0.5 중량%의 화학식 5 37 47
실시예 18 1 중량%의 화학식 1 + 0.5 중량%의 화학식 7 + 0.5 중량%의 화학식 9 37 46
실시예 19 1 중량%의 화학식 1 + 2 중량%의 화학식 5 36 49
실시예 20 1 중량%의 화학식 1 + 2 중량%의 화학식 7 36 50
실시예 21 0.005 중량%의 화학식 1 + 1 중량%의 화학식 7 37 56
비교예 5 무첨가 37 64
비교예 6 2 중량%의 화학식 6 40 55
비교예 7 2 중량%의 화학식 7 39 53
비교예 8 2 중량%의 화학식 8 40 58
비교예 9 2 중량%의 화학식 9 41 59
비교예 10 2 중량%의 화학식 5 38 52
표 4에서 보는 바와 같이, 본 발명의 첨가제를 포함하는 실시예 6 내지 21의 전해액은, 첨가제를 첨가하지 않거나(비교예 5), 본 발명의 첨가제 조합이 아닌 첨가제를 첨가한 경우(비교예 6 내지 10)와 비교하여, 고온 저장 후 방전시 전지의 임피던스가 과도하게 증가하지 않았다. 이는 본 발명의 첨가제 조합(화학식 1, 및 화학식 4 및/또는 5)을 포함하는 전해액을 사용함으로써 전지방전 과정에서 전극과 전해질 계면의 낮은 저항 특성으로 인해 전지의 출력 특성이 향상됨을 보여주는 결과이다.
실험예 5. 리튬 이차전지의 고온/고전압 환경하에서의 저장특성( 용량회복성 , %)
상기 실험예 4와 동일한 방법으로 전지 화성공정을 수행하여 이차전지(1.3 Ah 파우치 전지)를 얻은 후, 1.3 Ah 파우치 전지를 4.4 V 만충전 상태로 60 ℃ 오븐에 4 주 동안 저장한 후 4주 경과 후 초기 충전용량 대비 방전용량을 PNE-0506 충방전기(제조사: (주)PNE 솔루션)로 측정하여 하기 표 5에 나타내었다.
전해액 중 첨가제의 함량 70℃ 고온저장 용량회복성 (%)
초기 4주 경과 후
실시예 6 1 중량%의 화학식 1 + 1 중량%의 화학식 6 100 86
실시예 7 1 중량%의 화학식 1 + 1 중량%의 화학식 7 100 90
실시예 8 1 중량%의 화학식 1 + 1 중량%의 화학식 8 100 79
실시예 9 1 중량%의 화학식 1 + 1 중량%의 화학식 9 100 77
실시예 10 1 중량%의 화학식 1 + 1 중량%의 화학식 5 100 92
실시예 11 1 중량%의 화학식 1 + 0.5 중량%의 화학식 6 + 0.5 중량%의 화학식 7 100 89
실시예 12 1 중량%의 화학식 1 + 0.5 중량%의 화학식 6 + 0.5 중량%의 화학식 8 100 82
실시예 13 1 중량%의 화학식 1 + 0.5 중량%의 화학식 7 + 0.5 중량%의 화학식 8 100 84
실시예 14 1 중량%의 화학식 1 + 0.5 중량%의 화학식 6 + 0.5 중량%의 화학식 5 100 89
실시예 15 1 중량%의 화학식 1 + 0.5 중량%의 화학식 7 + 0.5 중량%의 화학식 5 100 90
실시예 16 1 중량%의 화학식 1 + 0.5 중량%의 화학식 8 + 0.5 중량%의 화학식 5 100 87
실시예 17 1 중량%의 화학식 1 + 0.5 중량%의 화학식 9 + 0.5 중량%의 화학식 5 100 83
실시예 18 1 중량%의 화학식 1 + 0.5 중량%의 화학식 7 + 0.5 중량%의 화학식 9 100 84
실시예 19 1 중량%의 화학식 1 + 2 중량%의 화학식 5 100 82
실시예 20 1 중량%의 화학식 1 + 2 중량%의 화학식 7 100 80
실시예 21 0.005 중량%의 화학식 1 + 1 중량%의 화학식 7 100 78
비교예 5 무첨가 100 61
비교예 6 2 중량%의 화학식 6 100 77
비교예 7 2 중량%의 화학식 7 100 80
비교예 8 2 중량%의 화학식 8 100 74
비교예 9 2 중량%의 화학식 9 100 71
비교예 10 2 중량%의 화학식 5 100 81
표 5에서 보는 바와 같이, 실시예의 전해액은, 첨가제를 첨가하지 않거나(비교예 5), 본 발명의 첨가제 조합이 아닌 첨가제를 첨가한 경우(비교예 6 내지 10)와 비교하여, 전지 초기 충전량 대비 고온(60 ℃) 저장 후의 방전량이 현저히 안정적이었다. 이는 본 발명의 첨가제 조합(화학식 1, 및 화학식 4 및/또는 5)을 포함하는 전해액을 사용함으로써, 전지의 고온 저장 중 발생하는 전기화학적 전극용량 감소가 현저히 줄어들었음을 보여주는 결과이다. 이로써 본 발명의 전해액은 고온에서도 전지의 충방전 용량을 안정적으로 유지함을 알 수 있었다.

Claims (9)

  1. 카보네이트계 용매;
    리튬염;
    하기 화학식 1의 화합물; 및
    하기 화학식 2의 화합물과 하기 화학식 3의 화합물의 혼합물, 또는 하기 화학식 4 및 5로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상의 나이트릴계 화합물을 포함하는, 이차전지용 전해액:
    [화학식 1]
    Figure PCTKR2017014713-appb-I000010
    [화학식 2]
    Figure PCTKR2017014713-appb-I000011
    [화학식 3]
    Figure PCTKR2017014713-appb-I000012
    [화학식 4]
    Figure PCTKR2017014713-appb-I000013
    [화학식 5]
    Figure PCTKR2017014713-appb-I000014
    상기 화학식 4에서,
    m은 1 내지 4의 정수이다.
  2. 제1항에 있어서,
    상기 카보네이트계 용매가 디에틸 카보네이트(diethyl carbonate), 에틸메틸 카보네이트(ethylmethyl carbonate), 디메틸 카보네이트(dimethyl carbonate), 디프로필 카보네이트(dipropyl carbonate), 메틸프로필 카보네이트(methylpropyl carbonate), 에틸프로필 카보네이트(ethylpropyl carbonate), 메틸에틸 카보네이트(methylethyl carbonate), 에틸렌 카보네이트(ethylene carbonate), 프로필렌 카보네이트(propylene carbonate), 부틸렌 카보네이트(butylene carbonate) 및 플루오로에틸렌 카보네이트(fluoroethylene carbonate)로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 이차전지용 전해액.
  3. 제2항에 있어서,
    상기 카보네이트계 용매가
    디에틸 카보네이트, 에틸메틸 카보네이트, 디메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트 및 메틸에틸 카보네이트로 이루어진 군으로부터 선택된 1종 이상의 선형 카보네이트계 용매; 및
    에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트 및 플루오로에틸렌 카보네이트로 이루어진 군으로부터 선택된 1종 이상의 환형 카보네이트계 용매를 포함하는, 이차전지용 전해액.
  4. 제1항에 있어서,
    상기 리튬염이 LiPF6, LiBF4, LiBF6, LiSO3CF3, LiN(CF3SO2)2, LiN(C2F5SO2)2 및 LiN(SO2F)2로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 이차전지용 전해액.
  5. 제1항에 있어서,
    상기 전해액이 총 중량 대비 0.05 내지 10 중량%의 상기 화학식 1의 화합물, 및 0.05 내지 10 중량%의 상기 화학식 2의 화합물과 화학식 3의 화합물의 혼합물을 포함하는, 이차전지용 전해액.
  6. 제5항에 있어서,
    상기 전해액이 총 중량 대비 0.1 내지 5 중량%의 상기 화학식 1의 화합물, 및 0.5 내지 3 중량%의 상기 화학식 2의 화합물과 화학식 3의 화합물의 혼합물을 포함하는, 이차전지용 전해액.
  7. 제1항에 있어서,
    상기 전해액이 총 중량 대비 0.05 내지 10 중량%의 상기 화학식 1의 화합물 및 0.05 내지 10 중량%의 상기 나이트릴계 화합물을 포함하는, 이차전지용 전해액.
  8. 제1항에 있어서,
    상기 전해액이 상기 카보네이트계 용매 1 리터를 기준으로 0.1 내지 5.0 몰의 리튬염을 포함하는, 이차전지용 전해액.
  9. 제1항 내지 제8항 중 어느 한 항의 이차전지용 전해액을 포함하는 이차전지.
PCT/KR2017/014713 2016-12-27 2017-12-14 이차전지용 전해액 및 이를 포함하는 이차전지 WO2018124557A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160180026A KR20180075996A (ko) 2016-12-27 2016-12-27 이차전지용 전해액 및 이를 포함하는 이차전지
KR10-2016-0180054 2016-12-27
KR10-2016-0180026 2016-12-27
KR1020160180054A KR20180076010A (ko) 2016-12-27 2016-12-27 이차전지용 전해액 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2018124557A1 true WO2018124557A1 (ko) 2018-07-05

Family

ID=62710630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014713 WO2018124557A1 (ko) 2016-12-27 2017-12-14 이차전지용 전해액 및 이를 포함하는 이차전지

Country Status (1)

Country Link
WO (1) WO2018124557A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050095951A (ko) * 2004-03-29 2005-10-05 삼성에스디아이 주식회사 리튬 전지용 전해질, 그의 제조 방법 및 그를 포함하는리튬 전지
JP2007287518A (ja) * 2006-04-18 2007-11-01 Sanyo Electric Co Ltd 非水系二次電池
KR20080026522A (ko) * 2006-09-20 2008-03-25 주식회사 엘지화학 비수 전해액 첨가제 및 이를 이용한 이차 전지
WO2011122449A1 (ja) * 2010-03-30 2011-10-06 宇部興産株式会社 非水電解液、それを用いた電気化学素子、及びそれに用いられる1,2-ジオキシプロパン化合物
KR20150027162A (ko) * 2012-05-30 2015-03-11 샌트랄 글래스 컴퍼니 리미티드 비수 전해액 전지용 전해액, 및 이것을 이용한 비수 전해액 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050095951A (ko) * 2004-03-29 2005-10-05 삼성에스디아이 주식회사 리튬 전지용 전해질, 그의 제조 방법 및 그를 포함하는리튬 전지
JP2007287518A (ja) * 2006-04-18 2007-11-01 Sanyo Electric Co Ltd 非水系二次電池
KR20080026522A (ko) * 2006-09-20 2008-03-25 주식회사 엘지화학 비수 전해액 첨가제 및 이를 이용한 이차 전지
WO2011122449A1 (ja) * 2010-03-30 2011-10-06 宇部興産株式会社 非水電解液、それを用いた電気化学素子、及びそれに用いられる1,2-ジオキシプロパン化合物
KR20150027162A (ko) * 2012-05-30 2015-03-11 샌트랄 글래스 컴퍼니 리미티드 비수 전해액 전지용 전해액, 및 이것을 이용한 비수 전해액 전지

Similar Documents

Publication Publication Date Title
WO2020130575A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2018169369A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 전해질
WO2018212429A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019103434A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2021261976A1 (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
WO2019164164A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2015170786A1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022055258A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2015064987A1 (ko) 리튬 이차전지
WO2013009155A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2020162659A1 (ko) 유기 전해액, 및 이를 포함하는 이차전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2021040392A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2021049872A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020153791A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2018124557A1 (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2022065796A1 (ko) 비수 전해액용 첨가제, 이를 포함하는 비수 전해액 및 리튬 이차전지
WO2020263045A2 (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
WO2021049875A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888185

Country of ref document: EP

Kind code of ref document: A1