WO2018124535A1 - Complex device and electronic device having same - Google Patents

Complex device and electronic device having same Download PDF

Info

Publication number
WO2018124535A1
WO2018124535A1 PCT/KR2017/014399 KR2017014399W WO2018124535A1 WO 2018124535 A1 WO2018124535 A1 WO 2018124535A1 KR 2017014399 W KR2017014399 W KR 2017014399W WO 2018124535 A1 WO2018124535 A1 WO 2018124535A1
Authority
WO
WIPO (PCT)
Prior art keywords
overvoltage protection
unit
discharge
capacitor
composite device
Prior art date
Application number
PCT/KR2017/014399
Other languages
French (fr)
Korean (ko)
Inventor
조승훈
이동석
허성진
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170119641A external-priority patent/KR102073726B1/en
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Publication of WO2018124535A1 publication Critical patent/WO2018124535A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a composite device, and more particularly, to a composite device including two or more functional layers having different functions and an electronic device having the same.
  • Passive devices that make up electronic circuits include resistors, capacitors, and inductors, and the functions and roles of these passive devices vary widely.
  • resistors control the flow of current through a circuit, and in AC circuits they also play a role in achieving impedance matching.
  • the capacitor basically blocks the direct current and passes the alternating current signal.
  • Capacitors also form time constant circuits, time delay circuits, RC and LC filter circuits, and the capacitor itself serves to remove noise. In the case of the inductor, it performs functions such as removing high frequency noise and matching impedance.
  • an electronic circuit requires an overvoltage protection device such as a varistor or a suppressor to protect the electronic device from an overvoltage such as an ESD applied to the electronic device from the outside. That is, an overvoltage protection device is required in order to prevent overvoltage above the driving voltage of the electronic device from being applied from the outside.
  • varistors are widely used as devices for protecting electronic components and circuits from overvoltage because the resistance changes with applied voltage. In other words, the current does not flow to the varistors arranged in the circuit, but if the overvoltage is applied at both ends of the varistor due to overvoltage or lightning over the breakdown voltage, the resistance of the varistor decreases rapidly, and almost all currents flow through the varistor, and the current to other devices. Does not flow, and the circuit or the electronic components mounted on the circuit are protected from overvoltage.
  • a capacitor and an overvoltage protection device may be stacked in one chip to implement chip components to implement high varistor voltage and capacitance.
  • the varistor has a breakdown voltage determined by its thickness.
  • the varistor has a relatively low capacitance.
  • the capacitor is made of a material having a high dielectric constant to improve or maintain the capacitance. do.
  • two or more functional layers having different functions have a problem in that they are not bonded well because their physical properties are different from each other.
  • a laminate in which a varistor material and a capacitor material are laminated is easily peeled off or cracked by high temperature sintering. That is, since the varistor material and the capacitor material have different thermal shrinkage rates, torsion may occur during the sintering process, and peeling and cracking may occur. Peeling and cracking deteriorate the characteristics of the varistor and the capacitor, making it difficult to manufacture a practical composite device.
  • the materials of the respective functional layers are mutually diffused, and the concentrations distributed according to the positions are different, thereby causing a problem of lowering the function of each functional layer. That is, the closer to the boundary region between the two functional layers, the higher the concentration of the other functional layer material included in one functional layer, and thus, the functional variation of each functional layer may occur due to the variation in concentration.
  • a device in which two or more functional layers are stacked is mounted on the PCB of the electronic device to have a directivity.
  • the device in which the varistor and the capacitor are stacked is mounted such that the capacitor is provided on the lower side to reduce the parasitic inductance along the parking lot movement path of the capacitor. That is, when the capacitor is located on the upper side, the frequency moving path from one terminal of the PCB to the other terminal of the PCB becomes longer than the case on the lower side, which acts as a parasitic inductance in high frequency communication. Therefore, in high frequency communication, S21 (transmission coefficient) is affected to increase the insertion loss or to narrow the bandwidth of the frequency.
  • coating fluorescent substance to the upper surface of a laminated body for example, the upper surface of a varistor
  • the process for applying the phosphor is added, the number of processes is increased and the material cost is increased.
  • the direction of the laminate is to be adjusted before applying the phosphor, there is a problem that it is difficult to adjust the direction because there is no distinction between the varistor and the capacitor.
  • the present invention provides a composite device in which two or more functional units are stacked with different functions.
  • the present invention provides a composite device capable of preventing the interdiffusion of materials forming two or more functional units.
  • the present invention provides a composite device having two or more functional parts and having a directivity.
  • a composite device includes two or more functional units having different functions; A coupling part provided between the functional parts to couple them; And an external electrode formed outside the stack of the functional unit and the coupling unit and connected to at least a portion of the functional unit, wherein at least two opposite surfaces of the stack have different colors or contrasts.
  • the two or more functional parts have different colors or contrasts.
  • the two or more functional units differ from each other in at least one of thickness and size.
  • the functional unit includes two or more of resistors, capacitors, inductors, noise filters, varistors, and suppressors.
  • the two or more functional units each include a plurality of sheets and a conductive layer selectively formed on the plurality of sheets.
  • Sheets of each of the two or more functional parts have different colors or contrasts.
  • At least one of the sheets of the same functional part has a different color or contrast.
  • Sheets of each of the two or more functional parts are added with pigments of different colors.
  • the sheets of each of the two or more functional parts are added with pigments of the same color in different amounts.
  • the conductive layer is formed of a conductive material or at least one portion thereof is formed of a mixture of the conductive material and the same material as the sheet.
  • the two or more functional parts are manufactured and sintered in different processes and then joined by the coupling parts.
  • the bonding portion comprises at least one of glass, polymer and oligomer.
  • the external electrode is different from the region in which the thickness of at least one region is different.
  • An electronic device includes a conductor to which a user can contact and an internal circuit, and a composite device according to an aspect of the present invention is provided between the conductor and the internal circuit.
  • the composite element is connected to the ground terminal or through the passive element is connected to the ground terminal.
  • the composite element includes a capacitor portion and an overvoltage protection portion, and the capacitor portion is mounted adjacent to the internal circuit.
  • two or more functional units having different functions are stacked, and two or more functional units may be combined by a coupling unit.
  • a coupling unit By combining the different functional units using the coupling unit as described above, it is possible to prevent distortion, peeling, cracking, etc. due to the shrinkage difference of the composite device.
  • one of the functional units may include an overvoltage protection unit to protect the electronic device on which the composite device is mounted from overvoltage such as ESD.
  • an overvoltage protection unit to protect the electronic device on which the composite device is mounted from overvoltage such as ESD.
  • the overvoltage protection unit is formed in a varistor or suppressor type, it is possible to implement various breakdown voltages or discharge start voltages from 310V to several tens of kV.
  • the two or more functional units may have different colors or contrasts to distinguish colors to determine the direction of the composite device.
  • the lower functional part may have a lighter color than the upper functional part. Therefore, by allowing two or more functional units to have different colors or contrasts, the present invention can realize a composite device to which directionality is imparted without applying a phosphor or the like.
  • FIG. 1 is a perspective view of a composite device according to embodiments of the present invention.
  • FIG. 2 is a cross-sectional view of a composite device according to a first embodiment of the present invention.
  • FIG. 3 is a schematic view of at least a portion of the surface of a composite device according to a first embodiment of the present invention
  • FIG. 4 is a cross-sectional view of a composite device according to a second exemplary embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a composite device according to a third embodiment of the present invention.
  • FIG. 6 is a sectional view of a composite device according to a fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a composite device according to a fifth embodiment of the present invention.
  • FIGS. 8 and 9 are block diagrams illustrating an arrangement form of a composite device according to example embodiments.
  • FIGS. 10 and 11 are schematic diagrams illustrating a frequency path according to a position of a capacitor part of a composite device according to embodiments of the present disclosure.
  • 12 to 14 are graphs showing the insertion loss according to the position of the capacitor portion of the composite device according to the embodiments of the present invention.
  • 15 and 16 are schematic views of tapes and wheels for receiving composite devices in accordance with embodiments of the present invention.
  • Figure 17 is a block diagram of a packaging device for determining and packaging the orientation of the composite device according to embodiments of the present invention.
  • 18 and 19 are schematic views of a packaging device.
  • FIG. 1 is a perspective view of a composite device according to embodiments of the present invention.
  • 2 is a cross-sectional view taken along line AA ′ of FIG. 1 as a cross-sectional view of a composite device according to a first exemplary embodiment of the present invention
  • FIG. 3 is a schematic view of at least part of the surface thereof.
  • a composite device according to a first embodiment of the present invention is provided with a laminate 1000 including a plurality of stacked sheets 100, and a different function provided in the laminate 1000. It may include at least two or more functional units. That is, it may include a first functional unit including at least one of a resistor, a noise filter, an inductor, a capacitor, and the like, and a second functional unit including an overvoltage protection unit such as a varistor or a suppressor to protect the overvoltage.
  • the composite device of the present invention may include at least one first functional part functioning as a passive element, and at least one second functional part functioning as an overvoltage protection element.
  • the composite device may include a laminate 1000 including a plurality of sheets 100, at least one capacitor unit 2000 provided in the laminate 1000, and at least One over-voltage protection unit 3000, that is, may include a varistor.
  • a coupling portion 4000 provided between the capacitor portion 2000 and the overvoltage protection portion 3000 and coupled thereto, and external electrodes 5100, 5200; 5000 provided on two side surfaces facing each other outside the stack 1000.
  • It may further include, and may further include a surface modification member 6000 formed on at least one surface of the laminate (5000).
  • two or more functional layers having different functions, for example, the capacitor part 2000 and the overvoltage protection part 3000 may be joined by the coupling part 4000 after being sintered, respectively.
  • the capacitor unit 2000 includes a plurality of sheets having a predetermined dielectric constant
  • the overvoltage protection unit 3000 includes a varistor portion, and a plurality of sheets having varistor characteristics are stacked. That is, the overvoltage protection unit 3000 may be formed of a varistor type.
  • the overvoltage protection unit 3000 may be made of a suppressor type including an overvoltage protection member.
  • the varistor type overvoltage protection unit 3000 will be described as an example.
  • at least a part of the laminate 1000 has a different color or contrast.
  • the capacitor unit 2000 and the overvoltage protection unit 3000 may have different colors or contrasts, and the upper and lower surfaces of the stack 1000 may have different colors or contrasts.
  • the plurality of sheets constituting the capacitor unit 2000 are called dielectric sheets 110 (101 to 107), and the plurality of sheets constituting the overvoltage protection unit 3000 are called discharge sheets 120 (121 to 127), The entire sheet including the sheet 110 and the discharge sheet 120 is called a sheet 100.
  • the conductive layers of the capacitor part 2000 are referred to as internal electrodes 210 to 270, and the conductive layers of the overvoltage protection part 3000 are called discharge electrodes 311 and 312.
  • the voltage at which the varistor type overvoltage protection unit 3000 starts to be discharged is called the breakdown voltage
  • the voltage at which the suppressor type overvoltage protection unit 3000 is discharged is called the discharge start voltage.
  • the stack 1000 is formed by stacking a plurality of sheets 100, that is, a plurality of dielectric sheets 110 (101 to 107) and a plurality of discharge sheets 120 (121 to 127). That is, the coupling part 4000 includes a first stack in which the plurality of dielectric sheets 110 having the internal electrodes 200 are stacked, and a second stack in which the plurality of discharge sheets 120 having the discharge electrodes 310 are stacked.
  • the laminated body 1000 is made by combining.
  • the laminate 1000 has a predetermined length in one direction (for example, the X direction) and another direction (for example, the Y direction) orthogonal thereto, and has a predetermined height in the vertical direction (for example, the Z direction).
  • the forming direction of the external electrode 5000 when the forming direction of the external electrode 5000 is referred to as the X direction, the direction perpendicular to the horizontal direction may be referred to as the Y direction, and the vertical direction may be referred to as the Z direction.
  • the length of the X direction is longer than the length of the Y direction and the length of the Z direction, the length of the Y direction may be equal to or different from the length of the Z direction.
  • the lengths of the X, Y, and Z directions may be variously modified according to the internal structure of the electronic device to which the composite device is connected, the internal structure and shape of the composite device, and the like.
  • At least one overvoltage protection unit 3000 such as at least one capacitor unit 2000 and a varistor unit, may be provided in the stack 1000.
  • the capacitor part 2000 and the overvoltage protection part 3000 may be provided in the stacking direction of the sheets, that is, the Z direction.
  • the plurality of sheets that is, the dielectric sheet 110 and the discharge sheet 120 may all be formed with the same thickness, and at least one may be formed thicker or thinner than the others.
  • the discharge sheet 120 of the overvoltage protection unit 3000 may be formed to have a thickness different from that of the dielectric sheet 110 of the capacitor unit 2000, and the discharge sheet 120 may be thicker than the dielectric sheet 110. Can be formed. That is, the thickness of each of the discharge sheets 120 may be thicker than the thickness of each of the dielectric sheets 110. However, the thickness of each of the discharge sheets 120 may be thinner or the same as the thickness of each of the dielectric sheets 110.
  • At least one of the discharge sheets 120 may be thicker than the thickness of the other discharge sheet 120, and at least one of the dielectric sheets 110 may be thicker than the other dielectric sheets 110.
  • the dielectric sheet 110 thicker than the other dielectric sheet 110 may be thicker than the thinner discharge sheet 120. That is, at least one of the plurality of dielectric sheets 110 and the plurality of discharge sheets 120 may be formed to have a thickness different from that of the other sheets 100.
  • the plurality of sheets 100 that is, each of the dielectric sheets 110 and the discharge sheets 120 may be formed to have a thickness that does not break when an overvoltage such as ESD is applied, for example, a thickness of 5 ⁇ m to 300 ⁇ m. .
  • the thickness of the discharge sheet 120 is proportional to the breakdown voltage, and at least a part of the composite element must have a breakdown voltage of 310V or more to function as an electric shock prevention element. That is, you must cut off the voltage below 310V and bypass the voltage above 310V.
  • the discharge sheet 120 may have a thickness of about 50 ⁇ m to about 250 ⁇ m in the overvoltage protection part 3000, which is about 1/2 the thickness of the composite device. That is, if the discharge sheet 120 of the overvoltage protection unit 3000 that protects the ESD is too thick, the bypassable voltage is increased, and if the discharge sheet 120 is too low, the breakdown voltage is lowered to 310V or less to protect the user from electric shock. You will not be able to.
  • the discharge sheet 120 may be formed to a thickness that may have a breakdown voltage of 310V or higher.
  • the thickness of the dielectric sheet 110 is proportional to the capacitance of the composite device, and 150 pF or less is suitable to function as an electric shock protection device.
  • the thickness of the dielectric sheet 110 should have a dielectric constant of 10 to 3000.
  • the thickness of the dielectric sheet 110 may be about 10 ⁇ m to 200 ⁇ m. The greater the thickness of the dielectric sheet 110, the higher the capacitance can be realized, and the thinner the dielectric sheet 110 may be destroyed by the overvoltage. Accordingly, the dielectric sheet 110 can be formed to a thickness having a capacitance appropriate for the function without being destroyed by overvoltage.
  • the capacitor part 2000 and the overvoltage protection part 3000 may have the same thickness or may have different thicknesses. That is, the first laminate in which the plurality of dielectric sheets 110 constituting the capacitor unit 2000 and the second laminate in which the plurality of discharge sheets 120 constituting the overvoltage protection unit 3000 are stacked are the same thickness. It may be formed, or may be formed in a different thickness.
  • the thickness of the overvoltage protection unit 3000 may be equal to or thicker than the thickness of the capacitor unit 2000.
  • the overvoltage protection unit 3000 may be one to two times thicker than the capacitor unit 2000. That is, when the thickness of the capacitor unit 2000 is 100, the overvoltage protection unit 3000 may be formed to a thickness of 100 to 200.
  • the number of stacked layers of the dielectric sheet 110 of the capacitor unit 2000 and the number of stacked sheets of the discharge sheet 120 of the overvoltage protection unit 3000 may be different or may be the same.
  • the number of stacked sheets of the discharge sheet 120 may be less than the number of stacked sheets of the dielectric sheet 110.
  • the thickness of each of the discharge sheets 120 is thicker than the thickness of each of the dielectric sheets 110, and the discharge sheets 120 are stacked in the same or different numbers as the dielectric sheets 110 so that the discharge sheets 120 are stacked.
  • the second stack may be equal to or thicker than the thickness of the first stack on which the dielectric sheet 110 is laminated.
  • each of the dielectric sheets 110 is greater than that of each of the discharge sheets 120, and the first and the dielectric sheets 110 are stacked by stacking the dielectric sheets 110 in the same or different number as the discharge sheets 120.
  • the laminate may be equal to or thicker than the thickness of the second laminate on which the discharge sheet 120 is laminated.
  • the thickness of each of the dielectric sheets 110 and the thickness of each of the discharge sheets 120 are the same, and the number of stacks of the dielectric sheets 110 and the number of stacks of the discharge sheets 120 are the same or different, so that the first stack and the second stack are different.
  • the thickness of the sieves may be the same or different.
  • the capacitor part 2000 and the overvoltage protection part 3000 may each have a thickness of 0.1 mm to 0.4 mm.
  • any one of the capacitor part 2000 and the overvoltage protection part 3000 may protrude outward from the other of the laminate 1000. That is, any one of the capacitor unit 2000 and the overvoltage protection unit 3000 may protrude in at least one of the X direction and the Y direction. Therefore, the capacitor part 2000 and the overvoltage protection part 3000 may have a step without forming side surfaces in a horizontal direction.
  • the capacitor part 2000 may protrude outside about 1 ⁇ m to 100 ⁇ m relative to the overvoltage protection part 3000.
  • the overvoltage protection unit 3000 may protrude outward from the capacitor unit 2000 by about 1 ⁇ m to 100 ⁇ m.
  • the capacitor part 2000 and the overvoltage protection part 3000 may be formed in the same size in the X direction and the Y direction, and accordingly, a step may be formed on one side and the other side opposite thereto.
  • the overvoltage protection unit 3000 may protrude from the other side of the X direction opposite thereto.
  • any one of the capacitor unit 2000 and the overvoltage protection unit 3000 may have a different size in one of the X direction and the Y direction than the other.
  • any one of the capacitor unit 2000 and the overvoltage protection unit 3000 may be formed to be large in either of the X direction and the Y direction so that at least one of the side surfaces of the stack 1000 may have a step.
  • the capacitor part 2000 may be formed to be about 1 ⁇ m to about 100 ⁇ m larger than the overvoltage protection part 3000, and the overvoltage protection part 3000 may be about 1 ⁇ m to about 100 ⁇ m compared to the capacitor part 2000. It may be formed to be large in size.
  • one of the capacitor unit 2000 and the overvoltage protection unit 3000 may be formed thicker than the other.
  • the capacitor part 2000 may be formed to be about 1 ⁇ m to 100 ⁇ m thicker than the overvoltage protection part 3000, and the overvoltage protection part 3000 may be about 1 ⁇ m to 100 ⁇ m compared to the capacitor part 2000. It may be formed to a thickness of about ⁇ m thick.
  • the laminate 1000 may further include a lower cover layer (not shown) and an upper cover layer (not shown) respectively provided on the lower surface and the upper surface. That is, the stack 1000 may further include a lower cover layer (not shown) and an upper cover layer (not shown) provided at the lower portion of the capacitor unit 2000 and the upper portion of the overvoltage protection unit 3000, respectively.
  • the lowermost sheet of the laminate 1000 may function as the lower cover layer and the uppermost sheet may function as the upper cover layer. That is, the lowermost dielectric sheet of the capacitor unit 2000, that is, the first dielectric sheet 101 may function as a lower cover layer, and the uppermost discharge sheet of the overvoltage protection unit 3000, that is, the seventh discharge sheet 207. ) May serve as the top cover layer.
  • the lower and upper cover layers which are separately provided, may be formed to have the same thickness, and a plurality of magnetic sheets may be stacked.
  • the lower and upper cover layers may be formed in other thicknesses, for example, the upper cover layer may be formed thicker than the lower cover layer.
  • a nonmagnetic sheet for example, a glass sheet, may be further formed on the outermost portion of the lower and upper cover layers formed of the magnetic sheet, that is, the lower and upper surfaces.
  • the lower and upper cover layers may be thicker than the insulating sheets therein. Therefore, when the lowermost and uppermost insulating sheets function as lower and upper cover layers, they may be formed thicker than each of the insulating sheets therebetween.
  • the lower cover layer and the upper cover layer may have different colors or contrasts.
  • the color or contrast of the lower cover layer may be lighter than the color or contrast of the upper cover layer.
  • the capacitor unit 2000 and the overvoltage protection unit 3000 may have the same color or contrast. That is, the present invention may be different in color or contrast of the lower side and the upper side in order to distinguish the upper and lower, when the lower and the upper cover layer has a different color or contrast, the capacitor portion 2000 and the overvoltage protection portion 3000 of the inner It may have the same color or contrast.
  • the capacitor unit 2000 may have the same color or contrast as the lower cover layer, and the overvoltage protection unit 3000 may have the same color or contrast as the upper cover layer.
  • the lower surface of the capacitor unit 2000 and the upper surface of the overvoltage protection unit 3000 may have different colors or contrasts, and the inner side may have the same color or contrast.
  • the surface modification member may not be formed on at least a portion of the surface of the laminate 1000, and the lower and upper cover layers may be formed of a glass sheet, and the surface of the laminate 1000 may be coated with a polymer or glass material. .
  • a plating layer ie, plating bleeding
  • the bypass characteristic may be lowered when an overvoltage such as ESD is applied, or the insulation characteristic may be lowered below the breakdown voltage.
  • the overvoltage protection unit 3000 must bypass the overvoltage by functioning as a conductor above the breakdown voltage, but may also function as a conductor below the breakdown voltage when the plating layer is formed on the surface. Therefore, the plating layer should not be formed on the surface of the overvoltage protection unit 3000.
  • an insulating material should be coated on the surface of the overvoltage protection unit 3000 before the coupling process after completing the overvoltage protection unit 3000. That is, an insulating material such as parylene, glass, epoxy, and polymer is coated on the surface of the overvoltage protection unit 3000 to increase the surface resistance to prevent the plating layer from being formed.
  • the insulating material may be liquefied or vaporized in various ways and then formed on the surface by deposition or deposition, and the surface may be insulated by repeating drying, curing or firing.
  • the capacitor part 2000 is an insulator due to the material property, a plating layer is less formed on the surface when the external electrode 5000 is formed.
  • the capacitor part 2000 is the same as the capacitor part 2000 in order to strengthen the adhesion force when the overvoltage protection part 3000 is combined. It may also be coated with a substance.
  • a coating layer may be formed on the surface of the laminate 1000 using an insulating material.
  • the capacitor part 2000 may be provided below or over the overvoltage protection part 3000. However, it is preferable that the capacitor part 2000 faces the PCB based on the PCB of the electronic device in which the composite device is mounted. That is, it is preferable that the capacitor part 2000 is provided below. By doing so, the frequency moving path to the PCB can be shortened through the capacitor unit 2000, thereby reducing parasitic inductance in high frequency communication, thereby preventing an increase in insertion loss in high frequency communication, and bandwidth of a frequency. This can be prevented from narrowing.
  • the capacitor part 2000 may include at least two internal electrodes 200 and at least two dielectric sheets 110 provided therebetween. For example, as shown in FIG.
  • the capacitor part 2000 may include first to seventh dielectric sheets 101 to 107; 110 and first to seventh internal electrodes 210 to 270; 200. have. Meanwhile, in the present exemplary embodiment, the capacitor part 2000 has a plurality of internal electrodes 200 formed therein, and for this purpose, the dielectric sheet 110 is formed with one more than the number of the internal electrodes 200, but the capacitor part 2000 Two or more internal electrodes 200 may be formed and three or more dielectric sheets 110 may be provided.
  • the capacitor unit 2000 may have a color or contrast different from that of the overvoltage protection unit 3000. For example, the capacitor unit 2000 may have a lighter color than the overvoltage protection unit 3000. To this end, the capacitor part 2000 may form the dielectric sheets 101 to 107 and 110 by adding a bright pigment.
  • color pigments may be added to the dielectric material when forming the dielectric sheet 110.
  • Color pigments may include white pigments, transparent pigments, purple pigments, and the like. That is, a pigment of brighter color than the pigment added to the overvoltage protection unit 3000 may be added to the capacitor unit 2000.
  • the white pigment may include ZnO, TiO 2 , SiO 2 , Al 2 O 3 , and the like
  • the transparent pigment may include CaCO 3 , and the like
  • the purple pigment may include Fe 2 O 3, or the like. Therefore, the dielectric sheet 110 may have a color such as white, purple, or the like, depending on the added pigment, and thus the capacitor part 2000 may have a color such as white, purple, or the like.
  • the capacitor unit 2000 may be added to the pigment added to the overvoltage protection unit 3000, in this case, less than the amount added to the overvoltage protection unit 3000 is added to the capacitor unit 2000 overvoltage protection unit ( 3000).
  • at least one of the dielectric sheets 110 may have a different color or brightness than the other dielectric sheets 110. That is, the amount of pigment added to at least one of the plurality of dielectric sheets 110 may be different, so that the color or brightness of the at least one dielectric sheet 110 may be different. However, even in this case, the dielectric sheet 110 may have a brighter color or brightness than the discharge sheet 120.
  • the dielectric sheets 101-107; 110 may be formed of a dielectric material.
  • a dielectric material for example, a high dielectric material having a dielectric constant of about 5 to 20,000 may be used, and MLCC, LTCC, HTCC, and the like may be used.
  • the MLCC dielectric material includes at least one of Bi 2 O 3 , SiO 2 , CuO, MgO, and ZnO based on at least one of BaTiO 3 and NdTiO 3
  • the LTCC dielectric material is Al 2 O 3 , SiO 2. It may include a glass material.
  • the dielectric sheet 110 may be formed of BaTiO 3 , NdTiO 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , SiO 2 , CuO, MgO, Zn0, and Al 2 O 3 in addition to MLCC, LTCC, and HTCC. It may be formed of a material comprising one or more.
  • the dielectric sheet 110 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 , and adjust the content of these materials. By controlling the dielectric constant.
  • the dielectric sheet 110 may have a predetermined dielectric constant, for example, 5 to 20,000, preferably 7 to 4000, and more preferably 100 to 3000, depending on the material.
  • the dielectric sheet 110 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 , increasing the content of BaTiO 3 .
  • ZnO, TiO 2 , SiO 2 , Al 2 O 3 may be white pigment materials.
  • the dielectric sheet 110 may be included to color the dielectric sheet 110 while controlling the dielectric constant of the dielectric sheet 110.
  • the pigment material may be contained in an amount of 0.1 wt% to 10 wt% with respect to 100 wt% of the mixed material of the dielectric material and the pigment material.
  • the dielectric sheet 110 may be formed by mixing a dielectric material and an overvoltage protection material such as a varistor material. That is, the dielectric sheet 110 is mainly made of a dielectric material and may include some varistor material.
  • the overvoltage protection material may include a material constituting the overvoltage protection unit 3000 to be described later, for example, a material constituting a discharge sheet of the overvoltage protection unit 3000.
  • Such an overvoltage protection material may use a varistor material, which may be ZnO, Bi 2 O 3 , Pr 6 O 11 , Co 3 O 4 , Mn 3 O 4 , CaCO 3 , Cr 2 O 3 , SiO 2 , Al It may include at least one of 2 O 3 , Sb 2 O 3 , SiC, Y 2 O 3 , NiO, SnO 2 , CuO, TiO 2 , MgO, AgO.
  • the varistor material contained in the capacitor part 2000 may be ZnO.
  • the size of the ZnO particles may be 1 ⁇ m or less based on the average particle size distribution (D50).
  • the amount of varistor material contained in the capacitor part 2000 may be 0.2 wt% to 10 wt%. That is, the dielectric sheet 110 of the capacitor part 2000 may be formed by containing about 0.2 wt% to 10 wt% of the varistor material with respect to 100 wt% of the mixed material of the dielectric material and the varistor material.
  • the varistor material may contain 2 wt% to 5 wt% with respect to 100 wt% of the mixture of the capacitor material and the varistor material.
  • the overvoltage protection material that is, the varistor material is contained in excess of 10wt%
  • the capacitance of the capacitor part 2000 may be reduced or at least a part of the discharge voltage may flow through the capacitor part 2000.
  • the plurality of internal electrodes 210 to 270; 200 may be formed of a conductive material, for example, a metal or a metal alloy including at least one of Ag, Au, Pt, Pd, Ni, and Cu. have. In the case of an alloy, for example, Ag and Pd alloys may be used.
  • the internal electrode 200 may further include a dielectric sheet 110 material. That is, the internal electrode 200 may include at least one of a conductive material such as a metal or a metal alloy, for example, BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , or B 2 O 3 . It may include one dielectric material.
  • the dielectric material content of the internal electrode 200 may be 20 wt% or less. That is, the dielectric material may contain 1 wt% to 20 wt% with respect to 100 wt% of the mixture of the conductive material and the dielectric material.
  • the adhesion between the internal electrode 200 and the dielectric sheet 110 may be improved to prevent micro-delamination due to the difference in shrinkage between the internal electrode 200 and the dielectric sheet 110. As a result, a decrease in capacitance can be prevented.
  • the internal electrode 200 can be formed to a thickness of, for example, 1 ⁇ m 10 ⁇ m.
  • the internal electrode 200 is formed so that one side is connected to the external electrodes 5100, 5200; 5000 formed to face each other in the X direction, and the other side is spaced apart from each other.
  • the first, third, and fifth internal electrodes 210, 230, and 250 are formed on the first, third, and fifth dielectric sheets 101, 103, 105, respectively, with predetermined areas, and one side thereof has a first area. It is connected to the external electrode 5100 and the other side is formed to be spaced apart from the second external electrode 5200.
  • the second, fourth, and sixth internal electrodes 220, 240, and 260 are formed on the second, fourth, and sixth dielectric sheets 102, 104, and 106 in a predetermined area, and one side thereof is the second external electrode. It is connected to the 5200 and the other side is formed to be spaced apart from the first external electrode 5100.
  • the internal electrodes 200 are alternately connected to any one of the external electrodes 5000 and are formed to overlap a predetermined region with the dielectric sheet 110 interposed therebetween.
  • the internal electrodes 200 are formed in areas of 10% to 85% of the area of each of the dielectric sheets 110.
  • two adjacent inner electrodes for example, the first and second inner electrodes 210 and 220 are formed to overlap with an area of 10% to 85% of the area of each of these electrodes.
  • the internal electrode 200 may be formed in various shapes such as a square, a rectangle, a predetermined pattern shape, a spiral shape having a predetermined width and spacing, and the like.
  • the capacitor part 2000 has capacitances formed between the internal electrodes 200, and the capacitance may be adjusted according to the overlapping area of the adjacent internal electrodes 200, the thickness of the dielectric sheets 110, and the like.
  • the capacitor part 2000 may have, for example, a capacitance of 20 ⁇ F or more.
  • the overvoltage protection unit 3000 may be provided above the capacitor unit 2000.
  • the overvoltage protection unit 3000 may include a plurality of discharge sheets 120 and at least two discharge electrodes 311, 312; 310.
  • the overvoltage protection unit 3000 may include the first to seventh discharge sheets 121 to 127 and 120 and the second to sixth discharge sheets 122 to 126 as shown in FIG. 2.
  • the first and second discharge electrodes 311, 312; 310 may be formed.
  • the overvoltage protection unit 3000 illustrates and describes a case in which seven discharge sheets 110 and two discharge electrodes 310 are provided.
  • the discharge sheet 120 and the discharge electrodes 310 may be described. It can be provided in various numbers.
  • the breakdown voltage or the discharge start voltage for starting the discharge of the overvoltage protection unit 3000 may be determined according to the material of the discharge sheet 120, the distance between the discharge electrodes 310, and the like.
  • the overvoltage protection unit 3000 may have a color or contrast different from that of the capacitor unit 3000, and may have a color darker than that of the capacitor unit 2000, for example.
  • the overvoltage protection unit 3000 may form the discharge sheets 121 to 127 and 120 by adding a pigment of dark color.
  • color pigments may be added to the varistor material when forming the discharge sheet 120.
  • the color pigments may include black pigments, dark green pigments, and the like.
  • a pigment of darker color than the pigment added to the capacitor unit 2000 may be added to the overvoltage protection unit 3000.
  • the black pigment may include Co 3 O 4, CoO, and the like
  • the dark green pigment may include MnO 4, and the like. Therefore, the discharge sheet 120 may have a color such as black, dark green, etc. according to the added pigment, and thus the overvoltage protection unit 3000 may have a color such as black, dark green, or the like.
  • the overvoltage protection unit 3000 may include a pigment added to the capacitor unit 2000. In this case, more than the amount added to the capacitor unit 2000, the overvoltage protection unit 3000 is added to the capacitor unit 2000. Can be darker than).
  • At least one of the discharge sheet 120 may have a different color or brightness than the other discharge sheet 120. That is, the amount of pigment added to at least one of the plurality of discharge sheets 120 may be different, and thus the color or brightness of the at least one discharge sheet 120 may be different. However, even in this case, the discharge sheet 120 may have a darker color or brightness than the dielectric sheet 110.
  • the discharge sheets 121 to 127 and 120 may be formed of a varistor material.
  • the varistor material is ZnO, Bi 2 O 3 , Pr 6 O 11 , Co 3 O 4 , Mn 3 O 4 , CaCO 3 , Cr 2 O 3 , SiO 2 , Al 2 O 3 , Sb 2 O 3 , SiC, It may include at least one of Y 2 O 3 , NiO, SnO 2 , CuO, TiO 2 , MgO, AgO.
  • a material in which at least one of the materials is mixed with ZnO as a main component may be used as a varistor material.
  • the varistor material may use Pr-based, Bi-based, or SiC-based materials in addition to the above materials.
  • Co 3 O 4 may be a black pigment material. Therefore, the discharge sheet 120 may be formed including Co 3 O 4 , and color may be applied to the discharge sheet 120.
  • the pigment material may be contained in an amount of 0.1 wt% to 10 wt% with respect to 100 wt% of the mixed material of the varistor material and the pigment material.
  • the discharge sheet 120 may be formed of a material in which a varistor material and a dielectric material are mixed.
  • the discharge sheet 120 may be formed by mixing a material having a varistor characteristic and a material forming the capacitor part 2000, that is, a dielectric material.
  • the discharge sheets 120 are mainly made of a varistor material, and some capacitor materials may be formed. May be included.
  • the dielectric material mixed with the varistor material may include a main material of the dielectric sheet 110 of the capacitor unit 2000. That is, dielectrics such as MLCC, LTCC, HTCC having a dielectric constant of about 5 to 20,000 may be mixed with the varistor material.
  • a material comprising at least one of BaTiO 3 , NdTiO 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , SiO 2 , CuO, MgO, Zn0, Al 2 O 3 may be added to the varistor material.
  • the capacitor material, that is, the dielectric material contained in the overvoltage protection part 3000 may be at least one of BaTiO 3 and NdTiO 3 .
  • the amount of the capacitor material, that is, the dielectric material contained in the overvoltage protection unit 3000 may be 0.2wt% to 10wt%.
  • the dielectric sheet material may contain 0.2 wt% to 10 wt% with respect to 100 wt% of the mixed sheet of the discharge sheet material and the dielectric sheet material.
  • the dielectric sheet material may contain 2 wt% to 5 wt% with respect to 100 wt% of the mixture of the discharge sheet material and the dielectric sheet material.
  • the characteristics of the overvoltage protection unit 3000 may be reduced. That is, the breakdown voltage is changed or becomes a complete non-conductor to discharge the overvoltage can lose the function as the overvoltage protection unit 3000.
  • the first and second discharge electrodes 311, 312; 310 may be formed of a conductive material, for example, a metal or a metal alloy including at least one of Ag, Au, Pt, Pd, Ni, and Cu. Can be formed. In the case of an alloy, for example, Ag and Pd alloys may be used. In this case, the discharge electrode 310 may be formed of the same material as the internal electrodes 220 of the capacitor unit 2000. In addition, the discharge electrode 310 may be formed by further including a varistor material.
  • the discharge electrode 310 is formed of a conductive material such as a metal or a metal alloy and at least one of ZnO, Bi 2 O 3 , Co 2 O 4 , MnO 4 , Pr 6 O 11 , Al 2 O 3 , and CaO. It may comprise a varistor material.
  • the varistor material content in the discharge electrode 310 may be 20wt% or less. That is, the varistor material may contain 1 wt% to 20 wt% with respect to 100 wt% of the mixture of the conductive material and the varistor material.
  • the varistor material is contained in the discharge electrode 310 to improve the adhesion between the discharge electrode 310 and the discharge sheet 120, thereby preventing micro-delamination due to the difference in shrinkage between the discharge electrode 310 and the discharge sheet 120. As a result, the degradation of ESD resistance can be prevented.
  • the content of the varistor material in the discharge electrode 310 is less than 1wt%, the adhesion between the discharge electrode 310 and the discharge sheet 120 may not be improved, and if the content exceeds 20wt%, the electrical conductivity of the discharge electrode 310 may be reduced. Can be.
  • the discharge electrode 310 can be formed, for example in thickness of 1 micrometer-10 micrometers.
  • the discharge electrode 310 may be formed to have the same thickness as each of the internal electrodes 200. However, the discharge electrode 310 may be formed thinner or thicker than each of the internal electrodes 200. For example, the discharge electrode 310 may be formed to have a thickness of 10% to 90% than that of each of the internal electrodes 200. For example, the discharge electrode 310 may be formed to a thickness of 1 ⁇ m 5 ⁇ m, each internal electrode 200 may be formed to a thickness of 2 ⁇ m 10 ⁇ m.
  • the varistor type overvoltage protection unit 3000 bypasses the overvoltage in an energy conduction method, the load on the discharge electrodes 311 and 312 is small.
  • the overvoltage protection unit 3000 when the overvoltage protection unit 3000 is formed as a suppressor type, since the overvoltage is bypassed to the suppressor type, the load on the discharge electrode 310 is greater, but in the case of the varistor type, the discharge electrode 310 is larger than the suppressor type. The load on is small. Therefore, when the overvoltage protection unit 3000 is formed in the varistor type, the thickness of the discharge electrode 310 formed of the noble metal can be reduced, thereby reducing the manufacturing cost.
  • the discharge electrode 310 may be alternately connected to the external electrode 5000. That is, the first discharge electrode 311 is connected to the first external electrode 5100 and formed on the first discharge sheet 121, and the second discharge electrode 312 is connected to the second external electrode 5200.
  • the first and second discharge electrodes 311 and 312 are alternately connected to any one of the external electrodes 5000 and are formed to overlap a predetermined area with the second to sixth discharge sheets 122 to 126 interposed therebetween.
  • the first and second discharge electrodes 311 and 312 are respectively formed with an area of 10% to 85% of the area of each of the discharge sheets 120.
  • the first and second discharge electrodes 311 and 312 are formed to overlap with an area of 10% to 85% of the area of each of these electrodes.
  • the length of the discharge electrode 310 may be equal to or smaller than the length of the internal electrode 200, and the width of the discharge electrode 310 may be equal to or smaller than the width of the internal electrode 200. Therefore, the discharge electrode 310 may be formed to have the same or smaller area than the internal electrode 200.
  • the varistor type overvoltage protection unit 3000 may implement a breakdown voltage of, for example, 310V to 2kV.
  • the varistor type overvoltage protection unit 3000 can protect electronic devices and the like from voltages lower than the suppressor type. That is, when the overvoltage protection unit 3000 is implemented as a suppressor type, since the discharge start voltage is 2 kV or more, the discharge may not be bypassed to the over voltage of 2 kV or less, and the disconnection state may be maintained to other adjacent parts or signal lines inside the electronic device. Can cause damage to other components or cause abnormal operation. However, by implementing the overvoltage protection unit 3000 as a varistor type, it is possible to bypass the overvoltage higher than the breakdown voltage to prevent damage to the peripheral circuit. That is, since the varistor type overvoltage protection unit 3000 has a breakdown voltage of 310V to 2kV, the varistor type overvoltage protection unit 3000 may protect the internal circuit of the electronic device from an overvoltage lower than the suppressor type.
  • the overvoltage protection unit 3000 has a predetermined capacitance, which is smaller than the capacitance of the capacitor unit 2000. That is, since the capacitance of the capacitor unit 2000 is larger than the capacitance of the overvoltage protection unit 3000, the total capacitance of the composite device may be increased. In this case, the capacitance of the capacitor unit 2000 may be 1 to 500 times larger than the capacitance of the overvoltage protection unit 3000.
  • the breakdown voltage of the overvoltage protection unit 3000 may be 310V or more, and may be lower than the dielectric breakdown voltage of the capacitor 2000. That is, the breakdown voltage of the overvoltage protection unit 3000 may be 310V or more and less than the dielectric breakdown voltage of the capacitor 2000. Since the breakdown voltage is lower than the dielectric breakdown voltage, the overvoltage may be discharged before the capacitor unit 2000 is dielectric breakdown. In addition, an interval between the internal electrodes 200 of the capacitor unit 2000 may be smaller than an interval between the discharge electrodes 310 of the overvoltage protection unit 3000. In addition, the overlapping area of the discharge electrode 310 of the overvoltage protection unit 3000 may be smaller than the overlapping area of the internal electrode 200 of the capacitor unit 2000.
  • the coupling part 4000 may be provided between the capacitor part 2000 and the overvoltage protection part 3000 in the stack 1000.
  • the capacitor unit 2000 and the overvoltage protection unit 3000 may be manufactured by different processes and then coupled by the coupling unit 4000.
  • the coupling part 4000 may include a material capable of bonding and bonding the first stack formed of the capacitor part 2000 and the second stack formed of the overvoltage protection part 3000.
  • the coupling portion 4000 may use a material having an adhesive force, and a material capable of forming an adhesive force through drying, curing, and firing may be used.
  • the coupling part 4000 may be formed of, for example, a glass paste, a polymer paste, an oligomer paste, or the like.
  • the paste may include glass-containing paste, polymer-containing paste, epoxy-containing paste, oligomer-containing paste, and the like.
  • the glass paste may include at least one of SiO 2 , BiO 2 , B 2 iO 3 , B 2 O 3 , BaO, Al 2 O 3 , Na 2 O 3 , K 2 O 3 , ZrO 2
  • the polymer paste may Si resins and synthetic resins may be included.
  • the oligomer paste may include an epoxy resin
  • the epoxy resin may include novolac-based, bisphenol-based, amine-based, cycloalipatic-based, and bromine-based epoxy resins. can do.
  • the polymer paste and the epoxy resin may form an adhesive force through drying and curing.
  • the polymer paste and the epoxy resin may be dried at a temperature of 20 ° C. to 150 ° C. for at least 5 minutes and at least 5 minutes at a temperature of 20 ° C. to 300 ° C.
  • a curing agent may be further used to maximize the adhesive strength and shorten the drying and curing time.
  • the glass paste may contain 20 wt% to 90 wt% of a glass material, and may contain a binder, a solvent, and the like. That is, the glass material may contain 20 wt% to 90 wt% with respect to 100 wt% of the glass paste, and the remainder may be a binder and a solvent.
  • the EC-based, acrylic binder is used as the binder
  • the solvent may be BCA, Terpinol (Terpinol) system and the like.
  • a glass paste can be mixed and used with at least any one of a polymer paste and an oligomer paste.
  • Epoxy resins can be mixed in a proportion to complement the advantages and disadvantages of each system. That is, two or more series can also be mixed and used as an epoxy resin.
  • the coupling part 4000 may be formed to a thickness of about 1 ⁇ m to about 100 ⁇ m.
  • the coupling force may be reduced, and when the coupling portion 4000 is formed to a thickness of more than 100 ⁇ m, poor assembly may occur, and contamination of the jig may occur.
  • the coupling portion 4000 is formed to exceed 100 ⁇ m, the paste material for forming the coupling portion 4000 flows to the side surface of the stack 1000, and accordingly, the internal electrode 200 and the discharge electrode 300 are formed. In order to cover the gap, the internal electrode 200, the discharge electrode 300, and the external electrode 5000 may be in poor contact to deteriorate device characteristics.
  • the coupling part 4000 may be formed in its entirety or may be partially formed in at least one region. That is, the paste may be applied to one entire surface of the first or second laminate, or may be bonded after being applied to at least one region.
  • the coupling portion 4000 may be formed to extend on the side of the stack 1000, it is formed so as not to cover the internal electrode 200 or the discharge electrode 300 to prevent a poor connection with the external electrode (5000) It is preferable.
  • the internal electrode 200 or the discharge electrode 300 may be formed by forming the external electrode 5000 in advance before forming the bonding paste. Connection between the external electrode and the external electrode 5000 can be prevented.
  • the coupling part 4000 is extended to the side surface of the stack 1000 to further improve the adhesion.
  • the coupling part 4000 may have pores formed in at least one region, and the thickness of at least one region may be different from that of the other region.
  • the coupling portion 4000 may further include an electromagnetic shielding and absorbing material.
  • an electromagnetic wave shielding and absorbing material may be included in a glass paste having a bonding force.
  • the electromagnetic shielding and absorbing material may include ferrite, alumina, or the like, and may be contained in an amount of 0.1 wt% to 50 wt% in the coupling portion 4000. That is, the electromagnetic shielding and absorbing material may be contained in an amount of 0.01 wt% to 50 wt% based on 100 wt% of the coupling portion 4000 material.
  • the coupling part 4000 including the electromagnetic shielding and absorbing material may be formed to a thickness of 1 ⁇ m to 100 ⁇ m.
  • the ferrite may be a MnZn-based ferrite having a high saturation magnetic flux density and a low core loss, a NiZn-based ferrite having an electrical resistivity of 10 ⁇ m or more, and a CuZn-based ferrite having a relatively low firing temperature.
  • NiZn-based ferrite whose crystal structure is a spinel structure is used in a band of less than 1 GHz and replaced with Sr, Pb, and Ca elements instead of BaO-MeO-Fe 2 O 3 system or BaO. Since the ferrite of one hexagonal structure shows a natural resonance frequency at 1 kHz, it can be used as an electromagnetic wave absorbing and shielding material in the high frequency band of 1 kHz or more.
  • R 3 Fe 5 O 12 (R is a rare earth metal such as Y or Gd) is represented by a general formula, cubic structure of the cubic structure with low crystal magnetic anisotropy and low electromagnetic field can also be used. .
  • the electromagnetic shielding and absorbing material may be further contained in the coupling part 4000 to shield or absorb the electromagnetic waves.
  • the coupling portion 4000 may not have a separate color. That is, the coupling part 4000 may not have a separate color because no pigment is added. However, the coupling part 4000 may also have a color by adding a pigment. In this case, the coupling part 4000 may have the same color as the capacitor part 2000 and may have the same color as the overvoltage protection part 3000. That is, the pigment used when the capacitor part 2000 is formed may be added to the coupling part 4000 to have the same color as the capacitor part 2000, or the pigment used when the overvoltage protection part 3000 is added to protect the overvoltage. It may have the same color as the unit 3000. Of course, the coupling part 4000 may have a different color from the capacitor part 2000 and the overvoltage protection part 3000.
  • the coupling method of the capacitor unit 2000 and the overvoltage protection unit 3000 using the coupling unit 4000 is as follows. After forming the internal electrodes 200 on the plurality of dielectric sheets 110, respectively, and stacking and sintering the capacitor parts 2000, the discharge electrodes 310 are formed on the plurality of discharge sheets 120, respectively. After lamination and sintering, an overvoltage protection unit 3000 is manufactured. Subsequently, the coupling part 4000 is formed on one surface of the capacitor part 2000, and then the overvoltage protection part 3000 is combined to manufacture the laminate 1000.
  • the capacitor unit 2000 may be aligned with a jig, and then an adhesive paste may be applied to one surface of the capacitor unit 2000, and the overvoltage protection unit 3000 may be aligned and compressed on top of the capacitor unit 2000. .
  • the capacitor part 2000 and the overvoltage protection part 3000 are stacked in the stacking direction of the sheet 100 to expose the internal electrode 200 and the discharge electrode 310 on two opposite surfaces of the stack 1000. Be sure to In addition, after the capacitor unit 2000 and the overvoltage protection unit 3000 are combined, heat treatment may be performed at a predetermined temperature.
  • the heat treatment may be performed at a temperature lower than the sintering temperature of the capacitor unit 2000 and the overvoltage protection unit 3000, and when the polymer paste is used, the heat treatment may be performed at a temperature of 10 ° C. to 300 ° C. FIG. .
  • the coupling part 4000 is formed by using a paste
  • the embodiment of the present invention uses a ceramic sheet and simultaneously stacks the coupling part 4000 between the capacitor part 2000 and the overvoltage protection part 3000. Sintering may also be used to implement composite devices.
  • the external electrodes 5100, 5200, and 5000 may be provided on two side surfaces of the stack 1000 that face each other.
  • the external electrodes 5000 may be formed on two opposite surfaces of the laminate 1000 in the X direction, that is, the length direction.
  • the external electrode 5000 is connected to the internal electrode 200 and the discharge electrode 310 formed in the stack 1000. That is, one external electrode 5000 may be formed on each of two side surfaces facing each other, for example, the first and second sides, or two or more external electrodes may be formed.
  • any one of the external electrodes 5000 may be connected to an internal circuit such as a printed circuit board inside the electronic device, and the other may be connected to the outside of the electronic device, for example, a metal case.
  • the first external electrode 5100 may be connected to an internal circuit
  • the second external electrode 5200 may be connected to a metal case.
  • the second external electrode 5200 may be connected to the metal case through a conductive member, for example, a contactor or a conductive gasket.
  • the external electrode 5000 may be formed in various ways. That is, the external electrode 5000 may be formed by an immersion or printing method using a conductive paste, or may be formed by various methods such as deposition, sputtering, plating, and the like. The method of forming the external electrode 5000 by dipping or printing may vary depending on the material for forming the coupling part 4000. That is, when the coupling part 4000 is a polymer-based or epoxy-based dry or hardened type, the external electrode 5000 may be formed by using a polymer-based or epoxy-based material and drying or curing.
  • the coupling portion 4000 is of a dry or hardening type but the external electrode 5000 is advanced to a firing type, the coupling portion 4000 may burn out and the bonding force may be lowered.
  • the coupling portion 4000 is formed of a glass-based material, it may be free to determine the type of the external electrode 5000 since the material must be fired above the glass transition temperature in order to secure adhesion. That is, when the glass-based coupling portion 4000 forming material is used, the external electrode 5000 may be formed using a firing, drying, and curing type. On the other hand, the external electrode 5000 may be formed to extend on the surface in the Y direction and Z direction.
  • the external electrode 5000 may extend from two surfaces facing in the X direction to four adjacent surfaces.
  • the external electrode 5000 when immersed in the conductive paste, the external electrode 5000 may be formed not only on two opposite sides of the X direction, but also on the front and rear surfaces of the Y direction, and the upper and lower surfaces of the Z direction.
  • the external electrode 5000 when formed by printing, vapor deposition, sputtering, plating, or the like, the external electrode 5000 may be formed on two surfaces in the X direction. That is, the external electrode 5000 may be formed not only on one side mounted on the printed circuit board and the other side connected to the metal case, but also in other areas according to the formation method or process conditions.
  • the external electrode 5000 may be formed of a metal having electrical conductivity.
  • the external electrode 5000 may be formed of one or more metals selected from the group consisting of gold, silver, platinum, copper, nickel, palladium, and alloys thereof.
  • the internal electrode 200 and the discharge electrode 310 are formed on at least a part of the external electrode 5000, that is, at least one surface of the stack 1000, and the internal electrode 200 and the discharge electrode 310 are formed.
  • a part of the external electrode 5000 to be connected may be formed of the same material as the internal electrode 200 and the discharge electrode 310.
  • the internal electrode 200 and the discharge electrode 310 are formed of copper
  • at least a part of the inner electrode 200 and the discharge electrode 310 may be formed using copper.
  • copper may be formed by an immersion or printing method using a conductive paste as described above, or may be formed by deposition, sputtering, plating, or the like.
  • the external electrode 5000 may be formed by plating.
  • the seed layer may be formed on upper and lower surfaces of the laminate 1000, and then the plating layer may be formed from the seed layer to form the external electrode 5000.
  • at least a part of the external electrode 5000 connected to the internal electrode 200 and the discharge electrode 310 may be an entire side surface of the stack 1000 on which the external electrode 5000 is formed, or may be a partial region. .
  • the external electrode 5000 may further include at least one plating layer.
  • the external electrode 5000 may be formed of a metal layer such as Cu or Ag, and at least one plating layer may be formed on the metal layer.
  • the external electrode 5000 may be formed by stacking a copper layer, a Ni plating layer, and a Sn or Sn / Ag plating layer.
  • the plating layer may be laminated with a Cu plating layer and a Sn plating layer, the Cu plating layer, Ni plating layer and Sn plating layer may be laminated.
  • the external electrode 5000 may be formed by mixing, for example, a multicomponent glass frit having 0.5% to 20% of Bi 2 O 3 or SiO 2 as a main component with a metal powder.
  • the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the laminate 1000.
  • the glass frit is included in the external electrode 5000, the adhesion between the external electrode 5000 and the stack 1000 may be improved, and the contact reaction of the electrodes in the stack 1000 may be improved.
  • at least one plating layer may be formed on the upper portion thereof to form the external electrode 5000. That is, the metal layer including the glass and at least one plating layer formed thereon may form the external electrode 5000.
  • the external electrode 5000 may form a Ni plated layer and a Sn plated layer sequentially through electrolytic or electroless plating after forming a layer including glass frit and Ag and Cu.
  • the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer.
  • the external electrode 5000 may be formed of only at least one plating layer. That is, the external electrode 5000 may be formed by forming at least one layer of the plating layer using at least one plating process without applying the paste.
  • the external electrode 5000 may be formed to have a thickness of 2 ⁇ m to 100 ⁇ m, the Ni plating layer may be formed to have a thickness of 1 ⁇ m to 10 ⁇ m, and the Sn or Sn / Ag plating layer may have a thickness of 2 ⁇ m to 10 ⁇ m.
  • the external electrode 5000 may be formed to have a different thickness from that of the other region. That is, the external electrode 5000 in the X direction from the side surface of the stack 1000 may be formed thicker or thinner than at least one region.
  • a step may be formed between the capacitor part 2000 and the overvoltage protection part 3000 on the side of the external electrode 5000, and the thickness of the external electrode 5000 formed along the step may be different.
  • the external electrode 5000 may be formed outside the laminate 1000 in which the capacitor unit 2000 and the overvoltage protection unit 3000 are coupled using the coupling unit 4000.
  • the external electrode 5000 is formed on the capacitor unit 2000 and the overvoltage protection unit 3000 before coupling using the coupling unit 4000, and then coupled to each other using the coupling unit 4000. It may be formed to connect. That is, external capacitors are formed on two opposite sides of the capacitor unit 2000 and the overvoltage protection unit 3000, respectively, and are coupled using the coupling unit 4000, and then the capacitor unit 2000 and the overvoltage protection unit 3000 are combined. It is also possible to form an external electrode to connect the external electrode of the. In this case, each element may form a dry or hardened type external electrode or a fired type external electrode, and an external electrode for connecting them may also use a dry, hardened or fired type.
  • the surface modification member 6000 may be formed on at least a portion of the surface of the laminate 1000. That is, the surface modification member 6000 may be formed on the entire surface of the stack 1000, or may be formed only in an area in contact with the external electrode 5000 of the stack 1000. In other words, the surface modification member 6000 in which the surface modification member 6000 is formed on a part of the surface of the laminate 1000 may be formed between the laminate 1000 and the external electrode 5000. In this case, the surface modification member 6000 may be formed in contact with the extension region of the external electrode 5000. That is, the surface modification member 6000 may be provided between one region of the external electrode 5000 extending to the upper and lower surfaces of the laminate 1000 and the laminate 1000.
  • the surface modification member 6000 may be provided in the same or different size than the external electrode 5000 formed thereon. For example, an area of 50% to 150% of an area of a portion of the external electrode 5000 extending to the upper and lower surfaces of the stack 1000 may be formed. That is, the surface modification member 6000 may be formed to be smaller or larger than the size of the extension region of the external electrode 5000, or may be formed to have the same size. Of course, the surface modification member 6000 may also be formed between the external electrode 5000 formed on the side surface of the laminate 1000.
  • the surface modification member 6000 may include a glass material.
  • the surface modification member 6000 may include non-borosilicate glass (SiO 2 -CaO-ZnO-MgO-based glass) that can be fired at a predetermined temperature, for example, 950 ° C. or less. Can be.
  • the surface modification member 6000 may further include a magnetic material. That is, when the region on which the surface modification member 6000 is to be formed is made of a magnetic sheet, a magnetic material may be partially included in the surface modification member 6000 to facilitate coupling of the surface modification member 6000 and the magnetic sheet.
  • the magnetic material may include, for example, NiZnCu-based magnetic powder, and may include, for example, 1-15 wt% of the magnetic material with respect to 100 wt% of the glass material.
  • the surface modification member 6000 may be formed on the surface of the laminate 1000.
  • at least a portion of the glass material may be evenly distributed on the surface of the stack 1000 as illustrated in FIG. 3A, and at least a portion of the glass material may have different sizes as illustrated in FIG. 3B. It may be distributed irregularly.
  • the surface modification member 6000 may be continuously formed on the surface of the laminate 1000 to have a film form.
  • a recess may be formed on at least part of the surface of the laminate 1000.
  • a glass material may be formed to form a convex portion, and at least a portion of the region where the glass material is not formed may be dug to form a recess.
  • the glass material may be formed to a predetermined depth from the surface of the laminate 1000, and at least a portion thereof may be formed higher than the surface of the laminate 1000. That is, at least a portion of the surface modification member 6000 may be coplanar with the surface of the stack 1000, and at least a portion of the surface modification member 6000 may be maintained higher than the surface of the stack 1000.
  • the surface of the laminate 1000 may be modified by distributing a glass material in a portion of the laminate 1000 before forming the external electrode 5000 to form the surface modifying member 6000, thereby improving the resistance of the surface. It can be made uniform. Therefore, the shape of the external electrode can be controlled, thereby facilitating the formation of the external electrode.
  • a paste including a glass material may be printed or applied to the predetermined region of the predetermined sheet.
  • the surface modifying member 6000 may be formed by applying a glass paste to at least two regions of the lower surface of the first dielectric sheet 111 and at least two regions of the upper surface of the seventh discharge sheet 127 and curing the glass paste.
  • the glass paste may be applied to a predetermined area of the ceramic green sheet before cutting to the size of the stacked element. That is, after applying the glassy paste to a plurality of areas of the ceramic green sheet, the green sheet is cut by the cutting line of the stacked element unit including the portion where the glassy paste is formed, and the circuit is protected by laminating it with the sheet on which the noise filter part is formed. A device can be manufactured. In this case, since the surface modification member 6000 is formed at the edge of the laminate 1000, the surface modification member 6000 may be cut in a stacked device unit based on a region where the glassy paste is applied.
  • the surface modification member 6000 may be formed using an oxide. That is, the surface modification member 6000 may be formed using at least one of a glassy material and an oxide, and may further include a magnetic material. In this case, the surface modification member 6000 may be distributed by dispersing the oxide in the crystalline state or amorphous state on the surface of the laminate 1000, at least a portion of the oxide distributed on the surface may be melted. In this case, the oxide may be formed as shown in FIGS. 3A to 3C. In addition, even when the surface modification member 6000 is formed of an oxide, the oxides may be spaced apart from each other and distributed in an island form, or may be formed in a film form in at least one region.
  • the oxide in the granular or molten state is, for example, Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO, Co 3 O 4 , SiO 2 , Al 2 O 3 , MnO, H 2 BO 3 , H 2 At least one of BO 3 , Ca (CO 3 ) 2 , Ca (NO 3 ) 2 , and CaCO 3 may be used.
  • the coupling unit 4000 may be coupled by the coupling unit 4000.
  • the passive element such as the capacitor unit 2000 and the overvoltage protection unit 3000 may be manufactured and then coupled by the coupling unit 4000. Therefore, two or more functional parts made of different materials may be provided in one laminate 1000.
  • the composite device is manufactured and sintered in each manufacturing process and then bonded, the materials of different functional portions do not diffuse together, thereby not degrading the function of each functional portion.
  • At least two or more functional units may have different colors or contrasts with the coupling portion 4000 interposed therebetween.
  • the capacitor part 2000 may have a lighter color than the overvoltage protection part 3000. Therefore, since the composite device has directionality by color, a separate phosphor coating process for imparting directionality may not be performed.
  • the thickness of the device may be reduced, and thus the circuit protection device may be mounted in response to an electronic device having a reduced size and a reduced mounting area and height.
  • the size of the device is smaller, the area of the external electrode is smaller, the adhesion between the external electrode and the laminate is reduced, and thus the adhesion strength may be lowered when mounting on the PCB, but the adhesion between the external electrode and the laminate is improved according to the present invention. By improving the adhesion strength.
  • FIG. 4 is a schematic cross-sectional view of a composite device according to a second exemplary embodiment of the present invention.
  • a composite device may include a stack 1000 including a plurality of sheets 100, at least one capacitor part 2000 provided in the stack 1000, The first overvoltage protection part 3100 provided to be spaced apart from the capacitor part 2000 in the laminate 1000, the second overvoltage protection part 3200 provided between the capacitor part 2000 in the laminate 1000, The coupling part 4000 provided between the capacitor part 2000 and the first overvoltage protection part 3100 in the stack 1000 and the external electrode 5000 provided outside the stack 1000 may be included. That is, in the composite device according to the second embodiment of the present invention, two overvoltage protection units 3000 are provided in the stack 1000, and the first overvoltage protection unit 3100 is provided on the capacitor unit 2000.
  • the second overvoltage protection unit 3200 may be provided in the capacitor unit 2000. That is, a suppressor may be provided in the capacitor unit 2000.
  • a suppressor may be provided in the capacitor unit 2000.
  • the capacitor part 2000 includes the first to fourth internal electrodes 210 to 240, and the second overvoltage protection part 3200 is disposed between the second internal electrode 220 and the third internal electrode 240. Can be prepared.
  • the capacitor part 2000 may have a different color from the first overvoltage protection part 3100, for example, the first overvoltage protection part 3100. It may have a lighter color than). That is, not only the capacitor part 2000 but also the second overvoltage protection part 3200 may have a lighter color than the first overvoltage protection part 3100.
  • the same pigment as that of the capacitor unit 2000 may be added to the second overvoltage protection unit 3200 to be manufactured. That is, the sheet forming the second overvoltage protection part 3200 may be formed of the same material as the dielectric sheet of the capacitor part 2000.
  • the second overvoltage protection part 3200 may include at least two discharge electrodes 313 and 314 spaced apart in the vertical direction, and at least one overvoltage protection member 320 provided between the discharge electrodes 313 and 314. have.
  • the second overvoltage protection unit 3200 may include the third and fourth discharge electrodes 313 and 314 and the fourth sheet 114 formed on the third and fourth dielectric sheets 113 and 114, respectively. It may include an over-voltage protection member 320 formed through.
  • the overvoltage protection member 320 may be formed such that at least a portion thereof is connected to the third and fourth discharge electrodes 313 and 314.
  • the third and fourth discharge electrodes 313 and 314 may be formed to have the same thickness or different thicknesses from those of the first and second discharge electrodes 311 and 312 of the first overvoltage protection part 3100 and the capacitor part 2000.
  • the thickness of the internal electrodes 200 may be the same as or different from that of the internal electrodes 200.
  • the third and fourth discharge electrodes 313 and 314 may be formed to have a thickness of 1 ⁇ m to 10 ⁇ m, and are thicker than the first and second discharge electrodes 311 and 313, and may be formed in the internal electrode 200. It may be formed to the same thickness.
  • the varistor type first overvoltage protection unit 3100 bypasses the overvoltage by the energy conduction method, the load on the first and second discharge electrodes 311 and 312 is small, but the second overvoltage protection of the suppressor type is performed.
  • the part 3200 bypasses the overvoltage in the suppressor type, and thus the load on the third and fourth discharge electrodes 313 and 314 is large. Therefore, the thicknesses of the third and fourth discharge electrodes 313 and 314 of the second overvoltage protection part 3200 are greater than the thicknesses of the first and second discharge electrodes 311 and 312 of the first overvoltage protection part 3100. It should be thickened.
  • the third and fourth discharge electrodes 313 and 314 may further include a dielectric sheet 110 material.
  • the third and fourth discharge electrodes 313 and 314 may be formed using a mixture of a conductive material and a dielectric material.
  • the dielectric material may contain about 1 wt% to about 20 wt% with respect to 100 wt% of the mixture of the conductive material and the dielectric material. Therefore, the adhesion between the third and fourth discharge electrodes 313 and 314 and the dielectric sheet 110 can be improved, thereby reducing microdelamination.
  • the third discharge electrode 313 is connected to the second external electrode 5200 and is formed on the third sheet 113, and the end portion thereof is connected to the overvoltage protection member 320.
  • the fourth discharge electrode 314 is connected to the first external electrode 5100 and is formed on the fourth sheet 114, and the terminal portion is formed to be connected to the overvoltage protection member 320. That is, the third and fourth discharge electrodes 313 and 314 are formed to be connected to the adjacent external electrode 5000 with the adjacent inner electrode 200. That is, the third discharge electrode 313 is connected to the adjacent second internal electrode 220 and the second external electrode 5200, and the fourth discharge electrode 314 is adjacent to the third internal electrode 230 and the first external. It is connected to the electrode 5100.
  • an overvoltage such as an ESD may occur even when the dielectric sheet 110 is deteriorated, that is, the dielectric breakdown. It is not applied inside the electronic device. That is, when the third and fourth discharge electrodes 313 and 314 and the inner electrode 200 adjacent to each other are connected to different external electrodes 5000, the dielectric sheet 110 is applied through one external electrode 5000 when the dielectric sheet 110 is insulated and destroyed. The excess voltage flows to the other external electrode 5000 through the internal electrode 200 adjacent to the discharge electrodes 313 and 314.
  • the dielectric sheet 110 breaks the insulation. If a conductive path is formed between the third discharge electrode 313 and the second internal electrode 220, the ESD voltage applied through the first external electrode 5100 is the third discharge electrode 313, and the dielectric breakdown third. It may flow to the dielectric sheet 113 and the second internal electrode 220, and thus may be applied to the internal circuit through the second external electrode 5200. In order to solve this problem, the thickness of the dielectric sheet 110 may be formed thick, but in this case, there is a problem in that the size of the device becomes large.
  • the overvoltage is applied into the electronic device even when the dielectric sheet 110 is destroyed. It doesn't work. In addition, it is possible to prevent the overvoltage from being applied without forming the thickness of the dielectric sheet 110 thickly.
  • the third and fourth discharge electrodes 313 and 314 may be connected to the external electrode 5000 which is different from the adjacent internal electrode 200.
  • a distance between the third and fourth discharge electrodes 313 and 314 and the adjacent internal electrode 200, that is, the second and third internal electrodes 220 and 230 is referred to as A
  • the third and fourth discharge electrodes 313 , 314, and the distance between the internal electrodes 200 is referred to as C
  • the third and fourth discharge electrodes 313 and 314 and the adjacent internal electrodes 200 are different from each other.
  • the relationship of A> B and A> C is required.
  • the third and fourth discharge electrodes 313 and 314 and the inner electrode 200 adjacent to each other are connected to the same outer electrode 5000, the inner electrode 200 and the third and fourth discharge electrodes 313 and 314 are separated. Since the dielectric breakdown phenomenon is improved, A? B and A? C may be used.
  • the thickness between the third and fourth discharge electrodes 313 314, that is, the thickness B of the fourth dielectric sheet 114 is the thickness of the lowermost and uppermost dielectric sheet 110 of the capacitor portion 2000, that is, the first thickness of the fourth dielectric sheet 114.
  • the thickness of the second overvoltage protection part 3200 is 0.4% to 40%, preferably 4% to 20% of the thickness of the capacitor part 2000, and the capacitor part 2000 and the first overvoltage protection part 3100. It may be 0.2% to 20%, preferably 2% to 10% of the thickness of the laminate 1000 including.
  • the thickness C between the internal electrodes 200 of the capacitor part 2000 is 10 ⁇ m to 250 ⁇ m, preferably 10 ⁇ m to 100 ⁇ m, and between the third and fourth discharge electrodes 313 and 314.
  • the distance B that is, the thickness of the overvoltage protection member 320 is 1 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m.
  • the distance between the third and fourth discharge electrodes 313 and 314 of the second overvoltage protection part 3200 is greater than the distance between the ends of the third and fourth discharge electrodes 313 and 314 and the external electrode 5000.
  • the distance between the inner electrode 200 of the capacitor unit 2000 may be smaller than the distance between the end of the inner electrode 200 and the outer electrode 5000.
  • the external electrode 5000 may be formed to extend not only on two side surfaces of the X direction but also on four surfaces of the Y direction and the Z direction.
  • the internal electrode 200 connected to the first external electrode 5100 may have a distal end in the X direction.
  • the distance between the second external electrode 5200 opposite to the distance between the regions extending from the second external electrode 5200 may be greater than the distance between the internal electrodes 200. In this way, a load may be applied between the internal electrodes 200.
  • the regions of the third and fourth discharge electrodes 313 and 314 that are in contact with the overvoltage protection member 320 may be the same size or smaller than the overvoltage protection member 320.
  • the third and fourth discharge electrodes 313 and 314 may be formed to completely overlap without leaving the overvoltage protection member 320. That is, the edges of the third and fourth discharge electrodes 313 and 314 may form a vertical component with the edges of the overvoltage protection member 320.
  • the third and fourth discharge electrodes 313 and 314 may be formed to overlap a portion of the overvoltage protection member 320.
  • the third and fourth discharge electrodes 313 and 314 may be formed to overlap 10% to 100% of the horizontal area of the overvoltage protection member 320.
  • the third and fourth discharge electrodes 313 and 314 are not formed beyond the overvoltage protection member 320. Meanwhile, the third and fourth discharge electrodes 313 and 314 may be formed to have a larger area than one in contact with the overvoltage protection member 320.
  • the overvoltage protection member 320 may be formed in a predetermined region, for example, a central portion of the fourth dielectric sheet 114 to be connected to the third and fourth discharge electrodes 313 and 314. In this case, the overvoltage protection member 320 may be formed to at least partially overlap the third and fourth discharge electrodes 313 and 314. That is, the overvoltage protection member 320 may be formed to overlap 10% to 100% of the horizontal area with the third and fourth discharge electrodes 313 and 314.
  • the overvoltage protection member 320 may be formed to form a through hole having a predetermined size in a predetermined region, for example, a central portion of the fourth dielectric sheet 114, and fill the through hole using a thick film printing process.
  • the overvoltage protection member 320 may be formed of only the through holes without filling the through holes. That is, the overvoltage protection member 320 may include a void or an overvoltage protection material provided in at least a portion of the void. On the other hand, the overvoltage protection member 320 may be formed, for example, a diameter of 100 ⁇ m to 500 ⁇ m and a thickness of 10 ⁇ m to 50 ⁇ m. At this time, the thinner the thickness of the overvoltage protection member 320, the lower the discharge start voltage. The overvoltage protection member 320 may be formed using a conductive material and an insulating material.
  • the overvoltage protection member 320 may be formed by printing a mixed material of the conductive ceramic and the insulating ceramic on the fourth dielectric sheet 114. Meanwhile, the overvoltage protection member 320 may be formed on at least one dielectric sheet 110. That is, the overvoltage protection members 320 are formed on at least one dielectric sheet 110 stacked in the vertical direction, for example, and the discharge electrodes 310 are formed on the dielectric sheet 110 so as to be spaced apart from each other. And may be connected to the overvoltage protection member 320.
  • the third and fourth discharge electrodes 313 and 314 may be formed to be spaced apart in the horizontal direction on the same plane, and the overvoltage protection member 320 may be formed therebetween.
  • the overvoltage protection material which may be formed on the overvoltage protection member 320 is at least one selected from RuO 2 , Pt, Pd, Ag, Au, Ni, Cr, W, and the like in an organic material such as polyvinyl alcohol (PVA) or polyvinyl butyral (PVB). It is possible to form a mixture of conductive materials.
  • the overvoltage protection material may be formed by further mixing a varistor material such as ZnO or an insulating ceramic material such as Al 2 O 3 with the mixed material.
  • a variety of materials may be used as the overvoltage protection material.
  • the overvoltage protection material may utilize at least one of a porous insulating material and a void.
  • a porous insulating material may be embedded or coated in the through hole, a void may be formed in the through hole, and a mixed material of the porous insulating material and the conductive material may be embedded or coated in the through hole.
  • porous insulating materials, conductive materials, and voids may be formed in layers in the through holes.
  • a porous insulating layer is formed between the conductive layers, and voids may be formed between the insulating layers.
  • the gap may be formed by connecting a plurality of pores of the insulating layer to each other.
  • ferroelectric ceramics having a dielectric constant of about 50 to 500,000 may be used.
  • the insulating ceramic uses a mixture containing one or more of dielectric material powders such as MLCC, ZrO, ZnO, BaTiO 3 , Nd 2 O 5 , BaCO 3 , TiO 2 , Nd, Bi, Zn, Al 2 O 3 Can be formed.
  • the porous insulating material may be formed in a porous structure in which a plurality of pores having a size of about 1 nm to 5 ⁇ m is formed to have a porosity of 30% to 80%. In this case, the shortest distance between the pores may be about 1nm to 5 ⁇ m.
  • the conductive material used as the overvoltage protection material may be formed using a conductive ceramic, the conductive ceramic is at least one of La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe, Bi It is possible to use a mixture including.
  • a discharge induction layer (not shown) may be further formed on the overvoltage protection member 320. That is, the discharge induction layer may be formed between the discharge electrode 310 and the overvoltage protection member 320, and may be formed between the dielectric sheet 110 and the overvoltage protection member 320.
  • the discharge induction layer may include an overvoltage protection material and a material of the discharge electrode 310, and may include an overvoltage protection material and a material of the dielectric sheet 110.
  • the discharge induction layer may include an overvoltage protection material, a discharge electrode 310 material, and a dielectric sheet 110 material. That is, the discharge induction layer may be formed by the reaction of the overvoltage protection member 320, the discharge electrode 310, and the dielectric sheet 110. In this case, the discharge induction layer between the overvoltage protection member 320 and the discharge electrode 310 and the discharge induction layer between the overvoltage protection member 320 and the dielectric sheet 110 may have different compositions. For example, when the overvoltage protection member 332 is formed using porous ZrO or TiO and the discharge electrode 310 is formed using Al, AlZrO or TiAlO is formed between the overvoltage protection member 320 and the discharge electrode 310. A discharge induction layer of may be formed. The discharge induction layer is formed of a porous structure, the discharge of the overvoltage can be made more smoothly by the discharge induction layer.
  • the discharge electrode 310 of the overvoltage protection unit 3000 may be formed in various shapes.
  • the first and second discharge electrodes 311 and 312 formed on the same plane and connected to different external electrodes 5000 are formed at predetermined intervals and are disposed on the upper side thereof.
  • the fifth discharge electrode 315 may be formed to partially overlap the first and second discharge electrodes 311 and 312. This will be described in more detail as follows.
  • the first discharge electrode 311 is connected to the first external electrode 5100 so as to be disposed on the one discharge sheet 310, for example, the fifth discharge sheet 125 of FIG. 5.
  • the second discharge electrode 312 is connected to the second external electrode 5200 and is formed on one discharge sheet 310, that is, the fifth discharge sheet 125, on which the first discharge electrode 311 is formed.
  • the first and second discharge electrodes 311 and 312 are formed spaced apart from each other by a predetermined interval.
  • the fifth discharge electrode 315 is formed on one discharge sheet 120, for example, the second discharge sheet 122, below the first and second discharge electrodes 311 and 312.
  • the first and second discharge electrodes 311 and 312 are formed to overlap a predetermined region.
  • the distance between the first and second discharge electrodes 311 and 312 is greater than the sum of the distances of the first and fifth discharge electrodes 311 and 315 and the distances of the second and fifth discharge electrodes 312 and 315. . That is, the distance between the first and second discharge electrodes 311 and 312 is referred to as E, the distance between the first and fifth discharge electrodes 311 and 315 is referred to as F, and the second and fifth discharge electrodes 312 are referred to as E. , 315) may have a relationship of E> F + G.
  • an overvoltage applied from the outside is transmitted to the fifth discharge electrode 315 through the first discharge electrode 311, and then to the second discharge electrode 312. It can be bypassed to the ground terminal of the internal circuit.
  • the composite device according to the present invention may form the internal electrode 200 of the capacitor unit 2000 in various shapes.
  • at least one of the internal electrodes 200 may be formed to be spaced apart from each other in the same plane.
  • at least one of the internal electrodes 200 may be formed to overlap in the vertical direction with the internal electrodes 200 formed to be spaced apart by a predetermined interval on the same plane. That is, as shown in FIG. 7 illustrating the fifth embodiment of the present invention, at least one internal electrode 200, that is, the first internal electrodes 211 and 212 and the sixth, among the plurality of internal electrodes 200.
  • the internal electrodes 261 and 262 may be formed to be spaced apart from each other by a predetermined interval.
  • the inner electrode 200 formed at the outermost side in the vertical direction (Z direction) of the capacitor unit 2000 may be formed spaced apart on the same plane. That is, the first internal electrode 211 is formed to be connected to the first external electrode 5100, and the first internal electrode 212 is formed to be connected to the second external electrode 5200. Electrodes 211 and 212 are formed on the first dielectric sheet 111 at predetermined intervals. Similarly, the 6a internal electrode 261 is formed to be connected to the first external electrode 5100, and the 6b internal electrode 262 is formed to be connected to the second external electrode 5200, and the 6a and 6b may be connected to each other. Internal electrodes 261 and 262 are formed on the sixth dielectric sheet 116 at predetermined intervals.
  • a second internal electrode 220 is formed above the first internal electrodes 211 and 212 to partially overlap the first internal electrodes 211 and 212, and partially overlaps the sixth internal electrodes 261 and 262.
  • the fifth internal electrode 250 is formed under the sixth internal electrodes 261 and 262.
  • the second and fifth internal electrodes 220 and 250 are formed not to be connected to the external electrode 5000.
  • the dielectric sheet 110 between two adjacent inner electrodes 200 connected to different outer electrodes 5000 is insulated, an overvoltage may be applied through the inner electrode 200, but the inner electrode 200 may not be applied.
  • the floating type may prevent the overvoltage from flowing even when the dielectric sheet 110 is insulated-breakdown.
  • the first embodiment includes two discharge electrodes 310 and the second and fourth embodiments in which the second overvoltage protection unit 3200 is formed between the two internal electrodes 200 of the capacitor unit 2000.
  • the fifth embodiment of the present invention may be applied by modifying the shape of the internal electrode 200 of the capacitor unit 2000.
  • the composite device according to embodiments of the present invention may be provided in an electronic device including a portable electronic device such as a smart phone.
  • a portable electronic device such as a smart phone.
  • FIG. 8 between an internal circuit (for example, a PCB) 20 of an electronic device and a conductor, for example, a metal case 10, which is used as a conductor or antenna that can be contacted by a user.
  • a composite device including a capacitor unit and an overvoltage protection unit may be provided.
  • the capacitor portion is denoted by reference numeral C
  • the overvoltage protection portion is denoted by reference numeral V.
  • the composite device may be mounted in the internal circuit 20 of the electronic device.
  • One area of the internal circuit 20 may be connected to the metal case 10, and the other area may be connected to the ground terminal. That is, in the composite device, one region of the internal circuit 20 on which one of the external electrodes 5000 is mounted is connected to the metal case 10, and the other of the internal circuit 20 on which the other of the external electrodes 5000 is mounted. The other area may be connected to the ground terminal. In this case, the ground terminal may be provided in the internal circuit 20 or may be provided in a region other than the internal circuit 20. Therefore, one of the external electrodes 5000 may be connected to the metal case 10 and the other may be connected to the ground terminal.
  • a conductive connector or sheet may be provided between the metal case 10 and the composite element, and a resistor and an inductor may be provided between the composite element and the internal circuit.
  • the composite device may be directly connected to the ground terminal of the internal circuit, or may be connected to the ground terminal through a resistor and an inductor.
  • a contact portion 30 may be provided between the metal case 10 and the composite element to be in electrical contact with the metal case 10 and have an elastic force. That is, the contact unit 30 and the composite device according to the present invention may be provided between the metal case 10 and the internal circuit 20 of the electronic device.
  • one of the external electrodes 5000 may be in contact with the contact unit 30 and the other may be connected to the ground terminal through the internal circuit 20.
  • the contact part 30 may be made of a material having an elastic force and containing a conductive material to relieve the impact when an external force is applied from the outside of the electronic device.
  • the contact portion 30 may have a clip shape or may be a conductive gasket.
  • at least one region of the contact portion 30 may be mounted on the internal circuit 20, for example, a PCB.
  • the composite device may be provided between the metal case 10 and the internal circuit 20 to block leakage current flowing from the internal circuit 20.
  • an overvoltage such as an ESD may be bypassed to the ground terminal, and the insulation may not be broken by the overvoltage, so that the leakage current can be continuously interrupted.
  • the composite device in the composite device according to the present invention, current does not flow between the external electrodes 5000 at the electric shock voltage due to the rated voltage and the leakage current, and at the overvoltage such as ESD, current flows through the overvoltage protection unit 3000 so that the overvoltage is grounded. It can be bypassed to the terminal.
  • the composite device may have a breakdown voltage or a discharge start voltage higher than the rated voltage and lower than an overvoltage such as an ESD.
  • a composite device may have a rated voltage of 100V to 240V, an electric shock voltage may be equal to or higher than an operating voltage of a circuit, an overvoltage generated by external static electricity, or the like, may be higher than an electric shock voltage, and a breakdown voltage or The discharge start voltage may be 350V to 15kV.
  • a communication signal may be transmitted between the external circuit and the internal circuit 20 by the capacitor unit 2000. That is, a communication signal from the outside, for example, an RF signal may be transmitted to the internal circuit 20 by the capacitor unit 2000, and the communication signal from the internal circuit 20 is external to the capacitor unit 2000. Can be delivered. Therefore, even when using the metal case 10 as an antenna, it is possible to exchange communication signals with the outside using the capacitor unit 2000.
  • an antenna such as a Planar Inverted F Antenna (PIFA) may be provided inside the metal case 10. That is, the conductor may be formed to surround one region or the entire region including the region where the antenna is provided.
  • the metal case 10 may be connected to the composite device through a conductive connector or a conductive sheet. .
  • one external electrode 5000 is connected to the metal case 10 through a conductive connector or conductive sheet, and the other external electrode 5000 is directly connected to the ground terminal of the internal circuit, or a resistor, an inductor, or a diode is used. It can be connected to the ground terminal through a passive element such as.
  • the composite device according to the present invention may block leakage current flowing from the ground terminal of the internal circuit, bypass an overvoltage applied from the outside to the ground terminal, and transmit a communication signal between the outside and the electronic device. That is, the composite device prevents the electric conduction of the electric current to the metal case 10 during the charging through the DC block, and by the AC coupling through the capacitor characteristic to the radiator of the antenna without attenuating the communication frequency of the PIFA. Can be used.
  • the composite device according to an embodiment of the present invention may be provided between the metal case 10 and the internal circuit 20 to be used as an electric shock prevention device, and a plurality of insulating sheets, that is, dielectric sheets having high breakdown voltage characteristics, may be stacked.
  • a plurality of insulating sheets that is, dielectric sheets having high breakdown voltage characteristics, may be stacked.
  • an insulation resistance state can be maintained so that a leakage current does not flow when an electric shock voltage of, for example, 310V is applied from the internal circuit by the defective charger to the metal case, and the overvoltage protection part is also provided in the metal case.
  • the overvoltage When the overvoltage is applied to the internal circuit, the overvoltage can be bypassed to maintain a high insulation resistance state without damaging the device. Therefore, the insulation is not destroyed even by the overvoltage, and thus, it is possible to continuously prevent leakage current generated in the defective charger from being delivered to the user through the metal case of the electronic device provided in the electronic device having the metal case.
  • the characteristics of the composite device and the capacitor or the device having an overvoltage protection function are to determine the leakage current, that is, the protection characteristics of the electric shock voltage or current and the overvoltage protection characteristics such as ESD, and the interference characteristics of the communication frequency when each element is provided between the metal case of the electronic device and the internal circuit.
  • the capacitor has a leakage current blocking characteristic and no communication frequency interference occurs.
  • the element may be damaged by an overvoltage, for example.
  • the leakage current blocking function is lost after the device is damaged by the overvoltage.
  • TVS diodes are not capable of implementing breakdown voltages of 320V in a small size when they are implemented with a capacitance of 20 kHz or more, thereby preventing leakage current blocking characteristics.
  • a breakdown voltage of 320V or more is implemented for electric shock protection, a capacitance of 20 mA or more is not obtained in a small size. That is, the instantaneous voltage suppression diode may have an overvoltage protection characteristic, but a communication frequency interference problem occurs for the electric shock protection characteristic, and there is a problem in that an electric shock protection characteristic is not obtained in order to avoid communication frequency interference.
  • the varistor that is, in the first embodiment of the present invention, when the capacitor unit and the coupling unit do not exist, and only the overvoltage protection unit exists, the implementation of the breakdown voltage of 320 V at a small size when implemented with a capacitance of 20 kHz or more to avoid communication frequency interference This is impossible and no leakage current blocking characteristic is obtained.
  • a breakdown voltage of 320V or more is implemented for electric shock protection, a capacitance of 20 mA or more is not obtained in a small size.
  • the varistor has an overvoltage protection characteristic, but there is a problem of communication frequency interference for electric shock protection characteristics, and a problem of failing to obtain electric shock protection characteristic to avoid communication frequency interference.
  • the device may bypass the breakdown voltage or the ESD voltage above the discharge initiation voltage, for example, over 2 kV, but over 2 kV.
  • the following overvoltage cannot be bypassed. That is, in the case of co-sintered devices, there is a problem in that overvoltage protection performance is lowered.
  • the overvoltage protection unit may obtain a low breakdown voltage or a discharge start voltage of about 400V to 500V. . Therefore, overvoltage of 2 kV or less, that is, 400 V or more can be bypassed.
  • a device having a capacitance of 20 Hz or more, preferably 30 Hz to 100 Hz, in which communication frequency interference does not occur despite a low breakdown voltage or a discharge start voltage can be implemented.
  • FIGS. 10 and 11 are schematic diagrams illustrating a frequency path according to a mounting position of a capacitor unit, and FIG. 10 illustrates a frequency path when the capacitor unit is positioned below as an embodiment of the present invention, and FIG. 11 is a comparative example. The frequency path in the case where the capacitor section is located above is shown. Meanwhile, in FIGS. 10 and 11 are schematic diagrams illustrating a frequency path according to a mounting position of a capacitor unit, and FIG. 10 illustrates a frequency path when the capacitor unit is positioned below as an embodiment of the present invention, and FIG. 11 is a comparative example. The frequency path in the case where the capacitor section is located above is shown. Meanwhile, in FIGS.
  • two external electrodes 5100 and 5200 of the composite device are illustrated as being mounted in the internal circuits 21 and 22.
  • the first external electrode 5100 is connected to the internal circuit 21 through the internal circuit 21. It may be connected to the metal case, and the second external electrode 5200 may be connected to another region or the ground terminal of the internal circuit 22.
  • Insertion loss according to Comparative Examples and Examples is shown in [Table 1] and FIGS. 12 to 14.
  • Comparative Example (A) shows the insertion loss according to the frequency when the overvoltage protection part is located on the lower side and the capacitor part is on the upper side.
  • Example (B) shows the insertion loss according to the frequency when the capacitor part is on the lower side and the overvoltage protection part is on the upper side. Insertion loss is shown.
  • FIG. 12 is a graph showing the insertion loss according to the frequency of Comparative Examples (A) and (B), and FIG. 13 is an enlarged view of FIG. 12 to show the insertion loss at specific frequencies, that is, 1.8 GHz and 2.4 GHz. It is a graph, and FIG. 14 is a graph which shows insertion loss in the vicinity of 10 microseconds.
  • the composite device uses a structure in which a capacitor and a varistor are coupled by a coupling unit according to the first embodiment of the present invention described with reference to FIGS. 1 and 2, and the capacitance of the composite device is 100 ⁇ s.
  • the insertion loss of the comparative example (A) is -0.360 dB and the insertion loss of the example (B) is -0.320 dB at the frequency of 1.8 kHz.
  • the insertion loss of the comparative example (A) is -0.408dB and the insertion loss of the example (B) is -0.368dB at the frequency of 2.4 kHz. Therefore, the insertion loss is better as it is closer to 0 dB, so the embodiment (B) in which the capacitor part is located below the insertion loss is superior to the comparative example (A) in which the capacitor part is located above. As a result, the insertion loss can be reduced by mounting the capacitor section below.
  • the insertion loss at a high frequency is smaller and the bandwidth is wider in the high frequency direction than that of the comparative example (A). That is, in the case of the insertion loss at 3 dB as the reference of the cutoff frequency, for example, the frequency of the embodiment (B) is higher than the frequency of the comparative example (A), and thus the bandwidth of the embodiment is wider.
  • the frequency moving path from one terminal of the internal circuit 20 to the other terminal of the internal circuit 20 becomes longer through the capacitor than in the case where the capacitor unit is located on the lower side. It acts as a parasitic inductance. Therefore, in high frequency communication, S21 (transmission coefficient) is affected to increase the insertion loss or to narrow the bandwidth of the frequency. As a result, the capacitor portion may be positioned downward to face the internal circuit 20, thereby reducing parasitic inductance and thus reducing insertion loss.
  • a composite device having directivity using color can determine the directivity by checking the color or contrast of one surface.
  • the directionality can be determined by checking the brightness of the upper surface of the composite device, that is, the surface brightness of the overvoltage protection unit.
  • the determination device for this may include a sensing unit for sensing the surface of the composite device, and the controller may determine the directionality of the composite device by determining, for example, surface brightness of the composite device sensed from the sensing unit.
  • the controller may determine the normal position when the brightness of the composite device sensed by the sensing unit is brighter than the set brightness.
  • the controller may determine the normal position when the brightness of the composite device is darker than the set brightness. If it is determined that the abnormal position according to the determination result of the controller it is necessary to correct the position.
  • the composite device according to the embodiments of the present invention may be inserted into a tape having an opening after determining the orientation using color or contrast.
  • the composite device may be inserted into a plurality of receiving grooves 6100 provided in the tape 6000 as shown in FIG. 15.
  • the accommodation grooves 6100 may be provided in plurality, spaced apart from each other by a predetermined interval, and a composite element may be inserted into each accommodation groove 6100.
  • the tape 6000 may further include an auxiliary groove 6200 on one side of the receiving groove 6100.
  • the auxiliary groove 6200 may be used to move the tape 6000 to the saw-toothed equipment. Meanwhile, when the composite element is inserted into the receiving groove 6100, the tape 6000 may be wrapped around the wheel 7000 as shown in FIG. 16.
  • 17 to 19 illustrate examples of a device including a sensing unit and a control unit to determine the orientation of the composite device and insert the composite device into the receiving groove 6100 of the tape 6000.
  • FIG. 17 is a block diagram of a packaging apparatus for determining and packaging a direction of a composite device according to embodiments of the present disclosure.
  • 18 is a schematic top view of the packaging apparatus, and
  • FIG. 19 is a front schematic view showing the tape supply section and the tape winding section.
  • a packaging apparatus to which the present invention is applied is a composite device according to embodiments of the present invention, that is, a chip injecting a chip from an inserting unit 7100 and an inserting unit 7100 according to embodiments of the present invention.
  • Alignment unit 7200 to align the chip while rotating in the direction, the sensing unit 7300 is provided on one side of the alignment unit 7200 and the sensing unit 7300, spaced apart from the sensing unit 7300, alignment unit 7200
  • a discharge part 7400 provided at one side of the discharge part to discharge an abnormally positioned chip, a moving part 7500 for moving the chip in one direction from the alignment part 7200, and a chip provided at the end of the moving part 7500
  • It may comprise
  • an inverting unit provided between the sensing unit 7300 and the discharge unit 7400 to invert a position of an abnormally positioned chip, and a display unit displaying an image of the chip sensed by the sensing unit 7300. It may further include.
  • the input unit 7100 may be disposed above the alignment unit 7200 to store a large amount of chips, and may inject chips into the alignment unit 7200 under the control of the controller 7900.
  • the input unit 7100 may have an appearance of a cone shape. That is, the input unit 7100 may be provided in the shape of a cone, the upper portion of which is provided in a substantially circular shape and the width becomes narrower toward the lower side.
  • the input unit 7100 may inject chips into the alignment unit 7200 for a predetermined time every predetermined time under the control of the controller 7900. That is, the input unit 7100 may adjust the amount of chips input to the alignment unit 7200 under the control of the controller 7900.
  • the alignment unit 7200 aligns the chips introduced from the input unit 7100.
  • the alignment unit 7200 may be provided in the shape of a circumference in which the chip may be sequentially moved upward. That is, the alignment unit 7200 may be provided in a substantially circular shape having a predetermined depth, and a circumferential end may be formed on the inner side, and may rotate in one direction, for example, counterclockwise. Therefore, the chip inserted into the alignment unit 7200 may move upward along the side surface from the bottom surface.
  • the alignment unit 7200 may be provided with a vibrating unit (not shown) on the lower side to vibrate. Therefore, the alignment unit 7200 may move the chip by rotating in one direction while providing vibration to the chip.
  • the sensing unit 7300 may be provided at one side of the alignment unit 7200 to sense a chip moving by the alignment unit 7200. In this case, the sensing unit 7300 may sense the moved chips one by one. In addition, the sensing unit 7300 may sense the chips in the aligned state. To this end, the sensing unit 7300 may be provided to sense a predetermined region at the top of the alignment unit 7200. Meanwhile, the sensing unit 7300 may sense the brightness and / or brightness of the chip, and sense the amount of light of the chip. In order to sense the brightness or the amount of light of the chip, the sensing unit 7300 may sense the light reflected from the chip.
  • the discharge part 7400 may be spaced apart from the sensing part 7300 and disposed outside the alignment part 7200.
  • the discharge unit 7400 may be provided to discharge the abnormal chip sensed by the sensing unit 7300 and determined by the control unit 7900.
  • the normal chip may be a chip having a brighter side than the set brightness facing upwards
  • the abnormal chip may be a chip having a surface darker than the set brightness upward.
  • the side where the normal chip is darker than the set brightness may face upwards
  • the side where the abnormal chip is brighter than the set brightness may face upward.
  • the discharge unit 7400 may discharge it.
  • the discharge unit 7400 may blow out chips that are abnormally positioned using air. Chips discharged by the discharge unit 7400 may be moved upward again from the other end of the alignment unit 7200 or the bottom of the alignment unit 7200.
  • the moving unit 7500 is aligned with the upper and lower positions through the alignment unit 7200, and the passage is moved to a position for inserting the chip 6000 determined as the normal position by the sensing unit 7300 and the control unit 7970 to the tape 6000. to be.
  • the moving unit 7500 may be provided in a straight line between the alignment unit 7200 and the insertion unit 7600.
  • the moving unit 7500 may move the chip by the driving force, or may move the chip by the vibration.
  • the inserting unit 7600 may be provided to insert the chip moved through the moving unit 7500 into the receiving groove 6100 of the tape 6000.
  • the inserting unit 7600 may, for example, suck the chip and move it onto the tape 6000 and then insert it into the receiving groove 6100.
  • the insertion unit 7600 may be configured as a suction member, a moving member, a valve, a vacuum pump, and the like. For example, after the suction member sucks the chip using the suction force, the moving member moves the chip to be positioned on the receiving groove 6100 and removes the suction force using the valve so that the chip is inserted into the receiving groove 6100. can do.
  • the vacuum pump provides a vacuum
  • the valve can open and close the vacuum to provide or release the suction force to the suction member.
  • the driving of the valve, the vacuum pump, the suction member, and the moving member may be performed by the control of the controller 7900.
  • the tape supply unit 7700 supplies the tape 6000 for accommodating the chip, and the tape winding unit 7800 winds the tape in which the chip is accommodated. That is, the tape supply part 7700 is provided on the front lower side of the packaging apparatus to release and supply the tape 6000 wound on the roll, and the tape winding part 7800 winds the tape containing the chip on the roll.
  • the tape 6000 may be supplied in the advancing direction of the chip of the moving unit 7500.
  • the tape 6000 may move in a direction opposite to the moving direction of the chip, or move in a direction orthogonal to the moving direction of the chip.
  • guide rolls 7710 and 7720 are provided between the tape supply unit 7700 and the tape winding unit 7800 to guide the movement of the tape.
  • the first guide roll 7710 may be provided at an upper end of the side on which the tape 6000 is supplied
  • the second guide roll 7720 may be provided at an upper end of the side on which the tape 6000 is wound.
  • the controller 7790 checks the surface image of the chip sensed by the sensing unit 7300 to determine whether the chip is normal. For example, the controller 7790 may set the brightness or the amount of light and determine that the chip is normally positioned when the brightness or the amount of light is equal to or greater than the set brightness or the amount of light. Specifically, the composite device according to the present invention having different colors or contrasts may have a brightness of 3000 to 3500cd on one side and a brightness of 100 to 500cd on the other side. If it is normal, and if it is 1700cd or less, it can be determined abnormal. In addition, the control unit 7790 controls the driving of the overall packaging apparatus.
  • the input time and the input amount of the input unit 7100 is controlled, and the rotation and vibration of the regular unit 7200 is controlled, and the discharge unit 7400 is controlled to discharge the abnormal chip.
  • the moving unit 7500 to move the chip to the insertion position and control the insertion unit 7600 to insert the chip into the tape 600
  • the tape supply unit 7700 and the tape winding unit 7800 Control to feed and wind the tape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)

Abstract

The present invention provides a complex device and an electronic device having same, the complex device comprising: two or more function units which function differently from one another; a connection unit provided between the function units and connecting same; and an external electrode formed on the outside of a lamination body, which are formed from the function units and the connection unit, and connected to at least one part of the function units, wherein the color or brightness of two or more sides, of the lamination body, facing each other differs from one another.

Description

복합 소자 및 이를 구비하는 전자기기Composite device and electronic device having same
본 발명은 복합 소자에 관한 것으로, 특히 서로 다른 기능을 하는 둘 이상의 기능층을 포함하는 복합 소자 및 이를 구비하는 전자기기에 관한 것이다.The present invention relates to a composite device, and more particularly, to a composite device including two or more functional layers having different functions and an electronic device having the same.
전자 회로를 구성하는 수동 소자로는 저항(Resistor), 캐패시터(Capacitor), 인덕터(Inductor) 등이 있으며, 이들 수동 소자의 기능과 역할은 매우 다양하다. 예를 들면, 저항은 회로에 흐르는 전류의 흐름을 제어하며 교류 회로에서는 임피던스 정합(Impedance matching)을 이루는 역할을 하기도 한다. 캐패시터는 기본적으로 직류를 차단하고 교류 신호는 통과시키는 역할을 한다. 또한, 캐패시터는 시정수 회로, 시간 지연 회로, RC 및 LC 필터 회로를 구성하기도 하며 캐패시터 자체로 노이즈(Noise)를 제거하는 역할을 하기도 한다. 인덕터의 경우는 고주파 노이즈(Noise)의 제거, 임피던스 정합 등의 기능을 수행한다.Passive devices that make up electronic circuits include resistors, capacitors, and inductors, and the functions and roles of these passive devices vary widely. For example, resistors control the flow of current through a circuit, and in AC circuits they also play a role in achieving impedance matching. The capacitor basically blocks the direct current and passes the alternating current signal. Capacitors also form time constant circuits, time delay circuits, RC and LC filter circuits, and the capacitor itself serves to remove noise. In the case of the inductor, it performs functions such as removing high frequency noise and matching impedance.
또한, 전자 회로에는 외부로부터 전자기기로 인가되는 ESD 등의 과전압으로부터 전자기기를 보호하기 위해 배리스터, 서프레서 등의 과전압 보호 소자가 필요하다. 즉, 전자기기의 구동 전압 이상의 과전압이 외부로부터 인가되는 것을 방지하기 위해 과전압 보호 소자가 필요하다. 예를 들어, 배리스터는 인가 전압에 따라 저항이 변하기 때문에 과전압으로부터 전자 부품과 회로를 보호하는 소자로 널리 사용되고 있다. 즉, 평소에는 회로 내에 배치된 배리스터에는 전류가 흐르지 않지만 항복 전압 이상의 과전압이나 낙뢰 등에 의하여 배리스터의 양단에 과전압이 걸리면 배리스터의 저항이 급격히 감소하여 거의 모든 전류가 배리스터를 통해 흐르게 되고, 다른 소자에는 전류가 흐르지 않게 되어 회로 또는 회로 상에 실장된 전자 부품은 과전압으로부터 보호된다.In addition, an electronic circuit requires an overvoltage protection device such as a varistor or a suppressor to protect the electronic device from an overvoltage such as an ESD applied to the electronic device from the outside. That is, an overvoltage protection device is required in order to prevent overvoltage above the driving voltage of the electronic device from being applied from the outside. For example, varistors are widely used as devices for protecting electronic components and circuits from overvoltage because the resistance changes with applied voltage. In other words, the current does not flow to the varistors arranged in the circuit, but if the overvoltage is applied at both ends of the varistor due to overvoltage or lightning over the breakdown voltage, the resistance of the varistor decreases rapidly, and almost all currents flow through the varistor, and the current to other devices. Does not flow, and the circuit or the electronic components mounted on the circuit are protected from overvoltage.
최근에는 전자기기의 소형화에 대응하여 이들 부품이 차지하는 면적을 줄이기 위해 서로 다른 기능 또는 특성을 갖는 적어도 둘 이상을 적층하여 칩 부품을 제작할 수 있다. 예를 들어, 캐패시터와 과전압 보호 소자를 하나의 칩 내에 적층하여 칩 부품을 구현하여 높은 배리스터 전압 및 캐패시턴스를 구현할 수 있다. 즉, 배리스터는 두께에 의해 항복 전압이 결정되는데, 높은 항복 전압을 구현하기 위해 상대적으로 배리스터의 캐패시턴스가 낮아지게 되며, 이를 보완하기 위해 유전율이 높은 물질로 이루어진 캐패시터를 적층하여 캐패시턴스를 향상 또는 유지하게 된다.Recently, in order to reduce the area occupied by these components in response to the miniaturization of electronic devices, at least two or more layers having different functions or characteristics may be stacked to manufacture chip components. For example, a capacitor and an overvoltage protection device may be stacked in one chip to implement chip components to implement high varistor voltage and capacitance. In other words, the varistor has a breakdown voltage determined by its thickness. In order to realize a high breakdown voltage, the varistor has a relatively low capacitance. To compensate for this, the capacitor is made of a material having a high dielectric constant to improve or maintain the capacitance. do.
그러나, 서로 다른 기능을 하는 둘 이상의 기능층은 그 물성이 서로 상이하기 때문에 잘 접합되지 않는 문제가 있다. 예를 들어, 배리스터 물질과 캐패시터 물질이 적층된 적층체는 고온 소결에 의해 박리되거나 크랙이 발생되기 쉽다. 즉, 배리스터 물질과 캐패시터 물질은 서로 다른 열수축률을 가지고 있으므로 소결 과정 중에서 비틀림이 발생될 수 있고, 박리 및 크랙이 발생될 수 있다. 박리 및 크랙은 바리스터와 캐패시터의 특성을 저하시키므로 실용성 있는 복합 소자를 제조하기 어렵다. 또한, 소결 과정에서 각각의 기능층의 물질이 상호 확산되는데, 위치에 따라 분포되는 농도가 다르고, 그에 따라 각 기능층의 기능을 저하시키는 문제가 발생될 수 있다. 즉, 두 기능층의 경계 영역에 가까울수록 일 기능층에 포함된 다른 기능층 물질의 농도가 증가하게 되고, 그에 따라 농도의 불균일에 의해 각 기능층의 기능 저하가 발생될 수 있다.However, two or more functional layers having different functions have a problem in that they are not bonded well because their physical properties are different from each other. For example, a laminate in which a varistor material and a capacitor material are laminated is easily peeled off or cracked by high temperature sintering. That is, since the varistor material and the capacitor material have different thermal shrinkage rates, torsion may occur during the sintering process, and peeling and cracking may occur. Peeling and cracking deteriorate the characteristics of the varistor and the capacitor, making it difficult to manufacture a practical composite device. In addition, in the sintering process, the materials of the respective functional layers are mutually diffused, and the concentrations distributed according to the positions are different, thereby causing a problem of lowering the function of each functional layer. That is, the closer to the boundary region between the two functional layers, the higher the concentration of the other functional layer material included in one functional layer, and thus, the functional variation of each functional layer may occur due to the variation in concentration.
한편, 둘 이상의 기능층이 적층된 소자는 방향성을 갖도록 전자기기의 PCB 상에 실장된다. 예를 들어, 배리스터와 캐패시터가 적층된 소자는 캐패시터의 주차수 이동 경로에 따른 기생 인덕턴스를 줄이기 위해 캐패시터가 하측에 마련되도록 실장된다. 즉, 캐패시터가 상측에 위치할 경우 하측에 위치할 경우에 비해 PCB의 일 단자로부터 캐패시터를 통해 PCB의 타 단자로의 주파수 이동 경로가 길어지게 되어 고주파 통신에서 기생 인덕턴스로 작용한다. 따라서, 고주파 통신에서 S21(투과 계수)에 영향을 주어 삽입 손실이 커지게 하거나, 주파수의 대역폭(bandwidth)이 좁아지게 한다. 이렇게 복합 소자에 방향성을 부여하기 위해 적층체의 상면, 예를 들어 배리스터의 상면에 형광체를 도포하는 방법을 이용할 수 있다. 그러나, 형광체를 도포하기 위한 공정이 추가되므로 공정 수가 증가되고 재료비가 증가되는 단점이 있다. 또한, 형광체를 도포하기 이전에 적층체의 방향을 조정해야 하는데, 배리스터와 캐패시터의 구분이 없어 방향을 조정하기 어려운 문제가 있다.On the other hand, a device in which two or more functional layers are stacked is mounted on the PCB of the electronic device to have a directivity. For example, the device in which the varistor and the capacitor are stacked is mounted such that the capacitor is provided on the lower side to reduce the parasitic inductance along the parking lot movement path of the capacitor. That is, when the capacitor is located on the upper side, the frequency moving path from one terminal of the PCB to the other terminal of the PCB becomes longer than the case on the lower side, which acts as a parasitic inductance in high frequency communication. Therefore, in high frequency communication, S21 (transmission coefficient) is affected to increase the insertion loss or to narrow the bandwidth of the frequency. Thus, in order to give a directionality to a composite element, the method of apply | coating fluorescent substance to the upper surface of a laminated body, for example, the upper surface of a varistor can be used. However, since the process for applying the phosphor is added, the number of processes is increased and the material cost is increased. In addition, the direction of the laminate is to be adjusted before applying the phosphor, there is a problem that it is difficult to adjust the direction because there is no distinction between the varistor and the capacitor.
(선행기술문헌)(Prior art document)
한국등록특허 제10-0638802호Korea Patent Registration No. 10-0638802
본 발명은 서로 다른 기능을 갖는 둘 이상의 기능부가 적층된 복합 소자를 제공한다.The present invention provides a composite device in which two or more functional units are stacked with different functions.
본 발명은 둘 이상의 기능부를 이루는 물질의 상호 확산을 방지할 수 있는 복합 소자를 제공한다.The present invention provides a composite device capable of preventing the interdiffusion of materials forming two or more functional units.
본 발명은 둘 이상의 기능부를 가지며 방향성을 갖는 복합 소자를 제공한다.The present invention provides a composite device having two or more functional parts and having a directivity.
본 발명의 일 양태에 따른 복합 소자는 서로 다른 기능을 하는 둘 이상의 기능부; 상기 기능부 사이에 마련되어 이들을 결합시키는 결합부; 및 상기 기능부와 결합부의 적층체 외부에 형성되어 상기 기능부의 적어도 일부와 연결된 외부 전극을 포함하고, 상기 적층체의 서로 대향되는 적어도 두 면은 서로 다른 색상 또는 명암을 갖는다.A composite device according to an aspect of the present invention includes two or more functional units having different functions; A coupling part provided between the functional parts to couple them; And an external electrode formed outside the stack of the functional unit and the coupling unit and connected to at least a portion of the functional unit, wherein at least two opposite surfaces of the stack have different colors or contrasts.
상기 둘 이상의 기능부는 서로 다른 색상 또는 명암을 갖는다.The two or more functional parts have different colors or contrasts.
상기 둘 이상의 기능부는 두께 및 크기 중 적어도 하나가 서로 다르다.The two or more functional units differ from each other in at least one of thickness and size.
상기 기능부는 저항, 캐패시터, 인덕터, 노이즈 필터, 배리스터 및 서프레서 중 둘 이상을 포함한다.The functional unit includes two or more of resistors, capacitors, inductors, noise filters, varistors, and suppressors.
상기 둘 이상의 기능부는 각각 복수의 시트와, 상기 복수의 시트 상에 선택적으로 형성된 도전층을 포함한다.The two or more functional units each include a plurality of sheets and a conductive layer selectively formed on the plurality of sheets.
상기 둘 이상의 기능부 각각의 시트는 서로 다른 색상 또는 명암을 갖는다.Sheets of each of the two or more functional parts have different colors or contrasts.
동일 기능부의 시트 중 적어도 하나는 다른 색상 또는 명암을 갖는다.At least one of the sheets of the same functional part has a different color or contrast.
상기 둘 이상의 기능부 각각의 시트는 서로 다른 색상의 안료가 첨가된다.Sheets of each of the two or more functional parts are added with pigments of different colors.
상기 둘 이상의 기능부 각각의 시트는 동일 색상의 안료가 다른 양으로 첨가된다.The sheets of each of the two or more functional parts are added with pigments of the same color in different amounts.
상기 도전층은 도전 물질로 형성되거나 적어도 하나의 적어도 일부가 도전 물질과 상기 시트와 동일 물질의 혼합물로 형성된다.The conductive layer is formed of a conductive material or at least one portion thereof is formed of a mixture of the conductive material and the same material as the sheet.
상기 둘 이상의 기능부는 서로 다른 공정으로 제조 및 소결된 후 상기 결합부에 의해 결합된다.The two or more functional parts are manufactured and sintered in different processes and then joined by the coupling parts.
상기 결합부는 글래스, 폴리머 및 올리고머 중 적어도 하나를 포함한다.The bonding portion comprises at least one of glass, polymer and oligomer.
상기 외부 전극은 적어도 일 영역의 두께가 다른 영역과 다르다.The external electrode is different from the region in which the thickness of at least one region is different.
본 발명의 다른 양태에 따른 전자기기는 사용자가 접촉 가능한 도전체와 내부 회로를 포함하고, 상기 도전체와 상기 내부 회로 사이에 상기 본 발명의 일 양태에 따른 복합 소자가 마련된다.An electronic device according to another aspect of the present invention includes a conductor to which a user can contact and an internal circuit, and a composite device according to an aspect of the present invention is provided between the conductor and the internal circuit.
상기 도전체와 상기 복합 소자 사이에 마련된 적어도 하나의 도전성 부재를 더 포함하고, 상기 복합 소자는 접지 단자와 연결되거나 수동 소자를 통해 접지 단자와 연결된다.Further comprising at least one conductive member provided between the conductor and the composite element, the composite element is connected to the ground terminal or through the passive element is connected to the ground terminal.
상기 복합 소자는 캐패시터부 및 과전압 보호부를 포함하고, 상기 캐패시터부가 상기 내부 회로에 인접하여 실장된다.The composite element includes a capacitor portion and an overvoltage protection portion, and the capacitor portion is mounted adjacent to the internal circuit.
본 발명의 실시 예들에 따른 복합 소자는 서로 다른 기능을 하는 둘 이상의 기능부가 적층되며, 둘 이상의 기능부가 결합부에 의해 결합될 수 있다. 이렇게 서로 다른 기능부를 결합부을 이용하여 결합함으로써 복합 소자의 수축률 차이에 의한 뒤틀림, 박리, 크랙 등을 방지할 수 있다.In the composite device according to the embodiments of the present invention, two or more functional units having different functions are stacked, and two or more functional units may be combined by a coupling unit. By combining the different functional units using the coupling unit as described above, it is possible to prevent distortion, peeling, cracking, etc. due to the shrinkage difference of the composite device.
또한, 둘 이상의 기능부가 각각의 공정으로 제조 및 소결된 후 결합부에 의해 결합되기 때문에 각 기능부를 이루는 물질의 상호 확산을 방지할 수 있고, 그에 따라 각 기능부의 기능 저하를 방지할 수 있다.In addition, since two or more functional units are manufactured and sintered in the respective processes and then joined by the coupling units, interdiffusion of the materials constituting each functional unit can be prevented, thereby preventing the functional deterioration of each functional unit.
그리고, 기능부 중의 하나가 과전압 방지부로 이루어져 ESD 등의 과전압으로부터 복합 소자가 장착되는 전자기기를 보호할 수 있다. 이때, 과전압 방지부가 배리스터 또는 서프레서 타입으로 형성됨으로써 310V로부터 수십 kV까지의 다양한 항복 전압 또는 방전 개시 전압을 구현할 수 있다.In addition, one of the functional units may include an overvoltage protection unit to protect the electronic device on which the composite device is mounted from overvoltage such as ESD. In this case, since the overvoltage protection unit is formed in a varistor or suppressor type, it is possible to implement various breakdown voltages or discharge start voltages from 310V to several tens of kV.
한편, 둘 이상의 기능부가 서로 다른 색상 또는 명암을 갖도록 함으로써 색상을 구분하여 복합 소자의 방향을 판별할 수 있다. 예를 들어, 하측의 기능부를 상측의 기능부보다 상대적으로 밝은색을 갖도록 할 수 있다. 따라서, 둘 이상의 기능부가 서로 다른 색상 또는 명암을 갖도록 하고 이를 판별함으로써 형광체의 도포 등을 실시하지 않고도 방향성이 부여된 복합 소자를 구현할 수 있다.Meanwhile, the two or more functional units may have different colors or contrasts to distinguish colors to determine the direction of the composite device. For example, the lower functional part may have a lighter color than the upper functional part. Therefore, by allowing two or more functional units to have different colors or contrasts, the present invention can realize a composite device to which directionality is imparted without applying a phosphor or the like.
도 1은 본 발명의 실시 예들에 따른 복합 소자의 사시도.1 is a perspective view of a composite device according to embodiments of the present invention.
도 2는 본 발명의 제 1 실시 예에 따른 복합 소자의 단면도.2 is a cross-sectional view of a composite device according to a first embodiment of the present invention.
도 3은 본 발명의 제 1 실시 예에 따른 복합 소자의 적어도 일부 표면의 개략도.3 is a schematic view of at least a portion of the surface of a composite device according to a first embodiment of the present invention;
도 4는 본 발명의 제 2 실시 예에 따른 복합 소자의 단면도.4 is a cross-sectional view of a composite device according to a second exemplary embodiment of the present invention.
도 5는 본 발명의 제 3 실시 예에 따른 복합 소자의 단면도.5 is a cross-sectional view of a composite device according to a third embodiment of the present invention.
도 6은 본 발명의 제 4 실시 예에 따른 복합 소자의 단면도.6 is a sectional view of a composite device according to a fourth embodiment of the present invention.
도 7은 본 발명의 제 5 실시 예에 따른 복합 소자의 단면도.7 is a cross-sectional view of a composite device according to a fifth embodiment of the present invention.
도 8 및 도 9는 본 발명의 실시 예들에 따른 복합 소자의 배치 형태를 도시한 블럭도.8 and 9 are block diagrams illustrating an arrangement form of a composite device according to example embodiments.
도 10 및 도 11은 본 발명의 실시 예들에 따른 복합 소자의 캐패시터부의 위치에 따른 주파수 경로를 도시한 개략도.10 and 11 are schematic diagrams illustrating a frequency path according to a position of a capacitor part of a composite device according to embodiments of the present disclosure.
도 12 내지 도 14는 본 발명의 실시 예들에 따른 복합 소자의 캐패시터부의 위치에 따른 삽입 손실을 나타낸 그래프.12 to 14 are graphs showing the insertion loss according to the position of the capacitor portion of the composite device according to the embodiments of the present invention.
도 15 및 도 16은 본 발명의 실시 예들에 따른 복합 소자를 수용하는 테이프 및 휠의 개략도.15 and 16 are schematic views of tapes and wheels for receiving composite devices in accordance with embodiments of the present invention.
도 17은 본 발명의 실시 예들에 따른 복합 소자의 방향성을 판단하고 포장하는 포장 장치의 블럭도.Figure 17 is a block diagram of a packaging device for determining and packaging the orientation of the composite device according to embodiments of the present invention.
도 18 및 도 19는 포장 장치의 개략도.18 and 19 are schematic views of a packaging device.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information.
도 1은 본 발명의 실시 예들에 따른 복합 소자의 사시도이다. 또한, 도 2는 본 발명의 제 1 실시 예에 따른 복합 소자의 단면도로서 도 1의 A-A' 라인을 절취한 단면도이고, 도 3은 적어도 일부 표면의 개략도이다.1 is a perspective view of a composite device according to embodiments of the present invention. 2 is a cross-sectional view taken along line AA ′ of FIG. 1 as a cross-sectional view of a composite device according to a first exemplary embodiment of the present invention, and FIG. 3 is a schematic view of at least part of the surface thereof.
도 1 내지 도 3을 참조하면, 본 발명의 제 1 실시 예에 따른 복합 소자는 적층된 복수의 시트(100)를 포함하는 적층체(1000)와, 적층체(1000) 내에 마련되며 서로 다른 기능을 하는 적어도 둘 이상의 기능부를 포함할 수 있다. 즉, 저항, 노이즈 필터, 인덕터 및 캐패시터 등의 적어도 하나를 포함하는 제 1 기능부와, 과전압을 보호하기 위한 배리스터, 서프레서 등의 과전압 보호부를 포함하는 제 2 기능부를 포함할 수 있다. 다시 말하면, 본 발명의 복합 소자는 수동 소자로서 기능하는 적어도 하나의 제 1 기능부와, 과전압 보호 소자로서 기능하는 적어도 하나의 제 2 기능부를 포함할 수 있다. 예를 들어, 본 발명의 제 1 실시 예에 따른 복합 소자는 복수의 시트(100)를 포함하는 적층체(1000)와, 적층체(1000) 내에 마련된 적어도 하나의 캐패시터부(2000)와, 적어도 하나의 과전압 보호부(3000), 즉 배리스터를 포함할 수 있다. 또한, 캐패시터부(2000)와 과전압 보호부(3000) 사이에 마련되어 이들을 결합하는 결합부(4000)와, 적층체(1000) 외부의 서로 대향되는 두 측면에 마련된 외부 전극(5100, 5200; 5000)을 더 포함할 수 있고, 적층체(5000)의 적어도 일 표면에 형성된 표면 개질 부재(6000)를 더 포함할 수도 있다. 여기서, 서로 다른 기능을 하는 둘 이상의 기능층, 예를 들어 캐패시터부(2000)와 과전압 보호부(3000)는 각각 소결된 후 결합부(4000)에 의해 결합될 수 있다. 즉, 캐패시터부(2000)의 일면과 과전압 보호부(3000)의 일면이 결합부(4000)에 의해 결합될 수 있다. 또한, 캐패시터부(2000)는 소정의 유전율을 갖는 복수의 시트가 적층되고, 과전압 보호부(3000)는 배리스터부를 포함하여 배리스터 특성을 갖는 복수의 시트가 적층된다. 즉, 과전압 보호부(3000)는 배리스터 타입으로 이루어질 수 있다. 물론, 과전압 보호부(3000)는 과전압 보호 부재를 포함하는 서프레서 타입으로 이루어질 수도 있다. 본 발명의 제 1 실시 예에서는 배리스터 타입의 과전압 보호부(3000)를 예를 들어 설명한다. 또한, 본 발명은 적층체(1000)의 적어도 일부가 다른 색상 또는 명암을 갖는다. 예를 들어, 캐패시터부(2000)와 과전압 보호부(3000)가 다른 색상 또는 명암을 가질 수 있고, 적층체(1000)의 상부면 및 하부면이 다른 색상 또는 명암을 가질 수 있다. 한편, 캐패시터부(2000)를 이루는 복수의 시트를 유전 시트(110; 101 내지 107)라 칭하고, 과전압 보호부(3000)를 이루는 복수의 시트를 방전 시트(120; 121 내지 127)라 칭하며, 유전 시트(110)와 방전 시트(120)를 포함한 전체 시트를 시트(100)라 칭한다. 그리고, 캐패시터부(2000)의 도전층은 내부 전극(210 내지 270)이라 하고, 과전압 보호부(3000)의 도전층은 방전 전극(311, 312)이라 한다. 한편, 배리스터 타입의 과전압 보호부(3000)의 방전을 시작하는 전압을 항복 전압이라 하고, 서프레서 타입의 과전압 보호부(3000)의 방전을 시작하는 전압을 방전 개시 전압이라 한다.1 to 3, a composite device according to a first embodiment of the present invention is provided with a laminate 1000 including a plurality of stacked sheets 100, and a different function provided in the laminate 1000. It may include at least two or more functional units. That is, it may include a first functional unit including at least one of a resistor, a noise filter, an inductor, a capacitor, and the like, and a second functional unit including an overvoltage protection unit such as a varistor or a suppressor to protect the overvoltage. In other words, the composite device of the present invention may include at least one first functional part functioning as a passive element, and at least one second functional part functioning as an overvoltage protection element. For example, the composite device according to the first embodiment of the present invention may include a laminate 1000 including a plurality of sheets 100, at least one capacitor unit 2000 provided in the laminate 1000, and at least One over-voltage protection unit 3000, that is, may include a varistor. In addition, a coupling portion 4000 provided between the capacitor portion 2000 and the overvoltage protection portion 3000 and coupled thereto, and external electrodes 5100, 5200; 5000 provided on two side surfaces facing each other outside the stack 1000. It may further include, and may further include a surface modification member 6000 formed on at least one surface of the laminate (5000). Here, two or more functional layers having different functions, for example, the capacitor part 2000 and the overvoltage protection part 3000 may be joined by the coupling part 4000 after being sintered, respectively. That is, one surface of the capacitor unit 2000 and one surface of the overvoltage protection unit 3000 may be coupled by the coupling unit 4000. In addition, the capacitor unit 2000 includes a plurality of sheets having a predetermined dielectric constant, and the overvoltage protection unit 3000 includes a varistor portion, and a plurality of sheets having varistor characteristics are stacked. That is, the overvoltage protection unit 3000 may be formed of a varistor type. Of course, the overvoltage protection unit 3000 may be made of a suppressor type including an overvoltage protection member. In the first embodiment of the present invention, the varistor type overvoltage protection unit 3000 will be described as an example. In addition, in the present invention, at least a part of the laminate 1000 has a different color or contrast. For example, the capacitor unit 2000 and the overvoltage protection unit 3000 may have different colors or contrasts, and the upper and lower surfaces of the stack 1000 may have different colors or contrasts. Meanwhile, the plurality of sheets constituting the capacitor unit 2000 are called dielectric sheets 110 (101 to 107), and the plurality of sheets constituting the overvoltage protection unit 3000 are called discharge sheets 120 (121 to 127), The entire sheet including the sheet 110 and the discharge sheet 120 is called a sheet 100. The conductive layers of the capacitor part 2000 are referred to as internal electrodes 210 to 270, and the conductive layers of the overvoltage protection part 3000 are called discharge electrodes 311 and 312. On the other hand, the voltage at which the varistor type overvoltage protection unit 3000 starts to be discharged is called the breakdown voltage, and the voltage at which the suppressor type overvoltage protection unit 3000 is discharged is called the discharge start voltage.
이러한 본 발명의 제 1 실시 예에 따른 복합 소자의 구성을 도 1 내지 도 3을 이용하여 상세히 설명하면 다음과 같다.The configuration of the composite device according to the first exemplary embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3 as follows.
1. 적층체1. Laminate
적층체(1000)는 복수의 시트(100), 즉 복수의 유전 시트(110; 101 내지 107)와 복수의 방전 시트(120; 121 내지 127)가 적층되어 형성된다. 즉, 내부 전극(200)이 형성된 복수의 유전 시트(110)가 적층된 제 1 적층체와 방전 전극(310)이 형성된 복수의 방전 시트(120)가 적층된 제 2 적층체가 결합부(4000)에 의해 결합되어 적층체(1000)가 이루어진다. 이러한 적층체(1000)는 일 방향(예를 들어 X 방향) 및 이와 직교하는 타 방향(예를 들어 Y 방향)으로 각각 소정이 길이를 갖고, 수직 방향(예를 들어 Z 방향)으로 소정의 높이를 갖는 대략 육면체 형상으로 마련될 수 있다. 이때, 외부 전극(5000)의 형성 방향을 X 방향이라 할 때, 이와 수평 방향으로 직교하는 방향을 Y 방향이라 하고 수직 방향을 Z 방향이라 할 수 있다. 여기서, X 방향의 길이는 Y 방향의 길이 및 Z 방향의 길이보다 길고, Y 방향의 길이는 Z 방향의 길이와 같거나 다를 수 있다. 그러나, X, Y 및 Z 방향의 길이는 복합 소자가 연결되는 전자기기의 내부 구조, 복합 소자의 내부 구조 및 형상 등에 따라 다양하게 변형 가능하다. 또한, 적층체(1000) 내부에는 적어도 하나의 캐패시터부(2000)와 배리스터부 등의 적어도 하나의 과전압 보호부(3000)가 마련될 수 있다. 예를 들어, 캐패시터부(2000) 및 과전압 보호부(3000)가 시트들의 적층 방향, 즉 Z 방향으로 마련될 수 있다.The stack 1000 is formed by stacking a plurality of sheets 100, that is, a plurality of dielectric sheets 110 (101 to 107) and a plurality of discharge sheets 120 (121 to 127). That is, the coupling part 4000 includes a first stack in which the plurality of dielectric sheets 110 having the internal electrodes 200 are stacked, and a second stack in which the plurality of discharge sheets 120 having the discharge electrodes 310 are stacked. The laminated body 1000 is made by combining. The laminate 1000 has a predetermined length in one direction (for example, the X direction) and another direction (for example, the Y direction) orthogonal thereto, and has a predetermined height in the vertical direction (for example, the Z direction). It may be provided in a substantially hexahedral shape having a. In this case, when the forming direction of the external electrode 5000 is referred to as the X direction, the direction perpendicular to the horizontal direction may be referred to as the Y direction, and the vertical direction may be referred to as the Z direction. Here, the length of the X direction is longer than the length of the Y direction and the length of the Z direction, the length of the Y direction may be equal to or different from the length of the Z direction. However, the lengths of the X, Y, and Z directions may be variously modified according to the internal structure of the electronic device to which the composite device is connected, the internal structure and shape of the composite device, and the like. In addition, at least one overvoltage protection unit 3000, such as at least one capacitor unit 2000 and a varistor unit, may be provided in the stack 1000. For example, the capacitor part 2000 and the overvoltage protection part 3000 may be provided in the stacking direction of the sheets, that is, the Z direction.
또한, 복수의 시트, 즉 유전 시트(110)와 방전 시트(120)는 모두 동일 두께로 형성될 수 있고, 적어도 어느 하나가 다른 것들에 비해 두껍거나 얇게 형성될 수 있다. 예를 들어, 과전압 보호부(3000)의 방전 시트(120)는 캐패시터부(2000)의 유전 시트(110)와 다른 두께로 형성될 수 있는데, 방전 시트(120)가 유전 시트(110)보다 두껍게 형성될 수 있다. 즉, 방전 시트(120) 각각의 두께가 유전 시트(110) 각각의 두께보다 두꺼울 수 있다. 그러나, 방전 시트(120) 각각의 두께가 유전 시트(110) 각각의 두께보다 얇을 수도 있고, 동일할 수도 있다. 또한, 방전 시트(120) 중에서 적어도 하나가 다른 방전 시트(120)의 두께보다 두꺼울 수 있고, 유전 시트(110) 중에서 적어도 하나가 다른 유전 시트(110)보다 두꺼울 수도 있다. 이때, 다른 유전 시트(110)보다 두꺼운 유전 시트(110)는 두께가 얇은 방전 시트(120)보다 두꺼울 수도 있다. 즉, 시트(100)는 복수의 유전 시트(110) 및 복수의 방전 시트(120) 중에서 적어도 하나가 다른 시트들(100)과는 다른 두께로 형성될 수 있다. 한편, 복수의 시트(100), 즉 각각의 유전 시트(110)와 방전 시트(120)는 ESD 등의 과전압 인가 시 파괴되지 않는 두께, 예를 들어 5㎛∼300㎛의 두께로 형성될 수 있다. 방전 시트(120)의 두께는 항복 전압과 비례하며, 복합 소자의 적어도 일부가 감전 방지 소자로 기능하기 위해서는 310V 이상의 항복 전압을 가져야 한다. 즉, 310V 미만의 전압을 차단하고 310V 이상의 전압을 바이패스시켜야 한다. 이를 위해 복합 소자의 1/2 정도의 두께인 과전압 보호부(3000) 내에서 방전 시트(120)의 두께가 50㎛∼250㎛ 정도가 좋다. 즉, ESD를 방호하는 기능을 하는 과전압 보호부(3000)의 방전 시트(120)는 두께가 너무 두꺼우면 바이패스 가능 전압이 상승하게 되고 너무 낮으면 항복 전압이 310V 이하로 낮아져 감전으로부터 사용자를 보호할 수 없게 된다. 따라서, 방전 시트(120)는 310V 이상의 항복 전압을 가질 수 있는 두께로 형성될 수 있다. 또한, 유전 시트(110)의 두께는 복합 소자의 캐패시턴스와 비례하고 감전 보호 소자로 기능하기 위해서는 150pF 이하가 적당하다. 이러한 캐패시턴스를 구현하기 위해 유전 시트(110)의 두께는 10∼3000의 유전율을 가져야 하며, 이를 위해 유전 시트(110)의 두께가 10㎛∼200㎛ 정도가 좋다. 유전 시트(110)는 두께가 두꺼울수록 캐패시턴스를 높게 구현할 수 있고, 얇을수록 과전압에 의해 파괴될 수 있다. 따라서, 유전 시트(110)는 과전압에 의해 파괴되지 않고 해당 기능에 적절한 캐패시턴스를 갖는 두께로 형성될 수 있다. In addition, the plurality of sheets, that is, the dielectric sheet 110 and the discharge sheet 120 may all be formed with the same thickness, and at least one may be formed thicker or thinner than the others. For example, the discharge sheet 120 of the overvoltage protection unit 3000 may be formed to have a thickness different from that of the dielectric sheet 110 of the capacitor unit 2000, and the discharge sheet 120 may be thicker than the dielectric sheet 110. Can be formed. That is, the thickness of each of the discharge sheets 120 may be thicker than the thickness of each of the dielectric sheets 110. However, the thickness of each of the discharge sheets 120 may be thinner or the same as the thickness of each of the dielectric sheets 110. In addition, at least one of the discharge sheets 120 may be thicker than the thickness of the other discharge sheet 120, and at least one of the dielectric sheets 110 may be thicker than the other dielectric sheets 110. In this case, the dielectric sheet 110 thicker than the other dielectric sheet 110 may be thicker than the thinner discharge sheet 120. That is, at least one of the plurality of dielectric sheets 110 and the plurality of discharge sheets 120 may be formed to have a thickness different from that of the other sheets 100. Meanwhile, the plurality of sheets 100, that is, each of the dielectric sheets 110 and the discharge sheets 120 may be formed to have a thickness that does not break when an overvoltage such as ESD is applied, for example, a thickness of 5 μm to 300 μm. . The thickness of the discharge sheet 120 is proportional to the breakdown voltage, and at least a part of the composite element must have a breakdown voltage of 310V or more to function as an electric shock prevention element. That is, you must cut off the voltage below 310V and bypass the voltage above 310V. To this end, the discharge sheet 120 may have a thickness of about 50 μm to about 250 μm in the overvoltage protection part 3000, which is about 1/2 the thickness of the composite device. That is, if the discharge sheet 120 of the overvoltage protection unit 3000 that protects the ESD is too thick, the bypassable voltage is increased, and if the discharge sheet 120 is too low, the breakdown voltage is lowered to 310V or less to protect the user from electric shock. You will not be able to. Therefore, the discharge sheet 120 may be formed to a thickness that may have a breakdown voltage of 310V or higher. In addition, the thickness of the dielectric sheet 110 is proportional to the capacitance of the composite device, and 150 pF or less is suitable to function as an electric shock protection device. In order to implement such capacitance, the thickness of the dielectric sheet 110 should have a dielectric constant of 10 to 3000. For this purpose, the thickness of the dielectric sheet 110 may be about 10 μm to 200 μm. The greater the thickness of the dielectric sheet 110, the higher the capacitance can be realized, and the thinner the dielectric sheet 110 may be destroyed by the overvoltage. Accordingly, the dielectric sheet 110 can be formed to a thickness having a capacitance appropriate for the function without being destroyed by overvoltage.
그리고, 캐패시터부(2000)와 과전압 보호부(3000)는 동일 두께를 가질 수도 있고, 다른 두께를 가질 수도 있다. 즉, 캐패시터부(2000)를 이루는 복수의 유전 시트(110)가 적층된 제 1 적층체와 과전압 보호부(3000)를 이루는 복수의 방전 시트(120)가 적층된 제 2 적층체는 동일 두께로 형성될 수 있고, 다른 두께로 형성될 수도 있다. 예를 들어, 과전압 보호부(3000)의 두께가 캐패시터부(2000)의 두께보다 같거나 두꺼울 수 있는데, 과전압 보호부(3000)가 캐패시터부(2000)보다 1배 내지 2배 두꺼울 수 있다. 즉, 캐패시터부(2000)의 두께를 100이라 할 때 과전압 보호부(3000)는 100 내지 200의 두께로 형성될 수 있다. 또한, 캐패시터부(2000)의 유전 시트(110)의 적층 수와 과전압 보호부(3000)의 방전 시트(120)의 적층 수는 서로 다를 수 있고 같을 수도 있다. 예를 들어, 방전 시트(120)의 적층 수가 유전 시트(110)의 적층 수보다 적을 수 있다. 구체적인 예로서, 방전 시트(120) 각각의 두께가 유전 시트(110) 각각의 두께보다 두껍고, 방전 시트(120)가 유전 시트(110)와 같거나 다른 수로 적층되어 방전 시트(120)가 적층된 제 2 적층체가 유전 시트(110)가 적층된 제 1 적층체의 두께보다 같거나 두꺼울 수 있다. 또한, 유전 시트(110) 각각의 두께가 방전 시트(120) 각각의 두께보다 두껍고, 유전 시트(110)가 방전 시트(120)와 같거나 다른 수로 적층되어 유전 시트(110)가 적층된 제 1 적층체가 방전 시트(120)가 적층된 제 2 적층체의 두께보다 같거나 두꺼울 수 있다. 그러나, 유전 시트(110) 각각의 두께와 방전 시트(120) 각각의 두께가 같고, 유전 시트(110)의 적층 수와 방전 시트(120)의 적층 수가 같거나 달라 제 1 적층체와 제 2 적층체의 두께가 같거나 다를 수 있다. 예를 들어, 캐패시터부(2000) 및 과전압 보호부(3000)는 각각 0.1㎜∼0.4㎜의 두께로 형성될 수 있다.In addition, the capacitor part 2000 and the overvoltage protection part 3000 may have the same thickness or may have different thicknesses. That is, the first laminate in which the plurality of dielectric sheets 110 constituting the capacitor unit 2000 and the second laminate in which the plurality of discharge sheets 120 constituting the overvoltage protection unit 3000 are stacked are the same thickness. It may be formed, or may be formed in a different thickness. For example, the thickness of the overvoltage protection unit 3000 may be equal to or thicker than the thickness of the capacitor unit 2000. The overvoltage protection unit 3000 may be one to two times thicker than the capacitor unit 2000. That is, when the thickness of the capacitor unit 2000 is 100, the overvoltage protection unit 3000 may be formed to a thickness of 100 to 200. In addition, the number of stacked layers of the dielectric sheet 110 of the capacitor unit 2000 and the number of stacked sheets of the discharge sheet 120 of the overvoltage protection unit 3000 may be different or may be the same. For example, the number of stacked sheets of the discharge sheet 120 may be less than the number of stacked sheets of the dielectric sheet 110. As a specific example, the thickness of each of the discharge sheets 120 is thicker than the thickness of each of the dielectric sheets 110, and the discharge sheets 120 are stacked in the same or different numbers as the dielectric sheets 110 so that the discharge sheets 120 are stacked. The second stack may be equal to or thicker than the thickness of the first stack on which the dielectric sheet 110 is laminated. In addition, the thickness of each of the dielectric sheets 110 is greater than that of each of the discharge sheets 120, and the first and the dielectric sheets 110 are stacked by stacking the dielectric sheets 110 in the same or different number as the discharge sheets 120. The laminate may be equal to or thicker than the thickness of the second laminate on which the discharge sheet 120 is laminated. However, the thickness of each of the dielectric sheets 110 and the thickness of each of the discharge sheets 120 are the same, and the number of stacks of the dielectric sheets 110 and the number of stacks of the discharge sheets 120 are the same or different, so that the first stack and the second stack are different. The thickness of the sieves may be the same or different. For example, the capacitor part 2000 and the overvoltage protection part 3000 may each have a thickness of 0.1 mm to 0.4 mm.
또한, 적층체(1000)는 캐패시터부(2000)와 과전압 보호부(3000)의 어느 하나가 다른 하나에 비해 외측으로 돌출될 수 있다. 즉, 캐패시터부(2000)와 과전압 보호부(3000) 중 어느 하나가 X 방향 및 Y 방향 중 적어도 한 방향으로 돌출될 수 있다. 따라서, 캐패시터부(2000)와 과전압 보호부(3000)는 측면이 수평을 이루지 못하고 단차를 가질 수 있다. 예를 들어, 캐패시터부(2000)는 과전압 보호부(3000)에 비해 약 1㎛∼100㎛ 정도 외측으로 돌출될 수 있다. 물론, 과전압 보호부(3000)가 캐패시터부(2000)에 비해 약 1㎛∼100㎛ 정도 외측으로 돌출될 수도 있다. 이때, 캐패시터부(2000) 및 과전압 보호부(3000)는 X 방향 및 Y 방향으로 동일 크기로 형성될 수 있고, 그에 따라 일 측면 및 이와 대향되는 타 측면에 단차가 형성될 수 있다. 예를 들어, X 방향의 일 측면으로 캐패시터부(2000)가 돌출되면 이와 대향되는 X 방향의 타 측면으로 과전압 보호부(3000)가 돌출될 수 있다. 또한, 캐패시터부(2000) 및 과전압 보호부(3000) 중 어느 하나는 다른 하나에 비해 X 방향 및 Y 방향의 어느 한 방향으로 사이즈가 다를 수 있다. 예를 들어, 캐패시터부(2000) 및 과전압 보호부(3000) 중 어느 하나는 X 방향 및 Y 방향 중 어느 한 방향으로 크게 형성되고 그에 따라 적층체(1000)의 측면 중 적어도 어느 하나가 단차를 가질 수 있다. 예를 들어, 캐패시터부(2000)는 과전압 보호부(3000)에 비해 약 1㎛∼100㎛ 정도 크게 형성될 수도 있고, 과전압 보호부(3000)가 캐패시터부(2000)에 비해 약 1㎛∼100㎛ 정도 크게 형성될 수도 있다. 그리고, 캐패시터부(2000) 및 과전압 보호부(3000)는 어느 하나가 다른 하나에 비해 두껍게 형성될 수도 있다. 예를 들어, 캐패시터부(2000)가 과전압 보호부(3000)에 비해 약 1㎛∼100㎛ 정도 두껍게 형성될 수도 있고, 과전압 보호부(3000)가 캐패시터부(2000)에 비해 약 1㎛∼100㎛ 정도 두껍게 형성될 수도 있다.In addition, any one of the capacitor part 2000 and the overvoltage protection part 3000 may protrude outward from the other of the laminate 1000. That is, any one of the capacitor unit 2000 and the overvoltage protection unit 3000 may protrude in at least one of the X direction and the Y direction. Therefore, the capacitor part 2000 and the overvoltage protection part 3000 may have a step without forming side surfaces in a horizontal direction. For example, the capacitor part 2000 may protrude outside about 1 μm to 100 μm relative to the overvoltage protection part 3000. Of course, the overvoltage protection unit 3000 may protrude outward from the capacitor unit 2000 by about 1 μm to 100 μm. In this case, the capacitor part 2000 and the overvoltage protection part 3000 may be formed in the same size in the X direction and the Y direction, and accordingly, a step may be formed on one side and the other side opposite thereto. For example, when the capacitor unit 2000 protrudes from one side of the X direction, the overvoltage protection unit 3000 may protrude from the other side of the X direction opposite thereto. In addition, any one of the capacitor unit 2000 and the overvoltage protection unit 3000 may have a different size in one of the X direction and the Y direction than the other. For example, any one of the capacitor unit 2000 and the overvoltage protection unit 3000 may be formed to be large in either of the X direction and the Y direction so that at least one of the side surfaces of the stack 1000 may have a step. Can be. For example, the capacitor part 2000 may be formed to be about 1 μm to about 100 μm larger than the overvoltage protection part 3000, and the overvoltage protection part 3000 may be about 1 μm to about 100 μm compared to the capacitor part 2000. It may be formed to be large in size. In addition, one of the capacitor unit 2000 and the overvoltage protection unit 3000 may be formed thicker than the other. For example, the capacitor part 2000 may be formed to be about 1 μm to 100 μm thicker than the overvoltage protection part 3000, and the overvoltage protection part 3000 may be about 1 μm to 100 μm compared to the capacitor part 2000. It may be formed to a thickness of about μm thick.
한편, 적층체(1000)는 하부 표면 및 상부 표면에 각각 마련된 하부 커버층(미도시) 및 상부 커버층(미도시)을 더 포함할 수 있다. 즉, 적층체(1000)는 캐패시터부(2000)의 하부 및 과전압 보호부(3000)의 상부에 각각 마련된 하부 커버층(미도시) 및 상부 커버층(미도시)을 더 포함할 수 있다. 물론, 적층체(1000)의 최하측의 시트가 하부 커버층으로 기능하고 최상층의 시트가 상부 커버층으로 기능할 수도 있다. 즉, 캐패시터부(2000)의 최하측 유전 시트, 즉 제 1 유전 시트(101)가 하부 커버층으로 기능할 수 있고, 과전압 보호부(3000)의 최상측 방전 시트, 즉 제 7 방전 시트(207)가 상부 커버층으로 기능할 수 있다. 별도로 마련되는 하부 및 상부 커버층은 동일 두께로 형성될 수 있으며, 자성체 시트가 복수 적층되어 마련될 수 있다. 그러나, 하부 및 상부 커버층은 다른 두께로도 형성될 수 있고, 예를 들어 상부 커버층이 하부 커버층보다 두껍게 형성될 수 있다. 여기서, 자성체 시트로 이루어진 하부 및 상부 커버층의 최외곽, 즉 하부 및 상부 표면에 비자성 시트, 예를 들어 유리질의 시트가 더 형성될 수 있다. 또한, 하부 및 상부 커버층은 내부의 절연 시트들보다 두꺼울 수 있다. 따라서, 최하층 및 최상층의 절연 시트가 하부 및 상부 커버층으로 기능하는 경우 그 사이의 절연 시트들 각각보다 두껍게 형성될 수 있다. 한편, 하부 커버층 및 상부 커버층이 형성되는 경우 하부 커버층과 상부 커버층은 서로 다른 색상 또는 명암을 가질 수 있다. 예를 들어, 하부 커버층의 색상 또는 명암이 상부 커버층의 색상 또는 명암보다 밝을 수 있다. 또한, 하부 커버층 및 상부 커버층이 서로 다른 색상 또는 명암을 갖는 경우 캐패시터부(2000) 및 과전압 보호부(3000)가 동일 색상 또는 명암을 가질 수 있다. 즉, 본 발명은 상하 구분을 위해 하측 및 상측의 색상 또는 명암이 다를 수 있는데, 하부 및 상부 커버층이 다른 색상 또는 명암을 가질 경우 그 내측의 캐패시터부(2000) 및 과전압 보호부(3000)는 동일 색상 또는 명암을 가질 수 있다. 물론, 캐패시터부(2000)가 하부 커버층과 동일 색상 또는 명암을 갖고 과전압 보호부(3000)가 상부 커버층과 동일 색상 또는 명암을 가질 수도 있다. 또한, 하부 및 상부 커버층을 별도로 구비하지 않는 경우에도 캐패시터부(2000)의 하부면과 과전압 보호부(3000)의 상부면이 다른 색상 또는 명암을 가질 수 있고, 그 내측은 동일 색상 또는 명암을 가질 수 있다.Meanwhile, the laminate 1000 may further include a lower cover layer (not shown) and an upper cover layer (not shown) respectively provided on the lower surface and the upper surface. That is, the stack 1000 may further include a lower cover layer (not shown) and an upper cover layer (not shown) provided at the lower portion of the capacitor unit 2000 and the upper portion of the overvoltage protection unit 3000, respectively. Of course, the lowermost sheet of the laminate 1000 may function as the lower cover layer and the uppermost sheet may function as the upper cover layer. That is, the lowermost dielectric sheet of the capacitor unit 2000, that is, the first dielectric sheet 101 may function as a lower cover layer, and the uppermost discharge sheet of the overvoltage protection unit 3000, that is, the seventh discharge sheet 207. ) May serve as the top cover layer. The lower and upper cover layers, which are separately provided, may be formed to have the same thickness, and a plurality of magnetic sheets may be stacked. However, the lower and upper cover layers may be formed in other thicknesses, for example, the upper cover layer may be formed thicker than the lower cover layer. Here, a nonmagnetic sheet, for example, a glass sheet, may be further formed on the outermost portion of the lower and upper cover layers formed of the magnetic sheet, that is, the lower and upper surfaces. In addition, the lower and upper cover layers may be thicker than the insulating sheets therein. Therefore, when the lowermost and uppermost insulating sheets function as lower and upper cover layers, they may be formed thicker than each of the insulating sheets therebetween. Meanwhile, when the lower cover layer and the upper cover layer are formed, the lower cover layer and the upper cover layer may have different colors or contrasts. For example, the color or contrast of the lower cover layer may be lighter than the color or contrast of the upper cover layer. In addition, when the lower cover layer and the upper cover layer have different colors or contrasts, the capacitor unit 2000 and the overvoltage protection unit 3000 may have the same color or contrast. That is, the present invention may be different in color or contrast of the lower side and the upper side in order to distinguish the upper and lower, when the lower and the upper cover layer has a different color or contrast, the capacitor portion 2000 and the overvoltage protection portion 3000 of the inner It may have the same color or contrast. Of course, the capacitor unit 2000 may have the same color or contrast as the lower cover layer, and the overvoltage protection unit 3000 may have the same color or contrast as the upper cover layer. In addition, even when the lower and upper cover layers are not provided separately, the lower surface of the capacitor unit 2000 and the upper surface of the overvoltage protection unit 3000 may have different colors or contrasts, and the inner side may have the same color or contrast. Can have
한편, 적층체(1000) 표면의 적어도 일부에 표면 개질 부재가 형성되지 않고 하부 및 상부 커버층은 유리질 시트로 형성될 수도 있고, 적층체(1000)의 표면이 폴리머, 글래스 재질로 코팅될 수도 있다. 배리스터 물질로 구성된 과전압 보호부(3000)는 외부 전극(5000) 표면에 도금 공정으로 도금층을 형성할 때 배리스터 표면에도 도금층(즉, 도금 번짐)이 형성될 수 있다. 즉, 원하지 않는 배리스터 4면의 표면 영역에 도금층이 형성되면 ESD 등의 과전압 인가 시 바이패스 특성이 저하되거나, 항복 전압 이하에서 절연 특성이 저하될 수 있다. 즉, 과전압 보호부(3000)는 항복 전압 이상에서 도전체로 기능하여 과전압을 바이패스시켜야 하지만 표면에 도금층이 형성될 경우 항복 전압 이하에서 도전체로 기능할 수도 있다. 따라서, 과전압 보호부(3000)의 표면에 도금층이 형성되지 못하도록 해야 하며, 이를 위해 과전압 보호부(3000)를 완성한 후 결합 공정 전에 과전압 보호부(3000)의 표면에 절연 물질을 코팅해야 한다. 즉, 파릴렌, 글래스, 에폭시 및 폴리머 등의 절연 물질을 과전압 보호부(3000)의 표면에 코팅하여 표면 저항을 높여 도금층이 형성되지 못하도록 한다. 예를 들어, 절연 물질을 다양한 방법으로 액화 또는 기화시킨 후 침적 또는 증착을 통해 표면에 형성하고, 건조, 경화 또는 소성을 반복하여 표면을 절연화시킬 수 있다. 한편, 캐패시터부(2000)는 재료 특성상 절연체이므로 외부 전극(5000) 형성 시 표면에 도금층이 형성되는 현상이 적지만, 과전압 보호부(3000)와의 결합 시 밀착력 강화를 위해 캐패시터부(2000)에 동일 물질로 코팅할 수도 있다. 물론, 공정 간편화를 위해 캐패시터부(2000)와 과전압 보호부(3000)를 결합한 후 적층체(1000)의 표면에 절연 물질을 이용하여 코팅층을 형성할 수도 있다.Meanwhile, the surface modification member may not be formed on at least a portion of the surface of the laminate 1000, and the lower and upper cover layers may be formed of a glass sheet, and the surface of the laminate 1000 may be coated with a polymer or glass material. . In the overvoltage protection unit 3000 formed of the varistor material, when the plating layer is formed on the surface of the external electrode 5000 by a plating process, a plating layer (ie, plating bleeding) may be formed on the varistor surface. That is, when the plating layer is formed on the surface area of the four varistors that are not desired, the bypass characteristic may be lowered when an overvoltage such as ESD is applied, or the insulation characteristic may be lowered below the breakdown voltage. That is, the overvoltage protection unit 3000 must bypass the overvoltage by functioning as a conductor above the breakdown voltage, but may also function as a conductor below the breakdown voltage when the plating layer is formed on the surface. Therefore, the plating layer should not be formed on the surface of the overvoltage protection unit 3000. For this purpose, an insulating material should be coated on the surface of the overvoltage protection unit 3000 before the coupling process after completing the overvoltage protection unit 3000. That is, an insulating material such as parylene, glass, epoxy, and polymer is coated on the surface of the overvoltage protection unit 3000 to increase the surface resistance to prevent the plating layer from being formed. For example, the insulating material may be liquefied or vaporized in various ways and then formed on the surface by deposition or deposition, and the surface may be insulated by repeating drying, curing or firing. On the other hand, since the capacitor part 2000 is an insulator due to the material property, a plating layer is less formed on the surface when the external electrode 5000 is formed. However, the capacitor part 2000 is the same as the capacitor part 2000 in order to strengthen the adhesion force when the overvoltage protection part 3000 is combined. It may also be coated with a substance. Of course, after the capacitor part 2000 and the overvoltage protection part 3000 are combined to simplify the process, a coating layer may be formed on the surface of the laminate 1000 using an insulating material.
2. 캐패시터부2. Capacitor
캐패시터부(2000)는 과전압 보호부(3000)의 하부 또는 상부에 마련될 수 있다. 그런데, 복합 소자가 실장되는 전자기기의 PCB를 기준으로 캐패시터부(2000)가 PCB에 대면하는 것이 바람직하다. 즉, 캐패시터부(2000)가 하측에 마련되는 것이 바람직하다. 이렇게 함으로써 캐패시터부(2000)를 통해 PCB로의 주파수 이동 경로를 짧게 할 수 있고, 그에 따라 고주파 통신에서 기생 인덕턴스를 줄일 수 있어 고주파 통신에서 삽입 손실이 커지는 것을 방지할 수 있고, 주파수의 대역폭(bandwidth)이 좁아지는 것을 방지할 수 있다. 이러한 캐패시터부(2000)는 적어도 둘 이상의 내부 전극(200)과, 이들 사이에 마련된 적어도 둘 이상의 유전 시트(110)를 포함할 수 있다. 예를 들어, 도 2에 도시된 바와 같이 캐패시터부(2000)는 제 1 내지 7 유전 시트(101 내지 107; 110)와, 제 1 내지 제 7 내부 전극(210 내지 270; 200)을 포함할 수 있다. 한편, 본 실시 예는 캐패시터부(2000)가 복수의 내부 전극(200)이 형성되고, 이를 위해 내부 전극(200)의 수보다 하나 많은 수로 유전 시트(110)가 형성되었지만, 캐패시터부(2000)는 내부 전극(200)이 둘 이상 형성되고 유전 시트(110)가 셋 이상 마련될 수 있다. 또한, 캐패시터부(2000)는 과전압 보호부(3000)와 다른 색상 또는 명암을 가질 수 있다. 예를 들어, 캐패시터부(2000)는 과전압 보호부(3000)보다 밝은 색을 가질 수 있다. 이를 위해 캐패시터부(2000)는 유전 시트(101 내지 107; 110)를 밝은색의 안료를 첨가하여 형성할 수 있다. 예를 들어, 유전 시트(110)를 형성할 때 유전체 물질에 컬러 안료를 첨가할 수 있다. 컬러 안료는 백색 안료, 투명 안료, 자색 안료 등을 포함할 수 있다. 즉, 캐패시터부(2000)에는 과전압 보호부(3000)에 첨가되는 안료보다 밝은색의 안료가 첨가될 수 있다. 백색 안료는 ZnO, TiO2, SiO2, Al2O3 등을 포함할 수 있고, 투명 안료는 CaCO3 등을 포함할 수 있으며, 자색 안료는 Fe2O3 등을 포함할 수 있다. 따라서, 첨가되는 안료에 따라 유전 시트(110)가 백색, 자색 등의 색상을 가질 수 있고, 그에 따라 캐패시터부(2000)가 백색, 자색 등의 색상을 가질 수 있다. 물론, 캐패시터부(2000)는 과전압 보호부(3000)에 첨가되는 안료가 첨가될 수 있는데, 이 경우 과전압 보호부(3000)에 첨가되는 양보다 적게 첨가되어 캐패시터부(2000)가 과전압 보호부(3000)보다 밝을 수 있다. 한편, 유전 시트(110)의 적어도 하나는 다른 유전 시트(110)와 다른 색상 또는 밝기를 가질 수 있다. 즉, 복수의 유전 시트(110) 중에서 적어도 하나에 첨가되는 안료의 양이 달라 적어도 하나의 유전 시트(110)의 색상 또는 밝기가 다를 수 있다. 그러나, 이러한 경우에도 유전 시트(110)는 방전 시트(120)보다 밝은 색상 또는 밝기를 가질 수 있다.The capacitor part 2000 may be provided below or over the overvoltage protection part 3000. However, it is preferable that the capacitor part 2000 faces the PCB based on the PCB of the electronic device in which the composite device is mounted. That is, it is preferable that the capacitor part 2000 is provided below. By doing so, the frequency moving path to the PCB can be shortened through the capacitor unit 2000, thereby reducing parasitic inductance in high frequency communication, thereby preventing an increase in insertion loss in high frequency communication, and bandwidth of a frequency. This can be prevented from narrowing. The capacitor part 2000 may include at least two internal electrodes 200 and at least two dielectric sheets 110 provided therebetween. For example, as shown in FIG. 2, the capacitor part 2000 may include first to seventh dielectric sheets 101 to 107; 110 and first to seventh internal electrodes 210 to 270; 200. have. Meanwhile, in the present exemplary embodiment, the capacitor part 2000 has a plurality of internal electrodes 200 formed therein, and for this purpose, the dielectric sheet 110 is formed with one more than the number of the internal electrodes 200, but the capacitor part 2000 Two or more internal electrodes 200 may be formed and three or more dielectric sheets 110 may be provided. In addition, the capacitor unit 2000 may have a color or contrast different from that of the overvoltage protection unit 3000. For example, the capacitor unit 2000 may have a lighter color than the overvoltage protection unit 3000. To this end, the capacitor part 2000 may form the dielectric sheets 101 to 107 and 110 by adding a bright pigment. For example, color pigments may be added to the dielectric material when forming the dielectric sheet 110. Color pigments may include white pigments, transparent pigments, purple pigments, and the like. That is, a pigment of brighter color than the pigment added to the overvoltage protection unit 3000 may be added to the capacitor unit 2000. The white pigment may include ZnO, TiO 2 , SiO 2 , Al 2 O 3 , and the like, the transparent pigment may include CaCO 3 , and the like, and the purple pigment may include Fe 2 O 3, or the like. Therefore, the dielectric sheet 110 may have a color such as white, purple, or the like, depending on the added pigment, and thus the capacitor part 2000 may have a color such as white, purple, or the like. Of course, the capacitor unit 2000 may be added to the pigment added to the overvoltage protection unit 3000, in this case, less than the amount added to the overvoltage protection unit 3000 is added to the capacitor unit 2000 overvoltage protection unit ( 3000). Meanwhile, at least one of the dielectric sheets 110 may have a different color or brightness than the other dielectric sheets 110. That is, the amount of pigment added to at least one of the plurality of dielectric sheets 110 may be different, so that the color or brightness of the at least one dielectric sheet 110 may be different. However, even in this case, the dielectric sheet 110 may have a brighter color or brightness than the discharge sheet 120.
유전 시트(101 내지 107; 110)는 유전체 물질로 형성될 수 있다. 유전체 물질로는 예를 들어 5 내지 20000 정도의 유전율을 갖는 고유전 물질을 이용할 수 있는데, MLCC, LTCC, HTCC 등을 이용할 수 있다. 여기서, MLCC 유전체 물질은 BaTiO3 및 NdTiO3의 적어도 어느 하나를 주성분으로 Bi2O3, SiO2, CuO, MgO, ZnO 중 적어도 하나 이상이 첨가되고, LTCC 유전체 물질은 Al2O3, SiO2, 글래스 물질을 포함할 수 있다. 또한, 유전 시트(110)는 MLCC, LTCC, HTCC 이외에 BaTiO3, NdTiO3, Bi2O3, BaCO3, TiO2, Nd2O3, SiO2, CuO, MgO, Zn0, Al2O3 중의 하나 이상을 포함하는 물질로 형성될 수 있다. 예를 들어, 유전 시트(110)는 BaTiO3, NdTiO3, Bi2O3, ZnO, TiO2, SiO2, Al2O3, B2O3를 포함할 수 있고, 이들 물질의 함량을 조절함으로써 유전율을 조절할 수 있다. 따라서, 유전 시트(110)는 재질에 따라 각각 소정의 유전율, 예를 들어 5∼20000, 바람직하게는 7∼4000, 더욱 바람직하게는 100∼3000의 유전율을 가질 수 있다. 예를 들어, 유전 시트(110)는 BaTiO3, NdTiO3, Bi2O3, ZnO, TiO2, SiO2, Al2O3, B2O3를 포함할 수 있는데, BaTiO3의 함량을 증가시켜 유전율을 높일 수 있고, NdTiO3 및 SiO2의 함량을 증가시켜 유전율을 낮출 수 있다. 유전 시트(110)로 이용되는 물질중에서, ZnO, TiO2, SiO2, Al2O3는 백색 안료 물질일 수 있다. 따라서, ZnO, TiO2, SiO2, Al2O3 중에서 적어도 하나를 포함하여 유전 시트(110)의 유전율을 조절하는 동시에 유전 시트(110)에 색상을 부여할 수 있다. 안료 물질은 유전 물질과 안료 물질의 혼합 물질 100wt%에 대하여 0.1wt%∼10wt%의 양으로 함유될 수 있다. 한편, 유전 시트(110)는 유전체 물질과 예를 들어 배리스터 물질 등의 과전압 보호 물질이 혼합되어 형성될 수도 있다. 즉, 유전 시트(110)은 주로 유전체 물질로 이루어지고 일부 배리스터 물질이 포함될 수 있다. 과전압 보호 물질로는 이후 설명될 과전압 보호부(3000)를 구성하는 물질, 예를 들어 과전압 보호부(3000)의 방전 시트를 이루는 물질을 포함할 수 있다. 이러한 과전압 보호 물질은 배리스터 물질을 이용할 수 있는데, 배리스터 물질로는 ZnO, Bi2O3, Pr6O11, Co3O4, Mn3O4, CaCO3, Cr2O3, SiO2, Al2O3, Sb2O3, SiC, Y2O3, NiO, SnO2, CuO, TiO2, MgO, AgO의 적어도 어느 하나를 포함할 수 있다. 예를 들어 캐패시터부(2000)에 함유되는 배리스터 물질로는 ZnO일 수 있다. 이때, ZnO 입자의 크기는 평균 입도 분포(D50) 기준 1㎛ 이하일 수 있다. 한편, 캐패시터부(2000)에 함유되는 배리스터 물질의 양은 0.2wt%∼10wt%일 수 있다. 즉, 유전체 물질과 배리스터 물질의 혼합 물질 100wt%에 대하여 배리스터 물질이 0.2wt%∼10wt% 정도 함유되어 캐패시터부(2000)의 유전 시트(110)가 형성될 수 있다. 바람직하게는 캐패시터 물질과 배리스터 물질의 혼합물 100wt%에 대하여 배리스터 물질이 2wt%∼5wt% 함유될 수 있다. 이때, 과전압 보호 물질, 즉 배리스터 물질이 10wt%를 초과하여 함유될 경우 캐패시터부(2000)의 캐패시턴스를 저하시키거나 방전 전압의 적어도 일부가 캐패시터부(2000)를 통해 흐를 수 있다.The dielectric sheets 101-107; 110 may be formed of a dielectric material. As the dielectric material, for example, a high dielectric material having a dielectric constant of about 5 to 20,000 may be used, and MLCC, LTCC, HTCC, and the like may be used. The MLCC dielectric material includes at least one of Bi 2 O 3 , SiO 2 , CuO, MgO, and ZnO based on at least one of BaTiO 3 and NdTiO 3 , and the LTCC dielectric material is Al 2 O 3 , SiO 2. It may include a glass material. In addition, the dielectric sheet 110 may be formed of BaTiO 3 , NdTiO 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , SiO 2 , CuO, MgO, Zn0, and Al 2 O 3 in addition to MLCC, LTCC, and HTCC. It may be formed of a material comprising one or more. For example, the dielectric sheet 110 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 , and adjust the content of these materials. By controlling the dielectric constant. Therefore, the dielectric sheet 110 may have a predetermined dielectric constant, for example, 5 to 20,000, preferably 7 to 4000, and more preferably 100 to 3000, depending on the material. For example, the dielectric sheet 110 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 , increasing the content of BaTiO 3 . By increasing the dielectric constant, it is possible to increase the content of NdTiO 3 and SiO 2 to lower the dielectric constant. Among the materials used for the dielectric sheet 110, ZnO, TiO 2 , SiO 2 , Al 2 O 3 may be white pigment materials. Therefore, at least one of ZnO, TiO 2 , SiO 2 , and Al 2 O 3 may be included to color the dielectric sheet 110 while controlling the dielectric constant of the dielectric sheet 110. The pigment material may be contained in an amount of 0.1 wt% to 10 wt% with respect to 100 wt% of the mixed material of the dielectric material and the pigment material. Meanwhile, the dielectric sheet 110 may be formed by mixing a dielectric material and an overvoltage protection material such as a varistor material. That is, the dielectric sheet 110 is mainly made of a dielectric material and may include some varistor material. The overvoltage protection material may include a material constituting the overvoltage protection unit 3000 to be described later, for example, a material constituting a discharge sheet of the overvoltage protection unit 3000. Such an overvoltage protection material may use a varistor material, which may be ZnO, Bi 2 O 3 , Pr 6 O 11 , Co 3 O 4 , Mn 3 O 4 , CaCO 3 , Cr 2 O 3 , SiO 2 , Al It may include at least one of 2 O 3 , Sb 2 O 3 , SiC, Y 2 O 3 , NiO, SnO 2 , CuO, TiO 2 , MgO, AgO. For example, the varistor material contained in the capacitor part 2000 may be ZnO. At this time, the size of the ZnO particles may be 1㎛ or less based on the average particle size distribution (D50). Meanwhile, the amount of varistor material contained in the capacitor part 2000 may be 0.2 wt% to 10 wt%. That is, the dielectric sheet 110 of the capacitor part 2000 may be formed by containing about 0.2 wt% to 10 wt% of the varistor material with respect to 100 wt% of the mixed material of the dielectric material and the varistor material. Preferably, the varistor material may contain 2 wt% to 5 wt% with respect to 100 wt% of the mixture of the capacitor material and the varistor material. In this case, when the overvoltage protection material, that is, the varistor material is contained in excess of 10wt%, the capacitance of the capacitor part 2000 may be reduced or at least a part of the discharge voltage may flow through the capacitor part 2000.
복수의 내부 전극(210 내지 270; 200)은 도전성 물질로 형성될 수 있는데, 예를 들어 Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 합금의 경우 예를 들어 Ag와 Pd 합금을 이용할 수 있다. 또한, 내부 전극(200)은 유전 시트(110) 물질을 더 포함하여 형성될 수 있다. 즉, 내부 전극(200)은 금속 또는 금속 합금 등의 도전 물질과 예를 들어 BaTiO3, NdTiO3, Bi2O3, ZnO, TiO2, SiO2, Al2O3, B2O3 중 적어도 하나의 유전 물질을 포함할 수 있다. 이때, 내부 전극(200) 중의 유전 물질 함량은 20wt% 이하일 수 있다. 즉, 도전 물질과 유전 물질의 혼합물 100wt%에 대하여 유전 물질이 1wt%∼20wt% 함유될 수 있다. 이렇게 내부 전극(200)에 유전 물질이 함유됨으로써 내부 전극(200)과 유전 시트(110)의 밀착력을 개선시켜 내부 전극(200)과 유전 시트(110)의 수축률 차이에 의한 마이크로 딜라미네이션을 방지하고 그에 따른 캐패시턴스의 저하를 방지할 수 있다. 이때, 내부 전극(200) 중의 유전 물질의 함량이 1wt% 미만이면 내부 전극(200)과 유전 시트(110)의 밀착력 개선 효과가 없고 20wt%를 초과하면 내부 전극(200)의 전기 전도성을 저하시킬 수 있다. 한편, 내부 전극(200)은 예를 들어 1㎛∼10㎛의 두께로 형성할 수 있다. 여기서, 내부 전극(200)은 X 방향으로 서로 대향되도록 형성된 외부 전극(5100, 5200; 5000)과 일측이 연결되고 타측이 이격되도록 형성된다. 즉, 제 1, 제 3 및 제 5 내부 전극(210, 230, 250)은 제 1, 제 3 및 제 5 유전 시트(101, 103, 105) 상에 각각 소정 면적으로 형성되며, 일측이 제 1 외부 전극(5100)과 연결되고 타측이 제 2 외부 전극(5200)과 이격되도록 형성된다. 또한, 제 2, 제 4 및 제 6 내부 전극(220, 240, 260)은 제 2, 제 4 및 제 6 유전 시트(102, 104, 106) 상에 소정 면적으로 형성되며 일측이 제 2 외부 전극(5200)과 연결되고 타측이 제 1 외부 전극(5100)과 이격되도록 형성된다. 즉, 내부 전극들(200)은 외부 전극(5000)의 어느 하나와 교대로 연결되며 유전 시트(110)를 사이에 두고 소정 영역 중첩되도록 형성된다. 이때, 내부 전극(200)은 유전 시트(110) 각각의 면적 대비 10% 내지 85%의 면적으로 각각 형성된다. 또한, 인접한 두 내부 전극들, 예를 들어 제 1 및 제 2 내부 전극(210, 220)은 이들 전극 각각의 면적 대비 10% 내지 85%의 면적으로 중첩되도록 형성된다. 한편, 내부 전극(200)은 예를 들어 정사각형, 직사각형, 소정의 패턴 형상, 소정 폭 및 간격을 갖는 스파이럴 형상 등 다양한 형상으로 형성될 수 있다. 이러한 캐패시터부(2000)는 내부 전극들(200) 사이에 캐패시턴스가 각각 형성되며, 캐패시턴스는 인접한 내부 전극들(200)의 중첩 면적, 유전 시트들(110)의 두께 등에 따라 조절될 수 있다. 이러한 캐패시터부(2000)는 예를 들어 20μF 이상의 캐패시턴스를 가질 수 있다.The plurality of internal electrodes 210 to 270; 200 may be formed of a conductive material, for example, a metal or a metal alloy including at least one of Ag, Au, Pt, Pd, Ni, and Cu. have. In the case of an alloy, for example, Ag and Pd alloys may be used. In addition, the internal electrode 200 may further include a dielectric sheet 110 material. That is, the internal electrode 200 may include at least one of a conductive material such as a metal or a metal alloy, for example, BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , or B 2 O 3 . It may include one dielectric material. In this case, the dielectric material content of the internal electrode 200 may be 20 wt% or less. That is, the dielectric material may contain 1 wt% to 20 wt% with respect to 100 wt% of the mixture of the conductive material and the dielectric material. As the dielectric material is contained in the internal electrode 200, the adhesion between the internal electrode 200 and the dielectric sheet 110 may be improved to prevent micro-delamination due to the difference in shrinkage between the internal electrode 200 and the dielectric sheet 110. As a result, a decrease in capacitance can be prevented. In this case, when the content of the dielectric material in the internal electrode 200 is less than 1 wt%, the adhesion between the internal electrode 200 and the dielectric sheet 110 may not be improved, and when the content exceeds 20 wt%, the electrical conductivity of the internal electrode 200 may be reduced. Can be. On the other hand, the internal electrode 200 can be formed to a thickness of, for example, 1 10㎛. Here, the internal electrode 200 is formed so that one side is connected to the external electrodes 5100, 5200; 5000 formed to face each other in the X direction, and the other side is spaced apart from each other. That is, the first, third, and fifth internal electrodes 210, 230, and 250 are formed on the first, third, and fifth dielectric sheets 101, 103, 105, respectively, with predetermined areas, and one side thereof has a first area. It is connected to the external electrode 5100 and the other side is formed to be spaced apart from the second external electrode 5200. In addition, the second, fourth, and sixth internal electrodes 220, 240, and 260 are formed on the second, fourth, and sixth dielectric sheets 102, 104, and 106 in a predetermined area, and one side thereof is the second external electrode. It is connected to the 5200 and the other side is formed to be spaced apart from the first external electrode 5100. That is, the internal electrodes 200 are alternately connected to any one of the external electrodes 5000 and are formed to overlap a predetermined region with the dielectric sheet 110 interposed therebetween. In this case, the internal electrodes 200 are formed in areas of 10% to 85% of the area of each of the dielectric sheets 110. In addition, two adjacent inner electrodes, for example, the first and second inner electrodes 210 and 220 are formed to overlap with an area of 10% to 85% of the area of each of these electrodes. Meanwhile, the internal electrode 200 may be formed in various shapes such as a square, a rectangle, a predetermined pattern shape, a spiral shape having a predetermined width and spacing, and the like. The capacitor part 2000 has capacitances formed between the internal electrodes 200, and the capacitance may be adjusted according to the overlapping area of the adjacent internal electrodes 200, the thickness of the dielectric sheets 110, and the like. The capacitor part 2000 may have, for example, a capacitance of 20 μF or more.
3. 과전압 보호부3. Overvoltage Protection
과전압 보호부(3000)는 캐패시터부(2000) 상측에 마련될 수 있다. 이러한 과전압 보호부(3000)는 복수의 방전 시트(120)와, 적어도 둘 이상의 방전 전극(311, 312; 310)을 포함할 수 있다. 예를 들어, 과전압 보호부(3000)는 도 2에 도시된 바와 같이 제 1 내지 제 7 방전 시트(121 내지 127; 120)와, 제 2 내지 제 6 방전 시트(122 내지 126)를 사이에 두고 형성된 제 1 및 제 2 방전 전극(311, 312; 310)을 포함할 수 있다. 한편, 본 실시 예는 과전압 보호부(3000)는 7개의 방전 시트(110)와 두개의 방전 전극(310)이 마련되는 경우를 도시하고 설명하지만, 방전 시트(120)와 방전 전극(310)은 다양한 수로 마련될 수 있다. 한편, 과전압 보호부(3000)의 방전을 개시하는 항복 전압 또는 방전 개시 전압은 방전 시트(120)의 재질, 방전 전극(310) 사이의 거리 등에 따라 결정될 수 있다. 또한, 과전압 보호부(3000)는 캐패시터부(3000)와 다른 색상 또는 명암을 가질 수 있고, 예를 들어 캐패시터부(2000)보다 어두운 색을 가질 수 있다. 이를 위해 과전압 보호부(3000)는 방전 시트(121 내지 127; 120)를 어두운 색의 안료를 첨가하여 형성할 수 있다. 예를 들어, 방전 시트(120)를 형성할 때 배리스터 물질에 컬러 안료를 첨가할 수 있다. 컬러 안료는 검은색 안료, 암녹색 안료 등을 포함할 수 있다. 즉, 과전압 보호부(3000)에는 캐패시터부(2000)에 첨가되는 안료보다 어두운 색의 안료가 첨가될 수 있다. 검은색 안료는 Co3O4, CoO 등을 포함할 수 있고, 암녹색 안료는 MnO4 등을 포함할 수 있다. 따라서, 첨가되는 안료에 따라 방전 시트(120)는 검은색, 암녹색 등의 색상을 가질 수 있고, 그에 따라 과전압 보호부(3000)가 검은색, 암녹색 등의 색상을 가질 수 있다. 물론, 과전압 보호부(3000)는 캐패시터부(2000)에 첨가되는 안료가 첨가될 수 있는데, 이 경우 캐패시터부(2000)에 첨가되는 양보다 많이 첨가되어 과전압 보호부(3000)가 캐패시터부(2000)보다 어두울 수 있다. 한편, 방전 시트(120)의 적어도 하나는 다른 방전 시트(120)와 다른 색상 또는 밝기를 가질 수 있다. 즉, 복수의 방전 시트(120) 중에서 적어도 하나에 첨가되는 안료의 양이 달라 적어도 하나의 방전 시트(120)의 색상 또는 밝기가 다를 수 있다. 그러나, 이러한 경우에도 방전 시트(120)는 유전 시트(110)보다 어두운 색상 또는 밝기를 가질 수 있다.The overvoltage protection unit 3000 may be provided above the capacitor unit 2000. The overvoltage protection unit 3000 may include a plurality of discharge sheets 120 and at least two discharge electrodes 311, 312; 310. For example, the overvoltage protection unit 3000 may include the first to seventh discharge sheets 121 to 127 and 120 and the second to sixth discharge sheets 122 to 126 as shown in FIG. 2. The first and second discharge electrodes 311, 312; 310 may be formed. In the present embodiment, the overvoltage protection unit 3000 illustrates and describes a case in which seven discharge sheets 110 and two discharge electrodes 310 are provided. However, the discharge sheet 120 and the discharge electrodes 310 may be described. It can be provided in various numbers. On the other hand, the breakdown voltage or the discharge start voltage for starting the discharge of the overvoltage protection unit 3000 may be determined according to the material of the discharge sheet 120, the distance between the discharge electrodes 310, and the like. In addition, the overvoltage protection unit 3000 may have a color or contrast different from that of the capacitor unit 3000, and may have a color darker than that of the capacitor unit 2000, for example. To this end, the overvoltage protection unit 3000 may form the discharge sheets 121 to 127 and 120 by adding a pigment of dark color. For example, color pigments may be added to the varistor material when forming the discharge sheet 120. The color pigments may include black pigments, dark green pigments, and the like. That is, a pigment of darker color than the pigment added to the capacitor unit 2000 may be added to the overvoltage protection unit 3000. The black pigment may include Co 3 O 4, CoO, and the like, and the dark green pigment may include MnO 4, and the like. Therefore, the discharge sheet 120 may have a color such as black, dark green, etc. according to the added pigment, and thus the overvoltage protection unit 3000 may have a color such as black, dark green, or the like. Of course, the overvoltage protection unit 3000 may include a pigment added to the capacitor unit 2000. In this case, more than the amount added to the capacitor unit 2000, the overvoltage protection unit 3000 is added to the capacitor unit 2000. Can be darker than). On the other hand, at least one of the discharge sheet 120 may have a different color or brightness than the other discharge sheet 120. That is, the amount of pigment added to at least one of the plurality of discharge sheets 120 may be different, and thus the color or brightness of the at least one discharge sheet 120 may be different. However, even in this case, the discharge sheet 120 may have a darker color or brightness than the dielectric sheet 110.
방전 시트(121 내지 127; 120)는 배리스터 물질로 형성될 수 있다. 한편, 배리스터 물질은 ZnO, Bi2O3, Pr6O11, Co3O4, Mn3O4, CaCO3, Cr2O3, SiO2, Al2O3, Sb2O3, SiC, Y2O3, NiO, SnO2, CuO, TiO2, MgO, AgO 중 적어도 하나를 포함할 수 있다. 예를 들어, ZnO를 주성분으로 상기 물질의 적어도 하나가 혼합된 물질이 배리스터 물질로 이용될 수 있다. 물론, 배리스터 물질은 상기 물질 이외에 Pr계, Bi계, SiC계 물질을 이용할 수 있다. 방전 시트(120)로 이용되는 물질중에서, Co3O4는 검은색 안료 물질일 수 있다. 따라서, Co3O4를 포함하여 방전 시트(120)를 형성하는 동시에 방전 시트(120)에 컬러를 부여할 수 있다. 안료 물질은 배리스터 물질과 안료 물질의 혼합 물질 100wt%에 대하여 0.1wt%∼10wt%의 양으로 함유될 수 있다. 또한, 방전 시트(120)는 배리스터 물질과 유전체 물질이 혼합된 물질로 형성될 수 있다. 즉, 방전 시트(120)은 배리스터 특성을 갖는 물질과 캐패시터부(2000) 형성 물질, 즉 유전 물질이 혼합되어 형성될 수 있는데, 방전 시트들(120)은 주로 배리스터 물질로 이루어지고 일부 캐패시터 물질이 포함될 수 있다. 배리스터 물질에 혼합되는 유전 물질로는 캐패시터부(2000)의 유전 시트(110)의 주요 물질을 포함할 수 있다. 즉, 유전율이 5 내지 20000 정도인 MLCC, LTCC, HTCC 등의 유전체가 배리스터 물질에 혼합될 수 있다. 예를 들어, BaTiO3, NdTiO3, Bi2O3, BaCO3, TiO2, Nd2O3, SiO2, CuO, MgO, Zn0, Al2O3 중의 하나 이상을 포함하는 물질이 배리스터 물질에 혼합될 수 있다. 예를 들어, 과전압 보호부(3000)에 함유되는 캐패시터 물질, 즉 유전 물질로는 BaTiO3 및 NdTiO3의 적어도 어느 하나일 수 있다. 한편, 과전압 보호부(3000)에 함유되는 캐패시터 물질, 즉 유전 물질의 양은 0.2wt%∼10wt%일 수 있다. 즉, 방전 시트 물질과 유전 시트 물질의 혼합 물질 100wt%에 대하여 유전 시트 물질이 0.2wt%∼10wt% 함유될 수 있다. 바람직하게는 방전 시트 물질과 유전 시트 물질의 혼합물 100wt%에 대하여 유전 시트 물질이 2wt%∼5wt% 함유될 수 있다. 이때, 캐패시터 물질, 즉 유전 시트 물질이 10wt%를 초과하여 함유될 경우 과전압 보호부(3000)의 특성을 저하시킬 수 있다. 즉, 항복 전압이 변화되거나 완전한 부도체가 되어 과전압을 방전시키지 못하여 과전압 보호부(3000)로서의 기능을 상실할 수 있다.The discharge sheets 121 to 127 and 120 may be formed of a varistor material. On the other hand, the varistor material is ZnO, Bi 2 O 3 , Pr 6 O 11 , Co 3 O 4 , Mn 3 O 4 , CaCO 3 , Cr 2 O 3 , SiO 2 , Al 2 O 3 , Sb 2 O 3 , SiC, It may include at least one of Y 2 O 3 , NiO, SnO 2 , CuO, TiO 2 , MgO, AgO. For example, a material in which at least one of the materials is mixed with ZnO as a main component may be used as a varistor material. Of course, the varistor material may use Pr-based, Bi-based, or SiC-based materials in addition to the above materials. Among the materials used for the discharge sheet 120, Co 3 O 4 may be a black pigment material. Therefore, the discharge sheet 120 may be formed including Co 3 O 4 , and color may be applied to the discharge sheet 120. The pigment material may be contained in an amount of 0.1 wt% to 10 wt% with respect to 100 wt% of the mixed material of the varistor material and the pigment material. In addition, the discharge sheet 120 may be formed of a material in which a varistor material and a dielectric material are mixed. That is, the discharge sheet 120 may be formed by mixing a material having a varistor characteristic and a material forming the capacitor part 2000, that is, a dielectric material. The discharge sheets 120 are mainly made of a varistor material, and some capacitor materials may be formed. May be included. The dielectric material mixed with the varistor material may include a main material of the dielectric sheet 110 of the capacitor unit 2000. That is, dielectrics such as MLCC, LTCC, HTCC having a dielectric constant of about 5 to 20,000 may be mixed with the varistor material. For example, a material comprising at least one of BaTiO 3 , NdTiO 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , SiO 2 , CuO, MgO, Zn0, Al 2 O 3 may be added to the varistor material. Can be mixed. For example, the capacitor material, that is, the dielectric material contained in the overvoltage protection part 3000 may be at least one of BaTiO 3 and NdTiO 3 . On the other hand, the amount of the capacitor material, that is, the dielectric material contained in the overvoltage protection unit 3000 may be 0.2wt% to 10wt%. That is, the dielectric sheet material may contain 0.2 wt% to 10 wt% with respect to 100 wt% of the mixed sheet of the discharge sheet material and the dielectric sheet material. Preferably, the dielectric sheet material may contain 2 wt% to 5 wt% with respect to 100 wt% of the mixture of the discharge sheet material and the dielectric sheet material. In this case, when the capacitor material, that is, the dielectric sheet material is contained in excess of 10wt%, the characteristics of the overvoltage protection unit 3000 may be reduced. That is, the breakdown voltage is changed or becomes a complete non-conductor to discharge the overvoltage can lose the function as the overvoltage protection unit 3000.
제 1 및 제 2 방전 전극(311, 312; 310)은 도전성 물질로 형성될 수 있는데, 예를 들어 Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 합금의 경우 예를 들어 Ag와 Pd 합금을 이용할 수 있다. 이때, 방전 전극(310)은 캐패시터부(2000)의 내부 전극들(220)과 동일 물질로 형성될 수 있다. 또한, 방전 전극(310)은 배리스터 물질을 더 포함하여 형성될 수 있다. 즉, 방전 전극(310)은 금속 또는 금속 합금 등의 도전 물질과 예를 들어 ZnO, Bi2O3, Co2O4, MnO4, Pr6O11, Al2O3, CaO 중 적어도 하나의 배리스터 물질을 포함할 수 있다. 이때, 방전 전극(310) 중의 배리스터 물질 함량은 20wt% 이하일 수 있다. 즉, 도전 물질과 배리스터 물질의 혼합물 100wt%에 대하여 배리스터 물질이 1wt%∼20wt% 함유될 수 있다. 이렇게 방전 전극(310)에 배리스터 물질이 함유됨으로써 방전 전극(310)과 방전 시트(120)의 밀착력을 개선시켜 방전 전극(310)과 방전 시트(120)의 수축률 차이에 의한 마이크로 딜라미네이션을 방지하고 그에 따른 ESD 내성의 저하를 방지할 수 있다. 이때, 방전 전극(310) 중의 배리스터 물질의 함량이 1wt% 미만이면 방전 전극(310)과 방전 시트(120)의 밀착력 개선 효과가 없고 20wt%를 초과하면 방전 전극(310)의 전기 전도성을 저하시킬 수 있다. 한편, 방전 전극(310)은 예를 들어 1㎛∼10㎛의 두께로 형성할 수 있다. 즉, 방전 전극(310)은 내부 전극들(200) 각각과 동일 두께로 형성될 수 있다. 그러나, 방전 전극(310)은 내부 전극들(200) 각각보다 얇거나 두껍게 형성될 수도 있다. 예를 들어, 방전 전극(310)은 내부 전극들(200) 각각보다 10% 내지 90%의 두께로 형성될 수 있다. 예를 들어, 방전 전극(310)은 1㎛∼5㎛의 두께로 형성되고, 각각의 내부 전극(200)은 2㎛∼10㎛의 두께로 형성될 수 있다. 한편, 배리스터 타입의 과전압 보호부(3000)는 에너지 전도 방식으로 과전압을 바이패스하므로 방전 전극(311, 312)에 대한 부하가 작다. 즉, 과전압 보호부(3000)를 서프레서 타입으로 형성할 경우 과전압이 서프레서 타입으로 바이패스되므로 방전 전극(310)에 대한 부하가 크지만, 배리스터 타입의 경우 서프레서 타입보다 방전 전극(310)에 대한 부하가 작다. 따라서, 배리스터 타입으로 과전압 보호부(3000)를 형성하면 귀금속으로 형성하는 방전 전극(310)의 두께를 줄일 수 있어 제조 원가를 줄일 수 있다. 이러한 방전 전극(310)은 외부 전극(5000)과 교대로 연결될 수 있다. 즉, 제 1 방전 전극(311)은 제 1 외부 전극(5100)과 연결되어 제 1 방전 시트(121) 상에 형성되고, 제 2 방전 전극(312)은 제 2 외부 전극(5200)과 연결되어 제 6 방전 시트(126) 상에 형성된다. 즉, 제 1 및 제 2 방전 전극(311, 312)은 외부 전극(5000)의 어느 하나와 교대로 연결되며 제 2 내지 제 6 방전 시트(122 내지 126)를 사이에 두고 소정 영역 중첩되도록 형성된다. 이때, 제 1 및 제 2 방전 전극(311, 312)은 방전 시트(120) 각각의 면적 대비 10% 내지 85%의 면적으로 각각 형성된다. 또한, 제 1 및 제 2 방전 전극(311, 312)은 이들 전극 각각의 면적 대비 10% 내지 85%의 면적으로 중첩되도록 형성된다. 한편, 방전 전극(310)의 길이는 내부 전극(200)의 길이와 같거나 작을 수 있고, 방전 전극(310)의 너비는 내부 전극(200)의 너비보다 같거나 작을 수 있다. 따라서, 방전 전극(310)은 내부 전극(200)보다 같거나 작은 면적으로 형성될 수 있다.The first and second discharge electrodes 311, 312; 310 may be formed of a conductive material, for example, a metal or a metal alloy including at least one of Ag, Au, Pt, Pd, Ni, and Cu. Can be formed. In the case of an alloy, for example, Ag and Pd alloys may be used. In this case, the discharge electrode 310 may be formed of the same material as the internal electrodes 220 of the capacitor unit 2000. In addition, the discharge electrode 310 may be formed by further including a varistor material. That is, the discharge electrode 310 is formed of a conductive material such as a metal or a metal alloy and at least one of ZnO, Bi 2 O 3 , Co 2 O 4 , MnO 4 , Pr 6 O 11 , Al 2 O 3 , and CaO. It may comprise a varistor material. At this time, the varistor material content in the discharge electrode 310 may be 20wt% or less. That is, the varistor material may contain 1 wt% to 20 wt% with respect to 100 wt% of the mixture of the conductive material and the varistor material. The varistor material is contained in the discharge electrode 310 to improve the adhesion between the discharge electrode 310 and the discharge sheet 120, thereby preventing micro-delamination due to the difference in shrinkage between the discharge electrode 310 and the discharge sheet 120. As a result, the degradation of ESD resistance can be prevented. At this time, if the content of the varistor material in the discharge electrode 310 is less than 1wt%, the adhesion between the discharge electrode 310 and the discharge sheet 120 may not be improved, and if the content exceeds 20wt%, the electrical conductivity of the discharge electrode 310 may be reduced. Can be. On the other hand, the discharge electrode 310 can be formed, for example in thickness of 1 micrometer-10 micrometers. That is, the discharge electrode 310 may be formed to have the same thickness as each of the internal electrodes 200. However, the discharge electrode 310 may be formed thinner or thicker than each of the internal electrodes 200. For example, the discharge electrode 310 may be formed to have a thickness of 10% to 90% than that of each of the internal electrodes 200. For example, the discharge electrode 310 may be formed to a thickness of 1 5㎛, each internal electrode 200 may be formed to a thickness of 2 10㎛. On the other hand, since the varistor type overvoltage protection unit 3000 bypasses the overvoltage in an energy conduction method, the load on the discharge electrodes 311 and 312 is small. That is, when the overvoltage protection unit 3000 is formed as a suppressor type, since the overvoltage is bypassed to the suppressor type, the load on the discharge electrode 310 is greater, but in the case of the varistor type, the discharge electrode 310 is larger than the suppressor type. The load on is small. Therefore, when the overvoltage protection unit 3000 is formed in the varistor type, the thickness of the discharge electrode 310 formed of the noble metal can be reduced, thereby reducing the manufacturing cost. The discharge electrode 310 may be alternately connected to the external electrode 5000. That is, the first discharge electrode 311 is connected to the first external electrode 5100 and formed on the first discharge sheet 121, and the second discharge electrode 312 is connected to the second external electrode 5200. It is formed on the sixth discharge sheet 126. That is, the first and second discharge electrodes 311 and 312 are alternately connected to any one of the external electrodes 5000 and are formed to overlap a predetermined area with the second to sixth discharge sheets 122 to 126 interposed therebetween. . In this case, the first and second discharge electrodes 311 and 312 are respectively formed with an area of 10% to 85% of the area of each of the discharge sheets 120. In addition, the first and second discharge electrodes 311 and 312 are formed to overlap with an area of 10% to 85% of the area of each of these electrodes. Meanwhile, the length of the discharge electrode 310 may be equal to or smaller than the length of the internal electrode 200, and the width of the discharge electrode 310 may be equal to or smaller than the width of the internal electrode 200. Therefore, the discharge electrode 310 may be formed to have the same or smaller area than the internal electrode 200.
이러한 배리스터 타입의 과전압 보호부(3000)는 항복 전압을 예를 들어 310V∼2kV로 구현할 수 있다. 배리스터 타입의 과전압 보호부(3000)에 의해 서프레서 타입보다 낮은 전압으로부터 전자기기 등을 보호할 수 있다. 즉, 과전압 보호부(3000)를 서프레서 타입으로 구현할 경우 방전 개시 전압이 2kV 이상이기 때문에 2kV 이하의 과전압을 바이패스시키지 못하고 차단 상태를 유지함으로써 전자기기 내부의 인접한 다른 부품 또는 신호 라인으로 방전이 발생되어 다른 부품을 손상시키거나 비정상적인 동작을 유발할 수 있다. 그러나, 과전압 보호부(3000)를 배리스터 타입으로 구현함으로써 항복 전압 이상의 과전압을 모두 바이패스시켜 주변 회로의 손상을 방지할 수 있다. 즉, 배리스터 타입의 과전압 보호부(3000)는 항복 전압이 310V∼2kV 이므로 서프레서 타입보다 낮은 과전압으로부터 전자기기의 내부 회로를 보호할 수 있다.The varistor type overvoltage protection unit 3000 may implement a breakdown voltage of, for example, 310V to 2kV. The varistor type overvoltage protection unit 3000 can protect electronic devices and the like from voltages lower than the suppressor type. That is, when the overvoltage protection unit 3000 is implemented as a suppressor type, since the discharge start voltage is 2 kV or more, the discharge may not be bypassed to the over voltage of 2 kV or less, and the disconnection state may be maintained to other adjacent parts or signal lines inside the electronic device. Can cause damage to other components or cause abnormal operation. However, by implementing the overvoltage protection unit 3000 as a varistor type, it is possible to bypass the overvoltage higher than the breakdown voltage to prevent damage to the peripheral circuit. That is, since the varistor type overvoltage protection unit 3000 has a breakdown voltage of 310V to 2kV, the varistor type overvoltage protection unit 3000 may protect the internal circuit of the electronic device from an overvoltage lower than the suppressor type.
한편, 과전압 보호부(3000)는 소정의 캐패시턴스를 갖는데, 캐패시터부(2000)의 캐패시턴스보다 작은 값을 갖는다. 즉, 캐패시터부(2000)의 캐패시턴스가 과전압 보호부(3000)의 캐패시턴스보다 크기 때문에 복합 소자의 전체 캐패시턴스를 증가시킬 수 있다. 이때, 캐패시터부(2000)의 캐패시턴스는 과전압 보호부(3000)의 캐패시턴스보다 1배 내지 500배 클 수 있다.On the other hand, the overvoltage protection unit 3000 has a predetermined capacitance, which is smaller than the capacitance of the capacitor unit 2000. That is, since the capacitance of the capacitor unit 2000 is larger than the capacitance of the overvoltage protection unit 3000, the total capacitance of the composite device may be increased. In this case, the capacitance of the capacitor unit 2000 may be 1 to 500 times larger than the capacitance of the overvoltage protection unit 3000.
그리고, 과전압 보호부(3000)의 항복 전압은 310V 이상일 수 있고, 캐패시터부(2000)의 절연 파괴 전압보다 낮을 수 있다. 즉, 과전압 보호부(3000)의 항복 전압은 310V 이상 캐패시터부(2000)의 절연 파괴 전압 이하일 수 있다. 항복 전압이 절연 파괴 전압보다 낮음으로써 캐패시터부(2000)가 절연 파괴되기 전에 과전압을 방전시킬 수 있다. 또한, 캐패시터부(2000)의 내부 전극(200) 사이의 간격은 과전압 보호부(3000)의 방전 전극(310) 사이의 간격보다 작을 수 있다. 또한, 과전압 보호부(3000)의 방전 전극(310)의 중첩 면적은 캐패시터부(2000)의 내부 전극(200)의 중첩 면적보다 작을 수 있다.In addition, the breakdown voltage of the overvoltage protection unit 3000 may be 310V or more, and may be lower than the dielectric breakdown voltage of the capacitor 2000. That is, the breakdown voltage of the overvoltage protection unit 3000 may be 310V or more and less than the dielectric breakdown voltage of the capacitor 2000. Since the breakdown voltage is lower than the dielectric breakdown voltage, the overvoltage may be discharged before the capacitor unit 2000 is dielectric breakdown. In addition, an interval between the internal electrodes 200 of the capacitor unit 2000 may be smaller than an interval between the discharge electrodes 310 of the overvoltage protection unit 3000. In addition, the overlapping area of the discharge electrode 310 of the overvoltage protection unit 3000 may be smaller than the overlapping area of the internal electrode 200 of the capacitor unit 2000.
4. 결합부4. Coupling part
결합부(4000)은 적층체(1000) 내부의 캐패시터부(2000)와 과전압 보호부(3000) 사이에 마련될 수 있다. 여기서, 캐패시터부(2000) 및 과전압 보호부(3000)는 서로 다른 공정으로 제작된 후 결합부(4000)에 의해 결합될 수 있다. 이러한 결합부(4000)는 캐패시터부(2000)로 이루어진 제 1 적층체와 과전압 보호부(3000)로 이루어진 제 2 적층체를 접착하여 결합할 수 있는 물질을 포함할 수 있다. 이를 위해, 결합부(4000)은 접착력을 갖는 물질을 이용할 수 있는데, 건조, 경화 및 소성을 통해 접착력을 형성할 수 있는 물질을 이용할 수 있다. 이러한 결합부(4000)로는 예를 들어 글래스 페이스트, 폴리머 페이스트, 올리고머 페이스트 등으로 이루어질 수 있다. 즉, 글래스가 포함된 페이스트, 폴리머가 포함된 페이스트, 에폭시가 포함된 페이스트 및 올리고머가 포함된 페이스트 등으로 이루어질 수 있다. 글래스 페이스트는 SiO2, BiO2, B2iO3, B2O3, BaO, Al2O3, Na2O3, K2O3, ZrO2 중 적어도 하나를 포함할 수 있고, 폴리머 페이스트는 Si 수지 및 합성 수지를 포함할 수 있다. 또한, 올리고머 페이스트는 에폭시 수지를 포함할 수 있는데, 에폭시 수지로는 노볼락(novolac)계, 비스페놀(bisphenol)계, 아민(amine)계, 시클로알리파틱(cycloalipatic)계, 브롬계 에폭시 수지를 포함할 수 있다. 폴리머 페이스트와 에폭시 수지는 건조 및 경화를 통하여 접착력을 형성할 수 있으며, 예를 들어 20℃∼150℃의 온도에서 5분 이상의 건조와 20℃∼300℃의 온도에서 5분 이상의 경화가 가능하다. 또한, 접착 강도를 최대로 하고 건조 및 경화 시간을 단축하기 위해 경화제를 추가 이용할 수 있다. 글래스 페이스트는 글래스 물질을 20wt%∼90wt% 함유하고 그외 바인더 및 용매제 등을 함유할 수 있다. 즉, 글래스 페이스트 100wt%에 대하여 글래스 물질이 20wt%∼90wt% 함유되고 나머지가 바인더 및 용매제일 수 있다. 여기서, 바인더로는 EC계, 아크릴계 바인더가 이용되며, 용매제는 BCA, 테르피놀(Terpinol)계 등이 이용될 수 있다. 한편, 글래스 페이스트는 폴리머 페이스트 및 올리고머 페이스트 중 적어도 어느 하나와 혼합하여 이용할 수 있다. 에폭시 수지는 각각의 계가 가지는 장단점을 보완하기 위하여 일정 비율로 혼합할 수 있다. 즉, 에폭시 수지로는 둘 이상의 계열을 혼합하여 이용할 수도 있다. The coupling part 4000 may be provided between the capacitor part 2000 and the overvoltage protection part 3000 in the stack 1000. Here, the capacitor unit 2000 and the overvoltage protection unit 3000 may be manufactured by different processes and then coupled by the coupling unit 4000. The coupling part 4000 may include a material capable of bonding and bonding the first stack formed of the capacitor part 2000 and the second stack formed of the overvoltage protection part 3000. To this end, the coupling portion 4000 may use a material having an adhesive force, and a material capable of forming an adhesive force through drying, curing, and firing may be used. The coupling part 4000 may be formed of, for example, a glass paste, a polymer paste, an oligomer paste, or the like. That is, the paste may include glass-containing paste, polymer-containing paste, epoxy-containing paste, oligomer-containing paste, and the like. The glass paste may include at least one of SiO 2 , BiO 2 , B 2 iO 3 , B 2 O 3 , BaO, Al 2 O 3 , Na 2 O 3 , K 2 O 3 , ZrO 2 , and the polymer paste may Si resins and synthetic resins may be included. In addition, the oligomer paste may include an epoxy resin, and the epoxy resin may include novolac-based, bisphenol-based, amine-based, cycloalipatic-based, and bromine-based epoxy resins. can do. The polymer paste and the epoxy resin may form an adhesive force through drying and curing. For example, the polymer paste and the epoxy resin may be dried at a temperature of 20 ° C. to 150 ° C. for at least 5 minutes and at least 5 minutes at a temperature of 20 ° C. to 300 ° C. In addition, a curing agent may be further used to maximize the adhesive strength and shorten the drying and curing time. The glass paste may contain 20 wt% to 90 wt% of a glass material, and may contain a binder, a solvent, and the like. That is, the glass material may contain 20 wt% to 90 wt% with respect to 100 wt% of the glass paste, and the remainder may be a binder and a solvent. Here, the EC-based, acrylic binder is used as the binder, the solvent may be BCA, Terpinol (Terpinol) system and the like. In addition, a glass paste can be mixed and used with at least any one of a polymer paste and an oligomer paste. Epoxy resins can be mixed in a proportion to complement the advantages and disadvantages of each system. That is, two or more series can also be mixed and used as an epoxy resin.
결합부(4000)는 1㎛∼100㎛ 정도의 두께로 형성할 수 있다. 결합부(4000)를 1㎛ 미만의 두께로 형성하면 결합력이 저하될 수 있고, 100㎛를 초과하는 두께로 형성하면 결합 시 조립 불량, 지그(Jig)의 오염 문제가 발생될 수 있다. 또한, 결합부(4000)를 100㎛를 초과하여 형성하면 결합부(4000)를 형성하기 위한 페이스트 물질이 적층체(1000)의 측면까지 흐르게 되고 그에 따라 내부 전극(200) 및 방전 전극(300)을 덮도록 형성되어 내부 전극(200) 및 방전 전극(300)과 외부 전극(5000)의 접촉 불량을 발생시켜 소자 특성을 저하시킬 수 있다. 그리고, 결합부(4000)는 전체에 형성될 수도 있고, 적어도 일 영역에 부분적으로 형성될 수도 있다. 즉, 페이스트를 제 1 또는 제 2 적층체의 일면 전체에 도포하거나, 적어도 일 영역에 도포한 후 결합시킬 수 있다. 한편, 결합부(4000)는 적층체(1000)의 측면에 연장 형성될 수도 있는데, 내부 전극(200) 또는 방전 전극(300)을 덮지 않도록 형성하여 외부 전극(5000)과의 연결 불량을 방지하는 것이 바람직하다. 또한, 결합용 페이스트가 내부 전극(200) 또는 방전 전극(300)을 덮지 않도록 하기 위해 결합용 페이스트를 형성하기 이전에 외부 전극(5000)을 미리 형성함으로써 내부 전극(200) 또는 방전 전극(300)과 외부 전극(5000) 사이의 연결 불량을 방지할 수 있다. 이렇게 결합부(4000)가 적층체(1000)의 측면에 연장 형성됨으로써 밀착력을 더욱 향상시킬 수 있다. 또한, 결합부(4000)는 적어도 일 영역에 기공이 형성될 수 있고, 적어도 일 영역의 두께가 다른 영역과 다른 두께로 형성될 수도 있다.The coupling part 4000 may be formed to a thickness of about 1 μm to about 100 μm. When the coupling portion 4000 is formed to a thickness of less than 1 μm, the coupling force may be reduced, and when the coupling portion 4000 is formed to a thickness of more than 100 μm, poor assembly may occur, and contamination of the jig may occur. In addition, when the coupling portion 4000 is formed to exceed 100 μm, the paste material for forming the coupling portion 4000 flows to the side surface of the stack 1000, and accordingly, the internal electrode 200 and the discharge electrode 300 are formed. In order to cover the gap, the internal electrode 200, the discharge electrode 300, and the external electrode 5000 may be in poor contact to deteriorate device characteristics. In addition, the coupling part 4000 may be formed in its entirety or may be partially formed in at least one region. That is, the paste may be applied to one entire surface of the first or second laminate, or may be bonded after being applied to at least one region. On the other hand, the coupling portion 4000 may be formed to extend on the side of the stack 1000, it is formed so as not to cover the internal electrode 200 or the discharge electrode 300 to prevent a poor connection with the external electrode (5000) It is preferable. Also, in order to prevent the bonding paste from covering the internal electrode 200 or the discharge electrode 300, the internal electrode 200 or the discharge electrode 300 may be formed by forming the external electrode 5000 in advance before forming the bonding paste. Connection between the external electrode and the external electrode 5000 can be prevented. In this way, the coupling part 4000 is extended to the side surface of the stack 1000 to further improve the adhesion. In addition, the coupling part 4000 may have pores formed in at least one region, and the thickness of at least one region may be different from that of the other region.
한편, 결합부(4000)는 전자파 차폐 및 흡수 재료가 더 포함될 수 있다. 이러한 결합부(4000)를 형성하기 위해 결합력을 갖는 글래스 페이스트 등에 전자파 차폐 및 흡수 재료를 포함시킬 수 있다. 전자파 차폐 및 흡수 재료는 페라이트, 알루미나 등을 포함할 수 있으며, 결합부(4000) 내에 0.1중량% 내지 50중량% 함유될 수 있다. 즉, 결합부(4000) 재료 100중량%에 대하여 전자파 차폐 및 흡수 재료는 0.01중량% 내지 50중량% 함유될 수 있다. 전자파 차폐 및 흡수 재료가 0.01중량% 미만이면 전자파 차폐 및 흡수 특성이 낮으며, 50중량%를 초과할 경우 결합부(4000)를 이용한 접합 특성이 저하될 수 있다. 또한, 전자파 차폐 및 흡수 재료가 포함된 결합부(4000)는 1㎛∼100㎛의 두께로 형성할 수 있다. 여기서, 페라이트는 포화 자속 밀도가 높고 철손(Core Loss)이 낮은 MnZn계 페라이트, 전기 비저항값이 10㏀m 이상으로 높은 NiZn계 페라이트, 소성 온도가 비교적 낮은 CuZn계 페라이트를 이용할 수 있다. 또한, 재료의 높은 자기 손실 특성에 근거하여 결정 구조가 스피넬 구조인 NiZn계 페라이트는 1㎓ 미만의 대역에서 이용하고, BaO-MeO-Fe2O3계 또는 BaO 대신 Sr, Pb, Ca 원소로 대체한 육방정 구조의 페라이트는 1㎓에서 자연 공명 주파수가 나타나기 때문에 1㎓ 이상의 고주파 대역에서 전자파 흡수 및 차폐 재료로 이용할 수 있다. 그리고, R3Fe5O12(R은 Y 또는 Gd 등의 희토류 금속)의 일반식으로 표시되며, 결정 자기 이방성이 작아 전자계 손실이 적은 큐빅(cubic) 구조의 가밋(Garnet) 페라이트도 이용할 수 있다. 이렇게 결합부(4000) 내에 전자파 차폐 및 흡수 재료가 더 함유됨으로써 전자파를 차폐 또는 흡수할 수 있다.On the other hand, the coupling portion 4000 may further include an electromagnetic shielding and absorbing material. In order to form the coupling part 4000, an electromagnetic wave shielding and absorbing material may be included in a glass paste having a bonding force. The electromagnetic shielding and absorbing material may include ferrite, alumina, or the like, and may be contained in an amount of 0.1 wt% to 50 wt% in the coupling portion 4000. That is, the electromagnetic shielding and absorbing material may be contained in an amount of 0.01 wt% to 50 wt% based on 100 wt% of the coupling portion 4000 material. When the electromagnetic shielding and absorbing material is less than 0.01% by weight, the electromagnetic shielding and absorbing properties are low, and when the electromagnetic shielding and absorbing material exceeds 50% by weight, the bonding property using the coupling part 4000 may be degraded. In addition, the coupling part 4000 including the electromagnetic shielding and absorbing material may be formed to a thickness of 1 μm to 100 μm. Here, the ferrite may be a MnZn-based ferrite having a high saturation magnetic flux density and a low core loss, a NiZn-based ferrite having an electrical resistivity of 10 µm or more, and a CuZn-based ferrite having a relatively low firing temperature. In addition, based on the high magnetic loss characteristics of the material, NiZn-based ferrite whose crystal structure is a spinel structure is used in a band of less than 1 GHz and replaced with Sr, Pb, and Ca elements instead of BaO-MeO-Fe 2 O 3 system or BaO. Since the ferrite of one hexagonal structure shows a natural resonance frequency at 1 kHz, it can be used as an electromagnetic wave absorbing and shielding material in the high frequency band of 1 kHz or more. In addition, R 3 Fe 5 O 12 (R is a rare earth metal such as Y or Gd) is represented by a general formula, cubic structure of the cubic structure with low crystal magnetic anisotropy and low electromagnetic field can also be used. . As such, the electromagnetic shielding and absorbing material may be further contained in the coupling part 4000 to shield or absorb the electromagnetic waves.
한편, 결합부(4000)는 별도의 색상을 갖지 않을 수 있다. 즉, 결합부(4000)는 안료가 첨가되지 않아 별도의 색상을 갖지 않을 수 있다. 그러나, 결합부(4000) 또한 안료가 첨가되어 색상을 가질 수 있다. 이때, 결합부(4000)는 캐패시터부(2000)와 동일 색상을 가질 수 있고, 과전압 보호부(3000)와 동일 색상을 가질 수 있다. 즉, 결합부(4000)에는 캐패시터부(2000) 형성 시 이용된 안료가 첨가되어 캐패시터부(2000)와 동일 색상을 가질 수도 있고, 과전압 보호부(3000) 형성 시 이용된 안료가 첨가되어 과전압 보호부(3000)와 동일 색상을 가질 수도 있다. 물론, 결합부(4000)는 캐패시터부(2000) 및 과전압 보호부(3000)와는 다른 색상을 가질 수도 있다.On the other hand, the coupling portion 4000 may not have a separate color. That is, the coupling part 4000 may not have a separate color because no pigment is added. However, the coupling part 4000 may also have a color by adding a pigment. In this case, the coupling part 4000 may have the same color as the capacitor part 2000 and may have the same color as the overvoltage protection part 3000. That is, the pigment used when the capacitor part 2000 is formed may be added to the coupling part 4000 to have the same color as the capacitor part 2000, or the pigment used when the overvoltage protection part 3000 is added to protect the overvoltage. It may have the same color as the unit 3000. Of course, the coupling part 4000 may have a different color from the capacitor part 2000 and the overvoltage protection part 3000.
이러한 결합부(4000)을 이용한 캐패시터부(2000)와 과전압 보호부(3000)의 결합 방법을 설명하면 다음과 같다. 복수의 유전 시트(110) 상에 내부 전극(200)을 각각 형성한 후 적층 및 소결하여 캐패시터부(2000)를 제작하고, 복수의 방전 시트(120) 상에 방전 전극(310)을 각각 형성한 후 적층 및 소결하여 과전압 보호부(3000)를 제작한다. 이어서, 캐패시터부(2000)의 일면 상에 결합부(4000)을 형성한 후 과전압 보호부(3000)를 결합하여 적층체(1000)를 제작한다. 이를 위해, 캐패시터부(2000)를 지그(jig)에 정렬한 후 캐패시터부(2000)의 일면에 접착성 페이스트를 도포하고, 그 상부에 과전압 보호부(3000)를 정렬 및 압착하여 결합할 수 있다. 이때, 캐패시터부(2000) 및 과전압 보호부(3000)는 시트(100)의 적층 방향으로 적층하여 적층체(1000)의 서로 대향되는 두 면에 내부 전극(200) 및 방전 전극(310)이 노출되도록 한다. 또한, 캐패시터부(2000)와 과전압 보호부(3000)가 결합된 후 소정의 온도에서 열처리할 수 있다. 예를 들어, 글래스 페이스트를 이용한 경우 캐패시터부(2000) 및 과전압 보호부(3000)의 소결 온도보다 낮은 온도에서 열처리할 수 있고, 폴리머 페이스트를 이용한 경우 10℃ 내지 300℃의 온도에서 열처리할 수 있다.The coupling method of the capacitor unit 2000 and the overvoltage protection unit 3000 using the coupling unit 4000 is as follows. After forming the internal electrodes 200 on the plurality of dielectric sheets 110, respectively, and stacking and sintering the capacitor parts 2000, the discharge electrodes 310 are formed on the plurality of discharge sheets 120, respectively. After lamination and sintering, an overvoltage protection unit 3000 is manufactured. Subsequently, the coupling part 4000 is formed on one surface of the capacitor part 2000, and then the overvoltage protection part 3000 is combined to manufacture the laminate 1000. To this end, the capacitor unit 2000 may be aligned with a jig, and then an adhesive paste may be applied to one surface of the capacitor unit 2000, and the overvoltage protection unit 3000 may be aligned and compressed on top of the capacitor unit 2000. . In this case, the capacitor part 2000 and the overvoltage protection part 3000 are stacked in the stacking direction of the sheet 100 to expose the internal electrode 200 and the discharge electrode 310 on two opposite surfaces of the stack 1000. Be sure to In addition, after the capacitor unit 2000 and the overvoltage protection unit 3000 are combined, heat treatment may be performed at a predetermined temperature. For example, when the glass paste is used, the heat treatment may be performed at a temperature lower than the sintering temperature of the capacitor unit 2000 and the overvoltage protection unit 3000, and when the polymer paste is used, the heat treatment may be performed at a temperature of 10 ° C. to 300 ° C. FIG. .
한편, 본 발명의 실시 예는 페이스트를 이용하여 결합부(4000)를 형성하였지만, 세라믹 시트를 이용하고 캐패시터부(2000)와 과전압 보호부(3000) 사이에 결합부(4000)를 적층한 후 동시 소결하여 복합 소자를 구현할 수도 있다.Meanwhile, although the coupling part 4000 is formed by using a paste, the embodiment of the present invention uses a ceramic sheet and simultaneously stacks the coupling part 4000 between the capacitor part 2000 and the overvoltage protection part 3000. Sintering may also be used to implement composite devices.
5. 외부 전극5. External electrode
외부 전극(5100, 5200; 5000)는 적층체(1000)의 서로 대향되는 두 측면에 마련될 수 있다. 예를 들어, 외부 전극(5000)은 X 방향, 즉 길이 방향으로 적층체(1000)의 대향되는 두 면에 각각 형성될 수 있다. 또한, 외부 전극(5000)은 적층체(1000) 내부에 형성된 내부 전극(200) 및 방전 전극(310)과 연결된다. 즉, 외부 전극(5000)은 서로 대향되는 두 측면, 예를 들어 제 1 및 제 2 측면에 각각 하나씩 형성될 수도 있고, 두개 이상씩 형성될 수도 있다. 이때, 외부 전극(5000)의 어느 하나는 전자기기 내부의 인쇄회로기판 등의 내부 회로와 접속될 수 있고, 다른 하나는 전자기기의 외부, 예를 들어 금속 케이스와 연결될 수 있다. 예를 들어, 제 1 외부 전극(5100)은 내부 회로에 접속될 수 있고, 제 2 외부 전극(5200)은 금속 케이스와 연결될 수 있다. 또한, 제 2 외부 전극(5200)은 도전성 부재, 예를 들어 컨택터 또는 도전성 가스켓을 통해 금속 케이스와 연결될 수 있다.The external electrodes 5100, 5200, and 5000 may be provided on two side surfaces of the stack 1000 that face each other. For example, the external electrodes 5000 may be formed on two opposite surfaces of the laminate 1000 in the X direction, that is, the length direction. In addition, the external electrode 5000 is connected to the internal electrode 200 and the discharge electrode 310 formed in the stack 1000. That is, one external electrode 5000 may be formed on each of two side surfaces facing each other, for example, the first and second sides, or two or more external electrodes may be formed. In this case, any one of the external electrodes 5000 may be connected to an internal circuit such as a printed circuit board inside the electronic device, and the other may be connected to the outside of the electronic device, for example, a metal case. For example, the first external electrode 5100 may be connected to an internal circuit, and the second external electrode 5200 may be connected to a metal case. In addition, the second external electrode 5200 may be connected to the metal case through a conductive member, for example, a contactor or a conductive gasket.
이러한 외부 전극(5000)은 다양한 방법으로 형성될 수 있다. 즉, 외부 전극(5000)은 도전성 페이스트를 이용하여 침지 또는 인쇄 방법으로 형성하거나, 증착, 스퍼터링, 도금 등의 다양한 방법으로 형성될 수도 있다. 침지 또는 인쇄에 의한 외부 전극(5000)의 형성 방법은 결합부(4000) 형성 재료에 따라 달라질 수 있다. 즉, 결합부(4000)가 폴리머 계열 또는 에폭시 계열의 건조 또는 경화 타입인 경우 폴리머 계열 또는 에폭시 계열의 물질을 이용하고 건조 또는 경화하여 외부 전극(5000)을 형성할 수 있다. 결합부(4000)가 건조 또는 경화 타입인데 외부 전극(5000)을 소성 타입으로 진행하면 결합부(4000) 재료가 번아웃(burn out)되어 결합력이 저하될 수 있다. 또한, 결합부(4000) 형성 재료가 글래스 계열인 경우 밀착력 확보를 위해 유리 전이 온도 이상으로 소성해야 하므로 외부 전극(5000)의 타입을 결정하는데 자유로울 수 있다. 즉, 글래스 계열의 결합부(4000) 형성 재료를 이용한 경우 외부 전극(5000)은 소성, 건조, 경화 타입을 이용하여 형성할 수 있다. 한편, 외부 전극(5000)은 Y 방향 및 Z 방향의 면에 연장 형성될 수 있다. 즉, 외부 전극(5000)은 X 방향으로 대향되는 두 면으로부터 이와 인접한 네 면에 연장 형성될 수 있다. 예를 들어, 도전성 페이스트에 침지하는 경우 X 방향의 대향되는 두 측면 뿐만 아니라 Y 방향의 전면 및 후면, 그리고 Z 방향의 상면 및 하면에도 외부 전극(5000)이 형성될 수 있다. 이에 비해, 인쇄, 증착, 스퍼터링, 도금 등의 방법으로 형성할 경우 X 방향의 두면에 외부 전극(5000)이 형성될 수 있다. 즉, 외부 전극(5000)은 인쇄회로기판에 실장되는 일 측면 및 금속 케이스와 연결되는 타 측면 뿐만 아니라 형성 방법 또는 공정 조건에 따라 그 이외의 영역에도 형성될 수 있다. 이러한 외부 전극(5000)은 전기 전도성을 가지는 금속으로 형성될 수 있는데, 예를 들어 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속으로 형성될 수 있다. 이때, 내부 전극(200) 및 방전 전극(310)과 연결되는 외부 전극(5000)의 적어도 일부, 즉 적층체(1000)의 적어도 일 표면에 형성되어 내부 전극(200) 및 방전 전극(310)과 연결되는 외부 전극(5000)의 일부는 내부 전극(200) 및 방전 전극(310)과 동일 물질로 형성될 수 있다. 예를 들어, 내부 전극(200) 및 방전 전극(310)이 구리를 이용하여 형성되는 경우 외부 전극(5000)의 이들과 접촉되는 영역으로부터 적어도 일부는 구리를 이용하여 형성할 수 있다. 이때, 구리는 앞서 설명한 바와 같이 도전성 페이스트를 이용한 침지 또는 인쇄 방법으로 형성하거나, 증착, 스퍼터링, 도금 등의 방법으로 형성할 수 있다. 바람직하게는 외부 전극(5000)은 도금으로 형성할 수 있다. 도금 공정으로 외부 전극(5000)을 형성하기 위해 적층체(1000)의 상하부면에 시드층을 형성한 후 시드층으로부터 도금층을 형성하여 외부 전극(5000)을 형성할 수 있다. 여기서, 외부 전극(5000)의 내부 전극(200) 및 방전 전극(310)과 연결되는 적어도 일부는 외부 전극(5000)이 형성되는 적층체(1000)의 측면 전체일 수 있고, 일부 영역일 수도 있다.The external electrode 5000 may be formed in various ways. That is, the external electrode 5000 may be formed by an immersion or printing method using a conductive paste, or may be formed by various methods such as deposition, sputtering, plating, and the like. The method of forming the external electrode 5000 by dipping or printing may vary depending on the material for forming the coupling part 4000. That is, when the coupling part 4000 is a polymer-based or epoxy-based dry or hardened type, the external electrode 5000 may be formed by using a polymer-based or epoxy-based material and drying or curing. If the coupling portion 4000 is of a dry or hardening type but the external electrode 5000 is advanced to a firing type, the coupling portion 4000 may burn out and the bonding force may be lowered. In addition, when the coupling portion 4000 is formed of a glass-based material, it may be free to determine the type of the external electrode 5000 since the material must be fired above the glass transition temperature in order to secure adhesion. That is, when the glass-based coupling portion 4000 forming material is used, the external electrode 5000 may be formed using a firing, drying, and curing type. On the other hand, the external electrode 5000 may be formed to extend on the surface in the Y direction and Z direction. That is, the external electrode 5000 may extend from two surfaces facing in the X direction to four adjacent surfaces. For example, when immersed in the conductive paste, the external electrode 5000 may be formed not only on two opposite sides of the X direction, but also on the front and rear surfaces of the Y direction, and the upper and lower surfaces of the Z direction. In contrast, when formed by printing, vapor deposition, sputtering, plating, or the like, the external electrode 5000 may be formed on two surfaces in the X direction. That is, the external electrode 5000 may be formed not only on one side mounted on the printed circuit board and the other side connected to the metal case, but also in other areas according to the formation method or process conditions. The external electrode 5000 may be formed of a metal having electrical conductivity. For example, the external electrode 5000 may be formed of one or more metals selected from the group consisting of gold, silver, platinum, copper, nickel, palladium, and alloys thereof. In this case, the internal electrode 200 and the discharge electrode 310 are formed on at least a part of the external electrode 5000, that is, at least one surface of the stack 1000, and the internal electrode 200 and the discharge electrode 310 are formed. A part of the external electrode 5000 to be connected may be formed of the same material as the internal electrode 200 and the discharge electrode 310. For example, when the internal electrode 200 and the discharge electrode 310 are formed of copper, at least a part of the inner electrode 200 and the discharge electrode 310 may be formed using copper. In this case, copper may be formed by an immersion or printing method using a conductive paste as described above, or may be formed by deposition, sputtering, plating, or the like. Preferably, the external electrode 5000 may be formed by plating. In order to form the external electrode 5000 by the plating process, the seed layer may be formed on upper and lower surfaces of the laminate 1000, and then the plating layer may be formed from the seed layer to form the external electrode 5000. Here, at least a part of the external electrode 5000 connected to the internal electrode 200 and the discharge electrode 310 may be an entire side surface of the stack 1000 on which the external electrode 5000 is formed, or may be a partial region. .
또한, 외부 전극(5000)은 적어도 하나의 도금층을 더 포함할 수 있다. 외부 전극(5000)은 Cu, Ag 등의 금속층으로 형성될 수 있고, 금속층 상에 적어도 하나의 도금층이 형성될 수도 있다. 예를 들어, 외부 전극(5000)은 구리층, Ni 도금층 및 Sn 또는 Sn/Ag 도금층이 적층 형성될 수도 있다. 물론, 도금층은 Cu 도금층 및 Sn 도금층이 적층될 수도 있으며, Cu 도금층, Ni 도금층 및 Sn 도금층이 적층될 수도 있다. 또한, 외부 전극(5000)은 예를 들어 0.5%∼20%의 Bi2O3 또는 SiO2를 주성분으로 하는 다성분계의 글래스 프릿(Glass frit)을 금속 분말과 혼합하여 형성할 수 있다. 이때, 글래스 프릿과 금속 분말의 혼합물은 페이스트 형태로 제조되어 적층체(1000)의 두면에 도포될 수 있다. 이렇게 외부 전극(5000)에 글래스 프릿이 포함됨으로써 외부 전극(5000)과 적층체(1000)의 밀착력을 향상시킬 수 있고, 적층체(1000) 내부의 전극들의 콘택 반응을 향상시킬 수 있다. 또한, 글래스가 포함된 도전성 페이스트가 도포된 후 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(5000)이 형성될 수 있다. 즉, 글래스가 포함된 금속층과, 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(5000)이 형성될 수 있다. 예를 들어, 외부 전극(5000)은 글래스 프릿과 Ag 및 Cu의 적어도 하나가 포함된 층을 형성한 후 전해 또는 무전해 도금을 통하여 Ni 도금층 및 Sn 도금층 순차적으로 형성할 수 있다. 이때, Sn 도금층은 Ni 도금층과 같거나 두꺼운 두께로 형성될 수 있다. 물론, 외부 전극(5000)은 적어도 하나의 도금층만으로 형성될 수도 있다. 즉, 페이스트를 도포하지 않고 적어도 1회의 도금 공정을 이용하여 적어도 일층의 도금층을 형성하여 외부 전극(5000)을 형성할 수도 있다. 한편, 외부 전극(5000)은 2㎛∼100㎛의 두께로 형성될 수 있으며, Ni 도금층이 1㎛∼10㎛의 두께로 형성되고, Sn 또는 Sn/Ag 도금층은 2㎛∼10㎛의 두께로 형성될 수 있다. 여기서, 외부 전극(5000)은 적어도 일 영역이 다른 영역과 다른 두께로 형성될 수 있다. 즉, 적층체(1000)의 측면으로부터 X 방향으로의 외부 전극(5000)은 적어도 일 영역의 두께가 다른 영역보다 두껍거나 얇게 형성될 수 있다. 예를 들어, 외부 전극(5000)의 측면에 캐패시터부(2000)와 과전압 보호부(3000) 사이에 단차가 형성되고, 단차를 따라 형성된 외부 전극(5000)의 두께가 다를 수 있다.In addition, the external electrode 5000 may further include at least one plating layer. The external electrode 5000 may be formed of a metal layer such as Cu or Ag, and at least one plating layer may be formed on the metal layer. For example, the external electrode 5000 may be formed by stacking a copper layer, a Ni plating layer, and a Sn or Sn / Ag plating layer. Of course, the plating layer may be laminated with a Cu plating layer and a Sn plating layer, the Cu plating layer, Ni plating layer and Sn plating layer may be laminated. In addition, the external electrode 5000 may be formed by mixing, for example, a multicomponent glass frit having 0.5% to 20% of Bi 2 O 3 or SiO 2 as a main component with a metal powder. In this case, the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the laminate 1000. As the glass frit is included in the external electrode 5000, the adhesion between the external electrode 5000 and the stack 1000 may be improved, and the contact reaction of the electrodes in the stack 1000 may be improved. In addition, after the conductive paste containing glass is applied, at least one plating layer may be formed on the upper portion thereof to form the external electrode 5000. That is, the metal layer including the glass and at least one plating layer formed thereon may form the external electrode 5000. For example, the external electrode 5000 may form a Ni plated layer and a Sn plated layer sequentially through electrolytic or electroless plating after forming a layer including glass frit and Ag and Cu. In this case, the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer. Of course, the external electrode 5000 may be formed of only at least one plating layer. That is, the external electrode 5000 may be formed by forming at least one layer of the plating layer using at least one plating process without applying the paste. Meanwhile, the external electrode 5000 may be formed to have a thickness of 2 μm to 100 μm, the Ni plating layer may be formed to have a thickness of 1 μm to 10 μm, and the Sn or Sn / Ag plating layer may have a thickness of 2 μm to 10 μm. Can be formed. Here, at least one region of the external electrode 5000 may be formed to have a different thickness from that of the other region. That is, the external electrode 5000 in the X direction from the side surface of the stack 1000 may be formed thicker or thinner than at least one region. For example, a step may be formed between the capacitor part 2000 and the overvoltage protection part 3000 on the side of the external electrode 5000, and the thickness of the external electrode 5000 formed along the step may be different.
상기한 바와 같이, 외부 전극(5000)은 캐패시터부(2000)와 과전압 보호부(3000)를 결합부(4000)를 이용하여 결합한 적층체(1000)의 외부에 형성할 수 있다. 그러나, 외부 전극(5000)은 결합부(4000)를 이용하여 결합하기 이전에 캐패시터부(2000) 및 과전압 보호부(3000)에 각각 형성한 후 결합부(4000)를 이용하여 결합한 후 외부 전극을 연결하도록 형성할 수도 있다. 즉, 캐패시터부(2000) 및 과전압 보호부(3000) 각각의 서로 대향되는 두 측면에 외부 전극을 각각 형성하고 결합부(4000)를 이용하여 결합한 후 캐패시터부(2000) 및 과전압 보호부(3000)의 외부 전극을 연결하도록 외부 전극을 형성할 수도 있다. 이때, 각각의 소자는 건조 또는 경화 타입의 외부 전극 또는 소성 타입의 외부 전극을 형성할 수 있고, 이들을 연결하기 위한 외부 전극 또한 건조, 경화 또는 소성 타입을 이용할 수 있다.As described above, the external electrode 5000 may be formed outside the laminate 1000 in which the capacitor unit 2000 and the overvoltage protection unit 3000 are coupled using the coupling unit 4000. However, the external electrode 5000 is formed on the capacitor unit 2000 and the overvoltage protection unit 3000 before coupling using the coupling unit 4000, and then coupled to each other using the coupling unit 4000. It may be formed to connect. That is, external capacitors are formed on two opposite sides of the capacitor unit 2000 and the overvoltage protection unit 3000, respectively, and are coupled using the coupling unit 4000, and then the capacitor unit 2000 and the overvoltage protection unit 3000 are combined. It is also possible to form an external electrode to connect the external electrode of the. In this case, each element may form a dry or hardened type external electrode or a fired type external electrode, and an external electrode for connecting them may also use a dry, hardened or fired type.
6. 표면 개질 부재6. Surface modification member
표면 개질 부재(6000)는 적층체(1000) 표면의 적어도 일부에 형성될 수 있다. 즉, 표면 개질 부재(6000)는 적층체(1000)의 표면 전체에 형성될 수도 있고, 적층체(1000)의 외부 전극(5000)과 접촉되는 영역에만 형성될 수 있다. 다시 말하면, 표면 개질 부재(6000)가 적층체(1000) 표면의 일부에 형성되는 표면 개질 부재(6000)는 적층체(1000)와 외부 전극(5000) 사이에 형성될 수 있다. 이때, 표면 개질 부재(6000)는 외부 전극(5000)의 연장 영역에 접촉되어 형성될 수 있다. 즉, 적층체(1000)의 상부면 및 하부면으로 연장 형성된 외부 전극(5000)의 일 영역과 적층체(1000) 사이에 표면 개질 부재(6000)가 마련될 수 있다. 또한, 표면 개질 부재(6000)는 그 상부에 형성되는 외부 전극(5000)보다 같거나 다른 크기로 마련될 수 있다. 예를 들어, 적층체(1000)의 상부면 및 하부면으로 연장 형성된 외부 전극(5000)의 일부의 면적보다 50% 내지 150%의 면적으로 형성될 수 있다. 즉, 표면 개질 부재(6000)는 외부 전극(5000)의 연장 영역의 크기보다 작거나 큰 크기로 형성될 수도 있고, 같은 크기로 형성될 수도 있다. 물론, 표면 개질 부재(6000)는 적층체(1000)의 측면에 형성된 외부 전극(5000)과의 사이에도 형성될 수 있다. 이러한 표면 개질 부재(6000)는 유리(glass) 물질을 포함할 수 있다. 예를 들어, 표면 개질 부재(6000)는 소정 온도, 예를 들어 950℃ 이하에서 소성 가능한 무(無)붕규산 유리(non-borosilicate glass)(SiO2-CaO-ZnO-MgO계 유리)를 포함할 수 있다. 또한, 표면 개질 부재(6000)는 자성체 물질이 더 포함될 수 있다. 즉, 표면 개질 부재(6000)가 형성될 영역이 자성체 시트로 이루어져 있으면 표면 개질 부재(6000)와 자성체 시트의 결합을 용이하게 하기 위해 표면 개질 부재(6000) 내에 자성체 물질이 일부 포함될 수 있다. 이때, 자성체 물질은 예를 들어 NiZnCu계 자성체 분말을 포함하며, 유리 물질 100wt%에 대하여 자성체 물질이 예를 들어 1∼15wt% 포함될 수 있다. 한편, 표면 개질 부재(6000)는 적어도 일부가 적층체(1000)의 표면에 형성될 수 있다. 이때, 유리 물질은 도 3의 (a)에 도시된 바와 같이 적어도 일부가 적층체(1000) 표면에 고르게 분포될 수 있고, 도 3의 (b)에 도시된 바와 같이 적어도 일부가 서로 다른 크기로 불규칙적으로 분포될 수도 있다. 물론, 표면 개질 부재(6000)는 적층체(1000)의 표면에 연속적으로 형성되어 막 형태를 가질 수도 있다. 또한, 도 3의 (c)에 도시된 바와 같이 적층체(1000)의 적어도 일부 표면에는 오목부가 형성될 수도 있다. 즉, 유리 물질이 형성되어 볼록부가 형성되고 유리 물질이 형성되지 않은 영역의 적어도 일부가 패여 오목부가 형성될 수도 있다. 이때, 유리 물질은 적층체(1000) 표면으로부터 소정 깊이로 형성되어 적어도 일부가 적층체(1000) 표면보다 높게 형성될 수 있다. 즉, 표면 개질 부재(6000)는 적어도 일부가 적층체(1000)의 표면과 동일 평면을 이룰 수 있고, 적어도 일부가 적층체(1000)의 표면보다 높게 유지될 수 있다. 이렇게 외부 전극(5000) 형성 이전에 적층체(1000)의 일부 영역에 유리 물질을 분포시켜 표면 개질 부재(6000)를 형성함으로써 적층체(1000) 표면을 개질시킬 수 있고, 그에 따라 표면의 저항을 균일하게 할 수 있다. 따라서, 외부 전극의 형상을 제어할 수 있고, 그에 따라 외부 전극의 형성을 용이하게 할 수 있다. 한편, 표면 개질 부재(6000)를 적층체(1000) 표면의 소정 영역에 형성하기 위해 유리 물질을 포함하는 페이스트를 소정 시트의 소정 영역에 인쇄하거나 도포할 수 있다. 예를 들어, 제 1 유전 시트(111) 하면의 적어도 두 영역과 제 7 방전 시트(127) 상면의 적어도 두 영역에 유리 페이스트를 도포한 후 경화시켜 표면 개질 부재(6000)를 형성할 수 있다. 또한, 유리 페이스트는 적층형 소자의 사이즈로 절단하기 이전의 세라믹 그린 시트의 소정 영역에 도포될 수 있다. 즉, 세라믹 그린 시트의 복수의 영역에 유리질 페이스트를 도포한 후 유리질 페이스트가 형성된 부분을 포함하여 적층형 소자 단위의 절단선으로 그린 시트를 절단하고, 이를 노이즈 필터부 등이 형성된 시트와 적층하여 회로 보호 소자를 제작할 수 있다. 이때, 표면 개질 부재(6000)가 적층체(1000)의 가장자리에 형성되므로 유리질 페이스트가 도포된 영역을 중심으로 적층형 소자 단위로 절단될 수 있다. The surface modification member 6000 may be formed on at least a portion of the surface of the laminate 1000. That is, the surface modification member 6000 may be formed on the entire surface of the stack 1000, or may be formed only in an area in contact with the external electrode 5000 of the stack 1000. In other words, the surface modification member 6000 in which the surface modification member 6000 is formed on a part of the surface of the laminate 1000 may be formed between the laminate 1000 and the external electrode 5000. In this case, the surface modification member 6000 may be formed in contact with the extension region of the external electrode 5000. That is, the surface modification member 6000 may be provided between one region of the external electrode 5000 extending to the upper and lower surfaces of the laminate 1000 and the laminate 1000. In addition, the surface modification member 6000 may be provided in the same or different size than the external electrode 5000 formed thereon. For example, an area of 50% to 150% of an area of a portion of the external electrode 5000 extending to the upper and lower surfaces of the stack 1000 may be formed. That is, the surface modification member 6000 may be formed to be smaller or larger than the size of the extension region of the external electrode 5000, or may be formed to have the same size. Of course, the surface modification member 6000 may also be formed between the external electrode 5000 formed on the side surface of the laminate 1000. The surface modification member 6000 may include a glass material. For example, the surface modification member 6000 may include non-borosilicate glass (SiO 2 -CaO-ZnO-MgO-based glass) that can be fired at a predetermined temperature, for example, 950 ° C. or less. Can be. In addition, the surface modification member 6000 may further include a magnetic material. That is, when the region on which the surface modification member 6000 is to be formed is made of a magnetic sheet, a magnetic material may be partially included in the surface modification member 6000 to facilitate coupling of the surface modification member 6000 and the magnetic sheet. In this case, the magnetic material may include, for example, NiZnCu-based magnetic powder, and may include, for example, 1-15 wt% of the magnetic material with respect to 100 wt% of the glass material. On the other hand, at least a portion of the surface modification member 6000 may be formed on the surface of the laminate 1000. In this case, at least a portion of the glass material may be evenly distributed on the surface of the stack 1000 as illustrated in FIG. 3A, and at least a portion of the glass material may have different sizes as illustrated in FIG. 3B. It may be distributed irregularly. Of course, the surface modification member 6000 may be continuously formed on the surface of the laminate 1000 to have a film form. In addition, as illustrated in FIG. 3C, a recess may be formed on at least part of the surface of the laminate 1000. That is, a glass material may be formed to form a convex portion, and at least a portion of the region where the glass material is not formed may be dug to form a recess. In this case, the glass material may be formed to a predetermined depth from the surface of the laminate 1000, and at least a portion thereof may be formed higher than the surface of the laminate 1000. That is, at least a portion of the surface modification member 6000 may be coplanar with the surface of the stack 1000, and at least a portion of the surface modification member 6000 may be maintained higher than the surface of the stack 1000. Thus, the surface of the laminate 1000 may be modified by distributing a glass material in a portion of the laminate 1000 before forming the external electrode 5000 to form the surface modifying member 6000, thereby improving the resistance of the surface. It can be made uniform. Therefore, the shape of the external electrode can be controlled, thereby facilitating the formation of the external electrode. Meanwhile, in order to form the surface modification member 6000 in a predetermined region of the surface of the laminate 1000, a paste including a glass material may be printed or applied to the predetermined region of the predetermined sheet. For example, the surface modifying member 6000 may be formed by applying a glass paste to at least two regions of the lower surface of the first dielectric sheet 111 and at least two regions of the upper surface of the seventh discharge sheet 127 and curing the glass paste. In addition, the glass paste may be applied to a predetermined area of the ceramic green sheet before cutting to the size of the stacked element. That is, after applying the glassy paste to a plurality of areas of the ceramic green sheet, the green sheet is cut by the cutting line of the stacked element unit including the portion where the glassy paste is formed, and the circuit is protected by laminating it with the sheet on which the noise filter part is formed. A device can be manufactured. In this case, since the surface modification member 6000 is formed at the edge of the laminate 1000, the surface modification member 6000 may be cut in a stacked device unit based on a region where the glassy paste is applied.
한편, 표면 개질 부재(6000)는 산화물을 이용하여 형성할 수도 있다. 즉, 표면 개질 부재(6000)는 유리질 물질 및 산화물의 적어도 하나를 이용하여 형성할 수 있고, 자성체 물질을 더 포함하여 형성할 수도 있다. 이때, 표면 개질 부재(6000)는 결정 상태 또는 비결정 상태의 산화물이 적층체(1000)의 표면에 분산되어 분포될 수 있고, 표면에 분포된 산화물은 적어도 일부가 용융될 수 있다. 이때, 산화물의 경우에도 도 3의 (a) 내지 도 3의 (c)에 도시된 바와 같이 형성될 수 있다. 또한, 표면 개질 부재(6000)가 산화물로 형성되는 경우에도 산화물이 서로 이격되어 섬 형태로 분포될 수 있고, 적어도 일 영역에는 막 형태로 형성될 수도 있다. 여기서, 입자 상태 또는 용융 상태의 산화물은 예를 들어 Bi2O3, BO2, B2O3, ZnO, Co3O4, SiO2, Al2O3, MnO, H2BO3, H2BO3, Ca(CO3)2, Ca(NO3)2, CaCO3 중 적어도 하나 이상을 이용할 수 있다.Meanwhile, the surface modification member 6000 may be formed using an oxide. That is, the surface modification member 6000 may be formed using at least one of a glassy material and an oxide, and may further include a magnetic material. In this case, the surface modification member 6000 may be distributed by dispersing the oxide in the crystalline state or amorphous state on the surface of the laminate 1000, at least a portion of the oxide distributed on the surface may be melted. In this case, the oxide may be formed as shown in FIGS. 3A to 3C. In addition, even when the surface modification member 6000 is formed of an oxide, the oxides may be spaced apart from each other and distributed in an island form, or may be formed in a film form in at least one region. Here, the oxide in the granular or molten state is, for example, Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO, Co 3 O 4 , SiO 2 , Al 2 O 3 , MnO, H 2 BO 3 , H 2 At least one of BO 3 , Ca (CO 3 ) 2 , Ca (NO 3 ) 2 , and CaCO 3 may be used.
상기한 바와 같이 본 발명의 제 1 실시 예에 따른 복합 소자는 서로 다른 기능을 하는 적어도 둘 이상의 기능부가 결합부(4000)에 의해 결합될 수 있다. 예를 들어, 캐패시터부(2000) 등의 수동 소자와 과전압 보호부(3000)가 각각 제작된 후 결합부(4000)에 의해 결합될 수 있다. 따라서, 하나의 적층체(1000) 내에 이종의 물질로 제작되는 둘 이상의 기능부가 마련될 수 있다. 또한, 복합 소자는 각각의 제조 공정으로 제조 및 소결된 후 결합되기 때문에 서로 다른 기능부의 물질이 상호 확산되지 않고, 그에 따라 각각의 기능부의 기능을 저하시키지 않는다.As described above, in the composite device according to the first exemplary embodiment, at least two or more functional units having different functions may be coupled by the coupling unit 4000. For example, the passive element such as the capacitor unit 2000 and the overvoltage protection unit 3000 may be manufactured and then coupled by the coupling unit 4000. Therefore, two or more functional parts made of different materials may be provided in one laminate 1000. In addition, since the composite device is manufactured and sintered in each manufacturing process and then bonded, the materials of different functional portions do not diffuse together, thereby not degrading the function of each functional portion.
또한, 결합부(4000)를 사이에 두고 적어도 둘 이상의 기능부가 서로 다른 색상 또는 명암을 가질 수 있다. 예를 들어, 캐패시터부(2000)가 과전압 보호부(3000)보다 밝은색을 가질 수 있다. 따라서, 복합 소자가 색상에 의해 방향성을 가지므로 방향성을 부여하기 위한 별도의 형광체 도포 공정 등을 실시하지 않을 수 있다.In addition, at least two or more functional units may have different colors or contrasts with the coupling portion 4000 interposed therebetween. For example, the capacitor part 2000 may have a lighter color than the overvoltage protection part 3000. Therefore, since the composite device has directionality by color, a separate phosphor coating process for imparting directionality may not be performed.
그리고, 표면 전체에 유리질 층이 형성되지 않음으로써 소자의 두께를 줄일 수 있고, 그에 따라 사이즈가 축소되어 실장 면적 및 높이가 감소되는 전자기기에 대응하여 회로 보호 소자를 장착할 수 있다. 한편, 소자의 사이즈가 작아지면 외부 전극의 면적이 작아져 외부 전극과 적층체의 밀착력이 감소되고 그에 따라 PCB에 실장 시 부착 강도가 낮아질 수 있지만, 본 발명에 의하여 외부 전극과 적층체의 밀착력을 향상시켜 부착 강도를 증가시킬 수 있다. In addition, since the glass layer is not formed on the entire surface, the thickness of the device may be reduced, and thus the circuit protection device may be mounted in response to an electronic device having a reduced size and a reduced mounting area and height. On the other hand, if the size of the device is smaller, the area of the external electrode is smaller, the adhesion between the external electrode and the laminate is reduced, and thus the adhesion strength may be lowered when mounting on the PCB, but the adhesion between the external electrode and the laminate is improved according to the present invention. By improving the adhesion strength.
도 4는 본 발명의 제 2 실시 예에 따른 복합 소자의 개략 단면도이다.4 is a schematic cross-sectional view of a composite device according to a second exemplary embodiment of the present invention.
도 4를 참조하면, 본 발명의 제 2 실시 예에 따른 복합 소자는 복수의 시트(100)를 포함하는 적층체(1000)와, 적층체(1000) 내에 마련된 적어도 하나의 캐패시터부(2000)와, 적층체(1000) 내에 캐패시터부(2000)와 이격되어 마련된 제 1 과전압 보호부(3100)와, 적층체(1000) 내의 캐패시터부(2000) 사이에 마련된 제 2 과전압 보호부(3200)와, 적층체(1000) 내의 캐패시터부(2000)와 제 1 과전압 보호부(3100) 사이에 마련된 결합부(4000)와, 적층체(1000) 외부에 마련된 외부 전극(5000)을 포함할 수 있다. 즉, 본 발명의 제 2 실시 예에 따른 복합 소자는 적층체(1000) 내에 두개의 과전압 보호부(3000)가 마련되며, 제 1 과전압 보호부(3100)는 캐패시터부(2000) 상에 마련되고, 제 2 과전압 보호부(3200)는 캐패시터부(2000) 내에 마련될 수 있다. 즉, 캐패시터부(2000) 내에 서프레서가 마련될 수 있다. 여기서, 제 1 과전압 보호부(3100)는 제 1 실시 예의 과전압 보호부(3000)와 동일하고, 캐패시터부(2000)는 제 1 실시 예의 캐패시터부(2000)와 동일하므로 자세한 설명은 생략하기로 한다. 다만, 캐패시터부(2000)는 제 1 내지 제 4 내부 전극(210 내지 240)을 포함하고, 제 2 내부 전극(220)과 제 3 내부 전극(240) 사이에 제 2 과전압 보호부(3200)가 마련될 수 있다. 여기서, 캐패시터부(2000) 내에 제 2 과전압 보호부(3200)가 형성되는 경우에도 캐패시터부(2000)는 제 1 과전압 보호부(3100)과는 다른 색상, 예를 들어 제 1 과전압 보호부(3100)보다 밝은색을 가질 수 있다. 즉, 캐패시터부(2000) 뿐만 아니라 제 2 과전압 보호부(3200)가 제 1 과전압 보호부(3100)보다 밝은색을 가질 수 있다. 이때, 제 2 과전압 보호부(3200)에도 캐패시터부(2000)와 동일한 안료가 첨가되어 제조될 수 있다. 즉, 제 2 과전압 보호부(3200)를 형성하는 시트는 캐패시터부(2000)의 유전 시트와 동일 물질로 형성할 수 있다.Referring to FIG. 4, a composite device according to a second embodiment of the present invention may include a stack 1000 including a plurality of sheets 100, at least one capacitor part 2000 provided in the stack 1000, The first overvoltage protection part 3100 provided to be spaced apart from the capacitor part 2000 in the laminate 1000, the second overvoltage protection part 3200 provided between the capacitor part 2000 in the laminate 1000, The coupling part 4000 provided between the capacitor part 2000 and the first overvoltage protection part 3100 in the stack 1000 and the external electrode 5000 provided outside the stack 1000 may be included. That is, in the composite device according to the second embodiment of the present invention, two overvoltage protection units 3000 are provided in the stack 1000, and the first overvoltage protection unit 3100 is provided on the capacitor unit 2000. The second overvoltage protection unit 3200 may be provided in the capacitor unit 2000. That is, a suppressor may be provided in the capacitor unit 2000. Here, since the first overvoltage protection unit 3100 is the same as the overvoltage protection unit 3000 of the first embodiment, and the capacitor unit 2000 is the same as the capacitor unit 2000 of the first embodiment, a detailed description thereof will be omitted. . However, the capacitor part 2000 includes the first to fourth internal electrodes 210 to 240, and the second overvoltage protection part 3200 is disposed between the second internal electrode 220 and the third internal electrode 240. Can be prepared. Here, even when the second overvoltage protection part 3200 is formed in the capacitor part 2000, the capacitor part 2000 may have a different color from the first overvoltage protection part 3100, for example, the first overvoltage protection part 3100. It may have a lighter color than). That is, not only the capacitor part 2000 but also the second overvoltage protection part 3200 may have a lighter color than the first overvoltage protection part 3100. In this case, the same pigment as that of the capacitor unit 2000 may be added to the second overvoltage protection unit 3200 to be manufactured. That is, the sheet forming the second overvoltage protection part 3200 may be formed of the same material as the dielectric sheet of the capacitor part 2000.
제 2 과전압 보호부(3200)는 수직 방향으로 이격되어 형성된 적어도 두개의 방전 전극(313, 314)과, 방전 전극(313, 314) 사이에 마련된 적어도 하나의 과전압 보호 부재(320)을 포함할 수 있다. 예를 들어, 제 2 과전압 보호부(3200)는 제 3 및 제 4 유전 시트(113, 114) 상에 각각 형성된 제 3 및 제 4 방전 전극(313, 314)과, 제 4 시트(114)를 관통하여 형성된 과전압 보호 부재(320)를 포함할 수 있다. 여기서, 과전압 보호 부재(320)는 적어도 일부가 제 3 및 제 4 방전 전극(313, 314)과 연결되도록 형성될 수 있다. 제 3 및 제 4 방전 전극(313, 314)은 제 1 과전압 보호부(3100)의 제 1 및 제 2 방전 전극(311, 312)과 동일 두께 또는 다른 두께로 형성될 수 있고, 캐패시터부(2000)의 내부 전극들(200)과 동일 두께 또는 다른 두께로 형성될 수 있다. 예를 들어, 제 3 및 제 4 방전 전극(313, 314)은 1㎛∼10㎛의 두께로 형성될 수 있고, 제 1 및 제 2 방전 전극(311, 313)보다 두껍고 내부 전극(200)과 동일 두께로 형성될 수 있다. 이때, 배리스터 타입의 제 1 과전압 보호부(3100)는 에너지 전도 방식으로 과전압을 바이패스하므로 제 1 및 제 2 방전 전극(311, 312)에 대한 부하가 적지만, 서프레서 타입의 제 2 과전압 보호부(3200)는 서프레서 타입으로 과전압을 바이패스하므로 제 3 및 제 4 방전 전극(313, 314)에 대한 부하가 크다. 따라서, 제 2 과전압 보호부(3200)의 제 3 및 제 4 방전 전극(313, 314)의 두께를 제 1 과전압 보호부(3100)의 제 1 및 제 2 방전 전극(311, 312)의 두께보다 두껍게 해야 한다. 한편, 제 3 및 제 4 방전 전극(313, 314)는 유전 시트(110) 물질을 더 포함할 수 있다. 즉, 제 3 및 제 4 방전 전극(313, 314)은 도전 물질과 유전 물질의 혼합물을 이용하여 형성할 수 있다. 이때, 도전 물질과 유전 물질의 혼합물 100wt%에 대하여 유전 물질이 1wt%∼20wt% 정도 함유될 수 있다. 따라서, 제 3 및 제 4 방전 전극(313, 314)과 유전 시트(110)의 밀착성을 개선할 수 있고, 그에 따라 마이크로 딜라미네이션 발생을 감소시킬 수 있다. 제 3 방전 전극(313)은 제 2 외부 전극(5200)과 연결되어 제 3 시트(113) 상에 형성되며 말단부가 과전압 보호 부재(320)와 연결되도록 형성된다. 제 4 방전 전극(314)은 제 1 외부 전극(5100)과 연결되어 제 4 시트(114) 상에 형성되며 말단부가 과전압 보호 부재(320)와 연결되도록 형성된다. 즉, 제 3 및 제 4 방전 전극(313, 314)은 인접한 내부 전극(200)과 동일 외부 전극(5000)과 연결되도록 형성된다. 즉, 제 3 방전 전극(313)은 인접한 제 2 내부 전극(220)과 제 2 외부 전극(5200)에 연결되며, 제 4 방전 전극(314)은 인접한 제 3 내부 전극(230)과 제 1 외부 전극(5100)에 연결된다. 이렇게 제 3 및 제 4 방전 전극(313, 314)과 이와 인접한 내부 전극(200)이 동일 외부 전극(5000)과 연결됨으로써 유전 시트(110)가 열화, 즉 절연 파괴되는 경우에도 ESD 등의 과전압이 전자기기 내부로 인가되지 않는다. 즉, 제 3 및 제 4 방전 전극(313, 314)과 인접한 내부 전극(200)이 서로 다른 외부 전극(5000)과 연결된 경우 유전 시트(110)가 절연 파괴되면 일 외부 전극(5000)을 통해 인가되는 과전압이 방전 전극(313, 314)과 인접한 내부 전극(200)을 통해 타 외부 전극(5000)으로 흐르게 된다. 예를 들어, 제 3 방전 전극(313)이 제 1 외부 전극(5100)과 연결되고 이와 인접한 제 2 내부 전극(220)이 제 2 외부 전극(5200)과 연결된 경우 유전 시트(110)가 절연 파괴되면 제 3 방전 전극(313)과 제 2 내부 전극(220) 사이에 도전 경로가 형성되어 제 1 외부 전극(5100)을 통해 인가되는 ESD 전압이 제 3 방전 전극(313), 절연 파괴된 제 3 유전 시트(113) 및 제 2 내부 전극(220)으로 흐르게 되고, 그에 따라 제 2 외부 전극(5200)을 통해 내부 회로로 인가될 수 있다. 이러한 문제를 해결하기 위해서는 유전 시트(110)의 두께를 두껍게 형성할 수 있지만, 이 경우 소자의 사이즈가 커지는 문제가 있다. 그러나, 제 3 및 제 4 방전 전극(313, 314)과 이와 인접한 내부 전극(200)이 동일 외부 전극(5000)과 연결됨으로써 유전 시트(110)가 절연 파괴되는 경우에도 과전압이 전자기기 내부로 인가되지 않는다. 또한, 유전 시트(110)의 두께를 두껍게 형성하지 않고도 과전압이 인가되는 것을 방지할 수 있다. 물론, 제 3 및 제 4 방전 전극(313, 314)이 인접한 내부 전극(200)과 서로 다른 외부 전극(5000)에 연결될 수도 있다. 제 3 및 제 4 방전 전극(313, 314)과 인접한 내부 전극(200), 즉 제 2 및 제 3 내부 전극(220, 230) 사이의 거리를 A라 하고, 제 3 및 제 4 방전 전극(313, 314) 사이의 거리를 B라 하며, 내부 전극(200) 사이의 거리를 C라 할 때 제 3 및 제 4 방전 전극(313, 314)과 인접한 내부 전극(200)이 서로 다른 외부 전극(5000)에 연결된 경우 내부 전극(200)과 제 3 및 제 4 방전 전극(313, 314) 사이의 절연 파괴 현상을 개선하기 위하여 A>B, A>C의 관계를 가져야 한다. 그러나, 제 3 및 제 4 방전 전극(313, 314)과 인접한 내부 전극(200)이 동일 외부 전극(5000)에 연결된 경우 내부 전극(200)과 제 3 및 제 4 방전 전극(313, 314) 사이의 절연 파괴 현상이 개선되기 때문에 A≤B, A≤C의 관계를 가져도 된다. 또한, 제 3 및 제 4 방전 전극(313 314) 사이의 두께, 즉 제 4 유전 시트(114)의 두께(B)는 캐패시터부(2000)의 최하단 및 최상단 유전 시트(110)의 두께, 즉 제 1 및 제 7 유전 시트(111, 117)의 두께를 각각 D1 및 D2라 할 때 B≤D1, B≤D2일 수 있으며, 이때 D1=D2 또는 D1≠D2 일 수 있다. 여기서, 제 2 과전압 보호부(3200)의 두께는 캐패시터부(2000) 두께의 0.4%∼40%, 바람직하게는 4%∼20%이고, 캐패시터부(2000) 및 제 1 과전압 보호부(3100)를 포함한 적층체(1000) 두께의 0.2%∼20%, 바람직하게는 2%∼10%일 수 있다. 또한, 캐패시터부(2000)의 내부 전극(200) 사이의 두께(C)는 10㎛∼250㎛, 바람직하게는10㎛∼100㎛이고, 제 3 및 제 4 방전 전극(313, 314) 사이의 거리(B), 즉 과전압 보호 부재(320)의 두께는 1㎛∼100㎛, 바람직하게는 10㎛∼50㎛이다. 또한, 제 2 과전압 보호부(3200)의 제 3 및 제 4 방전 전극(313, 314) 사이의 거리는 제 3 및 제 4 방전 전극(313, 314)의 말단과 외부 전극(5000) 사이의 거리보다 작을 수 있고, 캐패시터부(2000)의 내부 전극(200) 사이의 거리는 내부 전극(200)의 말단과 외부 전극(5000) 사이의 거리보다 작을 수 있다. 한편, 외부 전극(5000)이 X 방향의 두 측면 뿐만 아니라 Y 방향 및 Z 방향의 네 면에도 연장 형성될 수 있는데, 제 1 외부 전극(5100)과 연결되는 내부 전극(200)은 말단부가 X 방향으로 이와 대향되는 제 2 외부 전극(5200) 사이의 거리 뿐만 아니라 제 2 외부 전극(5200)으로부터 연장된 영역 사이의 거리가 내부 전극(200) 사이의 거리보다 클 수 있다. 이렇게 함으로써 내부 전극(200) 사이에서 부하가 걸릴 수 있다.The second overvoltage protection part 3200 may include at least two discharge electrodes 313 and 314 spaced apart in the vertical direction, and at least one overvoltage protection member 320 provided between the discharge electrodes 313 and 314. have. For example, the second overvoltage protection unit 3200 may include the third and fourth discharge electrodes 313 and 314 and the fourth sheet 114 formed on the third and fourth dielectric sheets 113 and 114, respectively. It may include an over-voltage protection member 320 formed through. Here, the overvoltage protection member 320 may be formed such that at least a portion thereof is connected to the third and fourth discharge electrodes 313 and 314. The third and fourth discharge electrodes 313 and 314 may be formed to have the same thickness or different thicknesses from those of the first and second discharge electrodes 311 and 312 of the first overvoltage protection part 3100 and the capacitor part 2000. The thickness of the internal electrodes 200 may be the same as or different from that of the internal electrodes 200. For example, the third and fourth discharge electrodes 313 and 314 may be formed to have a thickness of 1 μm to 10 μm, and are thicker than the first and second discharge electrodes 311 and 313, and may be formed in the internal electrode 200. It may be formed to the same thickness. At this time, since the varistor type first overvoltage protection unit 3100 bypasses the overvoltage by the energy conduction method, the load on the first and second discharge electrodes 311 and 312 is small, but the second overvoltage protection of the suppressor type is performed. The part 3200 bypasses the overvoltage in the suppressor type, and thus the load on the third and fourth discharge electrodes 313 and 314 is large. Therefore, the thicknesses of the third and fourth discharge electrodes 313 and 314 of the second overvoltage protection part 3200 are greater than the thicknesses of the first and second discharge electrodes 311 and 312 of the first overvoltage protection part 3100. It should be thickened. Meanwhile, the third and fourth discharge electrodes 313 and 314 may further include a dielectric sheet 110 material. That is, the third and fourth discharge electrodes 313 and 314 may be formed using a mixture of a conductive material and a dielectric material. In this case, the dielectric material may contain about 1 wt% to about 20 wt% with respect to 100 wt% of the mixture of the conductive material and the dielectric material. Therefore, the adhesion between the third and fourth discharge electrodes 313 and 314 and the dielectric sheet 110 can be improved, thereby reducing microdelamination. The third discharge electrode 313 is connected to the second external electrode 5200 and is formed on the third sheet 113, and the end portion thereof is connected to the overvoltage protection member 320. The fourth discharge electrode 314 is connected to the first external electrode 5100 and is formed on the fourth sheet 114, and the terminal portion is formed to be connected to the overvoltage protection member 320. That is, the third and fourth discharge electrodes 313 and 314 are formed to be connected to the adjacent external electrode 5000 with the adjacent inner electrode 200. That is, the third discharge electrode 313 is connected to the adjacent second internal electrode 220 and the second external electrode 5200, and the fourth discharge electrode 314 is adjacent to the third internal electrode 230 and the first external. It is connected to the electrode 5100. As such, when the third and fourth discharge electrodes 313 and 314 and the inner electrode 200 adjacent thereto are connected to the same external electrode 5000, an overvoltage such as an ESD may occur even when the dielectric sheet 110 is deteriorated, that is, the dielectric breakdown. It is not applied inside the electronic device. That is, when the third and fourth discharge electrodes 313 and 314 and the inner electrode 200 adjacent to each other are connected to different external electrodes 5000, the dielectric sheet 110 is applied through one external electrode 5000 when the dielectric sheet 110 is insulated and destroyed. The excess voltage flows to the other external electrode 5000 through the internal electrode 200 adjacent to the discharge electrodes 313 and 314. For example, when the third discharge electrode 313 is connected to the first external electrode 5100 and the second internal electrode 220 adjacent thereto is connected to the second external electrode 5200, the dielectric sheet 110 breaks the insulation. If a conductive path is formed between the third discharge electrode 313 and the second internal electrode 220, the ESD voltage applied through the first external electrode 5100 is the third discharge electrode 313, and the dielectric breakdown third. It may flow to the dielectric sheet 113 and the second internal electrode 220, and thus may be applied to the internal circuit through the second external electrode 5200. In order to solve this problem, the thickness of the dielectric sheet 110 may be formed thick, but in this case, there is a problem in that the size of the device becomes large. However, even when the third and fourth discharge electrodes 313 and 314 and the inner electrode 200 adjacent thereto are connected to the same outer electrode 5000, the overvoltage is applied into the electronic device even when the dielectric sheet 110 is destroyed. It doesn't work. In addition, it is possible to prevent the overvoltage from being applied without forming the thickness of the dielectric sheet 110 thickly. Of course, the third and fourth discharge electrodes 313 and 314 may be connected to the external electrode 5000 which is different from the adjacent internal electrode 200. A distance between the third and fourth discharge electrodes 313 and 314 and the adjacent internal electrode 200, that is, the second and third internal electrodes 220 and 230 is referred to as A, and the third and fourth discharge electrodes 313 , 314, and the distance between the internal electrodes 200 is referred to as C, and the third and fourth discharge electrodes 313 and 314 and the adjacent internal electrodes 200 are different from each other. In order to improve the dielectric breakdown phenomenon between the internal electrode 200 and the third and fourth discharge electrodes 313 and 314, the relationship of A> B and A> C is required. However, when the third and fourth discharge electrodes 313 and 314 and the inner electrode 200 adjacent to each other are connected to the same outer electrode 5000, the inner electrode 200 and the third and fourth discharge electrodes 313 and 314 are separated. Since the dielectric breakdown phenomenon is improved, A? B and A? C may be used. In addition, the thickness between the third and fourth discharge electrodes 313 314, that is, the thickness B of the fourth dielectric sheet 114 is the thickness of the lowermost and uppermost dielectric sheet 110 of the capacitor portion 2000, that is, the first thickness of the fourth dielectric sheet 114. When the thicknesses of the first and seventh dielectric sheets 111 and 117 are D1 and D2, respectively, B ≦ D1 and B ≦ D2 may be D1 = D2 or D1 ≠ D2. Here, the thickness of the second overvoltage protection part 3200 is 0.4% to 40%, preferably 4% to 20% of the thickness of the capacitor part 2000, and the capacitor part 2000 and the first overvoltage protection part 3100. It may be 0.2% to 20%, preferably 2% to 10% of the thickness of the laminate 1000 including. Further, the thickness C between the internal electrodes 200 of the capacitor part 2000 is 10 μm to 250 μm, preferably 10 μm to 100 μm, and between the third and fourth discharge electrodes 313 and 314. The distance B, that is, the thickness of the overvoltage protection member 320 is 1 µm to 100 µm, preferably 10 µm to 50 µm. In addition, the distance between the third and fourth discharge electrodes 313 and 314 of the second overvoltage protection part 3200 is greater than the distance between the ends of the third and fourth discharge electrodes 313 and 314 and the external electrode 5000. The distance between the inner electrode 200 of the capacitor unit 2000 may be smaller than the distance between the end of the inner electrode 200 and the outer electrode 5000. Meanwhile, the external electrode 5000 may be formed to extend not only on two side surfaces of the X direction but also on four surfaces of the Y direction and the Z direction. The internal electrode 200 connected to the first external electrode 5100 may have a distal end in the X direction. As a result, the distance between the second external electrode 5200 opposite to the distance between the regions extending from the second external electrode 5200 may be greater than the distance between the internal electrodes 200. In this way, a load may be applied between the internal electrodes 200.
한편, 제 3 및 제 4 방전 전극(313, 314)의 과전압 보호 부재(320)와 접촉되는 영역은 과전압 보호 부재(320)과 동일 크기 또는 이보다 작게 형성될 수 있다. 또한, 제 3 및 제 4 방전 전극(313, 314)은 과전압 보호 부재(320)를 벗어나지 않고 완전히 중첩되어 형성될 수도 있다. 즉, 제 3 및 제 4 방전 전극(313, 314)의 가장자리는 과전압 보호 부재(320)의 가장자리와 수직 성분을 이룰 수 있다. 물론, 제 3 및 제 4 방전 전극(313, 314)은 과전압 보호 부재(320)의 일부에 중첩되도록 형성될 수도 있다. 예를 들어, 제 3 및 제 4 방전 전극(313, 314)는 과전압 보호 부재(320)의 수평 면적의 10% 내지 100% 중첩되도록 형성될 수 있다. 즉, 제 3 및 제 4 방전 전극(313, 314)은 과전압 보호 부재(320)를 벗어나게 형성되지 않는다. 한편, 제 3 및 제 4 방전 전극(313, 314)은 과전압 보호 부재(320)와 접촉되는 일 영역이 접촉되지 않은 영역보다 크게 형성될 수 있다.Meanwhile, the regions of the third and fourth discharge electrodes 313 and 314 that are in contact with the overvoltage protection member 320 may be the same size or smaller than the overvoltage protection member 320. In addition, the third and fourth discharge electrodes 313 and 314 may be formed to completely overlap without leaving the overvoltage protection member 320. That is, the edges of the third and fourth discharge electrodes 313 and 314 may form a vertical component with the edges of the overvoltage protection member 320. Of course, the third and fourth discharge electrodes 313 and 314 may be formed to overlap a portion of the overvoltage protection member 320. For example, the third and fourth discharge electrodes 313 and 314 may be formed to overlap 10% to 100% of the horizontal area of the overvoltage protection member 320. That is, the third and fourth discharge electrodes 313 and 314 are not formed beyond the overvoltage protection member 320. Meanwhile, the third and fourth discharge electrodes 313 and 314 may be formed to have a larger area than one in contact with the overvoltage protection member 320.
과전압 보호 부재(320)는 제 4 유전 시트(114)의 소정 영역, 예를 들어 중심부에 형성되어 제 3 및 제 4 방전 전극(313, 314)과 연결될 수 있다. 이때, 과전압 보호 부재(320)는 제 3 및 제 4 방전 전극(313, 314)과 적어도 일부 중첩되도록 형성될 수 있다. 즉, 과전압 보호 부재(320)는 제 3 및 제 4 방전 전극(313, 314)과 수평 면적의 10% 내지 100% 중첩되도록 형성될 수 있다. 과전압 보호 부재(320)는 제 4 유전 시트(114)의 소정 영역, 예를 들어 중심부에 소정 크기의 관통홀을 형성하고 후막 인쇄 공정을 이용하여 관통홀을 매립하도록 형성될 수 있다. 물론, 과전압 보호 부재(320)는 관통홀을 매립하지 않고 관통홀만으로 이루어질 수도 있다. 즉, 과전압 보호 부재(320)는 공극(void) 또는 공극의 적어도 일부에 마련된 과전압 보호 물질을 포함할 수 있다. 한편, 과전압 보호 부재(320)는 예를 들어 100㎛∼500㎛의 직경과 10㎛∼50㎛의 두께로 형성될 수 있다. 이때, 과전압 보호 부재(320)의 두께가 얇을수록 방전 개시 전압이 낮아진다. 과전압 보호 부재(320)는 도전성 물질과 절연성 물질을 이용하여 형성할 수 있다. 예를 들어, 도전성 세라믹과 절연성 세라믹의 혼합 물질을 제 4 유전 시트(114) 상에 인쇄하여 과전압 보호 부재(320)를 형성할 수 있다. 한편, 과전압 보호 부재(320)는 적어도 하나의 유전 시트(110) 상에 형성될 수도 있다. 즉, 수직 방향으로 적층된 적어도 하나, 예를 들어 두개의 유전 시트(110)에 과전압 보호 부재(320)가 각각 형성되고, 그 유전 시트(110) 상에 서로 이격되도록 방전 전극(310)이 형성되어 과전압 보호 부재(320)와 연결될 수 있다. 물론, 제 3 및 제 4 방전 전극(313, 314)가 동일 평면 상에 수평 방향으로 이격되어 형성되고, 그 사이에 과전압 보호 부재(320)가 형성될 수도 있다.The overvoltage protection member 320 may be formed in a predetermined region, for example, a central portion of the fourth dielectric sheet 114 to be connected to the third and fourth discharge electrodes 313 and 314. In this case, the overvoltage protection member 320 may be formed to at least partially overlap the third and fourth discharge electrodes 313 and 314. That is, the overvoltage protection member 320 may be formed to overlap 10% to 100% of the horizontal area with the third and fourth discharge electrodes 313 and 314. The overvoltage protection member 320 may be formed to form a through hole having a predetermined size in a predetermined region, for example, a central portion of the fourth dielectric sheet 114, and fill the through hole using a thick film printing process. Of course, the overvoltage protection member 320 may be formed of only the through holes without filling the through holes. That is, the overvoltage protection member 320 may include a void or an overvoltage protection material provided in at least a portion of the void. On the other hand, the overvoltage protection member 320 may be formed, for example, a diameter of 100㎛ to 500㎛ and a thickness of 10㎛ to 50㎛. At this time, the thinner the thickness of the overvoltage protection member 320, the lower the discharge start voltage. The overvoltage protection member 320 may be formed using a conductive material and an insulating material. For example, the overvoltage protection member 320 may be formed by printing a mixed material of the conductive ceramic and the insulating ceramic on the fourth dielectric sheet 114. Meanwhile, the overvoltage protection member 320 may be formed on at least one dielectric sheet 110. That is, the overvoltage protection members 320 are formed on at least one dielectric sheet 110 stacked in the vertical direction, for example, and the discharge electrodes 310 are formed on the dielectric sheet 110 so as to be spaced apart from each other. And may be connected to the overvoltage protection member 320. Of course, the third and fourth discharge electrodes 313 and 314 may be formed to be spaced apart in the horizontal direction on the same plane, and the overvoltage protection member 320 may be formed therebetween.
과전압 보호 부재(320)에 형성될 수 있는 과전압 보호 물질은 PVA(Polyvinyl Alcohol) 또는 PVB(Polyvinyl Butyral) 등의 유기물에 RuO2, Pt, Pd, Ag, Au, Ni, Cr, W 등에서 선택된 적어도 하나의 도전성 물질을 혼합한 물질로 형성할 수 있다. 또한, 과전압 보호 물질은 상기 혼합 물질에 ZnO 등의 바리스터 물질 또는 Al2O3 등의 절연성 세라믹 물질을 더 혼합하여 형성할 수도 있다. 물론, 과전압 보호 물질은 상기 물질 이외에 다양한 물질이 이용될 수 있다. 예를 들어, 과전압 보호 물질은 다공성의 절연 물질 및 공극(void)의 적어도 어느 하나를 이용할 수 있다. 즉, 다공성의 절연 물질이 관통홀에 매립 또는 도포될 수도 있고, 관통홀 내에 공극이 형성될 수도 있으며, 다공성의 절연 물질과 도전 물질의 혼합 물질이 관통홀에 매립 또는 도포될 수도 있다. 또한, 다공성의 절연 물질, 도전 물질 및 공극이 관통홀 내에서 층을 이루어 형성될 수도 있다. 예를 들어, 도전층 사이에 다공성의 절연층이 형성되며, 절연층 사이에 공극이 형성될 수도 있다. 이때, 공극은 절연층의 복수의 기공이 서로 연결되어 형성될 수도 있다. 여기서, 다공성의 절연 물질은 50∼50000 정도의 유전율을 갖는 강유전체 세라믹이 이용될 수 있다. 예를 들어, 절연성 세라믹은 MLCC 등의 유전체 재료 분말, ZrO, ZnO, BaTiO3, Nd2O5, BaCO3, TiO2, Nd, Bi, Zn, Al2O3 중의 하나 이상을 포함한 혼합물을 이용하여 형성할 수 있다. 이러한 다공성의 절연 물질은 1㎚∼5㎛ 정도 크기의 기공이 복수 형성되어 30%∼80%의 기공률로 형성된 다공성 구조로 형성될 수 있다. 이때, 기공 사이의 최단 거리는 1㎚∼5㎛ 정도일 수 있다. 또한, 과전압 보호 물질로 이용되는 도전 물질은 도전성 세라믹을 이용하여 형성할 수 있으며, 도전성 세라믹은 La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe, Bi 중의 하나 이상을 포함한 혼합물을 이용할 수 있다. 한편, 과전압 보호 부재(320) 상에 방전 유도층(미도시)이 더 형성될 수 있다. 즉, 방전 유도층은 방전 전극(310)과 과전압 보호 부재(320) 사이에 형성될 수 있고, 유전 시트(110)와 과전압 보호 부재(320) 사이에 형성될 수 있다. 이러한 방전 유도층은 과전압 보호 물질과 방전 전극(310)의 물질을 포함할 수 있고, 과전압 보호 물질과 유전 시트(110)의 물질을 포함할 수 있다. 또한, 방전 유도층은 과전압 보호 물질, 방전 전극(310) 물질 및 유전 시트(110) 물질을 포함할 수 있다. 즉, 방전 유도층은 과전압 보호 부재(320)와 방전 전극(310) 및 유전 시트(110)의 반응에 의해 형성될 수 있다. 이때, 과전압 보호 부재(320)와 방전 전극(310) 사이의 방전 유도층과 과전압 보호 부재(320)와 유전 시트(110) 사이의 방전 유도층은 서로 다른 조성을 가질 수 있다. 예를 들어, 다공성 ZrO 또는 TiO를 이용하여 과전압 보호 부재(332)를 형성하고 Al을 이용하여 방전 전극(310)을 형성하는 경우 과전압 보호 부재(320)와 방전 전극(310) 사이에 AlZrO 또는 TiAlO의 방전 유도층이 형성될 수 있다. 이러한 방전 유도층은 다공성의 구조로 형성되며, 방전 유도층에 의해 과전압의 방전이 더욱 원활하게 이루어질 수 있다. The overvoltage protection material which may be formed on the overvoltage protection member 320 is at least one selected from RuO 2 , Pt, Pd, Ag, Au, Ni, Cr, W, and the like in an organic material such as polyvinyl alcohol (PVA) or polyvinyl butyral (PVB). It is possible to form a mixture of conductive materials. In addition, the overvoltage protection material may be formed by further mixing a varistor material such as ZnO or an insulating ceramic material such as Al 2 O 3 with the mixed material. Of course, a variety of materials may be used as the overvoltage protection material. For example, the overvoltage protection material may utilize at least one of a porous insulating material and a void. That is, a porous insulating material may be embedded or coated in the through hole, a void may be formed in the through hole, and a mixed material of the porous insulating material and the conductive material may be embedded or coated in the through hole. In addition, porous insulating materials, conductive materials, and voids may be formed in layers in the through holes. For example, a porous insulating layer is formed between the conductive layers, and voids may be formed between the insulating layers. In this case, the gap may be formed by connecting a plurality of pores of the insulating layer to each other. Here, as the porous insulating material, ferroelectric ceramics having a dielectric constant of about 50 to 500,000 may be used. For example, the insulating ceramic uses a mixture containing one or more of dielectric material powders such as MLCC, ZrO, ZnO, BaTiO 3 , Nd 2 O 5 , BaCO 3 , TiO 2 , Nd, Bi, Zn, Al 2 O 3 Can be formed. The porous insulating material may be formed in a porous structure in which a plurality of pores having a size of about 1 nm to 5 μm is formed to have a porosity of 30% to 80%. In this case, the shortest distance between the pores may be about 1nm to 5㎛. In addition, the conductive material used as the overvoltage protection material may be formed using a conductive ceramic, the conductive ceramic is at least one of La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe, Bi It is possible to use a mixture including. Meanwhile, a discharge induction layer (not shown) may be further formed on the overvoltage protection member 320. That is, the discharge induction layer may be formed between the discharge electrode 310 and the overvoltage protection member 320, and may be formed between the dielectric sheet 110 and the overvoltage protection member 320. The discharge induction layer may include an overvoltage protection material and a material of the discharge electrode 310, and may include an overvoltage protection material and a material of the dielectric sheet 110. In addition, the discharge induction layer may include an overvoltage protection material, a discharge electrode 310 material, and a dielectric sheet 110 material. That is, the discharge induction layer may be formed by the reaction of the overvoltage protection member 320, the discharge electrode 310, and the dielectric sheet 110. In this case, the discharge induction layer between the overvoltage protection member 320 and the discharge electrode 310 and the discharge induction layer between the overvoltage protection member 320 and the dielectric sheet 110 may have different compositions. For example, when the overvoltage protection member 332 is formed using porous ZrO or TiO and the discharge electrode 310 is formed using Al, AlZrO or TiAlO is formed between the overvoltage protection member 320 and the discharge electrode 310. A discharge induction layer of may be formed. The discharge induction layer is formed of a porous structure, the discharge of the overvoltage can be made more smoothly by the discharge induction layer.
한편, 본 발명에 따른 복합 소자는 과전압 보호부(3000)의 방전 전극(310)이 다양한 형상으로 형성될 수 있다. 예를 들어, 도 5 및 도 6에 도시된 바와 같이 동일 평면 상에 형성되며 서로 다른 외부 전극(5000)과 연결된 제 1 및 제 2 방전 전극(311, 312)이 소정 간격 이격되어 형성되고 그 상측 또는 하측에 제 1 및 제 2 방전 전극(311, 312)와 일부 중첩되도록 제 5 방전 전극(315)이 형성될 수 있다. 이를 보다 상세하게 설명하면 다음과 같다. 도 5 및 도 6에 도시된 바와 같이 제 1 방전 전극(311)이 제 1 외부 전극(5100)과 연결되어 일 방전 시트(310), 예를 들어 도 5의 제 5 방전 시트(125) 상에 형성되고, 제 2 방전 전극(312)이 제 2 외부 전극(5200)과 연결되어 제 1 방전 전극(311)이 형성된 일 방전 시트(310), 즉 제 5 방전 시트(125) 상에 형성된다. 이때, 제 1 및 제 2 방전 전극(311, 312)은 소정 간격 이격되어 형성된다. 또한, 제 5 방전 전극(315)이 제 1 및 제 2 방전 전극(311, 312) 하측의 일 방전 시트(120), 예를 들어 제 2 방전 시트(122) 상에 형성되고, 일측 및 타측이 제 1 및 제 2 방전 전극(311, 312)와 소정 영역 중첩되도록 형성된다. 여기서, 제 1 및 제 2 방전 전극(311, 312) 사이의 거리는 제 1 및 제 5 방전 전극(311, 315)의 거리와 제 2 및 제 5 방전 전극(312, 315)의 거리의 합보다 크다. 즉, 제 1 및 제 2 방전 전극(311, 312) 사이의 거리를 E라 하고, 제 1 및 제 5 방전 전극(311, 315)의 거리를 F라 하며, 제 2 및 제 5 방전 전극(312, 315)의 거리를 G라 할 때 E>F+G의 관계를 가질 수 있다. 이러한 구조를 갖는 과전압 보호부(3000)는 예를 들어 외부로부터 인가되는 과전압이 제 1 방전 전극(311)을 통해 제 5 방전 전극(315)으로 전달되고 다시 제 2 방전 전극(312)으로 전달되어 내부 회로의 접지 단자로 바이패스될 수 있다.On the other hand, in the composite device according to the present invention, the discharge electrode 310 of the overvoltage protection unit 3000 may be formed in various shapes. For example, as illustrated in FIGS. 5 and 6, the first and second discharge electrodes 311 and 312 formed on the same plane and connected to different external electrodes 5000 are formed at predetermined intervals and are disposed on the upper side thereof. Alternatively, the fifth discharge electrode 315 may be formed to partially overlap the first and second discharge electrodes 311 and 312. This will be described in more detail as follows. As shown in FIGS. 5 and 6, the first discharge electrode 311 is connected to the first external electrode 5100 so as to be disposed on the one discharge sheet 310, for example, the fifth discharge sheet 125 of FIG. 5. The second discharge electrode 312 is connected to the second external electrode 5200 and is formed on one discharge sheet 310, that is, the fifth discharge sheet 125, on which the first discharge electrode 311 is formed. In this case, the first and second discharge electrodes 311 and 312 are formed spaced apart from each other by a predetermined interval. In addition, the fifth discharge electrode 315 is formed on one discharge sheet 120, for example, the second discharge sheet 122, below the first and second discharge electrodes 311 and 312. The first and second discharge electrodes 311 and 312 are formed to overlap a predetermined region. The distance between the first and second discharge electrodes 311 and 312 is greater than the sum of the distances of the first and fifth discharge electrodes 311 and 315 and the distances of the second and fifth discharge electrodes 312 and 315. . That is, the distance between the first and second discharge electrodes 311 and 312 is referred to as E, the distance between the first and fifth discharge electrodes 311 and 315 is referred to as F, and the second and fifth discharge electrodes 312 are referred to as E. , 315) may have a relationship of E> F + G. In the overvoltage protection unit 3000 having such a structure, for example, an overvoltage applied from the outside is transmitted to the fifth discharge electrode 315 through the first discharge electrode 311, and then to the second discharge electrode 312. It can be bypassed to the ground terminal of the internal circuit.
또한, 본 발명에 따른 복합 소자는 캐패시터부(2000)의 내부 전극(200)을 다양한 형상으로 형성할 수 있다. 예를 들어, 내부 전극(200)의 적어도 하나가 동일 평면에서 소정 간격 이격되도록 형성할 수 있다. 또한, 내부 전극(200)의 적어도 하나가 동일 평면 상에 소정 간격 이격되도록 형성된 내부 전극(200)과 수직 방향에서 중첩되도록 형성될 수 있다. 즉, 본 발명의 제 5 실시 예를 도시한 도 7에 도시된 바와 같이, 복수의 내부 전극(200) 중에서 적어도 하나의 내부 전극(200), 즉 제 1 내부 전극(211, 212) 및 제 6 내부 전극(261, 262)가 소정 간격 이격되도록 형성될 수 있다. 이때, 캐패시터부(2000)의 수직 방향(Z 방향)으로 최외곽에 형성된 내부 전극(200)이 동일 평면 상에 이격되어 형성될 수 있다. 즉, 제 1a 내부 전극(211)은 제 1 외부 전극(5100)과 연결되도록 형성되고, 제 1b 내부 전극(212)은 제 2 외부 전극(5200)과 연결되도록 형성되며, 제 1a 및 제 1b 내부 전극(211, 212)이 제 1 유전 시트(111) 상에서 소정 간격 이격되어 형성된다. 이와 마찬가지로, 제 6a 내부 전극(261)은 제 1 외부 전극(5100)과 연결되도록 형성되고, 제 6b 내부 전극(262)은 제 2 외부 전극(5200)과 연결되도록 형성되며, 제 6a 및 제 6b 내부 전극(261, 262)이 제 6 유전 시트(116) 상에서 소정 간격 이격되어 형성된다. 또한, 제 1 내부 전극(211, 212)과 일부 중첩되도록 제 1 내부 전극(211, 212) 상측에는 제 2 내부 전극(220)이 형성되고, 제 6 내부 전극(261, 262)와 일부 중첩되도록 제 6 내부 전극(261, 262) 하측에는 제 5 내부 전극(250)이 형성된다. 이때, 제 2 및 제 5 내부 전극(220, 250)은 외부 전극(5000)과 연결되지 않도록 형성된다. 이렇게 내부 전극(200) 중 적어도 하나를 동일 평면 상에 이격되도록 형성하고 이와 중첩되도록 다른 내부 전극(200)을 형성함으로써 이들 사이에 부유 용량(floating capacitance)이 발생되어 목표 용량보다 높은 용량을 얻을 수 있다. 또한, 반복적인 과전압 인가에 의해 캐패시터부(2000)가 파손되고 그로 인한 과전압 유입을 방지할 수 있다. 즉, 서로 다른 외부 전극(5000)과 연결된 인접한 두 내부 전극(200) 사이의 유전 시트(110)가 절연 파되될 경우 내부 전극(200)을 통해 과전압이 인가될 수 있지만, 내부 전극(200)을 플로팅 타입으로 형성함으로써 유전 시트(110)가 절연 파괴될 경우에도 과전압이 유입되지 못하도록 할 수 있다. 한편, 본 발명의 제 5 실시 예는 본 발명의 제 3 실시 예에서 캐패시터부(2000)의 내부 전극(200)의 형상을 변형하였지만, 그 이외의 나머지 실시 예들에도 적용 가능하다. 즉, 두개의 방전 전극(310)을 포함하는 제 1 실시 예와, 캐패시터부(2000)의 두 내부 전극(200) 사이에 제 2 과전압 보호부(3200)가 형성된 제 2 및 제 4 실시 예에도 캐패시터부(2000)의 내부 전극(200)의 형상을 변형하여 본 발명의 제 5 실시 예를 적용할 수 있다.In addition, the composite device according to the present invention may form the internal electrode 200 of the capacitor unit 2000 in various shapes. For example, at least one of the internal electrodes 200 may be formed to be spaced apart from each other in the same plane. In addition, at least one of the internal electrodes 200 may be formed to overlap in the vertical direction with the internal electrodes 200 formed to be spaced apart by a predetermined interval on the same plane. That is, as shown in FIG. 7 illustrating the fifth embodiment of the present invention, at least one internal electrode 200, that is, the first internal electrodes 211 and 212 and the sixth, among the plurality of internal electrodes 200. The internal electrodes 261 and 262 may be formed to be spaced apart from each other by a predetermined interval. In this case, the inner electrode 200 formed at the outermost side in the vertical direction (Z direction) of the capacitor unit 2000 may be formed spaced apart on the same plane. That is, the first internal electrode 211 is formed to be connected to the first external electrode 5100, and the first internal electrode 212 is formed to be connected to the second external electrode 5200. Electrodes 211 and 212 are formed on the first dielectric sheet 111 at predetermined intervals. Similarly, the 6a internal electrode 261 is formed to be connected to the first external electrode 5100, and the 6b internal electrode 262 is formed to be connected to the second external electrode 5200, and the 6a and 6b may be connected to each other. Internal electrodes 261 and 262 are formed on the sixth dielectric sheet 116 at predetermined intervals. In addition, a second internal electrode 220 is formed above the first internal electrodes 211 and 212 to partially overlap the first internal electrodes 211 and 212, and partially overlaps the sixth internal electrodes 261 and 262. The fifth internal electrode 250 is formed under the sixth internal electrodes 261 and 262. In this case, the second and fifth internal electrodes 220 and 250 are formed not to be connected to the external electrode 5000. By forming at least one of the internal electrodes 200 to be spaced apart on the same plane and forming another internal electrode 200 to overlap with each other, a floating capacitance is generated between them to obtain a capacity higher than the target capacitance. have. In addition, the capacitor unit 2000 may be damaged due to repeated overvoltage application, thereby preventing overvoltage inflow. That is, when the dielectric sheet 110 between two adjacent inner electrodes 200 connected to different outer electrodes 5000 is insulated, an overvoltage may be applied through the inner electrode 200, but the inner electrode 200 may not be applied. The floating type may prevent the overvoltage from flowing even when the dielectric sheet 110 is insulated-breakdown. Meanwhile, although the shape of the internal electrode 200 of the capacitor unit 2000 is modified in the third embodiment of the present invention, the fifth embodiment of the present invention can be applied to other embodiments. In other words, the first embodiment includes two discharge electrodes 310 and the second and fourth embodiments in which the second overvoltage protection unit 3200 is formed between the two internal electrodes 200 of the capacitor unit 2000. The fifth embodiment of the present invention may be applied by modifying the shape of the internal electrode 200 of the capacitor unit 2000.
이러한 본 발명의 실시 예들에 따른 복합 소자는 스마트 폰 등의 휴대용 전자기기를 포함하는 전자기기 내에 마련될 수 있다. 예를 들어, 도 8에 도시된 바와 같이 전자기기의 내부 회로(예를 들어 PCB)(20)와 사용자가 접촉 가능한 도전체 또는 안테나로 이용되는 도전체, 예를 들어 금속 케이스(10) 사이에 캐패시터부와 과전압 보호부를 포함하는 복합 소자가 마련될 수 있다. 도 7에서 캐패시터부는 도면 부호 C로 표시하고, 과전압 보호부는 도면 부호 V로 표시하였다. 이때, 복합 소자는 전자기기의 내부 회로(20)에 실장되는데, 내부 회로(20)의 일 영역이 금속 케이스(10)와 접속되고, 다른 영역이 접지 단자에 접속될 수 있다. 즉, 복합 소자는 외부 전극(5000)의 어느 하나가 실장된 내부 회로(20)의 일 영역이 금속 케이스(10)에 접속되고 외부 전극(5000)의 다른 하나가 실장된 내부 회로(20)의 타 영역이 접지 단자에 접속될 수 있다. 이때, 접지 단자는 내부 회로(20)에 마련될 수 있고 내부 회로(20) 이외의 영역에 마련될 수도 있다. 따라서, 외부 전극(5000)의 어느 하나가 금속 케이스(10)에 연결되고 다른 하나가 접지 단자에 연결될 수 있다. 한편, 금속 케이스(10)와 복합 소자 사이에는 전도성 커넥터 또는 시트가 마련될 수 있고, 복합 소자와 내부 회로 사이에는 저항 및 인덕터가 마련될 수 있다. 따라서, 복합 소자는 내부 회로의 접지 단자와 직접 연결될 수도 있고, 저항 및 인덕터를 통해 접지 단자와 연결될 수도 있다. 또한, 금속 케이스(10)와 복합 소자 사이에는 도 9에 도시된 바와 같이 금속 케이스(10)와 전기적으로 접촉되며 탄성력을 가지는 콘택부(30)가 마련될 수 있다. 즉, 전자기기의 금속 케이스(10)와 내부 회로(20) 사이에 콘택부(30)와 본 발명에 따른 복합 소자가 마련될 수 있다. 이때, 복합 소자는 외부 전극(5000)의 어느 하나가 콘택부(30)와 접촉되고 다른 하나가 내부 회로(20)를 통해 접지 단자와 접속될 수 있다. 콘택부(30)는 전자기기의 외부에서 외력이 가해질 때 그 충격을 완화할 수 있도록 탄성력을 가지며, 도전성의 물질을 포함하는 재료로 이루어질 수 있다. 이러한 콘택부(30)는 클립(clip) 형상일 수 있으며, 도전성 가스켓일 수도 있다. 또한, 콘택부(30)는 적어도 일 영역이 내부 회로(20), 예를 들어 PCB에 실장될 수 있다. 이렇게 복합 소자가 금속 케이스(10)와 내부 회로(20) 사이에 마련되어 내부 회로(20)로부터 유입되는 누설 전류를 차단할 수 있다. 또한, ESD 등의 과전압을 접지 단자로 바이패스시키고, 과전압에 의해 절연이 파괴되지 않아 누설 전류를 지속적으로 차단할 수 있다. 즉, 본 발명에 따른 복합 소자는 정격 전압 및 누설 전류에 의한 감전 전압에서는 외부 전극(5000) 사이에서 전류가 흐르지 못하고, ESD 등의 과전압에서는 과전압 보호부(3000)를 통해 전류가 흘러 과전압이 접지 단자로 바이패스될 수 있다. 한편, 복합 소자는 항복 전압 또는 방전 개시 전압이 정격 전압보다 높고 ESD 등의 과전압보다 낮을 수 있다. 예를 들어, 복합 소자는 정격 전압이 100V 내지 240V일 수 있고, 감전 전압은 회로의 동작 전압과 같거나 높을 수 있으며, 외부의 정전기 등에 의해 발생되는 과전압은 감전 전압보다 높을 수 있고, 항복 전압 또는 방전 개시 전압은 350V∼15kV일 수 있다. 또한, 캐패시터부(2000)에 의해 외부와 내부 회로(20) 사이에 통신 신호가 전달될 수 있다. 즉, 외부로부터의 통신 신호, 예를 들어 RF 신호는 캐패시터부(2000)에 의해 내부 회로(20)로 전달될 수 있고, 내부 회로(20)로부터의 통신 신호는 캐패시터부(2000)에 의해 외부로 전달될 수 있다. 따라서, 금속 케이스(10)를 안테나로 이용하는 경우에도 캐패시터부(2000)를 이용하여 외부와의 통신 신호를 주고받을 수 있다. 이때, 금속 케이스(10)의 내측에 예를 들어 PIFA(Planar Inverted F Antenna) 등의 안테나가 구비될 수 있다. 즉, 안테나가 마련된 영역을 포함한 일 영역 또는 전체 영역을 둘러싸도록 도전체가 형성될 수 있다. 이때, 도전체를 안테나의 방사체로 이용하기 위하여 통신 주파수 대역의 감쇄 현상없이 교류 커플링(AC Coupling)이 필요한 전자기기에서 금속 케이스(10)는 전도성 커넥터 또는 전도성 시트를 통해 복합 소자와 연결될 수 있다. 즉, 복합 소자는 일 외부 전극(5000)이 전도성 커넥터 또는 전도성 시트를 통해 금속 케이스(10)와 연결되고, 타 외부 전극(5000)이 내부 회로의 접지 단자와 직접 연결되거나, 저항, 인덕터, 다이오드 등의 수동 소자를 통해 접지 단자와 연결될 수 있다. 결국, 본 발명에 따른 복합 소자는 내부 회로의 접지 단자로부터 유입되는 누설 전류를 차단하고, 외부로부터 인가되는 과전압을 접지 단자로 바이패스시키며, 외부와 전자기기 사이에 통신 신호를 전달할 수 있다. 즉, 복합 소자가 직류 차단(DC Block)을 통한 충전 중 감전 전류의 금속 케이스(10)로 전도되는 현상을 방지하며, 캐패시터 특성을 통한 교류 커플링으로 PIFA의 통신 주파수의 감쇄 없이 안테나의 방사체로 이용될 수 있다.The composite device according to embodiments of the present invention may be provided in an electronic device including a portable electronic device such as a smart phone. For example, as shown in FIG. 8, between an internal circuit (for example, a PCB) 20 of an electronic device and a conductor, for example, a metal case 10, which is used as a conductor or antenna that can be contacted by a user. A composite device including a capacitor unit and an overvoltage protection unit may be provided. In FIG. 7, the capacitor portion is denoted by reference numeral C, and the overvoltage protection portion is denoted by reference numeral V. In FIG. In this case, the composite device may be mounted in the internal circuit 20 of the electronic device. One area of the internal circuit 20 may be connected to the metal case 10, and the other area may be connected to the ground terminal. That is, in the composite device, one region of the internal circuit 20 on which one of the external electrodes 5000 is mounted is connected to the metal case 10, and the other of the internal circuit 20 on which the other of the external electrodes 5000 is mounted. The other area may be connected to the ground terminal. In this case, the ground terminal may be provided in the internal circuit 20 or may be provided in a region other than the internal circuit 20. Therefore, one of the external electrodes 5000 may be connected to the metal case 10 and the other may be connected to the ground terminal. Meanwhile, a conductive connector or sheet may be provided between the metal case 10 and the composite element, and a resistor and an inductor may be provided between the composite element and the internal circuit. Thus, the composite device may be directly connected to the ground terminal of the internal circuit, or may be connected to the ground terminal through a resistor and an inductor. In addition, a contact portion 30 may be provided between the metal case 10 and the composite element to be in electrical contact with the metal case 10 and have an elastic force. That is, the contact unit 30 and the composite device according to the present invention may be provided between the metal case 10 and the internal circuit 20 of the electronic device. In this case, one of the external electrodes 5000 may be in contact with the contact unit 30 and the other may be connected to the ground terminal through the internal circuit 20. The contact part 30 may be made of a material having an elastic force and containing a conductive material to relieve the impact when an external force is applied from the outside of the electronic device. The contact portion 30 may have a clip shape or may be a conductive gasket. In addition, at least one region of the contact portion 30 may be mounted on the internal circuit 20, for example, a PCB. In this way, the composite device may be provided between the metal case 10 and the internal circuit 20 to block leakage current flowing from the internal circuit 20. In addition, an overvoltage such as an ESD may be bypassed to the ground terminal, and the insulation may not be broken by the overvoltage, so that the leakage current can be continuously interrupted. That is, in the composite device according to the present invention, current does not flow between the external electrodes 5000 at the electric shock voltage due to the rated voltage and the leakage current, and at the overvoltage such as ESD, current flows through the overvoltage protection unit 3000 so that the overvoltage is grounded. It can be bypassed to the terminal. Meanwhile, the composite device may have a breakdown voltage or a discharge start voltage higher than the rated voltage and lower than an overvoltage such as an ESD. For example, a composite device may have a rated voltage of 100V to 240V, an electric shock voltage may be equal to or higher than an operating voltage of a circuit, an overvoltage generated by external static electricity, or the like, may be higher than an electric shock voltage, and a breakdown voltage or The discharge start voltage may be 350V to 15kV. In addition, a communication signal may be transmitted between the external circuit and the internal circuit 20 by the capacitor unit 2000. That is, a communication signal from the outside, for example, an RF signal may be transmitted to the internal circuit 20 by the capacitor unit 2000, and the communication signal from the internal circuit 20 is external to the capacitor unit 2000. Can be delivered. Therefore, even when using the metal case 10 as an antenna, it is possible to exchange communication signals with the outside using the capacitor unit 2000. In this case, an antenna such as a Planar Inverted F Antenna (PIFA) may be provided inside the metal case 10. That is, the conductor may be formed to surround one region or the entire region including the region where the antenna is provided. In this case, in an electronic device requiring AC coupling without attenuation of a communication frequency band in order to use a conductor as a radiator of an antenna, the metal case 10 may be connected to the composite device through a conductive connector or a conductive sheet. . That is, in the composite device, one external electrode 5000 is connected to the metal case 10 through a conductive connector or conductive sheet, and the other external electrode 5000 is directly connected to the ground terminal of the internal circuit, or a resistor, an inductor, or a diode is used. It can be connected to the ground terminal through a passive element such as. As a result, the composite device according to the present invention may block leakage current flowing from the ground terminal of the internal circuit, bypass an overvoltage applied from the outside to the ground terminal, and transmit a communication signal between the outside and the electronic device. That is, the composite device prevents the electric conduction of the electric current to the metal case 10 during the charging through the DC block, and by the AC coupling through the capacitor characteristic to the radiator of the antenna without attenuating the communication frequency of the PIFA. Can be used.
또한, 본 발명의 일 실시 예에 따른 복합 소자는 금속 케이스(10)와 내부 회로(20) 사이에 마련되어 감전 방지 소자로 이용될 수 있으며, 내압 특성이 높은 절연 시트, 즉 유전 시트를 복수 적층하여 캐패시터부(2000)를 형성함으로써 불량 충전기에 의한 내부 회로에서 금속 케이스로의 예를 들어 310V의 감전 전압이 인가될 때 누설 전류가 흐르지 않도록 절연 저항 상태를 유지할 수 있고, 과전압 보호부 역시 금속 케이스에서 내부 회로로의 과전압 인가 시 과전압을 바이패스시켜 소자의 파손없이 높은 절연 저항 상태를 유지할 수 있다. 따라서, 과전압에 의해서도 절연 파괴되지 않고, 그에 따라 금속 케이스를 구비하는 전자기기 내에 마련되어 불량 충전기에서 발생된 누설 전류가 전자기기의 금속 케이스를 통해 사용자에게 전달되는 것을 지속적으로 방지할 수 있다.In addition, the composite device according to an embodiment of the present invention may be provided between the metal case 10 and the internal circuit 20 to be used as an electric shock prevention device, and a plurality of insulating sheets, that is, dielectric sheets having high breakdown voltage characteristics, may be stacked. By forming the capacitor part 2000, an insulation resistance state can be maintained so that a leakage current does not flow when an electric shock voltage of, for example, 310V is applied from the internal circuit by the defective charger to the metal case, and the overvoltage protection part is also provided in the metal case. When the overvoltage is applied to the internal circuit, the overvoltage can be bypassed to maintain a high insulation resistance state without damaging the device. Therefore, the insulation is not destroyed even by the overvoltage, and thus, it is possible to continuously prevent leakage current generated in the defective charger from being delivered to the user through the metal case of the electronic device provided in the electronic device having the metal case.
한편, 본 발명의 실시 예들에 따른 복합 소자와 캐패시터 또는 과전압 보호 기능을 갖는 소자의 특성을 비교하면 다음과 같다. 이러한 특성 비교는 각각의 소자들이 전자기기의 금속 케이스와 내부 회로 사이에 마련되는 경우 누설 전류, 즉 감전 전압 또는 전류의 보호 특성과 ESD 등의 과전압 보호 특성, 그리고 통신 주파수의 간섭 특성을 판단한 것이다. On the other hand, when comparing the characteristics of the composite device and the capacitor or the device having an overvoltage protection function according to the embodiments of the present invention. These characteristics comparison is to determine the leakage current, that is, the protection characteristics of the electric shock voltage or current and the overvoltage protection characteristics such as ESD, and the interference characteristics of the communication frequency when each element is provided between the metal case of the electronic device and the internal circuit.
먼저, 캐패시터의 경우, 즉 본 발명의 제 1 실시 예에서 과전압 보호부 및 결합부가 존재하지 않고 캐패시터부만으로 이루어진 경우 누설 전류 차단 특성을 가지며 통신 주파수 간섭이 발생되지 않지만, 과전압 보호 특성이 없기 때문에 ESD 등의 과전압에 의해 소자가 손상될 수 있다. 또한, 과전압에 의해 소자가 손상된 이후에는 누설 전류 차단 기능이 상실된다.First, in the case of a capacitor, that is, in the first embodiment of the present invention, when the overvoltage protection unit and the coupling unit do not exist and consist only of the capacitor unit, the capacitor has a leakage current blocking characteristic and no communication frequency interference occurs. The element may be damaged by an overvoltage, for example. In addition, the leakage current blocking function is lost after the device is damaged by the overvoltage.
순간전압억제(TVS) 다이오드는 통신 주파수 간섭이 발생되지 않도록 하기 위해 20㎊ 이상의 캐패시턴스로 구현할 경우 소형 사이즈에서 320V의 항복 전압의 구현이 불가능하여 누설 전류 차단 특성을 얻지 못한다. 그리고, 감전 보호를 위해 320V 이상의 항복 전압을 구현하는 경우 소형 사이즈에서 20㎊ 이상의 캐패시턴스를 얻지 못한다. 즉, 순간전압억제 다이오드는 과전압 보호 특성을 가질 수 있지만, 감전 보호 특성을 위해서는 통신 주파수 간섭 문제가 발생되고, 통신 주파수 간섭을 피하기 위해서는 감전 보호 특성을 얻지 못하는 문제가 있다.In order to prevent communication frequency interference, TVS diodes are not capable of implementing breakdown voltages of 320V in a small size when they are implemented with a capacitance of 20 kHz or more, thereby preventing leakage current blocking characteristics. In addition, when a breakdown voltage of 320V or more is implemented for electric shock protection, a capacitance of 20 mA or more is not obtained in a small size. That is, the instantaneous voltage suppression diode may have an overvoltage protection characteristic, but a communication frequency interference problem occurs for the electric shock protection characteristic, and there is a problem in that an electric shock protection characteristic is not obtained in order to avoid communication frequency interference.
배리스터의 경우, 즉 본 발명의 제 1 실시 예에서 캐패시터부 및 결합부가 존재하지 않고 과전압 보호부만 존재하는 경우 통신 주파수 간섭을 피하기 위해 20㎊ 이상의 캐패시턴스로 구현할 경우 소형 사이즈에서 320V의 항복 전압의 구현이 불가능하여 누설 전류 차단 특성을 얻지 못한다. 그리고, 감전 보호를 위해 320V 이상의 항복 전압을 구현하는 경우 소형 사이즈에서 20㎊ 이상의 캐패시턴스를 얻지 못한다. 즉, 배리스터는 과전압 보호 특성을 얻을 수 있지만, 감전 보호 특성을 위해서는 통신 주파수 간섭 문제가 발생되고, 통신 주파수 간섭을 피하기 위해서는 감전 보호 특성을 얻지 못하는 문제가 있다In the case of the varistor, that is, in the first embodiment of the present invention, when the capacitor unit and the coupling unit do not exist, and only the overvoltage protection unit exists, the implementation of the breakdown voltage of 320 V at a small size when implemented with a capacitance of 20 kHz or more to avoid communication frequency interference This is impossible and no leakage current blocking characteristic is obtained. In addition, when a breakdown voltage of 320V or more is implemented for electric shock protection, a capacitance of 20 mA or more is not obtained in a small size. In other words, the varistor has an overvoltage protection characteristic, but there is a problem of communication frequency interference for electric shock protection characteristics, and a problem of failing to obtain electric shock protection characteristic to avoid communication frequency interference.
캐패시터와 과전압 보호부를 동시 소결한 소자의 경우, 즉 캐패시터부와 과전압 보호부를 적층 형성한 후 동시 소결한 경우 소자의 항복 전압 또는 방전 개시 전압 이상의 ESD 전압, 예를 들어 2kV 이상의 과전압은 바이패스시키지만 2kV 이하의 과전압을 바이패스시키지 못하는 문제가 있다. 즉, 동시 소결된 소자의 경우 과전압 보호 성능이 저하되는 문제가 있다.In the case of a device which simultaneously sinters the capacitor and the overvoltage protection part, that is, when the capacitor part and the overvoltage protection part are laminated and co-sintered, the device may bypass the breakdown voltage or the ESD voltage above the discharge initiation voltage, for example, over 2 kV, but over 2 kV. There is a problem that the following overvoltage cannot be bypassed. That is, in the case of co-sintered devices, there is a problem in that overvoltage protection performance is lowered.
그러나, 본 발명의 실시 예들에 따른 복합 소자, 즉 캐패시터부와 과전압 보호부를 별도로 제작한 후 결합부를 이용하여 결합한 복합 소자는 과전압 보호부가 400V∼500V 정도의 낮은 항복 전압 또는 방전 개시 전압을 얻을 수 있다. 따라서, 2kV 이하, 즉 400V 이상의 과전압을 바이패스시킬 수 있다. 또한, 낮은 항복 전압 또는 방전 개시 전압에도 불구하고 통신 주파수 간섭이 발생되지 않는 20㎊ 이상, 바람직하게는 30㎊∼100㎊의 캐패시턴스를 갖는 소자를 구현할 수 있다.However, in the composite device according to the embodiments of the present invention, that is, a composite device manufactured by separately combining the capacitor unit and the overvoltage protection unit, and coupled using the coupling unit, the overvoltage protection unit may obtain a low breakdown voltage or a discharge start voltage of about 400V to 500V. . Therefore, overvoltage of 2 kV or less, that is, 400 V or more can be bypassed. In addition, a device having a capacitance of 20 Hz or more, preferably 30 Hz to 100 Hz, in which communication frequency interference does not occur despite a low breakdown voltage or a discharge start voltage can be implemented.
본 발명은 적어도 둘 이상의 기능층이 적층되고 적어도 둘 이상의 기능층에 서로 다른 색상 또는 명암을 부여하여 복합 소자가 방향성을 갖도록 한다. 이렇게 방향성을 가지면서 예를 들어 캐패시터부(2000)가 전자기기의 PCB, 즉 내부 회로에 대면하여, 즉 하측에 위치함으로써 삽입 손실을 줄일 수 있다. 즉, 도 10 및 도 11은 캐패시터부의 실장 위치에 따른 주파수 경로를 도시한 개략도로서, 도 10은 본 발명의 실시 예로서 캐패시터부가 하측에 위치할 경우의 주파수 경로를 도시하였고, 도 11은 비교 예로서 캐패시터부가 상측에 위치할 경우의 주파수 경로를 도시하였다. 한편, 도 10 및 도 11에서 복합 소자의 두 외부 전극(5100, 5200)이 내부 회로(21, 22)에 실장되는 것으로 도시하였는데, 이때 제 1 외부 전극(5100)은 내부 회로(21)를 통해 금속 케이스와 연결될 수 있고, 제 2 외부 전극(5200)은 내부 회로(22)의 타 영역 또는 접지 단자와 연결될 수 있다. 비교 예 및 실시 예에 따른 삽입 손실을 [표 1]과 도 12 내지 도 14에 도시하였다. 비교 예(A)는 과전압 보호부가 하측에 위치하고 캐패시터부가 상측에 위치한 경우의 주파수에 따른 삽입 손실을 나타낸 것이고, 실시 예(B)는 캐패시터부가 하측에 위치하고 과전압 보호부가 상측에 위치한 경우의 주파수에 따른 삽입 손실을 나타낸 것이다. 여기서, 도 12는 비교 예(A) 및 실시 예(B)의 주파수에 따른 삽입 손실을 나타낸 그래프이고, 도 13은 도 12를 확대하여 특정 주파수, 즉 1.8㎓ 및 2.4㎓에서의 삽입 손실을 나타낸 그래프이며, 도 14는 10㎓ 부근에서의 삽입 손실을 나타낸 그래프이다. 또한, 복합 소자는 도 1 및 도 2를 이용하여 설명한 본 발명의 제 1 실시 예에 따라 캐패시터와 배리스터가 결합부에 의해 결합된 구조를 이용하였고, 복합 소자의 캐패시턴스는 100㎊이다.According to the present invention, at least two or more functional layers are stacked and different colors or contrasts are given to the at least two or more functional layers so that the composite device has a direction. With this directionality, for example, the capacitor part 2000 may face the PCB, that is, the internal circuit of the electronic device, that is, the lower side, thereby reducing the insertion loss. That is, FIGS. 10 and 11 are schematic diagrams illustrating a frequency path according to a mounting position of a capacitor unit, and FIG. 10 illustrates a frequency path when the capacitor unit is positioned below as an embodiment of the present invention, and FIG. 11 is a comparative example. The frequency path in the case where the capacitor section is located above is shown. Meanwhile, in FIGS. 10 and 11, two external electrodes 5100 and 5200 of the composite device are illustrated as being mounted in the internal circuits 21 and 22. In this case, the first external electrode 5100 is connected to the internal circuit 21 through the internal circuit 21. It may be connected to the metal case, and the second external electrode 5200 may be connected to another region or the ground terminal of the internal circuit 22. Insertion loss according to Comparative Examples and Examples is shown in [Table 1] and FIGS. 12 to 14. Comparative Example (A) shows the insertion loss according to the frequency when the overvoltage protection part is located on the lower side and the capacitor part is on the upper side. Example (B) shows the insertion loss according to the frequency when the capacitor part is on the lower side and the overvoltage protection part is on the upper side. Insertion loss is shown. Here, FIG. 12 is a graph showing the insertion loss according to the frequency of Comparative Examples (A) and (B), and FIG. 13 is an enlarged view of FIG. 12 to show the insertion loss at specific frequencies, that is, 1.8 GHz and 2.4 GHz. It is a graph, and FIG. 14 is a graph which shows insertion loss in the vicinity of 10 microseconds. In addition, the composite device uses a structure in which a capacitor and a varistor are coupled by a coupling unit according to the first embodiment of the present invention described with reference to FIGS. 1 and 2, and the capacitance of the composite device is 100 μs.
삽입 손실Insertion loss 비교 예Comparative example 실시 예Example
1.8㎓1.8 ㎓ -0.360dB-0.360 dB -0.320dB-0.320 dB
2.4㎓2.4 ㎓ -0.408dB-0.408 dB -0.368dB-0.368 dB
[표 1] 및 도 13에 나타낸 바와 같이, 1.8㎓의 주파수에서 비교 예(A)의 삽입 손실은 -0.360dB이고 실시 예(B)의 삽입 손실은 -0.320dB이다. 또한 2.4㎓의 주파수에서 비교 예(A)의 삽입 손실은 -0.408dB이고 실시 예(B)의 삽입 손실은 -0.368dB이다. 따라서, 삽입 손실은 0dB에 가까울수록 우수하므로 캐패시터부가 하측에 위치하는 실시 예(B)가 캐패시터부가 상측에 위치하는 비교 예(A)보다 삽입 손실이 우수하다. 결국, 캐패시터부가 하측에 위치하도록 실장함으로써 삽입 손실을 줄일 수 있다. 또한, 도 14에 도시된 바와 같이 실시 예(B)는 비교 예(A)에 비해 고주파에서의 삽입 손실이 더 작고, 대역폭(bandwidth)이 고주파 방향으로 더 넓은 것을 확인할 수 있다. 즉, 컷오프 주파수의 기준인 3dB에서의 삽입 손실의 경우를 예로 들면 실시 예(B)의 주파수가 비교 예(A)의 주파수보다 더 높고, 그에 따라 실시 예의 대역폭이 더 넓다.As shown in Table 1 and FIG. 13, the insertion loss of the comparative example (A) is -0.360 dB and the insertion loss of the example (B) is -0.320 dB at the frequency of 1.8 kHz. In addition, the insertion loss of the comparative example (A) is -0.408dB and the insertion loss of the example (B) is -0.368dB at the frequency of 2.4 kHz. Therefore, the insertion loss is better as it is closer to 0 dB, so the embodiment (B) in which the capacitor part is located below the insertion loss is superior to the comparative example (A) in which the capacitor part is located above. As a result, the insertion loss can be reduced by mounting the capacitor section below. In addition, as shown in FIG. 14, the insertion loss at a high frequency is smaller and the bandwidth is wider in the high frequency direction than that of the comparative example (A). That is, in the case of the insertion loss at 3 dB as the reference of the cutoff frequency, for example, the frequency of the embodiment (B) is higher than the frequency of the comparative example (A), and thus the bandwidth of the embodiment is wider.
상기한 바와 같이 캐패시터부가 상측에 위치할 경우 하측에 위치할 경우에 비해 내부 회로(20)의 일 단자로부터 캐패시터를 통해 내부 회로(20)의 타 단자로의 주파수 이동 경로가 길어지게 되어 고주파 통신에서 기생 인덕턴스로 작용한다. 따라서, 고주파 통신에서 S21(투과 계수)에 영향을 주어 삽입 손실이 커지게 하거나, 주파수의 대역폭(bandwidth)이 좁아지게 한다. 결국, 캐패시터부가 내부 회로(20)에 대면하도록 하측에 위치하도록 하여 기생 인덕턴스를 줄이고 그에 따라 삽입 손실을 줄일 수 있다.As described above, when the capacitor unit is located on the upper side, the frequency moving path from one terminal of the internal circuit 20 to the other terminal of the internal circuit 20 becomes longer through the capacitor than in the case where the capacitor unit is located on the lower side. It acts as a parasitic inductance. Therefore, in high frequency communication, S21 (transmission coefficient) is affected to increase the insertion loss or to narrow the bandwidth of the frequency. As a result, the capacitor portion may be positioned downward to face the internal circuit 20, thereby reducing parasitic inductance and thus reducing insertion loss.
한편, 본 발명의 실시 예들에 따른 색상을 이용하여 방향성을 갖는 복합 소자는 일측 표면의 색상 또는 명암을 확인하여 방향성을 판단할 수 있다. 예를 들어, 복합 소자의 상측 표면, 즉 과전압 보호부 측의 표면 밝기를 확인하여 방향성을 판단할 수 있다. 이를 위한 판단 장치는 복합 소자의 표면을 센싱하는 센싱부를 포함할 수 있고, 센싱부로부터 센싱된 복합 소자의 예를 들어 표면 밝기를 제어부가 판단하여 복합 소자의 방향성을 판단할 수 있다. 예를 들어, 제어부는 센싱부에서 센싱된 복합 소자의 밝기가 설정된 밝기보다 밝을 경우 정상 위치로 판단할 수 있다. 물론, 제어부는 복합 소자의 밝기가 설정된 밝기보다 어두울 경우 정상 위치로 판단할 수도 있다. 제어부의 판단 결과에 따라 비정상 위치로 판단되는 경우 위치를 바로잡을 필요가 있다.On the other hand, a composite device having directivity using color according to embodiments of the present invention can determine the directivity by checking the color or contrast of one surface. For example, the directionality can be determined by checking the brightness of the upper surface of the composite device, that is, the surface brightness of the overvoltage protection unit. The determination device for this may include a sensing unit for sensing the surface of the composite device, and the controller may determine the directionality of the composite device by determining, for example, surface brightness of the composite device sensed from the sensing unit. For example, the controller may determine the normal position when the brightness of the composite device sensed by the sensing unit is brighter than the set brightness. Of course, the controller may determine the normal position when the brightness of the composite device is darker than the set brightness. If it is determined that the abnormal position according to the determination result of the controller it is necessary to correct the position.
또한, 본 발명의 실시 예들에 따른 복합 소자는 색상 또는 명암을 이용하여 방향성을 판단한 후 개구가 형성된 테이프에 삽입될 수 있다. 예를 들어, 복합 소자는 도 15에 도시된 바와 같이 테이프(6000)에 마련된 복수의 수용홈(6100)에 삽입될 수 있다. 수용홈(6100)은 소정 간격 이격되어 복수 마련될 수 있고, 각각의 수용홈(6100) 내에 복합 소자가 삽입될 수 있다. 또한, 테이프(6000)은 수용홈(6100)의 일측에 보조홈(6200)이 더 형성될 수 있다. 보조홈(6200)은 톱니 형태의 장비로 테이프(6000)를 이동시키는데 이용될 수 있다. 한편, 복합 소자가 수용홈(6100) 내에 삽입되면 테이프(6000)는 도 16에 도시된 바와 같은 휠(7000)에 감겨 포장될 수 있다.In addition, the composite device according to the embodiments of the present invention may be inserted into a tape having an opening after determining the orientation using color or contrast. For example, the composite device may be inserted into a plurality of receiving grooves 6100 provided in the tape 6000 as shown in FIG. 15. The accommodation grooves 6100 may be provided in plurality, spaced apart from each other by a predetermined interval, and a composite element may be inserted into each accommodation groove 6100. In addition, the tape 6000 may further include an auxiliary groove 6200 on one side of the receiving groove 6100. The auxiliary groove 6200 may be used to move the tape 6000 to the saw-toothed equipment. Meanwhile, when the composite element is inserted into the receiving groove 6100, the tape 6000 may be wrapped around the wheel 7000 as shown in FIG. 16.
이렇게 센싱부 및 제어부를 포함하여 복합 소자의 방향성을 판단하고 복합 소자를 테이프(6000)의 수용 홈(6100)에 삽입하여 포장하는 장치의 예를 도 17 내지 도 19에 도시하였다.17 to 19 illustrate examples of a device including a sensing unit and a control unit to determine the orientation of the composite device and insert the composite device into the receiving groove 6100 of the tape 6000.
도 17은 본 발명의 실시 예들에 따른 복합 소자의 방향성을 판단하고 포장하기 위한 포장 장치의 블럭도이다. 또한, 도 18은 포장 장치의 상면 개략도이며, 도 19는 테이프 공급부 및 테이프 와인딩부를 도시한 전면 개략도이다.17 is a block diagram of a packaging apparatus for determining and packaging a direction of a composite device according to embodiments of the present disclosure. 18 is a schematic top view of the packaging apparatus, and FIG. 19 is a front schematic view showing the tape supply section and the tape winding section.
도 17 내지 도 19를 참조하면, 본 발명이 적용되는 포장 장치는 본 발명의 실시 예들에 따른 복합 소자, 즉 칩을 투입하는 투입부(7100)와, 투입부(7100)로부터 칩을 공급받아 일 방향으로 회전하면서 칩을 정렬시키는 정렬부(7200)와, 정렬부(7200)의 일측에 마련되어 칩의 표면을 센싱하는 센싱부(7300)와, 센싱부(7300)와 이격되어 정렬부(7200)의 일측에 마련되어 비정상적으로 위치하는 칩을 배출시키는 배출부(7400)와, 칩을 정렬부(7200)로부터 일 방향으로 이동시키는 이동부(7500)와, 이동부(7500)의 끝단에 마련되어 칩을 테이프(6000)의 수용 홈(6100)으로 삽입하는 삽입부(7600)와, 칩을 삽입하기 위한 테이프(6000)를 공급하는 테이프 공급부(7700)와, 칩이 삽입된 테이프를 와인딩하는 테이프 와인딩부(7800)와, 칩의 표면 색상 또는 명암을 확인하여 칩의 정렬 상태를 판단하고 포장 장치의 전체 구동을 제어하는 제어부(7900)를 포함할 수 있다. 또한, 도시되지 않았지만, 센싱부(7300)와 배출부(7400) 사이에 마련되어 비정상적으로 위치하는 칩의 위치를 반전시키는 반전부와, 센싱부(7300)에서 센싱된 칩의 영상을 표시하는 표시부를 더 포함할 수 있다.17 to 19, a packaging apparatus to which the present invention is applied is a composite device according to embodiments of the present invention, that is, a chip injecting a chip from an inserting unit 7100 and an inserting unit 7100 according to embodiments of the present invention. Alignment unit 7200 to align the chip while rotating in the direction, the sensing unit 7300 is provided on one side of the alignment unit 7200 and the sensing unit 7300, spaced apart from the sensing unit 7300, alignment unit 7200 A discharge part 7400 provided at one side of the discharge part to discharge an abnormally positioned chip, a moving part 7500 for moving the chip in one direction from the alignment part 7200, and a chip provided at the end of the moving part 7500 Insert portion 7700 for inserting into the receiving groove 6100 of the tape 6000, tape supply portion 7700 for supplying the tape 6000 for inserting the chip, and tape winding portion for winding the tape inserted the chip (7800) and determine the alignment state of the chip by checking the surface color or contrast of the chip It may comprise a control unit (7900) that controls the entire operation of the device and packaging. In addition, although not shown, an inverting unit provided between the sensing unit 7300 and the discharge unit 7400 to invert a position of an abnormally positioned chip, and a display unit displaying an image of the chip sensed by the sensing unit 7300. It may further include.
투입부(7100)는 정렬부(7200)의 상측에 마련되어 다량의 칩을 저장하며, 제어부(7900)의 제어에 따라 정렬부(7200)에 칩을 투입할 수 있다. 또한, 투입부(7100)는 콘 형태의 외관을 가질 수 있다. 즉, 투입부(7100)는 상부가 소정의 직경을 갖는 대략 원형으로 마련되고 하측으로 갈수록 폭이 좁아지는 콘 형태로 마련될 수 있다. 이러한 투입부(7100)는 제어부(7900)의 제어에 따라 정렬부(7200) 상에 소정 시간마다 소정 시간 동안 칩을 투입할 수 있다. 즉, 투입부(7100)는 제어부(7900)의 제어에 따라 정렬부(7200)에 투입되는 칩의 양을 조절할 수 있다.The input unit 7100 may be disposed above the alignment unit 7200 to store a large amount of chips, and may inject chips into the alignment unit 7200 under the control of the controller 7900. In addition, the input unit 7100 may have an appearance of a cone shape. That is, the input unit 7100 may be provided in the shape of a cone, the upper portion of which is provided in a substantially circular shape and the width becomes narrower toward the lower side. The input unit 7100 may inject chips into the alignment unit 7200 for a predetermined time every predetermined time under the control of the controller 7900. That is, the input unit 7100 may adjust the amount of chips input to the alignment unit 7200 under the control of the controller 7900.
정렬부(7200)는 투입부(7100)로부터 투입된 칩을 정렬시킨다. 이러한 정렬부(7200)는 칩이 연쇄적으로 상향 이동될 수 있는 맴돌이 형태로 마련될 수 있다. 즉, 정렬부(7200)는 소정 깊이를 갖는 대략 원형으로 마련되며, 내측면에 맴돌이 형태의 단이 형성될 수 있고, 일 방향, 예를 들어 반시계 방향으로 회전할 수 있다. 따라서, 정렬부(7200)에 투입된 칩이 바닥면으로부터 측면을 따라 상측으로 이동할 수 있다. 또한, 정렬부(7200)는 하측에 진동부(미도시)가 마련되어 진동할 수 있다. 따라서, 정렬부(7200)는 칩에 진동을 제공하면서 일 방향으로 회전하여 칩을 이동시킬 수 있다.The alignment unit 7200 aligns the chips introduced from the input unit 7100. The alignment unit 7200 may be provided in the shape of a circumference in which the chip may be sequentially moved upward. That is, the alignment unit 7200 may be provided in a substantially circular shape having a predetermined depth, and a circumferential end may be formed on the inner side, and may rotate in one direction, for example, counterclockwise. Therefore, the chip inserted into the alignment unit 7200 may move upward along the side surface from the bottom surface. In addition, the alignment unit 7200 may be provided with a vibrating unit (not shown) on the lower side to vibrate. Therefore, the alignment unit 7200 may move the chip by rotating in one direction while providing vibration to the chip.
센싱부(7300)는 정렬부(7200)의 일측에 마련되어 정렬부(7200)에 의해 이동하는 칩을 센싱할 수 있다. 이때, 센싱부(7300)는 이동되는 칩을 하나씩 센싱할 수 있다. 또한, 센싱부(7300)는 정렬된 상태의 칩을 센싱할 수 있다. 이를 위해 센싱부(7300)는 정렬부(7200)의 최상단의 소정 영역을 센싱하도록 마련될 수 있다. 한편, 센싱부(7300)는 칩의 명암, 즉 밝기를 센싱할 수 있고, 칩의 광량을 센싱할 수 있다. 칩의 밝기 또는 광량을 센싱하기 위해 센싱부(7300)는 칩으로부터 반사되는 광을 센싱할 수 있다.The sensing unit 7300 may be provided at one side of the alignment unit 7200 to sense a chip moving by the alignment unit 7200. In this case, the sensing unit 7300 may sense the moved chips one by one. In addition, the sensing unit 7300 may sense the chips in the aligned state. To this end, the sensing unit 7300 may be provided to sense a predetermined region at the top of the alignment unit 7200. Meanwhile, the sensing unit 7300 may sense the brightness and / or brightness of the chip, and sense the amount of light of the chip. In order to sense the brightness or the amount of light of the chip, the sensing unit 7300 may sense the light reflected from the chip.
배출부(7400)는 센싱부(7300)와 이격되어 정렬부(7200)의 외측에 마련될 수 있다. 이러한 배출부(7400)는 센싱부(7300)에서 센싱하고 제어부(7900)에서 판단한 비정상 칩을 배출하기 위해 마련될 수 있다. 여기서, 정상 칩은 설정된 밝기보다 밝은 면이 위를 향하는 칩이고 비정상 칩은 설정된 밝기보다 어두운 면이 위를 향상하는 칩일 수 있다. 물론, 반대로 정상 칩이 설정된 밝기보다 어두운 면이 위를 향하고 비정상 칩이 설정된 밝기보다 밝은 면이 위를 향할 수도 있다. 예를 들어, 센싱부(7300)가 센싱한 칩이 뒤집힌 상태일 경우 배출부(7400)는 이를 배출할 수 있다. 배출부(7400)는 비정상적으로 위치하는 칩을 공기를 이용하여 불어 배출할 수 있다. 배출부(7400)에 의해 배출된 칩은 정렬부(7200)의 다른 단 또는 정렬부(7200)의 바닥으로부터 다시 상향 이동될 수 있다.The discharge part 7400 may be spaced apart from the sensing part 7300 and disposed outside the alignment part 7200. The discharge unit 7400 may be provided to discharge the abnormal chip sensed by the sensing unit 7300 and determined by the control unit 7900. Here, the normal chip may be a chip having a brighter side than the set brightness facing upwards, and the abnormal chip may be a chip having a surface darker than the set brightness upward. Of course, on the contrary, the side where the normal chip is darker than the set brightness may face upwards, and the side where the abnormal chip is brighter than the set brightness may face upward. For example, when the chip sensed by the sensing unit 7300 is in an inverted state, the discharge unit 7400 may discharge it. The discharge unit 7400 may blow out chips that are abnormally positioned using air. Chips discharged by the discharge unit 7400 may be moved upward again from the other end of the alignment unit 7200 or the bottom of the alignment unit 7200.
이동부(7500)는 정렬부(7200)를 통해 상하 위치가 정렬되고 센싱부(7300) 및 제어부(7790)에 의해 정상 위치로 판단된 칩을 테이프(6000)에 삽입하기 위한 위치로 이동되는 통로이다. 이동부(7500)는 정렬부(7200)와 삽입부(7600) 사이에 직선으로 마련될 수 있다. 이러한 이동부(7500)는 구동력에 의해 칩을 이동시킬 수도 있고, 진동에 의해 칩을 이동시킬 수도 있다.The moving unit 7500 is aligned with the upper and lower positions through the alignment unit 7200, and the passage is moved to a position for inserting the chip 6000 determined as the normal position by the sensing unit 7300 and the control unit 7970 to the tape 6000. to be. The moving unit 7500 may be provided in a straight line between the alignment unit 7200 and the insertion unit 7600. The moving unit 7500 may move the chip by the driving force, or may move the chip by the vibration.
삽입부(7600)는 이동부(7500)를 통해 이동된 칩을 테이프(6000)의 수용 홈(6100)에 삽입하기 위해 마련될 수 있다. 삽입부(7600)는 예를 들어 칩을 흡입하여 테이프(6000) 상으로 이동한 후 수용홈(6100)에 삽입할 수 있다. 이를 위해 삽입부(7600)는 흡입 부재, 이동 부재, 밸브, 진공 펌프 등으로 구성될 수 있다. 예를 들어, 흡입 부재가 흡입력을 이용하여 칩을 흡입한 후 이동 부재가 칩을 수용홈(6100) 상에 위치하도록 이동하고 밸브를 이용하여 흡입력을 제거하여 수용홈(6100)에 칩이 삽입되도록 할 수 있다. 이때, 진공 펌프는 진공을 제공하고, 밸브는 진공을 개폐하여 흡입 부재에 흡입력을 제공하거나 해제할 수 있다. 이러한 밸브, 진공 펌프, 흡입 부재, 이동 부재의 구동은 제어부(7900)의 제어에 의해 이루어질 수 있다.The inserting unit 7600 may be provided to insert the chip moved through the moving unit 7500 into the receiving groove 6100 of the tape 6000. The inserting unit 7600 may, for example, suck the chip and move it onto the tape 6000 and then insert it into the receiving groove 6100. For this purpose, the insertion unit 7600 may be configured as a suction member, a moving member, a valve, a vacuum pump, and the like. For example, after the suction member sucks the chip using the suction force, the moving member moves the chip to be positioned on the receiving groove 6100 and removes the suction force using the valve so that the chip is inserted into the receiving groove 6100. can do. At this time, the vacuum pump provides a vacuum, the valve can open and close the vacuum to provide or release the suction force to the suction member. The driving of the valve, the vacuum pump, the suction member, and the moving member may be performed by the control of the controller 7900.
테이프 공급부(7700)는 칩을 수용하기 위한 테이프(6000)를 공급하고, 테이프 와인딩부(7800)는 칩이 수용된 테이프를 와인딩한다. 즉, 테이프 공급부(7700)는 포장 장치의 전면 하측에 마련되어 롤에 감긴 테이프(6000)를 풀어 공급하고, 테이프 와인딩부(7800)는 칩이 수용된 테이프를 롤에 감는다. 이때, 테이프(6000)는 이동부(7500)의 칩의 진행 방향으로 공급될 수 있다. 물론, 테이프(6000)는 칩의 이동 방향과 반대 방향으로 이동하거나, 칩의 이동 방향과 직교하는 방향으로 이동할 수도 있다. 또한, 테이프 공급부(7700)와 테이프 와인딩부(7800) 사이에는 테이프의 이동을 가이드하는 가이드 롤(7710 및 7720)이 마련된다. 예를 들어, 제 1 가이드 롤(7710)은 테이프(6000)가 공급되는 측의 상단에 마련되고, 제 2 가이드 롤(7720)은 데이프(6000)가 감기는 측의 상단에 마련될 수 있다.The tape supply unit 7700 supplies the tape 6000 for accommodating the chip, and the tape winding unit 7800 winds the tape in which the chip is accommodated. That is, the tape supply part 7700 is provided on the front lower side of the packaging apparatus to release and supply the tape 6000 wound on the roll, and the tape winding part 7800 winds the tape containing the chip on the roll. In this case, the tape 6000 may be supplied in the advancing direction of the chip of the moving unit 7500. Of course, the tape 6000 may move in a direction opposite to the moving direction of the chip, or move in a direction orthogonal to the moving direction of the chip. In addition, guide rolls 7710 and 7720 are provided between the tape supply unit 7700 and the tape winding unit 7800 to guide the movement of the tape. For example, the first guide roll 7710 may be provided at an upper end of the side on which the tape 6000 is supplied, and the second guide roll 7720 may be provided at an upper end of the side on which the tape 6000 is wound.
제어부(7790)는 센싱부(7300)에서 센싱된 칩의 표면 이미지를 확인하여 칩의 정상 여부를 판단한다. 예를 들어, 제어부(7790)는 밝기 또는 광량을 설정하고 설정된 밝기 또는 광량 이상이면 칩이 정상적으로 위치된 것으로 판단하고 설정된 밝기 또는 광량 이하이면 칩이 비정상적으로 위치된 것으로 판단할 수 있다. 구체적으로, 색상 또는 명암이 다른 본 발명에 따른 복합 소자는 일면의 밝기가 3000∼3500cd이고, 타측의 밝기가 100∼500cd일 수 있는데, 기준값을 예를 들어 1700cd로 설정하고 측정된 밝기가 1700cd 이상이면 정상으로 판단하고 1700cd 이하이면 비정상으로 판단할 수 있다. 또한, 제어부(7790)는 포장 장치 전반의 구동을 제어한다. 즉, 투입부(7100)의 투입 시점 및 투입량을 제어하고 정럴부(7200)의 회전 및 진동이 가능하도록 제어하며, 배출부(7400)를 제어하여 비정상 칩을 배출하도록 한다. 또한, 이동부(7500)를 제어하여 칩이 삽입 위치로 이동되도록 하고 삽입부(7600)를 제어하여 칩이 테이프(600)에 삽입되도록 하며, 테이프 공급부(7700) 및 테이프 와인딩부(7800)를 제어하여 테이프를 공급 및 와인딩하도록 한다.The controller 7790 checks the surface image of the chip sensed by the sensing unit 7300 to determine whether the chip is normal. For example, the controller 7790 may set the brightness or the amount of light and determine that the chip is normally positioned when the brightness or the amount of light is equal to or greater than the set brightness or the amount of light. Specifically, the composite device according to the present invention having different colors or contrasts may have a brightness of 3000 to 3500cd on one side and a brightness of 100 to 500cd on the other side. If it is normal, and if it is 1700cd or less, it can be determined abnormal. In addition, the control unit 7790 controls the driving of the overall packaging apparatus. That is, the input time and the input amount of the input unit 7100 is controlled, and the rotation and vibration of the regular unit 7200 is controlled, and the discharge unit 7400 is controlled to discharge the abnormal chip. In addition, by controlling the moving unit 7500 to move the chip to the insertion position and control the insertion unit 7600 to insert the chip into the tape 600, the tape supply unit 7700 and the tape winding unit 7800 Control to feed and wind the tape.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.The present invention is not limited to the above-described embodiments, but may be implemented in various forms. In other words, the above embodiments are provided to make the disclosure of the present invention complete and to fully inform those skilled in the art of the scope of the present invention, and the scope of the present invention should be understood by the claims of the present application. .

Claims (16)

  1. 서로 다른 기능을 하는 둘 이상의 기능부;Two or more functional units having different functions;
    상기 기능부 사이에 마련되어 이들을 결합시키는 결합부; 및A coupling part provided between the functional parts to couple them; And
    상기 기능부와 결합부의 적층체 외부에 형성되어 상기 기능부의 적어도 일부와 연결된 외부 전극을 포함하고,An external electrode formed outside the laminate of the functional part and the coupling part and connected to at least a part of the functional part,
    상기 적층체의 서로 대향되는 적어도 두 면은 서로 다른 색상 또는 명암을 갖는 복합 소자.At least two opposite surfaces of the laminate have different colors or contrasts.
  2. 청구항 1에 있어서, 상기 둘 이상의 기능부는 서로 다른 색상 또는 명암을 갖는 복합 소자.The composite device of claim 1, wherein the two or more functional units have different colors or contrasts.
  3. 청구항 1에 있어서, 상기 둘 이상의 기능부는 두께 및 크기 중 적어도 하나가 서로 다른 복합 소자.The composite device of claim 1, wherein the two or more functional units have different thicknesses and sizes.
  4. 청구항 1에 있어서, 상기 기능부는 저항, 캐패시터, 인덕터, 노이즈 필터, 배리스터 및 서프레서 중 둘 이상을 포함하는 복합 소자.The composite device of claim 1, wherein the functional unit includes two or more of a resistor, a capacitor, an inductor, a noise filter, a varistor, and a suppressor.
  5. 청구항 1에 있어서, 상기 둘 이상의 기능부는 각각 복수의 시트와, 상기 복수의 시트 상에 선택적으로 형성된 도전층을 포함하는 복합 소자.The composite device of claim 1, wherein each of the two or more functional units includes a plurality of sheets and a conductive layer selectively formed on the plurality of sheets.
  6. 청구항 5에 있어서, 상기 둘 이상의 기능부 각각의 시트는 서로 다른 색상 또는 명암을 갖는 복합 소자.The composite device of claim 5, wherein the sheets of each of the two or more functional units have different colors or contrasts.
  7. 청구항 6에 있어서, 동일 기능부의 시트 중 적어도 하나는 다른 색상 또는 명암을 갖는 복합 소자.The composite device of claim 6, wherein at least one of the sheets of the same functional portion has a different color or contrast.
  8. 청구항 6에 있어서, 상기 둘 이상의 기능부 각각의 시트는 서로 다른 색상의 안료가 첨가된 복합 소자.The composite device of claim 6, wherein the sheets of each of the two or more functional parts are added with pigments of different colors.
  9. 청구항 6에 있어서, 상기 둘 이상의 기능부 각각의 시트는 동일 색상의 안료가 다른 양으로 첨가된 복합 소자.The composite device according to claim 6, wherein the sheets of each of the two or more functional parts are added with different amounts of pigments of the same color.
  10. 청구항 5에 있어서, 상기 도전층은 도전 물질로 형성되거나 적어도 하나의 적어도 일부가 도전 물질과 상기 시트와 동일 물질의 혼합물로 형성되는 복합 소자.The composite device of claim 5, wherein the conductive layer is formed of a conductive material or at least one portion thereof is formed of a mixture of a conductive material and the same material as the sheet.
  11. 청구항 1에 있어서, 상기 둘 이상의 기능부는 서로 다른 공정으로 제조 및 소결된 후 상기 결합부에 의해 결합되는 복합 소자.The composite device of claim 1, wherein the two or more functional units are joined by the coupling unit after being manufactured and sintered in different processes.
  12. 청구항 1에 있어서, 상기 결합부는 글래스, 폴리머 및 올리고머 중 적어도 하나를 포함하는 복합 소자.The composite device of claim 1, wherein the bonding portion comprises at least one of glass, a polymer, and an oligomer.
  13. 청구항 1에 있어서, 상기 외부 전극은 적어도 일 영역의 두께가 다른 영역과 다른 복합 소자.The composite device of claim 1, wherein the external electrode has a thickness different from at least one region having a different thickness.
  14. 사용자가 접촉 가능한 도전체와 내부 회로를 포함하고,Includes conductors and internal circuitry accessible to the user,
    상기 도전체와 상기 내부 회로 사이에 청구항 1 내지 청구항 13 중 어느 한 항 기재의 복합 소자가 마련된 전자기기.The electronic device provided with the composite element of any one of Claims 1-13 between the said conductor and the said internal circuit.
  15. 청구항 14에 있어서, 상기 도전체와 상기 복합 소자 사이에 마련된 적어도 하나의 도전성 부재를 더 포함하고, 상기 복합 소자는 접지 단자와 연결되거나 수동 소자를 통해 접지 단자와 연결된 전자기기.The electronic device of claim 14, further comprising at least one conductive member provided between the conductor and the composite device, wherein the composite device is connected to the ground terminal or connected to the ground terminal through a passive element.
  16. 청구항 14에 있어서, 상기 복합 소자는 캐패시터부 및 과전압 보호부를 포함하고, 상기 캐패시터부가 상기 내부 회로에 인접하여 실장되는 전자기기.15. The electronic device of claim 14, wherein the composite element includes a capacitor portion and an overvoltage protection portion, and the capacitor portion is mounted adjacent to the internal circuit.
PCT/KR2017/014399 2016-12-29 2017-12-08 Complex device and electronic device having same WO2018124535A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0182700 2016-12-29
KR20160182700 2016-12-29
KR10-2017-0119641 2017-09-18
KR1020170119641A KR102073726B1 (en) 2016-12-29 2017-09-18 Complex component and electronic device having the same

Publications (1)

Publication Number Publication Date
WO2018124535A1 true WO2018124535A1 (en) 2018-07-05

Family

ID=62710659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014399 WO2018124535A1 (en) 2016-12-29 2017-12-08 Complex device and electronic device having same

Country Status (1)

Country Link
WO (1) WO2018124535A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613441A (en) * 2019-02-25 2020-09-01 太阳诱电株式会社 Ceramic electronic component, mounting substrate, package, and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080037065A (en) * 2006-07-03 2008-04-29 가부시키가이샤 무라타 세이사쿠쇼 Stacked semiconductor ceramic capacitor with varistor function and method for manufacturing the same
KR20110002466A (en) * 2008-04-16 2011-01-07 에프코스 아게 Multi-layered component
KR20150089142A (en) * 2014-01-27 2015-08-05 삼성전기주식회사 Composite electronic component and board for mounting the same
KR20160019324A (en) * 2014-08-11 2016-02-19 삼성전기주식회사 Composite electronic component, board for mounting the same and packing unit thereof
KR20160060545A (en) * 2014-11-20 2016-05-30 주식회사 아모텍 Circuit protection device and mobile electronic device with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080037065A (en) * 2006-07-03 2008-04-29 가부시키가이샤 무라타 세이사쿠쇼 Stacked semiconductor ceramic capacitor with varistor function and method for manufacturing the same
KR20110002466A (en) * 2008-04-16 2011-01-07 에프코스 아게 Multi-layered component
KR20150089142A (en) * 2014-01-27 2015-08-05 삼성전기주식회사 Composite electronic component and board for mounting the same
KR20160019324A (en) * 2014-08-11 2016-02-19 삼성전기주식회사 Composite electronic component, board for mounting the same and packing unit thereof
KR20160060545A (en) * 2014-11-20 2016-05-30 주식회사 아모텍 Circuit protection device and mobile electronic device with the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613441A (en) * 2019-02-25 2020-09-01 太阳诱电株式会社 Ceramic electronic component, mounting substrate, package, and method for manufacturing the same
US11532434B2 (en) * 2019-02-25 2022-12-20 Taiyo Yuden Co., Ltd. Ceramic electronic device, mounting substrate, package body of ceramic electronic device, and manufacturing method of ceramic electronic device
CN111613441B (en) * 2019-02-25 2023-10-27 太阳诱电株式会社 Ceramic electronic device, mounting substrate, package, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR102073726B1 (en) Complex component and electronic device having the same
WO2018021786A1 (en) Complex device and electronic device having same
KR101781574B1 (en) Laminated device and electronic device having the same
JP2004311877A (en) Static electricity countermeasure component
WO2018105912A1 (en) Composite protection element and electronic device including same
WO2017209448A1 (en) Contactor
WO2019240402A1 (en) Laminated device
WO2005088654A1 (en) Static electricity countermeasure component
KR101066456B1 (en) Circuit protection device
WO2018124535A1 (en) Complex device and electronic device having same
WO2015041447A1 (en) Embedded multilayer ceramic capacitor and method for manufacturing embedded multilayer ceramic capacitor
WO2018066871A1 (en) Complex protection device and electronic apparatus including same
WO2016178524A1 (en) Electric shock-prevention element and electronic device provided with same
KR102053356B1 (en) Method of manufacturing a complex component and the complex component manufactured by the same and electronic device having the same
WO2019035559A1 (en) Composite device manufacturing method and composite device manufactured thereby
WO2017135566A1 (en) Composite protection element and electronic device having same
WO2018124492A1 (en) Complex device and electronic device having same
WO2020204415A1 (en) Composite element and electronic device including same
WO2019066221A1 (en) Stacked element and electronic device having same
WO2018004276A1 (en) Chip component and manufacturing method therefor
WO2018117447A1 (en) Complex protective element and electronic device comprising same
WO2016178528A1 (en) Electric shock-prevention element and electronic device provided with same
KR20170063156A (en) Circuit protection device and mobile electronic device with the same
WO2017196151A1 (en) Contactor, and electronic device provided with same
KR102335084B1 (en) Complex component and electronic device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889275

Country of ref document: EP

Kind code of ref document: A1