WO2017196151A1 - Contactor, and electronic device provided with same - Google Patents

Contactor, and electronic device provided with same Download PDF

Info

Publication number
WO2017196151A1
WO2017196151A1 PCT/KR2017/004989 KR2017004989W WO2017196151A1 WO 2017196151 A1 WO2017196151 A1 WO 2017196151A1 KR 2017004989 W KR2017004989 W KR 2017004989W WO 2017196151 A1 WO2017196151 A1 WO 2017196151A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
contactor
contact
internal circuit
conductive adhesive
Prior art date
Application number
PCT/KR2017/004989
Other languages
French (fr)
Korean (ko)
Inventor
김대겸
조승훈
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170018768A external-priority patent/KR101830330B1/en
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Publication of WO2017196151A1 publication Critical patent/WO2017196151A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/14Protection against electric or thermal overload
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a contactor, and more particularly, to a contactor and an electronic device having the same, which can prevent a user from being shocked by leakage current through an electronic device using a charger or a transformer.
  • Electronic devices having a multifunction are integrated with various components according to their functions.
  • the electronic device is provided with an antenna capable of receiving various frequency bands, such as a wireless LAN, a Bluetooth, and a Global Positioning System (GPS). It may be installed in a case constituting the electronic device. Therefore, a contactor for electrical connection is provided between the antenna installed in the case and the internal circuit board of the electronic device.
  • GPS Global Positioning System
  • static electricity having a high voltage may be instantaneously introduced through the external metal case, and the static electricity may be introduced into the internal circuit through the contactor to damage the internal circuit.
  • a leakage current is generated by charging an electronic device using a metal case with a non-genuine charger or a defective charger using a low quality device. This leakage current is transmitted to the ground terminal of the electronic device, and again from the ground terminal to the metal case, the user in contact with the metal case may be electrocuted. As a result, when an electronic device is used while charging with a non-genuine charger to an electronic device using a metal case, an electric shock may occur.
  • the present invention provides a contactor provided in an electronic device that can prevent an electric shock of a user due to leakage current.
  • the present invention provides a contactor including a composite protection unit that is not dielectrically broken by an overvoltage such as an electrostatic discharge (ESD).
  • ESD electrostatic discharge
  • the present invention provides a contactor that can be transmitted by minimizing attenuation of a communication signal flowing from the outside.
  • a contactor includes a contact portion; A composite protective part provided in contact with one surface of the contact part; And a conductive adhesive part provided on at least one surface of the composite protective part.
  • the composite protection part is electrically connected directly to the contact part.
  • the conductive adhesive part is provided on the other surface opposite to one surface of the composite protective part.
  • contact portion It is provided between the contact portion and the composite protective portion, and further comprises a second conductive adhesive portion having the same structure as the conductive adhesive portion.
  • the composite protective part is not electrically connected to the contact part directly, but is electrically indirectly connected through an internal circuit of the electronic device.
  • an extension part electrically connected to the contact part and extending toward the internal circuit along the side surface of the composite protection part and mounted on the internal circuit.
  • the conductive adhesive part is provided between the composite protective part and the internal circuit and between the extension part and the internal circuit.
  • the composite protection part and the extension part are mounted on one surface, and the mounting part further includes a mounting part mounted on the internal circuit.
  • the conductive adhesive part is provided between the composite protective part and the mounting part and between the extension part and the mounting part.
  • a contactor includes a contact unit; A composite protection unit having one surface contacted with the contact unit; A conductive part having one surface contacted with the other surface of the composite protective part; And a conductive adhesive portion provided on the other surface of the conductive portion.
  • a second conductive adhesive portion provided between at least one of the contact portion and the composite protective portion and between the composite protective portion and the conductive portion.
  • the composite protection part maintains an insulation state below a predetermined voltage and is conducted at a predetermined voltage or higher, and passes an AC signal and blocks a DC signal.
  • the conductive adhesive part includes a porous base, a filler filling the pores of the base and having an adhesive property, and a plurality of conductive particles dispersed in the filler.
  • the base includes a nonwoven fabric structure or a woven fabric structure using a conductive thread.
  • At least a part of the conductive particles have a size smaller than the pore size of the base.
  • the conductive particles are unevenly distributed in at least one region, or at least some of the conductive particles are in contact with each other and dispersed.
  • the conductive particles are contained in an amount of 5 wt% to 40 wt% based on 100 wt% of the mixture of the filler and the conductive particles.
  • the conductive adhesive portion has a resistance of 10 kPa or less.
  • An electronic device is an electronic device including a conductor and an internal circuit to which a user can contact, and a contactor according to one or another aspect of the present invention is provided between the conductor and the internal circuit. do.
  • the complex protection unit passes an overvoltage applied from the outside through the conductor to the internal circuit, blocks a leakage current through the internal circuit, and passes a communication signal.
  • the conductive adhesive part includes a porous base, a filler filling the pores of the base and having an adhesive property, and a plurality of conductive particles dispersed in the filler.
  • the contactor includes a contact portion and a composite protection portion, and is provided between a conductor accessible by a user of the electronic device and an internal circuit of the electronic device, and may be mounted on the internal circuit using a conductive adhesive part.
  • the conductive adhesive portion is provided to fill the porous base and the pores of the base and includes a filler containing a plurality of conductive particles dispersed.
  • the contact portion and the composite protection portion may not be electrically connected directly, but may be indirectly connected through an internal circuit. That is, two external electrodes of the composite protection part are mounted on the internal circuit and spaced apart from each other, and the contact parts are mounted on the internal circuit so as to be connected to any one of the composite protection parts.
  • the contactor In the contactor according to the present invention, leakage current that may flow from the internal circuit is cut off by the composite protection part, and transient voltage such as ESD applied from the outside is bypassed to the ground terminal through the contact part, the internal circuit, and the composite protection part.
  • the contactor may be stably mounted even in a narrow region where surface mount technology (SMT) is difficult by mounting using the conductive adhesive portion.
  • SMT surface mount technology
  • FIG. 1 is a cross-sectional view of a contactor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a conductive bonding part constituting a contactor according to embodiments of the present invention.
  • 3 and 4 are photographs of the base of the conductive adhesive portion in the form of a nonwoven fabric and a woven fabric.
  • 5 and 6 are surface photographs of the conductive adhesive portion using a nonwoven fabric and a woven base.
  • FIG. 7 is a cross-sectional view of a contactor according to a second embodiment of the present invention.
  • FIG 8 and 9 are views according to embodiments of the composite protection unit constituting the contactor according to the embodiments of the present invention.
  • FIG. 10 is a cross-sectional view of a contactor according to a third embodiment of the present invention.
  • FIG. 11 is a perspective view of a contactor according to a fourth embodiment of the present invention.
  • 12 and 13 are a side view and another side view of a contactor according to a fourth embodiment of the present invention.
  • 14 and 15 are a plan view of an internal circuit in which a contactor is mounted according to a fourth embodiment of the present invention, and a plan view of a state in which the contactor is mounted in the internal circuit.
  • 16 and 17 are a perspective view and a disassembled perspective view of the contactor according to the fifth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of a contactor provided between a conductor and an internal circuit according to a fifth embodiment of the present disclosure
  • FIG. 1 is a cross-sectional view of a contactor according to a first embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the conductive adhesive portion
  • Figures 3 and 4 are photographs of the base of the nonwoven fabric and woven fabric of the conductive adhesive portion
  • Figures 5 and 6 are surface photographs of the conductive adhesive portion using the base of the nonwoven fabric and woven fabric.
  • . 7 is a cross-sectional view of a contactor according to a second embodiment of the present invention
  • FIGS. 8 and 9 are views according to one embodiment and another embodiment of the composite protection unit.
  • a contactor may be provided outside of an electronic device and provided with a conductor 10 that a user may contact, and an internal circuit provided inside the electronic device to perform various functions of the electronic device. 20) may be provided between.
  • the contactor may include a contact portion 1000 in which at least one region is in contact with the conductor 10, at least one region is in contact with the contact portion 1000, and at least another region is in contact with the internal circuit 2000.
  • the composite protective part 2000 may be electrically connected to each other, and the conductive adhesive part 3000 may be provided between the composite protective part 2000 and the internal circuit 20.
  • the contact portion 1000 may be in contact with the internal circuit 20, and the complex protection part 2000 may be in contact with the conductor 10.
  • the conductor 10 may include at least a portion of a case forming the overall appearance of the electronic device. That is, the edge of the case may be formed of a conductive material such as metal to form the conductor 10, and the entire case may be formed of a conductive material such as metal to form the conductor 10. And, the conductor 10, that is, at least a part of the case may function as an antenna that can communicate with the outside as needed. In other words, the conductor 10 may be used as the antenna without providing a separate antenna.
  • the electronic device may be provided with a separate antenna and at least a part of the case may be formed of the conductor 10.
  • the internal circuit 20 includes a printed circuit board (PCB) on which a plurality of passive elements, active elements, etc., which are provided for performing various functions of the electronic device, is provided, and at least one ground terminal has a ground terminal. Can be prepared.
  • the contactor according to the present invention may be directly mounted on the ground terminal of the internal circuit 20, or a predetermined component or another configuration of an electronic device may be provided between the contactor and the ground terminal of the internal circuit 20.
  • a capacitor, a diode, or the like may be provided between the contactor and the ground terminal, whereby the contactor may be connected to the ground terminal through at least one of the capacitor and the diode.
  • the contactor may be mounted on an area of the bracket of the electronic device, and the bracket may be electrically connected to the ground terminal of the internal circuit 20.
  • the bracket may be provided between the display of the electronic device and the printed circuit board (that is, the internal circuit), and at least part of the bracket may be conductive.
  • the contactor may be mounted on the bracket and connected to the internal circuit 20 through the bracket.
  • the contact part 1000 may be made of a material having an elastic force so as to alleviate the impact and including a conductive material.
  • the contact part 1000 may have a conductive gasket or a clip shape.
  • the contact unit 1000 may have a clip shape.
  • the clip-shaped contact part 1000 is provided on the support part 1100 provided on the composite protection part 2000, and is disposed above the support part 1100 so as to face the conductor 10 and at least a part of the contact part 1000. It may include a contact portion 1200 that can be contacted, provided between the support portion 1100 and one side of the contact portion 1200 to connect them and have a connecting portion 1300 having an elastic force.
  • the height of the contact unit 1000 may be equal to or higher than the height of the composite protection unit 2000.
  • the height of the contact unit 1000 may be lower than the height of the composite protection unit 2000.
  • the support part 1100 may be provided on one surface of the composite protection part 2000. That is, the support part 1100 may be provided on one surface of the composite protection part 2000 to be in contact with any one of the external electrodes 2510, 2520 and 2500 of the composite protection part 2000. Since the support part 1100 is provided on one surface of the composite protection part 2000, the support part 1100, the connection part 1300, and the extension part 5000 may be supported.
  • the support 1100 may be provided in a plate shape having a predetermined thickness, for example, may be provided in a rectangular plate shape having a predetermined thickness.
  • the support 1100 may be provided to have the same width as one surface of the composite protection unit 2000, and may be provided to be the same as or shorter than the length of one surface of the composite protection unit 2000.
  • a coupling member (not shown) may be provided between the support part 1100 and the composite protection part 2000 to couple the support part 1100 and the composite protection part 2000.
  • the coupling member for example, an adhesive tape, an adhesive or the like can be used. That is, the support 1100 may be adhered to the upper surface of the composite protection part 2000 by an adhesive member such as an adhesive tape or an adhesive.
  • the coupling member since the support 1100 and the composite protective part 2000 are electrically connected, the coupling member may be a conductive material.
  • the conductive adhesive part 3000 of the present invention may be used. That is, the conductive adhesive part 3000 may be provided between the composite protection part 2000 and the contact part 1000 as well as the composite protection part 2000 and the internal circuit 20.
  • One end of the contact portion 1200 is connected to the connection portion 1300, and extends in one direction from the connection portion 1300, and a portion thereof extends to be inclined upward, for example, upwardly toward the conductor 10 to contact the conductor 10.
  • the region adjacent to the other end of the contact portion 1200 may have a shape having a curvature convex in the direction in which the conductor 10 is located.
  • the contact portion 1200 may be horizontally formed to a predetermined length and formed to be inclined upward from the predetermined length, and then be formed to be inclined downward to a predetermined length again.
  • an area in contact with the conductor 10 of the contact portion 1200 may have a circular shape such as an ellipse, a semicircle, and the like. That is, the region of the support 1100 may be shaped to have a bent portion in which the peripheral region including the other end of the support portion 1100 or the farther portion of the connection portion 1300 is bent upwards, and the bent portion is the conductor 10. It is installed to be in contact with.
  • connection part 1300 is formed to connect one end of the support part 1100 and one end of the contact part 1200, and may have a curvature.
  • the circuit board 20 is pressed in the direction in which the circuit board 20 is located, and when the external force is released, the connector 1300 has an elastic force that is restored to its original state. Therefore, the contact part 1000 may be formed of a metal material having at least the connection part 1300 having an elastic force.
  • the contact unit 1000 may be formed to be in contact with the conductor 10 that the user can contact. That is, the contact unit 1000 may be provided to be in contact with the metal case, or may be in contact with the conductor 10 serving as an antenna for transmitting a communication signal to the outside. Of course, the case may also serve as an antenna.
  • the composite protection unit 2000 may bypass an overvoltage such as an ESD applied from the outside to the ground terminal of the internal circuit 20 and cut off a leakage current from the internal circuit 20.
  • the complex protection unit 2000 may have an insulating state below a predetermined voltage and may be electrically conductive at a voltage above a predetermined voltage.
  • the composite protection unit 2000 may be formed of a varistor, a suppressor, a diode, and the like that are conducted at a predetermined voltage or more.
  • the voltage for conducting the composite protection unit 2000 that is, the breakdown voltage or the discharge start voltage may be higher than the external rated voltage and lower than the dielectric breakdown voltage of the composite protection unit 2000.
  • the composite protection unit 2000 may conduct the applied overvoltage to the ground terminal of the internal circuit 20.
  • the complex protection unit 2000 may further include a capacitor or the like for transmitting a communication signal.
  • external electrodes 2510, 2520; 2500 connected to the conductive layer therein are formed, respectively, and one of the external electrodes 2500 is the contact unit 1000.
  • the other may contact the internal circuit 20 through the conductive adhesive 3000.
  • the first external electrode 2510 may be connected to the internal circuit 20, and the second external electrode 2520 may be connected to the contact unit 1000.
  • FIGS. 8 and 9 An example of such a composite protection unit 2000 is illustrated in FIGS. 8 and 9, and the composite protection unit 2000 will be described in detail later.
  • the complex protection part 2000 may be provided between the conductor 10 and the internal circuit 20 with the contact part 1000 interposed therebetween to block leakage current flowing from the internal circuit 20.
  • the complex protection unit 2000 may bypass the ESD voltage to the ground terminal, and may continuously block the leakage current because the insulation is not destroyed by the ESD. That is, the composite protection unit 2000 according to the present invention maintains an insulation state below the electric shock voltage to cut off the leakage current flowing from the internal circuit 20, and maintains the conduction state above the ESD voltage to prevent the inside of the electronic device from the outside. Bypass the ESD voltage applied to the ground terminal. Therefore, the electric shock of the user due to leakage current can be prevented, and the internal circuit of the electronic device due to the overvoltage applied from the outside can be protected.
  • the conductive adhesive part 3000 may be provided between the composite protection part 2000 and the internal circuit 20. That is, one side of the composite protection unit 2000 may be in contact with the contact unit 1000, and the other side thereof may be connected to the internal circuit 20.
  • the conductive adhesive part may be formed between the other side of the composite protection unit 2000 and the internal circuit 20. 3000 may be provided. Therefore, the composite protection part 2000 may be fixed to the internal circuit 20 through the conductive adhesive part 3000.
  • the conductive adhesive part 3000 may be further provided between the composite protection part 2000 and the contact part 1000. That is, the conductive adhesive part 3000 may be further provided between one side of the composite protection part 2000 and the contact part 1000.
  • the conductive adhesive portion 3000 has conductivity and adhesive properties.
  • the conductive adhesive portion 3000 is filled with a porous base 3100 having a conductive structure, the pores of the base 3100, the filler 3200 having adhesive properties and the filler 3200, as shown in FIG. It may include conductive particles 3300 contained in. That is, the conductive adhesive part 3000 may be provided by filling the pores of the base 3100 with the filler 3200 containing the conductive particles 3300.
  • the base 3100 may be formed, for example, in a mesh structure and have a porous structure having a plurality of pores.
  • the base 3100 may be made of a conductive material.
  • the conductive base 3100 of the mesh structure may be a nonwoven structure in which the conductive yarns are irregularly arranged, or may be a woven structure in which the conductive yarns are regularly arranged.
  • the nonwoven fabric structure may be a structure in which conductive yarns are irregularly entangled as shown in FIG. 3, and the woven fabric structure is a structure in which conductive warp yarns (wefts) and weft yarns (weft yarns) are woven in regular intervals as shown in FIG. 4. Can be.
  • the conductive thread forming the base 3100 may use, for example, a metal material having high electrical conductivity such as nickel, copper, and aluminum, and may have, for example, a thickness of 1 ⁇ m to 1000 ⁇ m.
  • the base 3100 may have a porosity of 20% to 80%.
  • the porosity of the base 3100 may be adjusted according to the density of the conductive thread.
  • the conductive thread may be densely formed so that the porosity of the base 3100 may be lowered.
  • the porosity of the base 3100 may be made coarse. Can be high.
  • the impregnation amount of the filler 3200 may be low, and thus the adhesiveness may be lowered.
  • the porosity is more than 80%, the proportion of the base 3100 is reduced to decrease the electrical conductivity, and thus the resistance is increased. can do.
  • the pores formed in the base 3100 made of a micro-sized conductive seal may have a micro size or more according to the thickness, porosity, etc. of the base 3100.
  • the filler 3200 contains conductive particles 3300 and is formed to fill pores of the base 3100.
  • the filler 3200 may be made of an adhesive material to bond the composite protection part 2000 to the internal circuit 20.
  • the adhesive substance for example, an adhesive substance such as rubber, acryl or silicone can be used.
  • the conductive particles 3300 may be contained in an amount of 1 wt% to 50 wt%, preferably 5 wt% to 50 wt%, and more preferably 7 wt% to 40 wt%, based on 100 wt% of the mixture of the filler material and the conductive particles. Can be.
  • the conductive particles 3300 is contained in less than 1wt%, the resistance of the conductive adhesive portion 3000 may be increased when the overvoltage is repeatedly applied. If the conductive particles 3300 are more than 50wt%, the adhesion may be deteriorated.
  • the conductive particles 3300 may use an electrically conductive material.
  • the conductive particles 3300 may include nickel, copper, aluminum, chromium, carbon, or the like.
  • the conductive particles 3300 may have a size smaller than the pores in the base 3100.
  • at least some of the conductive particles 3300 may have a larger size than the pores.
  • the size of the conductive particles 3300 is preferably smaller than the pores so that the conductive particles 3300 can be provided in the pores in the base 3100.
  • the average size of the conductive particles 3300 that is, the average particle diameter may be, for example, 1 ⁇ m to 1000 ⁇ m, preferably 1 ⁇ m to 500 ⁇ m, more preferably may be 1 ⁇ m to 100 ⁇ m have.
  • the electroconductive particle 3300 may use single particle
  • the electroconductive particle 3300 has a some size, it is the 1st electroconductive particle which has an average particle diameter of 20 micrometers-100 micrometers, the 2nd electroconductive particle which has an average particle diameter of 2 micrometers-20 micrometers, and 1-10, for example. 3rd electroconductive particle which has an average particle diameter of micrometer can be used.
  • the first conductive particles may be greater than or equal to the second conductive particles, and the second conductive particles may be greater than or equal to the third conductive particles.
  • A: B: C is 20-100: 2-20:
  • the average particle diameter of 1st electroconductive particle is A
  • the average particle diameter of 2nd electroconductive particle is B
  • the average particle diameter of 3rd electroconductive particle is C. It may be 1 to 10.
  • A: B: C may be 20: 1.5: 1 and 10: 1.5: 1.
  • the electrical conductivity may be further improved as compared to the case of using only the filler 3200 in the base 3100. That is, by including the conductive particles 3300 in the filler 3200, the resistance can be reduced as compared with the case where only the filler 3200 is used.
  • FIGS. 5 and 6 show surface photographs of the conductive adhesive part 3000 after the filler 3200 containing the conductive particles 3300 is formed in the pores of the base 3100.
  • 5 is a photograph in which the filler 3200 is formed in the base 3100 of the nonwoven fabric structure
  • FIG. 6 is a photograph in which the filler 3200 is formed in the base 3100 of the woven fabric structure.
  • 5 and 6 (a) to (e) are conductive particles 3300 and are photographs containing 12 wt%, 14 wt%, 16 wt%, 20 wt% and 24 wt% nickel, respectively.
  • the white particles are the conductive particles 3300 and the black ones are the fillers 3200.
  • the conductive particles 3300 may be dispersed at different densities from other regions in at least some regions, and at least two or more conductive particles 3300 may be in contact and dispersed in at least one region.
  • the conductive bonding portion 3000 may be formed differently from at least one region having a different thickness.
  • at least one pore may be formed in the conductive adhesive part 3000 after the filler 3200 containing the conductive particles 3300 is filled. The pores may expose at least a portion of the base 3100,
  • the rubber or acrylic resin may be dissolved in an organic solvent, and then the conductive particles may be mixed.
  • the filler 3200 may be filled in the pores in the base 3100 by immersing the base 3100 in the mixture in which the conductive particles 3300 are mixed.
  • an acrylic resin and conductive particles 3200 are mixed in a predetermined solvent to prepare a mixture, and then the porous base 3100 is immersed in the mixed solvent and the solvent is dried to form the base 3100.
  • the filler 3200 containing the conductive particles 3300 may be distributed.
  • the solvent may include ethyl acetate, methyl ethyl ketone, methylene chloride, tetrahydrofuran or chloroform, and these may be used alone or in combination of two or more.
  • the conductive particles 3300 may be 1 wt% to 50 wt% with respect to 100 wt% of the mixture of the filler 3200 and the conductive particles 3300.
  • the conductive bonding portion 3000 may have a resistance of 1 k ⁇ or less, the base 3100, preferably has a resistance of 0.5 k ⁇ or less, more preferably 0.05 k ⁇ or less.
  • the base 3100 may have a resistance of 0.01 k ⁇ to 1 k ⁇ .
  • the conductive adhesive portion 3000 including the base 3100 may have a resistance of 5 k ⁇ or less, preferably 0.15 k ⁇ or less.
  • the conductive adhesive part 3000 may have a resistance of 10 k ⁇ or less, for example, 0.5 k ⁇ to 10 k ⁇ even after the ESD voltage is repeatedly applied.
  • the resistance of the conductive adhesive part 3000 may increase according to the repeated application of the ESD voltage, which may cause a problem of failing to bypass the ESD voltage. It is preferable that the conductive adhesive portion 3000 has a resistance of 10 k ⁇ or less so as to pass. Meanwhile, although the resistance of the conductive adhesive part 3000 may vary according to the shape of the base 3100, the content of the conductive particles 3300 of the filler 3200, and the like, the resistance of the contactor may vary. It is desirable to have the following resistance, and 10 ⁇ or less even after the ESD voltage is applied.
  • FIG. 7 is a cross-sectional view of a contactor according to a second embodiment of the present invention.
  • the contactor according to the second embodiment of the present invention may include a contact portion 1000 in which at least one area is in contact with the conductor 10, and a complex protection part in which at least one area is in contact with the contact part 1000. And a conductive portion 4000 having one surface thereof in contact with the composite protection portion 2000 and a conductive adhesive portion 3000 provided between the other surface of the conductive portion 4000 and the internal circuit 20. . That is, in the second embodiment of the present invention, the conductive part 4000 is further provided between the composite protection part 2000 and the internal circuit 20, and the conductive adhesive part 3000 is formed in the conductive part as compared with the first embodiment. It may be provided between the 4000 and the internal circuit 20.
  • the second embodiment of the present invention will be described below with reference to parts that differ from the first embodiment.
  • One surface of the conductive portion 4000 may be in contact with the composite protection portion 2000, and the other surface of the conductive portion 4000 may be mounted on the internal circuit 20 through the conductive adhesive portion 3000. That is, in the complex protection part 2000, the contact part 1000 is provided on one surface, and the conductive part 4000 is provided on the other surface.
  • the composite protection part 2000 and the conductive part 4000 may be bonded by soldering or the conductive adhesive part of the present invention. That is, the conductive adhesive part 3000 of the present invention may be further formed between the contact part 1000 and the composite protection part 2000 and between the composite protection part 2000 and the conductive part 4000. Therefore, the composite protection part 2000 and the internal circuit 20 may be electrically connected through the conductive part 4000.
  • the conductive portion 4000 may be provided in a plate shape having a predetermined thickness using a conductive material, for example, may be provided in a rectangular shape.
  • the conductive part 4000 may be made of a metal material, for example, made of SUS.
  • the conductive portion 4000 may be plated with Ag, Cr, Ni, Au, or the like, and may be provided with a thickness of about 0.01 mm to 1 mm. Meanwhile, the conductive portion 4000 may have an area equal to or larger than that of the composite protection portion 2000.
  • the conductive part 4000 may have a length in one direction longer than or equal to the length of the composite protection part 2000, and a width in another direction perpendicular to one direction may be longer than or equal to the width of the composite protection part 2000.
  • the conductive portion 4000 has a length and width greater than the length and width of the composite protection part 2000, and thus may have an area larger than the area of one surface of the composite protection part 2000.
  • Tables 1 to 4 show the resistance before and after applying the ESD voltage according to the shape and resistance of the base and the content of the conductive particles.
  • a nonwoven fabric and a woven fabric using nickel were used as the base, and nickel was used as the conductive particles.
  • a contact portion, a composite protective portion, and a conductive portion were formed to apply an ESD voltage, and a conductive adhesive portion was formed below the conductive portion, and then bonded to a circuit board.
  • Table 1 shows the resistance before and after applying the ESD voltage according to the nickel content as the conductive particles on the base of the nonwoven fabric. At this time, the resistance of the base of the nonwoven fabric is 0.035 kV and an ESD voltage of ⁇ 10 kV was applied 300 times at 0.1 second intervals.
  • Non-woven 2 3 ⁇ or less k ⁇ ⁇ M ⁇ M ⁇ fail 4 3 ⁇ or less k ⁇ ⁇ M ⁇ M ⁇ fail 6 3 ⁇ or less k ⁇ ⁇ M ⁇ M ⁇ fail 8 1 ⁇ or less 3 ⁇ or less pass 10 1 ⁇ or less 3 ⁇ or less pass 15 1 ⁇ or less 2 ⁇ or less pass 20 1 ⁇ or less 1 ⁇ or less pass 25 1 ⁇ or less 1 ⁇ or less pass 30 1 ⁇ or less 1 ⁇ or less pass 35 1 ⁇ or less 1 ⁇ or less pass 40 1 ⁇ or less 1 ⁇ or less pass
  • the resistance of the conductive joint rapidly increases after repeated application of an ESD voltage, thereby failing the conductive adhesive.
  • the nickel content is 8wt% or more, even if the repetitive ESD voltage is applied, the resistance of the conductive joint does not increase, so that the conductive adhesive part functions normally. Therefore, if the nickel content is 6wt% or less on the base of the nonwoven fabric having a resistance of 0.035 k ⁇ , the contactor having the same does not operate normally as the resistance of the conductive adhesive increases after repeated application of an ESD voltage. Since the resistance of the conductive adhesive does not increase even after the ESD voltage is applied, the contactor having the same may operate normally.
  • Table 2 shows the resistance before and after applying the ESD voltage according to the nickel content in the base of the woven fabric. At this time, the resistance of the base of the woven fabric is 0.035 kV and an ESD voltage of ⁇ 10 kV was applied 300 times at 0.1 second intervals.
  • the resistance of the conductive joint increases after repeated application of an ESD voltage, thereby failing the conductive adhesive.
  • the nickel content is 8wt% or more, even if the repetitive ESD voltage is applied, the resistance of the conductive joint does not increase, so that the conductive adhesive part functions normally. Therefore, if the nickel content is 6wt% or less on the base of the woven fabric having a resistance of 0.035 k ⁇ , the contactor having the same does not operate normally due to the increase in resistance of the conductive adhesive after repeated application of an ESD voltage. Since the resistance of the conductive adhesive does not increase even after the ESD voltage is applied, the contactor having the same may operate normally.
  • the nonwoven or woven bases exhibit almost the same properties depending on the content of the conductive particles when they have the same resistance.
  • Table 3 shows the resistance before and after applying the ESD voltage according to the nickel content in the base of the nonwoven fabric.
  • the base of the nonwoven fabric is 0.05 kW and an ESD voltage of ⁇ 10 kV was applied 300 times at 0.1 second intervals.
  • Non-woven 14 5 ⁇ or less k ⁇ ⁇ M ⁇ M ⁇ fail 16 5 ⁇ or less k ⁇ ⁇ M ⁇ M ⁇ fail 18 5 ⁇ or less k ⁇ ⁇ M ⁇ M ⁇ fail 20 5 ⁇ or less k ⁇ ⁇ M ⁇ M ⁇ fail 22 5 ⁇ or less 3 ⁇ or less pass 24 5 ⁇ or less 1 ⁇ or less pass 26 5 ⁇ or less 1 ⁇ or less pass 28 5 ⁇ or less 1 ⁇ or less pass 30 5 ⁇ or less 1 ⁇ or less pass
  • the conductive junction resistance increases after repeated application of an ESD voltage, thereby failing to conduct the conductive adhesive.
  • the nickel content is more than 22wt%, even if the repetitive ESD voltage is applied, the resistance of the conductive joint does not increase, and thus the conductive adhesive part functions normally. Therefore, when the nickel content is 20wt% or less on the base of the nonwoven fabric having a resistance of 0.05 kV, the contactor having the same does not operate normally due to the increase in the resistance of the conductive adhesive after repeated application of an ESD voltage.
  • the contactor having the same may operate normally. That is, compared with Table 1, when the resistance of the base is high, the content of nickel should be increased as compared with the case where the resistance is low to prevent the occurrence of the failing of the conductive adhesive portion.
  • Table 4 shows the resistance before and after applying the ESD voltage according to the nickel content in the base of the woven fabric. At this time, the resistance of the base of the woven fabric is 0.05 kW and an ESD voltage of ⁇ 10 kV was applied 300 times at 0.1 second intervals.
  • the resistance of the conductive joint increases after repeated application of an ESD voltage, thereby failing the conductive adhesive.
  • the nickel content is more than 22wt%, even if the repetitive ESD voltage is applied, the resistance of the conductive joint does not increase, and thus the conductive adhesive part functions normally. Therefore, when the nickel content is 20wt% or less on the base of the woven fabric having a resistance of 0.05 k ⁇ , the contactor having the same does not operate normally as the resistance of the conductive adhesive increases after repeated application of an ESD voltage.
  • the contactor Since the resistance of the conductive adhesive does not increase even after the ESD voltage is applied, the contactor having the same may operate normally. In other words, compared to Table 2, when the resistance of the base is high, the content of nickel should be increased as compared with the case of low resistance to prevent the occurrence of fail.
  • the nonwoven or woven bases exhibit almost the same properties depending on the content of the conductive particles when they have the same resistance.
  • the base has a resistance of 0.035 GPa and [Table 3] and [Table 4] where the base has a resistance of 0.05 mA.
  • the conductive adhesive portion may control the content of the conductive particles in accordance with the resistance of the base, and thus may have a normal function without increasing resistance even after repeated ESD application.
  • FIG. 8 is a view according to an embodiment of the composite protective part, FIG. 8A is a perspective view, and FIG. 8B is a sectional view.
  • the composite protection unit 2000 may include a stack 2100 in which a plurality of sheets are stacked, at least two internal electrodes 2200 provided in the stack 2100, and a plurality of sheets. At least one overvoltage protection unit 2300 provided between the at least two internal electrodes 2200 and at least two connection electrodes 2400 provided in the stack 2100 to be connected to the at least two internal electrodes 2200, respectively. ) And an external electrode 2500 formed outside the stack 2100 to be connected to the connection electrode 2400.
  • the external electrode 2500 may be formed on two surfaces facing each other in the stacking direction of the plurality of sheets constituting the stack 2100, that is, two surfaces facing in the Z direction.
  • the laminate 2100 has a predetermined length and width in one direction (for example, X direction) and the other direction (for example, Y direction) orthogonal to each other in the horizontal direction, and has a vertical direction (for example, Z direction). It may be provided in a substantially hexahedral shape having a predetermined height.
  • the stack 2100 may be formed by stacking a plurality of sheets having a predetermined thickness.
  • the plurality of sheets constituting the laminate 2100 may be formed using a dielectric material such as MLCC, LTCC, HTCC, or the like.
  • the MLCC dielectric material includes at least one of Bi 2 O 3 , SiO 2 , CuO, MgO, and ZnO based on at least one of BaTiO 3 and NdTiO 3
  • the LTCC dielectric material is Al 2 O 3 , SiO 2. It may include a glass material.
  • the sheet also includes one or more of BaTiO 3 , NdTiO 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , SiO 2 , CuO, MgO, Zn0, Al 2 O 3 in addition to MLCC, LTCC, HTCC It may be formed of a material.
  • the sheet may be formed of a material having varistor characteristics such as Pr-based, Bi-based, or ST-based ceramic materials. Accordingly, the sheets may each have a predetermined dielectric constant, for example, 5 to 20000, preferably 7 to 5000, and more preferably 200 to 3000.
  • the plurality of sheets may all be formed with the same thickness, and at least one may be formed thicker or thinner than the others.
  • the sheet in which the overvoltage protection unit 2300 is formed between the internal electrodes 2200 may have a thickness greater than that of each of the other sheets.
  • the plurality of sheets may be formed, for example, in a thickness of 1 ⁇ m to 5000 ⁇ m, and may be formed in a thickness of 3000 ⁇ m or less. That is, the thickness of each sheet may be 1 ⁇ m to 5000 ⁇ m, and preferably 5 ⁇ m to 300 ⁇ m, depending on the thickness of the laminate 2100.
  • the thickness of the sheet and the number of stacked layers may be adjusted according to the size of the composite protection unit 2000. In this case, the sheet may be formed to a thickness that does not break when the ESD is applied. That is, even when the number of sheets or the thickness of the sheets is formed differently, at least one sheet may be formed to a thickness that is not broken by repeated application of ESD.
  • the laminate 2100 may further include a lower cover layer (not shown) and an upper cover layer (not shown) respectively provided on the lowermost layer and the uppermost layer.
  • the lowermost sheet may serve as the lower cover layer and the uppermost sheet may serve as the upper cover layer.
  • the lower and upper cover layers which are separately provided, may have the same or different thicknesses, and a plurality of magnetic sheets may be stacked.
  • a nonmagnetic sheet for example, a glassy sheet, may be further formed on the surfaces of the lower and upper cover layers made of magnetic sheets, that is, the lower and upper surfaces.
  • the lower and upper cover layers may be thicker than the sheets therein. That is, the cover layer may be thicker than the thickness of one sheet.
  • the lowermost and uppermost sheets when they function as lower and upper cover layers, they may be formed thicker than each of the sheets therebetween.
  • the lower and upper cover layers may be formed of a glassy sheet, and the surface of the laminate 2100 may be coated with a polymer or glass material.
  • At least two internal electrodes 2210, 2220, and 2200 may be provided to be spaced apart from each other within the stack 2100. That is, the at least two internal electrodes 2200 may be formed to be spaced apart from each other in the stacking direction of the sheet, that is, in the Z direction. In addition, at least two internal electrodes 2200 may be formed with the overvoltage protection unit 2300 therebetween. For example, the first internal electrode 2210 may be formed below the overvoltage protection part 2300 in the Z direction, and the second internal electrode 2220 may be formed above the overvoltage protection part 2300. Of course, at least one internal electrode may be further formed between the first and second internal electrodes 2210 and 2220 and the lowermost and uppermost sheets.
  • the internal electrodes 2200 are formed to be connected to the connection electrodes 2400, respectively, and to the overvoltage protection unit 2300. That is, the first internal electrode 2210 is formed such that one side is connected to the first connection electrode 2410 and the other side is connected to the overvoltage protection unit 2300. In addition, the second internal electrode 2220 is formed such that one side is connected to the second connection electrode 2420 and the other side is connected to the protection unit 3200. In this case, one surface of the first and second internal electrodes 2210 and 2220 facing each other is connected to the overvoltage protection unit 2300.
  • the internal electrode 2200 may be formed of a conductive material.
  • the internal electrode 2200 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu. In the case of an alloy, for example, Ag and Pd alloys may be used.
  • the internal electrode 2200 may be a porous insulating layer formed on the surface. That is, the internal electrode 2200 may have a structure in which a porous insulating layer is formed on the surface of the metal layer.
  • aluminum oxide Al 2 O 3
  • Al 2 O 3 aluminum oxide
  • the internal electrode 2200 may be formed of Al coated with Al 2 O 3 , which is a porous thin insulating layer on its surface.
  • various metals having an insulating layer, preferably a porous insulating layer may be used on the surface.
  • the overvoltage protection unit 2300 includes a porous insulating material and discharges through fine pores.
  • the overvoltage protection unit 2300 may be formed. It is possible to increase the number of fine pores more than the fine pores, thereby improving the discharge efficiency.
  • the internal electrode 2200 may be formed to have a thickness of, for example, 1 ⁇ m to 10 ⁇ m. In this case, the internal electrode 2200 may be formed such that the thickness of at least one region is thin or at least one region is removed to expose the sheet. However, even if the thickness of at least one region of the internal electrode 2200 is thin or at least one region is removed, the connected state is maintained as a whole so that there is no problem in electrical conductivity.
  • the internal electrode 2200 may have a length in the X direction and a width in the Y direction smaller than the length and width of the laminate 2100. In other words. The internal electrode 2200 may be formed smaller than the length and width of the sheet.
  • the internal electrode 200 may be formed to have a length of 10% to 90% and a width of 10% to 90% of the length of the stack 2100 or the sheet.
  • the internal electrode 2200 may be formed with an area of 10% to 90% of the area of each sheet.
  • the internal electrode 2200 may be formed in various shapes such as a square, a rectangle, a predetermined pattern shape, a spiral shape having a predetermined width and a gap, and the like.
  • the internal electrode 2200 may serve as a capacitor and also serve as a discharge electrode of the overvoltage protection unit 2300.
  • the capacitor is formed by the first and second internal electrodes 2210 and 2220 and a sheet therebetween.
  • the capacitance may be adjusted according to the overlapping area of the first and second internal electrodes 2210 and 2220, the thickness of the sheet between the first and second internal electrodes 2210 and 2220, and the like.
  • at least regions of the first and second internal electrodes 2210 and 2220 that overlap with the overvoltage protection unit 2300 serve as discharge electrodes, and transmit an overvoltage such as an ESD applied from the outside to the overvoltage protection unit 2300. Then, the overvoltage protection unit 2300 transmits the overvoltage bypassed to the ground terminal of the electronic device, for example.
  • At least one overvoltage protection unit 2300 is provided between the internal electrodes 2200 and bypasses an overvoltage such as an ESD flowing from the outside to the ground terminal of the electronic device. That is, the overvoltage from the outside of the electronic device employing the contactor including the complex protection unit is introduced into the overvoltage protection unit 2300 through the second connection electrode 2420 and the second internal electrode 2220, for example. The electronic device is bypassed to the internal circuit of the electronic device through the first internal electrode 2210 and the first connection electrode 2410.
  • the overvoltage protection unit 2300 may have at least one of a planar shape and a cross-sectional shape having a polygonal shape of about circular, elliptical, rectangular, square, pentagonal or more, and have a predetermined thickness. That is, the overvoltage protection unit 2300 may be formed in the shape of a cylinder, a cube, a polyhedron, or the like.
  • the overvoltage protection unit 2300 may at least partially overlap the first and second internal electrodes 2210 and 2220.
  • the first and second internal electrodes 2210 and 2220 may be formed to overlap 10% to 100% of the horizontal area of the overvoltage protection unit 2300. That is, the overvoltage protection unit 2300 is formed with a length and a width of 10% to 100% in the X and Y directions of the first and second internal electrodes 2210 and 2220, respectively, and the first and second internal electrodes ( 2210, 2220 is formed so as not to leave.
  • the overvoltage protection unit 2300 may be formed in a central region between the first and second internal electrodes 2210 and 2220.
  • the overvoltage protection unit 2300 may be formed in the central region of the stack 2100.
  • the overvoltage protection parts 2300 may be formed to be spaced apart from each other by a predetermined interval in the central area of the stack 2100.
  • the at least one overvoltage protection unit 2300 may have a central region formed in the central region of the stack 2100 or the central regions of the first and second internal electrodes 2210 and 2220.
  • the overvoltage protection unit 2300 may be formed to have a thickness of 1% to 20% of the thickness of the laminate 2100, and may be formed to have a length of 3% to 50% of one length of the laminate 2100.
  • the overvoltage protection unit 2300 when the overvoltage protection unit 2300 is formed in plural, the sum of the thicknesses of the plurality of overvoltage protection units 2300 may be 1% to 50% of the thickness of the laminate 2100.
  • the overvoltage protection unit 2300 may be formed in an elongated long shape in at least one direction, for example, the X direction, and may be formed at 5% to 75% of the X direction length of the sheet.
  • the overvoltage protection unit 2300 may have a width in the Y direction of 3% to 50% of the width of the Y direction of the sheet.
  • the overvoltage protection unit 2300 may be formed to have a thickness smaller than or equal to the thickness of the connection electrode 2400 and smaller than or equal to the diameter of the connection electrode 2400.
  • the overvoltage protection unit 2300 may be formed to have a thickness of 1/5 times to 1 times the thickness of the connection electrode 2400, and may have a diameter of 1/10 to 1 times the diameter of the connection electrode 2400. Can be formed. Specifically, the overvoltage protection unit 2300 may be formed, for example, with a diameter of 50 ⁇ m to 1000 ⁇ m and a thickness of 5 ⁇ m to 600 ⁇ m. At this time, the thinner the thickness of the overvoltage protection unit 2300, the lower the discharge start voltage.
  • the overvoltage protection unit 2300 may include at least one opening formed in a predetermined region of the sheet between the internal electrodes 2200. That is, each of the at least one opening may function as the overvoltage protection unit 2300.
  • the overvoltage protection unit 2300 may be formed by applying an overvoltage protection material to at least a portion of the opening or by filling the opening with the overvoltage protection material. That is, the overvoltage protection unit 2300 may include an empty opening and an overvoltage protection material formed in at least a portion of the opening.
  • a through hole having a predetermined size may be formed between the internal electrodes 2200, and the overvoltage protection material may be applied to at least a portion of the through hole or filled in the through hole.
  • the overvoltage protection material may be applied to at least a portion of the side surface of the through hole, at least one portion of the upper and lower portions of the through hole, and the inside of the through hole at a predetermined thickness.
  • a polymer material volatilized upon firing may be used.
  • the overvoltage protection unit 2300 may use a conductive material and an insulating material as the overvoltage protection material.
  • the insulating material may be a porous insulating material having a plurality of pores.
  • the overvoltage protection unit 2300 may be formed by printing a mixed material of a conductive ceramic and an insulating ceramic on a sheet.
  • the overvoltage protection unit 2300 may be formed on at least one sheet. That is, the overvoltage protection unit 2300 is formed on two sheets stacked in the vertical direction, for example, and the first and second internal electrodes 2210 and 2220 are formed on the sheet to be spaced apart from each other. 2300 may be connected.
  • the discharge start voltage can be adjusted according to the structure, material, size, etc. of the overvoltage protection unit 2300, the discharge start voltage of the composite protection unit 2000 may be 1kV to 30kV, for example.
  • the overvoltage protection unit 2300 may be formed to widen at least one region.
  • the wide portion may be formed to a width of about 1% to 150% of the portion that is not wide.
  • the height of the wide portion may be formed to a height of 10% to 70% of the overall height of the overvoltage protection unit 2300.
  • at least one region of the overvoltage protection unit 2300 is formed to extend in width, thereby blocking the short path of the overvoltage protection unit 2300. That is, when an overvoltage such as ESD is continuously applied, a melting phenomenon of the connection electrode 2400 may occur, and thus a connection phenomenon may occur due to the connection electrode material being adhered to the sidewall of the through hole of the overvoltage protection unit 2300. Can be.
  • an extension part having a different diameter may be formed in the overvoltage protection part 2300 to block the short path.
  • the discharge induction layer may further include a discharge induction layer (not shown) formed between the internal electrodes (2210, 2220; 2200) and the overvoltage protection unit 2300.
  • the discharge induction layer may be formed when the overvoltage protection unit 2300 is formed using a porous insulating material.
  • the discharge induction layer may be formed of a dielectric layer having a higher density than the overvoltage protection unit 2300. That is, the discharge induction layer may be formed of a conductive material or may be formed of an insulating material.
  • the induction layer of AlZrO is discharged between the overvoltage protection unit 2300 and the internal electrode 2200.
  • TiO may be used as the overvoltage protection unit 2300, and in this case, the discharge induction layer may be formed of TiAlO. That is, the discharge induction layer may be formed by the reaction between the internal electrode 2200 and the overvoltage protection unit 2300. Of course, the discharge induction layer may be formed by further reacting the sheet material.
  • the discharge induction layer may be formed by the reaction of an internal electrode material (eg Al), an overvoltage protection material (eg ZrO), and a sheet material (eg BaTiO 3 ).
  • the discharge inducing layer may be formed by reacting with the sheet material. That is, in the region where the overvoltage protection unit 2300 is in contact with the sheet, a discharge induction layer may be formed by the reaction between the overvoltage protection unit 2300 and the sheet. Therefore, the discharge induction layer may be formed to surround the overvoltage protection unit 2300.
  • the discharge induction layer between the overvoltage protection unit 2300 and the internal electrode 2200 and the discharge induction layer between the overvoltage protection unit 2300 and the sheet may have different compositions.
  • the discharge induction layer may be formed by removing at least one region, and may be formed to have a thickness different from that of at least one region. That is, the discharge induction layer may be discontinuously formed by removing at least one region, and the thickness may be formed in a non-uniformly different thickness of at least one region.
  • the discharge induction layer may be formed between the internal electrode 2200 and the overvoltage protection unit 2300 by interdiffusion of an internal electrode material and an overvoltage protection material during the firing process. Meanwhile, a part of the thickness of the overvoltage protection part 2300 is changed to the discharge induction layer, so that the discharge induction layer may be formed to have a thickness of 10% to 70% of the thickness of the overvoltage protection part 2300.
  • the discharge induction layer may be formed thinner than the overvoltage protection unit 2300, and may be formed to have a thickness that is thicker, equal to, or thinner than that of the internal electrode 2200.
  • the discharge inducing layer By the discharge inducing layer, the ESD voltage may be induced to the overvoltage protection unit 2300 or the level of discharge energy induced to the protection unit 2300. Therefore, it is possible to discharge the ESD voltage more easily to improve the discharge efficiency.
  • the discharge induction layer since the discharge induction layer is formed, diffusion of heterogeneous materials into the overvoltage protection unit 2300 may be prevented. That is, diffusion of the sheet material and the internal electrode material into the overvoltage protection unit 2300 may be prevented, and external diffusion of the overvoltage protection material may be prevented. Accordingly, the discharge inducing layer may be used as a diffusion barrier, thereby preventing the overvoltage protection unit 2300 from being destroyed.
  • the overvoltage protection material used as at least a part of the overvoltage protection unit 2300 may be formed by mixing a conductive material and an insulating material.
  • the overvoltage protection material may be used by mixing a conductive ceramic and an insulating ceramic, and may be formed by mixing the conductive ceramic and the insulating ceramic in a mixing ratio of, for example, 10:90 to 90:10.
  • the mixing ratio of the insulating ceramic increases, the discharge starting voltage increases, and as the mixing ratio of the conductive ceramic increases, the discharge starting voltage decreases. Therefore, the mixing ratio of the conductive ceramic and the insulating ceramic can be adjusted to obtain a predetermined discharge start voltage.
  • a plurality of pores may be formed in the overvoltage protection material.
  • the overvoltage protection material may be formed by stacking a conductive layer and an insulating layer into a predetermined stacked structure, and a void may be further formed in a predetermined region.
  • the overvoltage protection unit 2300 may be formed in a stacked structure of a conductive layer, an insulating layer, a gap, an insulating layer, and a conductive layer from a lower side to an upper side.
  • the conductive material used as the overvoltage protection material can flow a current with a predetermined resistance.
  • the conductive material may be a resistor having several kilowatts to several hundred kilowatts. Such a conductive layer lowers the energy level when an ESD voltage or the like is introduced to prevent structural destruction of the composite protection part due to the overvoltage.
  • the conductive material serves as a heat sink to convert electrical energy into thermal energy.
  • the conductive material may use a conductive ceramic, and the conductive ceramic may use a mixture including at least one of La, Ni, Co, Cu, Zn, Ru, and Bi.
  • the insulating material used as the overvoltage protection material may be made of a discharge inducing material, and may function as an electrical barrier having a porous structure.
  • Such an insulating material may be formed of an insulating ceramic, and as the insulating ceramic, a ferroelectric material having a dielectric constant of about 50 to 25000 may be used.
  • the insulating ceramic may be formed of at least one of dielectric material powder such as MLCC, SiO 2 , Fe 2 O 3 , Co 3 O 4 , BaTiO 3 , BaCO 3 , TiO 2 , Nd, Bi, Zn, Al 2 O 3 . It can be formed using the mixture included.
  • the insulating material may have a porous structure in which a plurality of pores having a size of about 1 nm to 30 ⁇ m are formed to have a porosity of 30% to 80%. At this time, the average of the shortest distance between the pores may be about 1nm to 50 ⁇ m.
  • the insulating material does not flow current, but because pores are formed, current may flow through the pores. In this case, as the size of the pores increases or the porosity increases, the discharge start voltage may decrease. On the contrary, when the size of the pores decreases or the porosity decreases, the discharge start voltage may increase. Accordingly, the pore size and the porosity of the insulating layer may be adjusted to adjust the discharge start voltage while maintaining the shape of the overvoltage protection unit 2300.
  • the overvoltage protection material is a material in which at least one conductive material selected from Ru, Pt, Pd, Ag, Au, Ni, Cr, W, Fe, and the like is mixed with organic materials such as polyvinyl alcohol (PVA) or polyvinyl butyral (PVB). Can be formed.
  • the overvoltage protection material may be formed by further mixing a varistor material such as ZnO or an insulating ceramic material such as Al 2 O 3 with the mixed material.
  • connection electrode 2400 is formed inside the stack 2100 and is formed to connect them between the internal electrode 2200 and the external electrode 2500. That is, the connection electrode 2400 is connected between the first and second external electrodes 2510, 2520; 500 and the first and second internal electrodes 2210, 2220, 2200, respectively, with the first and second connections. Electrodes 2410 and 2420 may be included.
  • the connection electrode 2400 may have at least one of a planar shape and a cross-sectional shape having a polygonal shape of approximately circular, elliptical, rectangular, square, pentagonal or more, and have a predetermined thickness.
  • the connection electrode 2400 may be formed to at least overlap the overvoltage protection unit 2300.
  • the connection electrode 2400 may be formed at a central portion of the stack 2100 and overlap the overvoltage protection unit 2300.
  • connection electrode 2400 is formed to form an opening in a predetermined region of at least one or more sheets stacked on the internal electrode 2200 and to fill the opening by using a conductive material.
  • the connection electrode 2400 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu.
  • the connection electrode 2400 may be formed using various conductive materials in addition to the metal.
  • the connection electrode 2400 may have a height in the Z direction, that is, in a vertical direction, the same as or different from that of the overvoltage protection part 2300, and a width in the X direction and the Y direction is the width of the overvoltage protection part 2300. It may be more identical or different.
  • connection electrode 2400 may be formed to be greater than or equal to the height of the overvoltage protection part 2300, and may be formed to be equal to or greater than the diameter or width.
  • the height of the connection electrode 2400 may be higher than the height of the overvoltage protection unit 2300, and the plane width may be larger than the plane width of the overvoltage protection unit 2300.
  • each of the first and second connection electrodes 2410 and 2420 may be formed to a height of 0.5 to 3 times the height of the overvoltage protection unit 2300.
  • the sum of the heights of the first and second connection electrodes 2410 and 2420 may be formed to be one to six times the height of the overvoltage protection unit 2300.
  • the sum of the heights of the first and second connection electrodes 2410 and 2420 may be formed to 100 ⁇ m to 1000 ⁇ m, preferably 200 ⁇ m to 900 ⁇ m, and more preferably 400 ⁇ m to 700 ⁇ m. .
  • the heights of the first and second connection electrodes 2410 and 2420 may be different from each other, and the width may also be different from each other.
  • the width of the X direction of the connection electrode 2400 may be formed to be 1% to 90% of the length of the X direction of the laminate 2100, and the width of the Y direction may be 5 times the width of the Y direction of the laminate 2100. It may be formed from% to 90%.
  • the width of the X direction and the width of the Y direction of the connection electrode 2400 may be the same or different. That is, the width of at least one region including the X-direction width and the Y-direction width of the connection electrode 2400 may be the same as or different from the width of the other region. In other words, at least one region of the connection electrode 2400 may be formed in an asymmetric shape.
  • the width of the connection electrode 2400 in the X direction and the Y direction may be formed to be 1 to 10 times the width of the overvoltage protection part 2300 in the X direction and the Y direction, and the X direction length and the Y direction of the internal electrode 2200. It can be formed from 1/10 times to 1 times the width of the direction, respectively.
  • the width of the connection electrode 2400 is shorter than the length and width of the laminate 2100 in the X and Y directions, is equal to or larger than the width of the overvoltage protection part 2300, and is smaller than the width of the internal electrode 2200. Or the same.
  • connection electrode 2400 functions to connect the external electrode 2500 and the internal electrode 2200. Therefore, an overvoltage such as an ESD applied through the external electrode 2500 is transferred to the internal electrode 2200 and the overvoltage protection unit 2300 through the connection electrode 2400, and the overvoltage through the overvoltage protection unit 2300 is again provided.
  • the internal electrode 2200 and the connection electrode 2400 are transferred to the external electrode 2500.
  • the connection electrode 2400 is formed at the center of the stack 2100 and preferably wider than the width of the overvoltage protection unit 2300, parasitic resistance and parasitic inductance may be reduced. That is, the parasitic resistance and the parasitic inductance can be reduced as compared with the case where the connection electrode 2400 is formed outside the stack 2100.
  • the insertion loss of S21 can be reduced in the wireless communication frequency range of 700 MHz to 3 GHz.
  • the connection electrode 2400 is formed to have a width wider than the width of the overvoltage protection unit 2300, it is possible to prevent deterioration due to repetitive ESD voltages and to suppress an increase in the discharge start voltage. That is, the overvoltage protection unit 2300 bypasses the ESD voltage by generating a spark therein, for example, by ESD energy.
  • the thickness of the connection electrode 2400 is thin, the connection electrode 2400 is repeated according to a repetitive ESD voltage. This loss may cause an increase in discharge start voltage.
  • the thickness of the connection electrode 2400 to be 10 ⁇ m or more, the loss of the connection electrode 2400 due to the repetitive ESD voltage can be prevented, thereby preventing the rise of the discharge start voltage.
  • the external electrodes 2510, 2520; 2500 may be provided on two surfaces facing each other outside the stack 2100.
  • the external electrode 2500 may be formed on two opposite surfaces of the stack 2100, that is, the lower surface and the upper surface, in the Z direction, that is, in the vertical direction.
  • the external electrodes 2500 may be connected to the connection electrodes 2400 in the stack 2100, respectively.
  • any one of the external electrodes 2500 may be connected to an internal circuit such as a printed circuit board inside the electronic device, and the other may be connected to the outside of the electronic device, for example, a metal case.
  • the first external electrode 2510 may be connected to the internal circuit 20, and the second external electrode 2520 may be connected to the conductor 10 through the contact portion 1000.
  • the external electrode 2500 may be formed in various ways. That is, the external electrode 2500 may be formed by an immersion or printing method using a conductive paste, or may be formed by various methods such as deposition, sputtering, plating, and the like. Meanwhile, the external electrode 2500 may be formed on the entire lower surface and the upper surface of the stack 2100 or on a portion of the lower surface and the upper surface. For example, the external electrode 2500 may be formed with an area of 50% to 95% excluding a predetermined width from edges of the lower surface and the upper surface. In addition, the external electrode 2500 may be formed in the entire area of the lower surface and the upper surface, and extend from the upper and lower portions therefrom to be formed on the other side.
  • the external electrode 2500 may extend to a predetermined area of a lower surface and an upper surface facing in the Z direction as well as a surface opposite to the X and Y directions, respectively.
  • the external electrode 500 may be formed of one or more metals selected from the group consisting of, for example, gold, silver, platinum, copper, nickel, palladium, and alloys thereof.
  • at least a part of the external electrode 2500 connected to the connection electrode 2400 may be formed of the same material as the connection electrode 2400.
  • the connection electrode 2400 is formed of copper
  • at least a part of the connection electrode 2400 may be formed of copper from an area in contact with the connection electrode 2400 of the external electrode 2500.
  • the external electrode 2500 may further include at least one plating layer.
  • the external electrode 2500 may be formed of a metal layer such as Cu or Ag, and at least one plating layer may be formed on the metal layer.
  • the external electrode 2500 may be formed by laminating a copper layer, a Ni plating layer, and a Sn or Sn / Ag plating layer.
  • the plating layer may be laminated with a Cu plating layer and a Sn plating layer, the Cu plating layer, Ni plating layer and Sn plating layer may be laminated.
  • the external electrode 2500 may be formed by mixing, for example, a glass frit of a multicomponent system based on 0.5% to 20% of Bi 2 O 3 or SiO 2 with a metal powder.
  • the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the laminate 2100.
  • the adhesion between the external electrode 2500 and the laminate 2100 may be improved, and the contact reaction between the connection electrode 2400 and the external electrode 2500 may be improved.
  • at least one plating layer may be formed on the upper portion to form the external electrode 2500.
  • the metal layer including the glass and at least one plating layer formed thereon may be formed to form the external electrode 2500.
  • the external electrode 2500 may sequentially form a Ni plating layer and a Sn plating layer through electrolytic or electroless plating after forming a layer including a glass frit and Ag and Cu.
  • the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer.
  • the external electrode 2500 may be formed of only at least one plating layer. That is, the external electrode 2500 may be formed by forming at least one layer of the plating layer using at least one plating process without applying the paste.
  • the external electrode 2500 may be formed to a thickness of 2 ⁇ m to 100 ⁇ m
  • the Ni plating layer may be formed to a thickness of 1 ⁇ m to 10 ⁇ m
  • the Sn or Sn / Ag plating layer may have a thickness of 2 ⁇ m to 10 ⁇ m. Can be formed.
  • a surface modification member (not shown) may be formed on at least one surface of the laminate 2100.
  • the surface modification member may be formed by, for example, distributing an oxide on the surface of the laminate 2100 before forming the external electrode 2500.
  • the oxide may be dispersed and distributed on the surface of the laminate 2100 in a crystalline state or an amorphous state.
  • the surface modification member may be distributed on the surface of the laminate 2100 before the plating process when the external electrode 2500 is formed by the plating process. That is, the surface modification member may be distributed before forming a part of the external electrode 2500 in the printing process, or may be distributed before performing the plating process after the printing process.
  • the plating process may be performed after the surface modification member is distributed. At this time, at least a portion of the surface modification member distributed on the surface may be melted.
  • the surface modification member may be evenly distributed on the surface of the laminate 2100 in the same size, and at least a portion may be irregularly distributed in different sizes.
  • a recess may be formed on at least part of the surface of the laminate 2100. That is, the surface modification member may be formed to form a convex portion, and at least a portion of the region where the surface modification member is not formed may be recessed to form a recess. In this case, at least a portion of the surface modification member may be formed deeper than the surface of the laminate 2100. That is, the surface modification member may be formed with a predetermined thickness to be embedded at a predetermined depth of the laminate 2100 and the remaining thickness higher than the surface of the laminate 2100.
  • the thickness of the laminate 2100 may be 1/20 to 1 of the average diameter of the oxide particles. That is, all of the oxide particles may be embedded in the laminate 2100, and at least some may be embedded.
  • the oxide particles may be formed only on the surface of the laminate 2100. Therefore, the oxide particles may be formed in a hemispherical shape on the surface of the laminate 2100, or may be formed in a spherical shape.
  • the surface modification member may be partially distributed on the surface of the laminate 2100 as described above, or may be distributed in a film form on at least one region. That is, the oxide particles may be distributed in the form of islands on the surface of the laminate 2100 to form a surface modification member.
  • oxides in a crystalline state or an amorphous state may be distributed in an island form on the surface of the laminate 2100, and thus at least a portion of the surface of the laminate 2100 may be exposed.
  • the oxide may be formed as a film in at least one region and at least a portion thereof in an island form by connecting at least two surface modification members. That is, at least two or more oxide particles may be aggregated or adjacent oxide particles may be connected to form a film. However, even when the oxide is present in the form of particles or when two or more particles are aggregated or connected, at least a part of the surface of the laminate 2100 is exposed to the outside by the surface modification member.
  • the total area of the surface modification member may be, for example, 5% to 90% of the total surface area of the laminate 2100.
  • the plating bleeding phenomenon of the surface of the laminate 2100 may be controlled according to the area of the surface modifying member.
  • the surface modification member may be formed to have an area that can control the plating bleeding phenomenon and can be in contact with the conductive pattern inside the laminate 2100 and the external electrode 2500.
  • the surface modification member may be formed in 10% to 90% of the surface area of the laminate 2100, preferably in an area of 30% to 70%, more preferably of 40% to 50% It can be formed into an area.
  • the surface area of the laminate 2100 may be one surface area, or may be the surface areas of six surfaces of the laminate 2100 forming a hexahedron.
  • the surface modification member may be formed to a thickness of 10% or less of the thickness of the laminate 2100. That is, the surface modification member may be formed to a thickness of 0.01% to 10% of the thickness of the laminate 2100.
  • the surface modification member may be present in a size of 0.1 ⁇ m to 50 ⁇ m, and thus the surface modification member may be formed to a thickness of 0.1 ⁇ m to 50 ⁇ m from the surface of the laminate 2100. That is, the surface modification member may be formed to have a thickness of 0.1 ⁇ m to 50 ⁇ m from the surface of the laminate 2100 except for a region that is more than the surface of the laminate 2100. Accordingly, when the thickness of the laminate 2100 is embedded, the surface modification member may have a thickness greater than 0.1 ⁇ m to 50 ⁇ m.
  • the surface modification member When the surface modification member is formed to a thickness less than 0.01% of the thickness of the laminate 2100, it is difficult to control the plating bleeding phenomenon, and when the surface modified member is formed to a thickness exceeding 10% of the thickness of the laminate 2100, the laminate 2100.
  • the internal conductive pattern and the external electrode 2500 may not be in contact. That is, the surface modification member may have various thicknesses according to the material properties (conductivity, semiconductivity, insulation, magnetic material, etc.) of the laminate 2100, and may have various thicknesses according to the size, distribution amount, or aggregation of the oxide powder. have.
  • the surface modification member is formed on the surface of the laminate 2100, so that at least two regions having different components may exist on the surface of the laminate 2100. That is, different components may be detected in the region where the surface modification member is formed and the region where the surface modification member is not formed.
  • a region in which the surface modification member is formed may include a component according to the surface modification member, that is, an oxide
  • a region according to the surface modification member may include a component according to the laminate 2100, that is, a component of the sheet.
  • the plating process can be performed uniformly, thereby controlling the shape of the external electrode 500. That is, the surface of the laminate 2100 may have a resistance at least in one region different from that in another region. If the plating process is performed in a state where the resistance is uneven, growth unevenness of the plating layer may occur. In order to solve this problem, the surface of the laminate 2100 may be modified by dispersing oxides in a particulate state or a molten state on the surface of the laminate 2100 to form a surface modification member, and the growth of the plating layer may be controlled. have.
  • the oxide in the granular or molten state to make the surface resistance of the laminate 2100 uniform is, for example, Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO, Co 3 O 4 , SiO 2 , Al At least one of 2 O 3 , MnO, H 2 BO 3 , Ca (CO 3 ) 2 , Ca (NO 3 ) 2 , and CaCO 3 may be used.
  • the surface modification member may be formed on at least one sheet in the laminate 2100. That is, although the conductive patterns of various shapes on the sheet may be formed by a plating process, the shape of the conductive patterns can be controlled by forming the surface modification member.
  • FIG. 9 is a view according to another embodiment of the composite protective part, FIG. 9A is a perspective view, and FIG. 9B is a sectional view.
  • the composite protection unit 2000 may include a laminate 2100 in which a plurality of sheets 101 to 111 and 100 are stacked, and inside the laminate 2100.
  • a capacitor formed between the capacitor parts 2200a and 2200b and the capacitor parts 2200a and 2200b including a plurality of internal electrodes 201 to 208 and 200, and disposed between the at least two discharge electrodes 311 and 312 and between them.
  • a plurality of internal electrodes 200 may be formed inside the stack 2100 to form capacitor parts 2200a and 2200b and to protect an overvoltage between the plurality of internal electrodes 200.
  • An overvoltage protection unit 2300 is formed.
  • the overvoltage protection unit 2300 may include a discharge electrode 310 and an overvoltage protection member 320 formed therebetween. That is, the composite protection unit according to an embodiment of the present invention functions as a capacitor while the internal electrode 2200 functions as a discharge electrode, but the composite protection unit according to another embodiment of the internal electrode 200 and the discharge electrode 310 may be used. Functions can be formed separately.
  • the external electrode 2500 is formed on two surfaces facing the stacking direction of the sheet, but in another embodiment of the present invention, the external electrode 2500 is perpendicular to the stacking direction of the sheet 100. It is formed on two sides of the direction.
  • the forming material, the shape, and the like are the same as those described in the embodiment, and thus detailed descriptions according to other embodiments will be omitted.
  • the contact part 1000 is in contact with the conductor 10 which the user can contact, and the composite protection part 2000 is connected to the internal circuit through the conductive adhesive part 3000. 20) can be used to cut off the leakage current, and to pass overvoltage such as ESD to the ground terminal. That is, the composite protection unit 2000 of the present invention transmits the electric current from the ground terminal of the internal circuit 20 to the conductor 10 such as a metal case since no current flows between the external electrodes 2500 at the rated voltage and the electric shock voltage.
  • the leakage current can be cut off, and in an overvoltage such as an ESD voltage, a current flows through the inside of the composite protection unit 2000, so that an overvoltage applied from the outside to the internal circuit 20 through the conductor 10 to the ground terminal. I can pass it.
  • the composite protection unit 2000 may have a discharge start voltage higher than the rated voltage and lower than the ESD voltage.
  • the composite protection unit 2000 may have a rated voltage of 100 V to 240 V, an electric shock voltage may be equal to or higher than an operating voltage of a circuit, and an ESD voltage generated by external static electricity may be higher than an electric shock voltage.
  • the discharge start voltage may be 350V to 15kV.
  • the composite protection unit 2000 is provided with a capacitor inside the communication unit may be a communication signal between the external and the internal circuit 20 by the capacitor. That is, a communication signal from the outside, for example, an RF signal may be transmitted to the internal circuit 20 by the capacitor unit, and the communication signal from the internal circuit 20 may be transmitted to the outside by the capacitor unit. Therefore, even when a separate antenna is not provided and a conductor 10 such as a metal case is used as the antenna, a communication unit may transmit and receive a communication signal with the outside. As a result, the composite protection unit 2000 according to the present invention cuts off leakage current flowing from the ground terminal of the internal circuit 20, bypasses the ESD voltage applied from the outside to the ground terminal, and between the outside and the electronic device. Can communicate communication signals.
  • the composite protection unit 2000 stacks a plurality of sheets having high breakdown voltage characteristics to form a capacitor, so as to form, for example, 310V from the internal circuit 20 to the conductor 10 by the defective charger.
  • the insulation resistance state can be maintained so that a leakage current does not flow when an electric shock voltage is applied, and the overvoltage protection unit 2300 also bypasses the ESD voltage when the ESD voltage flows from the conductor 10 to the internal circuit 20. High insulation resistance can be maintained without breakage.
  • the overvoltage protection unit 2300 is introduced from the outside by including an overvoltage protection material consisting of a conductive layer for converting electrical energy into thermal energy by lowering an energy level and an insulating layer made of a porous structure to flow current through micropores.
  • the circuit can be protected by bypassing the ESD voltage. Therefore, the insulation voltage is not broken even by the ESD voltage, and accordingly, the leakage current generated from the defective charger is provided in the electronic device having the conductor 10 such as the metal case to continuously transmit to the user through the metal case of the electronic device. Can be prevented.
  • the general MLCC Multi Layer Capacitance Circuit
  • an overvoltage protection member including a conductive layer and an insulating layer is formed between the capacitor portions so that the capacitor portion is not destroyed by passing the ESD voltage through the overvoltage protection member.
  • FIG. 10 is a cross-sectional view of a contactor according to a third embodiment of the present invention.
  • a contactor may include a gasket-type contact part 1000a in which at least one area is in contact with the conductor 10, and at least one area is in contact with the contact part 1000a.
  • the at least another region may include a composite protection part 2000 electrically connected to the internal circuit 2000, and a conductive adhesive part 3000 provided between the composite protection part 2000 and the internal circuit 20. That is, the third embodiment of the present invention may use the gasket type contact portion 1000a instead of the clip type of the first embodiment.
  • the conductive part 4000 may be further provided.
  • the contact part 1000a may include any one of a conductive rubber, a conductive silicon, an elastic body having a conductive lead inserted therein, and an elastic body whose surface is coated or bonded with a conductor.
  • the conductive gasket type contact part 1000a may be provided on one side of the composite protection part 2000. That is, a gasket type contact part 1000a may be provided on one side of the composite protection part 2000, and a conductive adhesive part 3000 may be provided on the other side.
  • the gasket type contact portion 1000a may include an elastic core (not shown) having an elastic force and a conductive layer (not shown) formed on the surface of the elastic core.
  • the elastic core may have an elastic force and be formed of an insulating material.
  • the elastic core may be polyurethane foam, PVC, silicone, ethylene vinyl acetate copolymer, polymer synthetic resin such as polyethylene, natural rubber (NR), butylene rubber (SBR), ethylene propylene rubber (EPDM), age Rubber such as krill rubber (NBR) or neoprene, solid sheets or sponge sheets can be used.
  • a through hole (not shown) penetrating in one direction may be formed in the elastic core.
  • the conductive layer may be formed to surround the outer circumferential surface of the elastic core.
  • the conductive layer may be formed of various conductive materials such as carbon black, graphite, gold, silver, copper, nickel, and aluminum.
  • the conductive layer is formed in a film form to surround the elastic core, and an adhesive may be applied to the elastic core.
  • the elastic core may have conductivity, and thus a conductive layer may not be formed on the surface of the elastic core.
  • the conductive powder may be mixed in the elastic core.
  • FIG. 11 is a perspective view of a contactor according to a fourth embodiment of the present invention
  • FIG. 12 is a side view
  • FIG. 13 is another side view
  • 12 is a side view in the Y direction
  • FIG. 13 is a side view in the X direction
  • 14 is a plan view of an internal circuit in which a contactor is mounted according to a fourth embodiment of the present invention
  • FIG. 15 is a plan view of a state in which a contactor is mounted in an internal circuit according to a fourth embodiment.
  • a contactor may include a contact portion 1000 in which at least one region is in contact with the conductor 10, and at least one region in contact with the internal circuit 20.
  • the composite protection part 2000, at least the conductive adhesive part 3000 provided between the composite protection part 2000 and the internal circuit 20, and one area contacting the contact part 1000, and the other area is the internal circuit 20. It may include an extension portion 5000 in contact with.
  • the conductive adhesive part 3000 may be provided in at least one region of the external electrode 2500 and the extension part 5000 of the composite protection part 2000. That is, the conductive adhesive part 3000 may be provided on the lower surface of the external electrode 2500 and the lower surface of the extension part 5000 that are in contact with the internal circuit 20.
  • the composite protection unit 2000 may use a structure in which the external electrode 2500 is formed in a direction crossing the stacking direction of the sheet illustrated in FIG. 9, and the contact unit 1000 may be formed of a laminate in the stacking direction of the sheet. It may be provided on one surface of the (1000). That is, in FIG. 9, external electrodes 2500 may be formed on two side surfaces of the composite protection part 2000 that face each other in the X direction, and a contact part 1000 may be provided on one surface in the Y direction. Therefore, the contact unit 1000 and the composite protection unit 2000 are not electrically connected directly. Meanwhile, as illustrated in FIG.
  • the internal circuit 20 includes a first mounting region 21 in which one region of the composite protection unit 2000 is mounted and a second region in which other regions of the composite protection unit 2000 are mounted.
  • the mounting area 22 and the third and fourth mounting areas 23 and 24 on which the extension part 5000 connected to the contact part 1000 are mounted may be included. That is, the first external electrode 2510 of the composite protection part 2000 is mounted on the first mounting area 21 using the conductive adhesive part 3000, and the composite protection part 2000 is mounted on the second mounting area 22.
  • the second external electrode 2520 is mounted using the conductive adhesive part 3000, and the bottom surface of the extension part 5000 connected to the contact part 1000 is conductive in the third and fourth mounting areas 23 and 24. Each may be mounted using the adhesive part 3000.
  • the first mounting region 21 is insulated from the second mounting region 22 and the third and fourth mounting regions 23 and 24, and is insulated from the second mounting region 22 and the third and fourth.
  • the mounting regions 23 and 24 may be electrically connected to each other. Therefore, in the third embodiment of the present invention, the contact unit 1000 and the composite protection unit 2000 may not be electrically connected directly, but may be electrically indirectly connected through the internal circuit 20. That is, the contact unit 1000 and the composite protection unit 2000 may be electrically connected by the extension unit 5000 through the internal circuit 20.
  • the extension part 5000 may be provided at both edge portions of the support part 1100 of the contact part 1000 to extend in the direction of the internal circuit 20.
  • the extension part 5000 may be formed in contact with the side surface of the composite protection part 2000. That is, the support part 1100 and the extension part 5000 of the contact part 1000 may be formed to surround the upper surface and the side surface of the composite protection part 2000.
  • the extension part 5000 may be integrally formed with the contact part 1000. That is, the extension part 5000 may extend from both side surfaces of the support part 1100 in the longitudinal direction, and may be bent downward from both side surfaces of the support part 1100 to be in contact with the side surface of the composite protection part 2000.
  • the extension portion 5000 may be manufactured separately from the contact portion 1000 and may be coupled by a coupling member or the like.
  • the coupling member may include a conductive adhesive, soldering, or the like.
  • the conductive adhesive is used, the conductive adhesive portion of the present invention can be used.
  • a coupling member may be provided between the contact part 1000 and the extension part 5000 and the composite protection part 2000 to couple the contact part 1000 and the extension part 5000 and the composite protection part 2000.
  • the contact part 1000, the extension part 5000, and the composite protective part 2000 may be adhered to each other using an adhesive member such as a double-sided adhesive tape, an adhesive, solder, or the like.
  • the non-conductive adhesive member may be used as the adhesive member between the composite protection part 2000, the contact part 1000, and the extension part 5000.
  • the conductive adhesive part 3000 may be provided on a region to be contacted and mounted on the inner electrode 20, that is, a lower surface of the extension part 5000 and a lower surface of the external electrode 2500 of the composite protective part 2000. have.
  • the external electrode 2500 is electrically connected through the internal circuit 20, but since it is to be insulated other than that, the conductive adhesive parts 3000 provided on the lower surfaces of the two external electrodes 2500 are spaced apart from each other.
  • the conductive adhesive parts 3000 provided under the extension part 5000 may also be formed to be spaced apart from each other.
  • the conductive adhesive part 3000 may be formed on the bottom surface of the first external electrode 2510 and the bottom surface of the extension part 400. ) May be provided as one. That is, the conductive adhesive part 3000 includes a first conductive adhesive part provided under the second external electrode 2520, and a second conductive adhesive part provided to cover the first external electrode 2510 and the extension part 5000. The first and second conductive adhesive parts may be spaced apart by a predetermined interval.
  • the extension part 5000 may be provided on at least one region of the contact part 1000, for example, a side surface of the support part 1100, and may be mounted on the internal circuit 20. Since the extension part 5000 and the contact part 1000 are electrically connected, the contact part 1000 may be connected to the internal circuit 20 through the extension part 5000. Accordingly, the contact unit 1000 connects the internal circuit 20 and the conductor 10, such as a case of an electronic device, which can function as an antenna, for example, by the extension unit 5000, and the internal circuit ( The communication signal applied to 20 may be transmitted to the internal circuit 20, and a high voltage such as an ESD that may be applied from the outside may be transmitted to the internal circuit 20.
  • the contact part may be implemented by using a conductive gasket.
  • the conductive gasket may be provided to surround the side surface of the composite protection part 2000, and the lower part may be used as the extension part 5000.
  • the extension portion 5000 may be formed using a conductive material so as to extend downward from the side surface of the conductive gasket type contact portion 1000.
  • the conductive part 4000 may be further provided. That is, the conductive part 4000 is further provided below the extension part 5000 and the external electrode 2500, and the conductive part 4000 may be mounted on the internal circuit 20 or the bracket using the conductive adhesive part 3000. Can be.
  • the contactor according to the fourth exemplary embodiment of the present invention is provided so that the extension part 5000 contacts the side surface of the composite protection part 2000 from a part of the contact part 1000 and is mounted on the internal circuit 20.
  • the internal circuit 20 includes a first mounting region 21 in which one region of the composite protection unit 2000 is mounted, a second mounting region 22 in which other regions of the composite protection unit 2000 are mounted, and And third and fourth mounting regions 23 and 24 on which the extension portion 5000 electrically connected to the contact portion 1000 is mounted, and the first mounting region 21 includes the second to fourth mounting regions 22. And 23 and 24, and are insulated from each other, and the second mounting region 22 and the third and fourth mounting regions 23 and 24 may be electrically connected to each other.
  • the contact part 1000 and the composite protection part 2000 may be electrically indirectly connected through the extension part 5000 and the internal circuit 20 instead of being electrically connected directly. That is, the contact part 1000 and the composite protection part 2000 may be electrically connected to each other through the second to fourth mounting areas 22, 23, and 24 by the extension part 5000.
  • the first mounting area 21 may be connected to the ground terminal. Accordingly, the ESD voltage applied from the outside is transferred to at least one of the third and fourth mounting regions 23 and 24 through the contact portion 1000 and the extension portion 5000, and then the third and fourth mounting regions 23, 24 is transferred to the second mounting region 22 electrically connected to the second mounting region 22, and is transferred to the other side of the composite protection unit 2000 connected to the second mounting region 22, for example, the second external electrode 2520.
  • FIG. 16 is a perspective view of the contactor according to the fifth embodiment of the present invention
  • Figure 17 is an exploded perspective view
  • 18 is a side view of the Y direction
  • FIG. 19 is another side view of the X direction
  • 20 is a cross-sectional view in which a contactor according to a fifth embodiment of the present invention is provided between a conductor and an internal circuit.
  • the electric shock prevention contactor has a contact portion 1000 in which at least one region is in contact with the conductor 10, and the contact portion 1000 is insulated from the contact portion 1000.
  • the composite protection unit 2000 is provided below the 1000 and blocks the electric shock voltage and bypasses overvoltage such as ESD, and one region is connected to the contact unit 1000 and contacts the side surface of the composite protection unit 2000.
  • a conductive adhesive part 3000 may be provided between the composite protection part 2000 and the mounting part 6000 to bond the extension part 5000 and the composite protection part 2000 to the mounting part 6000.
  • the conductive adhesive part 3000 may include a first conductive adhesive part 4100 provided under the first external electrode 2510, and a second conductive adhesive part provided under the second external electrode 2520 and the extension part 5000. 4200).
  • the contact unit 1000, the composite protection unit 2000, and the extension unit 5000 are the same as described in the fourth embodiment of the present invention, detailed description thereof will be omitted.
  • the mounting unit 6000 may be provided below the composite protection unit 2000, and the composite protection unit 2000 and the extension unit 5000 may be mounted.
  • the mounting unit 6000 in which the complex protection unit 2000 and the extension unit 5000 are mounted may be mounted on the internal circuit 20.
  • the mounting portion 6000 may be provided in a plate shape having a predetermined thickness, and a conductive layer may be formed on at least one surface thereof.
  • the mounting portion 6000 may include an insulating layer 6100 provided in a plate shape having a predetermined thickness, a conductive pad 6200 formed on one surface of the insulating layer 6100, and the other surface of the insulating layer 6100.
  • the conductive layer 6300 may be formed.
  • the semiconductor device may further include a conductive via 6400 formed in the insulating layer 6100 to connect the conductive pad 6200 and the conductive layer 6300.
  • the insulating layer 6100 may be provided in a substantially rectangular plate shape having a predetermined thickness.
  • the insulating layer 6100 may be provided larger than the size of the composite protective part 2000. That is, the length in the X direction may be longer than the length of the composite protection part 2000, and the width in the Y direction may be greater than the width of the composite protection part 2000.
  • the insulating layer 6100 may be formed of, for example, a PCB material constituting the internal circuit 20, for example, a resin.
  • the conductive pad 6200 is formed on one surface of the insulating layer 6100. That is, the conductive pad 6200 is formed on one surface of the insulating layer 6100 facing the composite protective part 2000 and the extension part 5000.
  • the conductive pad 6200 may be formed at a predetermined height on one surface of the insulating layer 6100, or may be formed at a predetermined depth in the insulating layer 6100 so that the upper surface may be exposed on the insulating layer 6100.
  • the conductive pad 6200 may be mounted by contacting the first and second external electrodes 2510 and 2520 and the extension part 5000 of the composite protection part 2000, respectively.
  • the conductive pad 6200 may include the first conductive pad 6210 on which the first external electrode 2510 of the composite protective part 2000 is mounted through the first conductive adhesive part 3100, and the composite protective part 2000.
  • the second external electrode 2520 and the extension part 5000 may include a second conductive pad 6220 mounted through the second conductive adhesive part 3200.
  • the second conductive pad 6220 may be formed to have a larger area than the first conductive pad 6210 because the second external electrode 2520 and the extension portion 5000 must be mounted.
  • the conductive layer 6300 may be formed on the other surface of the insulating layer 6100 on which the conductive pad 6220 is not formed.
  • the conductive layer 6300 may be formed at a predetermined height on the other surface of the insulating layer 6100, or may be formed at a predetermined depth in the insulating layer 6100 so that the surface thereof is exposed to the other surface of the insulating layer 6100.
  • the conductive layer 6300 is in contact with the internal circuit 20 and serves to connect the internal circuit 20 and the electric shock prevention contactor.
  • the conductive layer 6300 may be mounted on the internal circuit 20 using a conductive adhesive or the like.
  • the conductive via 6400 may be formed in the insulating layer 6100 in at least partially overlapping the first conductive pad 6210. That is, the conductive via 6400 is formed in a predetermined region of the insulating layer 6100 and is formed by filling a conductive material. The first conductive pad 6210 and the conductive layer 6300 are electrically connected by the conductive via 6400.
  • the extension part 5000 and the complex protection part 2000 connected to the contact part 1000 are mounted on the mounting part 6000.
  • the mounting unit 6000 in which the extension unit 5000 and the composite protection unit 2000 are mounted may be mounted on the internal circuit 20. Therefore, the contact unit 1000 and the composite protection unit 2000 may be connected to the internal circuit 20 through the mounting unit 6000. Accordingly, the electric shock prevention contactor is connected between the internal circuit 20 and the conductor 10, such as a case of an electronic device, which can function as an antenna, for example, and transmits a communication signal supplied from the outside to the internal circuit 20. An overvoltage, such as ESD, may be transmitted to the ground terminal of the internal circuit 20.
  • the contact part may be implemented using a conductive gasket.
  • the conductive gasket may be provided to surround the side surface of the composite protection part 2000, and the lower part may be used as the extension part 5000.
  • the extension portion 5000 may be formed using a conductive material so as to extend downward from the side surface of the conductive gasket type contact portion 1000.
  • the conductive portion 4000 may be further provided as in the second embodiment. That is, the conductive part 4000 may be further provided below the mounting part 6000, and the conductive part 4000 may be mounted on the internal circuit 20 or the bracket using the conductive adhesive part 3000.
  • one region of the composite protection unit 2000 is mounted on the first conductive pad 6210 of the mounting unit 6000, and the second conductive pad 6220 is provided.
  • An extension part 5000 electrically connected to the other area of the composite protection part 2000 and the contact part 1000 is mounted on the upper surface of the composite protection part 2000. Therefore, the contact part 1000 and the composite protection part 2000 may be electrically indirectly connected through the extension part 5000 and the mounting part 6000 instead of being electrically connected directly.
  • the mounting part 6000 may be mounted on the internal circuit 20 through the third conductive adhesive part 3300 and a part of the internal circuit 20 connected to a part of the mounting part 6000 may be connected to the ground terminal.
  • the ESD voltage applied from the outside is transferred to the second conductive pad 6220 through the contact part 1000 and the extension part 5000, and then the other side of the composite protection part 2000 connected to the second conductive pad 6220.
  • the second external electrode 2520 is transferred to the second external electrode 2520, and is connected to one side of the composite protection unit 2000 through the ESD overvoltage protection unit 2300 inside the composite protection unit 2000, for example, the first external electrode 2510. ) Is bypassed to the ground terminal connected to the first conductive pad 6210.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesive Tapes (AREA)

Abstract

The present invention provides a contactor and an electronic device provided with same, the contactor comprising: a contact part; a complex protection part provided in contact with one side of the contact part; and a conductive adhesive part provided on at least one side of the complex protection part.

Description

컨택터 및 이를 구비하는 전자기기Contactor and electronic device having same
본 발명은 컨택터에 관한 것으로, 특히 충전기 또는 변압기를 사용하는 전자기기를 통한 누설 전류에 의해 사용자가 감전되는 것을 방지할 수 있는 컨택터 및 이를 구비하는 전자기기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contactor, and more particularly, to a contactor and an electronic device having the same, which can prevent a user from being shocked by leakage current through an electronic device using a charger or a transformer.
다기능을 가지는 전자기기에는 그 기능에 따라 다양한 부품들이 집적되어 있다. 또한, 전자 기기에는 기능별로 다양한 주파수 대역 무선 LAN(wireless LAN), 블루투스(bluetooth), GPS(Global Positioning System) 등 다른 주파수 대역 등을 수신할 수 있는 안테나가 구비되며, 이중 일부는 내장형 안테나로서, 전자 기기를 구성하는 케이스에 설치될 수 있다. 따라서, 케이스에 설치된 안테나와 전자 기기의 내장 회로 기판 사이에 전기적 접속을 위한 컨택터가 설치된다.Electronic devices having a multifunction are integrated with various components according to their functions. In addition, the electronic device is provided with an antenna capable of receiving various frequency bands, such as a wireless LAN, a Bluetooth, and a Global Positioning System (GPS). It may be installed in a case constituting the electronic device. Therefore, a contactor for electrical connection is provided between the antenna installed in the case and the internal circuit board of the electronic device.
한편, 최근 들어 고급스런 이미지와 내구성이 강조되면서, 케이스가 금속 소재로 이루어진 전자기기의 보급이 증가하고 있다. 즉, 테두리를 금속으로 제작하거나, 전면의 화면 표시부를 제외한 나머지 케이스를 금속으로 제작한 전자기기의 보급이 증가하고 있다.On the other hand, in recent years, with the emphasis on high-end image and durability, the spread of electronic devices made of a metallic material case is increasing. In other words, the popularity of electronic devices in which the edge is made of metal or the case is made of metal other than the front screen display is increasing.
그런데, 케이스가 금속 소재로 이루어진 경우, 외부의 금속 케이스를 통하여 순간적으로 높은 전압을 갖는 정전기가 유입될 수 있으며, 이러한 정전기는 컨택터를 통하여 내부 회로로 유입되어 내부 회로를 파손시킬 수 있다.However, when the case is made of a metal material, static electricity having a high voltage may be instantaneously introduced through the external metal case, and the static electricity may be introduced into the internal circuit through the contactor to damage the internal circuit.
또한, 금속 케이스를 적용한 전자 기기에 과전류 보호 회로가 내장되지 않거나 저품질의 소자를 사용한 비정품 충전기 또는 불량 충전기를 이용하여 충전함으로써 누설 전류(Leakage Current)가 발생된다. 이러한 누설 전류는 전자기기의 접지 단자로 전달되고, 다시 접지 단자로부터 금속 케이스로 전달되어 금속 케이스에 접촉된 사용자가 감전될 수 있다. 결국, 금속 케이스를 이용한 전자기기에 비정품 충전기를 이용한 충전 중 전자기기를 이용하면 감전 사고가 발생할 수 있다.In addition, a leakage current is generated by charging an electronic device using a metal case with a non-genuine charger or a defective charger using a low quality device. This leakage current is transmitted to the ground terminal of the electronic device, and again from the ground terminal to the metal case, the user in contact with the metal case may be electrocuted. As a result, when an electronic device is used while charging with a non-genuine charger to an electronic device using a metal case, an electric shock may occur.
따라서, 정전기에 의한 내부 회로의 파괴 및 사용자의 감전 사고를 방지할 수 있는 컨택터가 필요하다.Therefore, there is a need for a contactor capable of preventing damage to an internal circuit and electrocution by a user due to static electricity.
(선행기술문헌)(Prior art document)
한국등록특허 제10-1001354호Korea Patent Registration No. 10-1001354
한국등록특허 제10-0809249호Korean Patent Registration No. 10-0809249
본 발명은 전자기기 내에 마련되어 누설 전류에 의한 사용자의 감전을 방지할 수 있는 컨택터를 제공한다.The present invention provides a contactor provided in an electronic device that can prevent an electric shock of a user due to leakage current.
본 발명은 ESD(ElectroStatic Discharge) 등의 과전압에 의해 절연 파괴되지 않는 복합 보호부를 포함하는 컨택터를 제공한다.The present invention provides a contactor including a composite protection unit that is not dielectrically broken by an overvoltage such as an electrostatic discharge (ESD).
본 발명은 외부로부터 유입되는 통신 신호의 감쇄를 최소화하여 전달할 수 있는 컨택터를 제공한다.The present invention provides a contactor that can be transmitted by minimizing attenuation of a communication signal flowing from the outside.
본 발명의 일 양태에 따른 컨택터는 컨택부; 상기 컨택부의 일면과 접촉되어 마련된 복합 보호부; 및 상기 복합 보호부의 적어도 일면 상에 마련된 도전성 접착부를 포함한다.A contactor according to an aspect of the present invention includes a contact portion; A composite protective part provided in contact with one surface of the contact part; And a conductive adhesive part provided on at least one surface of the composite protective part.
상기 복합 보호부는 상기 컨택부와 전기적으로 직접 연결된다.The composite protection part is electrically connected directly to the contact part.
상기 도전성 접착부는 상기 복합 보호부의 일면과 대향되는 타면 상에 마련된다.The conductive adhesive part is provided on the other surface opposite to one surface of the composite protective part.
상기 컨택부와 상기 복합 보호부 사이에 마련되며, 상기 도전성 접착부와 동일 구조의 제 2 도전성 접착부를 더 포함한다.It is provided between the contact portion and the composite protective portion, and further comprises a second conductive adhesive portion having the same structure as the conductive adhesive portion.
상기 복합 보호부는 상기 컨택부와 전기적으로 직접 연결되지 않고 전자기기의 내부 회로를 통해 전기적으로 간접 연결된다.The composite protective part is not electrically connected to the contact part directly, but is electrically indirectly connected through an internal circuit of the electronic device.
상기 컨택부와 전기적으로 연결되고 상기 복합 보호부의 측면을 따라 상기 내부 회로를 향해 연장 형성되어 상기 내부 회로에 실장되는 연장부를 더 포함한다.And an extension part electrically connected to the contact part and extending toward the internal circuit along the side surface of the composite protection part and mounted on the internal circuit.
상기 도전성 접착부는 상기 복합 보호부와 상기 내부 회로 사이 및 상기 연장부와 상기 내부 회로 사이에 마련된다.The conductive adhesive part is provided between the composite protective part and the internal circuit and between the extension part and the internal circuit.
일면 상에 상기 복합 보호부와 상기 연장부가 실장되고, 타면이 상기 내부 회로에 실장되는 실장부를 더 포함한다.The composite protection part and the extension part are mounted on one surface, and the mounting part further includes a mounting part mounted on the internal circuit.
상기 도전성 접착부는 상기 복합 보호부와 상기 실장부 사이 및 상기 연장부와 상기 실장부 사이에 마련된다.The conductive adhesive part is provided between the composite protective part and the mounting part and between the extension part and the mounting part.
본 발명의 다른 양태에 따른 컨택터는 컨택부; 일면이 상기 컨택부와 접촉되어 마련된 복합 보호부; 일면이 상기 복합 보호부의 타면과 접촉되어 마련된 도전부; 및 상기 도전부의 타면 상에 마련된 도전성 접착부를 포함한다.According to another aspect of the present invention, a contactor includes a contact unit; A composite protection unit having one surface contacted with the contact unit; A conductive part having one surface contacted with the other surface of the composite protective part; And a conductive adhesive portion provided on the other surface of the conductive portion.
상기 컨택부와 상기 복합 보호부 사이 및 상기 복합 보호부와 상기 도전부 사이 중 적어도 하나에 마련된 제 2 도전성 접착부를 더 포함한다.And a second conductive adhesive portion provided between at least one of the contact portion and the composite protective portion and between the composite protective portion and the conductive portion.
상기 복합 보호부는 소정 전압 미만에서 절연 상태를 유지하고 소정 전압 이상에서 도통되며, 교류 신호는 통과시키고 직류 신호는 차단한다.The composite protection part maintains an insulation state below a predetermined voltage and is conducted at a predetermined voltage or higher, and passes an AC signal and blocks a DC signal.
상기 도전성 접착부는 다공성의 베이스와, 상기 베이스의 기공을 충진하며 접착성을 갖는 충진재와, 상기 충진재에 분산 함유된 복수의 도전성 입자를 포함한다.The conductive adhesive part includes a porous base, a filler filling the pores of the base and having an adhesive property, and a plurality of conductive particles dispersed in the filler.
상기 베이스는 도전성 실을 이용한 부직포 구조 또는 직포 구조를 포함한다.The base includes a nonwoven fabric structure or a woven fabric structure using a conductive thread.
상기 도전성 입자의 적어도 일부는 상기 베이스의 기공 사이즈보다 작은 사이즈를 갖는다.At least a part of the conductive particles have a size smaller than the pore size of the base.
상기 도전성 입자는 적어도 일 영역에서 불균일하게 분포하거나, 상기 도전성 입자의 적어도 일부는 서로 접촉되어 분산된다.The conductive particles are unevenly distributed in at least one region, or at least some of the conductive particles are in contact with each other and dispersed.
상기 도전성 입자는 상기 충진재와 도전성 입자의 혼합물 100wt%에 대하여 5wt% 내지 40wt%로 함유된다.The conductive particles are contained in an amount of 5 wt% to 40 wt% based on 100 wt% of the mixture of the filler and the conductive particles.
상기 도전성 접착부의 적어도 일 영역에 형성된 기공을 더 포함한다.It further includes pores formed in at least one region of the conductive adhesive portion.
상기 도전성 접착부는 10Ω 이하의 저항을 갖는다.The conductive adhesive portion has a resistance of 10 kPa or less.
본 발명의 또다른 양태에 따른 전자기기는 사용자가 접촉 가능한 도전체와 내부 회로를 포함하는 전자기기로서, 상기 도전체와 상기 내부 회로 사이에 본 발명의 일 양태 또는 타 양태에 따른 컨택터가 마련된다.An electronic device according to another aspect of the present invention is an electronic device including a conductor and an internal circuit to which a user can contact, and a contactor according to one or another aspect of the present invention is provided between the conductor and the internal circuit. do.
상기 복합 보호부는 상기 도전체를 통해 외부로부터 인가되는 과전압을 상기 내부 회로로 통과시키고, 상기 내부 회로를 통한 누설 전류를 차단하며, 통신 신호를 통과시킨다.The complex protection unit passes an overvoltage applied from the outside through the conductor to the internal circuit, blocks a leakage current through the internal circuit, and passes a communication signal.
상기 도전성 접착부는 다공성의 베이스와, 상기 베이스의 기공을 충진하며 접착성을 갖는 충진재와, 상기 충진재에 분산 함유된 복수의 도전성 입자를 포함한다.The conductive adhesive part includes a porous base, a filler filling the pores of the base and having an adhesive property, and a plurality of conductive particles dispersed in the filler.
본 발명의 실시 예들에 따른 컨택터는 컨택부와 복합 보호부를 포함하여 전자기기의 사용자가 접촉 가능한 도전체와 전자기기의 내부 회로 사이에 마련되며, 도전성 접착부를 이용하여 내부 회로 상에 실장될 수 있다. 또한, 도전성 접착부는 다공성의 베이스와, 베이스의 기공을 충진하도록 마련되며 복수의 도전성 입자가 분산 함유된 충진재를 포함한다.The contactor according to the embodiments of the present invention includes a contact portion and a composite protection portion, and is provided between a conductor accessible by a user of the electronic device and an internal circuit of the electronic device, and may be mounted on the internal circuit using a conductive adhesive part. . In addition, the conductive adhesive portion is provided to fill the porous base and the pores of the base and includes a filler containing a plurality of conductive particles dispersed.
한편, 컨택부와 복합 보호부는 전기적으로 직접 연결되지 않고, 내부 회로를 통해 간접 연결될 수 있다. 즉, 복합 보호부의 두 외부 전극이 내부 회로 상에 서로 이격되어 실장되고, 컨택부가 복합 보호부의 어느 하나와 연결되도록 내부 회로 상에 실장된다.Meanwhile, the contact portion and the composite protection portion may not be electrically connected directly, but may be indirectly connected through an internal circuit. That is, two external electrodes of the composite protection part are mounted on the internal circuit and spaced apart from each other, and the contact parts are mounted on the internal circuit so as to be connected to any one of the composite protection parts.
본 발명에 의한 컨택터는 내부 회로로부터 유입될 수 있는 누설 전류는 복합 보호부에 의해 차단되고, 외부로부터 인가되는 ESD 등의 과도 전압은 컨택부, 내부 회로 및 복합 보호부를 통해 접지 단자로 바이패스된다. 또한, 도전성 접착부를 이용하여 실장됨으로써 표면 실장 공정(Surface Mount Technology; SMT)이 어려운 좁은 영역 등에도 컨택터를 안정적으로 실장할 수 있다. 그리고, 반복적인 과전압 인가에도 도전성 접착부의 저항이 증가하지 않아 컨택부의 기능이 상실되지 않으므로 신뢰성을 향상시킬 수 있다.In the contactor according to the present invention, leakage current that may flow from the internal circuit is cut off by the composite protection part, and transient voltage such as ESD applied from the outside is bypassed to the ground terminal through the contact part, the internal circuit, and the composite protection part. . In addition, the contactor may be stably mounted even in a narrow region where surface mount technology (SMT) is difficult by mounting using the conductive adhesive portion. In addition, since the resistance of the conductive adhesive part does not increase even after repeated overvoltage application, the function of the contact part is not lost, thereby improving reliability.
도 1은 본 발명의 제 1 실시 예에 따른 컨택터의 단면도.1 is a cross-sectional view of a contactor according to a first embodiment of the present invention.
도 2은 본 발명의 실시 예들에 따른 컨택터를 구성하는 도전성 접착부의 단면도.2 is a cross-sectional view of a conductive bonding part constituting a contactor according to embodiments of the present invention.
도 3 및 도 4는 부직포 및 직포 형태의 도전성 접착부의 베이스의 사진.3 and 4 are photographs of the base of the conductive adhesive portion in the form of a nonwoven fabric and a woven fabric.
도 5 및 도 6은 부직포 및 직포 형태의 베이스를 이용한 도전성 접착부의 표면 사진들.5 and 6 are surface photographs of the conductive adhesive portion using a nonwoven fabric and a woven base.
도 7은 본 발명의 제 2 실시 예에 따른 컨택터의 단면도.7 is a cross-sectional view of a contactor according to a second embodiment of the present invention.
도 8 및 도 9는 본 발명의 실시 예들에 따른 컨택터를 구성하는 복합 보호부의 실시 예들에 따른 도면들8 and 9 are views according to embodiments of the composite protection unit constituting the contactor according to the embodiments of the present invention.
도 10은 본 발명의 제 3 실시 예에 따른 컨택터의 단면도.10 is a cross-sectional view of a contactor according to a third embodiment of the present invention.
도 11은 본 발명의 제 4 실시 예에 따른 컨택터의 사시도11 is a perspective view of a contactor according to a fourth embodiment of the present invention;
도 12 및 도 13은 본 발명의 제 4 실시 예에 따른 컨택터의 일 측면도 및 타 측면도.12 and 13 are a side view and another side view of a contactor according to a fourth embodiment of the present invention.
도 14 및 도 15는 본 발명의 제 4 실시 예에 따른 컨택터가 실장되는 내부 회로의 평면도 및 컨택터가 내부 회로에 실장된 상태의 평면도.14 and 15 are a plan view of an internal circuit in which a contactor is mounted according to a fourth embodiment of the present invention, and a plan view of a state in which the contactor is mounted in the internal circuit.
도 16 및 도 17은 본 발명의 제 5 실시 예에 따른 컨택터의 결합 사시도 및 분리 사시도.16 and 17 are a perspective view and a disassembled perspective view of the contactor according to the fifth embodiment of the present invention.
도 18 및 도 19는 본 발명의 제 5 실시 예에 따른 컨택터의 일 측면도 및 타 측면도.18 and 19 are side and other side views of a contactor according to a fifth embodiment of the present invention.
도 20은 본 발명의 제 5 실시 예에 따른 컨택터가 전도체와 내부 회로 사이에 마련된 단면도.20 is a cross-sectional view of a contactor provided between a conductor and an internal circuit according to a fifth embodiment of the present disclosure;
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information.
도 1은 본 발명의 제 1 실시 예에 따른 컨택터의 단면도이다. 또한, 도 2는 도전성 접착부의 단면도이고, 도 3 및 도 4는 도전성 접착부의 부직포 및 직포 형태의 베이스의 사진이며, 도 5 및 도 6은 부직포 및 직포 형태의 베이스를 이용한 도전성 접착부의 표면 사진들이다. 그리고, 도 7은 본 발명의 제 2 실시 예에 따른 컨택터의 단면도이고, 도 8 및 도 9는 복합 보호부의 일 실시 예 및 다른 실시 예에 따른 도면이다.1 is a cross-sectional view of a contactor according to a first embodiment of the present invention. In addition, Figure 2 is a cross-sectional view of the conductive adhesive portion, Figures 3 and 4 are photographs of the base of the nonwoven fabric and woven fabric of the conductive adhesive portion, Figures 5 and 6 are surface photographs of the conductive adhesive portion using the base of the nonwoven fabric and woven fabric. . 7 is a cross-sectional view of a contactor according to a second embodiment of the present invention, and FIGS. 8 and 9 are views according to one embodiment and another embodiment of the composite protection unit.
도 1을 참조하면, 본 발명의 실시 예들에 따른 컨택터는 전자기기의 외부에 마련되며 사용자가 접촉할 수 있는 전도체(10)와 전자기기 내부에 마련되며 전자기기의 각종 기능을 수행하는 내부 회로(20) 사이에 마련될 수 있다. 이러한 컨택터는 도 1에 도시된 바와 같이 적어도 일 영역이 전도체(10)와 접촉되는 컨택부(1000)와, 적어도 일 영역이 컨택부(1000)와 접촉되고 적어도 타 영역이 내부 회로(2000)와 전기적으로 연결되는 복합 보호부(2000)와, 복합 보호부(2000)와 내부 회로(20) 사이에 마련된 도전성 접착부(3000)를 포함할 수 있다. 물론, 컨택부(1000)가 내부 회로(20)에 접촉되고 복합 보호부(2000)가 도전체(10)에 접촉될 수도 있다. 여기서, 전도체(10)는 전자기기의 전체적인 외관을 형성하는 케이스의 적어도 일부를 포함할 수 있다. 즉, 케이스의 테두리가 금속 등의 도전성 물질로 형성되어 전도체(10)를 이룰 수 있고, 케이스 전체가 금속 등의 도전성 물질로 형성되어 전도체(10)를 이룰 수 있다. 그리고, 전도체(10), 즉 케이스의 적어도 일부는 필요에 따라 외부와 통신할 수 있는 안테나로 기능할 수 있다. 즉, 전자기기에는 별도의 안테나가 구비되지 않고 전도체(10)를 안테나로서 이용할 수 있다. 물론, 전자기기는 별도의 안테나가 구비되는 동시에 케이스의 적어도 일부가 전도체(10)로 이루어질 수 있다. 또한, 내부 회로(20)는 전자기기의 각종 기능을 수행하기 위한 마련된 복수의 수동 소자, 능동 소자 등이 마련되는 인쇄회로기판(Printed Circuit Board; PCB)을 포함하며, 적어도 일 영역에 접지 단자가 마련될 수 있다. 한편, 본 발명에 따른 컨택터는 내부 회로(20)의 접지 단자에 직접 실장될 수도 있고, 컨택터와 내부 회로(20)의 접지 단자 사이에 소정의 부품 또는 전자기기의 다른 구성이 마련될 수도 있다. 예를 들어, 컨택터와 접지 단자 사이에 캐패시터, 다이오드 등이 마련될 수 있고, 그에 따라 컨택터가 캐패시터 및 다이오드의 적어도 하나를 통해 접지 단자와 연결될 수 있다. 또한, 컨택터는 전자기기의 브라켓의 일 영역 상에 실장되고 브라켓이 내부 회로(20)의 접지 단자와 전기적으로 연결될 수도 있다. 여기서, 브라켓은 전자기기의 디스플레이와 인쇄회로기판(즉 내부 회로) 사이에 마련될 수 있으며, 적어도 일부가 도전성을 가질 수 있다. 따라서, 컨택터가 브라켓 상에 실장되고 브라켓을 통해 내부 회로(20)와 연결될 수 있다.Referring to FIG. 1, a contactor according to embodiments of the present disclosure may be provided outside of an electronic device and provided with a conductor 10 that a user may contact, and an internal circuit provided inside the electronic device to perform various functions of the electronic device. 20) may be provided between. As shown in FIG. 1, the contactor may include a contact portion 1000 in which at least one region is in contact with the conductor 10, at least one region is in contact with the contact portion 1000, and at least another region is in contact with the internal circuit 2000. The composite protective part 2000 may be electrically connected to each other, and the conductive adhesive part 3000 may be provided between the composite protective part 2000 and the internal circuit 20. Of course, the contact portion 1000 may be in contact with the internal circuit 20, and the complex protection part 2000 may be in contact with the conductor 10. Here, the conductor 10 may include at least a portion of a case forming the overall appearance of the electronic device. That is, the edge of the case may be formed of a conductive material such as metal to form the conductor 10, and the entire case may be formed of a conductive material such as metal to form the conductor 10. And, the conductor 10, that is, at least a part of the case may function as an antenna that can communicate with the outside as needed. In other words, the conductor 10 may be used as the antenna without providing a separate antenna. Of course, the electronic device may be provided with a separate antenna and at least a part of the case may be formed of the conductor 10. In addition, the internal circuit 20 includes a printed circuit board (PCB) on which a plurality of passive elements, active elements, etc., which are provided for performing various functions of the electronic device, is provided, and at least one ground terminal has a ground terminal. Can be prepared. On the other hand, the contactor according to the present invention may be directly mounted on the ground terminal of the internal circuit 20, or a predetermined component or another configuration of an electronic device may be provided between the contactor and the ground terminal of the internal circuit 20. . For example, a capacitor, a diode, or the like may be provided between the contactor and the ground terminal, whereby the contactor may be connected to the ground terminal through at least one of the capacitor and the diode. In addition, the contactor may be mounted on an area of the bracket of the electronic device, and the bracket may be electrically connected to the ground terminal of the internal circuit 20. Here, the bracket may be provided between the display of the electronic device and the printed circuit board (that is, the internal circuit), and at least part of the bracket may be conductive. Thus, the contactor may be mounted on the bracket and connected to the internal circuit 20 through the bracket.
1. 컨택부1. Contact
컨택부(1000)는 전자 기기의 외부에서 외력이 가해질 때, 그 충격을 완화할 수 있도록 탄성력을 가지며, 도전성의 물질을 포함하는 재료로 이루어진다. 이러한, 컨택부(1000)는 도전성 가스켓 또는 클립(clip) 형상일 수 있다. 예를 들어, 도 1에 도시된 바와 같이 컨택부(1000)는 클립 형상일 수 있다. 클립 형상의 컨택부(1000)는 복합 보호부(2000) 상에 마련된 지지부(1100)와, 지지부(1100)의 상측에 마련되어 도전체(10)와 대향 위치되며 적어도 일부가 도전체(10)와 접촉될 수 있는 접촉부(1200)와, 지지부(1100) 및 접촉부(1200)의 일측 사이에 마련되어 이들을 연결하도록 하며 탄성력을 가지는 연결부(1300)를 포함할 수 있다. 여기서, 컨택부(1000)의 높이는 복합 보호부(2000)의 높이와 같거나 높을 수 있다. 물론, 컨택부(1000)의 높이는 복합 보호부(2000)의 높이보다 낮을 수도 있다.When the external force is applied from the outside of the electronic device, the contact part 1000 may be made of a material having an elastic force so as to alleviate the impact and including a conductive material. The contact part 1000 may have a conductive gasket or a clip shape. For example, as shown in FIG. 1, the contact unit 1000 may have a clip shape. The clip-shaped contact part 1000 is provided on the support part 1100 provided on the composite protection part 2000, and is disposed above the support part 1100 so as to face the conductor 10 and at least a part of the contact part 1000. It may include a contact portion 1200 that can be contacted, provided between the support portion 1100 and one side of the contact portion 1200 to connect them and have a connecting portion 1300 having an elastic force. Here, the height of the contact unit 1000 may be equal to or higher than the height of the composite protection unit 2000. Of course, the height of the contact unit 1000 may be lower than the height of the composite protection unit 2000.
지지부(1100)는 복합 보호부(2000)의 일면에 마련될 수 있다. 즉, 지지부(1100)는 복합 보호부(2000)의 외부 전극(2510, 2520; 2500)의 어느 하나와 접촉되도록 복합 보호부(2000)의 일면에 마련될 수 있다. 지지부(1100)가 복합 보호부(2000)의 일면에 마련되므로 접촉부(1200), 연결부(1300), 연장부(5000) 등을 지지할 수 있다. 이러한 지지부(1100)는 소정 두께의 판 형상으로 마련될 수 있는데, 예를 들어 소정 두께를 갖는 직사각형의 판 형상으로 마련될 수 있다. 또한, 지지부(1100)는 복합 보호부(2000)의 일면과 동일 폭으로 마련될 수 있고, 복합 보호부(2000)의 일면의 길이와 같거나 짧게 마련될 수 있다. 한편, 지지부(1100)와 복합 보호부(2000) 사이에는 결합 부재(미도시)가 마련되어 지지부(1100)와 복합 보호부(2000)를 결합시킬 수 있다. 결합 부재로는 예를 들어 접착 테이프, 접착제 등이 이용될 수 있다. 즉, 지지부(1100)는 접착 테이프, 접착제 등의 접착 부재에 의해 복합 보호부(2000)의 상부면에 접착될 수 있다. 이때, 지지부(1100)와 복합 보호부(2000)는 전기적으로 연결되므로 결합 부재는 도전성 물질을 이용하는 것이 바람직하며, 이를 위해 본 발명의 도전성 접착부(3000)를 이용할 수도 있다. 즉, 도전성 접착부(3000)는 복합 보호부(2000)와 내부 회로(20) 뿐만 아니라 복합 보호부(2000)와 컨택부(1000) 사이에 마련될 수 있다.The support part 1100 may be provided on one surface of the composite protection part 2000. That is, the support part 1100 may be provided on one surface of the composite protection part 2000 to be in contact with any one of the external electrodes 2510, 2520 and 2500 of the composite protection part 2000. Since the support part 1100 is provided on one surface of the composite protection part 2000, the support part 1100, the connection part 1300, and the extension part 5000 may be supported. The support 1100 may be provided in a plate shape having a predetermined thickness, for example, may be provided in a rectangular plate shape having a predetermined thickness. In addition, the support 1100 may be provided to have the same width as one surface of the composite protection unit 2000, and may be provided to be the same as or shorter than the length of one surface of the composite protection unit 2000. Meanwhile, a coupling member (not shown) may be provided between the support part 1100 and the composite protection part 2000 to couple the support part 1100 and the composite protection part 2000. As the coupling member, for example, an adhesive tape, an adhesive or the like can be used. That is, the support 1100 may be adhered to the upper surface of the composite protection part 2000 by an adhesive member such as an adhesive tape or an adhesive. In this case, since the support 1100 and the composite protective part 2000 are electrically connected, the coupling member may be a conductive material. For this purpose, the conductive adhesive part 3000 of the present invention may be used. That is, the conductive adhesive part 3000 may be provided between the composite protection part 2000 and the contact part 1000 as well as the composite protection part 2000 and the internal circuit 20.
접촉부(1200)는 일단이 연결부(1300)와 연결되고, 연결부(1300)로부터 일 방향으로 연장 형성되며, 일부가 도전체(10)를 향해 예컨대, 상향 경사지도록 연장되어 도전체(10)와 접촉될 수 있다. 또한, 접촉부(1200)의 타단과 인접한 영역은 도전체(10)가 위치된 방향으로 볼록한 곡률을 가지는 형상일 수 있다. 예를 들어, 접촉부(1200)는 소정 길이로 수평을 이루고 그로부터 소정 길이로 상향 경사지게 형성된 후 다시 소정 길이로 하항 경사지게 형성될 수 있다. 이때, 접촉부(1200)의 도전체(10)와 접촉되는 영역은 예를 들어 타원형, 반원형 등의 원형을 이룰 수 있다. 즉, 지지부(1100)의 영역 중, 연결부(1300)와 멀리 위치된 또는 지지부(1100)의 타단을 포함하는 주위 영역이 상측으로 절곡된 절곡부를 가지는 형상일 수 있으며, 절곡부가 도전체(10)와 접촉되도록 설치된다. One end of the contact portion 1200 is connected to the connection portion 1300, and extends in one direction from the connection portion 1300, and a portion thereof extends to be inclined upward, for example, upwardly toward the conductor 10 to contact the conductor 10. Can be. In addition, the region adjacent to the other end of the contact portion 1200 may have a shape having a curvature convex in the direction in which the conductor 10 is located. For example, the contact portion 1200 may be horizontally formed to a predetermined length and formed to be inclined upward from the predetermined length, and then be formed to be inclined downward to a predetermined length again. In this case, an area in contact with the conductor 10 of the contact portion 1200 may have a circular shape such as an ellipse, a semicircle, and the like. That is, the region of the support 1100 may be shaped to have a bent portion in which the peripheral region including the other end of the support portion 1100 or the farther portion of the connection portion 1300 is bent upwards, and the bent portion is the conductor 10. It is installed to be in contact with.
연결부(1300)는 지지부(1100)의 일단과 접촉부(1200)의 일단을 연결하도록 형성되는데, 곡률을 가지도록 형성될 수 있다. 이러한 연결부(1300)는 외력에 의해 가압되면 회로 기판(20)이 위치된 방향으로 눌려지고, 외력이 해제되면, 원래 상태로 복원되는 탄성력을 가진다. 따라서, 컨택부(1000)는 적어도 연결부(1300)가 탄성력을 갖는 금속 물질로 형성될 수 있다.The connection part 1300 is formed to connect one end of the support part 1100 and one end of the contact part 1200, and may have a curvature. When the connection part 1300 is pressed by an external force, the circuit board 20 is pressed in the direction in which the circuit board 20 is located, and when the external force is released, the connector 1300 has an elastic force that is restored to its original state. Therefore, the contact part 1000 may be formed of a metal material having at least the connection part 1300 having an elastic force.
상술한 바와 같이 컨택부(1000)는 사용자가 접촉 가능한 도전체(10)와 접촉되도록 형성될 수 있다. 즉, 컨택부(1000)는 금속 재질의 케이스와 접촉되도록 마련될 수도 있고, 외부와의 통신 신호를 전달하는 안테나의 역할을 하는 도전체(10)와 접촉될 수도 있다. 물론, 케이스가 안테나의 역할을 할 수도 있다.As described above, the contact unit 1000 may be formed to be in contact with the conductor 10 that the user can contact. That is, the contact unit 1000 may be provided to be in contact with the metal case, or may be in contact with the conductor 10 serving as an antenna for transmitting a communication signal to the outside. Of course, the case may also serve as an antenna.
2. 복합 보호부2. Composite protection
복합 보호부(2000)는 외부로부터 인가되는 ESD 등의 과전압을 내부 회로(20)의 접지 단자로 바이패스시키고, 내부 회로(20)로부터의 누설 전류를 차단할 수 있다. 이러한 복합 보호부(2000)는 소정 전압 이하에서는 절연 상태를 유지하고, 소정 전압 이상의 전압에서는 전기적으로 도통되는 특성을 가질 수 있다. 예를 들어, 복합 보호부(2000)는 소정 전압 이상에서 도통되는 바리스터, 서프레서, 다이오드 등으로 이루어질 수 있다. 여기서, 복합 보호부(2000)를 도통시키기 위한 전압, 즉 항복 전압 또는 방전 개시 전압은 외부의 정격 전압보다 높고 복합 보호부(2000)의 절연 파괴 전압보다 낮을 수 있다. 즉, 정격 전압보다 높고 절연 파괴 전압보다 낮은 과전압이 인가될 때 복합 보호부(2000)는 도통되어 인가되는 과전압을 내부 회로(20)의 접지 단자로 바이패스시킬 수 있다. 또한, 복합 보호부(2000)는 통신 신호를 전달하기 위해 캐패시터 등을 더 구비할 수 있다. 한편, 복합 보호부(2000)의 일면 및 이와 대향되는 타면에는 내부의 도전층과 연결되는 외부 전극(2510, 2520; 2500)이 각각 형성되며, 외부 전극(2500)의 어느 하나는 컨택부(1000)와 접촉되고 다른 하나는 도전성 접착부(3000)를 통해 내부 회로(20)에 접촉될 수 있다. 예를 들어, 제 1 외부 전극(2510)이 내부 회로(20)에 연결되고, 제 2 외부 전극(2520)이 컨택부(1000)에 연결될 수 있다. 이러한 복합 보호부(2000)의 예가 도 8 및 도 9에 도시되어 있으며, 복합 보호부(2000)에 대해서는 추후 상세히 설명하도록 한다.The composite protection unit 2000 may bypass an overvoltage such as an ESD applied from the outside to the ground terminal of the internal circuit 20 and cut off a leakage current from the internal circuit 20. The complex protection unit 2000 may have an insulating state below a predetermined voltage and may be electrically conductive at a voltage above a predetermined voltage. For example, the composite protection unit 2000 may be formed of a varistor, a suppressor, a diode, and the like that are conducted at a predetermined voltage or more. Here, the voltage for conducting the composite protection unit 2000, that is, the breakdown voltage or the discharge start voltage may be higher than the external rated voltage and lower than the dielectric breakdown voltage of the composite protection unit 2000. That is, when an overvoltage higher than the rated voltage and lower than the dielectric breakdown voltage is applied, the composite protection unit 2000 may conduct the applied overvoltage to the ground terminal of the internal circuit 20. In addition, the complex protection unit 2000 may further include a capacitor or the like for transmitting a communication signal. On the other hand, on one surface of the composite protection unit 2000 and the other surface opposite thereto, external electrodes 2510, 2520; 2500 connected to the conductive layer therein are formed, respectively, and one of the external electrodes 2500 is the contact unit 1000. ) And the other may contact the internal circuit 20 through the conductive adhesive 3000. For example, the first external electrode 2510 may be connected to the internal circuit 20, and the second external electrode 2520 may be connected to the contact unit 1000. An example of such a composite protection unit 2000 is illustrated in FIGS. 8 and 9, and the composite protection unit 2000 will be described in detail later.
이렇게 복합 보호부(2000)가 컨택부(1000)를 사이에 두고 도전체(10)와 내부 회로(20) 사이에 마련되어 내부 회로(20)로부터 유입되는 누설 전류를 차단할 수 있다. 또한, 복합 보호부(2000)는 ESD 전압을 접지 단자로 바이패스시키고, ESD에 의해 절연이 파괴되지 않아 누설 전류를 지속적으로 차단할 수 있다. 즉, 본 발명에 따른 복합 보호부(2000)는 감전 전압 이하에서 절연 상태를 유지하여 내부 회로(20)로부터 유입되는 누설 전류를 차단하고, ESD 전압 이상에서 도전 상태를 유지하여 외부로부터 전자기기 내부로 인가되는 ESD 전압을 접지 단자로 바이패스시킨다. 따라서, 누설 전류에 의한 사용자의 감전을 방지할 수 있고, 외부로부터 인가되는 과전압에 의한 전자기기의 내부 회로를 보호할 수 있다.As such, the complex protection part 2000 may be provided between the conductor 10 and the internal circuit 20 with the contact part 1000 interposed therebetween to block leakage current flowing from the internal circuit 20. In addition, the complex protection unit 2000 may bypass the ESD voltage to the ground terminal, and may continuously block the leakage current because the insulation is not destroyed by the ESD. That is, the composite protection unit 2000 according to the present invention maintains an insulation state below the electric shock voltage to cut off the leakage current flowing from the internal circuit 20, and maintains the conduction state above the ESD voltage to prevent the inside of the electronic device from the outside. Bypass the ESD voltage applied to the ground terminal. Therefore, the electric shock of the user due to leakage current can be prevented, and the internal circuit of the electronic device due to the overvoltage applied from the outside can be protected.
3. 도전성 접착부3. Conductive Adhesive
도전성 접착부(3000)는 복합 보호부(2000)와 내부 회로(20) 사이에 마련될 수 있다. 즉, 복합 보호부(2000)의 일측이 컨택부(1000)와 접촉되고 타측이 내부 회로(20)에 연결될 수 있는데, 복합 보호부(2000)의 타측과 내부 회로(20) 사이에 도전성 접착부(3000)가 마련될 수 있다. 따라서, 복합 보호부(2000)는 도전성 접착부(3000)를 통해 내부 회로(20)에 고정될 수 있다. 또한, 도전성 접착부(3000)는 복합 보호부(2000)와 컨택부(1000) 사이에 더 마련될 수도 있다. 즉, 복합 보호부(2000)의 일측과 컨택부(1000) 사이에 도전성 접착부(3000)가 더 마련될 수도 있다.The conductive adhesive part 3000 may be provided between the composite protection part 2000 and the internal circuit 20. That is, one side of the composite protection unit 2000 may be in contact with the contact unit 1000, and the other side thereof may be connected to the internal circuit 20. The conductive adhesive part may be formed between the other side of the composite protection unit 2000 and the internal circuit 20. 3000 may be provided. Therefore, the composite protection part 2000 may be fixed to the internal circuit 20 through the conductive adhesive part 3000. In addition, the conductive adhesive part 3000 may be further provided between the composite protection part 2000 and the contact part 1000. That is, the conductive adhesive part 3000 may be further provided between one side of the composite protection part 2000 and the contact part 1000.
이러한 도전성 접착부(3000)는 도전성을 갖는 동시에 접착 특성을 갖는다. 또한, 도전성 접착부(3000)는 도 2에 도시된 바와 같이 도전성을 갖는 다공성 구조의 베이스(3100)와, 베이스(3100)의 기공을 충진하며 접착 특성을 갖는 충진재(3200)와, 충진재(3200)에 함유된 도전성 입자(3300)를 포함할 수 있다. 즉, 도전성 접착부(3000)는 도전성 입자(3300)가 함유된 충진재(3200)가 베이스(3100)의 기공을 충진하여 마련될 수 있다.The conductive adhesive portion 3000 has conductivity and adhesive properties. In addition, the conductive adhesive portion 3000 is filled with a porous base 3100 having a conductive structure, the pores of the base 3100, the filler 3200 having adhesive properties and the filler 3200, as shown in FIG. It may include conductive particles 3300 contained in. That is, the conductive adhesive part 3000 may be provided by filling the pores of the base 3100 with the filler 3200 containing the conductive particles 3300.
베이스(3100)는 예를 들어 메쉬 구조로 형성되어 복수의 기공을 갖는 다공성 구조로 마련될 수 있다. 또한, 베이스(3100)는 도전성 물질로 이루어질 수 있다. 여기서, 도전성을 갖는 메쉬 구조의 베이스(3100)는 도전성 실이 불규칙적으로 배열된 부직포(non woven) 구조일 수 있고, 도전성 실이 규칙적으로 배열된 직포(woven) 구조일 수도 있다. 부직포 구조는 도 3에 도시된 바와 같이 도전성 실이 불규칙적으로 엉긴 구조일 수 있고, 직포 구조는 도 4에 도시된 바와 같이 도전성의 경사(날실) 및 위사(씨실)가 규칙적으로 교차하여 짜여진 구조일 수 있다. 여기서, 도 3은 부직포 구조의 베이스(3100)의 사진이고, 도 4는 직포 구조의 베이스(3100)의 사진이다. 또한, 도 3 및 도 4의 (b)는 (a)의 사진을 보다 확대한 사진이고, (c)는 (b)의 사진을 보다 확대한 사진이다. 한편, 베이스(3100)를 이루는 도전성 실은 예를 들어 니켈, 구리, 알루미늄 등의 전기 전도도가 높은 금속 물질을 이용할 수 있으며, 예를 들어 1㎛∼1000㎛의 굵기를 가질 수 있다. 또한, 베이스(3100)는 20% 내지 80%의 기공률을 가질 수 있다. 여기서, 베이스(3100)의 기공률은 도전성 실의 밀도에 따라 조절될 수 있는데, 도전성 실이 조밀하게 이루어져 베이스(3100)의 기공률이 낮아질 수 있으며, 도전성 실이 조대하게 이루어져 베이스(3100)의 기공률이 높아질 수 있다. 한편, 기공률이 20% 미만일 경우 충진재(3200)의 함침량이 적어 접착성이 저하될 수 있고, 기공률이 80% 초과일 경우 베이스(3100)가 차지하는 비율이 줄어 전기 전도도가 저하되고 그에 따라 저항이 증가할 수 있다. 또한, 마이크로 사이즈의 도전성 실로 이루어진 베이스(3100)에 형성된 기공은 베이스(3100)의 두께, 기공률 등에 따라 마이크로 사이즈 또는 그 이상의 사이즈를 가질 수 있다.The base 3100 may be formed, for example, in a mesh structure and have a porous structure having a plurality of pores. In addition, the base 3100 may be made of a conductive material. Here, the conductive base 3100 of the mesh structure may be a nonwoven structure in which the conductive yarns are irregularly arranged, or may be a woven structure in which the conductive yarns are regularly arranged. The nonwoven fabric structure may be a structure in which conductive yarns are irregularly entangled as shown in FIG. 3, and the woven fabric structure is a structure in which conductive warp yarns (wefts) and weft yarns (weft yarns) are woven in regular intervals as shown in FIG. 4. Can be. 3 is a photograph of a base 3100 of a nonwoven fabric structure, and FIG. 4 is a photograph of a base 3100 of a woven fabric structure. 3 and 4 (b) are enlarged photographs of the photograph of (a), and (c) is photographs of enlarged photographs of the photograph of (b). Meanwhile, the conductive thread forming the base 3100 may use, for example, a metal material having high electrical conductivity such as nickel, copper, and aluminum, and may have, for example, a thickness of 1 μm to 1000 μm. In addition, the base 3100 may have a porosity of 20% to 80%. Here, the porosity of the base 3100 may be adjusted according to the density of the conductive thread. The conductive thread may be densely formed so that the porosity of the base 3100 may be lowered. The porosity of the base 3100 may be made coarse. Can be high. On the other hand, when the porosity is less than 20%, the impregnation amount of the filler 3200 may be low, and thus the adhesiveness may be lowered. When the porosity is more than 80%, the proportion of the base 3100 is reduced to decrease the electrical conductivity, and thus the resistance is increased. can do. In addition, the pores formed in the base 3100 made of a micro-sized conductive seal may have a micro size or more according to the thickness, porosity, etc. of the base 3100.
충진재(3200)는 도전성 입자(3300)를 함유하며, 베이스(3100)의 기공을 충진하도록 형성된다. 충진재(3200)는 복합 보호부(2000)를 내부 회로(20)에 접착시키기 위해 접착성 물질로 이루어질 수 있다. 접착성 물질로는 예를 들어 고무계, 아크릴계, 실리콘계 등의 접착 물질을 이용할 수 있다. 또한, 충진재 물질과 도전성 입자의 혼합물 100wt%에 대하여 도전성 입자(3300)가 1wt% 내지 50wt%로 함유될 수 있고, 바람직하게는 5wt% 내지 50wt%, 더욱 바람직하게는 7wt% 내지 40wt%로 함유될 수 있다. 도전성 입자(3300)가 1wt% 미만으로 함유될 경우 반복적인 과전압 인가 시 도전성 접착부(3000)의 저항이 높아질 수 있으며, 50wt%를 초과할 경우 접착성이 저하될 수 있다. The filler 3200 contains conductive particles 3300 and is formed to fill pores of the base 3100. The filler 3200 may be made of an adhesive material to bond the composite protection part 2000 to the internal circuit 20. As the adhesive substance, for example, an adhesive substance such as rubber, acryl or silicone can be used. Also, the conductive particles 3300 may be contained in an amount of 1 wt% to 50 wt%, preferably 5 wt% to 50 wt%, and more preferably 7 wt% to 40 wt%, based on 100 wt% of the mixture of the filler material and the conductive particles. Can be. When the conductive particles 3300 is contained in less than 1wt%, the resistance of the conductive adhesive portion 3000 may be increased when the overvoltage is repeatedly applied. If the conductive particles 3300 are more than 50wt%, the adhesion may be deteriorated.
도전성 입자(3300)는 전기 전도성 물질을 이용할 수 있는데, 전기 전도성 물질로는 예를 들어, 니켈, 구리, 알루미늄, 크롬, 카본 등을 포함할 수 있다. 이러한 도전성 입자(3300)는 베이스(3100) 내의 기공보다 작은 사이즈를 가질 수 있다. 물론, 도전성 입자(3300)의 적어도 일부는 기공보다 큰 사이즈를 가질 수 있다. 그러나, 도전성 입자(3300)가 베이스(3100) 내의 기공에 마련될 수 있도록 도전성 입자(3300)의 사이즈는 기공보다 작은 사이즈를 갖는 것이 바람직하다. 한편, 도전성 입자(3300)의 평균 크기, 즉 평균 입경은 예를 들어 1㎛ 내지 1000㎛일 수 있고, 바람직하게는 1㎛ 내지 500㎛일 수 있으며, 더욱 바람직하게는 1㎛ 내지 100㎛일 수 있다. 또한, 도전성 입자(3300)는 동일 크기의 단일 입자 또는 2종 이상의 입자를 이용할 수도 있고, 복수의 크기를 갖는 단일 입자 또는 2종 이상의 입자를 이용할 수도 있다. 도전성 입자(3300)가 복수의 크기를 가질 경우 예를 들어 20㎛∼100㎛의 평균 입경을 갖는 제 1 도전성 입자와, 2㎛∼20㎛의 평균 입경을 갖는 제 2 도전성 입자와, 1∼10㎛의 평균 입경을 갖는 제 3 도전성 입자를 이용할 수 있다. 여기서, 제 1 도전성 입자는 제 2 도전성 입자보다 크거나 같고, 제 2 도전성 입자는 제 3 도전성 입자보다 크거나 같을 수 있다. 즉, 제 1 도전성 입자의 평균 입경을 A, 제 2 도전성 입자의 평균 입경을 B, 그리고 제 3 도전성 입자의 평균 입경을 C라 할 때, A:B:C는 20∼100:2∼20:1∼10일 수 있다. 예를 들어, A:B:C는 20:1.5:1일 수 있고, 10:1.5:1일 수 있다. 이렇게 도전성 입자(3300)를 함유하는 충진재(3200)로 베이스(3100) 내의 복수의 기공을 충진하면 베이스(3100)에 충진재(3200) 만을 이용하는 경우에 비해 전기 전도성을 더욱 향상시킬 수 있다. 즉, 충진재(3200) 내에 도전성 입자(3300)를 함유시킴으로써 충진재(3200) 만을 이용하는 경우에 비해 저항을 줄일 수 있다. 또한, 반복적인 ESD 등의 과전압이 인가된 후에도 저항이 증가하지 않아 컨택터의 신뢰성 저하를 방지할 수 있다. 한편, 도전성 입자(3300)를 함유한 충진재(3200)가 베이스(3100)의 기공 내에 형성된 후의 도전성 접착부(3000)의 표면 사진이 도 5 및 도 6에 도시되어 있다. 도 5는 부직포 구조의 베이스(3100)에 충진재(3200)가 형성된 사진이고, 도 6은 직포 구조의 베이스(3100)에 충진재(3200)가 형성된 사진이다. 또한, 도 5 및 도 6의 (a) 내지 (e)는 도전성 입자(3300)로서, 니켈이 각각 12wt%, 14wt%, 16wt%, 20wt% 및 24wt% 함유된 사진이다. 여기서, 흰점으로 보이는 것이 도전성 입자(3300)이고, 검은색으로 보이는 것이 충진재(3200)이다. 사진에 보이는 바와 같이 도전성 입자(3300)는 적어도 일부 영역에서 다른 영역과 다른 밀도로 분산될 수 있고, 적어도 일 영역에서 적어도 둘 이상의 도전성 입자(3300)가 접촉되어 분산될 수 있다. 한편, 도전성 접착부(3000)은 적어도 일 영역의 두께가 다른 영역과 다르게 형성될 수 있다. 또한, 사진에서 볼 수 있는 바와 같이 도전성 입자(3300)를 함유한 충진재(3200)가 충진된 후 도전성 접착부(3000)에 적어도 하나의 기공이 형성될 수 있다. 기공은 베이스(3100)의 적어도 일부를 노출시킬 수도 있다,The conductive particles 3300 may use an electrically conductive material. For example, the conductive particles 3300 may include nickel, copper, aluminum, chromium, carbon, or the like. The conductive particles 3300 may have a size smaller than the pores in the base 3100. Of course, at least some of the conductive particles 3300 may have a larger size than the pores. However, the size of the conductive particles 3300 is preferably smaller than the pores so that the conductive particles 3300 can be provided in the pores in the base 3100. On the other hand, the average size of the conductive particles 3300, that is, the average particle diameter may be, for example, 1㎛ to 1000㎛, preferably 1㎛ to 500㎛, more preferably may be 1㎛ to 100㎛ have. In addition, the electroconductive particle 3300 may use single particle | grains or 2 or more types of particle | grains of the same size, and may use single particle | grains or 2 or more types of particle | grains which have multiple sizes. When the electroconductive particle 3300 has a some size, it is the 1st electroconductive particle which has an average particle diameter of 20 micrometers-100 micrometers, the 2nd electroconductive particle which has an average particle diameter of 2 micrometers-20 micrometers, and 1-10, for example. 3rd electroconductive particle which has an average particle diameter of micrometer can be used. Here, the first conductive particles may be greater than or equal to the second conductive particles, and the second conductive particles may be greater than or equal to the third conductive particles. That is, A: B: C is 20-100: 2-20: When the average particle diameter of 1st electroconductive particle is A, the average particle diameter of 2nd electroconductive particle is B, and the average particle diameter of 3rd electroconductive particle is C. It may be 1 to 10. For example, A: B: C may be 20: 1.5: 1 and 10: 1.5: 1. When the plurality of pores in the base 3100 are filled with the filler 3200 containing the conductive particles 3300, the electrical conductivity may be further improved as compared to the case of using only the filler 3200 in the base 3100. That is, by including the conductive particles 3300 in the filler 3200, the resistance can be reduced as compared with the case where only the filler 3200 is used. In addition, the resistance does not increase even after repeated overvoltage such as ESD is applied, thereby preventing the contactor from deteriorating reliability. Meanwhile, FIGS. 5 and 6 show surface photographs of the conductive adhesive part 3000 after the filler 3200 containing the conductive particles 3300 is formed in the pores of the base 3100. 5 is a photograph in which the filler 3200 is formed in the base 3100 of the nonwoven fabric structure, and FIG. 6 is a photograph in which the filler 3200 is formed in the base 3100 of the woven fabric structure. 5 and 6 (a) to (e) are conductive particles 3300 and are photographs containing 12 wt%, 14 wt%, 16 wt%, 20 wt% and 24 wt% nickel, respectively. Here, the white particles are the conductive particles 3300 and the black ones are the fillers 3200. As shown in the photograph, the conductive particles 3300 may be dispersed at different densities from other regions in at least some regions, and at least two or more conductive particles 3300 may be in contact and dispersed in at least one region. On the other hand, the conductive bonding portion 3000 may be formed differently from at least one region having a different thickness. In addition, as shown in the photograph, at least one pore may be formed in the conductive adhesive part 3000 after the filler 3200 containing the conductive particles 3300 is filled. The pores may expose at least a portion of the base 3100,
한편, 도전성 입자(3300)를 충진재(3200)에 포함시키기 위해 예를 들어 고무계 또는 아크릴계 수지를 유기 용제에 용해한 후 도전성 입자를 혼합시킬 수 있다. 또한, 이렇게 도전성 입자(3300)가 혼합된 혼합물에 베이스(3100)를 침지시켜 충진재(3200)를 베이스(3100) 내의 기공에 충진시킬 수 있다. 예를 들어, 충진재(3200)로서 아크릴 수지와 도전성 입자(3200)를 소정의 용매에 혼합하여 혼합물을 제조한 후 다공성의 베이스(3100)를 혼합 용매에 침지하고 용매를 건조시켜 베이스(3100) 내에 도전성 입자(3300)를 함유한 충진재(3200)를 분포시킬 수 있다. 여기서, 용매는 에틸아세테이트, 메틸에틸케톤, 메틸렌클로라이드, 테트라히드로퓨란 또는 클로로포름 등을 포함할 수 있으며, 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다. 이렇게 충진재 물질, 도전성 입자 및 용매의 혼합물이 베이스(3100)에 침지된 후 충진재(3200) 및 도전성 입자(3300)의 혼합물 100wt%에 대해 도전성 입자(3300)가 1wt% 내지 50wt%일 수 있다.Meanwhile, in order to include the conductive particles 3300 in the filler 3200, for example, the rubber or acrylic resin may be dissolved in an organic solvent, and then the conductive particles may be mixed. In addition, the filler 3200 may be filled in the pores in the base 3100 by immersing the base 3100 in the mixture in which the conductive particles 3300 are mixed. For example, as a filler 3200, an acrylic resin and conductive particles 3200 are mixed in a predetermined solvent to prepare a mixture, and then the porous base 3100 is immersed in the mixed solvent and the solvent is dried to form the base 3100. The filler 3200 containing the conductive particles 3300 may be distributed. Here, the solvent may include ethyl acetate, methyl ethyl ketone, methylene chloride, tetrahydrofuran or chloroform, and these may be used alone or in combination of two or more. After the mixture of the filler material, the conductive particles, and the solvent is immersed in the base 3100, the conductive particles 3300 may be 1 wt% to 50 wt% with respect to 100 wt% of the mixture of the filler 3200 and the conductive particles 3300.
한편, 도전성 접착부(3000)는 베이스(3100)가 1Ω 이하의 저항을 가질 수 있고, 바람직하게는 0.5Ω 이하의 저항, 더욱 바람직하게는 0.05Ω 이하의 저항을 가질 수 있다. 예를 들어, 베이스(3100)는 0.01Ω 내지 1Ω의 저항을 가질 수 있다. 또한, 이러한 베이스(3100)를 구비하는 도전성 접착부(3000)는 5Ω 이하의 저항, 바람직하게는 0.15Ω 이하의 저항을 가질 수 있다. 도전성 접착부(3000)는 ESD 전압이 반복적으로 인가된 후에도 10Ω 이하의 저항, 예를 들어 0.5Ω 내지 10Ω의 저항을 가질 수 있다. 즉, 반복적인 ESD 전압 인가에 따라 도전성 접착부(3000)의 저항이 증가될 수 있는데, 그에 따라 ESD 전압을 바이패스시키지 못하는 문제가 발생될 수 있으므로 반복적인 ESD 전압 인가에도 소정 레벨의 ESD 전압을 바이패스시킬 수 있도록 도전성 접착부(3000)는 10Ω 이하의 저항을 갖는 것이 바람직하다. 한편, 베이스(3100)의 형태, 충진재(3200)의 도전성 입자(3300) 함량 등에 따라 도전성 접착부(3000)의 저항이 달라지고 그에 따라 컨택터의 저항이 달라질 수 있지만, 도전성 접착부(3000)가 10Ω 이하의 저항을 가지고, ESD 전압이 인가된 후에도 10Ω 이하의 저항을 갖는 것이 바람직하다.On the other hand, the conductive bonding portion 3000 may have a resistance of 1 kΩ or less, the base 3100, preferably has a resistance of 0.5 kΩ or less, more preferably 0.05 kΩ or less. For example, the base 3100 may have a resistance of 0.01 kΩ to 1 kΩ. In addition, the conductive adhesive portion 3000 including the base 3100 may have a resistance of 5 kΩ or less, preferably 0.15 kΩ or less. The conductive adhesive part 3000 may have a resistance of 10 kΩ or less, for example, 0.5 kΩ to 10 kΩ even after the ESD voltage is repeatedly applied. That is, the resistance of the conductive adhesive part 3000 may increase according to the repeated application of the ESD voltage, which may cause a problem of failing to bypass the ESD voltage. It is preferable that the conductive adhesive portion 3000 has a resistance of 10 kΩ or less so as to pass. Meanwhile, although the resistance of the conductive adhesive part 3000 may vary according to the shape of the base 3100, the content of the conductive particles 3300 of the filler 3200, and the like, the resistance of the contactor may vary. It is desirable to have the following resistance, and 10 Ω or less even after the ESD voltage is applied.
도 7은 본 발명의 제 2 실시 예에 따른 컨택터의 단면도이다.7 is a cross-sectional view of a contactor according to a second embodiment of the present invention.
도 7을 참조하면, 본 발명의 제 2 실시 예에 따른 컨택터는 적어도 일 영역이 전도체(10)와 접촉되는 컨택부(1000)와, 적어도 일 영역이 컨택부(1000)와 접촉되는 복합 보호부(2000)와, 일 면이 복합 보호부(2000)와 접촉된 도전부(4000)와, 도전부(4000)의 타면과 내부 회로(20) 사이에 마련된 도전성 접착부(3000)를 포함할 수 있다. 즉, 본 발명의 제 2 실시 예는 제 1 실시 예와 비교하여 복합 보호부(2000)와 내부 회로(20) 사이에 도전부(4000)가 더 마련되며, 도전성 접착부(3000)가 도전부(4000)와 내부 회로(20) 사이에 마련될 수 있다. 이러한 본 발명의 제 2 실시 예를 제 1 실시 예와 차이나는 부분을 중심으로 설명하면 다음과 같다.Referring to FIG. 7, the contactor according to the second embodiment of the present invention may include a contact portion 1000 in which at least one area is in contact with the conductor 10, and a complex protection part in which at least one area is in contact with the contact part 1000. And a conductive portion 4000 having one surface thereof in contact with the composite protection portion 2000 and a conductive adhesive portion 3000 provided between the other surface of the conductive portion 4000 and the internal circuit 20. . That is, in the second embodiment of the present invention, the conductive part 4000 is further provided between the composite protection part 2000 and the internal circuit 20, and the conductive adhesive part 3000 is formed in the conductive part as compared with the first embodiment. It may be provided between the 4000 and the internal circuit 20. The second embodiment of the present invention will be described below with reference to parts that differ from the first embodiment.
4. 도전부4. Challenge
도전부(4000)는 일면이 복합 보호부(2000)와 접촉되고 타면이 도전성 접착부(3000)를 통해 내부 회로(20)에 실장될 수 있다. 즉, 복합 보호부(2000)는 일면에 컨택부(1000)가 마련되고, 타면에 도전부(4000)가 마련된다. 여기서, 복합 보호부(2000)와 도전부(4000)는 납땜 또는 본 발명의 도전성 접착부를 이용하여 접합될 수 있다. 즉, 본 발명의 도전성 접착부(3000)는 컨택부(1000)와 복합 보호부(2000) 사이, 복합 보호부(2000)와 도전부(4000) 사이에 더 형성될 수 있다. 따라서, 도전부(4000)를 통해 복합 보호부(2000)와 내부 회로(20)가 전기적으로 연결될 수 있다. 이를 위해, 도전부(4000)는 도전성 물질을 이용하여 소정의 두께를 갖는 판 형상으로 마련될 수 있고, 예를 들어 직사각형으로 마련될 수 있다. 이러한 도전부(4000)는 금속 물질로 이루어질 수 있는데, 예를 들어 SUS로 이루어질 수 있다. 또한, 도전부(4000)는 Ag, Cr, Ni, Au 등으로 도금될 수도 있고, 약 0.01㎜∼1㎜ 정도의 두께로 마련될 수 있다. 한편, 도전부(4000)는 복합 보호부(2000)보다 같거나 큰 면적을 가질 수 있다. 즉, 도전부(4000)는 일 방향으로의 길이가 복합 보호부(2000)의 길이보다 길거나 같고, 일 방향과 직교하는 타 방향으로의 폭이 복합 보호부(2000)의 폭보다 길거나 같을 수 있다. 바람직하게, 도전부(4000)는 길이 및 폭이 복합 보호부(2000)의 길이 및 폭보다 크고, 그에 따라 복합 보호부(2000)의 일면의 면적보다 큰 면적을 가질 수 있다. 이렇게 도전부(4000)가 마련됨으로써 컨택터를 내부 회로(20) 상에 용이하게 실장할 수 있다. 즉, 크기가 작은 복합 보호부(2000)는 내부 회로(20)에 직접 실장하기 어렵지만, 복합 보호부(2000)보다 큰 면적을 갖는 도전부(4000)에 복합 보호부(2000)를 먼저 고정하고 도전부(4000)를 내부 회로(20) 또는 브라켓 등의 내부 회로와 전기적으로 연결된 도전 부재에 실장함으로써 컨택터의 실장을 용이하게 할 수 있다.One surface of the conductive portion 4000 may be in contact with the composite protection portion 2000, and the other surface of the conductive portion 4000 may be mounted on the internal circuit 20 through the conductive adhesive portion 3000. That is, in the complex protection part 2000, the contact part 1000 is provided on one surface, and the conductive part 4000 is provided on the other surface. Here, the composite protection part 2000 and the conductive part 4000 may be bonded by soldering or the conductive adhesive part of the present invention. That is, the conductive adhesive part 3000 of the present invention may be further formed between the contact part 1000 and the composite protection part 2000 and between the composite protection part 2000 and the conductive part 4000. Therefore, the composite protection part 2000 and the internal circuit 20 may be electrically connected through the conductive part 4000. To this end, the conductive portion 4000 may be provided in a plate shape having a predetermined thickness using a conductive material, for example, may be provided in a rectangular shape. The conductive part 4000 may be made of a metal material, for example, made of SUS. In addition, the conductive portion 4000 may be plated with Ag, Cr, Ni, Au, or the like, and may be provided with a thickness of about 0.01 mm to 1 mm. Meanwhile, the conductive portion 4000 may have an area equal to or larger than that of the composite protection portion 2000. That is, the conductive part 4000 may have a length in one direction longer than or equal to the length of the composite protection part 2000, and a width in another direction perpendicular to one direction may be longer than or equal to the width of the composite protection part 2000. . Preferably, the conductive portion 4000 has a length and width greater than the length and width of the composite protection part 2000, and thus may have an area larger than the area of one surface of the composite protection part 2000. By providing the conductive portion 4000, the contactor can be easily mounted on the internal circuit 20. That is, although the small size of the complex protection unit 2000 is difficult to mount directly on the internal circuit 20, the composite protection unit 2000 is first fixed to the conductive portion 4000 having a larger area than the composite protection unit 2000. The mounting of the contactor can be facilitated by mounting the conductive portion 4000 on a conductive member electrically connected to the internal circuit 20 or an internal circuit such as a bracket.
실험 예Experiment example
본 발명에 따른 도전성 접착부(3000)의 전기적 특성을 실험하고 그 결과를 [표 1] 내지 [표 4]에 나타내었다. [표 1] 내지 [표 4]는 베이스의 형태 및 저항, 도전성 입자의 함량에 따른 ESD 전압 인가 전 및 후의 저항을 나타내었다. 이때, 베이스는 니켈을 이용한 부직포 및 직포 형태를 이용하였으며, 도전성 입자는 니켈을 이용하였다. 또한, ESD 전압을 인가하기 위해 컨택부, 복합 보호부 및 도전부를 형성하고 도전부 하측에 도전성 접착부를 형성한 후 회로 기판에 접착하였다.The electrical properties of the conductive adhesive part 3000 according to the present invention were tested and the results are shown in [Table 1] to [Table 4]. Tables 1 to 4 show the resistance before and after applying the ESD voltage according to the shape and resistance of the base and the content of the conductive particles. In this case, a nonwoven fabric and a woven fabric using nickel were used as the base, and nickel was used as the conductive particles. In addition, a contact portion, a composite protective portion, and a conductive portion were formed to apply an ESD voltage, and a conductive adhesive portion was formed below the conductive portion, and then bonded to a circuit board.
[표 1]은 부직포 형태의 베이스에 도전성 입자로서 니켈의 함량에 따른 ESD 전압을 인가 전 및 후의 저항을 나타내었다. 이때, 부직포 형태의 베이스의 저항은 0.035Ω이고 ±10kV의 ESD 전압을 0.1초 간격으로 300회 인가하였다.Table 1 shows the resistance before and after applying the ESD voltage according to the nickel content as the conductive particles on the base of the nonwoven fabric. At this time, the resistance of the base of the nonwoven fabric is 0.035 kV and an ESD voltage of ± 10 kV was applied 300 times at 0.1 second intervals.
베이스 형태Base form Ni 함유량(wt%)Ni content (wt%) 저항resistance 평가결과Evaluation results
ESD 인가 전Before ESD ESD 인가 후After ESD applied
부직포Non-woven 22 3Ω 이하3Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
44 3Ω 이하3Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
66 3Ω 이하3Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
88 1Ω 이하1Ω or less 3Ω 이하3Ω or less passpass
1010 1Ω 이하1Ω or less 3Ω 이하3Ω or less passpass
1515 1Ω 이하1Ω or less 2Ω 이하2Ω or less passpass
2020 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
2525 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
3030 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
3535 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
4040 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
[표 1]에 나타낸 바와 같이 0.035Ω의 저항을 갖는 부직포 형태의 베이스에 니켈 함유량이 6wt% 이하에서는 반복적인 ESD 전압 인가 후 도전성 접합부의 저항이 급격하게 증가하게 되고 그에 따라 도전성 접착부가 페일된다. 그러나, 니켈 함유량이 8wt% 이상의 경우 반복적인 ESD 전압이 인가되더라도 도전성 접합부의 저항이 증가하지 않아 도전성 접착부가 정상적으로 기능하게 된다. 따라서, 0.035Ω의 저항을 갖는 부직포 형태의 베이스에 니켈 함유량이 6wt% 이하에서는 반복적인 ESD 전압 인가 후 도전성 접착부의 저항 증가에 따라 이를 구비하는 컨택터가 정상적으로 동작하지 않고, 6wt% 초과에서는 반복적인 ESD 전압 인가 후에도 도전성 접착부의 저항이 증가하지 않으므로 이를 구비하는 컨택터가 정상적으로 동작할 수 있다.As shown in Table 1, when the nickel content is 6wt% or less on the nonwoven fabric having a resistance of 0.035 kPa, the resistance of the conductive joint rapidly increases after repeated application of an ESD voltage, thereby failing the conductive adhesive. However, when the nickel content is 8wt% or more, even if the repetitive ESD voltage is applied, the resistance of the conductive joint does not increase, so that the conductive adhesive part functions normally. Therefore, if the nickel content is 6wt% or less on the base of the nonwoven fabric having a resistance of 0.035 kΩ, the contactor having the same does not operate normally as the resistance of the conductive adhesive increases after repeated application of an ESD voltage. Since the resistance of the conductive adhesive does not increase even after the ESD voltage is applied, the contactor having the same may operate normally.
[표 2]는 직포 형태의 베이스에 니켈의 함량에 따른 ESD 전압 인가 전 및 후의 저항을 나타내었다. 이때, 직포 형태의 베이스의 저항은 0.035Ω이고 ±10kV의 ESD 전압을 0.1초 간격으로 300회 인가하였다.Table 2 shows the resistance before and after applying the ESD voltage according to the nickel content in the base of the woven fabric. At this time, the resistance of the base of the woven fabric is 0.035 kV and an ESD voltage of ± 10 kV was applied 300 times at 0.1 second intervals.
베이스 형태Base form Ni 함유량(wt%)Ni content (wt%) 저항resistance 평가결과Evaluation results
ESD 인가 전Before ESD ESD 인가 후After ESD applied
직포web 22 3Ω 이하3Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
44 3Ω 이하3Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
66 3Ω 이하3Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
88 3Ω 이하3Ω or less 3Ω 이하3Ω or less passpass
1010 3Ω 이하3Ω or less 3Ω 이하3Ω or less passpass
1515 2Ω 이하2Ω or less 1Ω 이하1Ω or less passpass
2020 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
2525 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
3030 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
3535 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
4040 1Ω 이하1Ω or less 1Ω 이하1Ω or less passpass
[표 2]에 나타낸 바와 같이, 0.035Ω의 저항을 갖는 직포 형태의 베이스에 니켈 함유량이 6wt% 이하에서는 반복적인 ESD 전압 인가 후 도전성 접합부의 저항이 증가하게 되고 그에 따라 도전성 접착부가 페일된다. 그러나, 니켈 함유량이 8wt% 이상의 경우 반복적인 ESD 전압이 인가되더라도 도전성 접합부의 저항이 증가하지 않아 도전성 접착부가 정상적으로 기능하게 된다. 따라서, 0.035Ω의 저항을 갖는 직포 형태의 베이스에 니켈 함유량이 6wt% 이하에서는 반복적인 ESD 전압 인가 후 도전성 접착부의 저항 증가에 따라 이를 구비하는 컨택터가 정상적으로 동작하지 않고, 6wt% 초과에서는 반복적인 ESD 전압 인가 후에도 도전성 접착부의 저항이 증가하지 않으므로 이를 구비하는 컨택터가 정상적으로 동작할 수 있다.As shown in Table 2, if the nickel content is 6wt% or less on the base of the woven fabric having a resistance of 0.035 kPa, the resistance of the conductive joint increases after repeated application of an ESD voltage, thereby failing the conductive adhesive. However, when the nickel content is 8wt% or more, even if the repetitive ESD voltage is applied, the resistance of the conductive joint does not increase, so that the conductive adhesive part functions normally. Therefore, if the nickel content is 6wt% or less on the base of the woven fabric having a resistance of 0.035 kΩ, the contactor having the same does not operate normally due to the increase in resistance of the conductive adhesive after repeated application of an ESD voltage. Since the resistance of the conductive adhesive does not increase even after the ESD voltage is applied, the contactor having the same may operate normally.
[표 1] 및 [표 2]에서 알 수 있는 바와 같이, 부직포 형태 또는 직포 형태의 베이스는 동일 저항을 가질 경우 도전성 입자의 함량에 따라 거의 동일한 특성을 나타낸다.As can be seen in Tables 1 and 2, the nonwoven or woven bases exhibit almost the same properties depending on the content of the conductive particles when they have the same resistance.
[표 3]은 부직포 형태의 베이스에 니켈의 함량에 따른 ESD 전압 인가 전 및 후의 저항을 나타내었다. 이때, 부직포 형태의 베이스는 0.05Ω이고 ±10kV의 ESD 전압을 0.1초 간격으로 300회 인가하였다.Table 3 shows the resistance before and after applying the ESD voltage according to the nickel content in the base of the nonwoven fabric. At this time, the base of the nonwoven fabric is 0.05 kW and an ESD voltage of ± 10 kV was applied 300 times at 0.1 second intervals.
베이스 형태Base form Ni 함유량(wt%)Ni content (wt%) 저항resistance 평가결과Evaluation results
ESD 인가 전Before ESD ESD 인가 후After ESD applied
부직포Non-woven 1414 5Ω 이하5Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
1616 5Ω 이하5Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
1818 5Ω 이하5Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
2020 5Ω 이하5Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
2222 5Ω 이하5Ω or less 3Ω 이하3Ω or less passpass
2424 5Ω 이하5Ω or less 1Ω 이하1Ω or less passpass
2626 5Ω 이하5Ω or less 1Ω 이하1Ω or less passpass
2828 5Ω 이하5Ω or less 1Ω 이하1Ω or less passpass
3030 5Ω 이하5Ω or less 1Ω 이하1Ω or less passpass
[표 3]에 나타낸 바와 같이, 0.05Ω의 저항을 갖는 부직포 형태의 베이스에 니켈 함유량이 20wt% 이하에서는 반복적인 ESD 전압 인가 후 도전성 접합부 저항이 증가하게 되고 그에 따라 도전성 접착부가 페일된다. 그러나, 니켈 함유량이 22wt% 이상의 경우 반복적인 ESD 전압이 인가되더라도 도전성 접합부의 저항이 증가하지 않아 도전성 접착부가 정상적으로 기능하게 된다. 따라서, 0.05Ω의 저항을 갖는 부직포 형태의 베이스에 니켈 함유량이 20wt% 이하에서는 반복적인 ESD 전압 인가 후 도전성 접착부의 저항 증가에 따라 이를 구비하는 컨택터가 정상적으로 동작하지 않고, 20wt% 초과에서는 반복적인 ESD 전압 인가 후에도 도전성 접착부의 저항이 증가하지 않으므로 이를 구비하는 컨택터가 정상적으로 동작할 수 있다. 즉, [표 1]과 비교하면 베이스의 저항이 높은 경우 저항이 낮은 경우에 비해 니켈의 함량을 증가시켜야 도전성 접착부의 페일 발생을 방지할 수 있다.As shown in Table 3, when the nickel content is 20 wt% or less on the base of the nonwoven fabric having a resistance of 0.05 kPa, the conductive junction resistance increases after repeated application of an ESD voltage, thereby failing to conduct the conductive adhesive. However, when the nickel content is more than 22wt%, even if the repetitive ESD voltage is applied, the resistance of the conductive joint does not increase, and thus the conductive adhesive part functions normally. Therefore, when the nickel content is 20wt% or less on the base of the nonwoven fabric having a resistance of 0.05 kV, the contactor having the same does not operate normally due to the increase in the resistance of the conductive adhesive after repeated application of an ESD voltage. Since the resistance of the conductive adhesive portion does not increase even after the ESD voltage is applied, the contactor having the same may operate normally. That is, compared with Table 1, when the resistance of the base is high, the content of nickel should be increased as compared with the case where the resistance is low to prevent the occurrence of the failing of the conductive adhesive portion.
[표 4]는 직포 형태의 베이스에 니켈의 함량에 따른 ESD 전압 인가 전 및 후의 저항을 나타내었다. 이때, 직포 형태의 베이스의 저항은 0.05Ω이고 ±10kV의 ESD 전압을 0.1초 간격으로 300회 인가하였다.Table 4 shows the resistance before and after applying the ESD voltage according to the nickel content in the base of the woven fabric. At this time, the resistance of the base of the woven fabric is 0.05 kW and an ESD voltage of ± 10 kV was applied 300 times at 0.1 second intervals.
베이스 형태Base form Ni 함유량(wt%)Ni content (wt%) 저항resistance 평가결과Evaluation results
ESD 인가 전Before ESD ESD 인가 후After ESD applied
직포web 1414 5Ω 이하5Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
1616 5Ω 이하5Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
1818 5Ω 이하5Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
2020 5Ω 이하5Ω or less 수㏀∼수㏁㏀ ~ ㏁㏁ failfail
2222 5Ω 이하5Ω or less 3Ω 이하3Ω or less passpass
2424 5Ω 이하5Ω or less 3Ω 이하3Ω or less passpass
2626 5Ω 이하5Ω or less 1Ω 이하1Ω or less passpass
2828 5Ω 이하5Ω or less 1Ω 이하1Ω or less passpass
3030 5Ω 이하5Ω or less 1Ω 이하1Ω or less passpass
[표 4]에 나타낸 바와 같이, 0.05Ω의 저항을 갖는 직포 형태의 베이스에 니켈 함유량이 20wt% 이하에서는 반복적인 ESD 전압 인가 후 도전성 접합부의 저항이 증가하게 되고 그에 따라 도전성 접착부가 페일된다. 그러나, 니켈 함유량이 22wt% 이상의 경우 반복적인 ESD 전압이 인가되더라도 도전성 접합부의 저항이 증가하지 않아 도전성 접착부가 정상적으로 기능하게 된다. 따라서, 0.05Ω의 저항을 갖는 직포 형태의 베이스에 니켈 함유량이 20wt% 이하에서는 반복적인 ESD 전압 인가 후 도전성 접착부의 저항 증가에 따라 이를 구비하는 컨택터가 정상적으로 동작하지 않고, 20wt% 초과에서는 반복적인 ESD 전압 인가 후에도 도전성 접착부의 저항이 증가하지 않으므로 이를 구비하는 컨택터가 정상적으로 동작할 수 있다. 즉, [표 2]과 비교하면 베이스의 저항이 높은 경우 저항이 낮은 경우에 비해 니켈의 함량을 증가시켜야 페일 발생을 방지할 수 있다.As shown in Table 4, when the nickel content is 20 wt% or less on the base of the woven fabric having a resistance of 0.05 kPa, the resistance of the conductive joint increases after repeated application of an ESD voltage, thereby failing the conductive adhesive. However, when the nickel content is more than 22wt%, even if the repetitive ESD voltage is applied, the resistance of the conductive joint does not increase, and thus the conductive adhesive part functions normally. Therefore, when the nickel content is 20wt% or less on the base of the woven fabric having a resistance of 0.05 kΩ, the contactor having the same does not operate normally as the resistance of the conductive adhesive increases after repeated application of an ESD voltage. Since the resistance of the conductive adhesive does not increase even after the ESD voltage is applied, the contactor having the same may operate normally. In other words, compared to Table 2, when the resistance of the base is high, the content of nickel should be increased as compared with the case of low resistance to prevent the occurrence of fail.
[표 3] 및 [표 4]에서 알 수 있는 바와 같이, 부직포 형태 또는 직포 형태의 베이스는 동일 저항을 가질 경우 도전성 입자의 함량에 따라 거의 동일한 특성을 나타낸다. 그러나, 베이스가 0.035Ω의 저항을 갖는 [표 1] 및 [표 2]와 베이스가 0.05Ω의 저항을 갖는 [표 3] 및 [표 4]를 비교하면, 도전성 접착부는 베이스의 저항이 낮으면 도전성 입자의 함량이 낮아도 정상적인 기능이 가능하지만, 베이스의 저항이 높으면 도전성 입자의 함량을 증가시켜야 정상적인 기능이 가능함을 알 수 있다. 즉, 도전성 접착부는 베이스의 저항에 따라 도전성 입자의 함량을 조절함으로써 반복적인 ESD 인가 후에도 저항이 증가되지 않고 정상적인 기능이 가능할 수 있다.As can be seen from Tables 3 and 4, the nonwoven or woven bases exhibit almost the same properties depending on the content of the conductive particles when they have the same resistance. However, comparing [Table 1] and [Table 2] where the base has a resistance of 0.035 GPa and [Table 3] and [Table 4] where the base has a resistance of 0.05 mA, Even if the content of the conductive particles is low, the normal function is possible, but if the resistance of the base is high it can be seen that the normal function is possible to increase the content of the conductive particles. That is, the conductive adhesive portion may control the content of the conductive particles in accordance with the resistance of the base, and thus may have a normal function without increasing resistance even after repeated ESD application.
복합 보호부의 예Example of compound protection
본 발명에 따른 컨택터를 구성하는 복합 보호부(2000)의 실시 예를 도 8 및 도 9에 도시하였다.8 and 9 illustrate an embodiment of the composite protection unit 2000 constituting the contactor according to the present invention.
도 8은 복합 보호부의 일 실시 예에 따른 도면으로서, 도 8의 (a)는 사시도이고, 도 8의 (b)는 단면도이다.8 is a view according to an embodiment of the composite protective part, FIG. 8A is a perspective view, and FIG. 8B is a sectional view.
도 8에 도시된 바와 같이, 일 실시 예에 따른 복합 보호부(2000)는 복수의 시트가 적층된 적층체(2100)와, 적층체(2100) 내부에 마련된 적어도 둘 이상의 내부 전극(2200)과, 적어도 둘 이상의 내부 전극(2200) 사이에 마련된 적어도 하나의 과전압 보호부(2300)와, 적어도 둘 이상의 내부 전극(2200)과 각각 연결되도록 적층체(2100) 내부에 마련된 적어도 둘 이상의 연결 전극(2400)과, 연결 전극(2400)과 연결되도록 적층체(2100) 외부에 형성된 외부 전극(2500)을 포함할 수 있다. 여기서, 외부 전극(2500)은 적층체(2100)를 이루는 복수의 시트의 적층 방향으로 서로 대향되는 두 면, 즉 Z 방향으로 대향되는 두 면에 형성될 수 있다.As illustrated in FIG. 8, the composite protection unit 2000 according to an embodiment may include a stack 2100 in which a plurality of sheets are stacked, at least two internal electrodes 2200 provided in the stack 2100, and a plurality of sheets. At least one overvoltage protection unit 2300 provided between the at least two internal electrodes 2200 and at least two connection electrodes 2400 provided in the stack 2100 to be connected to the at least two internal electrodes 2200, respectively. ) And an external electrode 2500 formed outside the stack 2100 to be connected to the connection electrode 2400. Here, the external electrode 2500 may be formed on two surfaces facing each other in the stacking direction of the plurality of sheets constituting the stack 2100, that is, two surfaces facing in the Z direction.
2.1. 적층체2.1. Laminate
적층체(2100)는 수평 방향으로 서로 직교하는 일 방향(예를 들어 X 방향) 및 타 방향(예를 들어 Y 방향)으로 각각 소정의 길이 및 폭을 갖고, 수직 방향(예를 들어 Z 방향)으로 소정의 높이를 갖는 대략 육면체 형상으로 마련될 수 있다. 이러한 적층체(2100)는 소정 두께를 갖는 복수의 시트가 적층되어 형성될 수 있다. 적층체(2100)를 이루는 복수의 시트는 MLCC, LTCC, HTCC 등의 유전체 재료를 이용하여 형성할 수 있다. 여기서, MLCC 유전체 물질은 BaTiO3 및 NdTiO3의 적어도 어느 하나를 주성분으로 Bi2O3, SiO2, CuO, MgO, ZnO 중 적어도 하나 이상이 첨가되고, LTCC 유전체 물질은 Al2O3, SiO2, 글래스 물질을 포함할 수 있다. 또한, 시트는 MLCC, LTCC, HTCC 이외에 BaTiO3, NdTiO3, Bi2O3, BaCO3, TiO2, Nd2O3, SiO2, CuO, MgO, Zn0, Al2O3 중의 하나 이상을 포함하는 물질로 형성될 수 있다. 그리고, 시트는 상기 물질들 이외에 예를 들어 Pr계, Bi계, ST계 세라믹 물질 등 바리스터 특성을 가지는 재료로 형성될 수도 있다. 따라서, 시트는 재질에 따라 각각 소정의 유전율, 예를 들어 5∼20000, 바람직하게는 7∼5000, 더욱 바람직하게는 200∼3000의 유전율을 가질 수 있다. 또한, 복수의 시트는 모두 동일 두께로 형성될 수 있고, 적어도 어느 하나가 다른 것들에 비해 두껍거나 얇게 형성될 수 있다. 예를 들어, 내부 전극(2200) 사이에 과전압 보호부(2300)가 형성되는 시트는 하나의 두께가 다른 시트들 각각의 두께에 비해 두껍게 형성될 수 있다. 한편, 복수의 시트는 예를 들어 1㎛∼5000㎛의 두께로 형성될 수 있고, 3000㎛ 이하의 두께로 형성될 수 있다. 즉, 적층체(2100)의 두께에 따라 시트 각각의 두께가 1㎛∼5000㎛일 수 있고, 바람직하게는 5㎛∼300㎛일 수 있다. 또한, 복합 보호부(2000)의 사이즈에 따라 시트의 두께 및 적층 수 등이 조절될 수 있다. 이때, 시트는 ESD 인가 시 파괴되지 않는 두께로 형성될 수 있다. 즉, 시트들의 적층 수 또는 두께가 다르게 형성되는 경우에도 적어도 하나의 시트가 ESD의 반복적인 인가에 의해 파괴되지 않는 두께로 형성될 수 있다. The laminate 2100 has a predetermined length and width in one direction (for example, X direction) and the other direction (for example, Y direction) orthogonal to each other in the horizontal direction, and has a vertical direction (for example, Z direction). It may be provided in a substantially hexahedral shape having a predetermined height. The stack 2100 may be formed by stacking a plurality of sheets having a predetermined thickness. The plurality of sheets constituting the laminate 2100 may be formed using a dielectric material such as MLCC, LTCC, HTCC, or the like. The MLCC dielectric material includes at least one of Bi 2 O 3 , SiO 2 , CuO, MgO, and ZnO based on at least one of BaTiO 3 and NdTiO 3 , and the LTCC dielectric material is Al 2 O 3 , SiO 2. It may include a glass material. The sheet also includes one or more of BaTiO 3 , NdTiO 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , SiO 2 , CuO, MgO, Zn0, Al 2 O 3 in addition to MLCC, LTCC, HTCC It may be formed of a material. In addition to the above materials, the sheet may be formed of a material having varistor characteristics such as Pr-based, Bi-based, or ST-based ceramic materials. Accordingly, the sheets may each have a predetermined dielectric constant, for example, 5 to 20000, preferably 7 to 5000, and more preferably 200 to 3000. In addition, the plurality of sheets may all be formed with the same thickness, and at least one may be formed thicker or thinner than the others. For example, the sheet in which the overvoltage protection unit 2300 is formed between the internal electrodes 2200 may have a thickness greater than that of each of the other sheets. Meanwhile, the plurality of sheets may be formed, for example, in a thickness of 1 μm to 5000 μm, and may be formed in a thickness of 3000 μm or less. That is, the thickness of each sheet may be 1 μm to 5000 μm, and preferably 5 μm to 300 μm, depending on the thickness of the laminate 2100. In addition, the thickness of the sheet and the number of stacked layers may be adjusted according to the size of the composite protection unit 2000. In this case, the sheet may be formed to a thickness that does not break when the ESD is applied. That is, even when the number of sheets or the thickness of the sheets is formed differently, at least one sheet may be formed to a thickness that is not broken by repeated application of ESD.
한편, 적층체(2100)는 최하층 및 최상층에 각각 마련된 하부 커버층(미도시) 및 상부 커버층(미도시)을 더 포함할 수 있다. 물론, 최하층의 시트가 하부 커버층으로 기능하고 최상층의 시트가 상부 커버층으로 기능할 수도 있다. 별도로 마련되는 하부 및 상부 커버층은 동일하거나 다른 두께로 형성될 수 있으며, 자성체 시트가 복수 적층되어 마련될 수 있다. 또한, 자성체 시트로 이루어진 하부 및 상부 커버층의 표면, 즉 하부 표면 및 상부 표면에 비자성 시트, 예를 들어 유리질 시트가 더 형성될 수 있다. 또한, 하부 및 상부 커버층은 내부의 시트보다 두꺼울 수 있다. 즉, 커버층은 시트 하나의 두께보다 두꺼울 수 있다. 따라서, 최하층 및 최상층의 시트가 하부 및 상부 커버층으로 기능하는 경우 그 사이의 시트들 각각보다 두껍게 형성될 수 있다. 한편, 하부 및 상부 커버층은 유리질 시트로 형성될 수도 있고, 적층체(2100)의 표면이 폴리머, 글래스 재질로 코팅될 수도 있다.Meanwhile, the laminate 2100 may further include a lower cover layer (not shown) and an upper cover layer (not shown) respectively provided on the lowermost layer and the uppermost layer. Of course, the lowermost sheet may serve as the lower cover layer and the uppermost sheet may serve as the upper cover layer. The lower and upper cover layers, which are separately provided, may have the same or different thicknesses, and a plurality of magnetic sheets may be stacked. In addition, a nonmagnetic sheet, for example, a glassy sheet, may be further formed on the surfaces of the lower and upper cover layers made of magnetic sheets, that is, the lower and upper surfaces. In addition, the lower and upper cover layers may be thicker than the sheets therein. That is, the cover layer may be thicker than the thickness of one sheet. Thus, when the lowermost and uppermost sheets function as lower and upper cover layers, they may be formed thicker than each of the sheets therebetween. Meanwhile, the lower and upper cover layers may be formed of a glassy sheet, and the surface of the laminate 2100 may be coated with a polymer or glass material.
2.2. 내부 전극2.2. Internal electrode
적어도 둘 이상의 내부 전극(2210, 2220; 2200)은 적층체(2100) 내부에 소정 간격 이격되어 마련될 수 있다. 즉, 적어도 둘 이상의 내부 전극(2200)는 시트의 적층 방향, 즉 Z 방향으로 소정 간격 이격되어 형성될 수 있다. 또한, 적어도 둘 이상의 내부 전극(2200)는 과전압 보호부(2300)를 사이에 두고 형성될 수 있다. 예를 들어, Z 방향으로 과전압 보호부(2300)의 하측에 제 1 내부 전극(2210)이 형성되고, 과전압 보호부(2300)의 상측에 제 2 내부 전극(2220)이 형성될 수 있다. 물론, 제 1 및 제 2 내부 전극(2210, 2220)과 최하층 및 최상층 시트 사이에 적어도 하나의 내부 전극이 더 형성될 수 있다. 여기서, 내부 전극(2200)은 연결 전극(2400)과 각각 연결되고 과전압 보호부(2300)와 연결되도록 형성된다. 즉, 제 1 내부 전극(2210)은 일측이 제 1 연결 전극(2410)과 연결되고, 타측이 과전압 보호부(2300)와 연결되도록 형성된다. 또한, 제 2 내부 전극(2220)은 일측이 제 2 연결 전극(2420)과 연결되고 타측이 보호부(3200)와 연결되도록 형성된다. 이때, 제 1 및 제 2 내부 전극(2210, 2220)은 서로 대면하는 일 면이 과전압 보호부(2300)와 연결된다.At least two internal electrodes 2210, 2220, and 2200 may be provided to be spaced apart from each other within the stack 2100. That is, the at least two internal electrodes 2200 may be formed to be spaced apart from each other in the stacking direction of the sheet, that is, in the Z direction. In addition, at least two internal electrodes 2200 may be formed with the overvoltage protection unit 2300 therebetween. For example, the first internal electrode 2210 may be formed below the overvoltage protection part 2300 in the Z direction, and the second internal electrode 2220 may be formed above the overvoltage protection part 2300. Of course, at least one internal electrode may be further formed between the first and second internal electrodes 2210 and 2220 and the lowermost and uppermost sheets. Here, the internal electrodes 2200 are formed to be connected to the connection electrodes 2400, respectively, and to the overvoltage protection unit 2300. That is, the first internal electrode 2210 is formed such that one side is connected to the first connection electrode 2410 and the other side is connected to the overvoltage protection unit 2300. In addition, the second internal electrode 2220 is formed such that one side is connected to the second connection electrode 2420 and the other side is connected to the protection unit 3200. In this case, one surface of the first and second internal electrodes 2210 and 2220 facing each other is connected to the overvoltage protection unit 2300.
이러한 내부 전극(2200)은 도전성 물질로 형성될 수 있는데, 예를 들어 Al, Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 합금의 경우 예를 들어 Ag와 Pd 합금을 이용할 수 있다. 한편, 내부 전극(2200)은 표면에 다공성의 절연층이 형성될 수 있다. 즉, 금속층의 표면에 다공성의 절연층이 형성된 구조로 내부 전극(2200)이 형성될 수 있다. 예를 들어, 내부 전극(2200)를 Al을 이용하여 형성하는 경우 Al은 소성 중 표면에 알루미늄 옥사이드(Al2O3)가 형성되고 내부는 Al을 유지할 수 있다. 따라서, 내부 전극(2200)은 표면에 다공성의 얇은 절연층인 Al2O3로 피복된 Al로 형성될 수 있다. 물론, Al 이외에 표면에 절연층, 바람직하게는 다공성의 절연층이 형성되는 다양한 금속이 이용될 수 있다. 이렇게 내부 전극(2200)의 표면에 다공성의 절연층이 형성되면 ESD 전압을 더욱 용이하고 원활하게 과전압 보호부(2300)를 통해 방전시킬 수 있다. 즉, 과전압 보호부(2300)는 다공성의 절연 물질을 포함하여 형성되고, 미세 기공을 통해 방전이 이루어지는데, 내부 전극(2200)의 표면에 다공성의 절연층이 형성되면 과전압 보호부(2300)의 미세 기공보다 미세 기공의 수를 더 증가시키고, 그에 따라 방전 효율을 향상시킬 수 있다.The internal electrode 2200 may be formed of a conductive material. For example, the internal electrode 2200 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu. In the case of an alloy, for example, Ag and Pd alloys may be used. On the other hand, the internal electrode 2200 may be a porous insulating layer formed on the surface. That is, the internal electrode 2200 may have a structure in which a porous insulating layer is formed on the surface of the metal layer. For example, when the internal electrode 2200 is formed using Al, aluminum oxide (Al 2 O 3 ) may be formed on the surface of Al and the inside of Al may be maintained during firing. Therefore, the internal electrode 2200 may be formed of Al coated with Al 2 O 3 , which is a porous thin insulating layer on its surface. Of course, in addition to Al, various metals having an insulating layer, preferably a porous insulating layer, may be used on the surface. When the porous insulating layer is formed on the surface of the internal electrode 2200, the ESD voltage can be more easily and smoothly discharged through the overvoltage protection unit 2300. That is, the overvoltage protection unit 2300 includes a porous insulating material and discharges through fine pores. When the porous insulating layer is formed on the surface of the internal electrode 2200, the overvoltage protection unit 2300 may be formed. It is possible to increase the number of fine pores more than the fine pores, thereby improving the discharge efficiency.
또한, 내부 전극(2200)은 예를 들어 1㎛∼10㎛의 두께로 형성할 수 있다. 이때, 내부 전극(2200)은 적어도 일 영역의 두께가 얇거나 적어도 일 영역이 제거되어 시트가 노출되도록 형성될 수 있다. 그러나, 내부 전극(2200)의 적어도 일 영역의 두께가 얇거나 적어도 일 영역이 제거되더라도 전체적으로 연결된 상태를 유지하므로 전기 전도성에는 전혀 문제가 발생되지 않는다. 또한, 내부 전극(2200)은 X 방향의 길이 및 Y 방향의 폭이 적층체(2100)의 길이 및 폭보다 작게 형성될 수 있다. 즉. 내부 전극(2200)은 시트의 길이 및 폭보다 작게 형성될 수 있다. 예를 들어, 내부 전극(200)은 적층체(2100) 또는 시트의 길이의 10% 내지 90%의 길이와 10% 내지 90%의 폭으로 형성될 수 있다. 또한, 내부 전극(2200)은 시트 각각의 면적 대비 10% 내지 90%의 면적으로 각각 형성될 수 있다. 한편, 내부 전극(2200)은 예를 들어 정사각형, 직사각형, 소정의 패턴 형상, 소정 폭 및 간격을 갖는 스파이럴 형상 등 다양한 형상으로 형성될 수 있다.In addition, the internal electrode 2200 may be formed to have a thickness of, for example, 1 μm to 10 μm. In this case, the internal electrode 2200 may be formed such that the thickness of at least one region is thin or at least one region is removed to expose the sheet. However, even if the thickness of at least one region of the internal electrode 2200 is thin or at least one region is removed, the connected state is maintained as a whole so that there is no problem in electrical conductivity. In addition, the internal electrode 2200 may have a length in the X direction and a width in the Y direction smaller than the length and width of the laminate 2100. In other words. The internal electrode 2200 may be formed smaller than the length and width of the sheet. For example, the internal electrode 200 may be formed to have a length of 10% to 90% and a width of 10% to 90% of the length of the stack 2100 or the sheet. In addition, the internal electrode 2200 may be formed with an area of 10% to 90% of the area of each sheet. Meanwhile, the internal electrode 2200 may be formed in various shapes such as a square, a rectangle, a predetermined pattern shape, a spiral shape having a predetermined width and a gap, and the like.
이러한 내부 전극(2200)은 캐패시터로 작용하는 동시에 과전압 보호부(2300)의 방전 전극으로 작용할 수 있다. 캐패시터는 제 1 및 제 2 내부 전극(2210, 2220)과, 그 사이의 시트에 의해 형성된다. 캐패시턴스는 제 1 및 제 2 내부 전극(2210, 2220)의 중첩 면적, 제 1 및 제 2 내부 전극(2210, 2220) 사이의 시트의 두께 등에 따라 조절될 수 있다. 또한, 제 1 및 제 2 내부 전극(2210, 2220)은 적어도 과전압 보호부(2300)와 중첩되는 영역이 방전 전극으로 작용하는데, 외부로부터 인가되는 ESD 등의 과전압을 과전압 보호부(2300)로 전달하고, 과전압 보호부(2300)를 통과하여 예를 들어 전자기기의 접지 단자로 바이패스되는 과전압을 전달한다.The internal electrode 2200 may serve as a capacitor and also serve as a discharge electrode of the overvoltage protection unit 2300. The capacitor is formed by the first and second internal electrodes 2210 and 2220 and a sheet therebetween. The capacitance may be adjusted according to the overlapping area of the first and second internal electrodes 2210 and 2220, the thickness of the sheet between the first and second internal electrodes 2210 and 2220, and the like. In addition, at least regions of the first and second internal electrodes 2210 and 2220 that overlap with the overvoltage protection unit 2300 serve as discharge electrodes, and transmit an overvoltage such as an ESD applied from the outside to the overvoltage protection unit 2300. Then, the overvoltage protection unit 2300 transmits the overvoltage bypassed to the ground terminal of the electronic device, for example.
2.3. 과전압 보호부2.3. Overvoltage Protection
과전압 보호부(2300)는 내부 전극(2200) 사이에 적어도 하나 마련되며, 외부로부터 유입되는 ESD 등의 과전압을 전자기기의 접지 단자로 바이패스시킨다. 즉, 복합 보호부를 포함하는 컨택터가 채용된 전자기기의 외부로부터의 과전압은 예를 들어 제 2 연결 전극(2420), 제 2 내부 전극(2220)을 통해 과전압 보호부(2300)로 유입되고, 다시 제 1 내부 전극(2210) 및 제 1 연결 전극(2410)을 통해 전자기기 내부 회로로 바이패스된다. 이러한 과전압 보호부(2300)는 평면 형상 및 단면 형상의 적어도 하나가 대략 원형, 타원형, 직사각형, 정사각형, 오각형 이상의 다각형 형상을 가지고 소정의 두께를 가질 수 있다. 즉, 과전압 보호부(2300)은 원통, 육면체, 다면체 등의 형상으로 형성될 수 있다. At least one overvoltage protection unit 2300 is provided between the internal electrodes 2200 and bypasses an overvoltage such as an ESD flowing from the outside to the ground terminal of the electronic device. That is, the overvoltage from the outside of the electronic device employing the contactor including the complex protection unit is introduced into the overvoltage protection unit 2300 through the second connection electrode 2420 and the second internal electrode 2220, for example. The electronic device is bypassed to the internal circuit of the electronic device through the first internal electrode 2210 and the first connection electrode 2410. The overvoltage protection unit 2300 may have at least one of a planar shape and a cross-sectional shape having a polygonal shape of about circular, elliptical, rectangular, square, pentagonal or more, and have a predetermined thickness. That is, the overvoltage protection unit 2300 may be formed in the shape of a cylinder, a cube, a polyhedron, or the like.
한편, 과전압 보호부(2300)는 제 1 및 제 2 내부 전극(2210, 2220)과 적어도 일부 중첩될 수 있다. 예를 들어, 과전압 보호부(2300)의 수평 면적의 10% 내지 100% 중첩되도록 제 1 및 제 2 내부 전극(2210, 2220)이 형성될 수 있다. 즉, 과전압 보호부(2300)는 제 1 및 제 2 내부 전극(2210, 2220)의 X 방향 및 Y 방향으로 각각 10% 내지 100%의 길이 및 폭으로 형성되며, 제 1 및 제 2 내부 전극(2210, 2220)을 벗어나지 않도록 형성된다. 또한, 과전압 보호부(2300)는 제 1 및 제 2 내부 전극(2210, 2220) 사이의 중심 영역에 형성될 수 있다. 더욱 바람직하게, 과전압 보호부(2300)는 적층체(2100)의 중심 영역에 형성될 수 있다. 물론, 과전압 보호부(2300)가 둘 이상 복수 형성될 경우 적층체(2100)의 중심 영역에서 소정 간격 이격되어 형성될 수 있다. 따라서, 적어도 하나 이상의 과전압 보호부(2300)는 중심 영역이 적층체(2100)의 중심 영역 또는 제 1 및 제 2 내부 전극(2210, 2220)의 중심 영역에 형성될 수 있다. 또한, 과전압 보호부(2300)는 적층체(2100) 두께의 1%∼20%의 두께로 형성되고, 적층체(2100)의 일 방향 길이의 3%∼50%의 길이로 형성될 수 있다. 이때, 과전압 보호부(2300)가 복수로 형성되는 경우 복수의 과전압 보호부(2300)의 두께의 합은 적층체(2100) 두께의 1%∼50%로 형성될 수 있다. 또한, 과전압 보호부(2300)는 적어도 일 방향, 예를 들어 X 방향으로 길이가 긴 장공형으로 형성될 수 있고, 시트의 X 방향 길이의 5%∼75%로 형성될 수 있다. 그리고, 과전압 보호부(2300)은 Y 방향으로의 폭이 시트의 Y 방향 폭의 3%∼50%로 형성될 수 있다. 이러한 과전압 보호부(2300)는 연결 전극(2400)의 두께보다 작거나 같은 두께와 연결 전극(2400)의 직경보다 작거나 같은 직경으로 형성될 수 있다. 예를 들어, 과전압 보호부(2300)는 연결 전극(2400) 두께의 1/5배 내지 1배의 두께로 형성될 수 있고, 연결 전극(2400)의 직경의 1/10 내지 1배의 직경으로 형성될 수 있다. 구체적으로, 과전압 보호부(2300)는 예를 들어 50㎛∼1000㎛의 직경과 5㎛∼600㎛의 두께로 형성될 수 있다. 이때, 과전압 보호부(2300)의 두께가 얇을수록 방전 개시 전압이 낮아진다.On the other hand, the overvoltage protection unit 2300 may at least partially overlap the first and second internal electrodes 2210 and 2220. For example, the first and second internal electrodes 2210 and 2220 may be formed to overlap 10% to 100% of the horizontal area of the overvoltage protection unit 2300. That is, the overvoltage protection unit 2300 is formed with a length and a width of 10% to 100% in the X and Y directions of the first and second internal electrodes 2210 and 2220, respectively, and the first and second internal electrodes ( 2210, 2220 is formed so as not to leave. In addition, the overvoltage protection unit 2300 may be formed in a central region between the first and second internal electrodes 2210 and 2220. More preferably, the overvoltage protection unit 2300 may be formed in the central region of the stack 2100. Of course, when two or more overvoltage protection parts 2300 are formed, the overvoltage protection parts 2300 may be formed to be spaced apart from each other by a predetermined interval in the central area of the stack 2100. Accordingly, the at least one overvoltage protection unit 2300 may have a central region formed in the central region of the stack 2100 or the central regions of the first and second internal electrodes 2210 and 2220. In addition, the overvoltage protection unit 2300 may be formed to have a thickness of 1% to 20% of the thickness of the laminate 2100, and may be formed to have a length of 3% to 50% of one length of the laminate 2100. In this case, when the overvoltage protection unit 2300 is formed in plural, the sum of the thicknesses of the plurality of overvoltage protection units 2300 may be 1% to 50% of the thickness of the laminate 2100. In addition, the overvoltage protection unit 2300 may be formed in an elongated long shape in at least one direction, for example, the X direction, and may be formed at 5% to 75% of the X direction length of the sheet. The overvoltage protection unit 2300 may have a width in the Y direction of 3% to 50% of the width of the Y direction of the sheet. The overvoltage protection unit 2300 may be formed to have a thickness smaller than or equal to the thickness of the connection electrode 2400 and smaller than or equal to the diameter of the connection electrode 2400. For example, the overvoltage protection unit 2300 may be formed to have a thickness of 1/5 times to 1 times the thickness of the connection electrode 2400, and may have a diameter of 1/10 to 1 times the diameter of the connection electrode 2400. Can be formed. Specifically, the overvoltage protection unit 2300 may be formed, for example, with a diameter of 50 μm to 1000 μm and a thickness of 5 μm to 600 μm. At this time, the thinner the thickness of the overvoltage protection unit 2300, the lower the discharge start voltage.
이러한 과전압 보호부(2300)는 내부 전극(2200) 사이의 시트의 소정 영역에 형성된 적어도 하나의 개구(void)를 포함할 수 있다. 즉, 적어도 하나의 개구 각각이 과전압 보호부(2300)로 기능할 수 있다. 여기서, 과전압 보호부(2300)는 개구 내의 적어도 일부에 과전압 보호 물질이 도포되거나, 과전압 보호 물질이 개구를 매립하여 형성될 수 있다. 즉, 과전압 보호부(2300)은 내부가 빈 개구와, 개구의 적어도 일부에 형성된 과전압 보호 물질을 포함할 수 있다. 과전압 보호 물질을 형성하기 위해 내부 전극(2200) 사이에 소정 크기의 관통홀을 형성하고, 관통홀의 적어도 일부에 과전압 보호 물질을 도포하거나 관통홀을 매립할 수 있다. 이때, 관통홀 측면의 적어도 일부, 관통홀 상부 및 하부의 적어도 하나의 적어도 일부, 관통홀 내부에 소정 두께로 과전압 보호 물질을 도포할 수 있다. 관통홀의 일부에 과전압 보호 물질을 형성하기 위해 소성 시 휘발되는 고분자 물질 등을 이용할 수 있다.The overvoltage protection unit 2300 may include at least one opening formed in a predetermined region of the sheet between the internal electrodes 2200. That is, each of the at least one opening may function as the overvoltage protection unit 2300. Here, the overvoltage protection unit 2300 may be formed by applying an overvoltage protection material to at least a portion of the opening or by filling the opening with the overvoltage protection material. That is, the overvoltage protection unit 2300 may include an empty opening and an overvoltage protection material formed in at least a portion of the opening. In order to form the overvoltage protection material, a through hole having a predetermined size may be formed between the internal electrodes 2200, and the overvoltage protection material may be applied to at least a portion of the through hole or filled in the through hole. In this case, the overvoltage protection material may be applied to at least a portion of the side surface of the through hole, at least one portion of the upper and lower portions of the through hole, and the inside of the through hole at a predetermined thickness. In order to form an overvoltage protection material in a part of the through hole, a polymer material volatilized upon firing may be used.
과전압 보호부(2300)는 과전압 보호 물질로서, 도전 물질과 절연 물질을 이용할 수 있다. 이때, 절연 물질은 복수의 기공(pore)을 갖는 다공성의 절연 물질일 수 있다. 예를 들어, 도전성 세라믹과 절연성 세라믹의 혼합 물질을 시트 상에 인쇄하여 과전압 보호부(2300)를 형성할 수 있다. 한편, 과전압 보호부(2300)는 적어도 하나의 시트 상에 형성될 수도 있다. 즉, 수직 방향으로 적층된 예를 들어 두개의 시트에 과전압 보호부(2300)가 각각 형성되고, 그 시트 상에 서로 이격되도록 제 1 및 제 2 내부 전극(2210, 2220)이 형성되어 과전압 보호부(2300)와 연결될 수 있다. 한편, 과전압 보호부(2300)의 구조, 재료, 크기 등에 따라 방전 개시 전압이 조절될 수 있는데, 복합 보호부(2000)의 방전 개시 전압은 예를 들어 1kV 내지 30kV일 수 있다.The overvoltage protection unit 2300 may use a conductive material and an insulating material as the overvoltage protection material. In this case, the insulating material may be a porous insulating material having a plurality of pores. For example, the overvoltage protection unit 2300 may be formed by printing a mixed material of a conductive ceramic and an insulating ceramic on a sheet. On the other hand, the overvoltage protection unit 2300 may be formed on at least one sheet. That is, the overvoltage protection unit 2300 is formed on two sheets stacked in the vertical direction, for example, and the first and second internal electrodes 2210 and 2220 are formed on the sheet to be spaced apart from each other. 2300 may be connected. On the other hand, the discharge start voltage can be adjusted according to the structure, material, size, etc. of the overvoltage protection unit 2300, the discharge start voltage of the composite protection unit 2000 may be 1kV to 30kV, for example.
또한, 과전압 보호부(2300)는 적어도 일 영역의 폭이 넓어지도록 형성될 수 있다. 이때, 폭이 넓은 부분은 그렇지 않은 부분의 1% 내지 150% 정도 큰 폭으로 형성될 수 있다. 또한, 폭이 넓은 부분의 높이는 과전압 보호부(2300) 전체 높이의 10% 내지 70%의 높이로 형성될 수 있다. 이렇게 과전압 보호부(2300)의 적어도 일 영역이 폭이 확장되어 형성됨으로써 과전압 보호부(2300)의 쇼트 경로를 차단할 수 있다. 즉, ESD 등의 과전압을 지속적으로 인가받게 되면 연결 전극(2400)의 멜팅 현상이 발생되고, 그에 따라 과전압 보호부(2300)의 관통홀 측벽에 연결 전극 물질이 고착될 수 있어 쇼트 현상이 발생될 수 있다. 그러나, 과전압 보호부(2300)에 지름이 다른 확장부가 형성됨으로써 쇼트 경로를 차단할 수 있다.In addition, the overvoltage protection unit 2300 may be formed to widen at least one region. In this case, the wide portion may be formed to a width of about 1% to 150% of the portion that is not wide. In addition, the height of the wide portion may be formed to a height of 10% to 70% of the overall height of the overvoltage protection unit 2300. As described above, at least one region of the overvoltage protection unit 2300 is formed to extend in width, thereby blocking the short path of the overvoltage protection unit 2300. That is, when an overvoltage such as ESD is continuously applied, a melting phenomenon of the connection electrode 2400 may occur, and thus a connection phenomenon may occur due to the connection electrode material being adhered to the sidewall of the through hole of the overvoltage protection unit 2300. Can be. However, an extension part having a different diameter may be formed in the overvoltage protection part 2300 to block the short path.
한편, 내부 전극(2210, 2220; 2200)과 과전압 보호부(2300) 사이에 형성된 방전 유도층(미도시)을 더 포함할 수 있다. 이러한 방전 유도층은 과전압 보호부(2300)를 다공성 절연 물질을 이용하여 형성하는 경우 형성될 수 있다. 이때, 방전 유도층은 과전압 보호부(2300)보다 밀도가 높은 유전체층으로 형성될 수 있다. 즉, 방전 유도층은 도전 물질로 형성될 수도 있고, 절연 물질로 형성될 수도 있다. 예를 들어, 다공성 ZrO를 이용하여 과전압 보호부(2300)를 형성하고 Al을 이용하여 내부 전극(2200)을 형성하는 경우 과전압 보호부(2300)와 내부 전극(2200) 사이에 AlZrO의 방전 유도층이 형성될 수 있다. 한편, 과전압 보호부(2300)로서 TiO를 이용할 수 있고, 이 경우 방전 유도층은 TiAlO로 형성될 수 있다. 즉, 방전 유도층은 내부 전극(2200)과 과전압 보호부(2300)의 반응으로 형성될 수 있다. 물론, 방전 유도층은 시트 물질이 더 반응하여 형성될 수 있다. 이 경우 방전 유도층은 내부 전극 물질(예를 들어 Al), 과전압 보호부 물질(예를 들어 ZrO), 그리고 시트 물질(예를 들어 BaTiO3)의 반응에 의해 형성될 수 있다. 또한, 방전 유도층은 시트 물질과 반응하여 형성될 수 있다. 즉, 과전압 보호부(2300)가 시트와 접촉되는 영역에는 과전압 보호부(2300)와 시트의 반응으로 방전 유도층이 형성될 수 있다. 따라서, 방전 유도층은 과전압 보호부(2300)를 둘러싸도록 형성될 수 있다. 이때, 과전압 보호부(2300)와 내부 전극(2200) 사이의 방전 유도층과 과전압 보호부(2300)와 시트 사이의 방전 유도층은 서로 다른 조성을 가질 수 있다. 한편, 방전 유도층은 적어도 일 영역이 제거되어 형성될 수 있고, 적어도 일 영역의 두께가 다른 영역과 다르게 형성될 수도 있다. 즉, 방전 유도층은 적어도 일 영역이 제거되어 불연속적으로 형성될 수 있고, 두께가 적어도 일 영역의 두께가 다르게 불균일하게 형성될 수 있다. 이러한 방전 유도층은 소성 공정 시 내부 전극 물질, 과전압 보호 물질 등이 상호 확산하여 내부 전극(2200)과 과전압 보호부(2300) 사이에 형성될 수 있다. 한편, 과전압 보호부(2300)의 일부 두께가 방전 유도층으로 변화되어 방전 유도층은 과전압 보호부(2300) 두께의 10%∼70%의 두께로 형성될 수 있다. 따라서, 방전 유도층은 과전압 보호부(2300)보다 얇게 형성될 수 있고, 내부 전극(2200)보다 두껍거나 같거나 얇은 두께로 형성될 수 있다. 이러한 방전 유도층에 의해 ESD 전압이 과전압 보호부(2300)로 유도되거나 보호부(2300)로 유도되는 방전 에너지의 레벨을 저하시킬 수 있다. 따라서, ESD 전압을 더욱 용이하게 방전하여 방전 효율을 향상시킬 수 있다. 또한, 방전 유도층이 형성됨으로써 이종의 물질의 과전압 보호부(2300)로의 확산을 방지할 수 있다. 즉, 시트 물질과 내부 전극 물질의 과전압 보호부(2300)로의 확산을 방지할 수 있고, 과전압 보호 물질의 외부 확산을 방지할 수 있다. 따라서, 방전 유도층이 확산 배리어(diffusion barrier)로서 이용될 수 있고, 그에 따라 과전압 보호부(2300)의 파괴를 방지할 수 있다. On the other hand, it may further include a discharge induction layer (not shown) formed between the internal electrodes (2210, 2220; 2200) and the overvoltage protection unit 2300. The discharge induction layer may be formed when the overvoltage protection unit 2300 is formed using a porous insulating material. In this case, the discharge induction layer may be formed of a dielectric layer having a higher density than the overvoltage protection unit 2300. That is, the discharge induction layer may be formed of a conductive material or may be formed of an insulating material. For example, when the overvoltage protection unit 2300 is formed using porous ZrO, and the internal electrode 2200 is formed using Al, the induction layer of AlZrO is discharged between the overvoltage protection unit 2300 and the internal electrode 2200. This can be formed. Meanwhile, TiO may be used as the overvoltage protection unit 2300, and in this case, the discharge induction layer may be formed of TiAlO. That is, the discharge induction layer may be formed by the reaction between the internal electrode 2200 and the overvoltage protection unit 2300. Of course, the discharge induction layer may be formed by further reacting the sheet material. In this case, the discharge induction layer may be formed by the reaction of an internal electrode material (eg Al), an overvoltage protection material (eg ZrO), and a sheet material (eg BaTiO 3 ). In addition, the discharge inducing layer may be formed by reacting with the sheet material. That is, in the region where the overvoltage protection unit 2300 is in contact with the sheet, a discharge induction layer may be formed by the reaction between the overvoltage protection unit 2300 and the sheet. Therefore, the discharge induction layer may be formed to surround the overvoltage protection unit 2300. In this case, the discharge induction layer between the overvoltage protection unit 2300 and the internal electrode 2200 and the discharge induction layer between the overvoltage protection unit 2300 and the sheet may have different compositions. Meanwhile, the discharge induction layer may be formed by removing at least one region, and may be formed to have a thickness different from that of at least one region. That is, the discharge induction layer may be discontinuously formed by removing at least one region, and the thickness may be formed in a non-uniformly different thickness of at least one region. The discharge induction layer may be formed between the internal electrode 2200 and the overvoltage protection unit 2300 by interdiffusion of an internal electrode material and an overvoltage protection material during the firing process. Meanwhile, a part of the thickness of the overvoltage protection part 2300 is changed to the discharge induction layer, so that the discharge induction layer may be formed to have a thickness of 10% to 70% of the thickness of the overvoltage protection part 2300. Therefore, the discharge induction layer may be formed thinner than the overvoltage protection unit 2300, and may be formed to have a thickness that is thicker, equal to, or thinner than that of the internal electrode 2200. By the discharge inducing layer, the ESD voltage may be induced to the overvoltage protection unit 2300 or the level of discharge energy induced to the protection unit 2300. Therefore, it is possible to discharge the ESD voltage more easily to improve the discharge efficiency. In addition, since the discharge induction layer is formed, diffusion of heterogeneous materials into the overvoltage protection unit 2300 may be prevented. That is, diffusion of the sheet material and the internal electrode material into the overvoltage protection unit 2300 may be prevented, and external diffusion of the overvoltage protection material may be prevented. Accordingly, the discharge inducing layer may be used as a diffusion barrier, thereby preventing the overvoltage protection unit 2300 from being destroyed.
과전압 보호부(2300)의 적어도 일부로 이용되는 과전압 보호 물질은 도전 물질과 절연 물질을 혼합하여 형성할 수 있다. 예를 들어, 과전압 보호 물질은 도전성 세라믹과 절연성 세라믹을 혼합하여 이용할 수 있는데, 도전성 세라믹과 절연성 세라믹을 예를 들어 10:90 내지 90:10의 혼합 비율로 혼합하여 형성할 수 있다. 절연성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 높아지고, 도전성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 낮아질 수 있다. 따라서, 소정의 방전 개시 전압을 얻을 수 있도록 도전성 세라믹과 절연성 세라믹의 혼합 비율을 조절할 수 있다. 이때, 과전압 보호 물질에는 복수의 기공(미도시)이 형성될 수 있다. 물론, 과전압 보호 물질은 도전층과 절연층을 적층하여 소정의 적층 구조로 형성할 수 있고, 소정 영역에 공극(void)이 더 형성될 수도 있다. 예를 들어, 하측에서 상측으로 도전층, 절연층, 공극, 절연층 및 도전층의 적층 구조로 과전압 보호부(2300)가 형성될 수 있다.The overvoltage protection material used as at least a part of the overvoltage protection unit 2300 may be formed by mixing a conductive material and an insulating material. For example, the overvoltage protection material may be used by mixing a conductive ceramic and an insulating ceramic, and may be formed by mixing the conductive ceramic and the insulating ceramic in a mixing ratio of, for example, 10:90 to 90:10. As the mixing ratio of the insulating ceramic increases, the discharge starting voltage increases, and as the mixing ratio of the conductive ceramic increases, the discharge starting voltage decreases. Therefore, the mixing ratio of the conductive ceramic and the insulating ceramic can be adjusted to obtain a predetermined discharge start voltage. In this case, a plurality of pores (not shown) may be formed in the overvoltage protection material. Of course, the overvoltage protection material may be formed by stacking a conductive layer and an insulating layer into a predetermined stacked structure, and a void may be further formed in a predetermined region. For example, the overvoltage protection unit 2300 may be formed in a stacked structure of a conductive layer, an insulating layer, a gap, an insulating layer, and a conductive layer from a lower side to an upper side.
한편, 과전압 보호 물질로 이용되는 도전 물질은 소정의 저항을 갖고 전류를 흐르게 할 수 있다. 예를 들어, 도전 물질은 수Ω 내지 수백㏁을 갖는 저항체일 수 있다. 이러한 도전층은 ESD 등이 과전압이 유입될 경우 에너지 레벨을 낮춰 과전압에 의한 복합 보호부의 구조적인 파괴가 일어나지 않도록 한다. 즉, 도전 물질은 전기 에너지를 열 에너지로 변환시키는 히트 싱크(heat sink)의 역할을 한다. 이러한 도전 물질은 도전성 세라믹을 이용할 수 있으며, 도전성 세라믹은 La, Ni, Co, Cu, Zn, Ru, Bi 중의 하나 이상을 포함한 혼합물을 이용할 수 있다. 또한, 과전압 보호 물질로 이용되는 절연 물질은 방전 유도 물질로 이루어질 수 있고, 다공성 구조를 가진 전기 장벽으로 기능할 수 있다. 이러한 절연 물질은 절연성 세라믹으로 형성될 수 있고, 절연성 세라믹은 50∼25000 정도의 유전율을 갖는 강유전체 물질이 이용될 수 있다. 예를 들어, 절연성 세라믹은 MLCC 등의 유전체 재료 분말, SiO2, Fe2O3, Co3O4, BaTiO3, BaCO3, TiO2, Nd, Bi, Zn, Al2O3 중의 하나 이상을 포함한 혼합물을 이용하여 형성할 수 있다. 이러한 절연 물질은 1㎚∼30㎛ 정도 크기의 기공이 복수 형성되어 30%∼80%의 기공률로 형성된 다공성 구조로 형성될 수 있다. 이때, 기공 사이의 최단 거리의 평균은 1㎚∼50㎛ 정도일 수 있다. 절연 물질은 전류가 흐르지 못하지만, 기공이 형성되므로 기공을 통해 전류가 흐를 수 있다. 이때, 기공의 크기가 커지거나 기공률이 커질수록 방전 개시 전압이 낮아질 수 있고, 이와 반대로 기공의 크기가 작아지거나 기공률이 낮아지면 방전 개시 전압이 높아질 수 있다. 따라서, 과전압 보호부(2300)의 형상을 유지하면서 방전 개시 전압을 조절하도록 절연층의 기공 크기 및 기공률을 조절할 수 있다. 한편, 과전압 보호 물질은 PVA(Polyvinyl Alcohol) 또는 PVB(Polyvinyl Butyral) 등의 유기물에 Ru, Pt, Pd, Ag, Au, Ni, Cr, W, Fe 등에서 선택된 적어도 하나의 도전성 물질을 혼합한 물질로 형성할 수 있다. 또한, 과전압 보호 물질은 상기 혼합 물질에 ZnO 등의 바리스터 물질 또는 Al2O3 등의 절연성 세라믹 물질을 더 혼합하여 형성할 수도 있다.On the other hand, the conductive material used as the overvoltage protection material can flow a current with a predetermined resistance. For example, the conductive material may be a resistor having several kilowatts to several hundred kilowatts. Such a conductive layer lowers the energy level when an ESD voltage or the like is introduced to prevent structural destruction of the composite protection part due to the overvoltage. In other words, the conductive material serves as a heat sink to convert electrical energy into thermal energy. The conductive material may use a conductive ceramic, and the conductive ceramic may use a mixture including at least one of La, Ni, Co, Cu, Zn, Ru, and Bi. In addition, the insulating material used as the overvoltage protection material may be made of a discharge inducing material, and may function as an electrical barrier having a porous structure. Such an insulating material may be formed of an insulating ceramic, and as the insulating ceramic, a ferroelectric material having a dielectric constant of about 50 to 25000 may be used. For example, the insulating ceramic may be formed of at least one of dielectric material powder such as MLCC, SiO 2 , Fe 2 O 3 , Co 3 O 4 , BaTiO 3 , BaCO 3 , TiO 2 , Nd, Bi, Zn, Al 2 O 3 . It can be formed using the mixture included. The insulating material may have a porous structure in which a plurality of pores having a size of about 1 nm to 30 μm are formed to have a porosity of 30% to 80%. At this time, the average of the shortest distance between the pores may be about 1nm to 50㎛. The insulating material does not flow current, but because pores are formed, current may flow through the pores. In this case, as the size of the pores increases or the porosity increases, the discharge start voltage may decrease. On the contrary, when the size of the pores decreases or the porosity decreases, the discharge start voltage may increase. Accordingly, the pore size and the porosity of the insulating layer may be adjusted to adjust the discharge start voltage while maintaining the shape of the overvoltage protection unit 2300. The overvoltage protection material is a material in which at least one conductive material selected from Ru, Pt, Pd, Ag, Au, Ni, Cr, W, Fe, and the like is mixed with organic materials such as polyvinyl alcohol (PVA) or polyvinyl butyral (PVB). Can be formed. In addition, the overvoltage protection material may be formed by further mixing a varistor material such as ZnO or an insulating ceramic material such as Al 2 O 3 with the mixed material.
2.4. 연결 전극2.4. Connecting electrode
연결 전극(2400)은 적층체(2100) 내부에 형성되며, 내부 전극(2200)과 외부 전극(2500) 사이에 이들을 연결하도록 형성된다. 즉, 연결 전극(2400)은 제 1 및 제 2 외부 전극(2510, 2520; 500)과 제 1 및 제 2 내부 전극(2210, 2220; 2200) 사이에서 이들과 각각 연결되는 제 1 및 제 2 연결 전극(2410, 2420)을 포함할 수 있다. 이러한 연결 전극(2400)은 평면 형상 및 단면 형상의 적어도 어느 하나가 대략 원형, 타원형, 직사각형, 정사각형, 오각형 이상의 다각형 형상을 갖고 소정의 두께를 가질 수 있다. 또한, 연결 전극(2400)은 과전압 보호부(2300)와 적어도 중첩되도록 형성될 수 있다. 바람직하게, 연결 전극(2400)은 적층체(2100)의 중앙부에 형성될 수 있고, 과전압 보호부(2300)와 중첩되도록 형성될 수 있다.The connection electrode 2400 is formed inside the stack 2100 and is formed to connect them between the internal electrode 2200 and the external electrode 2500. That is, the connection electrode 2400 is connected between the first and second external electrodes 2510, 2520; 500 and the first and second internal electrodes 2210, 2220, 2200, respectively, with the first and second connections. Electrodes 2410 and 2420 may be included. The connection electrode 2400 may have at least one of a planar shape and a cross-sectional shape having a polygonal shape of approximately circular, elliptical, rectangular, square, pentagonal or more, and have a predetermined thickness. In addition, the connection electrode 2400 may be formed to at least overlap the overvoltage protection unit 2300. Preferably, the connection electrode 2400 may be formed at a central portion of the stack 2100 and overlap the overvoltage protection unit 2300.
연결 전극(2400)은 내부 전극(2200) 상에 적층되는 적어도 하나 이상의 시트의 소정 영역에 개구를 형성하고 도전 물질을 이용하여 개구가 매립되도록 형성된다. 예를 들어, 연결 전극(2400)은 Al, Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 물론, 연결 전극(2400)은 금속 이외에 다양한 도전성 재료를 이용하여 형성할 수도 있다. 연결 전극(2400)은 Z 방향, 즉 수직 방향으로의 높이가 과전압 보호부(2300)의 높이와 같거나 다르게 형성될 수 있고, X 방향 및 Y 방향으로의 폭이 과전압 보호부(2300)의 폭보다 같거나 다르게 형성될 수 있다. 즉, 연결 전극(2400)은 과전압 보호부(2300)의 높이보다 크거나 같게 형성되고, 직경 또는 폭보다 넓거나 같게 형성될 수 있다. 바람직하게, 연결 전극(2400)의 높이는 과전압 보호부(2300)의 높이보다 높고, 평면 넓이는 과전압 보호부(2300)의 평면 넓이보다 크게 형성될 수 있다. 예를 들어, 제 1 및 제 2 연결 전극(2410, 2420) 각각은 과전압 보호부(2300) 높이의 0.5배 내지 3배의 높이로 형성될 수 있다. 또한, 제 1 및 제 2 연결 전극(2410, 2420)의 높이의 합은 과전압 보호부(2300) 높이의 1배 내지 6배로 형성될 수 있다. 예를 들어, 제 1 및 제 2 연결 전극(2410, 2420)의 높이의 합은 100㎛∼1000㎛, 바람직하게는 200㎛∼900㎛, 더욱 바람직하게는 400㎛∼700㎛로 형성될 수 있다. 이때, 제 1 및 제 2 연결 전극(2410, 2420)의 높이는 서로 다를 수 있고, 폭 또한 서로 다를 수 있다. 또한, 연결 전극(2400)의 X 방향의 폭은 적층체(2100)의 X 방향 길이의 1% 내지 90%로 형성될 수 있고, Y 방향의 폭은 적층체(2100)의 Y 방향 폭의 5% 내지 90%로 형성될 수 있다. 이때, 연결 전극(2400)의 X 방향 폭과 Y 방향 폭은 서로 같을 수도 있고, 다를 수도 있다. 즉, 연결 전극(2400)의 X 방향 폭과 Y 방향 폭을 포함한 적어도 일 영역의 폭은 다른 영역의 폭보다 같거나 다를 수 있다. 다시 말하면, 연결 전극(2400)은 적어도 일 영역이 비대칭 형상으로 형성될 수 있다. 그리고, 연결 전극(2400)의 X 방향 및 Y 방향의 폭은 과전압 보호부(2300) X 방향 및 Y 방향 폭의 1배 내지 10배로 형성될 수 있으며, 내부 전극(2200)의 X 방향 길이 및 Y 방향 폭의 1/10배 내지 1배로 각각 형성될 수 있다. 즉, 연결 전극(2400)의 폭은 적층체(2100)의 X 방향 및 Y 방향의 길이 및 폭보다 짧고, 과전압 보호부(2300)의 폭과 같거나 크며, 내부 전극(2200)의 폭보다 작거나 같게 형성될 수 있다. The connection electrode 2400 is formed to form an opening in a predetermined region of at least one or more sheets stacked on the internal electrode 2200 and to fill the opening by using a conductive material. For example, the connection electrode 2400 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu. Of course, the connection electrode 2400 may be formed using various conductive materials in addition to the metal. The connection electrode 2400 may have a height in the Z direction, that is, in a vertical direction, the same as or different from that of the overvoltage protection part 2300, and a width in the X direction and the Y direction is the width of the overvoltage protection part 2300. It may be more identical or different. That is, the connection electrode 2400 may be formed to be greater than or equal to the height of the overvoltage protection part 2300, and may be formed to be equal to or greater than the diameter or width. Preferably, the height of the connection electrode 2400 may be higher than the height of the overvoltage protection unit 2300, and the plane width may be larger than the plane width of the overvoltage protection unit 2300. For example, each of the first and second connection electrodes 2410 and 2420 may be formed to a height of 0.5 to 3 times the height of the overvoltage protection unit 2300. In addition, the sum of the heights of the first and second connection electrodes 2410 and 2420 may be formed to be one to six times the height of the overvoltage protection unit 2300. For example, the sum of the heights of the first and second connection electrodes 2410 and 2420 may be formed to 100 μm to 1000 μm, preferably 200 μm to 900 μm, and more preferably 400 μm to 700 μm. . In this case, the heights of the first and second connection electrodes 2410 and 2420 may be different from each other, and the width may also be different from each other. In addition, the width of the X direction of the connection electrode 2400 may be formed to be 1% to 90% of the length of the X direction of the laminate 2100, and the width of the Y direction may be 5 times the width of the Y direction of the laminate 2100. It may be formed from% to 90%. In this case, the width of the X direction and the width of the Y direction of the connection electrode 2400 may be the same or different. That is, the width of at least one region including the X-direction width and the Y-direction width of the connection electrode 2400 may be the same as or different from the width of the other region. In other words, at least one region of the connection electrode 2400 may be formed in an asymmetric shape. The width of the connection electrode 2400 in the X direction and the Y direction may be formed to be 1 to 10 times the width of the overvoltage protection part 2300 in the X direction and the Y direction, and the X direction length and the Y direction of the internal electrode 2200. It can be formed from 1/10 times to 1 times the width of the direction, respectively. That is, the width of the connection electrode 2400 is shorter than the length and width of the laminate 2100 in the X and Y directions, is equal to or larger than the width of the overvoltage protection part 2300, and is smaller than the width of the internal electrode 2200. Or the same.
이러한 연결 전극(2400)은 외부 전극(2500)과 내부 전극(2200)을 연결하는 기능을 한다. 따라서, 외부 전극(2500)을 통해 인가되는 ESD 등의 과전압은 연결 전극(2400)을 통해 내부 전극(2200) 및 과전압 보호부(2300)로 전달되고, 과전압 보호부(2300)를 통한 과전압은 다시 내부 전극(2200) 및 연결 전극(2400)을 통해 외부 전극(2500)으로 전달된다. 또한, 연결 전극(2400)이 적층체(2100)의 중앙부에 형성되고 과전압 보호부(2300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 즉, 연결 전극(2400)이 적층체(2100)의 외곽에 형성되는 경우에 비해 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 따라서, 무선통신주파수 영역 700㎒∼3㎓에서 S21의 삽입 손실을 줄일 수 있다. 또한, 연결 전극(2400)이 과전압 보호부(2300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 반복적인 ESD 전압에 따른 열화를 방지할 수 있어 방전 개시 전압의 상승을 억제할 수 있다. 즉, 과전압 보호부(2300)는 예를 들어 ESD 에너지에 의해 내부에서 스파크가 발생되어 ESD 전압을 바이패스하는데, 연결 전극(2400)의 두께가 얇으면 반복적인 ESD 전압에 따라 연결 전극(2400)이 소실되어 방전 개시 전압의 상승 현상이 발생될 수 있다. 그러나, 연결 전극(2400)의 두께를 10㎛ 이상으로 형성함으로써 반복적인 ESD 전압에 의한 연결 전극(2400)의 소실을 방지하고, 그에 따라 방전 개시 전압의 상승 현상을 방지할 수 있다.The connection electrode 2400 functions to connect the external electrode 2500 and the internal electrode 2200. Therefore, an overvoltage such as an ESD applied through the external electrode 2500 is transferred to the internal electrode 2200 and the overvoltage protection unit 2300 through the connection electrode 2400, and the overvoltage through the overvoltage protection unit 2300 is again provided. The internal electrode 2200 and the connection electrode 2400 are transferred to the external electrode 2500. In addition, since the connection electrode 2400 is formed at the center of the stack 2100 and preferably wider than the width of the overvoltage protection unit 2300, parasitic resistance and parasitic inductance may be reduced. That is, the parasitic resistance and the parasitic inductance can be reduced as compared with the case where the connection electrode 2400 is formed outside the stack 2100. Therefore, the insertion loss of S21 can be reduced in the wireless communication frequency range of 700 MHz to 3 GHz. In addition, since the connection electrode 2400 is formed to have a width wider than the width of the overvoltage protection unit 2300, it is possible to prevent deterioration due to repetitive ESD voltages and to suppress an increase in the discharge start voltage. That is, the overvoltage protection unit 2300 bypasses the ESD voltage by generating a spark therein, for example, by ESD energy. When the thickness of the connection electrode 2400 is thin, the connection electrode 2400 is repeated according to a repetitive ESD voltage. This loss may cause an increase in discharge start voltage. However, by forming the thickness of the connection electrode 2400 to be 10 μm or more, the loss of the connection electrode 2400 due to the repetitive ESD voltage can be prevented, thereby preventing the rise of the discharge start voltage.
5. 외부 전극5. External electrode
외부 전극(2510, 2520; 2500)는 적층체(2100) 외부의 서로 대향되는 두 면에 마련될 수 있다. 예를 들어, 외부 전극(2500)은 Z 방향, 즉 수직 방향으로 적층체(2100)의 대향되는 두 면, 즉 하부면 및 상부면에 각각 형성될 수 있다. 또한, 외부 전극(2500)은 적층체(2100) 내부의 연결 전극(2400)과 각각 연결될 수 있다. 이때, 외부 전극(2500)의 어느 하나는 전자기기 내부의 인쇄회로기판 등의 내부 회로와 접속될 수 있고, 다른 하나는 전자기기의 외부, 예를 들어 금속 케이스와 연결될 수 있다. 예를 들어, 제 1 외부 전극(2510)은 내부 회로(20)에 접속될 수 있고, 제 2 외부 전극(2520)은 컨택부(1000)를 통해 도전체(10)와 연결될 수 있다.The external electrodes 2510, 2520; 2500 may be provided on two surfaces facing each other outside the stack 2100. For example, the external electrode 2500 may be formed on two opposite surfaces of the stack 2100, that is, the lower surface and the upper surface, in the Z direction, that is, in the vertical direction. In addition, the external electrodes 2500 may be connected to the connection electrodes 2400 in the stack 2100, respectively. In this case, any one of the external electrodes 2500 may be connected to an internal circuit such as a printed circuit board inside the electronic device, and the other may be connected to the outside of the electronic device, for example, a metal case. For example, the first external electrode 2510 may be connected to the internal circuit 20, and the second external electrode 2520 may be connected to the conductor 10 through the contact portion 1000.
이러한 외부 전극(2500)은 다양한 방법으로 형성될 수 있다. 즉, 외부 전극(2500)은 도전성 페이스트를 이용하여 침지 또는 인쇄 방법으로 형성하거나, 증착, 스퍼터링, 도금 등의 다양한 방법으로 형성될 수도 있다. 한편, 외부 전극(2500)은 적층체(2100)의 하부면 및 상부면의 전체에 형성되거나, 하부면 및 상부면의 일부에 형성될 수 있다. 예를 들어, 외부 전극(2500)은 하부면 및 상부면의 가장자리로부터 소정 폭을 제외한 50% 내지 95%의 면적으로 형성될 수 있다. 또한, 외부 전극(2500)이 하부면 및 상부면의 전체 영역에 형성되고, 그로부터 상부 및 하부로 연장되어 다른 측면에 형성될 수도 있다. 즉, 외부 전극(2500)은 Z 방향으로 대향되는 하부면 및 상부면 뿐만 아니라 X 방향 및 Y 방향으로 각각 대향되는 면의 소정 영역까지 연장 형성될 수 있다. 이러한 외부 전극(500)은 예를 들어 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속으로 형성될 수 있다. 이때, 연결 전극(2400)과 연결되는 외부 전극(2500)의 적어도 일부는 연결 전극(2400)과 동일 물질로 형성될 수 있다. 예를 들어, 연결 전극(2400)이 구리를 이용하여 형성되는 경우 외부 전극(2500)의 연결 전극(2400)과 접촉되는 영역으로부터 적어도 일부는 구리를 이용하여 형성할 수 있다. The external electrode 2500 may be formed in various ways. That is, the external electrode 2500 may be formed by an immersion or printing method using a conductive paste, or may be formed by various methods such as deposition, sputtering, plating, and the like. Meanwhile, the external electrode 2500 may be formed on the entire lower surface and the upper surface of the stack 2100 or on a portion of the lower surface and the upper surface. For example, the external electrode 2500 may be formed with an area of 50% to 95% excluding a predetermined width from edges of the lower surface and the upper surface. In addition, the external electrode 2500 may be formed in the entire area of the lower surface and the upper surface, and extend from the upper and lower portions therefrom to be formed on the other side. That is, the external electrode 2500 may extend to a predetermined area of a lower surface and an upper surface facing in the Z direction as well as a surface opposite to the X and Y directions, respectively. The external electrode 500 may be formed of one or more metals selected from the group consisting of, for example, gold, silver, platinum, copper, nickel, palladium, and alloys thereof. In this case, at least a part of the external electrode 2500 connected to the connection electrode 2400 may be formed of the same material as the connection electrode 2400. For example, when the connection electrode 2400 is formed of copper, at least a part of the connection electrode 2400 may be formed of copper from an area in contact with the connection electrode 2400 of the external electrode 2500.
또한, 외부 전극(2500)은 적어도 하나의 도금층을 더 포함할 수 있다. 외부 전극(2500)은 Cu, Ag 등의 금속층으로 형성될 수 있고, 금속층 상에 적어도 하나의 도금층이 형성될 수도 있다. 예를 들어, 외부 전극(2500)은 구리층, Ni 도금층 및 Sn 또는 Sn/Ag 도금층이 적층 형성될 수도 있다. 물론, 도금층은 Cu 도금층 및 Sn 도금층이 적층될 수도 있으며, Cu 도금층, Ni 도금층 및 Sn 도금층이 적층될 수도 있다. 또한, 외부 전극(2500)은 예를 들어 0.5%∼20%의 Bi2O3 또는 SiO2를 주성분으로 하는 다성분계의 글래스 프릿(Glass frit)을 금속 분말과 혼합하여 형성할 수 있다. 이때, 글래스 프릿과 금속 분말의 혼합물은 페이스트 형태로 제조되어 적층체(2100)의 두면에 도포될 수 있다. 이렇게 외부 전극(2500)에 글래스 프릿이 포함됨으로써 외부 전극(2500)과 적층체(2100)의 밀착력을 향상시킬 수 있고, 연결 전극(2400)과 외부 전극(2500)의 콘택 반응을 향상시킬 수 있다. 또한, 글래스가 포함된 도전성 페이스트가 도포된 후 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(2500)이 형성될 수 있다. 즉, 글래스가 포함된 금속층과, 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(2500)이 형성될 수 있다. 예를 들어, 외부 전극(2500)은 글래스 프릿과 Ag 및 Cu의 적어도 하나가 포함된 층을 형성한 후 전해 또는 무전해 도금을 통하여 Ni 도금층 및 Sn 도금층 순차적으로 형성할 수 있다. 이때, Sn 도금층은 Ni 도금층과 같거나 두꺼운 두께로 형성될 수 있다. 물론, 외부 전극(2500)은 적어도 하나의 도금층만으로 형성될 수도 있다. 즉, 페이스트를 도포하지 않고 적어도 1회의 도금 공정을 이용하여 적어도 일층의 도금층을 형성하여 외부 전극(2500)을 형성할 수도 있다. 한편, 외부 전극(2500)은 2㎛∼100㎛의 두께로 형성될 수 있으며, Ni 도금층이 1㎛∼10㎛의 두께로 형성되고, Sn 또는 Sn/Ag 도금층은 2㎛∼10㎛의 두께로 형성될 수 있다.In addition, the external electrode 2500 may further include at least one plating layer. The external electrode 2500 may be formed of a metal layer such as Cu or Ag, and at least one plating layer may be formed on the metal layer. For example, the external electrode 2500 may be formed by laminating a copper layer, a Ni plating layer, and a Sn or Sn / Ag plating layer. Of course, the plating layer may be laminated with a Cu plating layer and a Sn plating layer, the Cu plating layer, Ni plating layer and Sn plating layer may be laminated. In addition, the external electrode 2500 may be formed by mixing, for example, a glass frit of a multicomponent system based on 0.5% to 20% of Bi 2 O 3 or SiO 2 with a metal powder. In this case, the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the laminate 2100. As the glass frit is included in the external electrode 2500, the adhesion between the external electrode 2500 and the laminate 2100 may be improved, and the contact reaction between the connection electrode 2400 and the external electrode 2500 may be improved. . In addition, after the conductive paste including glass is applied, at least one plating layer may be formed on the upper portion to form the external electrode 2500. That is, the metal layer including the glass and at least one plating layer formed thereon may be formed to form the external electrode 2500. For example, the external electrode 2500 may sequentially form a Ni plating layer and a Sn plating layer through electrolytic or electroless plating after forming a layer including a glass frit and Ag and Cu. In this case, the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer. Of course, the external electrode 2500 may be formed of only at least one plating layer. That is, the external electrode 2500 may be formed by forming at least one layer of the plating layer using at least one plating process without applying the paste. Meanwhile, the external electrode 2500 may be formed to a thickness of 2 μm to 100 μm, the Ni plating layer may be formed to a thickness of 1 μm to 10 μm, and the Sn or Sn / Ag plating layer may have a thickness of 2 μm to 10 μm. Can be formed.
2.6. 표면 개질 부재2.6. Surface modification
한편, 적층체(2100)의 적어도 일 표면에는 표면 개질 부재(미도시)가 형성될 수 있다. 이러한 표면 개질 부재는 외부 전극(2500)을 형성하기 이전에 적층체(2100)의 표면에 예를 들어 산화물을 분포시켜 형성할 수 있다. 여기서, 산화물은 결정 상태 또는 비결정 상태로 적층체(2100)의 표면에 분산되어 분포될 수 있다. 표면 개질 부재는 도금 공정으로 외부 전극(2500)을 형성할 때 도금 공정 이전에 적층체(2100) 표면에 분포될 수 있다. 즉, 표면 개질 부재는 외부 전극(2500)의 일부를 인쇄 공정으로 형성하기 이전에 분포시킬 수도 있고, 인쇄 공정 후 도금 공정을 실시하기 이전에 분포시킬 수도 있다. 물론, 인쇄 공정을 실시하지 않는 경우 표면 개질 부재를 분포시킨 후 도금 공정을 실시할 수 있다. 이때, 표면에 분포된 표면 개질 부재는 적어도 일부가 용융될 수 있다.Meanwhile, a surface modification member (not shown) may be formed on at least one surface of the laminate 2100. The surface modification member may be formed by, for example, distributing an oxide on the surface of the laminate 2100 before forming the external electrode 2500. Here, the oxide may be dispersed and distributed on the surface of the laminate 2100 in a crystalline state or an amorphous state. The surface modification member may be distributed on the surface of the laminate 2100 before the plating process when the external electrode 2500 is formed by the plating process. That is, the surface modification member may be distributed before forming a part of the external electrode 2500 in the printing process, or may be distributed before performing the plating process after the printing process. Of course, when the printing process is not performed, the plating process may be performed after the surface modification member is distributed. At this time, at least a portion of the surface modification member distributed on the surface may be melted.
한편, 표면 개질 부재는 적어도 일부가 동일한 크기로 적층체(2100)의 표면에 고르게 분포될 수 있고, 적어도 일부가 서로 다른 크기로 불규칙하게 분포될 수도 있다. 또한, 적층체(2100)의 적어도 일부 표면에는 오목부가 형성될 수도 있다. 즉, 표면 개질 부재가 형성되어 볼록부가 형성되고 표면 개질 부재가 형성되지 않은 영역의 적어도 일부가 패여 오목부가 형성될 수도 있다. 이때, 표면 개질 부재는 적어도 일부가 적층체(2100)의 표면보다 깊이 형성될 수 있다. 즉, 표면 개질 부재는 소정 두께가 적층체(2100)의 소정 깊이로 박히고 나머지 두께가 적층체(2100)의 표면보다 높게 형성될 수 있다. 이때, 적층체(2100)에 박히는 두께는 산화물 입자의 평균 직경의 1/20 내지 1일 수 있다. 즉, 산화물 입자는 적층체(2100) 내부로 모두 함입될 수 있고, 적어도 일부가 함입될 수 있다. 물론, 산화물 입자는 적층체(2100)의 표면에만 형성될 수 있다. 따라서, 산화물 입자는 적층체(2100)의 표면에서 반구형으로 형성될 수도 있고, 구 형태로 형성될 수도 있다. 또한, 표면 개질 부재는 상기한 바와 같이 적층체(2100)의 표면에 부분적으로 분포될 수도 있으며, 적어도 일 영역에 막 형태로 분포될 수도 있다. 즉, 산화물 입자가 적층체(2100)의 표면에 섬(island) 형태로 분포되어 표면 개질 부재가 형성될 수 있다. 즉, 적층체(2100) 표면에 결정 상태 또는 비결정 상태의 산화물이 서로 이격되어 섬 형태로 분포될 수 있고, 그에 따라 적층체(2100) 표면의 적어도 일부가 노출될 수 있다. 또한, 산화물은 표면 개질 부재는 적어도 둘 이상이 연결되어 적어도 일 영역에는 막으로 형성되고, 적어도 일부에는 섬 형태로 형성될 수 있다. 즉, 적어도 둘 이상의 산화물 입자가 응집되거나 인접한 산화물 입자가 연결되어 막 형태를 이룰 수 있다. 그러나, 산화물이 입자 상태로 존재하거나, 둘 이상의 입자가 응집되거나 연결된 경우에도 적층체(2100) 표면의 적어도 일부는 표면 개질 부재에 의해 외부로 노출된다. On the other hand, at least a portion of the surface modification member may be evenly distributed on the surface of the laminate 2100 in the same size, and at least a portion may be irregularly distributed in different sizes. In addition, a recess may be formed on at least part of the surface of the laminate 2100. That is, the surface modification member may be formed to form a convex portion, and at least a portion of the region where the surface modification member is not formed may be recessed to form a recess. In this case, at least a portion of the surface modification member may be formed deeper than the surface of the laminate 2100. That is, the surface modification member may be formed with a predetermined thickness to be embedded at a predetermined depth of the laminate 2100 and the remaining thickness higher than the surface of the laminate 2100. In this case, the thickness of the laminate 2100 may be 1/20 to 1 of the average diameter of the oxide particles. That is, all of the oxide particles may be embedded in the laminate 2100, and at least some may be embedded. Of course, the oxide particles may be formed only on the surface of the laminate 2100. Therefore, the oxide particles may be formed in a hemispherical shape on the surface of the laminate 2100, or may be formed in a spherical shape. In addition, the surface modification member may be partially distributed on the surface of the laminate 2100 as described above, or may be distributed in a film form on at least one region. That is, the oxide particles may be distributed in the form of islands on the surface of the laminate 2100 to form a surface modification member. That is, oxides in a crystalline state or an amorphous state may be distributed in an island form on the surface of the laminate 2100, and thus at least a portion of the surface of the laminate 2100 may be exposed. In addition, the oxide may be formed as a film in at least one region and at least a portion thereof in an island form by connecting at least two surface modification members. That is, at least two or more oxide particles may be aggregated or adjacent oxide particles may be connected to form a film. However, even when the oxide is present in the form of particles or when two or more particles are aggregated or connected, at least a part of the surface of the laminate 2100 is exposed to the outside by the surface modification member.
이때, 표면 개질 부재의 총 면적은 적층체(2100) 표면 전체 면적의 예를 들어 5% 내지 90%일 수 있다. 표면 개질 부재의 면적에 따라 적층체(2100) 표면의 도금 번짐 현상이 제어될 수 있지만, 표면 개질 부재가 너무 많이 형성되면 적층체(2100) 내부의 도전 패턴과 외부 전극(2500)의 접촉이 어려울 수 있다. 즉, 표면 개질 부재가 적층체(2100) 표면적의 5% 미만으로 형성될 경우 도금 번짐 현상의 제어가 어렵고, 90%를 초과하여 형성될 경우 적층체(2100) 내부의 도전 패턴과 외부 전극(2500)이 접촉되지 않을 수 있다. 따라서, 표면 개질 부재는 도금 번짐 현상을 제어할 수 있고 적층체(2100) 내부의 도전 패턴과 외부 전극(2500)의 접촉될 수 있는 정도의 면적으로 형성하는 것이 바람직하다. 이를 위해 표면 개질 부재는 적층체(2100) 표면적의 10% 내지 90%로 형성될 수 있고, 바람직하게는 30% 내지 70%의 면적으로 형성될 수 있으며, 더욱 바람직하게는 40% 내지 50%의 면적으로 형성될 수 있다. 이때, 적층체(2100)의 표면적은 일 면의 표면적일 수도 있고, 육면체를 이루는 적층체(2100)의 여섯면의 표면적일 수도 있다. 한편, 표면 개질 부재는 적층체(2100) 두께의 10% 이하의 두께로 형성될 수 있다. 즉, 표면 개질 부재는 적층체(2100) 두께의 0.01% 내지 10%의 두께로 형성될 수 있다. 예를 들어, 표면 개질 부재는 0.1㎛∼50㎛의 크기로 존재할 수 있는데, 그에 따라 표면 개질 부재는 적층체(2100) 표면으로부터 0.1㎛∼50㎛의 두께로 형성될 수 있다. 즉, 표면 개질 부재는 적층체(2100)의 표면보다 박힌 영역을 제외하고 적층체(2100) 표면으로부터 0.1㎛∼50㎛의 두께로 형성될 수 있다. 따라서, 적층체(2100) 내측으로 박힌 두께를 포함하면 표면 개질 부재는 0.1㎛∼50㎛보다 두꺼운 두께를 가질 수 있다. 표면 개질 부재가 적층체(2100) 두께의 0.01% 미만의 두께로 형성될 경우 도금 번짐 현상의 제어가 어렵고, 적층체(2100) 두께의 10%를 초과하는 두께로 형성될 경우 적층체(2100) 내부의 도전 패턴과 외부 전극(2500)이 접촉되지 않을 수 있다. 즉, 표면 개질 부재는 적층체(2100)의 재료 특성(전도성, 반도성, 절연성, 자성체 등)에 따라 다양한 두께를 가질 수 있고, 산화물 분말의 크기, 분포량, 응집 여부에 따라 다양한 두께를 가질 수 있다.In this case, the total area of the surface modification member may be, for example, 5% to 90% of the total surface area of the laminate 2100. The plating bleeding phenomenon of the surface of the laminate 2100 may be controlled according to the area of the surface modifying member. However, when too much surface modifying member is formed, it may be difficult to contact the conductive pattern inside the laminate 2100 and the external electrode 2500. Can be. That is, when the surface modification member is formed to less than 5% of the surface area of the laminate 2100, the plating bleeding phenomenon is difficult to control, and when formed to exceed 90%, the conductive pattern and the external electrode 2500 inside the laminate 2100 are difficult to control. ) May not be in contact. Accordingly, the surface modification member may be formed to have an area that can control the plating bleeding phenomenon and can be in contact with the conductive pattern inside the laminate 2100 and the external electrode 2500. For this purpose, the surface modification member may be formed in 10% to 90% of the surface area of the laminate 2100, preferably in an area of 30% to 70%, more preferably of 40% to 50% It can be formed into an area. At this time, the surface area of the laminate 2100 may be one surface area, or may be the surface areas of six surfaces of the laminate 2100 forming a hexahedron. Meanwhile, the surface modification member may be formed to a thickness of 10% or less of the thickness of the laminate 2100. That is, the surface modification member may be formed to a thickness of 0.01% to 10% of the thickness of the laminate 2100. For example, the surface modification member may be present in a size of 0.1 μm to 50 μm, and thus the surface modification member may be formed to a thickness of 0.1 μm to 50 μm from the surface of the laminate 2100. That is, the surface modification member may be formed to have a thickness of 0.1 μm to 50 μm from the surface of the laminate 2100 except for a region that is more than the surface of the laminate 2100. Accordingly, when the thickness of the laminate 2100 is embedded, the surface modification member may have a thickness greater than 0.1 μm to 50 μm. When the surface modification member is formed to a thickness less than 0.01% of the thickness of the laminate 2100, it is difficult to control the plating bleeding phenomenon, and when the surface modified member is formed to a thickness exceeding 10% of the thickness of the laminate 2100, the laminate 2100. The internal conductive pattern and the external electrode 2500 may not be in contact. That is, the surface modification member may have various thicknesses according to the material properties (conductivity, semiconductivity, insulation, magnetic material, etc.) of the laminate 2100, and may have various thicknesses according to the size, distribution amount, or aggregation of the oxide powder. have.
이렇게 적층체(2100)의 표면에 표면 개질 부재가 형성됨으로써 적층체(2100)의 표면은 성분이 다른 적어도 두 영역이 존재할 수 있다. 즉, 표면 개질 부재가 형성된 영역과 형성되지 않은 영역은 서로 다른 성분이 검출될 수 있다. 예를 들어, 표면 개질 부재가 형성된 영역은 표면 개질 부재에 따른 성분, 즉 산화물이 존재할 수 있고, 형성되지 않은 영역은 적층체(2100)에 따른 성분, 즉 시트의 성분이 존재할 수 있다. 이렇게 도금 공정 이전에 적층체(2100)의 표면에 표면 개질 부재를 분포시킴으로써 적층체(2100) 표면에 거칠기를 부여하여 개질시킬 수 있다. 따라서, 도금 공정이 균일하게 실시될 수 있고, 그에 따라 외부 전극(500)의 형상을 제어할 수 있다. 즉, 적층체(2100)의 표면은 적어도 일 영역의 저항이 다른 영역의 저항과 다를 수 있는데, 저항이 불균일한 상태에서 도금 공정을 실시하면 도금층의 성장 불균일이 발생된다. 이러한 문제를 해결하기 위해 적층체(2100)의 표면에 입자 상태 또는 용융 상태의 산화물을 분산시켜 표면 개질 부재를 형성함으로써 적층체(2100)의 표면을 개질시킬 수 있고, 도금층의 성장을 제어할 수 있다. As such, the surface modification member is formed on the surface of the laminate 2100, so that at least two regions having different components may exist on the surface of the laminate 2100. That is, different components may be detected in the region where the surface modification member is formed and the region where the surface modification member is not formed. For example, a region in which the surface modification member is formed may include a component according to the surface modification member, that is, an oxide, and a region according to the surface modification member may include a component according to the laminate 2100, that is, a component of the sheet. Thus, by distributing the surface modification member on the surface of the laminate 2100 before the plating process, the surface of the laminate 2100 may be provided with a roughness to be modified. Therefore, the plating process can be performed uniformly, thereby controlling the shape of the external electrode 500. That is, the surface of the laminate 2100 may have a resistance at least in one region different from that in another region. If the plating process is performed in a state where the resistance is uneven, growth unevenness of the plating layer may occur. In order to solve this problem, the surface of the laminate 2100 may be modified by dispersing oxides in a particulate state or a molten state on the surface of the laminate 2100 to form a surface modification member, and the growth of the plating layer may be controlled. have.
여기서, 적층체(2100)의 표면 저항을 균일하게 하기 위한 입자 상태 또는 용융 상태의 산화물은 예를 들어 Bi2O3, BO2, B2O3, ZnO, Co3O4, SiO2, Al2O3, MnO, H2BO3, Ca(CO3)2, Ca(NO3)2, CaCO3 중 적어도 하나 이상을 이용할 수 있다. 한편, 표면 개질 부재는 적층체(2100) 내의 적어도 하나의 시트 상에도 형성될 수 있다. 즉, 시트 상의 다양한 형상의 도전 패턴은 도금 공정으로 형성할 수도 있는데, 표면 개질 부재를 형성함으로써 도전 패턴의 형상을 제어할 수 있다.Here, the oxide in the granular or molten state to make the surface resistance of the laminate 2100 uniform is, for example, Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO, Co 3 O 4 , SiO 2 , Al At least one of 2 O 3 , MnO, H 2 BO 3 , Ca (CO 3 ) 2 , Ca (NO 3 ) 2 , and CaCO 3 may be used. Meanwhile, the surface modification member may be formed on at least one sheet in the laminate 2100. That is, although the conductive patterns of various shapes on the sheet may be formed by a plating process, the shape of the conductive patterns can be controlled by forming the surface modification member.
도 9는 복합 보호부의 다른 실시 예에 따른 도면으로서, 도 9의 (a)는 사시도이고, 도 9의 (b)는 단면도이다.9 is a view according to another embodiment of the composite protective part, FIG. 9A is a perspective view, and FIG. 9B is a sectional view.
도 9에 도시된 바와 같이, 본 발명의 다른 실시 예에 따른 복합 보호부(2000)는 복수의 시트(101 내지 111; 100)가 적층된 적층체(2100)와, 적층체(2100) 내부에 형성되며 복수의 내부 전극(201 내지 208; 200)를 포함하는 캐패시터부(2200a, 2200b)와, 캐패시터부(2200a, 2200b) 사이에 마련되며 적어도 둘 이상의 방전 전극(311, 312)와 그 사이에 마련된 과전압 보호 부재(320)를 포함하는 보호부(3000)와, 적층체(2100) 외부에 마련되어 캐패시터부(2200a, 2200b) 및 과전압 보호부(2300)와 연결되는 외부 전극(2510, 2520; 2500)를 포함할 수 있다.As shown in FIG. 9, the composite protection unit 2000 according to another exemplary embodiment of the present invention may include a laminate 2100 in which a plurality of sheets 101 to 111 and 100 are stacked, and inside the laminate 2100. A capacitor formed between the capacitor parts 2200a and 2200b and the capacitor parts 2200a and 2200b including a plurality of internal electrodes 201 to 208 and 200, and disposed between the at least two discharge electrodes 311 and 312 and between them. A protective part 3000 including the provided overvoltage protection member 320, and external electrodes 2510, 2520; 2500 provided outside the stack 2100 and connected to the capacitor parts 2200a and 2200b and the overvoltage protection part 2300. ) May be included.
본 발명의 다른 실시 예에 따른 복합 보호부는 복수의 내부 전극(200)이 적층체(2100) 내부에 형성되어 캐패시터부(2200a, 2200b)를 이루고, 복수의 내부 전극(200) 사이에 과전압을 방호하기 위한 과전압 보호부(2300)가 형성된다. 이때, 과전압 보호부(2300)는 방전 전극(310)과 그 사이에 형성된 과전압 보호 부재(320)를 포함할 수 있다. 즉, 본 발명의 일 실시 예에 따른 복합 보호부는 내부 전극(2200)이 방전 전극으로서 기능하는 동시에 캐패시터로 기능하지만, 다른 실시 예에 따른 복합 보호부는 내부 전극(200)과 방전 전극(310)의 기능이 분리되어 형성될 수 있다. 또한, 본 발명의 일 실시 예는 외부 전극(2500)이 시트의 적층 방향으로 대향되는 두 면에 형성되지만, 본 발명의 다른 실시 예는 외부 전극(2500)이 시트(100)의 적층 방향과 직교하는 방향의 두 측면에 형성된다. 그러나, 이러한 구조적인 차이점 이외에 형성 물질, 형상 등은 일 실시 예에서 설명된 내용과 동일하므로 다른 실시 예에 따른 상세한 설명은 생략하겠다.According to another exemplary embodiment of the present disclosure, a plurality of internal electrodes 200 may be formed inside the stack 2100 to form capacitor parts 2200a and 2200b and to protect an overvoltage between the plurality of internal electrodes 200. An overvoltage protection unit 2300 is formed. In this case, the overvoltage protection unit 2300 may include a discharge electrode 310 and an overvoltage protection member 320 formed therebetween. That is, the composite protection unit according to an embodiment of the present invention functions as a capacitor while the internal electrode 2200 functions as a discharge electrode, but the composite protection unit according to another embodiment of the internal electrode 200 and the discharge electrode 310 may be used. Functions can be formed separately. In addition, in one embodiment of the present invention, the external electrode 2500 is formed on two surfaces facing the stacking direction of the sheet, but in another embodiment of the present invention, the external electrode 2500 is perpendicular to the stacking direction of the sheet 100. It is formed on two sides of the direction. However, in addition to the structural difference, the forming material, the shape, and the like are the same as those described in the embodiment, and thus detailed descriptions according to other embodiments will be omitted.
상기한 바와 같이 본 발명의 제 1 실시 예에 따른 컨택터는 컨택부(1000)가 사용자가 접촉 가능한 도전체(10)와 접촉되고 복합 보호부(2000)가 도전성 접착부(3000)를 통해 내부 회로(20)에 실장되어 누설 전류를 차단할 수 있고, ESD 등의 과전압을 접지 단자로 통과시킬 수 있다. 즉, 본 발명의 복합 보호부(2000)는 정격 전압 및 감전 전압에서는 외부 전극(2500) 사이에서 전류가 흐르지 못하므로 내부 회로(20)의 접지 단자로부터 금속 케이스 등의 도전체(10)로 전달되는 누설 전류를 차단할 수 있고, ESD 전압 등의 과전압에서는 복합 보호부(2000)의 내부를 통해 전류가 흐르기 때문에 외부로부터 도전체(10)를 통해 내부 회로(20)로 인가되는 과전압을 접지 단자로 통과시킬 수 있다. 한편, 복합 보호부(2000)는 방전 개시 전압이 정격 전압보다 높고 ESD 전압보다 낮을 수 있다. 예를 들어, 복합 보호부(2000)는 정격 전압이 100V 내지 240V일 수 있고, 감전 전압은 회로의 동작 전압과 같거나 높을 수 있으며, 외부의 정전기 등에 의해 발생되는 ESD 전압은 감전 전압보다 높을 수 있고, 방전 개시 전압은 350V∼15kV일 수 있다. 또한, 복합 보호부(2000)는 내부에 캐패시터부가 마련되어 캐패시터부에 의해 외부와 내부 회로(20) 사이에 통신 신호가 전달될 수 있다. 즉, 외부로부터의 통신 신호, 예를 들어 RF 신호는 캐패시터부에 의해 내부 회로(20)로 전달될 수 있고, 내부 회로(20)로부터의 통신 신호는 캐패시터부에 의해 외부로 전달될 수 있다. 따라서, 별도의 안테나가 마련되지 않고 금속 케이스 등의 도전체(10)를 안테나로 이용하는 경우에도 캐패시터부를 이용하여 외부와의 통신 신호를 주고받을 수 있다. 결국, 본 발명에 따른 복합 보호부(2000)는 내부 회로(20)의 접지 단자로부터 유입되는 누설 전류를 차단하고, 외부로부터 인가되는 ESD 전압을 접지 단자로 바이패스시키며, 외부와 전자기기 사이에 통신 신호를 전달할 수 있다.As described above, in the contactor according to the first embodiment of the present invention, the contact part 1000 is in contact with the conductor 10 which the user can contact, and the composite protection part 2000 is connected to the internal circuit through the conductive adhesive part 3000. 20) can be used to cut off the leakage current, and to pass overvoltage such as ESD to the ground terminal. That is, the composite protection unit 2000 of the present invention transmits the electric current from the ground terminal of the internal circuit 20 to the conductor 10 such as a metal case since no current flows between the external electrodes 2500 at the rated voltage and the electric shock voltage. The leakage current can be cut off, and in an overvoltage such as an ESD voltage, a current flows through the inside of the composite protection unit 2000, so that an overvoltage applied from the outside to the internal circuit 20 through the conductor 10 to the ground terminal. I can pass it. Meanwhile, the composite protection unit 2000 may have a discharge start voltage higher than the rated voltage and lower than the ESD voltage. For example, the composite protection unit 2000 may have a rated voltage of 100 V to 240 V, an electric shock voltage may be equal to or higher than an operating voltage of a circuit, and an ESD voltage generated by external static electricity may be higher than an electric shock voltage. And the discharge start voltage may be 350V to 15kV. In addition, the composite protection unit 2000 is provided with a capacitor inside the communication unit may be a communication signal between the external and the internal circuit 20 by the capacitor. That is, a communication signal from the outside, for example, an RF signal may be transmitted to the internal circuit 20 by the capacitor unit, and the communication signal from the internal circuit 20 may be transmitted to the outside by the capacitor unit. Therefore, even when a separate antenna is not provided and a conductor 10 such as a metal case is used as the antenna, a communication unit may transmit and receive a communication signal with the outside. As a result, the composite protection unit 2000 according to the present invention cuts off leakage current flowing from the ground terminal of the internal circuit 20, bypasses the ESD voltage applied from the outside to the ground terminal, and between the outside and the electronic device. Can communicate communication signals.
또한, 본 발명의 일 실시 예에 따른 복합 보호부(2000)는 내압 특성이 높은 시트를 복수 적층하여 캐패시터부를 형성함으로써 불량 충전기에 의한 내부 회로(20)에서 도전체(10)로의 예를 들어 310V의 감전 전압이 인가될 때 누설 전류가 흐르지 않도록 절연 저항 상태를 유지할 수 있고, 과전압 보호부(2300) 역시 도전체(10)에서 내부 회로(20)로의 ESD 전압 유입 시 ESD 전압을 바이패스시켜 소자의 파손없이 높은 절연 저항 상태를 유지할 수 있다. 즉, 과전압 보호부(2300)는 에너지 레벨을 낮춰 전기 에너지를 열 에너지로 변환시키는 도전층과 다공성 구조로 이루어져 미세 기공을 통해 전류를 흐르게 하는 절연층으로 이루어진 과전압 보호 물질을 포함함으로써 외부로부터 유입되는 ESD 전압을 바이패스시켜 회로를 보호할 수 있다. 따라서, ESD 전압에 의해서도 절연 파괴되지 않고, 그에 따라 금속 케이스 등의 도전체(10)를 구비하는 전자기기 내에 마련되어 불량 충전기에서 발생된 누설 전류가 전자기기의 금속 케이스를 통해 사용자에게 전달되는 것을 지속적으로 방지할 수 있다. 한편, 일반적인 MLCC(Multi Layer Capacitance Circuit)는 감전 전압은 보호하지만 ESD에는 취약한 소자로 이는 반복적인 ESD 인가 시 전하 차징(Charging)에 의한 누설 포인트(Leak point)로 스파크(Spark)가 발생하여 소자 파손 현상이 발생될 수 있다. 그러나, 본 발명은 캐패시터부 사이에 도전층과 절연층을 포함하는 과전압 보호 부재가 형성됨으로써 ESD 전압을 과전압 보호 부재를 통해 패스시킴으로써 캐패시터부가 파괴되지 않는다.In addition, the composite protection unit 2000 according to an embodiment of the present invention stacks a plurality of sheets having high breakdown voltage characteristics to form a capacitor, so as to form, for example, 310V from the internal circuit 20 to the conductor 10 by the defective charger. The insulation resistance state can be maintained so that a leakage current does not flow when an electric shock voltage is applied, and the overvoltage protection unit 2300 also bypasses the ESD voltage when the ESD voltage flows from the conductor 10 to the internal circuit 20. High insulation resistance can be maintained without breakage. That is, the overvoltage protection unit 2300 is introduced from the outside by including an overvoltage protection material consisting of a conductive layer for converting electrical energy into thermal energy by lowering an energy level and an insulating layer made of a porous structure to flow current through micropores. The circuit can be protected by bypassing the ESD voltage. Therefore, the insulation voltage is not broken even by the ESD voltage, and accordingly, the leakage current generated from the defective charger is provided in the electronic device having the conductor 10 such as the metal case to continuously transmit to the user through the metal case of the electronic device. Can be prevented. On the other hand, the general MLCC (Multi Layer Capacitance Circuit) protects the electric shock voltage but is vulnerable to ESD. It is damaged due to sparking due to leakage point caused by charge charging when repeated ESD is applied. Phenomenon may occur. However, in the present invention, an overvoltage protection member including a conductive layer and an insulating layer is formed between the capacitor portions so that the capacitor portion is not destroyed by passing the ESD voltage through the overvoltage protection member.
다른 실시 예Another embodiment
이하는 본 발명의 다른 실시 예들에 따른 컨택부를 설명하며, 상기에서 이미 설명된 부분은 생략한다.Hereinafter, a contact unit according to other exemplary embodiments of the present disclosure will be described, and portions already described above will be omitted.
도 10은 본 발명의 제 3 실시 예에 따른 컨택터의 단면도이다.10 is a cross-sectional view of a contactor according to a third embodiment of the present invention.
도 10을 참조하면, 본 발명의 제 3 실시 예에 따른 컨택터는 적어도 일 영역이 전도체(10)와 접촉되는 가스켓 타입의 컨택부(1000a)와, 적어도 일 영역이 컨택부(1000a)와 접촉되고 적어도 타 영역이 내부 회로(2000)와 전기적으로 연결되는 복합 보호부(2000)와, 복합 보호부(2000)와 내부 회로(20) 사이에 마련된 도전성 접착부(3000)를 포함할 수 있다. 즉, 본 발명의 제 3 실시 예는 제 1 실시 예의 클립 타입 대신에 가스켓 타입의 컨택부(1000a)를 이용할 수 있다. 또한, 본 발명의 제 3 실시 예의 경우에도 제 2 실시 예와 마찬가지로 도전부(4000)가 더 마련될 수도 있다.Referring to FIG. 10, a contactor according to a third embodiment of the present invention may include a gasket-type contact part 1000a in which at least one area is in contact with the conductor 10, and at least one area is in contact with the contact part 1000a. The at least another region may include a composite protection part 2000 electrically connected to the internal circuit 2000, and a conductive adhesive part 3000 provided between the composite protection part 2000 and the internal circuit 20. That is, the third embodiment of the present invention may use the gasket type contact portion 1000a instead of the clip type of the first embodiment. In addition, in the case of the third embodiment of the present invention, similarly to the second embodiment, the conductive part 4000 may be further provided.
컨택부(1000a)는 전도성 고무, 전도성 실리콘, 내부에 전도성 도선이 삽입된 탄성체, 표면이 도체로 코팅 또는 접합된 탄성체 중 어느 하나를 포함할 수 있다. 전도성 가스켓 타입의 컨택부(1000a)는 복합 보호부(2000)의 일측 상에 마련될 수 있다. 즉, 복합 보호부(2000)의 일측 상에 가스켓 타입의 컨택부(1000a)가 마련되고 타측에 전도성 접착부(3000)가 마련될 수 있다. 이러한 가스켓 형태의 컨택부(1000a)는 탄성력을 가지는 탄성 코어(미도시)와, 탄성 코어의 표면에 형성된 도전층(미도시)을 포함할 수 있다. 즉, 탄성 코어의 외측 표면에 도전층이 형성되어 전도성 가스켓 형태의 컨택부(1000a)가 구현될 수 있다. 탄성 코어는 탄성력을 갖고 절연성 물질로 형성될 수 있다. 예를 들어, 탄성 코어는 폴리우레탄 폼, PVC, 실리콘, 에틸렌 비닐아세테이트코폴리머, 폴리에틸린 등의 고분자 합성수지, 천연 고무(NR), 부틸렌 고무(SBR), 에틸렌프로필렌 고무(EPDM), 나이크릴 고무(NBR), 네오프렌(Neoprene) 등의 고무, 합성고무 시트(solid sheets) 또는 스폰지 시트(sponge sheet) 등을 이용할 수 있다. 한편, 탄성 코어에는 일 방향으로 관통하는 관통홀(미도시)이 형성될 수 있다. 도전층은 탄성 코어의 외주면을 둘러싸도록 형성될 수 있다. 도전층은 카본블랙, 그라파이트, 금, 은, 구리, 니켈, 알루미늄 등 다양한 도전 재료로 형성될 수 있다. 도전층은 필름 형태로 제작되어 탄성 코어를 감싸도록 형성되며, 접착제가 도포되어 탄성 코어에 접착될 수 있다. 한편, 탄성 코어가 도전성을 갖고 그에 따라 탄성 코어의 표면에 도전층이 형성되지 않을 수 있다. 이를 위해 예를 들어 탄성 코어에 도전성 파우더가 혼합될 수 있다.The contact part 1000a may include any one of a conductive rubber, a conductive silicon, an elastic body having a conductive lead inserted therein, and an elastic body whose surface is coated or bonded with a conductor. The conductive gasket type contact part 1000a may be provided on one side of the composite protection part 2000. That is, a gasket type contact part 1000a may be provided on one side of the composite protection part 2000, and a conductive adhesive part 3000 may be provided on the other side. The gasket type contact portion 1000a may include an elastic core (not shown) having an elastic force and a conductive layer (not shown) formed on the surface of the elastic core. That is, the conductive layer is formed on the outer surface of the elastic core to implement the contact portion 1000a in the form of a conductive gasket. The elastic core may have an elastic force and be formed of an insulating material. For example, the elastic core may be polyurethane foam, PVC, silicone, ethylene vinyl acetate copolymer, polymer synthetic resin such as polyethylene, natural rubber (NR), butylene rubber (SBR), ethylene propylene rubber (EPDM), age Rubber such as krill rubber (NBR) or neoprene, solid sheets or sponge sheets can be used. Meanwhile, a through hole (not shown) penetrating in one direction may be formed in the elastic core. The conductive layer may be formed to surround the outer circumferential surface of the elastic core. The conductive layer may be formed of various conductive materials such as carbon black, graphite, gold, silver, copper, nickel, and aluminum. The conductive layer is formed in a film form to surround the elastic core, and an adhesive may be applied to the elastic core. On the other hand, the elastic core may have conductivity, and thus a conductive layer may not be formed on the surface of the elastic core. For this purpose, for example, the conductive powder may be mixed in the elastic core.
도 11은 본 발명의 제 4 실시 예에 따른 컨택터의 사시도이고, 도 12는 일 측면도이며, 도 13은 타 측면도이다. 즉, 도 12는 Y 방향의 측면도이고, 도 13은 X 방향의 측면도이다. 또한, 도 14는 본 발명의 제 4 실시 예에 따른 컨택터가 실장되는 내부 회로의 평면도이고, 도 15는 제 4 실시 예에 따른 컨택터가 내부 회로에 실장된 상태의 평면도이다.11 is a perspective view of a contactor according to a fourth embodiment of the present invention, FIG. 12 is a side view, and FIG. 13 is another side view. 12 is a side view in the Y direction, and FIG. 13 is a side view in the X direction. 14 is a plan view of an internal circuit in which a contactor is mounted according to a fourth embodiment of the present invention, and FIG. 15 is a plan view of a state in which a contactor is mounted in an internal circuit according to a fourth embodiment.
도 11 내지 도 15를 참조하면, 본 발명의 제 4 실시 예에 따른 컨택터는 적어도 일 영역이 전도체(10)와 접촉되는 컨택부(1000)와, 적어도 일 영역이 내부 회로(20)에 접촉되는 복합 보호부(2000)와, 적어도 복합 보호부(2000)와 내부 회로(20) 사이에 마련된 도전성 접착부(3000)와, 일 영역이 컨택부(1000)와 접촉되고 타 영역이 내부 회로(20)에 접촉되는 연장부(5000)를 포함할 수 있다. 여기서, 도전성 접착부(3000)는 복합 보호부(2000)의 외부 전극(2500) 및 연장부(5000)의 적어도 일 영역에 마련될 수 있다. 즉, 도전성 접착부(3000)는 내부 회로(20)와 접촉되는 외부 전극(2500)의 하부면과 연장부(5000)의 하부면에 마련될 수 있다. 또한, 복합 보호부(2000)는 도 9에 도시된 시트의 적층 방향과 교차하는 방향으로 외부 전극(2500)이 형성된 구조를 이용할 수 있고, 컨택부(1000)는 시트의 적층 방향으로 적층체(1000)의 일면 상에 마련될 수 있다. 즉, 도 9에서 복합 보호부(2000)의 X 방향으로 서로 대향되는 두 측면에 외부 전극(2500)이 형성되고, Y 방향으로 일면 상에 컨택부(1000)가 마련될 수 있다. 따라서, 컨택부(1000)와 복합 보호부(2000)는 전기적으로 직접 연결되지 않는다. 한편, 내부 회로(20)는 도 12에 도시된 바와 같이 복합 보호부(2000)의 일 영역이 실장되는 제 1 실장 영역(21)과, 복합 보호부(2000)의 타 영역이 실장되는 제 2 실장 영역(22)과, 컨택부(1000)와 연결되는 연장부(5000)가 실장되는 제 3 및 제 4 실장 영역(23, 24)을 포함할 수 있다. 즉, 제 1 실장 영역(21)에는 복합 보호부(2000)의 제 1 외부 전극(2510)이 도전성 접착부(3000)를 이용하여 실장되고, 제 2 실장 영역(22)에는 복합 보호부(2000)의 제 2 외부 전극(2520)이 도전성 접착부(3000)를 이용하여 실장되며, 제 3 및 제 4 실장 영역(23, 24)에는 컨택부(1000)와 연결되는 연장부(5000)의 하면이 도전성 접착부(3000)를 이용하여 각각 실장될 수 있다. 여기서, 제 1 실장 영역(21)은 제 2 실장 영역(22), 그리고 제 3 및 제 4 실장 영역(23, 24)과 이격되어 절연되고, 제 2 실장 영역(22)과 제 3 및 제 4 실장 영역(23, 24)은 전기적으로 서로 연결될 수 있다. 따라서, 본 발명의 제 3 실시 예는 컨택부(1000)와 복합 보호부(2000)는 전기적으로 직접 연결되지 않고, 내부 회로(20)를 통해 전기적으로 간접 연결될 수 있다. 즉, 컨택부(1000)와 복합 보호부(2000)는 연장부(5000)에 의해 내부 회로(20)를 통해 전기적으로 연결될 수 있다.11 to 15, a contactor according to a fourth embodiment of the present invention may include a contact portion 1000 in which at least one region is in contact with the conductor 10, and at least one region in contact with the internal circuit 20. The composite protection part 2000, at least the conductive adhesive part 3000 provided between the composite protection part 2000 and the internal circuit 20, and one area contacting the contact part 1000, and the other area is the internal circuit 20. It may include an extension portion 5000 in contact with. Here, the conductive adhesive part 3000 may be provided in at least one region of the external electrode 2500 and the extension part 5000 of the composite protection part 2000. That is, the conductive adhesive part 3000 may be provided on the lower surface of the external electrode 2500 and the lower surface of the extension part 5000 that are in contact with the internal circuit 20. In addition, the composite protection unit 2000 may use a structure in which the external electrode 2500 is formed in a direction crossing the stacking direction of the sheet illustrated in FIG. 9, and the contact unit 1000 may be formed of a laminate in the stacking direction of the sheet. It may be provided on one surface of the (1000). That is, in FIG. 9, external electrodes 2500 may be formed on two side surfaces of the composite protection part 2000 that face each other in the X direction, and a contact part 1000 may be provided on one surface in the Y direction. Therefore, the contact unit 1000 and the composite protection unit 2000 are not electrically connected directly. Meanwhile, as illustrated in FIG. 12, the internal circuit 20 includes a first mounting region 21 in which one region of the composite protection unit 2000 is mounted and a second region in which other regions of the composite protection unit 2000 are mounted. The mounting area 22 and the third and fourth mounting areas 23 and 24 on which the extension part 5000 connected to the contact part 1000 are mounted may be included. That is, the first external electrode 2510 of the composite protection part 2000 is mounted on the first mounting area 21 using the conductive adhesive part 3000, and the composite protection part 2000 is mounted on the second mounting area 22. The second external electrode 2520 is mounted using the conductive adhesive part 3000, and the bottom surface of the extension part 5000 connected to the contact part 1000 is conductive in the third and fourth mounting areas 23 and 24. Each may be mounted using the adhesive part 3000. Here, the first mounting region 21 is insulated from the second mounting region 22 and the third and fourth mounting regions 23 and 24, and is insulated from the second mounting region 22 and the third and fourth. The mounting regions 23 and 24 may be electrically connected to each other. Therefore, in the third embodiment of the present invention, the contact unit 1000 and the composite protection unit 2000 may not be electrically connected directly, but may be electrically indirectly connected through the internal circuit 20. That is, the contact unit 1000 and the composite protection unit 2000 may be electrically connected by the extension unit 5000 through the internal circuit 20.
4. 연장부4. Extension
연장부(5000)는 컨택부(1000)의 지지부(1100) 양측 에지 부분에 마련되어 내부 회로(20) 방향으로 연장 형성될 수 있다. 또한, 연장부(5000)는 복합 보호부(2000)의 측면에 접촉되어 형성될 수 있다. 즉, 컨택부(1000)의 지지부(1100) 및 연장부(5000)가 복합 보호부(2000)의 상면 및 측면을 감싸도록 형성될 수 있다. 여기서, 연장부(5000)는 컨택부(1000)와 일체로 형성될 수 있다. 즉, 연장부(5000)는 지지부(1100)의 길이 방향의 양 측면으로부터 연장 형성되며, 지지부(1100)의 양 측면에서 하향 절곡되어 복합 보호부(2000)의 측면과 접촉될 수 있다. 그러나, 연장부(5000)는 컨택부(1000)와 별개로 제작되어 결합 부재 등에 의해 결합될 수 있다. 이때, 연장부(5000)는 컨택부(1000)와 전기적으로 연결되어야 하므로 결합 부재는 전도성 접착제, 납땜 등을 포함할 수 있다. 전도성 접착제를 이용하는 경우 본 발명의 전도성 접착부를 이용할 수 있다. 또한, 컨택부(1000) 및 연장부(5000)와 복합 보호부(2000) 사이에 결합 부재가 마련되어 컨택부(1000) 및 연장부(5000)와 복합 보호부(2000)를 결합시킬 수 있다. 예를 들어, 양면 접착 테이프, 접착제, 솔더 등의 접착 부재를 이용하여 컨택부(1000) 및 연장부(5000)와 복합 보호부(2000)를 접착시킬 수 있다. 이때, 복합 보호부(2000)와 컨택부(1000) 및 연장부(5000) 사이의 접착 부재는 비도전성 접착 부재를 이용할 수 있다. 한편, 내부 전극(20) 상에 접촉되어 실장될 영역, 즉 연장부(5000)의 하부면과 복합 보호부(2000)의 외부 전극(2500)의 하부면에 도전성 접착부(3000)가 마련될 수 있다. 이때, 외부 전극(2500)은 내부 회로(20)를 통해 전기적으로 연결되지만, 그 이외에는 절연되어야 하므로 두 외부 전극(2500) 하부면에 마련된 도전성 접착부(3000)는 서로 이격되어 형성된다. 또한, 연장부(5000) 하부에 마련된 도전성 접착부(3000) 또한 서로 이격되어 형성될 수 있다. 그러나, 제 1 외부 전극(2510)과 연장부(5000)는 내부 회로(20)를 통해 연결될 수 있으므로 제 1 외부 전극(2510)의 하부면 및 연장부(400)의 하부면에 도전성 접착부(3000)가 하나로 마련될 수 있다. 즉, 도전성 접착부(3000)는 제 2 외부 전극(2520) 하부에 마련된 제 1 도전성 접착부와, 제 1 외부 전극(2510) 및 연장부(5000)을 덮도록 마련된 제 2 도전성 접착부를 포함하며, 제 1 및 제 2 도전성 접착부가 소정 간격 이격될 수 있다. The extension part 5000 may be provided at both edge portions of the support part 1100 of the contact part 1000 to extend in the direction of the internal circuit 20. In addition, the extension part 5000 may be formed in contact with the side surface of the composite protection part 2000. That is, the support part 1100 and the extension part 5000 of the contact part 1000 may be formed to surround the upper surface and the side surface of the composite protection part 2000. Here, the extension part 5000 may be integrally formed with the contact part 1000. That is, the extension part 5000 may extend from both side surfaces of the support part 1100 in the longitudinal direction, and may be bent downward from both side surfaces of the support part 1100 to be in contact with the side surface of the composite protection part 2000. However, the extension portion 5000 may be manufactured separately from the contact portion 1000 and may be coupled by a coupling member or the like. In this case, since the extension part 5000 must be electrically connected to the contact part 1000, the coupling member may include a conductive adhesive, soldering, or the like. When the conductive adhesive is used, the conductive adhesive portion of the present invention can be used. In addition, a coupling member may be provided between the contact part 1000 and the extension part 5000 and the composite protection part 2000 to couple the contact part 1000 and the extension part 5000 and the composite protection part 2000. For example, the contact part 1000, the extension part 5000, and the composite protective part 2000 may be adhered to each other using an adhesive member such as a double-sided adhesive tape, an adhesive, solder, or the like. In this case, the non-conductive adhesive member may be used as the adhesive member between the composite protection part 2000, the contact part 1000, and the extension part 5000. Meanwhile, the conductive adhesive part 3000 may be provided on a region to be contacted and mounted on the inner electrode 20, that is, a lower surface of the extension part 5000 and a lower surface of the external electrode 2500 of the composite protective part 2000. have. At this time, the external electrode 2500 is electrically connected through the internal circuit 20, but since it is to be insulated other than that, the conductive adhesive parts 3000 provided on the lower surfaces of the two external electrodes 2500 are spaced apart from each other. In addition, the conductive adhesive parts 3000 provided under the extension part 5000 may also be formed to be spaced apart from each other. However, since the first external electrode 2510 and the extension part 5000 may be connected through the internal circuit 20, the conductive adhesive part 3000 may be formed on the bottom surface of the first external electrode 2510 and the bottom surface of the extension part 400. ) May be provided as one. That is, the conductive adhesive part 3000 includes a first conductive adhesive part provided under the second external electrode 2520, and a second conductive adhesive part provided to cover the first external electrode 2510 and the extension part 5000. The first and second conductive adhesive parts may be spaced apart by a predetermined interval.
상기한 바와 같이 연장부(5000)는 컨택부(1000)의 적어도 일 영역, 예를 들어 지지부(1100)의 측면에 마련되어 내부 회로(20)에 실장될 수 있다. 연장부(5000)와 컨택부(1000)가 전기적으로 연결되므로 컨택부(1000)가 연장부(5000)를 통해 내부 회로(20)와 연결될 수 있다. 따라서, 컨택부(1000)는 연장부(5000)에 의해 예를 들어 안테나로 기능할 수 있는 전자기기의 케이스 등의 도전체(10)와 내부 회로(20)를 연결하고, 외부로부터 내부 회로(20)로 인가되는 통신 신호를 내부 회로(20)로 전달하고, 외부로부터 인가될 수 있는 ESD 등의 고전압을 내부 회로(20)로 전달할 수도 있다.As described above, the extension part 5000 may be provided on at least one region of the contact part 1000, for example, a side surface of the support part 1100, and may be mounted on the internal circuit 20. Since the extension part 5000 and the contact part 1000 are electrically connected, the contact part 1000 may be connected to the internal circuit 20 through the extension part 5000. Accordingly, the contact unit 1000 connects the internal circuit 20 and the conductor 10, such as a case of an electronic device, which can function as an antenna, for example, by the extension unit 5000, and the internal circuit ( The communication signal applied to 20 may be transmitted to the internal circuit 20, and a high voltage such as an ESD that may be applied from the outside may be transmitted to the internal circuit 20.
한편, 본 발명의 제 4 실시 예는 클립 타입의 컨택부(1000)로 설명하였으나, 도전성 가스켓을 이용하여 컨택부를 구현할 수도 있다. 이 경우 전도성 가스켓은 복합 보호부(2000)의 측면을 감싸도록 마련되어 하측으로 연장되고 연장된 부분이 연장부(5000)로 이용될 수 있다. 물론, 전도성 가스켓 타입의 컨택부(1000)의 측면으로부터 하측으로 연장되도록 도전성 물질을 이용하여 연장부(5000)를 형성할 수도 있다. 또한, 본 발명의 제 4 실시 예의 경우에도 제 2 실시 예와 마찬가지로 도전부(4000)가 더 마련될 수도 있다. 즉, 연장부(5000)와 외부 전극(2500)의 하측에 도전부(4000)가 더 마련되고, 도전부(4000)가 도전성 접착부(3000)를 이용하여 내부 회로(20) 또는 브라켓 등에 실장될 수 있다.Meanwhile, although the fourth embodiment of the present invention has been described as the clip type contact part 1000, the contact part may be implemented by using a conductive gasket. In this case, the conductive gasket may be provided to surround the side surface of the composite protection part 2000, and the lower part may be used as the extension part 5000. Of course, the extension portion 5000 may be formed using a conductive material so as to extend downward from the side surface of the conductive gasket type contact portion 1000. In addition, in the case of the fourth embodiment of the present invention, like the second embodiment, the conductive part 4000 may be further provided. That is, the conductive part 4000 is further provided below the extension part 5000 and the external electrode 2500, and the conductive part 4000 may be mounted on the internal circuit 20 or the bracket using the conductive adhesive part 3000. Can be.
상기한 바와 같이 본 발명의 제 4 실시 예에 따른 컨택터는 연장부(5000)가 컨택부(1000)의 일부로부터 복합 보호부(2000)의 측면에 접촉되도록 마련되어 내부 회로(20)에 실장된다. 즉, 내부 회로(20)는 복합 보호부(2000)의 일 영역이 실장되는 제 1 실장 영역(21)과, 복합 보호부(2000)의 타 영역이 실장되는 제 2 실장 영역(22)과, 컨택부(1000)와 전기적으로 연결된 연장부(5000)가 실장되는 제 3 및 제 4 실장 영역(23, 24)을 포함하고, 제 1 실장 영역(21)은 제 2 내지 제 4 실장 영역(22, 23, 24)과 이격되어 절연되고, 제 2 실장 영역(22)과 제 3 및 제 4 실장 영역(23, 24)는 전기적으로 연결될 수 있다. 따라서, 컨택부(1000)와 복합 보호부(2000)가 전기적으로 직접 연결되지 않고 연장부(5000)와 내부 회로(20)를 통해 전기적으로 간접 연결될 수 있다. 즉, 컨택부(1000)와 복합 보호부(2000)는 연장부(5000)에 의해 제 2 내지 4 실장 영역(22, 23, 24)을 통해 전기적으로 연결될 수 있다. 이때, 제 1 실장 영역(21)을 접지 단자와 연결될 수 있다. 따라서, 외부로부터 인가되는 ESD 전압은 컨택부(1000) 및 연장부(5000)를 통해 제 3 및 제 4 실장 영역(23, 24)의 적어도 하나로 전달된 후 제 3 및 제 4 실장 영역(23, 24)과 전기적으로 연결된 제 2 실장 영역(22)으로 전달되고, 제 2 실장 영역(22)과 연결된 복합 보호부(2000)의 타측, 예를 들어 제 2 외부 전극(2520)으로 전달된 후 복합 보호부(2000) 내부의 ESD 과전압 보호부(2300)를 통해 복합 보호부(2000)의 일측, 예를 들어 제 1 외부 전극(2510)으로 전달되어 제 1 실장 영역(21)와 연결된 접지 단자로 바이패스된다.As described above, the contactor according to the fourth exemplary embodiment of the present invention is provided so that the extension part 5000 contacts the side surface of the composite protection part 2000 from a part of the contact part 1000 and is mounted on the internal circuit 20. That is, the internal circuit 20 includes a first mounting region 21 in which one region of the composite protection unit 2000 is mounted, a second mounting region 22 in which other regions of the composite protection unit 2000 are mounted, and And third and fourth mounting regions 23 and 24 on which the extension portion 5000 electrically connected to the contact portion 1000 is mounted, and the first mounting region 21 includes the second to fourth mounting regions 22. And 23 and 24, and are insulated from each other, and the second mounting region 22 and the third and fourth mounting regions 23 and 24 may be electrically connected to each other. Therefore, the contact part 1000 and the composite protection part 2000 may be electrically indirectly connected through the extension part 5000 and the internal circuit 20 instead of being electrically connected directly. That is, the contact part 1000 and the composite protection part 2000 may be electrically connected to each other through the second to fourth mounting areas 22, 23, and 24 by the extension part 5000. In this case, the first mounting area 21 may be connected to the ground terminal. Accordingly, the ESD voltage applied from the outside is transferred to at least one of the third and fourth mounting regions 23 and 24 through the contact portion 1000 and the extension portion 5000, and then the third and fourth mounting regions 23, 24 is transferred to the second mounting region 22 electrically connected to the second mounting region 22, and is transferred to the other side of the composite protection unit 2000 connected to the second mounting region 22, for example, the second external electrode 2520. A ground terminal connected to one side of the composite protection unit 2000, for example, the first external electrode 2510, through the ESD overvoltage protection unit 2300 inside the protection unit 2000 and connected to the first mounting area 21. Bypassed.
도 16은 본 발명의 제 5 실시 예에 따른 컨택터의 결합 사시도이고, 도 17은 분리 사시도이다. 또한, 도 18은 Y 방향의 일 측면도이고, 도 19는 X 방향의 타 측면도이다. 그리고, 도 20은 본 발명의 제 5 실시 예에 따른 컨택터가 전도체와 내부 회로 사이에 마련된 단면도이다.16 is a perspective view of the contactor according to the fifth embodiment of the present invention, Figure 17 is an exploded perspective view. 18 is a side view of the Y direction, and FIG. 19 is another side view of the X direction. 20 is a cross-sectional view in which a contactor according to a fifth embodiment of the present invention is provided between a conductor and an internal circuit.
도 16 내지 도 20을 참조하면, 본 발명의 제 5 실시 예에 따른 감전 방지 컨택터는 적어도 일 영역이 전도체(10)와 접촉되는 컨택부(1000)와, 컨택부(1000)와 절연되어 컨택부(1000)의 하측에 마련되고 감전 전압을 차단하고 ESD 등의 과전압을 바이패스시키는 복합 보호부(2000)와, 일 영역이 컨택부(1000)와 연결되고 복합 보호부(2000)의 측면에 접촉되어 하측으로 연장 형성된 연장부(5000)와, 복합 보호부(2000)의 하측에 마련되어 연장부(5000) 및 복합 보호부(2000)가 실장되는 실장부(6000)와, 연장부(5000) 및 복합 보호부(2000)와 실장부(6000) 사이에 마련되어 연장부(5000) 및 복합 보호부(2000)를 실장부(6000)에 접합시키는 도전성 접착부(3000)를 포함할 수 있다. 여기서, 도전성 접착부(3000)는 제 1 외부 전극(2510)의 하측에 마련된 제 1 도전성 접착부(4100)와, 제 2 외부 전극(2520)과 연장부(5000)의 하측에 마련된 제 2 도전성 접착부(4200)를 포함할 수 있다. 또한, 컨택부(1000), 복합 보호부(2000) 및 연장부(5000)는 본 발명의 제 4 실시 예에서 설명한 바와 동일하므로 그 상세한 설명은 생략한다.16 to 20, the electric shock prevention contactor according to the fifth embodiment of the present invention has a contact portion 1000 in which at least one region is in contact with the conductor 10, and the contact portion 1000 is insulated from the contact portion 1000. The composite protection unit 2000 is provided below the 1000 and blocks the electric shock voltage and bypasses overvoltage such as ESD, and one region is connected to the contact unit 1000 and contacts the side surface of the composite protection unit 2000. And an extension part 5000 formed to extend downward, a mounting part 6000 provided below the composite protection part 2000, on which the extension part 5000 and the composite protection part 2000 are mounted, an extension part 5000, and A conductive adhesive part 3000 may be provided between the composite protection part 2000 and the mounting part 6000 to bond the extension part 5000 and the composite protection part 2000 to the mounting part 6000. The conductive adhesive part 3000 may include a first conductive adhesive part 4100 provided under the first external electrode 2510, and a second conductive adhesive part provided under the second external electrode 2520 and the extension part 5000. 4200). In addition, since the contact unit 1000, the composite protection unit 2000, and the extension unit 5000 are the same as described in the fourth embodiment of the present invention, detailed description thereof will be omitted.
5. 실장부5. Mounting Department
실장부(6000)는 복합 보호부(2000) 하측에 마련되며, 복합 보호부(2000)와 연장부(5000)가 실장될 수 있다. 또한, 복합 보호부(2000) 및 연장부(5000)가 실장된 실장부(6000)는 내부 회로(20) 상에 실장될 수 있다. 이러한 실장부(6000)는 소정 두께의 판 형상으로 마련될 수 있고, 적어도 일면에 도전층이 형성될 수 있다. 예를 들어, 실장부(6000)는 소정 두께의 판 형상으로 마련된 절연층(6100)과, 절연층(6100)의 일면 상에 형성된 도전 패드(6200)과, 절연층(6100)의 타면 상에 형성된 도전층(6300)을 포함할 수 있다. 또한, 절연층(6100) 내에 형성되어 도전 패드(6200)와 도전층(6300)을 연결하는 도전성 비아(6400)를 더 포함할 수 있다.The mounting unit 6000 may be provided below the composite protection unit 2000, and the composite protection unit 2000 and the extension unit 5000 may be mounted. In addition, the mounting unit 6000 in which the complex protection unit 2000 and the extension unit 5000 are mounted may be mounted on the internal circuit 20. The mounting portion 6000 may be provided in a plate shape having a predetermined thickness, and a conductive layer may be formed on at least one surface thereof. For example, the mounting portion 6000 may include an insulating layer 6100 provided in a plate shape having a predetermined thickness, a conductive pad 6200 formed on one surface of the insulating layer 6100, and the other surface of the insulating layer 6100. The conductive layer 6300 may be formed. In addition, the semiconductor device may further include a conductive via 6400 formed in the insulating layer 6100 to connect the conductive pad 6200 and the conductive layer 6300.
절연층(6100)은 소정 두께를 갖는 대략 사각형의 판 형상으로 마련될 수 있다. 절연층(6100)은 복합 보호부(2000)의 사이즈보다 크게 마련될 수 있다. 즉, X 방향의 길이가 복합 보호부(2000)의 길이보다 길고, Y 방향의 폭이 복합 보호부(2000)의 폭보다 크게 마련될 수 있다. 이러한 절연층(6100)은 예를 들어 내부 회로(20)를 구성하는 PCB 재질, 예를 들어 수지로 형성될 수 있다.The insulating layer 6100 may be provided in a substantially rectangular plate shape having a predetermined thickness. The insulating layer 6100 may be provided larger than the size of the composite protective part 2000. That is, the length in the X direction may be longer than the length of the composite protection part 2000, and the width in the Y direction may be greater than the width of the composite protection part 2000. The insulating layer 6100 may be formed of, for example, a PCB material constituting the internal circuit 20, for example, a resin.
도전 패드(6200)는 절연층(6100)의 일면 상에 형성된다. 즉, 도전 패드(6200)는 복합 보호부(2000) 및 연장부(5000)와 대면하는 절연층(6100)의 일면 상에 형성된다. 이러한 도전 패드(6200)는 절연층(6100)의 일면 상에 소정 높이로 형성될 수도 있고, 절연층(6100)에 소정 깊이로 형성되어 상면이 절연층(6100) 상에 노출될 수도 있다. 도전 패드(6200)는 복합 보호부(2000)의 제 1 및 제 2 외부 전극(2510, 2520)과 연장부(5000)가 각각 접촉되어 실장될 수 있다. 즉, 도전 패드(6200)는 복합 보호부(2000)의 제 1 외부 전극(2510)이 제 1 도전성 접착부(3100)을 통해 실장되는 제 1 도전 패드(6210)와, 복합 보호부(2000)의 제 2 외부 전극(2520)과 연장부(5000)가 제 2 도전성 접착부(3200)를 통해 실장되는 제 2 도전 패드(6220)를 포함할 수 있다. 여기서, 제 2 도전 패드(6220)는 제 2 외부 전극(2520) 및 연장부(5000)가 실장되어야 하므로 제 1 도전 패드(6210)보다 넓은 면적으로 형성될 수 있다.The conductive pad 6200 is formed on one surface of the insulating layer 6100. That is, the conductive pad 6200 is formed on one surface of the insulating layer 6100 facing the composite protective part 2000 and the extension part 5000. The conductive pad 6200 may be formed at a predetermined height on one surface of the insulating layer 6100, or may be formed at a predetermined depth in the insulating layer 6100 so that the upper surface may be exposed on the insulating layer 6100. The conductive pad 6200 may be mounted by contacting the first and second external electrodes 2510 and 2520 and the extension part 5000 of the composite protection part 2000, respectively. That is, the conductive pad 6200 may include the first conductive pad 6210 on which the first external electrode 2510 of the composite protective part 2000 is mounted through the first conductive adhesive part 3100, and the composite protective part 2000. The second external electrode 2520 and the extension part 5000 may include a second conductive pad 6220 mounted through the second conductive adhesive part 3200. Here, the second conductive pad 6220 may be formed to have a larger area than the first conductive pad 6210 because the second external electrode 2520 and the extension portion 5000 must be mounted.
도전층(6300)은 도전 패드(6220)가 형성되지 않은 절연층(6100)의 타면 상에 형성될 수 있다. 여기서, 도전층(6300)은 절연층(6100)의 타면 상에 소정 높이로 형성될 수도 있고, 절연층(6100) 내에 소정 깊이로 형성되어 표면이 절연층(6100)의 타면에 노출될 수도 있다. 이러한 도전층(6300)은 내부 회로(20) 상에 접촉되며 내부 회로(20)와 감전 방지 컨택터를 연결하는 역할을 한다. 여기서, 도전층(6300)는 도전성 접착제 등을 이용하여 내부 회로(20) 상에 실장될 수 있다.The conductive layer 6300 may be formed on the other surface of the insulating layer 6100 on which the conductive pad 6220 is not formed. Here, the conductive layer 6300 may be formed at a predetermined height on the other surface of the insulating layer 6100, or may be formed at a predetermined depth in the insulating layer 6100 so that the surface thereof is exposed to the other surface of the insulating layer 6100. . The conductive layer 6300 is in contact with the internal circuit 20 and serves to connect the internal circuit 20 and the electric shock prevention contactor. Here, the conductive layer 6300 may be mounted on the internal circuit 20 using a conductive adhesive or the like.
한편, 제 1 도전 패드(6210)와 적어도 일부 중첩되는 영역의 절연층(6100) 내에는 도전성 비아(6400)가 형성될 수 있다. 즉, 도전성 비아(6400)는 절연층(6100)의 소정 영역에 형성되며 도전성 물질이 매립되어 형성된다. 도전성 비아(6400)에 의해 제 1 도전 패드(6210)와 도전층(6300)이 전기적으로 연결된다.Meanwhile, the conductive via 6400 may be formed in the insulating layer 6100 in at least partially overlapping the first conductive pad 6210. That is, the conductive via 6400 is formed in a predetermined region of the insulating layer 6100 and is formed by filling a conductive material. The first conductive pad 6210 and the conductive layer 6300 are electrically connected by the conductive via 6400.
이렇게 컨택부(1000)와 연결된 연장부(5000) 및 복합 보호부(2000)가 실장부(6000) 상에 실장된다. 또한, 연장부(5000) 및 복합 보호부(2000)가 실장된 실장부(6000)는 내부 회로(20) 상에 실장될 수 있다. 따라서, 컨택부(1000)와 복합 보호부(2000)가 실장부(6000)를 통해 내부 회로(20)와 연결될 수 있다. 이에 따라, 감전 방지 컨택터는 예를 들어 안테나로 기능할 수 있는 전자기기의 케이스 등의 도전체(10)와 내부 회로(20) 사이에 연결되어 외부로부터 공급되는 통신 신호를 내부 회로(20)로 전달하고, 외부로부터 인가될 수 있는 ESD 등의 과전압을 내부 회로(20)의 접지 단자로 바이패스할 수 있다.The extension part 5000 and the complex protection part 2000 connected to the contact part 1000 are mounted on the mounting part 6000. In addition, the mounting unit 6000 in which the extension unit 5000 and the composite protection unit 2000 are mounted may be mounted on the internal circuit 20. Therefore, the contact unit 1000 and the composite protection unit 2000 may be connected to the internal circuit 20 through the mounting unit 6000. Accordingly, the electric shock prevention contactor is connected between the internal circuit 20 and the conductor 10, such as a case of an electronic device, which can function as an antenna, for example, and transmits a communication signal supplied from the outside to the internal circuit 20. An overvoltage, such as ESD, may be transmitted to the ground terminal of the internal circuit 20.
한편, 본 발명의 제 5 실시 예는 클립 타입의 컨택부(1000)로 설명하였으나, 도전성 가스켓을 이용하여 컨택부를 구현할 수도 있다. 이 경우 전도성 가스켓은 복합 보호부(2000)의 측면을 감싸도록 마련되어 하측으로 연장되고 연장된 부분이 연장부(5000)로 이용될 수 있다. 물론, 전도성 가스켓 타입의 컨택부(1000)의 측면으로부터 하측으로 연장되도록 도전성 물질을 이용하여 연장부(5000)를 형성할 수도 있다. 또한, 본 발명의 제 5 실시 예의 경우에도 제 2 실시 예와 마찬가지로 도전부(4000)가 더 마련될 수도 있다. 즉, 실장부(6000)의 하측에 도전부(4000)가 더 마련되고, 도전부(4000)가 도전성 접착부(3000)를 이용하여 내부 회로(20) 또는 브라켓 등에 실장될 수 있다.Meanwhile, although the fifth embodiment of the present invention has been described as the clip type contact part 1000, the contact part may be implemented using a conductive gasket. In this case, the conductive gasket may be provided to surround the side surface of the composite protection part 2000, and the lower part may be used as the extension part 5000. Of course, the extension portion 5000 may be formed using a conductive material so as to extend downward from the side surface of the conductive gasket type contact portion 1000. Also, in the case of the fifth embodiment of the present invention, the conductive portion 4000 may be further provided as in the second embodiment. That is, the conductive part 4000 may be further provided below the mounting part 6000, and the conductive part 4000 may be mounted on the internal circuit 20 or the bracket using the conductive adhesive part 3000.
상기한 바와 같이 본 발명의 제 5 실시 예에 따른 컨택터는 실장부(6000)의 제 1 도전 패드(6210) 상에 복합 보호부(2000)의 일 영역이 실장되고, 제 2 도전 패드(6220) 상에 복합 보호부(2000)의 타 영역 및 컨택부(1000)와 전기적으로 연결된 연장부(5000)가 실장된다. 따라서, 컨택부(1000)와 복합 보호부(2000)가 전기적으로 직접 연결되지 않고 연장부(5000)와 실장부(6000)를 통해 전기적으로 간접 연결될 수 있다. 또한, 실장부(6000)는 제 3 도전성 접착부(3300)를 통해 내부 회로(20) 상에 실장되고 실장부(6000)의 일부와 연결된 내부 회로(20)의 일부는 접지 단자와 연결될 수 있다. 따라서, 외부로부터 인가되는 ESD 전압은 컨택부(1000) 및 연장부(5000)를 통해 제 2 도전 패드(6220)로 전달된 후 제 2 도전 패드(6220)과 연결된 복합 보호부(2000)의 타측, 예를 들어 제 2 외부 전극(2520)으로 전달되고, 복합 보호부(2000) 내부의 ESD 과전압 보호부(2300)를 통해 복합 보호부(2000)의 일측, 예를 들어 제 1 외부 전극(2510)으로 전달되어 제 1 도전 패드(6210)과 연결된 접지 단자로 바이패스된다.As described above, in the contactor according to the fifth exemplary embodiment, one region of the composite protection unit 2000 is mounted on the first conductive pad 6210 of the mounting unit 6000, and the second conductive pad 6220 is provided. An extension part 5000 electrically connected to the other area of the composite protection part 2000 and the contact part 1000 is mounted on the upper surface of the composite protection part 2000. Therefore, the contact part 1000 and the composite protection part 2000 may be electrically indirectly connected through the extension part 5000 and the mounting part 6000 instead of being electrically connected directly. In addition, the mounting part 6000 may be mounted on the internal circuit 20 through the third conductive adhesive part 3300 and a part of the internal circuit 20 connected to a part of the mounting part 6000 may be connected to the ground terminal. Therefore, the ESD voltage applied from the outside is transferred to the second conductive pad 6220 through the contact part 1000 and the extension part 5000, and then the other side of the composite protection part 2000 connected to the second conductive pad 6220. For example, the second external electrode 2520 is transferred to the second external electrode 2520, and is connected to one side of the composite protection unit 2000 through the ESD overvoltage protection unit 2300 inside the composite protection unit 2000, for example, the first external electrode 2510. ) Is bypassed to the ground terminal connected to the first conductive pad 6210.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.The present invention is not limited to the above-described embodiments, but may be implemented in various forms. In other words, the above embodiments are provided to make the disclosure of the present invention complete and to fully inform those skilled in the art of the scope of the present invention, and the scope of the present invention should be understood by the claims of the present application. .

Claims (22)

  1. 컨택부;Contact portion;
    상기 컨택부의 일면과 접촉되어 마련된 복합 보호부; 및A composite protective part provided in contact with one surface of the contact part; And
    상기 복합 보호부의 적어도 일면 상에 마련된 도전성 접착부를 포함하는 컨택터.And a conductive adhesive portion provided on at least one surface of the composite protective portion.
  2. 청구항 1에 있어서, 상기 복합 보호부는 상기 컨택부와 전기적으로 직접 연결되는 컨택터.The contactor of claim 1, wherein the composite protective part is electrically connected directly to the contact part.
  3. 청구항 2에 있어서, 상기 도전성 접착부는 상기 복합 보호부의 일면과 대향되는 타면 상에 마련되는 컨택터.The contactor of claim 2, wherein the conductive adhesive part is provided on the other surface of the composite protective part opposite to one surface.
  4. 청구항 3에 있어서, 상기 컨택부와 상기 복합 보호부 사이에 마련되며, 상기 도전성 접착부와 동일 구조의 제 2 도전성 접착부를 더 포함하는 컨택터.The contactor of claim 3, further comprising a second conductive adhesive portion provided between the contact portion and the composite protective portion and having the same structure as the conductive adhesive portion.
  5. 청구항 1에 있어서, 상기 복합 보호부는 상기 컨택부와 전기적으로 직접 연결되지 않고 전자기기의 내부 회로를 통해 전기적으로 간접 연결되는 컨택터.The contactor of claim 1, wherein the complex protection unit is electrically indirectly connected through an internal circuit of the electronic device, rather than directly connected to the contact unit.
  6. 청구항 5에 있어서, 상기 컨택부와 전기적으로 연결되고 상기 복합 보호부의 측면을 따라 상기 내부 회로를 향해 연장 형성되어 상기 내부 회로에 실장되는 연장부를 더 포함하는 컨택터.The contactor of claim 5, further comprising an extension part electrically connected to the contact part and extending along the side surface of the complex protection part toward the internal circuit and mounted on the internal circuit.
  7. 청구항 6에 있어서, 상기 도전성 접착부는 상기 복합 보호부와 상기 내부 회로 사이 및 상기 연장부와 상기 내부 회로 사이에 마련되는 컨택터.The contactor of claim 6, wherein the conductive adhesive part is provided between the composite protective part and the internal circuit and between the extension part and the internal circuit.
  8. 청구항 6에 있어서, 일면 상에 상기 복합 보호부와 상기 연장부가 실장되고, 타면이 상기 내부 회로에 실장되는 실장부를 더 포함하는 컨택터.The contactor of claim 6, further comprising a mounting unit on which one side of the composite protective part and the extension part are mounted, and the other side of the composite protection part and the extension part are mounted on the internal circuit.
  9. 청구항 8에 있어서, 상기 도전성 접착부는 상기 복합 보호부와 상기 실장부 사이 및 상기 연장부와 상기 실장부 사이에 마련되는 컨택터.The contactor of claim 8, wherein the conductive adhesive part is provided between the composite protective part and the mounting part, and between the extension part and the mounting part.
  10. 컨택부;Contact portion;
    일면이 상기 컨택부와 접촉되어 마련된 복합 보호부;A composite protection unit having one surface contacted with the contact unit;
    일면이 상기 복합 보호부의 타면과 접촉되어 마련된 도전부; 및A conductive part having one surface contacted with the other surface of the composite protective part; And
    상기 도전부의 타면 상에 마련된 도전성 접착부를 포함하는 컨택터.And a conductive adhesive portion provided on the other surface of the conductive portion.
  11. 청구항 10에 있어서, 상기 컨택부와 상기 복합 보호부 사이 및 상기 복합 보호부와 상기 도전부 사이 중 적어도 하나에 마련된 제 2 도전성 접착부를 더 포함하는 컨택터.The contactor according to claim 10, further comprising a second conductive adhesive portion provided between at least one of the contact portion and the composite protective portion and between the composite protective portion and the conductive portion.
  12. 청구항 1 또는 청구항 10에 있어서, 상기 복합 보호부는 소정 전압 미만에서 절연 상태를 유지하고 소정 전압 이상에서 도통되며, 교류 신호는 통과시키고 직류 신호는 차단하는 컨택터.The contactor according to claim 1 or 10, wherein the complex protection part maintains an insulation state below a predetermined voltage and is conducting above a predetermined voltage, passing an AC signal and blocking a DC signal.
  13. 청구항 1 또는 청구항 10에 있어서, 상기 도전성 접착부는 다공성의 베이스와, 상기 베이스의 기공을 충진하며 접착성을 갖는 충진재와, 상기 충진재에 분산 함유된 복수의 도전성 입자를 포함하는 컨택터.The contactor according to claim 1 or 10, wherein the conductive adhesive part comprises a porous base, a filler filling the pores of the base and having adhesiveness, and a plurality of conductive particles dispersed in the filler.
  14. 청구항 13에 있어서, 상기 베이스는 도전성 실을 이용한 부직포 구조 또는 직포 구조를 포함하는 컨택터.The contactor of claim 13, wherein the base comprises a nonwoven structure or a woven fabric structure using a conductive thread.
  15. 청구항 13에 있어서, 상기 도전성 입자의 적어도 일부는 상기 베이스의 기공 사이즈보다 작은 사이즈를 갖는 컨택터.The contactor of claim 13, wherein at least some of the conductive particles have a size smaller than the pore size of the base.
  16. 청구항 13에 있어서, 상기 도전성 입자는 적어도 일 영역에서 불균일하게 분포하거나, 상기 도전성 입자의 적어도 일부는 서로 접촉되어 분산된 컨택터.The contactor of claim 13, wherein the conductive particles are unevenly distributed in at least one region, or at least some of the conductive particles are in contact with each other and dispersed.
  17. 청구항 13에 있어서, 상기 도전성 입자는 상기 충진재와 도전성 입자의 혼합물 100wt%에 대하여 5wt% 내지 40wt%로 함유되는 컨택터.The contactor of claim 13, wherein the conductive particles are contained in an amount of 5 wt% to 40 wt% based on 100 wt% of the mixture of the filler and the conductive particles.
  18. 청구항 1 또는 10에 있어서, 상기 도전성 접착부의 적어도 일 영역에 형성된 기공을 더 포함하는 컨택터.The contactor of claim 1 or 10, further comprising pores formed in at least one region of the conductive adhesive portion.
  19. 청구항 1 또는 청구항 10에 있어서, 상기 도전성 접착부는 10Ω 이하의 저항을 갖는 컨택터.The contactor according to claim 1 or 10, wherein the conductive adhesive portion has a resistance of 10 kΩ or less.
  20. 사용자가 접촉 가능한 도전체와 내부 회로를 포함하는 전자기기로서,An electronic device comprising a conductor and an internal circuit that can be contacted by a user,
    상기 도전체와 상기 내부 회로 사이에 청구항 1 내지 청구항 11 중 어느 한 항 기재의 컨택터가 마련된 전자기기.The electronic device provided with the contactor of any one of Claims 1-11 between the said conductor and the said internal circuit.
  21. 청구항 20에 있어서, 상기 복합 보호부는 상기 도전체를 통해 외부로부터 인가되는 과전압을 상기 내부 회로로 통과시키고, 상기 내부 회로를 통한 누설 전류를 차단하며, 통신 신호를 통과시키는 전자기기.The electronic device of claim 20, wherein the complex protection part passes an overvoltage applied from the outside through the conductor to the internal circuit, blocks a leakage current through the internal circuit, and passes a communication signal.
  22. 청구항 20에 있어서, 상기 도전성 접착부는 다공성의 베이스와, 상기 베이스의 기공을 충진하며 접착성을 갖는 충진재와, 상기 충진재에 분산 함유된 복수의 도전성 입자를 포함하는 전자기기.21. The electronic device of claim 20, wherein the conductive adhesive part comprises a porous base, a filler filling and sealing the pores of the base, and a plurality of conductive particles dispersed in the filler.
PCT/KR2017/004989 2016-05-13 2017-05-12 Contactor, and electronic device provided with same WO2017196151A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160059014 2016-05-13
KR10-2016-0059014 2016-05-13
KR1020170018768A KR101830330B1 (en) 2016-05-13 2017-02-10 Contactor and electronic device having the same
KR10-2017-0018768 2017-02-10

Publications (1)

Publication Number Publication Date
WO2017196151A1 true WO2017196151A1 (en) 2017-11-16

Family

ID=60267368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004989 WO2017196151A1 (en) 2016-05-13 2017-05-12 Contactor, and electronic device provided with same

Country Status (1)

Country Link
WO (1) WO2017196151A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10664626B2 (en) 2018-10-22 2020-05-26 Nanning Fugui Precision Industrial Co., Ltd. Anti-tamper mechanism and electronic device using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148702A (en) * 1995-11-21 1997-06-06 Hitachi Chem Co Ltd Connecting member and structure and method for connecting electrode using it
KR20090038994A (en) * 2007-10-17 2009-04-22 손충연 Conductive double-faced tape supported on nonconductor
KR200449179Y1 (en) * 2009-12-31 2010-06-22 주식회사 협진아이엔씨 An contact for handyphone
KR101366212B1 (en) * 2012-09-26 2014-02-24 대일티앤씨 주식회사 A terminal contact
KR101585604B1 (en) * 2015-07-01 2016-01-14 주식회사 아모텍 Circuit protection contactor and mobile electronic device with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148702A (en) * 1995-11-21 1997-06-06 Hitachi Chem Co Ltd Connecting member and structure and method for connecting electrode using it
KR20090038994A (en) * 2007-10-17 2009-04-22 손충연 Conductive double-faced tape supported on nonconductor
KR200449179Y1 (en) * 2009-12-31 2010-06-22 주식회사 협진아이엔씨 An contact for handyphone
KR101366212B1 (en) * 2012-09-26 2014-02-24 대일티앤씨 주식회사 A terminal contact
KR101585604B1 (en) * 2015-07-01 2016-01-14 주식회사 아모텍 Circuit protection contactor and mobile electronic device with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10664626B2 (en) 2018-10-22 2020-05-26 Nanning Fugui Precision Industrial Co., Ltd. Anti-tamper mechanism and electronic device using the same
TWI707618B (en) * 2018-10-22 2020-10-11 新加坡商鴻運科股份有限公司 Anti-tamper mechanism and electronic device using the same

Similar Documents

Publication Publication Date Title
WO2017003001A1 (en) Electric shock-preventing contactor and portable electronic device having same
KR101392455B1 (en) Esd protection device and method for manufacturing same
US8779466B2 (en) ESD protection device and method for manufacturing the same
US8455918B2 (en) ESD protection device and method for manufacturing the same
WO2017209448A1 (en) Contactor
WO2018105912A1 (en) Composite protection element and electronic device including same
JPWO2011145598A1 (en) ESD protection device
KR20110091749A (en) Esd protection device
WO2018117447A1 (en) Complex protective element and electronic device comprising same
WO2017196151A1 (en) Contactor, and electronic device provided with same
WO2018066871A1 (en) Complex protection device and electronic apparatus including same
WO2018124535A1 (en) Complex device and electronic device having same
WO2016178524A1 (en) Electric shock-prevention element and electronic device provided with same
WO2018182249A1 (en) Electric shock protection device, method for manufacturing same, and portable electronic device having same
WO2017196150A1 (en) Contactor, and electronic device provided with same
KR101830330B1 (en) Contactor and electronic device having the same
WO2016178528A1 (en) Electric shock-prevention element and electronic device provided with same
WO2017196149A1 (en) Contactor, and electronic device provided with same
WO2020204416A1 (en) Complex element and electronic device including same
WO2016178543A1 (en) Electric shock-prevention element and electronic device provided with same
WO2020204415A1 (en) Composite element and electronic device including same
WO2017074088A1 (en) Electric shock prevention apparatus
WO2019066221A1 (en) Stacked element and electronic device having same
WO2016178541A1 (en) Electric shock-prevention element and electronic device provided with same
WO2019035559A1 (en) Composite device manufacturing method and composite device manufactured thereby

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796451

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796451

Country of ref document: EP

Kind code of ref document: A1