WO2018117447A1 - Complex protective element and electronic device comprising same - Google Patents

Complex protective element and electronic device comprising same Download PDF

Info

Publication number
WO2018117447A1
WO2018117447A1 PCT/KR2017/013465 KR2017013465W WO2018117447A1 WO 2018117447 A1 WO2018117447 A1 WO 2018117447A1 KR 2017013465 W KR2017013465 W KR 2017013465W WO 2018117447 A1 WO2018117447 A1 WO 2018117447A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
conductive
composite
electrode
overvoltage protection
Prior art date
Application number
PCT/KR2017/013465
Other languages
French (fr)
Korean (ko)
Inventor
박인길
김대겸
조승훈
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Publication of WO2018117447A1 publication Critical patent/WO2018117447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0067Devices for protecting against damage from electrostatic discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/14Protection against electric or thermal overload
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2428Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means using meander springs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units
    • H05K5/0018Casings, cabinets or drawers for electric apparatus with operator interface units having an electronic display
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0066Constructional details of transient suppressor

Definitions

  • the present invention relates to a composite protection device, and more particularly, to a composite protection device capable of protecting an electronic device or a user from voltage and current.
  • Electronic devices having multifunction such as smartphones are integrated with various components according to their functions.
  • the electronic device is provided with an antenna capable of receiving various frequency bands such as wireless LAN, Bluetooth, and Global Positioning System (GPS) in various frequency bands, and some of them are built-in antennas. It may be installed in the case constituting the electronic device. Therefore, a contactor for electrical connection is provided between the antenna installed in the case and the internal circuit of the electronic device.
  • GPS Global Positioning System
  • a shock current is generated by charging using a non-genuine charger or a poor charger using a low-quality device without built-in overcurrent protection circuit, and the shock current is conducted to the ground terminal of the smartphone, and then the metal case Electric shock may be caused to the user who is in contact with the metal case.
  • the present invention is provided with an electronic device, such as a smart phone provides a composite protection device that can protect the electronic device or the user from voltage and current and an electronic device having the same.
  • the present invention provides a composite protection device that does not break down by overvoltage, such as ESD (ElectroStatic Discharge), and an electronic device having the same.
  • ESD ElectroStatic Discharge
  • a composite protection device is a composite protection device provided between the conductor and the internal circuit that the user of the electronic device can contact, at least a portion of the contact portion in contact with the internal circuit of the electronic device;
  • a composite protective part having one surface coupled with the contact part;
  • the other surface of the composite protection unit is coupled to one region, and includes a conductive unit fixed inside the electronic device.
  • the support part is provided at a height of the contact part and the composite protection part, and one side contacts the conductive part, the other side contacts the inside of the electronic device, and the support part is insulative.
  • the support portion is provided between the conductive portion and the fixing portion of the electronic device, and the support portion is conductive.
  • An electronic device is an electronic device in which a composite protection device is provided between a user contactable conductor and an internal circuit, and includes a window and a display unit, a bracket provided below the display unit, and a main provided below the bracket.
  • a mode, a cover case provided to cover the main board, and a side case for closing the side space between the window and the cover case, the composite protective element is provided inside the side case.
  • the composite protection device may include a contact portion at least partially in contact with an internal circuit of an electronic device; A composite protective part having one surface coupled with the contact part; The other surface of the composite protection unit is coupled to one region, and includes a conductive unit fixed inside the electronic device.
  • the case further includes a fixing part for fixing the composite protection element.
  • the conductive portion is fixed to the fixed portion.
  • the contact part is electrically connected to an internal circuit of the main board.
  • the bracket is at least partially conductive, the contact portion is in contact with the bracket, and the bracket is connected to an internal circuit of the main board.
  • a composite protection device is provided between a metal case of an electronic device and an internal circuit to block an electric shock voltage and bypass an overvoltage such as an ESD to a ground terminal. That is, the composite protection element may be provided between the side case of the electronic device and the internal circuit including the contact portion, the composite protection portion, and the conductive portion. That is, the combined body of the contact portion and the composite protection portion is fixed to one end of the plate-shaped conductive portion, and the other end of the conductive portion is fixed by the fixing portion provided inside the side case. At this time, the support part is provided in the side case to facilitate the fastening of the composite protective element.
  • the composite protection device maintains an insulation state to block an electric shock voltage leaking from an internal circuit, and provides a protection unit for protecting an internal circuit by protecting an overvoltage therein to prevent an overvoltage from flowing into the electronic device. Thus, it is possible to protect the electronic device and the user from voltage and current.
  • 1 to 3 is a front perspective view, a rear perspective view and an exploded perspective view of an electronic device to which the composite protection device according to embodiments of the present invention is applied.
  • FIG. 4 is a view of a region of an electronic device equipped with a composite protection device according to embodiments of the present invention.
  • FIG 5 is an enlarged view of a region of an electronic device equipped with a composite protection device according to a first embodiment of the present invention.
  • FIG. 6 is a sectional view of a composite protective element.
  • 7 and 8 are a perspective view and a cross-sectional view of the composite protection of the composite protection device according to an embodiment of the present invention.
  • 9 to 12 are enlarged views of one region of an electronic device equipped with the composite protection device according to the second to fifth embodiments of the present invention.
  • 13 to 17 is a view of the composite protection unit according to another embodiment of the present invention.
  • 18 to 20 are cross-sectional views of a composite protection unit according to various embodiments of the present disclosure.
  • 1 to 3 are a front perspective view, a rear perspective view, and an exploded perspective view of an electronic device to which the composite protection device according to embodiments of the present invention is applied.
  • the electronic device 1000 includes a case 1100 forming an appearance, and includes a plurality of functional modules for performing a plurality of functions of the electronic device 1000 inside the case 1100.
  • a circuit or the like is provided.
  • the case 1100 may include a side case 1110 and a cover case 1120.
  • the side case 1110 may form at least a side of the electronic device 1000
  • the cover case 1120 may be provided on the rear surface of the electronic device 1000 to cover the battery 1200.
  • the cover case 1120 may be integrally provided or detachably provided.
  • the cover case 1120 may be integrally formed, and the cover may be detached when the battery 1200 is detachable. Case 1120 may also be removable.
  • the side case 1110 and the cover case 1120 may be integrally manufactured. That is, the case 1100 may be formed to close the side and rear surfaces and expose the top surface without distinguishing the side case 1110 and the cover case 1120. At least a part of the case 1100 may be formed by injecting synthetic resin or formed of a metal material. That is, at least a part of the side case 1110 and the cover case 1120 may be formed of a metal material.
  • the side case 1110 constituting the side of the electronic device 1000 may be formed of a metal material.
  • the cover case 1120 may also be formed of a metal material.
  • the metal material used for the case 1100 may include, for example, stainless steel (STS), titanium (Ti), aluminum (Al), or the like.
  • the bracket 1400 may be provided inside the side case 1110, and the display unit 1310 may be provided on the bracket 1400.
  • a main board 1500 and a battery 1200 may be provided between the bracket 1400 and the cover case 1120.
  • the battery 1200 may be provided in a predetermined area of the main board 1500. That is, the battery 1200 may be provided in a region where a predetermined region of the main board 1500 is removed.
  • the display unit 1310, the sound output module 1320, the camera module 1330a, and the like may be disposed on the upper surface of the electronic device 1000.
  • a microphone 1340, an interface 1350, and the like may be disposed on one side of the electronic device 1000. That is, the display unit 1310, the sound output module 1320, the camera module 1330a, and the like are disposed on the upper surface of the electronic device 1000, and the predetermined area of the side case 1110 of the electronic device 1000, that is, the lower portion of the electronic device 1000.
  • the microphone 1340, the interface 1350, and the like may be disposed on the side surface.
  • the display unit 1310 is disposed on the upper surface of the electronic device 1000 and occupies most of the upper surface.
  • the display unit 1310 is provided in a substantially rectangular shape having a predetermined length in the X and Y directions, respectively, and includes the central area of the upper surface of the electronic apparatus 1000 in most regions of the upper surface of the electronic apparatus 1000. Is formed. In this case, a predetermined space that is not occupied by the display unit 1310 is provided between the upper surface of the electronic apparatus 1000, that is, between the side case 1110 and the display unit 1310, and the display unit 1310 in the X direction.
  • the audio output module 1320 and the camera module 1330a may be provided at an upper side thereof, and a user input unit including the front input unit 1360 may be provided at a lower side thereof.
  • This can be arranged.
  • the display unit 1310 may be extended to the edge of the electronic device 1000 in the Y direction without a separate bezel area.
  • the display unit 1310 may output visual information and input tactile information of the user.
  • the display unit 1310 may be provided with a touch input device.
  • the touch input device includes a window (not shown) covering the front surface of the terminal body, a display unit (not shown) for outputting start information, for example, a liquid crystal display, and a touch sensor (not shown) provided between the window and the display unit. It may include.
  • the touch sensor may be formed, for example, on a transparent plate having a predetermined thickness with a plurality of electrodes spaced apart by a predetermined interval in one direction and another direction perpendicular thereto, and a dielectric layer disposed therebetween to detect a user's touch input.
  • the touch sensor may include a plurality of electrodes arranged in a grid shape, for example, and detect capacitance according to a distance between electrodes according to a user's touch input.
  • the display unit 1310 may further include a pressure sensor for inputting user's touch or pressure information. Accordingly, the touch sensor may detect coordinates in the horizontal direction, ie, the X direction and the Y direction, which are touched by the user, and the pressure sensor may detect the coordinates in the vertical direction, that is, the Z direction as well as the X and Y directions. .
  • the sound output module 1320, the camera module 1330a, and the front input unit 1360 may be provided in an area other than the display unit 1310 on the upper surface of the electronic device 1000.
  • the sound output module 1320 and the camera module 1330a are provided above the display unit 1310 in the X direction, and a user input unit such as the front input unit 1360 is positioned below the display unit 1310 in the X direction.
  • the front input unit 1360 may be configured as a touch key, a push key, or the like, and the front input unit 1350 may be configured by using a touch sensor or a pressure sensor.
  • a function module (not shown) for the function of the front input unit 1360 may be provided below the front input unit 1360, that is, under the front input unit 1360 in the Z direction. That is, a function module that performs a function of a touch key or a push key may be provided according to the driving method of the front input unit 1360, and a touch sensor or a pressure sensor may be provided.
  • the front input unit 1360 may include a fingerprint recognition sensor. That is, the front input unit 1360 may recognize the user's fingerprint and detect whether the user is a legitimate user.
  • the function module may include a fingerprint recognition sensor.
  • a second pressure sensor (not shown) may be provided at one side and the other side of the front input unit 1360 in the Y direction.
  • second pressure sensors are provided at both sides of the front input unit 1360 to detect a user's touch input and return to a previous screen, and perform a setting function for setting a screen of the display unit 1310.
  • the front input unit 1360 using the fingerprint sensor may perform a function of returning to the initial screen as well as fingerprint recognition of the user.
  • the haptic feedback device such as a piezoelectric vibration device, may be further provided in contact with the display unit 1310 to provide feedback in response to a user's input or touch.
  • the haptic feedback device may be provided in a predetermined area of the electronic device 1000 other than the display unit 1310.
  • a haptic feedback device may be provided in an outer region of the sound output module 1310, an outer region of the front input unit 1360, and a bezel region.
  • the haptic feedback device may be provided under the display unit 1310.
  • a power supply unit and a side input unit may be further provided.
  • the power supply unit and the side input unit may be provided on two sides facing each other in the Y direction of the electronic device, or may be provided spaced apart from each other on one side.
  • the power supply unit may be used to turn on / off the electronic device, and may be used to enable or disable the screen.
  • the side input unit may be used to adjust the size of the sound output from the sound output module 1320.
  • the power supply unit and the side input unit may be configured as a touch key, a push key, or may be configured as a pressure sensor.
  • the electronic device according to the present invention may be provided with a pressure sensor in a plurality of areas other than the display unit 1310, respectively.
  • a pressure sensor for example, pressure sensing of the upper sound output module 1320 and the camera module 1330a of the electronic device, pressure control of the lower front input unit 1360, and controlling pressure of the side power supply unit and side input unit, etc.
  • At least one pressure sensor may be further provided.
  • the camera module 1330b may be additionally mounted through the rear surface of the electronic apparatus 1000, that is, the cover case 1120.
  • the camera module 1330b has a photographing direction substantially opposite to the camera module 1330a and may be a camera having different pixels from the camera module 1330a.
  • a flash (not shown) may be further disposed adjacent to the camera module 1330b.
  • a fingerprint sensor may be provided below the camera module 1330b. That is, the fingerprint sensor may not be provided at the front input unit 1360, but a fingerprint sensor may be provided at the rear of the electronic device 1000.
  • the battery 1200 may be provided between the bracket 1400 and the cover case 1120.
  • the battery 1200 may be provided inside the main board 1500.
  • the battery 1200 may be fixed, or may be provided detachably.
  • the bracket 1400 is provided inside the side case 1110 inside the electronic apparatus 1000, and the display unit 1310 includes a window, a display unit, and a touch sensor on the bracket 1400.
  • the bracket 1400 supports the display unit 1310 including a window, a display unit, and a touch sensor.
  • the bracket 1400 may be extended to an area other than the display unit 1310. That is, the bracket 1400 may be extended to a region where the front input unit 1360 and the like are formed.
  • at least a portion of the bracket 1400 may be in contact with at least a portion of the side case 1110 and may be supported by at least a portion of the side case 1110.
  • At least a portion of the bracket 1400 may be formed of a conductive material, for example, magnesium or an alloy thereof. That is, the bracket 1400 may include at least a portion of a first region made of a metal material and a second region made of a non-conductive material, for example, PC.
  • the second region may be formed in a plate shape having a predetermined thickness, and the first region may be provided in at least a partial region on the second region.
  • a first region made of a metal material of the bracket 1400 may be connected to the main board 1500. At least a portion of the first region may be connected to, for example, a ground terminal of the main board 1500.
  • the main board 1500 may be provided inside the electronic device 1000, and various circuits, elements, and function modules for driving the electronic device 1000 may be provided.
  • at least one driving means may be provided on the main board 1500 to supply power to a display unit, a touch sensor, a pressure sensor, a haptic module, a fingerprint sensor, and input and detect a signal output from the display board.
  • Control means for processing various signals may be provided.
  • a ground terminal for bypassing a high voltage such as an ESD applied from the outside may be further provided on the main board 1500.
  • FIG. 4 is a diagram illustrating an area of an electronic device equipped with a composite protection device according to embodiments of the present disclosure.
  • 5 is an enlarged view of one region of the electronic apparatus equipped with the composite protection element
  • FIG. 6 is a schematic cross-sectional view of the composite protection element.
  • 7 and 8 are a perspective view and a cross-sectional view of the composite protection unit of the composite protection device according to an embodiment of the present invention.
  • At least one composite protection device 2000 may be provided inside the side case 1110 of the electronic device 1000.
  • the complex protection device 2000 may be provided on an inner surface of the side case 1110 facing the area where the battery 1200 is located.
  • the complex protection device 2000 may be provided so as not to contact the battery 1200 facing each other.
  • at least one composite protection device 2000 may be provided.
  • the embodiment of the present invention shows a case in which four composite protection devices 2000 are provided at equal intervals.
  • the composite protection device 2000 may be fixed to the inner side of the side case 1110 using the fixing part 1600.
  • the fixing part 1600 may be provided inside the side case 1110.
  • the connection member 1610 may include a coupling member 1620 to fix the composite protection device 2000 to the connection member 1610.
  • at least a part of the connection member 1610 may be provided in the side case 1110 and at least a part of the connection member 1610 may be provided in the bracket 1400.
  • the connection member 1610 may protrude from the inner side of the side case 1110 to the inside in a predetermined width and may have a predetermined height.
  • connection member 1610 may protrude from the inner surface of the side case 1110 at a predetermined width and height to support at least a portion of the composite protection device 2000.
  • connection member 1610 may protrude from the bracket 1400 to a predetermined height.
  • the connection member 1610 formed on the side case 1110 and the connection member formed on the bracket 1400 may be aligned.
  • the connecting member 1610 may be formed only in the side case 1110, in which case the lower side of the connecting member 1610 may be connected to the bracket 1400.
  • at least a portion of the connection member 1610 may be formed of a conductive material.
  • the entire connecting member 1610 may be made of a conductive material, and at least a portion formed in contact with the side case 1110 may be made of a conductive material.
  • a groove or an opening may be formed in the connection member 1610 in the vertical direction.
  • a through opening may be formed in the connection member 1610 formed in the side case 1110, and a groove may be formed in the connection member 1610 on the bracket 1400 to align the opening with the groove.
  • a groove having a predetermined depth may be formed in the connection member 1610.
  • the fastening member 1620 may be inserted into the opening or the groove of the connection member 1610.
  • the fastening member 1620 may be inserted into the groove of the connection member 1610 formed on the bracket 1400 by passing through the opening of the connection member 1610 formed in the side case 1110.
  • the fastening member 1620 is fastened to the connection member 1610 to fix the composite protection device 2000.
  • the fastening member 1620 may be provided by, for example, a screw.
  • the composite protective device 2000 may be positioned on the connecting member 1610 and then fastened to the connecting member 1610 to connect the composite protective device 2000. Fix it.
  • the fastening member 1620 may be provided with a screw thread on its outer surface, and a screw groove may be formed on the connection member 1610 correspondingly.
  • the fastening member 1620 may serve as a male screw, and the connection member 1610 may serve as a female screw. Meanwhile, the fastening member 1620 may be made of a conductive material. For example, the fastening member 1620 may be made of a metal material. Accordingly, the side case 1110, the connection member 1610, and the fastening member 1620 may be a path of an overvoltage or communication signal such as an ESD.
  • the fixing part 1600 may electrically connect the conductive part 2300 and the side case 1100 by using welding, soldering, bonding, or adhesive tape in addition to the screw.
  • the composite protection device 2000 may include a contact part 2100, a composite protection part 2200, a conductive part 2300, and a support part 2400. It may include.
  • the conductive portion 2300 is fixed to at least a portion of the fixing portion 1600
  • the composite protective portion 2200 is fixed on one region of the conductive portion 2300
  • the contact portion 2100 is a composite region It is coupled to the protection unit 2200 and the other area is provided to be in contact with the main board 1500 through an internal circuit, that is, the bracket 1400.
  • the support 2400 may support the composite protection device 2000 when the conductive part 2300 is fixed to the fixing part 1600.
  • one surface of the composite protection part 2200 and the contact part 2100 are coupled by, for example, a conductive adhesive, and the other surface of the composite protection part 2200 is a conductive part 2300.
  • the support portion 2400 is provided in a predetermined region of the side case 1110 or bracket 1400, and then the contact portion 2100 and the composite protective portion 2200
  • the mounted conductive part 2300 may be supported by the support part 2400 to be fixed to the fixing part 1600.
  • the contact part 2100 may be made of a material having an elastic force and containing a conductive material to relieve the impact when an external force is applied from the outside of the electronic device.
  • the contact part 2100 may have a clip shape as shown in FIG. 6.
  • the contact part 2100 may be provided on the support part 2110 provided on one side of the composite protection part 2000, and disposed on the support part 2110 to face the main board 1500, and at least a part of the contact part 2100.
  • the contact portion 2120 which may be in contact with the 1500, and the support portion 2110 may be provided between one side of the contact portion 2120 and the contact portion 2120, and may include a connection portion 2130 having elastic force. Therefore, the height of the contact portion 2100 may be higher than the height of the composite protective part 2200.
  • the support part 2110 may be provided on an upper surface of the composite protection part 2200. Since the support part 2110 is provided on the upper surface of the composite protection part 2200, the support part 2110 may support the contact part 2120, the connection part 2130, and the mounting part 3000.
  • the support part 2110 may be provided in a plate shape having a predetermined thickness, for example, may be provided in a rectangular plate shape having a predetermined thickness.
  • the support part 2110 may be provided to have the same width as the upper surface of the composite protection part 2200. In addition, the support part 2110 may be provided shorter than the length of the upper surface of the composite protection part 2200.
  • the support part 2110 may be formed to have a length shorter than the length of the composite protection part 2200 so as not to contact the external electrodes 2241, 2242 and 2240 of the composite protection part 2200. At this time, when the connection part 2130 is contracted by the elastic force, the support part 2110 is shorter than the length of the compound protection part 2200 so that the connection part 2130 does not come into contact with the external electrode 2240 of the composite protection part 2200. It can be formed as. Meanwhile, a coupling member (not shown) may be provided between the support part 2110 and the composite protection part 2200 to couple the support part 2110 and the composite protection part 2200. As the coupling member, for example, an adhesive tape, an adhesive or the like can be used. That is, the support part 2110 may be attached to the upper surface of the composite protection part 2200 by an adhesive member such as an adhesive tape or an adhesive.
  • an adhesive member such as an adhesive tape or an adhesive.
  • connection part 2130 One end of the contact part 2120 is connected to the connection part 2130, and extends in one direction from the connection part 2130, and a part of the contact part 2120 is extended to be inclined downward toward the bracket 1400, for example, to be in contact with the bracket 1400.
  • the bracket 1400 includes at least a portion of the conductive first region 1400a and the insulating second region 1400b, and the first region 1400a is provided on the second region 1400b.
  • 2120 may be in contact with the first region 1400a.
  • the region adjacent to the other end of the contact portion 2120 may have a shape having a curvature that is convex in the direction in which the bracket 1400 is positioned.
  • the contact portion 2120 may be formed to be horizontal to a predetermined length and be inclined downward from the predetermined length, and then be inclined upward to the predetermined length again.
  • the area in contact with the bracket 1400 of the contact portion 2120 may form a circle, for example, elliptical, semicircular. That is, the region of the support 2110 may be a shape having a bent portion in which the peripheral area including the other end of the support portion 2110 or far away from the connecting portion 2130 is bent upward, and the bent portion is connected to the bracket 1400. It is installed to be in contact.
  • connection part 2130 is formed to connect one end of the support part 2110 and one end of the contact part 2120, and may have a curvature.
  • the bracket 1400 When the connection portion 2130 is pressed by an external force, the bracket 1400 is pressed in the direction in which it is positioned, and when the external force is released, it has an elastic force that is restored to its original state. Therefore, the contact portion 2100 may be formed of a metal material having at least the connection portion 2130 elasticity.
  • the contact part of the present invention may include a conductive rubber, a conductive silicon, an elastic body having a conductive wire inserted therein, and a gasket having a surface coated or bonded with a conductor in addition to a clip having conductivity and elasticity.
  • the contact portion may include a conductive material layer.
  • the inside may be made of a nonconductive elastomer and the outside may be coated with a conductive material.
  • the conductive gasket may include an insulating elastic core having a through hole formed therein and a conductive layer formed to surround the insulating elastic core.
  • the insulating elastic core has a tube shape having a through hole formed therein, and a cross section may be formed in a substantially rectangular or circular shape, but is not limited thereto and may be formed in various shapes.
  • the through-hole may not be formed in the insulating elastic core.
  • the insulating elastic core may be formed of silicone or elastic rubber.
  • the conductive layer may be formed to surround the insulating elastic core.
  • the conductive layer may be formed of at least one metal layer, for example, gold, silver, copper, or the like. Meanwhile, the conductive layer may be mixed with the elastic core without forming the conductive layer.
  • the complex protection unit 2200 may bypass a high voltage such as an ESD applied from the outside to an internal circuit, that is, a ground terminal of the main board 1500, and cut off a leakage current from the main boss 1500.
  • the composite protection unit 2200 may have an insulating state below a predetermined voltage and may be electrically conductive at a voltage above a predetermined voltage.
  • the complex protection unit 2200 may be formed of a varistor, a suppressor, a diode, and the like that are conducted at a predetermined voltage or more.
  • the voltage for conducting the composite protection unit 2200 that is, the breakdown voltage or the discharge start voltage may be higher than an external rated voltage and lower than the dielectric breakdown voltage of the composite protection unit 2200.
  • the complex protection unit 2200 may conduct the applied overvoltage to the ground terminal of the main board 1500.
  • the complex protection unit 2200 may further include a capacitor or the like for transmitting a communication signal.
  • FIGS. 7 and 8. is a cross-sectional view of a suppressor type composite protection unit 2200, and may include an ESD protection unit 2300 and at least one capacitor unit 2200 and 2400.
  • the composite protective part 2200 is provided in a stack 2210 in which a plurality of insulating sheets 100 (101 to 111) are stacked, and is provided in the stack 2210 and provided in a plurality of interiors.
  • An overvoltage protection unit including at least one capacitor unit 2220a, 2220b; 2220 having electrodes 200; 201 to 208, at least one discharge electrode 310; 311, 312, and an overvoltage protection member 320; 2230. That is, a conductive layer including a plurality of internal electrodes 200 and discharge electrodes 310 may be formed on the insulating sheet 100 selected from the plurality of insulating sheets 100 in the laminate 2210.
  • the first and second capacitor parts 2220a and 2220b may be provided in the stack 2210, and the overvoltage protection part 2230 may be provided therebetween. That is, the first capacitor part 2220a, the overvoltage protection part 2230, and the second capacitor part 2220b may be stacked in the stack 2210 to implement the composite protection part 2200.
  • the laminate 2210 further includes external electrodes 2241, 2242 and 2240 formed on two opposite sides of the laminate 2210 and connected to the first and second capacitor parts 2220a and 2220b and the overvoltage protection part 2230. can do.
  • the composite protection unit 2200 may include at least one capacitor unit and at least one overvoltage protection unit.
  • the capacitor unit 2220 may be provided at either the lower side or the upper side of the overvoltage protection unit 2230, and at least one capacitor unit 2220 at the upper side and the lower side of the two or more overvoltage protection units 2230 spaced apart from each other. ) May be provided.
  • the overvoltage protection unit 2230 may be provided inside the stack 2210 or outside the stack 2210, and embodiments of the present disclosure will be described in the stack 2210.
  • the overvoltage protection unit 2230 is formed outside the stack 2210, the overvoltage protection member 320 is formed between the stack 2210 and the external electrode 2240, and the discharge electrode 310 is stacked on the stack 2210. It may be formed inside.
  • the detection prevention unit 2200 will be described later.
  • the composite protective part 2200 may be provided between the conductive part 2300 and the bracket 1400 to block the electric shock voltage applied from the main board 1500 through the bracket 1400.
  • the overvoltage is bypassed to the ground terminal, and the insulation is not destroyed by an overvoltage such as ESD, so that the electric shock voltage can be continuously interrupted. That is, the composite protection unit 2200 according to the present invention maintains an insulation state below the electric shock voltage to cut off the electric shock voltage applied from the main board 1500 and maintains a conductive state at an ESD voltage or higher, thereby preventing the internal of the electronic device from the outside. Bypass the ESD voltage applied to the ground terminal.
  • the conductive portion 2300 is fixed to the fixing portion 1600 and the other end of the composite protection portion 2200 is fixed.
  • the conductive part 2300 supports the composite protective part 2200 and the contact part 2100 and electrically connects the composite protective part 2200 to the side case 1110. Therefore, the conductive portion 2300 may have a plate shape having a predetermined thickness.
  • the conductive portion 2300 may have a rectangular plate shape having a predetermined thickness.
  • an opening may be formed in one region of the conductive portion 2300, that is, the region fixed to the fixing portion 1600. That is, the fastening member 1620 of the fixing part 1600 may be inserted through the opening to fix the conductive part 2300 to the fixing part 1600.
  • the conductive part 2300 may be made of a metal material, for example, made of SUS.
  • the conductive part 2300 may be made of the same material as the side case 1110.
  • the conductive portion 2300 may be plated with Ag, Cr, Ni, Au, or the like.
  • the conductive part 2300 may be provided to have a thickness of about 0.1 mm to about 1 mm.
  • the support part 2400 may be provided between the fixing part 1600, the contact part 2100, and the composite protection part 2200.
  • the support part 2400 allows the contact part 2100 and the compound protection part 2200 to be supported thereon when the contact part 2100 and the compound protection part 2200 are fixed using the fixing part 1600. That is, the contact portion 2100 and the composite protection portion 2200 are fixed to the fixing portion 1600 in one region of the conductive portion 2300 in a state where the conductive portion 2300 is fastened to another region of the conductive portion 2300. Since the 2400 supports the contact portion 2100 and the composite protective portion 2200, the fastening of the conductive portion 2300 may be made easier.
  • the support 2400 may be formed of a non-conductive material.
  • an adhesive is provided between at least one surface of the support part 2400 having a rectangular parallelepiped shape and an elastic force, for example, a surface contacting the side case 1110 and the side case 1100, and the support part 2400 is a side case. It may be adhesively fixed to the inner side of the 1110.
  • the support 2400 is formed such that an upper surface thereof is parallel to the conductive portion 2300. That is, the upper surface of the support portion 2400 and the lower surface of the conductive portion 2300 are horizontal so that the lower surface of the conductive portion 2300 contacts the upper surface of the support portion 2400 so that the conductive portion 2300 is horizontal. Can be achieved.
  • the upper surface of the support 2400 may be horizontal with the upper surface of the connection member 1610 of the fixing part 1600. That is, the upper surface of the support 2400 may be coplanar with the upper surface of the connection member 1610 without forming a step. Meanwhile, the bottom surface of the support 2400 may be in contact with the bracket 1400. That is, the support 2400 includes a bracket in which the first region 1400a is provided on the second region 1400b including at least a first region 1400a made of a conductive material and a second region 1400b made of an insulating material. It may be provided on the first region 1400a of the 1400. However, the lower surface of the support 2400 may be spaced apart from the bracket 1400 by a predetermined interval. Therefore, the height of the support 2400 may be equal to or smaller than the sum of the heights of the contact portion 2100 and the composite protective part 2200.
  • the composite protection device 2000 may be provided inside the electronic device 1000 by combining the contact portion 2100, the composite protection portion 2200, and the conductive portion 2300.
  • the composite protection device 2000 may be provided to be fixed to the side case 1110 of the electronic device 1000 and connected to the bracket 1400.
  • the contact portion 2100 and the composite protection portion 2200 are coupled, and the combination is fixed to one end of the conductive portion 2300, and the other end of the conductive portion 2300 is fixed to the fixing portion 1600. It may be fixed to the inside of the side case 1110 by using.
  • the conductive part 2300 having the fixing member 1610 provided on the inner side of the side case 1110, and the contact part 2100 and the composite protective part 2200 provided on one side thereof is disposed on the fixing member 1610.
  • the conductive part 2300 is fixed to the conductive part 2300 and the fixing member 1610 by using the coupling member 1620.
  • the support part 2400 may be provided inside the side case 1110 to further facilitate the fastening of the composite protection device 2000. Therefore, an overvoltage such as an ESD applied from the outside is transmitted through the side case 1110 and the fixing part 1600, which in turn is connected to the ground terminal of the main board 1500 through the composite protection device 2000 and the bracket 1400. Bypassed.
  • the overvoltage transmitted through the side case 1110 and the fixing part 1600 is transferred to the composite protection part 2200 through the conductive part 2300, and discharged inside the composite protection part 2200 to contact the part 2100. It is delivered to the bracket 1400 and bypassed to the ground terminal of the main board 1500 connected to the bracket 1400. Meanwhile, the electric shock voltage or current generated by the defective charger may be transferred to the side case 1110 through the main mode 1500, but is blocked by the composite protection unit 2200 that maintains an insulation state at or above the electric shock voltage. It may not be delivered to the side case 1110, thereby preventing a user from electric shock.
  • the composite protection device according to embodiments of the present invention may be provided in an electronic device in various ways, which are illustrated in FIGS. 9 to 12.
  • 9 to 12 are views for explaining a fastening method of the composite protective device according to the second to fifth embodiments of the present invention.
  • the support part 2400 is provided to contact the other end of the conductive part 2300, and the contact part 2100 and the composite protective part 2200 are provided between the support part 2400 and the fixing part 1600.
  • This can be arranged. That is, in the first embodiment illustrated in FIG. 5, the support part 2400 is provided between the fixing part 1600 and the complex protection part 2200, but as shown in FIG. 9, the support part 2400 is formed of the conductive part 2300.
  • the composite protection part 2200 may be provided to be in contact with the end of the support part and between the support part 2400 and the fixing part 1600.
  • the support 2400 may be formed of an insulating material.
  • the clip-shaped contact portion 2100 may have a shape as shown in FIG.
  • a support 2400a may be provided between the fixing units 1600. That is, the support 2400a may be provided between the connection member 1610 and the fastening member 1620.
  • the support part 2400a may be provided to be in contact with the connection member 1610 and the conductive part 2300 may be in contact with the support part 2400a.
  • the support part 2400a may be provided at one end of the conductive part 2300, the support part 2400a may be provided on the connection member 1610, and then the fastening member 1620 may be fastened to the connection member 1610.
  • a support portion 2400a is provided on the connection member 1610 and one end of the conductive portion 2300 is positioned on the support portion 2400a, and then the coupling member 1620 may be used to engage the connection member 1610 using the fastening member 1620. Can be. Therefore, it is possible to smoothly fasten the composite protection device 2000 without providing the support part 2400 illustrated in FIGS. 5 and 9 inside the side case 1110.
  • the support 2400a may be formed of a conductive material, for example, may be formed of a conductive tape. An overvoltage applied from the outside may be bypassed to the ground terminal through the composite protection unit 2200 only when the support part 2400a is formed of a conductive material.
  • the fixing part 1600 is connected to the connecting member 1610 and the fastening member 1620, so that an insulating material is formed therebetween. If provided, overvoltages cannot be bypassed to the ground terminal. Therefore, the support 2400a provided between the connecting member 1610 and the fastening member 1620 should be formed of a conductive material.
  • the conductive portion 2300a may be provided in a curved form. That is, one end of the conductive portion 2300a is fastened to the lower side of the fixing portion 1600, and the conductive portion 2300 may be formed to be inclined upward in one region and then horizontally formed again.
  • the complex protection unit 2200 may be provided in a predetermined area of a portion formed horizontally in the direction of the cover case 1120.
  • the composite protection part 2200 and the contact part 2100a may be provided between the conductive part 2300 and the bracket 1400 and spaced apart from each other to provide the support part 2400.
  • the contact part 2100a may include a conductive rubber, a conductive silicon, an elastic body having a conductive wire inserted therein, and a gasket having a surface coated or bonded with a conductor. That is, the contact portion 2100a may be formed in the form of a clip or may be formed in the form of a gasket.
  • the contact portion 2100a and the support portion 2400 may be horizontal.
  • a conductive adhesive 2500 may be provided between one surface of each of the horizontal contact portion 2100a and the support portion 2400 and the bracket 1400.
  • the composite protective part 2200 is mounted in one area of the conductive part 2300, and the contact part 2100a in the form of a gasket is mounted on the composite protective part 2200, and the supporting part is supported in the other area of the conductive part 2300.
  • the conductive adhesive 2500 may be provided on one surface of the contact portion 2100a and the support 2400, and the conductive adhesive 2500 may be attached onto the bracket 1400. Meanwhile, when the conductive adhesive 2500 is used, the support 2400 may not be used. That is, since the conductive adhesive 2500 may be formed on one surface of the contact portion 2100a and attached to the bracket 1400, the conductive portion 2300 may be fixed to the conductive portion 2300 without providing a separate support portion 2400. Can be fixed at
  • the composite protection unit according to an embodiment of the present invention will be described in more detail with reference to FIGS. 7 and 8.
  • the following example shows a composite protection part of suppressor time
  • the varistor type composite protection part is also possible.
  • FIG. 7 is a perspective view of a composite protective device according to an embodiment of the present invention
  • Figure 8 is a cross-sectional view.
  • a composite protection device may include a laminate 2210 in which a plurality of sheets 100 (101 to 111) are stacked, and a plurality of sheets 2210 are provided in a laminate 2210.
  • It may include an overvoltage protection unit 2230 for protecting the overvoltage, such as.
  • the first and second capacitor parts 2220a and 2220b may be provided in the stack 2210, and the overvoltage protection part 2230 may be provided therebetween.
  • the first capacitor part 2220a, the overvoltage protection part 2230, and the second capacitor part 2220b may be stacked in the stack 2210 to implement a composite protection device.
  • the stack 2210 may further include external electrodes 2241, 2242 and 4000 formed on two opposite sides of the stack 2210 and connected to the capacitor unit 2220 and the overvoltage protection unit 2230.
  • the composite protection device may include at least one capacitor unit 2220 and at least one overvoltage protection unit 2230. That is, the capacitor unit 2220 may be provided at either the lower side or the upper side of the overvoltage protection unit 2230, and at least one capacitor unit 2220 at the upper side and the lower side of the two or more overvoltage protection units 2230 spaced apart from each other.
  • These complex protection elements are provided between the conductors accessible by the user of the electronic device and internal circuitry, for example, a metal case and a PCB, to block the electric shock voltage, bypass the ESD voltage, and prevent the insulation from being destroyed by the ESD. The voltage can be cut off continuously.
  • the laminate 2210 may be provided in a substantially hexahedral shape. That is, the laminate 2210 has a predetermined length and width in one direction (for example, the X direction) and the other direction (for example, the Y direction) orthogonal to each other in the horizontal direction, and has a vertical direction (for example, Z).
  • Direction may be provided in an approximately hexahedral shape having a predetermined height. That is, when the direction in which the external electrodes 2240 are formed is the X direction, the direction orthogonal to the horizontal electrode 2 may be the Y direction, and the vertical direction may be the Z direction.
  • the length in the X direction may be greater than the width in the Y direction and the height in the Z direction, and the width in the Y direction may be the same as or different from the height in the Z direction. If the width (Y direction) and the height (Z direction) are different, the width may be larger or smaller than the height.
  • the ratio of length, width and height may be 2-5: 1: 0.3-1. That is, the length may be about 2 to 5 times greater than the width and the height may be about 0.3 to 1 times greater than the width.
  • the size of the X, Y and Z directions can be variously modified according to the internal structure of the electronic device to which the composite protective element is connected, the shape of the composite protective element, and the like, as one example.
  • the stack 2210 may be formed by stacking a plurality of sheets 101 to 111; That is, the laminate 2210 may be formed by stacking a plurality of sheets 100 having a predetermined length in the X direction, a predetermined width in the Y direction, and a predetermined thickness in the Z direction. Accordingly, the length and width of the laminate 2210 may be determined by the length and width of the sheet 100, and the height of the laminate 2210 may be determined by the number of stacked sheets of the sheet 100. Meanwhile, the plurality of sheets 100 constituting the laminate 2210 may be formed using dielectric materials such as MLCC, LTCC, HTCC, and the like.
  • the MLCC dielectric material includes at least one of Bi 2 O 3 , SiO 2 , CuO, MgO, and ZnO based on at least one of BaTiO 3 and NdTiO 3
  • the LTCC dielectric material is Al 2 O 3 , SiO 2. It may include a glass material.
  • the sheet 100 is one of BaTiO 3 , NdTiO 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , SiO 2 , CuO, MgO, Zn0, and Al 2 O 3 in addition to MLCC, LTCC, and HTCC. It may be formed of a material containing the above.
  • the sheet 100 may be formed of a material having varistor characteristics such as Pr-based, Bi-based, and ST-based ceramic materials.
  • the sheet 100 may be formed by mixing materials having MLCC, LTCC, HTCC and varistor characteristics.
  • the sheet 100 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 , and by adjusting the content of these materials
  • the dielectric constant can be adjusted.
  • the sheet 100 may have a predetermined dielectric constant, for example, 5 to 20000, preferably 7 to 4000, and more preferably 100 to 3000, depending on the material.
  • the sheet 100 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 , by increasing the content of BaTiO 3
  • the dielectric constant can be increased, and the dielectric constant can be lowered by increasing the contents of NdTiO 3 and SiO 2 .
  • at least one of the sheets 110 may have a dielectric constant different from that of the other sheets.
  • the outermost sheet that is, the first and eleventh sheets 101 and 111 positioned in the lowermost layer and the uppermost layer in the vertical direction, are the remaining sheets provided therebetween, that is, the second to tenth sheets 102 to 110.
  • the dielectric constants of the first and eleventh sheets 101 and 111 may be lower than those of the second to tenth sheets 102 to 110.
  • the dielectric constants of the first and eleventh sheets 101 and 111 may be 100 or less, and the dielectric constants of the second to tenth sheets 102 to 110 may be 500 or more.
  • the dielectric constants of the first and eleventh sheets 101 and 111 may be 5 to 100, and the dielectric constants of the second to tenth sheets 102 to 111 may be 500 to 3,000.
  • the dielectric constant of the sheet 100 it is possible to adjust the content of the composition for forming the sheet.
  • the first to eleventh sheets 101 to 111 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 ,
  • the first and eleventh sheets 101 and 111 may increase the content of NdTiO 3 and SiO 2 and reduce the content of BaTiO 3 to form a dielectric constant of 100 or less, and the second to tenth sheets 102 to 110.
  • the dielectric constant of 500 or more may be formed by increasing the content of BaTiO 3 and decreasing the content of NdTiO 3 and SiO 2 .
  • the first and eleventh sheets 101 and 111 increase the content of NdTiO 3 and SiO 2 and decrease the content of BaTiO 3 compared to the second to tenth sheets 102 to 110 so that the dielectric constant is 100 or less. can do.
  • the second to tenth sheet (102 to 110) is the first and the 11 sheets (101 and 111) to increase the content of BaTiO 3 was NdTiO 3 and 500 or more dielectric constant by reducing the content of SiO 2 than the You can do that.
  • parasitic capacitance can be reduced.
  • the sheets adjacent to the first and eleventh sheets 101 and 111 are the remaining sheets ( 103 to 109) may have a lower dielectric constant.
  • the dielectric constant of the sheets may increase from the first and eleventh sheets 101 and 111 toward the center portion. This is because the compositions of the first and eleventh sheets 101 and 111 diffuse into the central portion of the laminate 2210 upon sintering of the laminate 2210.
  • the plurality of sheets 100 may all be formed with the same thickness, and at least one may be formed thicker or thinner than the others.
  • the sheet of the overvoltage protection unit 2230 may be formed to have a different thickness from the sheet of the capacitor unit 2220, and the sheet formed between the overvoltage protection unit 2230 and the capacitor unit 2220 may be formed of another sheet. It can be formed in different thicknesses.
  • the thickness of the sheet between the overvoltage protection unit 2230 and the capacitor unit 2220 that is, the fifth and seventh sheets 105 and 107, may be the sheet of the overvoltage protection unit 2230, that is, the sixth sheet 106.
  • the sheets 102 to 104 and 108 to 110 of the capacitor parts 2000 and 4000 may be formed to have the same thickness, and either one may be thinner or thicker than the other.
  • the plurality of sheets 100 may be formed, for example, in a thickness of 1 ⁇ m to 4000 ⁇ m, and may be formed to a thickness of 3000 ⁇ m or less. That is, the thickness of each sheet 100 may be 1 ⁇ m to 4000 ⁇ m, and preferably 5 ⁇ m to 300 ⁇ m, depending on the thickness of the laminate 2210.
  • the thickness of the sheet 100 and the number of stacked layers may be adjusted according to the size of the composite protection device. That is, the sheet 100 may be formed in a thin thickness when the composite protective element is small in size, and may be formed in a thick thickness when the composite protective element is large in size.
  • the sheets 100 are stacked in the same number, the smaller the size of the composite protection device is, the thinner the height becomes, and the larger the size of the composite protection device may be.
  • a thin sheet can also be applied to a composite protective element of a large size, in which case the number of sheets of the sheet is increased.
  • the sheet 100 may be formed to a thickness that does not break when the ESD is applied. That is, even when the number of stacks or the thickness of the sheets 100 are different, at least one sheet may be formed to a thickness that is not destroyed by repeated application of ESD.
  • the laminate 2210 may further include a lower cover layer (not shown) and an upper cover layer (not shown) provided at the lower and upper portions of the capacitor unit 2220, respectively. That is, the laminate 2210 may include lower and upper cover layers respectively provided on the lowermost layer and the uppermost layer.
  • the lowermost sheet that is, the first sheet 101 may function as the lower cover layer
  • the uppermost sheet that is, the eleventh sheet 111 may function as the upper cover layer.
  • the lower and upper cover layers provided separately from the sheet 100 may be formed to have the same thickness.
  • the lower and upper cover layers may be formed in other thicknesses, for example, the upper cover layer may be formed thicker than the lower cover layer.
  • the lower and upper cover layers may be provided by stacking a plurality of magnetic sheets.
  • a nonmagnetic sheet for example, a glassy sheet
  • the lower and upper cover layers may be further formed on the outer surfaces of the lower and upper cover layers made of magnetic sheets, that is, the lower and upper surfaces of the laminate 2210.
  • the lower and upper cover layers may be formed of glassy sheets, and the surface of the laminate 2210 may be coated with a polymer or glass material.
  • the lower and upper cover layers may be thicker than the thickness of each of the sheets 100. That is, the cover layer may be thicker than the thickness of one sheet.
  • the lowermost and uppermost sheets i.e., the first and eleventh sheets 101 and 111, may function thicker than each of the sheets 102 to 110 therebetween when functioning as the lower and upper cover layers.
  • At least one capacitor portion 2220a, 2220b; 2000 is formed in the stack 2210.
  • first and second capacitor parts 2220a and 2220b may be provided below and over the overvoltage protection part 2230.
  • the first and second capacitor parts 2220a and 2220b are referred to for convenience because the plurality of internal electrodes 200 are formed by being divided with the overvoltage protection part 2230 interposed therebetween, and the inside of the laminate 2210 functions as a capacitor.
  • a plurality of internal electrodes 200 may be formed.
  • the capacitor unit 2220 is provided below and above the overvoltage protection unit 2230, respectively, and may include at least two or more internal electrodes and at least two or more sheets provided therebetween.
  • the first capacitor portion 2220a may include the first to fourth sheets 101 to 104 and the first to fourth internal electrodes 201 to 204 formed on the first to fourth sheets 101 to 104, respectively. It may include.
  • the second capacitor unit 2220b includes seventh to tenth sheets 107 to 110 and fifth to eighth internal electrodes 205 to 208 formed on the seventh to tenth sheets 107 to 110, respectively. It may include.
  • the internal electrodes 201 to 208 and 200 may be formed to have a thickness of, for example, 1 ⁇ m to 10 ⁇ m.
  • the plurality of inner electrodes 200 are formed such that one side of the plurality of inner electrodes 200 and the outer electrodes 2241, 2242 and 4000 are formed to face each other in the X direction, and the other side thereof is spaced apart from each other.
  • the first, third, fifth, and seventh internal electrodes 201, 203, 205, 207 are disposed on the first, third, seventh, and ninth sheets 101, 103, 107, 109. Each of them is formed in a predetermined area, and is formed such that one side is connected to the second external electrode 2242 and the other side is spaced apart from the first external electrode 2241.
  • the second, fourth, sixth, and eighth internal electrodes 202, 204, 206, and 208 are predetermined on the second, fourth, eighth, and tenth sheets 102, 104, 108, and 110, respectively. It is formed to have an area and is formed such that one side is connected to the first external electrode 2241 and the other side is spaced apart from the second external electrode 2242. That is, the plurality of internal electrodes 200 are alternately connected to any one of the external electrodes 2240 and formed to overlap a predetermined region with the sheets 102 to 104 and 108 to 110 therebetween.
  • the internal electrode 200 may have a length in the X direction and a width in the Y direction smaller than the length and width of the laminate 2210. In other words.
  • the internal electrode 200 may be formed smaller than the length and width of the sheet 100.
  • the internal electrode 200 may be formed to have a length of 10% to 90% and a width of 10% to 90% of the length of the laminate 2210 or the sheet 100.
  • the internal electrode 200 may be formed with an area of 10% to 90% of the area of each sheet 100.
  • the plurality of internal electrodes 200 may be formed in various shapes, for example, square, rectangular, predetermined pattern shapes, spiral shapes having a predetermined width and spacing.
  • Capacitors 2220 have capacitances formed between the internal electrodes 200, respectively, and the capacitance may be adjusted according to the overlapping area of the internal electrodes 200, the thickness of the sheets 100, and the like.
  • At least one internal electrode may be further formed in addition to the first to eighth internal electrodes 201 to 208, and at least one sheet on which at least one internal electrode is formed may be further formed in the capacitor unit 2220.
  • two internal electrodes may be formed in the first and second capacitor parts 2220a and 2220b, respectively. That is, the present embodiment has been described as an example in which four internal electrodes of the first and second capacitors 2220a and 2220b are formed, respectively, but two or more internal electrodes may be formed.
  • the internal electrode 200 may be formed of a conductive material.
  • the internal electrode 200 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu.
  • Ag and Pd alloys may be used.
  • Al may form aluminum oxide (Al 2 O 3 ) on its surface during firing and maintain Al therein. That is, when Al is formed on the sheet, it comes into contact with air. In the Al process, the surface is oxidized to form Al 2 O 3 , and the inside maintains Al as it is. Therefore, the internal electrode 200 may be formed of Al coated with Al 2 O 3 , which is a porous thin insulating layer on the surface.
  • the internal electrode 200 may be formed so that at least one region has a thin thickness or at least one region is removed to expose the sheet. However, even if the thickness of at least one region of the internal electrode 200 is thin or at least one region is removed, the connected state is maintained as a whole so that there is no problem in electrical conductivity.
  • the internal electrodes 201 to 204 of the first capacitor part 2220a and the internal electrodes 205 to 208 of the second capacitor part 2220b may be formed in the same shape and the same area, and the overlapping area may also be May be the same.
  • the first internal electrode 201 and the eighth internal electrode 208 may overlap the external electrode 2240, and the first and eighth internal electrodes 201 and 208 may be formed of the remaining internal electrodes 202 to 202. 207 may be formed longer than. That is, the first and eighth internal electrodes 201 and 208 are formed to partially overlap the first and second external electrodes 2241 and 2242, respectively, so that parasitic capacitances are formed therebetween, so that the first and eighth internal electrodes 201 and 208 are formed.
  • the electrodes 201 and 208 may be formed, for example, about 10% longer than the remaining internal electrodes 202 to 207.
  • an area overlapping the external electrode 2240 may be formed wider than the remaining areas.
  • the first and eighth internal electrodes 201 and 208 may be formed to be about 10% wider than a region overlapping with the external electrode 2240 or a region not adjacent thereto.
  • regions of the first and eighth internal electrodes 201 and 208 that do not overlap with the external electrodes 2240 may be the same as the widths of the remaining internal electrodes 202 to 209.
  • the sheets 101 to 104 of the first capacitor unit 2220a and the sheets 107 to 110 of the second capacitor unit 2220b may have the same thickness.
  • the first sheet 101 when the first sheet 101 functions as the lower cover layer, the first sheet 101 may be formed thicker than the remaining sheets. Therefore, the first and second capacitor parts 2220a and 2220b may have the same capacitance.
  • the first and second capacitor parts 2220a and 2220b may have different capacitances, and in this case, at least one of the area of the inner electrode, the overlapping area of the inner electrode, and the thickness of the sheet may be different from each other.
  • the internal electrodes 201 to 208 of the capacitor unit 2220 may be formed longer than the discharge electrode 310 of the overvoltage protection unit 2230, and may have a large area.
  • the overvoltage protection unit 2230 may include at least two discharge electrodes 311, 312; 310 spaced apart in the vertical direction, and at least one overvoltage protection member 320 provided between the discharge electrodes 310.
  • the overvoltage protection unit 2230 may include the first and second discharge electrodes 311 and 312 formed on the fifth and sixth sheets 105 and 106 and the fifth and sixth sheets 105 and 106, respectively.
  • the overvoltage protection member 320 may be formed such that at least a portion thereof is connected to the first and second discharge electrodes 311 and 312.
  • the first and second discharge electrodes 311 and 312 may be formed to have the same thickness as the internal electrodes 200 of the capacitor unit 2220.
  • the first and second discharge electrodes 311 and 312 may be formed to a thickness of 1 ⁇ m to 10 ⁇ m. However, the first and second discharge electrodes 311 and 312 may be formed thinner or thicker than the internal electrode 200 of the capacitor unit 2220.
  • the first discharge electrode 311 is connected to the first external electrode 2241 and is formed on the fifth sheet 105, and the distal end part is connected to the overvoltage protection member 320.
  • the second discharge electrode 312 is connected to the second external electrode 2242 and formed on the sixth sheet 106, and the distal end portion is connected to the overvoltage protection member 320.
  • the discharge electrodes 311 and 312 are formed to be connected to the adjacent inner electrode 200 and the same outer electrode 2240. That is, the first discharge electrode 311 is connected to the adjacent fourth internal electrode 204 and the first external electrode 2241, and the second discharge electrode 312 is connected to the adjacent fifth internal electrode 205 and the second external. Is connected to an electrode 2242.
  • the discharge electrode 310 and the inner electrode 200 adjacent thereto are connected to the same outer electrode 2240, the ESD voltage is not applied to the electronic device even when the insulating sheet 100 is deteriorated, that is, the dielectric breakdown.
  • the ESD voltage applied through the one external electrode 2240 is discharge electrode ( The internal electrode 200 adjacent to 310 flows to the other external electrode 2240.
  • the insulating sheet 100 breaks down the insulation.
  • the ESD voltage applied through the first external electrode 2241 is the first discharge electrode 311, and the dielectric breakdown fifth is performed.
  • the thickness of the insulating sheet 100 can be formed to be thick, but in this case, there is a problem that the size of the electric shock prevention device increases.
  • the discharge electrode 310 and the inner electrode 200 adjacent thereto are connected to the same outer electrode 2240, the ESD voltage is not applied into the electronic device even when the insulating sheet 100 is destroyed.
  • regions in contact with the overvoltage protection member 320 of the first and second discharge electrodes 311 and 312 may be formed the same size or smaller than the overvoltage protection member 320.
  • the first and second discharge electrodes 311 and 312 may be formed to completely overlap without leaving the overvoltage protection member 320. That is, the edges of the first and second discharge electrodes 311 and 312 may form a vertical component with the edges of the overvoltage protection member 320.
  • the first and second discharge electrodes 311 and 312 may be formed to overlap a part of the overvoltage protection member 320.
  • the first and second discharge electrodes 311 and 312 may be formed to overlap 10% to 100% of the horizontal area of the overvoltage protection member 320.
  • first and second discharge electrodes 311 and 312 are not formed beyond the overvoltage protection member 320. Meanwhile, the first and second discharge electrodes 311 and 312 may be formed to have a larger area than one in contact with the overvoltage protection member 320.
  • the overvoltage protection member 320 may be formed in a predetermined region, for example, a central portion of the sixth sheet 106, and may be connected to the first and second discharge electrodes 311 and 312. In this case, the overvoltage protection member 320 may be formed to at least partially overlap the first and second discharge electrodes 311 and 312. That is, the overvoltage protection member 320 may be formed to overlap 10% to 100% of the horizontal area with the first and second discharge electrodes 311 and 312.
  • the overvoltage protection member 320 may be formed to form a through hole having a predetermined size in a predetermined region, for example, a central portion of the sixth sheet 106, and fill the through hole using a thick film printing process.
  • the protective layer 330 may be formed, for example, with a diameter of 100 ⁇ m to 500 ⁇ m and a thickness of 10 ⁇ m to 50 ⁇ m. At this time, the thinner the thickness of the overvoltage protection member 320, the lower the discharge start voltage.
  • the overvoltage protection member 320 may be formed using a conductive material and an insulating material. For example, the overvoltage protection member 320 may be formed by printing a mixed material of the conductive ceramic and the insulating ceramic on the sixth sheet 106. Meanwhile, the overvoltage protection member 320 may be formed on at least one sheet 100.
  • the overvoltage protection members 320 are formed on at least one sheet, for example, two sheets 100 stacked in a vertical direction, and discharge electrodes are formed on the sheet 100 so as to be spaced apart from each other. 320).
  • the structure, material, and the like of the overvoltage protection member 320 will be described later.
  • the external electrodes 2241, 2242 and 4000 may be provided on two surfaces facing each other outside the stack 2210.
  • the external electrodes 2240 may be formed on two opposite surfaces of the stack 2210 in the X direction, that is, the length direction.
  • the external electrode 2240 may be connected to the internal electrode 200 and the discharge electrode 310 in the stack 2210.
  • any one of the external electrodes 2240 may be connected to an internal circuit such as a printed circuit board inside the electronic device, and the other may be connected to the outside of the electronic device, for example, a metal case.
  • the first external electrode 2241 may be connected to an internal circuit
  • the second external electrode 2242 may be connected to a metal case.
  • the second external electrode 2242 may be connected to the metal case through a conductive member, for example, a contactor or a conductive gasket.
  • the external electrode 2240 may be formed in various ways. That is, the external electrode 2240 may be formed by an immersion or printing method using a conductive paste, or may be formed by various methods such as deposition, sputtering, plating, and the like. On the other hand, the external electrode 2240 may be formed to extend on the surface in the Y direction and Z direction. That is, the external electrode 2240 may extend from two surfaces facing in the X direction to four adjacent surfaces. For example, when immersed in the conductive paste, the external electrodes 2240 may be formed not only on two opposite sides of the X direction, but also on the front and rear surfaces of the Y direction and the upper and lower surfaces of the Z direction.
  • the external electrode 2240 when formed by printing, deposition, sputtering, plating, or the like, the external electrode 2240 may be formed on two surfaces in the X direction. That is, the external electrode 2240 may be formed not only on one side mounted on the printed circuit board and the other side connected to the metal case, but also in other areas according to the forming method or process conditions.
  • the external electrode 2240 may be formed of a metal having electrical conductivity.
  • the external electrode 2240 may be formed of one or more metals selected from the group consisting of gold, silver, platinum, copper, nickel, palladium, and alloys thereof.
  • At least one portion of the external electrode 2240 connected to the internal electrode 200 and the discharge electrode 310 may be formed to be connected to the internal electrode 200 and the discharge electrode 310.
  • a portion of the external electrode 2240 to be connected may be formed of the same material as the internal electrode 200 and the discharge electrode 310.
  • the internal electrode 200 and the discharge electrode 310 are formed using copper
  • at least a part of the internal electrode 200 and the external electrode 2240 may be formed using copper.
  • copper may be formed by an immersion or printing method using a conductive paste as described above, or may be formed by deposition, sputtering, plating, or the like.
  • the external electrode 2240 may be formed by plating.
  • a seed layer may be formed on upper and lower surfaces of the laminate 2210, and then a plating layer may be formed from the seed layer to form the external electrode 2240.
  • a plating layer may be formed from the seed layer to form the external electrode 2240.
  • at least a part of the external electrode 2240 connected to the internal electrode 200 and the discharge electrode 310 may be an entire side surface of the stack 2210 on which the external electrode 2240 is formed, or may be a partial region. .
  • the external electrode 2240 may further include at least one plating layer.
  • the external electrode 2240 may be formed of a metal layer such as Cu or Ag, and at least one plating layer may be formed on the metal layer.
  • the external electrode 2240 may be formed by laminating a copper layer, a Ni plating layer, and a Sn or Sn / Ag plating layer.
  • the plating layer may be laminated with a Cu plating layer and a Sn plating layer, the Cu plating layer, Ni plating layer and Sn plating layer may be laminated.
  • the external electrode 2240 may be formed by mixing, for example, glass frit having a multi-component glass frit containing 0.5% to 20% of Bi 2 O 3 or SiO 2 as a main component.
  • the mixture of the glass frit and the metal powder may be manufactured in a paste form and applied to two surfaces of the laminate 2210.
  • the adhesion between the external electrode 2240 and the stack 2210 may be improved, and the contact reaction between the electrodes in the stack 2210 may be improved.
  • at least one plating layer may be formed on the upper portion, thereby forming the external electrode 2240.
  • the metal layer including the glass and at least one plating layer thereon may be formed to form the external electrode 2240.
  • the external electrode 2240 may be sequentially formed of a Ni plating layer and a Sn plating layer through electrolytic or electroless plating after forming a layer including glass frit and at least one of Ag and Cu.
  • the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer.
  • the external electrode 2240 may be formed of only at least one plating layer. That is, the external electrode 2240 may be formed by forming at least one layer of the plating layer using at least one plating process without applying the paste.
  • the external electrode 5000 may be formed to have a thickness of 2 ⁇ m to 100 ⁇ m
  • the Ni plating layer may be formed to have a thickness of 1 ⁇ m to 10 ⁇ m
  • the Sn or Sn / Ag plating layer may have a thickness of 2 ⁇ m to 10 ⁇ m. Can be formed.
  • the external electrode 2240 may be formed to overlap a predetermined region with the internal electrode 200 connected to the different external electrodes 2240. For example, a portion extending below and above the stack 2210 of the first external electrode 2241 may overlap a predetermined region of the internal electrodes 200. In addition, portions formed to extend below and above the stack 2210 of the second external electrode 2242 may also be formed to overlap the predetermined regions of the internal electrodes 200. For example, portions extending above and below the stack 2210 of the external electrode 2240 may overlap the first and eighth internal electrodes 201 and 208. That is, at least one of the external electrodes 2240 may be extended to the upper and lower surfaces of the stack 2210, and at least one of the extended portions may be partially overlapped with the internal electrodes 200.
  • an area of the internal electrode 200 overlapping the external electrode 2240 may be 1% to 10% of the total area of the internal electrode 200.
  • the external electrode 2240 may increase an area formed on at least one of the upper and lower surfaces of the laminate 2210 by a plurality of processes.
  • a predetermined parasitic capacitance may be generated between the external electrode 2240 and the internal electrode 200.
  • capacitance may be formed between the first and eighth internal electrodes 201 and 208 and the extensions of the first and second external electrodes 2241 and 2242. Therefore, the capacitance of the composite protective device may be adjusted by adjusting the overlapping area of the external electrode 2240 and the internal electrode 200.
  • the capacitance of the composite protective element affects the antenna performance in the electronic device, the dispersion of the capacitance of the composite protective element is maintained within 20%, preferably within 5%.
  • the sheet 100 manufactured using a material having a high dielectric constant is used.
  • the influence of parasitic capacitance between the inner electrode 200 and the outer electrode 2240 increases. That is, when the dielectric constants of the first and eleventh sheets 101 and 111 provided between the inner electrode 200 and the outer electrode 2240 are high, the parasitic capacitance increases. However, since the permittivity of the outermost first and eleventh sheets 101 and 111 is lower than the permittivity of the remaining sheets 102 to 110, the parasitic capacitance between the inner electrode 200 and the outer electrode 2240 is reduced. Can reduce the impact. That is, since the dielectric constant of the first and eleventh sheets 101 and 111 is low, parasitic capacitance between the inner electrode 200 and the outer electrode 2240 may be reduced.
  • an oxide may be distributed on the surface of the laminate 2210 to form a surface modification member (ie, an insulation member).
  • the oxide may be dispersed and distributed on the surface of the laminate 2210 in a particulate state or a molten state.
  • the oxide may be distributed before forming a part of the external electrode 2240 by the printing process, or may be distributed before performing the plating process. That is, when the external electrode 2240 is formed by the plating process, the oxide may be distributed on the surface of the laminate 2210 before the plating process.
  • the resistance of the surface of the laminate 2210 can be made uniform, whereby the plating process can be performed uniformly.
  • the surface of the laminate 2210 may have a resistance at least in one region different from that in other regions. If the plating process is performed in a state where the resistance is uneven, the plating proceeds better than the region having high resistance in the region having low resistance. As a result, growth unevenness of the plating layer occurs. Therefore, in order to solve this problem, the surface resistance of the laminate 2210 needs to be maintained uniformly, and for this purpose, a resistance control member may be formed by dispersing oxides in a particulate state or a molten state on the surface of the laminate 2210. have.
  • the oxide may be partially distributed on the surface of the laminate 2210, may be distributed on the surface of the laminate 2210, and may be formed in a film form, and may be formed in a film form in at least one region and at least one region. It may be partially distributed at.
  • the oxide may be distributed in the form of islands on the surface of the laminate to form a resistance adjusting member. That is, oxides in a particulate state or a molten state may be spaced apart from each other and distributed in an island form on the surface of the laminate 2210, and thus at least a portion of the surface of the laminate 2210 may be exposed.
  • oxides may be distributed over the entire surface of the laminate 2210, and oxides having a predetermined thickness may be formed by connecting oxides in a particle state or a molten state with each other. In this case, since an oxide film is formed on the surface of the stack 2210, the surface of the stack 2210 may not be exposed.
  • the oxide may be formed in a film form in at least one region and distributed in an island form in at least a portion thereof. That is, at least two oxides may be connected to each other to form a film in at least one region and may be formed in an island form at least in part. Thus, at least a portion of the laminate surface may be exposed by the oxide.
  • the total area of the resistance adjusting member 400 made of an oxide distributed in at least a portion may be, for example, 10% to 90% of the total area of the surface of the laminate 2210.
  • at least one oxide may be used as the oxide in the granular state or in the molten state to uniform the surface resistance of the laminate 2210.
  • Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO At least one of Co 3 O 4 , SiO 2 , Al 2 O 3 , MnO, H 2 BO 3 , H 2 BO 3 , Ca (CO 3 ) 2 , Ca (NO 3 ) 2 , and CaCO 3 may be used. .
  • the surface modification member may be distributed over the entire region of the laminate 2210, or may be distributed only in at least one region. That is, the surface modification member may be formed on the entire surface of the laminate 2210 or may be formed only in an area in contact with the external electrode 2240 of the laminate 2210. In other words, the surface modification member in which the surface modification member is formed on a part of the surface of the laminate 2210 may be formed between the laminate 2210 and the external electrode 2240. In this case, the surface modification member may be formed in contact with the extension region of the external electrode 2240. That is, a surface modification member may be provided between one region of the external electrode 2240 and the laminate 2210 that extends to the top and bottom surfaces of the laminate 2210.
  • the surface modification member may be provided in the same or different size than the external electrode 2240 formed thereon.
  • an area of 50% to 150% of an area of a part of the external electrode 2240 extending to the upper and lower surfaces of the stack 2210 may be formed. That is, the surface modification member may be formed to be smaller or larger than the size of the extension region of the external electrode 2240, or may be formed to the same size.
  • the surface modification member may also be formed between the external electrode 2240 formed on the side surface of the laminate 2210.
  • Such surface modification members may comprise a glass material.
  • the surface modification member may include non-borosilicate glass (SiO 2 —CaO—ZnO—MgO-based glass) that is calcinable at a predetermined temperature, for example, 950 ° C. or less.
  • the surface modification member may further include a magnetic material. That is, when the region on which the surface modification member is to be formed is formed of the magnetic sheet, a magnetic material may be partially included in the surface modification member to facilitate bonding of the surface modification member and the magnetic sheet.
  • the magnetic material may include, for example, NiZnCu-based magnetic powder, and may include, for example, 1-15 wt% of the magnetic material with respect to 100 wt% of the glass material.
  • the surface modification member may be formed on the surface of the laminate 2210.
  • at least a portion of the glass material may be evenly distributed on the surface of the laminate 2210, and at least a portion of the glass material may be irregularly distributed in different sizes.
  • the surface modification member may be continuously formed on the surface of the laminate 2210 to have a film form.
  • a recess may be formed on at least part of the surface of the laminate 2210. That is, a glass material may be formed to form a convex portion, and at least a portion of the region where the glass material is not formed may be dug to form a recess.
  • the glass material may be formed to a predetermined depth from the surface of the laminate 2210, and at least a portion thereof may be formed higher than the surface of the laminate 2210. That is, at least a portion of the surface modification member may be coplanar with the surface of the laminate 2210, and at least a portion thereof may be maintained higher than the surface of the laminate 2210.
  • the surface of the laminate 2210 may be modified by distributing a glass material in a portion of the laminate 2210 before forming the external electrode 2240 to form a surface modification member, thereby making the surface resistance uniform. Can be. Therefore, the shape of the external electrode 2240 can be controlled, thereby facilitating the formation of the external electrode.
  • the composite protection unit 2000 according to the present invention may be modified in various shapes, and the composite protection unit 2000 according to another embodiment of the present invention is illustrated in FIGS. 13 to 16.
  • FIG. 13 is a perspective view of a composite protection unit according to another embodiment of the present invention
  • FIG. 14 is a sectional view.
  • 15 is a cross-sectional view of a composite protective part according to a modified example of another embodiment of the present invention.
  • Figure 16 is a cross-sectional view showing the shape of the composite protective portion and the contact portion according to another embodiment of the present invention.
  • a composite protection device may include a laminate 100, at least two internal electrodes 200 provided in the laminate 1000, and at least two interiors. At least one overvoltage overvoltage protection unit 300 provided between the electrodes 200, at least two connection electrodes 400 provided inside the stack 100 to be connected to at least two internal electrodes 200, respectively, It includes an external electrode 500 formed on the outside of the stack 100 to be connected to the electrode 400. That is, in another embodiment of the present invention, the overvoltage protection member is provided between the two internal electrodes 200 without having a separate discharge electrode. In other words, the internal electrode 200 provided with the overvoltage protection member interposed therebetween functions as a discharge electrode from the outside and functions as a capacitor to form capacitance.
  • the stack 100 and the overvoltage overvoltage protection unit 300 are the same as the stack 2110 and the overvoltage protection unit 2130 described in the embodiment of the present invention, and the internal electrode 200 is the capacitor of the embodiment.
  • the internal electrode 200 of the 2200 has the same configuration, and the external electrode 500 has a different shape and the same configuration as the external electrode 2250. Accordingly, another embodiment of the present invention will be described below with reference to a part different from the description of the embodiment.
  • At least two internal electrodes 210, 220; 200 may be provided to be spaced apart from each other within the stack 100. That is, at least two internal electrodes 200 may be formed to be spaced apart by a predetermined interval in the stacking direction of the sheet, that is, the Z direction. In addition, at least two internal electrodes 200 may be formed with the overvoltage protection unit 300 interposed therebetween. For example, the first internal electrode 210 may be formed below the overvoltage protection part 300 in the Z direction, and the second internal electrode 220 may be formed above the overvoltage protection part 300. Of course, at least one internal electrode may be further formed between the first and second internal electrodes 210 and the lowermost and uppermost sheets.
  • the internal electrodes 200 are formed to be connected to the connection electrodes 400 and to the overvoltage protection unit 300, respectively. That is, the first internal electrode 210 is formed such that one side is connected to the first connection electrode 410 and the other side is connected to the overvoltage protection unit 300. In addition, the second internal electrode 220 is formed such that one side is connected to the second connection electrode 420 and the other side is connected to the overvoltage protection part 300. In this case, one surface of the first and second internal electrodes 210 and 220 facing each other is connected to the overvoltage protection unit 300.
  • the internal electrode 200 may act as a capacitor and also as a discharge electrode of the overvoltage protection unit 300.
  • the capacitor is formed by the first and second internal electrodes 200 and the sheets therebetween.
  • the capacitance may be adjusted according to the overlapping area of the first and second internal electrodes 200, the thickness of the sheet between the first and second internal electrodes 200, and the like.
  • at least a region overlapping the overvoltage protection unit 300 serves as a discharge electrode, and the first and second internal electrodes 200 transmit overvoltage such as ESD applied from the outside to the overvoltage protection unit 300.
  • the overvoltage protection unit 300 transmits the overvoltage bypassed to the ground terminal of the electronic device, for example.
  • connection electrode 400 is formed in the stack 100 and is formed between the internal electrode 300 and the external electrode 500. That is, the connection electrode 400 is formed to connect the internal electrode 300 and the external electrode 500. Accordingly, the connecting electrode 400 is connected between the first and second external electrodes 510, 520; 500 and the first and second internal electrodes 210, 220; 200, respectively. It may include electrodes 410 and 420. At least one of the planar shape and the cross-sectional shape may have a polygonal shape of at least one of a circular shape, an ellipse shape, a rectangular shape, a square shape, a pentagon shape, and have a predetermined thickness.
  • the overvoltage protection unit 300 may be formed in the shape of a cylinder, a hexahedron, a polyhedron.
  • the connection electrode 400 may be formed to at least overlap the overvoltage protection unit 300.
  • the connection electrode 400 may be formed at the center of the stack 100 and may overlap the overvoltage protection unit 300.
  • connection electrode 400 is formed to form an opening in a predetermined region of at least one or more sheets stacked on the internal electrode 200 and to fill the opening by using a conductive material.
  • the connection electrode 400 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu.
  • the connection electrode 400 may be formed using various conductive materials in addition to the metal.
  • connection electrode 400 may be formed in the Z direction, that is, the height in the vertical direction is the same as or different from the height of the overvoltage protection part 300, and the width in the X direction and the Y direction is the width of the overvoltage protection part 300. It may be more identical or different. That is, the connection electrode 400 may be formed to be greater than or equal to the height of the overvoltage protection part 300, and may be formed to be equal to or greater than the diameter or width. Preferably, the height of the connection electrode 400 may be higher than the height of the overvoltage protection part 300, and the plane width may be larger than the plane width of the overvoltage protection part 300.
  • each of the first and second connection electrodes 410 and 420 may be formed to have a height of 0.5 to 3 times the height of the overvoltage protection part 300.
  • the sum of the heights of the first and second connection electrodes 410 and 420 may be formed to be one to six times the height of the overvoltage protection part 300.
  • the sum of the heights of the first and second connection electrodes 410 and 420 may be formed to be 100 ⁇ m to 1000 ⁇ m, preferably 200 ⁇ m to 900 ⁇ m, and more preferably 400 ⁇ m to 700 ⁇ m. .
  • heights of the first and second connection electrodes 410 and 420 may be different from each other, and widths thereof may also be different from each other.
  • the width of the X direction of the connection electrode 400 may be formed from 1% to 90% of the length of the X direction of the laminate 100, and the width of the Y direction is 5 of the width of the Y direction of the laminate 100. It may be formed from% to 90%.
  • the width of the X direction and the width of the Y direction of the connection electrode 400 may be the same or different. That is, the width of at least one region including the X-direction width and the Y-direction width of the connection electrode 400 may be the same as or different from the width of the other region. In other words, at least one region of the connection electrode 400 may be formed in an asymmetric shape.
  • the width of the X and Y directions of the connection electrode 400 may be formed to be 1 to 10 times the width of the X and Y direction of the overvoltage protection part 300, and the X direction length and the Y direction of the internal electrode 200. It can be formed from 1/10 times to 1 times the width of the direction, respectively. That is, the width of the connection electrode 400 is shorter than the length and width of the laminate 100 in the X direction and the Y direction, is equal to or greater than the width of the overvoltage protection part 300, and is smaller than the width of the internal electrode 200. Or the same.
  • connection electrode 400 functions to connect the external electrode 500 and the internal electrode 200. Therefore, an overvoltage such as ESD applied through the external electrode 500 is transferred to the internal electrode 200 and the overvoltage protection unit 300 through the connection electrode 400, and the overvoltage through the overvoltage protection unit 300 is again. It is transferred to the external electrode 500 through the internal electrode 200 and the connection electrode 400.
  • the connection electrode 400 is formed in the center of the stack 100 and preferably wider than the width of the overvoltage protection unit 300, parasitic resistance and parasitic inductance may be reduced. That is, the parasitic resistance and the parasitic inductance can be reduced as compared with the case where the connection electrode 400 is formed outside the laminate 100.
  • the insertion loss of S21 can be reduced in the wireless communication frequency range of 700 MHz to 3 GHz.
  • the connection electrode 400 is formed to have a width wider than the width of the overvoltage protection part 300, it is possible to prevent deterioration due to repetitive ESD voltages and to suppress an increase in the discharge start voltage. That is, the overvoltage protection unit 300 bypasses the ESD voltage by generating a spark therein, for example, by ESD energy.
  • the connection electrode 400 is repeated according to a repetitive ESD voltage. This loss may cause an increase in discharge start voltage.
  • the thickness of the connection electrode 400 to 10 ⁇ m or more, the loss of the connection electrode 400 due to the repetitive ESD voltage can be prevented, thereby preventing the rise of the discharge start voltage.
  • the external electrodes 510, 520 and 500 may be provided on two surfaces of the stack 100 that face each other.
  • the external electrodes 500 are two opposite surfaces of the stack 100 in the Z direction, that is, the vertical direction. That is, it may be formed on the lower surface and the upper surface, respectively.
  • the external electrodes 500 may be connected to the connection electrodes 400 inside the stack 100, respectively.
  • any one of the external electrodes 500 may be connected to an internal circuit such as a printed circuit board inside the electronic device, and the other may be connected to the outside of the electronic device, for example, a metal case.
  • the first external electrode 510 may be connected to an internal circuit
  • the second external electrode 520 may be connected to a metal case.
  • the second external electrode 520 may be connected to the metal case through a conductive member, for example, a contactor or a conductive gasket.
  • the external electrode 500 may be formed on the entire surface of the lower surface and the upper surface, or may be formed on a portion of the lower surface and the upper surface. That is, the external electrode 500 may be formed in the remaining regions except for a predetermined width from edges of the lower and upper surfaces.
  • the external electrode 500 may be formed with an area of 50% to 95% except for a predetermined width from edges of the lower surface and the upper surface.
  • the external electrode 500 may be formed on the entire area of the lower surface and the upper surface, and may extend from the upper and lower portions thereof to be formed on the other side. That is, the external electrode 500 may extend to a predetermined region of the lower and upper surfaces facing in the Z direction as well as the surfaces facing the X and Y directions, respectively.
  • the external electrode 500 when immersed in the conductive paste, the external electrode 500 may be formed not only on the upper and lower surfaces of the Z direction but also on the side surfaces in the X and Y directions.
  • the external electrode 500 when formed by printing, deposition, sputtering, plating, or the like, the external electrode 500 may be formed on the lower and upper surfaces of the Z direction with a predetermined area. That is, the external electrode 500 may be formed not only on the lower surface mounted on the printed circuit board and the upper surface connected to the metal case, but also in other areas according to the formation method or process conditions.
  • the composite protection unit according to another embodiment of the present invention may further include an expansion unit 350 in which the overvoltage overvoltage protection unit 300 is widened at least one region. That is, the overvoltage protection unit 300 may further include an expansion unit 350 having a wide width of at least one region.
  • the expansion unit 350 may have a width of 1% to 150% of the diameter of the overvoltage protection unit 300. That is, the width of the expansion unit 350 may be formed to have a width of 1% to 150% of the width of other regions of the overvoltage protection unit 300 in which the expansion unit 350 is not formed.
  • the expansion unit 350 may be formed to have a diameter of the overvoltage protection unit 300 plus 10 ⁇ m to 100 ⁇ m.
  • the height of the expansion unit 350 may be formed to a height of 10% to 70% of the overall height of the overvoltage protection unit 300.
  • the expansion unit 350 is formed to block the short path of the overvoltage protection unit 300. That is, when an overvoltage such as ESD is continuously applied, a melting phenomenon of the connection electrode 400 occurs, and thus a connection phenomenon may occur due to the connection electrode material being adhered to the sidewall of the through hole of the overvoltage protection part 300. Can be. However, the short path may be blocked by the expansion unit 350 having a different diameter in the overvoltage protection unit 300.
  • the composite protective part according to another exemplary embodiment of the present invention may include a connection electrode 400 formed at the center of the laminate 100 and preferably formed in a wider width than the width of the overvoltage protection part 300.
  • parasitic inductance can be reduced. That is, the parasitic resistance and the parasitic inductance can be reduced as compared with the case where the connection electrode 400 is formed outside the laminate 100. Therefore, the insertion loss of S21 can be reduced in the wireless communication frequency range of 700 MHz to 3 GHz.
  • the connection electrode 400 is formed to have a width wider than the width of the overvoltage protection part 300, it is possible to prevent deterioration due to repetitive ESD voltages and to suppress an increase in the discharge start voltage.
  • the overvoltage protection unit 300 bypasses the ESD voltage by generating a spark therein, for example, by ESD energy.
  • the connection electrode 400 is repeated according to a repetitive ESD voltage. This loss may cause an increase in discharge start voltage.
  • the thickness of the connection electrode 400 to 10 ⁇ m or more, the loss of the connection electrode 400 due to the repetitive ESD voltage can be prevented, thereby preventing the rise of the discharge start voltage.
  • the composite protection device of the present invention may form the overvoltage protection member 320 or the overvoltage protection unit 300 of another embodiment in various forms, such as the overvoltage protection member 320 or the overvoltage protection unit 300.
  • Various embodiments of the present invention are illustrated in FIGS. 17 to 19. Hereinafter, the overvoltage protection member 320 is illustrated, but the overvoltage protection unit 300 of another embodiment is also the same.
  • FIG. 17 is a schematic cross-sectional view and a cross-sectional photograph of the overvoltage protection member 320 according to the first embodiment of the composite protection device of the present invention. That is, the overvoltage protection member 320 may be formed at least one region smaller or larger than another region, and FIG. 17 is an enlarged cross-sectional schematic diagram and cross-sectional photograph of a portion of the overvoltage protection member 320.
  • the overvoltage protection member 320 may be formed of an insulating material.
  • the insulating material may be a porous insulating material including a plurality of pores (not shown). That is, a plurality of pores (not shown) may be formed in the overvoltage protection member 320. By forming pores, it is possible to more easily bypass overvoltage such as ESD.
  • the overvoltage protection member 320 may be formed by mixing a conductive material and an insulating material.
  • the overvoltage protection member 320 may be formed by mixing a conductive ceramic and an insulating ceramic.
  • the overvoltage protection member 320 may be formed by mixing the conductive ceramic and the insulating ceramic in a mixing ratio of, for example, 10:90 to 90:10. As the mixing ratio of the insulating ceramic increases, the discharge starting voltage increases, and as the mixing ratio of the conductive ceramic increases, the discharge starting voltage decreases. Therefore, the mixing ratio of the conductive ceramic and the insulating ceramic can be adjusted to obtain a predetermined discharge start voltage.
  • the overvoltage protection member 320 may be formed in a predetermined stacked structure by stacking a conductive layer and an insulating layer. That is, the overvoltage protection member 320 may be formed by stacking the conductive layer and the insulating layer at least once and separating the conductive layer and the insulating layer. For example, the overvoltage protection member 320 may be formed in a two-layer structure by laminating a conductive layer and an insulating layer, and may be formed in a three-layer structure by laminating the conductive layer, the insulating layer, and the conductive layer.
  • the conductive layers 321a, 321b; 321 and the insulating layer 322 may be repeatedly stacked a plurality of times to form a stacked structure of three or more layers.
  • an overvoltage protection member 320 having a three-layer structure in which the first conductive layer 321a, the insulating layer 322, and the second conductive layer 321b are stacked is provided. Can be formed.
  • the conductive layer and the insulating layer are laminated a plurality of times, the uppermost layer and the lowest layer may be a conductive layer.
  • a plurality of pores may be formed in at least a portion of the conductive layer 321 and the insulating layer 322.
  • a plurality of pores may be formed in the insulating layer 322.
  • a void may be further formed in the overvoltage protection member 320 in a predetermined region.
  • a void may be formed between the layer in which the conductive material and the insulating material are mixed, and a gap may be formed between the conductive layer and the insulating layer. That is, the first mixed layer, the void, and the second mixed layer of the conductive material and the insulating material may be laminated, and the conductive layer, the void, and the insulating layer may be laminated.
  • the overvoltage protection member 320 may include the first conductive layer 321a, the first insulating layer 322a, the void 323, and the second insulating layer 322b as shown in FIG. 17C.
  • the second conductive layer 321b may be stacked. That is, the insulating layers 322a, 322b; 322 may be formed between the conductive layers 321a, 321b; 321, and the voids 323 may be formed between the insulating layers 322.
  • the overvoltage protection member 320 may be formed by repeatedly stacking the conductive layer, the insulating layer, and the gap. Meanwhile, when the conductive layer 321, the insulating layer 322, and the gap 323 are stacked, all of them may have the same thickness, and at least one thickness may be thinner than the others. For example, the void 323 may be thinner than the conductive layer 321 and the insulating layer 322.
  • the conductive layer 321 may be formed to have the same thickness as the insulating layer 322, or may be formed thicker or thinner than the insulating layer 322.
  • the void 323 may be formed by filling the polymer material and then performing a sintering process to remove the polymer material.
  • the first polymer material including conductive ceramics, the second polymer material including insulating ceramics, and the third polymer material not containing conductive ceramics or insulating ceramics are filled in the via hole, and then a firing process is performed. By removing the polymer material, a conductive layer, an insulating layer and a void can be formed.
  • the gap 323 may be formed without being divided into layers.
  • the insulating layer 322 may be formed between the conductive layers 321a and 321b, and a plurality of pores may be connected in the insulating layer 322 in a vertical direction or a horizontal direction to form a gap 323. That is, the gap 323 may be formed with a plurality of pores in the insulating layer 322.
  • the void 323 may be formed in the conductive layer 321 by a plurality of pores.
  • the conductive layer 321 used for the overvoltage protection member 320 can flow a current with a predetermined resistance.
  • the conductive layer 321 may be a resistor having several kilowatts to several hundred kilowatts.
  • the conductive layer 321 lowers the energy level when an overvoltage flows through the ESD, so that structural destruction of the composite protection device due to the overvoltage does not occur. That is, the conductive layer 321 serves as a heat sink that converts electrical energy into thermal energy.
  • the conductive layer 321 may be formed using a conductive ceramic, and the conductive ceramic may use a mixture including at least one of La, Ni, Co, Cu, Zn, Ru, and Bi.
  • the conductive layer 321 can be formed to a thickness of 1 ⁇ m to 50 ⁇ m. That is, when the conductive layer 321 is formed of a plurality of layers, the sum of the total thicknesses may be 1 ⁇ m to 50 ⁇ m.
  • the insulating layer 322 used for the overvoltage protection member 320 may be made of a discharge inducing material, and may function as an electrical barrier having a porous structure.
  • the insulating layer 322 may be formed of an insulating ceramic, and the insulating ceramic may be a ferroelectric material having a dielectric constant of about 50 to 500,000.
  • the insulating ceramic uses a mixture containing one or more of dielectric material powders such as MLCC, ZrO, ZnO, BaTiO 3 , Nd 2 O 5 , BaCO 3 , TiO 2 , Nd, Bi, Zn, Al 2 O 3 Can be formed.
  • the insulating layer 322 may have a porous structure in which a plurality of pores having a size of about 1 nm to about 5 ⁇ m are formed to have a porosity of about 30% to about 80%.
  • the shortest distance between the pores may be about 1nm to 5 ⁇ m. That is, the insulating layer 322 is formed of an electrically insulating material that does not flow current, but since pores are formed, current may flow through the pores.
  • the discharge start voltage may decrease.
  • the discharge start voltage may increase.
  • the pore size and the porosity of the insulating layer 322 may be adjusted to adjust the discharge start voltage while maintaining the shape of the overvoltage protection member 320.
  • the overvoltage protection member 320 is formed of a mixed material of an insulating material and a conductive material
  • the insulating material may use an insulating ceramic having fine porosity and porosity.
  • the insulating layer 322 has a resistance lower than that of the sheet due to the fine pores, and partial discharge may be performed through the fine pores.
  • the micropore is formed in the insulating layer 322 and partial discharge is performed through the micropore.
  • the insulating layer 322 may be formed to a thickness of 1 ⁇ m 50 ⁇ m. That is, when the insulating layer 322 is formed of a plurality of layers, the sum of the total thicknesses may be formed to be 1 ⁇ m to 50 ⁇ m.
  • the overvoltage protection member 320 mixes at least one conductive material selected from Ru, Pt, Pd, Ag, Au, Ni, Cr, W, Fe, and the like with organic materials such as polyvinyl alcohol (PVA) or polyvinyl butyral (PVB). It can be formed from one material.
  • the overvoltage protection member 320 may be formed by further mixing a varistor material such as ZnO or an insulating ceramic material such as Al 2 O 3 with the mixed material.
  • the overvoltage protection member 320 may include a gap 323 as shown in FIG. 18A. That is, the overvoltage protection member 320 may have a void 323 formed in the opening formed through the sheet without filling the overvoltage protection material.
  • the overvoltage protection member 320 may have a porous insulating material formed in at least one region of the through hole. That is, as shown in (b) of FIG. 18, a porous insulating material may be applied to the sidewall of the through-hole to form an insulating layer 322, and as shown in (c) of FIG. 18, upper and lower portions of the through-hole.
  • An insulating layer 322a, 322b; 322 may be formed on at least one of the insulating layers 322a, 322b;
  • the overvoltage protection member 320 includes discharge electrodes 311, 312, and 310. And a discharge induction layer 330 formed between the overvoltage protection member 320. That is, the discharge induction layer 330 may be further formed between the discharge electrode 310 and the overvoltage protection member 320.
  • the discharge electrode 310 may include conductive layers 311a and 312a and porous insulating layers 311b and 312b formed on at least one surface of the conductive layers 311a and 311a.
  • the discharge electrode 310 may be a conductive layer on which a porous insulating layer is not formed.
  • the discharge induction layer 330 may be formed when the overvoltage protection member 320 is formed using a porous insulating material.
  • the discharge induction layer 330 may be formed of a dielectric layer having a higher density than the overvoltage protection member 320. That is, the discharge induction layer 330 may be formed of a conductive material or may be formed of an insulating material.
  • the overvoltage protection member 320 is formed by using porous ZrO and the internal electrode 200 is formed by using Al
  • a discharge induction layer of AlZrO is formed between the overvoltage protection member 320 and the discharge electrode 310. 330 may be formed.
  • the discharge induction layer 330 may be formed of TiAlO. That is, the discharge induction layer 330 may be formed by the reaction of the discharge electrode 310 and the overvoltage protection member 320. Of course, the discharge induction layer 330 may be formed by further reacting the sheet material. In this case, the discharge induction layer 330 may be formed by a reaction of an internal electrode material (for example, Al), a protection material (for example, ZrO), and a sheet material (for example, BaTiO 3 ). In addition, the discharge induction layer 330 may be formed by reacting with the sheet material.
  • an internal electrode material for example, Al
  • a protection material for example, ZrO
  • a sheet material for example, BaTiO 3
  • the discharge induction layer 330 may be formed in a region where the overvoltage protection member 320 contacts the sheet by the reaction between the overvoltage protection member 320 and the sheet. Therefore, the discharge induction layer 330 may be formed to surround the overvoltage protection member 320. In this case, the discharge induction layer 330 between the overvoltage protection member 320 and the discharge electrode 310 and the discharge induction layer 330 between the overvoltage protection member 320 and the sheet may have different compositions. On the other hand, the discharge induction layer 330 may be formed by removing at least one region, and may be formed differently from other regions in at least one region.
  • the discharge induction layer 330 may be discontinuously formed by removing at least one region, and the thickness of the discharge induction layer 330 may be differently formed.
  • the discharge induction layer 330 may be formed during the firing process. That is, the discharge induction layer 330 may be formed between the discharge electrode 310 and the overvoltage protection member 320 by diffusion of the discharge electrode material, the ESD protection material, and the like during the firing process at a predetermined temperature. Meanwhile, the discharge induction layer 330 may be formed to have a thickness of 10% to 70% of the thickness of the overvoltage protection member 320. That is, some thicknesses of the overvoltage protection member 320 may be changed to the discharge induction layer 330.
  • the discharge induction layer 330 may be formed thinner than the overvoltage protection member 320, and may be formed to be thicker, equal to, or thinner than the discharge electrode 310.
  • the discharge induction layer 330 may reduce the level of the discharge energy of the ESD voltage induced by the overvoltage protection member 320. Therefore, it is possible to discharge the ESD voltage more easily to improve the discharge efficiency.
  • the discharge induction layer 330 since the discharge induction layer 330 is formed, diffusion of heterogeneous materials into the overvoltage protection member 320 may be prevented. That is, diffusion of the sheet material and the internal electrode material into the overvoltage protection member 320 may be prevented, and external diffusion of the overvoltage protection material may be prevented.
  • the discharge induction layer 330 may be used as a diffusion barrier, thereby preventing breakage of the overvoltage protection member 320.
  • the overvoltage protection member 320 may further include a conductive material, in which case the conductive material may be coated with an insulating ceramic.
  • the conductive material may be coated using NiO, CuO, WO, or the like. have.
  • a conductive material may be used as the material of the overvoltage protection member 320 together with the porous insulating material.
  • the discharge induction layer 330 may be formed between the conductive layer 321 and the insulating layer 322.
  • the discharge electrode 310 may be formed in a shape in which some regions are removed. That is, the discharge induction layer 330 may be formed in a region in which the discharge electrode 310 is partially removed and removed. However, even when the discharge electrode 310 is partially removed, the electrical characteristics are not degraded because the shape of the discharge electrode 310 is maintained as a whole.
  • the discharge electrode 310 may be formed of a metal or a metal alloy on which an insulating layer is formed. That is, the discharge electrode 310 may include conductive layers 311a and 312a and porous insulating layers 311b and 312b formed on at least one surface of the conductive layers 311a and 312a. In this case, the porous insulating layers 311b and 312b may be formed on at least one surface of the discharge electrode 310. That is, only one surface which is not in contact with the overvoltage protection member 320 and the other surface which is in contact with each other may be formed, and one surface which is not in contact with the overvoltage protection member 320 and the other surface which is in contact with the overvoltage protection member 320. Can be formed on both.
  • the porous insulating layers 311b and 312b may be formed on at least one surface of the conductive layers 311a and 312a or may be formed on at least a portion thereof.
  • at least one region may be removed from the porous insulating layers 311b and 312b or may have a thin thickness. That is, the porous insulating layers 311b and 312b may not be formed in at least one region on the conductive layers 311a and 312a, and the thickness of at least one region may be thinner or thicker than the thickness of other regions.
  • the discharge electrode 310 may be formed of Al to form an oxide film on the surface of the discharge electrode and maintain conductivity. That is, when Al is formed on the sheet, it comes into contact with air.
  • the internal electrode 200 may be formed of Al coated with Al 2 O 3 , which is a porous thin insulating layer on the surface.
  • various metals having an insulating layer, preferably a porous insulating layer, may be used on the surface.
  • the overvoltage protection member 320 is formed by embedding or applying an overvoltage protection material in a through hole formed in the sheet 106.
  • the overvoltage protection member 320 may be formed in a predetermined region of the sheet, and the discharge electrode 310 may be formed to contact the overvoltage protection member 320, respectively. That is, as shown in the cross-sectional view of another example of FIG. 20, two discharge electrodes 311 and 312 are formed on the sheet 105 at predetermined intervals in the horizontal direction, and overvoltage protection is performed between the two discharge electrodes 311 and 312. Member 320 may be formed.
  • the overvoltage protection unit 2230 may include at least two discharge electrodes 311 and 312 formed on the same plane and at least one ESD overvoltage protection member 320 provided between the at least two discharge electrodes 311 and 312. It may include. That is, two discharge electrodes 311 and 312 may be provided in a direction in which the external electrodes 2240 are formed to be spaced apart from each other in a predetermined region of the sheet, for example, the center, that is, in the X direction, and at least in a direction orthogonal thereto Two or more discharge electrodes (not shown) may be further provided.
  • At least one discharge electrode may be formed in a direction orthogonal to the direction in which the external electrode 2240 is formed, and at least one discharge electrode may be formed to face each other at a predetermined interval.
  • the overvoltage protection unit 2230 may include a fifth sheet 105 and first and second discharge electrodes 311 and 312 spaced apart from the fifth sheet 105 as shown in FIG. 9.
  • the overvoltage protection member 320 formed on the fifth sheet 105 may be included.
  • the overvoltage protection member 320 may be formed such that at least a portion thereof is connected to the first and second discharge electrodes 311 and 312.
  • the first discharge electrode 311 is formed on the fifth sheet 105 by being connected to the external electrode 2241 and has a distal end connected with the overvoltage protection member 320.
  • the second discharge electrode 312 is connected to the external electrode 2242 so as to be spaced apart from the first discharge electrode 311 on the fifth sheet 105, and the distal end thereof is connected to the overvoltage protection member 320.
  • the overvoltage protection member 320 may be formed to be connected to the first and second discharge electrodes 311 and 312 at a predetermined region, for example, a central portion of the fifth sheet 105. In this case, the overvoltage protection member 320 may be formed to partially overlap the first and second discharge electrodes 311 and 312.
  • the overvoltage protection member 320 may be formed on the exposed fifth sheet 105 between the first and second discharge electrodes 311 and 312 to be connected to the side surfaces of the first and second discharge electrodes 311 and 312. have.
  • the overvoltage protection member 320 may be spaced without contacting the first and second discharge electrodes 311 and 312, the ESD overvoltage protection member to overlap the first and second discharge electrodes 311 and 312. It is desirable to form 320. Even when the discharge electrode 310 and the overvoltage protection member 320 are formed on the same plane, the external electrode 2240 is formed to at least partially overlap the internal electrode 200, and the outermost sheet, that is, the first and the first The ten sheets 101 and 110 may be formed to have a lower dielectric constant than the remaining sheets, that is, the second to ninth sheets 102 to 109 therebetween.
  • the composite protection unit according to the embodiments of the present invention has been described based on a suppressor type including an overvoltage protection member.
  • various types of overvoltage protection components may be used as the composite protection unit. That is, various types of overvoltage protection components having a function of bypassing overvoltage, blocking leakage voltage or current such as electric shock voltage, and transmitting a communication signal may be used as the composite protection unit.
  • a structure in which a varistor and a capacitor are combined may be used.
  • the complex protection device may be provided between the metal case of the electronic device, that is, the side case 1110 and the internal circuit, that is, the main board 1500. That is, the contact portion 2100 may be connected to the ground terminal, and the complex protection unit 2200 may be connected to the side case 1110 through the conductive portion 2300.
  • the ground terminal may be provided in the main board 1500. Therefore, the electric shock voltage transmitted from the ground terminal of the internal circuit to the metal case can be cut off, and overvoltage such as an ESD applied from the outside to the internal circuit can be bypassed to the ground terminal.
  • the composite protection device may have a discharge start voltage higher than the rated voltage and lower than the ESD voltage.
  • the composite protection device may have a rated voltage of 100V to 240V, an electric shock voltage may be equal to or higher than an operating voltage of a circuit, and an ESD voltage generated by external static electricity or the like may be higher than an electric shock voltage.
  • the communication signal from the outside that is, the AC frequency may be transmitted to the internal circuit by the capacitor formed between the internal electrode (200).
  • the composite protection device can block the electric shock voltage, bypass the ESD voltage to the ground terminal, and apply a communication signal to the internal circuit.
  • the composite protection unit of the composite protection device by stacking a plurality of sheets with high breakdown voltage characteristics to form a laminate (2210), such as a metal case in the internal circuit of a defective charger (for example 310V)
  • a laminate such as a metal case in the internal circuit of a defective charger (for example 310V)
  • the insulation resistance state can be maintained so that a leakage current does not flow when an electric shock voltage is introduced, and the overvoltage protection member 320 also bypasses the overvoltage when an overvoltage flows from the metal case to the internal circuit, thereby maintaining a high insulation resistance state without damaging the device. I can keep it.
  • the overvoltage protection member 320 includes a porous insulating material made of a porous structure to flow a current through the fine pores, and further includes a conductive material that converts electrical energy into thermal energy by lowering an energy level, thereby being introduced from the outside. Overvoltage can be bypassed to protect the circuit. Therefore, the insulation is not destroyed even by overvoltage, and thus, it is possible to continuously prevent the electric shock voltage generated in the defective charger from being transmitted to the user through the metal case of the electronic device provided in the electronic device having the metal case.
  • the general MLCC Multi Layer Capacitance Circuit
  • the overvoltage protection member 320 including the porous insulating material is formed between the internal electrodes 200 so that at least a part of the laminate 2210 is not destroyed by passing the overvoltage through the overvoltage protection member 320. Do not.
  • a predetermined parasitic capacitance may be generated between the external electrode 2240 and the internal electrode 200, and the external electrode 2240 and the internal electrode 200 may be generated.
  • the capacitance of the composite protection element can be adjusted by adjusting the overlap area of
  • the sheet 100 having a high dielectric constant is used to maintain the dispersion of the capacitance of the composite protective element within 5%. Therefore, as the dielectric constant of the sheet 100 increases, the influence of the parasitic capacitance between the inner electrode 200 and the outer electrode 2240 increases. However, since the dielectric constant of the outermost sheet is lower than that of the remaining sheets therebetween, the influence of the parasitic capacitance between the inner electrode 200 and the outer electrode 2240 can be reduced.
  • the present invention has been described by taking an example of a composite protection device provided in the electronic device of the smart phone to protect the electronic device from overvoltage such as ESD applied from the outside, and protects the user by blocking the leakage current from the inside of the electronic device.
  • the composite protection device of the present invention may be provided in various electric and electronic devices in addition to the smart phone to perform two or more protection functions.

Abstract

The present invention provides a complex protective element and an electronic device comprising the same. The complex protective element is provided between a conductor, which a user of the electronic device can contact, and an inner circuit. The complex protective element comprises: a contact portion, at least a part of which contacts the inner circuit of the electronic device; a complex protective portion having a surface coupled to the contact portion; and a conductive portion having an area to which another surface of the complex protective portion is coupled, the conductive portion being retained inside the electronic device.

Description

복합 보호 소자 및 이를 구비하는 전자기기Composite protection device and electronic device having same
본 발명은 복합 보호 소자에 관한 것으로, 특히 각종 전자기기에 마련되어 전압 및 전류로부터 전자기기 또는 사용자를 보호할 수 있는 복합 보호 소자에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite protection device, and more particularly, to a composite protection device capable of protecting an electronic device or a user from voltage and current.
스마트폰 등과 같이 다기능을 가지는 전자기기에는 그 기능에 따라 다양한 부품들이 집적되어 있다. 또한, 전자기기에는 기능 별로 다양한 주파수 대역 무선 LAN(wireless LAN), 블루투스(bluetooth), GPS(Global Positioning System) 등 다른 주파수 대역 등을 수신할 수 있는 안테나가 구비되며, 이중 일부는 내장형 안테나로서, 전자기기를 구성하는 케이스에 설치될 수 있다. 따라서, 케이스에 설치된 안테나와 전자기기의 내부 회로 사이에 전기적 접속을 위한 컨택터가 설치된다.Electronic devices having multifunction such as smartphones are integrated with various components according to their functions. In addition, the electronic device is provided with an antenna capable of receiving various frequency bands such as wireless LAN, Bluetooth, and Global Positioning System (GPS) in various frequency bands, and some of them are built-in antennas. It may be installed in the case constituting the electronic device. Therefore, a contactor for electrical connection is provided between the antenna installed in the case and the internal circuit of the electronic device.
한편, 최근 들어 스마트폰의 고급스런 이미지와 내구성이 강조되면서 금속 소재를 이용한 단말기의 보급이 증가하고 있다. 즉, 테두리를 금속으로 제작하거나, 전면의 화면 표시부를 제외한 나머지 케이스를 금속으로 제작한 스마트폰의 보급이 증가하고 있다.On the other hand, in recent years, with the emphasis on luxury image and durability of smart phones, the spread of terminals using metal materials is increasing. In other words, the spread of smart phones, which are made of metal with the edges or with the case made of metal other than the front screen display unit, is increasing.
그런데, 금속 케이스를 이용한 스마트폰에 비정품 충전기를 이용한 충전 중 스마트폰을 이용하면 감전 사고가 발생할 수 있다. 즉, 과전류 보호 회로가 내장되지 않거나 저품질의 소자를 사용한 비정품 충전기 또는 불량 충전기를 이용하여 충전함으로써 쇼크 전류(Shock Current)가 발생되고, 이러한 쇼크 전류는 스마트폰의 그라운드 단자로 도전되고, 다시 금속 케이스로 도전되어 금속 케이스에 접촉된 사용자가 감전될 수 있다.However, using a smartphone during charging using a non-genuine charger in a smartphone using a metal case may cause an electric shock accident. That is, a shock current is generated by charging using a non-genuine charger or a poor charger using a low-quality device without built-in overcurrent protection circuit, and the shock current is conducted to the ground terminal of the smartphone, and then the metal case Electric shock may be caused to the user who is in contact with the metal case.
따라서, 정전기에 의한 내부 회로의 파손 및 사용자의 감전 사고를 방지할 수 있는 부품이 필요하다.Accordingly, there is a need for a component capable of preventing damage to an internal circuit and electrocution by a user due to static electricity.
(선행기술문헌)(Prior art document)
한국등록특허 제10-0876206호Korea Patent Registration No. 10-0876206
본 발명은 스마트폰 등의 전자기기에 마련되어 전압 및 전류로부터 전자기기 또는 사용자를 보호할 수 있는 복합 보호 소자 및 이를 구비하는 전자기기를 제공한다.The present invention is provided with an electronic device, such as a smart phone provides a composite protection device that can protect the electronic device or the user from voltage and current and an electronic device having the same.
본 발명은 ESD(ElectroStatic Discharge) 등의 과전압에 의해 절연 파괴되지 않는 복합 보호 소자 및 이를 구비하는 전자기기를 제공한다.The present invention provides a composite protection device that does not break down by overvoltage, such as ESD (ElectroStatic Discharge), and an electronic device having the same.
본 발명의 일 양태에 따른 복합 보호 소자는 전자기기의 사용자가 접촉 가능한 도전체와 내부 회로 사이에 마련되는 복합 보호 소자로서, 적어도 일부가 전자기기의 내부 회로와 접촉되는 컨택부; 일면이 상기 컨택부와 결합된 복합 보호부; 일 영역에 상기 복합 보호부의 타면이 결합되고, 상기 전자기기 내부에 고정되는 도전부를 포함한다.A composite protection device according to an aspect of the present invention is a composite protection device provided between the conductor and the internal circuit that the user of the electronic device can contact, at least a portion of the contact portion in contact with the internal circuit of the electronic device; A composite protective part having one surface coupled with the contact part; The other surface of the composite protection unit is coupled to one region, and includes a conductive unit fixed inside the electronic device.
외부로부터 인가되는 과도 전압을 상기 전자기기 내부의 접지 단자로 바이패스시키고, 상기 전자기기 내부로부터 누설되는 전압 또는 전류를 차단시키며, 통신 신호를 전달한다.Bypassing the transient voltage applied from the outside to the ground terminal inside the electronic device, cut off the voltage or current leaking from the inside of the electronic device, and transmits a communication signal.
상기 컨택부 상에 마련된 도전성 접착 부재를 더 포함한다.Further comprising a conductive adhesive member provided on the contact portion.
상기 도전부와 일측이 접촉되어 마련된 지지부를 더 포함한다.It further includes a support provided in contact with the conductive portion one side.
상기 지지부는 상기 컨택부 및 복합 보호부의 높이로 마련되어 일측이 상기 도전부에 접촉되고 타측이 상기 전자기기 내부에 접촉되며, 상기 지지부는 절연성이다.The support part is provided at a height of the contact part and the composite protection part, and one side contacts the conductive part, the other side contacts the inside of the electronic device, and the support part is insulative.
상기 지지부는 상기 도전부와 상기 전자기기의 고정부 사이에 마련되며, 상기 지지부는 도전성이다.The support portion is provided between the conductive portion and the fixing portion of the electronic device, and the support portion is conductive.
본 발명의 다른 양태에 따른 전자기기는 사용자가 접촉 가능한 도전체와 내부 회로 사이에 복합 보호 소자가 마련되는 전자기기로서, 윈도우 및 표시부와, 상기 표시부 하측에 마련된 브라켓과, 상기 브라켓 하측에 마련된 메인 모드와, 상기 메인 보드를 덮도록 마련된 커버 케이스와, 상기 윈도우로부터 커버 케이스 사이의 측면 공간을 폐쇄하는 측면 케이스를 포함하고, 상기 복합 보호 소자가 상기 측면 케이스의 내측에 마련된다.An electronic device according to another aspect of the present invention is an electronic device in which a composite protection device is provided between a user contactable conductor and an internal circuit, and includes a window and a display unit, a bracket provided below the display unit, and a main provided below the bracket. A mode, a cover case provided to cover the main board, and a side case for closing the side space between the window and the cover case, the composite protective element is provided inside the side case.
상기 복합 보호 소자는, 적어도 일부가 전자기기의 내부 회로와 접촉되는 컨택부; 일면이 상기 컨택부와 결합된 복합 보호부; 일 영역에 상기 복합 보호부의 타면이 결합되고, 상기 전자기기 내부에 고정되는 도전부를 포함한다.The composite protection device may include a contact portion at least partially in contact with an internal circuit of an electronic device; A composite protective part having one surface coupled with the contact part; The other surface of the composite protection unit is coupled to one region, and includes a conductive unit fixed inside the electronic device.
상기 측면 케이스의 내측에 마련되어 상기 복합 보호 소자를 고정하는 고정부를 더 포함한다.It is provided on the inner side of the case further includes a fixing part for fixing the composite protection element.
상기 도전부가 상기 고정부에 고정된다.The conductive portion is fixed to the fixed portion.
상기 컨택부는 메인 보드의 내부 회로와 전기적으로 연결된다.The contact part is electrically connected to an internal circuit of the main board.
상기 브라켓은 적어도 일부가 도전성이고, 상기 상기 컨택부가 상기 브라켓과 접촉되며, 상기 브라켓이 상기 메인 보드의 내부 회로와 연결된다.The bracket is at least partially conductive, the contact portion is in contact with the bracket, and the bracket is connected to an internal circuit of the main board.
본 발명의 실시 예들에 따른 복합 보호 소자는 전자기기의 금속 케이스와 내부 회로 사이에 마련되어 감전 전압을 차단하고 ESD 등의 과전압을 접지 단자로 바이패스시킨다. 즉, 복합 보호 소자는 컨택부, 복합 보호부 및 도전부를 포함하여 전자기기의 측면 케이스와 내부 회로 사이에 마련될 수 있다. 즉, 컨택부와 복합 보호부가 결합된 결합체가 판 형상의 도전부의 일단에 고정되고, 도전부의 타단이 측면 케이스의 내측에 마련된 고정부에 의해 고정된다. 이때, 측면 케이스에 지지부가 마련되어 복합 보호 소자의 체결을 원활하게 할 수 있다.A composite protection device according to embodiments of the present invention is provided between a metal case of an electronic device and an internal circuit to block an electric shock voltage and bypass an overvoltage such as an ESD to a ground terminal. That is, the composite protection element may be provided between the side case of the electronic device and the internal circuit including the contact portion, the composite protection portion, and the conductive portion. That is, the combined body of the contact portion and the composite protection portion is fixed to one end of the plate-shaped conductive portion, and the other end of the conductive portion is fixed by the fixing portion provided inside the side case. At this time, the support part is provided in the side case to facilitate the fastening of the composite protective element.
이러한 복합 보호 소자는 절연 상태를 유지하여 내부 회로로부터 누설되는 감전 전압을 차단하고, 내부에 과전압을 방호하여 내부 회로를 보호하기 위한 보호부를 구비하여 과전압이 전자기기 내부로 유입되는 것을 방지한다. 따라서, 전압 및 전류로부터 전자기기 및 사용자를 보호할 수 있다.The composite protection device maintains an insulation state to block an electric shock voltage leaking from an internal circuit, and provides a protection unit for protecting an internal circuit by protecting an overvoltage therein to prevent an overvoltage from flowing into the electronic device. Thus, it is possible to protect the electronic device and the user from voltage and current.
도 1 내지 도 3은 본 발명의 실시 예들에 따른 복합 보호 소자가 적용되는 전자기기의 전면 사시도, 후면 사시도 및 분리 사시도.1 to 3 is a front perspective view, a rear perspective view and an exploded perspective view of an electronic device to which the composite protection device according to embodiments of the present invention is applied.
도 4는 본 발명의 실시 예들에 따른 복합 보호 소자가 장착된 전자기기의 일 영역의 도면.4 is a view of a region of an electronic device equipped with a composite protection device according to embodiments of the present invention.
도 5은 본 발명의 제 1 실시 예에 따른 복합 보호 소자가 장착된 전자기기의 일 영역의 확대도.5 is an enlarged view of a region of an electronic device equipped with a composite protection device according to a first embodiment of the present invention.
도 6은 복합 보호 소자의 단면도.6 is a sectional view of a composite protective element.
도 7 및 도 8은 본 발명의 일 실시 예에 따른 복합 보호 소자의 복합 보호부의 사시도 및 단면도.7 and 8 are a perspective view and a cross-sectional view of the composite protection of the composite protection device according to an embodiment of the present invention.
도 9 내지 도 12는 본 발명의 제 2 내지 제 5 실시 예들에 따른 복합 보호 소자가 장착된 전자기기의 일 영역의 확대도.9 to 12 are enlarged views of one region of an electronic device equipped with the composite protection device according to the second to fifth embodiments of the present invention.
도 13 내지 도 17은 본 발명의 다른 실시 예에 따른 복합 보호부의 도면.13 to 17 is a view of the composite protection unit according to another embodiment of the present invention.
도 18 내지 도 20은 본 발명이 다양한 실시 예들에 따른 복합 보호부의 단면도.18 to 20 are cross-sectional views of a composite protection unit according to various embodiments of the present disclosure.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information.
도 1 내지 도 3은 본 발명의 실시 예들에 따른 복합 보호 소자가 적용되는 전자기기의 전면 사시도, 후면 사시도 및 분리 사시도이다.1 to 3 are a front perspective view, a rear perspective view, and an exploded perspective view of an electronic device to which the composite protection device according to embodiments of the present invention is applied.
도 1 내지 도 3을 참조하면, 전자기기(1000)는 외관을 이루는 케이스(1100)를 포함하고, 케이스(1100) 내부에 전자기기(1000)의 복수의 기능을 수행하기 위한 복수의 기능 모듈 및 회로 등이 마련된다. 이러한 케이스(1100)는 측면 케이스(1110) 및 커버 케이스(1120)를 포함할 수 있다. 여기서, 측면 케이스(1110)는 전자기기(1000)의 적어도 측면을 이룰 수 있고, 커버 케이스(1120)는 전자기기(1000)의 후면에 마련되어 배터리(1200)를 덮도록 마련될 수 있다. 한편, 커버 케이스(1120)는 일체로 마련되거나 착탈 가능하게 마련될 수 있는데, 배터리(1200)가 일체형일 경우 커버 케이스(1120)는 일체로 형성될 수 있고, 배터리(1200)가 착탈 가능할 경우 커버 케이스(1120) 또한 착탈 가능할 수 있다. 물론, 측면 케이스(1110)와 커버 케이스(1120)가 일체로 제작될 수도 있다. 즉, 측면 케이스(1110) 및 커버 케이스(1120)의 구분없이 측면 및 후면을 폐쇄하고 상면을 노출시키도록 케이스(1100)가 형성될 수 있다. 이러한 케이스(1100)는 적어도 일부가 합성수지를 사출하여 형성되거나 금속 재질로 형성될 수 있다. 즉, 측면 케이스(1110) 및 커버 케이스(1120)의 적어도 일부가 금속 재질로 형성될 수 있는데, 예를 들어 전자기기(1000)의 측면을 이루는 측면 케이스(1110)가 금속 재질로 형성될 수 있다. 물론, 커버 케이스(1120) 또한 금속 재질로 형성될 수 있다. 케이스(1100)로 이용되는 금속 재질로는 예를 들어 스테인레스 스틸(STS), 티타늄(Ti), 알루미늄(Al) 등을 포함할 수 있다. 한편, 도 3에 도시된 바와 같이 측면 케이스(1110) 내측에 브라켓(1400)이 마련될 수 있고, 브라켓(1400) 상측에 디스플레이부(1310)가 마련될 수 있다. 또한, 브라켓(1400)과 커버 케이스(1120) 사이에 메인 보드(1500) 및 배터리(1200)이 마련될 수 있다. 이때, 배터리(1200)는 메인 보드(1500)의 소정 영역에 마련될 수 있다. 즉, 메인 보드(1500)의 소정 영역이 제거되고 제거된 영역에 배터리(1200)가 마련될 수 있다.1 to 3, the electronic device 1000 includes a case 1100 forming an appearance, and includes a plurality of functional modules for performing a plurality of functions of the electronic device 1000 inside the case 1100. A circuit or the like is provided. The case 1100 may include a side case 1110 and a cover case 1120. Here, the side case 1110 may form at least a side of the electronic device 1000, and the cover case 1120 may be provided on the rear surface of the electronic device 1000 to cover the battery 1200. Meanwhile, the cover case 1120 may be integrally provided or detachably provided. When the battery 1200 is integrated, the cover case 1120 may be integrally formed, and the cover may be detached when the battery 1200 is detachable. Case 1120 may also be removable. Of course, the side case 1110 and the cover case 1120 may be integrally manufactured. That is, the case 1100 may be formed to close the side and rear surfaces and expose the top surface without distinguishing the side case 1110 and the cover case 1120. At least a part of the case 1100 may be formed by injecting synthetic resin or formed of a metal material. That is, at least a part of the side case 1110 and the cover case 1120 may be formed of a metal material. For example, the side case 1110 constituting the side of the electronic device 1000 may be formed of a metal material. . Of course, the cover case 1120 may also be formed of a metal material. The metal material used for the case 1100 may include, for example, stainless steel (STS), titanium (Ti), aluminum (Al), or the like. Meanwhile, as shown in FIG. 3, the bracket 1400 may be provided inside the side case 1110, and the display unit 1310 may be provided on the bracket 1400. In addition, a main board 1500 and a battery 1200 may be provided between the bracket 1400 and the cover case 1120. In this case, the battery 1200 may be provided in a predetermined area of the main board 1500. That is, the battery 1200 may be provided in a region where a predetermined region of the main board 1500 is removed.
전자기기(1000)의 상면에는 디스플레이부(1310), 음향 출력 모듈(1320), 카메라 모듈(1330a) 등이 배치될 수 있다. 또한, 전자기기(1000)의 일 측면에는 마이크(1340), 인터페이스(1350) 등이 배치될 수 있다. 즉, 전자기기(1000)의 상면에 디스플레이부(1310), 음향 출력 모듈(1320) 및 카메라 모듈(1330a) 등이 배치되고, 전자기기(1000)의 측면 케이스(1110)의 소정 영역, 즉 아래 측면에 마이크(1340), 인터페이스(1350) 등이 배치될 수 있다. 디스플레이부(1310)는 전자기기(1000)의 상면에 배치되어 상면의 대부분을 차지한다. 즉, 디스플레이부(1310)는 X 및 Y 방향으로 각각 소정의 길이를 갖는 대략 직사각형의 형상으로 마련되며, 전자기기(1000) 상면의 중앙 영역을 포함하여 전자기기(1000) 상면의 대부분의 영역에 형성된다. 이때, 전자기기(1000)의 상면 외곽, 즉 측면 케이스(1110)와 디스플레이부(1310) 사이에는 디스플레이부(1310)가 차지하지 않는 소정의 공간이 마련되는데, X 방향으로 디스플레이부(1310)의 상측에 음향 출력 모듈(1320) 및 카메라 모듈(1330a)이 마련되고, 하측에 전면 입력부(1360)를 포함한 사용자 입력부가 마련될 수 있다. 또한, X 방향으로 연장되는 디스플레이부(1310)의 두 가장자리와 전자기기(1000)의 테두리 사이, 즉 Y 방향으로 디스플레이부(1310)와 전자기기(1000)의 측면 케이스(1110) 사이에 베젤 영역이 마련될 수 있다. 물론, 별도의 베젤 영역이 마련되지 않고 디스플레이부(1310)가 Y 방향으로 전자기기(1000)의 테두리까지 확장되어 마련될 수 있다.The display unit 1310, the sound output module 1320, the camera module 1330a, and the like may be disposed on the upper surface of the electronic device 1000. In addition, a microphone 1340, an interface 1350, and the like may be disposed on one side of the electronic device 1000. That is, the display unit 1310, the sound output module 1320, the camera module 1330a, and the like are disposed on the upper surface of the electronic device 1000, and the predetermined area of the side case 1110 of the electronic device 1000, that is, the lower portion of the electronic device 1000. The microphone 1340, the interface 1350, and the like may be disposed on the side surface. The display unit 1310 is disposed on the upper surface of the electronic device 1000 and occupies most of the upper surface. That is, the display unit 1310 is provided in a substantially rectangular shape having a predetermined length in the X and Y directions, respectively, and includes the central area of the upper surface of the electronic apparatus 1000 in most regions of the upper surface of the electronic apparatus 1000. Is formed. In this case, a predetermined space that is not occupied by the display unit 1310 is provided between the upper surface of the electronic apparatus 1000, that is, between the side case 1110 and the display unit 1310, and the display unit 1310 in the X direction. The audio output module 1320 and the camera module 1330a may be provided at an upper side thereof, and a user input unit including the front input unit 1360 may be provided at a lower side thereof. In addition, a bezel area between two edges of the display unit 1310 extending in the X direction and the edge of the electronic device 1000, that is, between the display unit 1310 and the side case 1110 of the electronic device 1000 in the Y direction. This can be arranged. Of course, the display unit 1310 may be extended to the edge of the electronic device 1000 in the Y direction without a separate bezel area.
디스플레이부(1310)는 시각 정보를 출력하고 사용자의 촉각 정보를 입력할 수 있다. 이를 위해 디스플레이부(1310)에는 터치 입력 장치가 마련될 수 있다. 터치 입력 장치는 단말기 바디의 전면을 커버하는 윈도우(미도시)와, 시작 정보를 출력하는 예를 들어 액정표시장치 등의 표시부(미도시)와, 윈도우와 표시부 사이에 마련된 터치 센서(미도시)를 포함할 수 있다. 터치 센서는 예를 들어 소정 두께의 투명한 판 상에 일 방향 및 이와 직교하는 타 방향으로 복수의 전극이 소정 간격 이격되어 형성되고 그 사이에 유전층이 마련되어 사용자의 터치 입력을 검출할 수 있다. 즉, 터치 센서는 복수의 전극이 예를 들어 격자 모양으로 배열되고, 사용자의 터치 입력에 따른 전극 사이의 거리에 따른 정전 용량을 검출할 수 있다. 또한, 디스플레이부(1310)에는 사용자의 터치 또는 압력 정보를 입력하는 압력 센서를 더 포함할 수 있다. 따라서, 터치 센서는 사용자가 터치하는 수평 방향, 즉 서로 직교하는 X 방향 및 Y 방향의 좌표를 검출하고, 압력 센서는 X 방향 및 Y 방향 뿐만 아니라 수직 방향, 즉 Z 방향의 좌표를 검출할 수 있다. The display unit 1310 may output visual information and input tactile information of the user. To this end, the display unit 1310 may be provided with a touch input device. The touch input device includes a window (not shown) covering the front surface of the terminal body, a display unit (not shown) for outputting start information, for example, a liquid crystal display, and a touch sensor (not shown) provided between the window and the display unit. It may include. The touch sensor may be formed, for example, on a transparent plate having a predetermined thickness with a plurality of electrodes spaced apart by a predetermined interval in one direction and another direction perpendicular thereto, and a dielectric layer disposed therebetween to detect a user's touch input. That is, the touch sensor may include a plurality of electrodes arranged in a grid shape, for example, and detect capacitance according to a distance between electrodes according to a user's touch input. In addition, the display unit 1310 may further include a pressure sensor for inputting user's touch or pressure information. Accordingly, the touch sensor may detect coordinates in the horizontal direction, ie, the X direction and the Y direction, which are touched by the user, and the pressure sensor may detect the coordinates in the vertical direction, that is, the Z direction as well as the X and Y directions. .
한편, 전자기기(1000) 상면의 디스플레이부(1310) 이외의 영역에는 음향 출력 모듈(1320), 카메라 모듈(1330a), 전면 입력부(1360) 등이 마련될 수 있다. 이때, 음향 출력 모듈(1320) 및 카메라 모듈(1330a)는 X 방향으로 디스플레이부(1310)의 상측에 마련되고, 전면 입력부(1360) 등의 사용자 입력부는 X 방향으로 디스플레이부(1310)의 하측에 마련될 수 있다. 전면 입력부(1360)는 터치키, 푸쉬키 등으로 구성될 수 있고, 터치 센서 또는 압력 센서를 이용하여 전면 입력부(1350)가 없는 구성도 가능하게 된다. 이때, 전면 입력부(1360)의 하측 내부, 즉 Z 방향으로 전면 입력부(1360) 하측에는 전면 입력부(1360)의 기능을 위한 기능 모듈(미도시)이 마련될 수 있다. 즉, 전면 입력부(1360)의 구동 방식에 따라 터치키 또는 푸쉬키의 기능을 수행하는 기능 모듈이 마련될 수 있고, 터치 센서 또는 압력 센서가 마련될 수 있다. 또한, 전면 입력부(1360)는 지문 인식 센서를 포함할 수 있다. 즉, 전면 입력부(1360)를 통해 사용자의 지문을 인식하고 적법한 사용자인지 검출할 수 있고, 이를 위해 기능 모듈이 지문 인식 센서를 포함할 수 있다. 한편, Y 방향으로 전면 입력부(1360)의 일측 및 타측에는 제 2 압력 센서(미도시)가 마련될 수 있다. 사용자 입력부로서 전면 입력부(1360) 양측에 제 2 압력 센서가 마련됨으로써 사용자의 터치 입력을 검출하여 이전 화면으로 돌아가는 기능 및 디스플레이부(1310)의 화면 설정을 위한 설정 기능을 수행할 수 있다. 이때, 지문 인식 센서를 이용하는 전면 입력부(1360)는 사용자의 지문 인식 뿐만 아니라 초기 화면으로 돌아가는 기능을 수행할 수도 있다. 한편, 디스플레이부(1310)에 접촉되어 압전 진동 장치 등의 햅틱 피드백 장치가 더 마련되어 사용자의 입력 또는 터치에 반응하여 피드백을 제공할 수 있다. 이러한 햅틱 피드백 장치는 디스플레이부(1310) 이외의 전자기기(1000)의 소정 영역에 마련될 수 있다. 예를 들어, 음향 출력 모듈(1310) 외측 영역, 전면 입력부(1360) 외측 영역, 베젤 영역 등에 햅틱 피드백 장치가 마련될 수 있다. 물론, 햅틱 피드백 장치는 디스플레이부(1310) 하측에 마련될 수도 있다.The sound output module 1320, the camera module 1330a, and the front input unit 1360 may be provided in an area other than the display unit 1310 on the upper surface of the electronic device 1000. In this case, the sound output module 1320 and the camera module 1330a are provided above the display unit 1310 in the X direction, and a user input unit such as the front input unit 1360 is positioned below the display unit 1310 in the X direction. Can be prepared. The front input unit 1360 may be configured as a touch key, a push key, or the like, and the front input unit 1350 may be configured by using a touch sensor or a pressure sensor. In this case, a function module (not shown) for the function of the front input unit 1360 may be provided below the front input unit 1360, that is, under the front input unit 1360 in the Z direction. That is, a function module that performs a function of a touch key or a push key may be provided according to the driving method of the front input unit 1360, and a touch sensor or a pressure sensor may be provided. In addition, the front input unit 1360 may include a fingerprint recognition sensor. That is, the front input unit 1360 may recognize the user's fingerprint and detect whether the user is a legitimate user. For this purpose, the function module may include a fingerprint recognition sensor. Meanwhile, a second pressure sensor (not shown) may be provided at one side and the other side of the front input unit 1360 in the Y direction. As the user input unit, second pressure sensors are provided at both sides of the front input unit 1360 to detect a user's touch input and return to a previous screen, and perform a setting function for setting a screen of the display unit 1310. In this case, the front input unit 1360 using the fingerprint sensor may perform a function of returning to the initial screen as well as fingerprint recognition of the user. The haptic feedback device, such as a piezoelectric vibration device, may be further provided in contact with the display unit 1310 to provide feedback in response to a user's input or touch. The haptic feedback device may be provided in a predetermined area of the electronic device 1000 other than the display unit 1310. For example, a haptic feedback device may be provided in an outer region of the sound output module 1310, an outer region of the front input unit 1360, and a bezel region. Of course, the haptic feedback device may be provided under the display unit 1310.
전자기기(1000)의 측면에는 도시되지 않았지만 전원부 및 측면 입력부가 더 마련될 수 있다. 예를 들어, 전원부 및 측면 입력부가 전자기기의 Y 방향으로 서로 대향되는 두 측면에 각각 마련될 수 있고, 일 측면에 서로 이격되어 마련될 수도 있다. 전원부는 전자기기를 온/오프시킬 때 이용될 수 있고, 화면을 인에이블 또는 디스에이블할 때 이용할 수 있다. 또한, 측면 입력부는 음향 출력 모듈(1320)에서 출력되는 음향의 크기 조절 등에 이용할 수 있다. 이때, 전원부 및 측면 입력부는 터치키, 푸쉬키 등으로 구성될 수 있고, 압력 센서로 구성될 수도 있다. 즉, 본 발명에 따른 전자기기는 디스플레이부(1310) 이외의 복수의 영역에 압력 센서가 각각 마련될 수 있다. 예를 들어, 전자기기의 상측의 음향 출력 모듈(1320) 및 카메라 모듈(1330a) 등의 압력 감지, 하측의 전면 입력부(1360)의 압력 제어, 그리고 측면의 전원부 및 측면 입력부 등의 압력을 제어하기 위해 적어도 하나의 압력 센서가 더 마련될 수 있다. Although not shown on the side of the electronic device 1000, a power supply unit and a side input unit may be further provided. For example, the power supply unit and the side input unit may be provided on two sides facing each other in the Y direction of the electronic device, or may be provided spaced apart from each other on one side. The power supply unit may be used to turn on / off the electronic device, and may be used to enable or disable the screen. In addition, the side input unit may be used to adjust the size of the sound output from the sound output module 1320. In this case, the power supply unit and the side input unit may be configured as a touch key, a push key, or may be configured as a pressure sensor. That is, the electronic device according to the present invention may be provided with a pressure sensor in a plurality of areas other than the display unit 1310, respectively. For example, pressure sensing of the upper sound output module 1320 and the camera module 1330a of the electronic device, pressure control of the lower front input unit 1360, and controlling pressure of the side power supply unit and side input unit, etc. At least one pressure sensor may be further provided.
한편, 전자기기(1000)의 후면, 즉 커버 케이스(1120)를 통해 카메라 모듈(1330b)이 추가로 장착될 수 있다. 카메라 모듈(1330b)은 카메라 모듈(1330a)과 실질적으로 반대되는 촬영 방향을 가지며, 카메라 모듈(1330a)과 서로 다른 화소를 가지는 카메라일 수 있다. 카메라 모듈(1330b)에 인접하게는 플래시(미도시)가 추가로 배치될 수 있다. 또한, 도시되지 않았지만, 카메라 모듈(1330b)의 하측에 지문 인식 센서가 마련될 수 있다. 즉, 전면 입력부(1360)에 지문 인식 센서가 마련되지 않고 전자기기(1000)의 후면에 지문 인식 센서가 마련될 수도 있다.Meanwhile, the camera module 1330b may be additionally mounted through the rear surface of the electronic apparatus 1000, that is, the cover case 1120. The camera module 1330b has a photographing direction substantially opposite to the camera module 1330a and may be a camera having different pixels from the camera module 1330a. A flash (not shown) may be further disposed adjacent to the camera module 1330b. In addition, although not shown, a fingerprint sensor may be provided below the camera module 1330b. That is, the fingerprint sensor may not be provided at the front input unit 1360, but a fingerprint sensor may be provided at the rear of the electronic device 1000.
배터리(1200)는 브라켓(1400)과 커버 케이스(1120) 사이에 마련될 수 있다. 이때, 배터리(1200)는 메인 보드(1500) 내측으로 마련될 수 있다. 한편, 배터리(1200)는 고정될 수도 있고, 탈착 가능하게 마련될 수도 있다.The battery 1200 may be provided between the bracket 1400 and the cover case 1120. In this case, the battery 1200 may be provided inside the main board 1500. On the other hand, the battery 1200 may be fixed, or may be provided detachably.
또한, 도 3에 도시된 바와 같이 전자기기(1000) 내부의 측면 케이스(1110) 내측에 브라켓(1400)이 마련되고, 브라켓(1400) 상측에 윈도우, 표시부 및 터치 센서를 포함하는 디스플레이부(1310)가 마련될 수 있다. 즉, 브라켓(1400)은 윈도우, 표시부 및 터치 센서 등을 포함하는 디스플레이부(1310)를 지지한다. 또한, 브라켓(1400)은 디스플레이부(1310) 이외의 영역으로 연장 형성될 수도 있다. 즉, 전면 입력부(1360) 등이 형성된 영역으로 브라켓(1400)이 연장 형성될 수 있다. 또한, 브라켓(1400)의 적어도 일부는 측면 케이스(1110)의 적어도 일부에 접촉되어 측면 케이스(1110)의 적어도 일부에 지지될 수 있다. 한편, 브라켓(1400)은 적어도 일부가 도전성 물질로 형성될 수 있는데, 예를 들어 마그네슘 또는 그 합금으로 형성될 수 있다. 즉, 브라켓(1400)은 적어도 일부가 금속 물질로 이루어진 제 1 영역과, 비도전성 물질, 예를 들어 PC로 이루어진 제 2 영역을 포함할 수 있다. 예를 들어 제 2 영역이 소정 두께를 갖는 판 형상으로 이루어지고, 제 1 영역은 제 2 영역 상에 적어도 일부 영역에 마련될 수 있다. 한편, 브라켓(1400)의 금속 물질로 이루어진 제 1 영역은 메인 보드(1500)와 연결될 수 있는데, 제 1 영역은 적어도 일부가 예를 들어 메인 보드(1500)의 접지 단자와 연결될 수 있다.In addition, as shown in FIG. 3, the bracket 1400 is provided inside the side case 1110 inside the electronic apparatus 1000, and the display unit 1310 includes a window, a display unit, and a touch sensor on the bracket 1400. ) May be provided. That is, the bracket 1400 supports the display unit 1310 including a window, a display unit, and a touch sensor. In addition, the bracket 1400 may be extended to an area other than the display unit 1310. That is, the bracket 1400 may be extended to a region where the front input unit 1360 and the like are formed. In addition, at least a portion of the bracket 1400 may be in contact with at least a portion of the side case 1110 and may be supported by at least a portion of the side case 1110. At least a portion of the bracket 1400 may be formed of a conductive material, for example, magnesium or an alloy thereof. That is, the bracket 1400 may include at least a portion of a first region made of a metal material and a second region made of a non-conductive material, for example, PC. For example, the second region may be formed in a plate shape having a predetermined thickness, and the first region may be provided in at least a partial region on the second region. Meanwhile, a first region made of a metal material of the bracket 1400 may be connected to the main board 1500. At least a portion of the first region may be connected to, for example, a ground terminal of the main board 1500.
메인 보드(1500)는 전자기기(1000) 내부에 마련되어 전자기기(1000)의 구동을 위한 각종 회로, 소자 및 기능 모듈 등이 마련될 수 있다. 예를 들어, 메인 보드(1500) 상에는 표시부, 터치 센서, 압력 센서, 햅틱 모듈, 지문 인식 센서 등에 전원을 공급하고 이들로부터 출력되는 신호를 입력하여 검출하기 위한 적어도 하나의 구동 수단이 마련될 수 있고, 각종 신호를 처리하기 위한 제어 수단 등이 마련될 수 있다. 또한, 메인 보드(1500) 상에는 외부로부터 인가되는 ESD 등의 고전압을 바이패스시키기 위한 접지 단자 등이 더 마련될 수 있다.The main board 1500 may be provided inside the electronic device 1000, and various circuits, elements, and function modules for driving the electronic device 1000 may be provided. For example, at least one driving means may be provided on the main board 1500 to supply power to a display unit, a touch sensor, a pressure sensor, a haptic module, a fingerprint sensor, and input and detect a signal output from the display board. Control means for processing various signals may be provided. In addition, a ground terminal for bypassing a high voltage such as an ESD applied from the outside may be further provided on the main board 1500.
도 4는 본 발명의 실시 예들에 따른 복합 보호 소자가 장착된 전자기기의 일 영역의 도면이다. 또한, 도 5는 복합 보호 소자가 장착된 전자기기의 일 영역의 확대도이고, 도 6는 복합 보호 소자의 개략 단면도이다. 그리고, 도 7 및 도 8은 본 발명의 일 실시 예에 따른 복합 보호 소자의 복합 보호부의 사시도 및 단면도이다.4 is a diagram illustrating an area of an electronic device equipped with a composite protection device according to embodiments of the present disclosure. 5 is an enlarged view of one region of the electronic apparatus equipped with the composite protection element, and FIG. 6 is a schematic cross-sectional view of the composite protection element. 7 and 8 are a perspective view and a cross-sectional view of the composite protection unit of the composite protection device according to an embodiment of the present invention.
도 4 내지 도 8을 참조하면, 본 발명의 실시 예들에 따른 복합 보호 소자(2000)는 전자기기(1000)의 측면 케이스(1110) 내측에 적어도 하나 마련될 수 있다. 예를 들어, 복합 보호 소자(2000)는 배터리(1200)가 위치하는 영역과 대면하는 측면 케이스(1110)의 내면에 마련될 수 있다. 또한, 복합 보호 소자(2000)는 대면하는 배터리(1200)와 접촉되지 않도록 마련될 수 있다. 이때, 복합 보호 소자(2000)는 적어도 하나 마련될 수 있는데, 본 발명의 실시 예는 네개의 복합 보호 소자(2000)가 등간격으로 마련된 경우를 도시한다.4 to 8, at least one composite protection device 2000 according to embodiments of the present disclosure may be provided inside the side case 1110 of the electronic device 1000. For example, the complex protection device 2000 may be provided on an inner surface of the side case 1110 facing the area where the battery 1200 is located. In addition, the complex protection device 2000 may be provided so as not to contact the battery 1200 facing each other. In this case, at least one composite protection device 2000 may be provided. The embodiment of the present invention shows a case in which four composite protection devices 2000 are provided at equal intervals.
본 발명의 실시 예들에 따른 복합 보호 소자(2000)는 측면 케이스(1110)의 내측에 고정부(1600)를 이용하여 고정될 수 있는데, 고정부(1600)는 측면 케이스(1110)의 내측에 마련된 연결 부재(1610)와, 연결 부재(1610)에 복합 보호 소자(2000)가 고정되도록 하는 체결 부재(1620)를 포함할 수 있다. 이때, 연결 부재(1610)는 적어도 일부가 측면 케이스(1110)에 마련되고 적어도 일부가 브라켓(1400)에 마련될 수 있다. 연결 부재(1610)는 측면 케이스(1110)의 내측면에서 내측으로 소정 폭으로 돌출되며, 소정의 높이를 갖도록 마련될 수 있다. 즉, 연결 부재(1610)는 복합 보호 소자(2000)의 적어도 일부를 지지하도록 측면 케이스(1110)의 내측면으로부터 소정의 폭 및 높이로 돌출될 수 있다. 또한, 연결 부재(1610)는 브라켓(1400)으로부터 소정 높이로 돌출될 수 있다. 이때, 측면 케이스(1110)에 형성된 연결 부재(1610)와 브라켓(1400) 상에 형성된 연결 부재는 정렬될 수 있다. 물론, 연결 부재(1610)는 측면 케이스(1110)에만 형성될 수도 있고, 이 경우 연결 부재(1610)의 하측이 브라켓(1400)과 연결될 수 있다. 또한, 연결 부재(1610)는 적어도 일부가 도전성 물질로 형성될 수 있다. 예를 들어, 연결 부재(1610) 전체가 도전성 물질로 이루어질 수 있고, 적어도 측면 케이스(1110)에 접촉 형성된 부분이 도전성 물질로 이루어질 수 있다. 한편, 연결 부재(1610)에는 수직 방향으로 홈 또는 개구가 형성될 수 있다. 예를 들어, 측면 케이스(1110)에 형성된 연결 부재(1610)에는 수직 방향으로 관통 개구가 형성되고, 브라켓(1400) 상의 연결 부재(1610)에는 홈이 형성되어 개구와 홈이 정렬될 수 있다. 물론, 측면 케이스(1110)에만 연결 부재(1610)가 형성되는 경우 연결 부재(1610)에는 소정 깊이의 홈이 형성될 수 있다. 이러한 연결 부재(1610)의 개구 또는 홈에 체결 부재(1620)가 삽입될 수 있다. 즉, 측면 케이스(1110)에 형성된 연결 부재(1610)의 개구를 관통하여 브라켓(1400) 상에 형성된 연결 부재(1610)의 홈까지 체결 부재(1620)가 삽입될 수 있다. 체결 부재(1620)는 연결 부재(1610)에 체결되어 복합 보호 소자(2000)가 고정되도록 한다. 체결 부재(1620)는 예를 들어 스크류 등으로 마련될 수 있고, 복합 보호 소자(2000)는 연결 부재(1610) 상에 위치되도록 한 후 연결 부재(1610)에 체결되어 복합 보호 소자(2000)를 고정시킨다. 또한, 체결 부재(1620)는 외면에 나사산이 마련되고 연결 부재(1610)에는 이에 대응하여 나사홈이 형성될 수 있다. 즉, 체결 부재(1620)가 수나사 역할을 하며, 연결 부재(1610)가 암나사 역할을 할 수 있다. 한편, 체결 부재(1620)는 도전성 물질로 이루어질 수 있다. 예를 들어, 체결 부재(1620)는 금속 물질로 이루어질 수 있다. 따라서, 측면 케이스(1110), 연결 부재(1610) 및 체결 부재(1620)가 ESD 등의 과전압 또는 통신 신호의 경로가 될 수 있다. 고정부(1600)는 스크류 이외에 용접, 납땜, 본딩, 접착 테이프 등을 이용하여 도전부(2300)와 측면 케이스(1100)가 전기적으로 연결되도록 한다.The composite protection device 2000 according to the exemplary embodiments of the present invention may be fixed to the inner side of the side case 1110 using the fixing part 1600. The fixing part 1600 may be provided inside the side case 1110. The connection member 1610 may include a coupling member 1620 to fix the composite protection device 2000 to the connection member 1610. In this case, at least a part of the connection member 1610 may be provided in the side case 1110 and at least a part of the connection member 1610 may be provided in the bracket 1400. The connection member 1610 may protrude from the inner side of the side case 1110 to the inside in a predetermined width and may have a predetermined height. That is, the connection member 1610 may protrude from the inner surface of the side case 1110 at a predetermined width and height to support at least a portion of the composite protection device 2000. In addition, the connection member 1610 may protrude from the bracket 1400 to a predetermined height. In this case, the connection member 1610 formed on the side case 1110 and the connection member formed on the bracket 1400 may be aligned. Of course, the connecting member 1610 may be formed only in the side case 1110, in which case the lower side of the connecting member 1610 may be connected to the bracket 1400. In addition, at least a portion of the connection member 1610 may be formed of a conductive material. For example, the entire connecting member 1610 may be made of a conductive material, and at least a portion formed in contact with the side case 1110 may be made of a conductive material. Meanwhile, a groove or an opening may be formed in the connection member 1610 in the vertical direction. For example, a through opening may be formed in the connection member 1610 formed in the side case 1110, and a groove may be formed in the connection member 1610 on the bracket 1400 to align the opening with the groove. Of course, when the connection member 1610 is formed only in the side case 1110, a groove having a predetermined depth may be formed in the connection member 1610. The fastening member 1620 may be inserted into the opening or the groove of the connection member 1610. That is, the fastening member 1620 may be inserted into the groove of the connection member 1610 formed on the bracket 1400 by passing through the opening of the connection member 1610 formed in the side case 1110. The fastening member 1620 is fastened to the connection member 1610 to fix the composite protection device 2000. The fastening member 1620 may be provided by, for example, a screw. The composite protective device 2000 may be positioned on the connecting member 1610 and then fastened to the connecting member 1610 to connect the composite protective device 2000. Fix it. In addition, the fastening member 1620 may be provided with a screw thread on its outer surface, and a screw groove may be formed on the connection member 1610 correspondingly. That is, the fastening member 1620 may serve as a male screw, and the connection member 1610 may serve as a female screw. Meanwhile, the fastening member 1620 may be made of a conductive material. For example, the fastening member 1620 may be made of a metal material. Accordingly, the side case 1110, the connection member 1610, and the fastening member 1620 may be a path of an overvoltage or communication signal such as an ESD. The fixing part 1600 may electrically connect the conductive part 2300 and the side case 1100 by using welding, soldering, bonding, or adhesive tape in addition to the screw.
본 발명의 실시 예들에 따른 복합 보호 소자(2000)는 도 4 및 도 5에 도시된 바와 같이 컨택부(2100)와, 복합 보호부(2200)와, 도전부(2300)와, 지지부(2400)를 포함할 수 있다. 여기서, 도전부(2300)는 고정부(1600)에 적어도 일부가 고정되고, 복합 보호부(2200)는 도전부(2300)의 일 영역 상에 고정되며, 컨택부(2100)는 일 영역이 복합 보호부(2200)와 결합되고 타 영역이 내부 회로, 즉 브라켓(1400)을 통해 메인 보드(1500)와 접촉 가능하도록 마련된다. 또한, 지지부(2400)는 도전부(2300)가 고정부(1600)에 고정될 때 복합 보호 소자(2000)를 지지하도록 한다. 즉, 본 발명의 복합 보호 소자(2000)는 복합 보호부(2200)의 일면과 컨택부(2100)가 예를 들어 도전성 접착제에 의해 결합되고, 복합 보호부(2200)의 타면이 도전부(2300)의 일면 상에 예를 들어 SMD 등의 방법으로 결합되며, 지지부(2400)가 측면 케이스(1110) 또는 브라켓(1400)의 소정 영역에 마련된 후 컨택부(2100) 및 복합 보호부(2200)가 실장된 도전부(2300)를 지지부(2400)에 지지되도록 하여 고정부(1600)에 고정시킬 수 있다. 이러한 복합 보호 소자(2000)에 대해 좀더 자세히 설명하면 다음과 같다.As shown in FIGS. 4 and 5, the composite protection device 2000 according to the exemplary embodiment of the present invention may include a contact part 2100, a composite protection part 2200, a conductive part 2300, and a support part 2400. It may include. Here, the conductive portion 2300 is fixed to at least a portion of the fixing portion 1600, the composite protective portion 2200 is fixed on one region of the conductive portion 2300, the contact portion 2100 is a composite region It is coupled to the protection unit 2200 and the other area is provided to be in contact with the main board 1500 through an internal circuit, that is, the bracket 1400. In addition, the support 2400 may support the composite protection device 2000 when the conductive part 2300 is fixed to the fixing part 1600. That is, in the composite protection device 2000 of the present invention, one surface of the composite protection part 2200 and the contact part 2100 are coupled by, for example, a conductive adhesive, and the other surface of the composite protection part 2200 is a conductive part 2300. On the one side of the) is coupled to, for example, such as SMD, the support portion 2400 is provided in a predetermined region of the side case 1110 or bracket 1400, and then the contact portion 2100 and the composite protective portion 2200 The mounted conductive part 2300 may be supported by the support part 2400 to be fixed to the fixing part 1600. The composite protective device 2000 will be described in more detail as follows.
1. 컨택부(2100)1. Contact portion 2100
컨택부(2100)는 전자 기기의 외부에서 외력이 가해질 때, 그 충격을 완화할 수 있도록 탄성력을 가지며, 도전성의 물질을 포함하는 재료로 이루어진다. 이러한, 컨택부(2100)는 도 6에 도시된 바와 같이 클립(clip) 형상일 수 있다. 예를 들어, 컨택부(2100)는 복합 보호부(2000)의 일측 상에 마련된 지지부(2110)와, 지지부(2110)의 상측에 마련되어 메인 보드(1500)와 대향 위치되며 적어도 일부가 메인 보드(1500)와 접촉될 수 있는 접촉부(2120)와, 지지부(2110) 및 접촉부(2120)의 일측 사이에 마련되어 이들을 연결하도록 하며 탄성력을 가지는 연결부(2130)를 포함할 수 있다. 따라서, 컨택부(2100)의 높이는 복합 보호부(2200)의 높이보다 높을 수 있다.The contact part 2100 may be made of a material having an elastic force and containing a conductive material to relieve the impact when an external force is applied from the outside of the electronic device. The contact part 2100 may have a clip shape as shown in FIG. 6. For example, the contact part 2100 may be provided on the support part 2110 provided on one side of the composite protection part 2000, and disposed on the support part 2110 to face the main board 1500, and at least a part of the contact part 2100. The contact portion 2120 which may be in contact with the 1500, and the support portion 2110 may be provided between one side of the contact portion 2120 and the contact portion 2120, and may include a connection portion 2130 having elastic force. Therefore, the height of the contact portion 2100 may be higher than the height of the composite protective part 2200.
지지부(2110)는 복합 보호부(2200)의 상부면에 마련될 수 있다. 지지부(2110)가 복합 보호부(2200)의 상부면에 마련되므로 접촉부(2120), 연결부(2130), 실장부(3000) 등을 지지할 수 있다. 이러한 지지부(2110)는 소정 두께의 판 형상으로 마련될 수 있는데, 예를 들어 소정 두께를 갖는 직사각형의 판 형상으로 마련될 수 있다. 지지부(2110)는 복합 보호부(2200)의 상부면과 동일 폭으로 마련될 수 있다. 또한, 지지부(2110)는 복합 보호부(2200)의 상부면의 길이보다 짧게 마련될 수 있다. 즉, 지지부(2110)는 복합 보호부(2200)의 외부 전극(2241, 2242; 2240)과 접촉되지 않도록 복합 보호부(2200)의 길이보다 짧은 길이로 형성될 수 있다. 이때, 탄성력에 의해 연결부(2130)가 수축될 때 연결부(2130)가 복합 보호부(2200)의 외부 전극(2240)과 접촉되지 않도록 지지부(2110)는 복합 보호부(2200)의 길이보다 짧은 길이로 형성될 수 있다. 한편, 지지부(2110)와 복합 보호부(2200) 사이에는 결합 부재(미도시)가 마련되어 지지부(2110)와 복합 보호부(2200)를 결합시킬 수 있다. 결합 부재로는 예를 들어 접착 테이프, 접착제 등이 이용될 수 있다. 즉, 지지부(2110)는 접착 테이프, 접착제 등의 접착 부재에 의해 복합 보호부(2200)의 상부면에 접착될 수 있다.The support part 2110 may be provided on an upper surface of the composite protection part 2200. Since the support part 2110 is provided on the upper surface of the composite protection part 2200, the support part 2110 may support the contact part 2120, the connection part 2130, and the mounting part 3000. The support part 2110 may be provided in a plate shape having a predetermined thickness, for example, may be provided in a rectangular plate shape having a predetermined thickness. The support part 2110 may be provided to have the same width as the upper surface of the composite protection part 2200. In addition, the support part 2110 may be provided shorter than the length of the upper surface of the composite protection part 2200. That is, the support part 2110 may be formed to have a length shorter than the length of the composite protection part 2200 so as not to contact the external electrodes 2241, 2242 and 2240 of the composite protection part 2200. At this time, when the connection part 2130 is contracted by the elastic force, the support part 2110 is shorter than the length of the compound protection part 2200 so that the connection part 2130 does not come into contact with the external electrode 2240 of the composite protection part 2200. It can be formed as. Meanwhile, a coupling member (not shown) may be provided between the support part 2110 and the composite protection part 2200 to couple the support part 2110 and the composite protection part 2200. As the coupling member, for example, an adhesive tape, an adhesive or the like can be used. That is, the support part 2110 may be attached to the upper surface of the composite protection part 2200 by an adhesive member such as an adhesive tape or an adhesive.
접촉부(2120)는 일단이 연결부(2130)와 연결되고, 연결부(2130)로부터 일 방향으로 연장 형성되며, 일부가 브라켓(1400)을 향해 예컨대, 하향 경사지도록 연장되어 브라켓(1400)와 접촉될 수 있다. 이때, 브라켓(1400)은 적어도 일부가 전도성인 제 1 영역(1400a)과 절연성인 제 2 영역(1400b)을 포함하고, 제 2 영역(1400b) 상에 제 1 영역(1400a)이 마련되는데, 접촉부(2120)는 제 1 영역(1400a)과 접촉될 수 있다. 또한, 접촉부(2120)의 타단과 인접한 영역은 브라켓(1400)이 위치된 방향으로 볼록한 곡률을 가지는 형상일 수 있다. 예를 들어, 접촉부(2120)는 소정 길이로 수평을 이루고 그로부터 소정 길이로 하향 경사지게 형성된 후 다시 소정 길이로 상향 경사지게 형성될 수 있다. 이때, 접촉부(2120)의 브라켓(1400)과 접촉되는 영역은 예를 들어 타원형, 반원형 등의 원형을 이룰 수 있다. 즉, 지지부(2110)의 영역 중, 연결부(2130)와 멀리 위치된 또는 지지부(2110)의 타단을 포함하는 주위 영역이 상측으로 절곡된 절곡부를 가지는 형상일 수 있으며, 절곡부가 브라켓(1400)과 접촉되도록 설치된다. One end of the contact part 2120 is connected to the connection part 2130, and extends in one direction from the connection part 2130, and a part of the contact part 2120 is extended to be inclined downward toward the bracket 1400, for example, to be in contact with the bracket 1400. have. In this case, the bracket 1400 includes at least a portion of the conductive first region 1400a and the insulating second region 1400b, and the first region 1400a is provided on the second region 1400b. 2120 may be in contact with the first region 1400a. In addition, the region adjacent to the other end of the contact portion 2120 may have a shape having a curvature that is convex in the direction in which the bracket 1400 is positioned. For example, the contact portion 2120 may be formed to be horizontal to a predetermined length and be inclined downward from the predetermined length, and then be inclined upward to the predetermined length again. At this time, the area in contact with the bracket 1400 of the contact portion 2120 may form a circle, for example, elliptical, semicircular. That is, the region of the support 2110 may be a shape having a bent portion in which the peripheral area including the other end of the support portion 2110 or far away from the connecting portion 2130 is bent upward, and the bent portion is connected to the bracket 1400. It is installed to be in contact.
연결부(2130)는 지지부(2110)의 일단과 접촉부(2120)의 일단을 연결하도록 형성되는데, 곡률을 가지도록 형성될 수 있다. 이러한 연결부(2130)는 외력에 의해 가압되면 브라켓(1400)이 위치된 방향으로 눌려지고, 외력이 해제되면, 원래 상태로 복원되는 탄성력을 가진다. 따라서, 컨택부(2100)는 적어도 연결부(2130)가 탄성력을 갖는 금속 물질로 형성될 수 있다.The connection part 2130 is formed to connect one end of the support part 2110 and one end of the contact part 2120, and may have a curvature. When the connection portion 2130 is pressed by an external force, the bracket 1400 is pressed in the direction in which it is positioned, and when the external force is released, it has an elastic force that is restored to its original state. Therefore, the contact portion 2100 may be formed of a metal material having at least the connection portion 2130 elasticity.
한편, 본 발명의 컨택부는 전도성 및 탄성을 가지는 클립 형태 이외에 전도성 고무, 전도성 실리콘, 내부에 전도성 도선이 삽입된 탄성체, 표면이 도체로 코팅 또는 접합된 가스켓을 포함할 수 있다. 즉, 컨택부는 전도성 물질층을 포함할 수 있다. 예를 들어, 전도성 가스켓의 경우 내부는 비전도성 탄성체로 이루어지고 외부는 전도성 물질이 코팅될 수 있다. 전도성 가스켓은 도시되지 않았지만 내부에 관통공이 형성된 절연 탄성 코어와, 절연 탄성 코어를 둘러싸도록 형성된 도전층을 포함할 수 있다. 절연 탄성 코어는 내부에 관통공이 형성된 튜브 형상으로, 단면은 대략 사각형이나 원형으로 형성될 수 있으나, 이에 한정되지 않고 다양한 형상으로 형성될 수 있다. 예를 들어, 절연 탄성 코어는 내부에 관통공이 형성되지 않을 수 있다. 이러한 절연 탄성 코어는 실리콘 또는 탄성 고무 등으로 형성될 수 있다. 도전층은 절연 탄성 코어를 감싸도록 형성될 수 있다. 이러한 도전층은 적어도 하나의 금속층으로 형성될 수 있는데, 예를 들어 금, 은, 구리 등으로 형성될 수 있다. 한편, 도전층이 형성되지 않고 탄성 코어에 도전성 파우더가 혼합될 수도 있다.Meanwhile, the contact part of the present invention may include a conductive rubber, a conductive silicon, an elastic body having a conductive wire inserted therein, and a gasket having a surface coated or bonded with a conductor in addition to a clip having conductivity and elasticity. In other words, the contact portion may include a conductive material layer. For example, in the case of a conductive gasket, the inside may be made of a nonconductive elastomer and the outside may be coated with a conductive material. Although not shown, the conductive gasket may include an insulating elastic core having a through hole formed therein and a conductive layer formed to surround the insulating elastic core. The insulating elastic core has a tube shape having a through hole formed therein, and a cross section may be formed in a substantially rectangular or circular shape, but is not limited thereto and may be formed in various shapes. For example, the through-hole may not be formed in the insulating elastic core. The insulating elastic core may be formed of silicone or elastic rubber. The conductive layer may be formed to surround the insulating elastic core. The conductive layer may be formed of at least one metal layer, for example, gold, silver, copper, or the like. Meanwhile, the conductive layer may be mixed with the elastic core without forming the conductive layer.
2. 복합 보호부2. Composite protection
복합 보호부(2200)는 외부로부터 인가되는 ESD 등의 고전압을 내부 회로, 즉 메인 보드(1500)의 접지 단자로 바이패스시키고, 메인 보즈(1500)로부터의 누설 전류를 차단할 수 있다. 이러한 복합 보호부(2200)는 소정 전압 이하에서는 절연 상태를 유지하고, 소정 전압 이상의 전압에서는 전기적으로 도통되는 특성을 가질 수 있다. 예를 들어, 복합 보호부(2200)는 소정 전압 이상에서 도통되는 바리스터, 서프레서, 다이오드 등으로 이루어질 수 있다. 여기서, 복합 보호부(2200)를 도통시키기 위한 전압, 즉 항복 전압 또는 방전 개시 전압은 외부의 정격 전압보다 높고 복합 보호부(2200)의 절연 파괴 전압보다 낮을 수 있다. 즉, 정격 전압보다 높고 절연 파괴 전압보다 낮은 과전압이 인가될 때 복합 보호부(2200)는 도통되어 인가되는 과전압을 메인 보드(1500)의 접지 단자로 바이패스시킬 수 있다. 또한, 복합 보호부(2200)는 통신 신호를 전달하기 위해 캐패시터 등을 더 구비할 수 있다. 이러한 복합 보호부(2200)의 예가 도 7 및 도 8에 도시되어 있다. 도 8은 서프레서 타입의 복합 보호부(2200)의 단면도로서, ESD 보호부(2300)와, 적어도 하나의 캐패시터부(2200, 2400)를 포함할 수 있다. The complex protection unit 2200 may bypass a high voltage such as an ESD applied from the outside to an internal circuit, that is, a ground terminal of the main board 1500, and cut off a leakage current from the main boss 1500. The composite protection unit 2200 may have an insulating state below a predetermined voltage and may be electrically conductive at a voltage above a predetermined voltage. For example, the complex protection unit 2200 may be formed of a varistor, a suppressor, a diode, and the like that are conducted at a predetermined voltage or more. Here, the voltage for conducting the composite protection unit 2200, that is, the breakdown voltage or the discharge start voltage may be higher than an external rated voltage and lower than the dielectric breakdown voltage of the composite protection unit 2200. That is, when an overvoltage higher than the rated voltage and lower than the dielectric breakdown voltage is applied, the complex protection unit 2200 may conduct the applied overvoltage to the ground terminal of the main board 1500. In addition, the complex protection unit 2200 may further include a capacitor or the like for transmitting a communication signal. An example of such a composite protection unit 2200 is shown in FIGS. 7 and 8. FIG. 8 is a cross-sectional view of a suppressor type composite protection unit 2200, and may include an ESD protection unit 2300 and at least one capacitor unit 2200 and 2400.
도 7 및 도 8에 도시된 바와 같이, 복합 보호부(2200)는 복수의 절연 시트(100; 101 내지 111)가 적층된 적층체(2210)과, 적층체(2210) 내에 마련되며 복수의 내부 전극(200; 201 내지 208)을 구비하는 적어도 하나의 캐패시터부(2220a, 2220b; 2220)와, 적어도 하나의 방전 전극(310; 311, 312)과 과전압 보호 부재(320)을 구비하는 과전압 보호부(2230)를 포함할 수 있다. 즉, 적층체(2210) 내의 복수의 절연 시트(100) 중에서 선택된 절연 시트(100) 상에 복수의 내부 전극(200) 및 방전 전극(310)을 포함하는 도전층이 형성될 수 있다. 예를 들어, 적층체(2210) 내에 제 1 및 제 2 캐패시터부(2220a, 2220b)가 마련되고, 그 사이에 과전압 보호부(2230)가 마련될 수 있다. 즉, 적층체(2210) 내부에 제 1 캐패시터부(2220a), 과전압보호부(2230), 제 2 캐패시터부(2220b)이 적층되어 복합 보호부(2200)가 구현될 수 있다. 또한, 적층체(2210)의 서로 대향하는 두 측면에 형성되어 제 1 및 제 2 캐패시터부(2220a, 2220b)와 과전압 보호부(2230)와 연결되는 외부 전극(2241, 2242; 2240)을 더 포함할 수 있다. 물론, 복합 보호부(2200)는 적어도 하나의 캐패시터부와 적어도 하나의 과전압 보호부를 포함할 수 있다. 즉, 과전압 보호부(2230)의 하측 또는 상측의 어느 하나에 캐패시터부(2220)가 마련될 수 있고, 서로 이격된 둘 이상의 과전압 보호부(2230)의 상측 및 하측에 적어도 하나의 캐패시터부(2220)가 마련될 수도 있다. 또한, 과전압 보호부(2230)는 적층체(2210) 내부 또는 적층체(2210) 외부에 마련될 수 있는데, 본 실시 예들은 적층체(2210) 내부에 형성되는 경우를 설명하겠다. 과전압 보호부(2230)가 적층체(2210) 외부에 형성되는 경우 과전압 보호 부재(320)가 적층체(2210)와 외부 전극(2240) 사이에 형성되고, 방전 전극(310)이 적층체(2210) 내부에 형성될 수 있다. 한편, 감지 방지부(2200)에 대한 보다 상세한 설명은 후술하도록 한다.As shown in FIG. 7 and FIG. 8, the composite protective part 2200 is provided in a stack 2210 in which a plurality of insulating sheets 100 (101 to 111) are stacked, and is provided in the stack 2210 and provided in a plurality of interiors. An overvoltage protection unit including at least one capacitor unit 2220a, 2220b; 2220 having electrodes 200; 201 to 208, at least one discharge electrode 310; 311, 312, and an overvoltage protection member 320; 2230. That is, a conductive layer including a plurality of internal electrodes 200 and discharge electrodes 310 may be formed on the insulating sheet 100 selected from the plurality of insulating sheets 100 in the laminate 2210. For example, the first and second capacitor parts 2220a and 2220b may be provided in the stack 2210, and the overvoltage protection part 2230 may be provided therebetween. That is, the first capacitor part 2220a, the overvoltage protection part 2230, and the second capacitor part 2220b may be stacked in the stack 2210 to implement the composite protection part 2200. In addition, the laminate 2210 further includes external electrodes 2241, 2242 and 2240 formed on two opposite sides of the laminate 2210 and connected to the first and second capacitor parts 2220a and 2220b and the overvoltage protection part 2230. can do. Of course, the composite protection unit 2200 may include at least one capacitor unit and at least one overvoltage protection unit. That is, the capacitor unit 2220 may be provided at either the lower side or the upper side of the overvoltage protection unit 2230, and at least one capacitor unit 2220 at the upper side and the lower side of the two or more overvoltage protection units 2230 spaced apart from each other. ) May be provided. In addition, the overvoltage protection unit 2230 may be provided inside the stack 2210 or outside the stack 2210, and embodiments of the present disclosure will be described in the stack 2210. When the overvoltage protection unit 2230 is formed outside the stack 2210, the overvoltage protection member 320 is formed between the stack 2210 and the external electrode 2240, and the discharge electrode 310 is stacked on the stack 2210. It may be formed inside. On the other hand, a more detailed description of the detection prevention unit 2200 will be described later.
이렇게 복합 보호부(2200)가 도전부(2300)와 브라켓(1400) 사이에 마련되어 메인 보드(1500)로부터 브라켓(1400)을 통해 인가되는 감전 전압을 차단할 수 있다. 또한, 과전압을 접지 단자로 바이패스시키고, ESD 등의 과전압에 의해 절연이 파괴되지 않아 감전 전압을 지속적으로 차단할 수 있다. 즉, 본 발명에 따른 복합 보호부(2200)는 감전 전압 이하에서 절연 상태를 유지하여 메인 보드(1500)로부터 인가되는 감전 전압을 차단하고, ESD 전압 이상에서 도전 상태를 유지하여 외부로부터 전자기기 내부로 인가되는 ESD 전압을 접지 단자로 바이패스시킨다.In this way, the composite protective part 2200 may be provided between the conductive part 2300 and the bracket 1400 to block the electric shock voltage applied from the main board 1500 through the bracket 1400. In addition, the overvoltage is bypassed to the ground terminal, and the insulation is not destroyed by an overvoltage such as ESD, so that the electric shock voltage can be continuously interrupted. That is, the composite protection unit 2200 according to the present invention maintains an insulation state below the electric shock voltage to cut off the electric shock voltage applied from the main board 1500 and maintains a conductive state at an ESD voltage or higher, thereby preventing the internal of the electronic device from the outside. Bypass the ESD voltage applied to the ground terminal.
3. 도전부3. Challenge
도전부(2300)는 일단이 고정부(1600)에 고정되고 타단에 복합 보호부(2200)가 고정된다. 이러한 도전부(2300)는 복합 보호부(2200)와 컨택부(2100)를 지지하고 복합 보호부(2200)를 측면 케이스(1110)에 전기적으로 연결시킨다. 따라서, 도전부(2300)는 소정의 두께를 갖는 판 형상을 가질 수 있다. 예를 들어, 도전부(2300)는 소정의 두께를 갖는 직사각형의 판 형상을 가질 수 있다. 또한, 도전부(2300)의 일 영역, 즉 고정부(1600)에 고정되는 영역에는 개구가 형성될 수 있다. 즉, 개구를 통해 고정부(1600)의 체결 부재(1620)가 삽입되어 도전부(2300)가 고정부(1600)에 고정될 수 있다. 이러한 도전부(2300)는 금속 물질로 이루어질 수 있는데, 예를 들어 SUS로 이루어질 수 있다. 또한, 도전부(2300)는 측면 케이스(1110)과 동일 재질로 이루어질 수도 있다. 한편, 도전부(2300)는 Ag, Cr, Ni, Au 등으로 도금될 수도 있다. 또한, 도전부(2300)는 약 0.1㎜∼1㎜ 정도의 두께로 마련될 수 있다.One end of the conductive portion 2300 is fixed to the fixing portion 1600 and the other end of the composite protection portion 2200 is fixed. The conductive part 2300 supports the composite protective part 2200 and the contact part 2100 and electrically connects the composite protective part 2200 to the side case 1110. Therefore, the conductive portion 2300 may have a plate shape having a predetermined thickness. For example, the conductive portion 2300 may have a rectangular plate shape having a predetermined thickness. In addition, an opening may be formed in one region of the conductive portion 2300, that is, the region fixed to the fixing portion 1600. That is, the fastening member 1620 of the fixing part 1600 may be inserted through the opening to fix the conductive part 2300 to the fixing part 1600. The conductive part 2300 may be made of a metal material, for example, made of SUS. In addition, the conductive part 2300 may be made of the same material as the side case 1110. Meanwhile, the conductive portion 2300 may be plated with Ag, Cr, Ni, Au, or the like. In addition, the conductive part 2300 may be provided to have a thickness of about 0.1 mm to about 1 mm.
4. 지지부4. Support
지지부(2400)는 고정부(1600)와 컨택부(2100) 및 복합 보호부(2200) 사이에 마련될 수 있다. 이러한 지지부(2400)는 컨택부(2100) 및 복합 보호부(2200)를 고정부(1600)를 이용하여 고정할 때 컨택부(2100) 및 복합 보호부(2200)가 그 상부에서 지지되도록 한다. 즉, 컨택부(2100) 및 복합 보호부(2200)는 도전부(2300)의 타 영역에 체결된 상태에서 도전부(2300)의 일 영역이 고정부(1600)에 고정되는데, 이때, 지지부(2400)가 컨택부(2100) 및 복합 보호부(2200)를 지지하고 있으므로 도전부(2300)의 체결을 더욱 용이하게 할 수 있다. 이러한 지지부(2400)는 비도전성 물질로 형성될 수 있다. 예를 들어, 직육면체 형상을 갖고 탄성력을 갖는 지지부(2400)의 적어도 일면, 예를 들어 측면 케이스(1110)과 접촉되는 면과 측면 케이스(1100) 사이에 접착제 등이 마련되어 지지부(2400)가 측면 케이스(1110)의 내측면에 접착 고정될 수 있다. 이러한 지지부(2400)는 상부 표면이 도전부(2300)과 수평을 이룰 수 있도록 형성된다. 즉, 도전부(2300)의 하부면이 지지부(2400)의 상부면에 접촉되어 도전부(2300)가 수평을 이룰 수 있도록 지지부(2400)의 상부면과 도전부(2300)의 하부면은 수평을 이룰 수 있다. 이를 위해 지지부(2400)의 상부면은 고정부(1600)의 연결 부재(1610)의 상부면과 수평을 이룰 수 있다. 즉, 지지부(2400)의 상부면은 연결 부재(1610)의 상부면과 단차가 형성되지 않고 동일 평면을 이룰 수 있다. 한편, 지지부(2400)의 하면은 브라켓(1400) 상에 접촉될 수 있다. 즉, 지지부(2400)는 적어도 도전성 물질로 이루어진 제 1 영역(1400a) 및 절연성 물질로 이루어진 제 2 영역(1400b)을 포함하여 제 2 영역(1400b) 상에 제 1 영역(1400a)이 마련되는 브라켓(1400)의 제 1 영역(1400a) 상에 마련될 수 있다. 그러나, 지지부(2400)의 하면은 브라켓(1400) 상에서 소정 간격 이격될 수 있다. 따라서, 지지부(2400)의 높이는 컨택부(2100)와 복합 보호부(2200)의 높이의 합과 같거나 작을 수 있다.The support part 2400 may be provided between the fixing part 1600, the contact part 2100, and the composite protection part 2200. The support part 2400 allows the contact part 2100 and the compound protection part 2200 to be supported thereon when the contact part 2100 and the compound protection part 2200 are fixed using the fixing part 1600. That is, the contact portion 2100 and the composite protection portion 2200 are fixed to the fixing portion 1600 in one region of the conductive portion 2300 in a state where the conductive portion 2300 is fastened to another region of the conductive portion 2300. Since the 2400 supports the contact portion 2100 and the composite protective portion 2200, the fastening of the conductive portion 2300 may be made easier. The support 2400 may be formed of a non-conductive material. For example, an adhesive is provided between at least one surface of the support part 2400 having a rectangular parallelepiped shape and an elastic force, for example, a surface contacting the side case 1110 and the side case 1100, and the support part 2400 is a side case. It may be adhesively fixed to the inner side of the 1110. The support 2400 is formed such that an upper surface thereof is parallel to the conductive portion 2300. That is, the upper surface of the support portion 2400 and the lower surface of the conductive portion 2300 are horizontal so that the lower surface of the conductive portion 2300 contacts the upper surface of the support portion 2400 so that the conductive portion 2300 is horizontal. Can be achieved. To this end, the upper surface of the support 2400 may be horizontal with the upper surface of the connection member 1610 of the fixing part 1600. That is, the upper surface of the support 2400 may be coplanar with the upper surface of the connection member 1610 without forming a step. Meanwhile, the bottom surface of the support 2400 may be in contact with the bracket 1400. That is, the support 2400 includes a bracket in which the first region 1400a is provided on the second region 1400b including at least a first region 1400a made of a conductive material and a second region 1400b made of an insulating material. It may be provided on the first region 1400a of the 1400. However, the lower surface of the support 2400 may be spaced apart from the bracket 1400 by a predetermined interval. Therefore, the height of the support 2400 may be equal to or smaller than the sum of the heights of the contact portion 2100 and the composite protective part 2200.
상기한 바와 같이 본 발명의 일 실시 예에 따른 복합 보호 소자(2000)는 컨택부(2100), 복합 보호부(2200) 및 도전부(2300)가 결합되어 전자기기(1000)의 내측에 마련될 수 있다. 예를 들어, 복합 보호 소자(2000)는 전자기기(1000)의 측면 케이스(1110)에 고정되어 브라켓(1400)에 연결되도록 마련될 수 있다. 이때, 복합 보호 소자는 컨택부(2100) 및 복합 보호부(2200)가 결합되고, 이러한 결합체가 도전부(2300)의 일단에 고정되며, 도전부(2300)의 타단이 고정부(1600)를 이용하여 측면 케이스(1110)의 내측에 고정될 수 있다. 예를 들어, 측면 케이스(1110)의 내측으로 고정 부재(1610)이 마련되고, 일측에 컨택부(2100) 및 복합 보호부(2200)가 마련된 도전부(2300)가 고정 부재(1610) 상에 마련되어 결합 부재(1620)를 이용하여 도전부(2300)와 고정 부재(1610)를 결합하여 도전부(2300)를 고정하게 된다. 이때, 측면 케이스(1110)의 내측에 지지부(2400)가 마련되어 복합 보호 소자(2000)의 체결을 더욱 용이하게 할 수 있다. 따라서, 외부로부터 인가되는 ESD 등의 과전압은 측면 케이스(1110) 및 고정부(1600)를 통해 전달되고, 이는 다시 복합 보호 소자(2000) 및 브라켓(1400)을 통해 메인 보드(1500)의 접지 단자로 바이패스 된다. 즉, 측면 케이스(1110) 및 고정부(1600)를 통해 전달된 과전압을 도전부(2300)를 통해 복합 보호부(2200)로 전달되고, 복합 보호부(2200) 내부에서 방전되어 컨택부(2100)를 통해 브라켓(1400)으로 전달되고 브라켓(1400)과 연결된 메인 보드(1500)의 접지 단자로 바이패스된다. 한편, 불량 충전기 등에 의해 발생된 감전 전압 또는 전류는 메인 모드(1500)를 통해 측면 케이스(1110)로 전달될 수 있지만, 감전 전압 이상에서 절연 상태를 유지하는 복합 보호부(2200)에 의해 차단되어 측면 케이스(1110)로 전달되지 못하고, 그에 따라 사용자의 감전을 방지할 수 있다.As described above, the composite protection device 2000 according to an embodiment of the present invention may be provided inside the electronic device 1000 by combining the contact portion 2100, the composite protection portion 2200, and the conductive portion 2300. Can be. For example, the composite protection device 2000 may be provided to be fixed to the side case 1110 of the electronic device 1000 and connected to the bracket 1400. In this case, in the composite protection device, the contact portion 2100 and the composite protection portion 2200 are coupled, and the combination is fixed to one end of the conductive portion 2300, and the other end of the conductive portion 2300 is fixed to the fixing portion 1600. It may be fixed to the inside of the side case 1110 by using. For example, the conductive part 2300 having the fixing member 1610 provided on the inner side of the side case 1110, and the contact part 2100 and the composite protective part 2200 provided on one side thereof is disposed on the fixing member 1610. The conductive part 2300 is fixed to the conductive part 2300 and the fixing member 1610 by using the coupling member 1620. In this case, the support part 2400 may be provided inside the side case 1110 to further facilitate the fastening of the composite protection device 2000. Therefore, an overvoltage such as an ESD applied from the outside is transmitted through the side case 1110 and the fixing part 1600, which in turn is connected to the ground terminal of the main board 1500 through the composite protection device 2000 and the bracket 1400. Bypassed. That is, the overvoltage transmitted through the side case 1110 and the fixing part 1600 is transferred to the composite protection part 2200 through the conductive part 2300, and discharged inside the composite protection part 2200 to contact the part 2100. It is delivered to the bracket 1400 and bypassed to the ground terminal of the main board 1500 connected to the bracket 1400. Meanwhile, the electric shock voltage or current generated by the defective charger may be transferred to the side case 1110 through the main mode 1500, but is blocked by the composite protection unit 2200 that maintains an insulation state at or above the electric shock voltage. It may not be delivered to the side case 1110, thereby preventing a user from electric shock.
한편, 본 발명의 실시 예들에 따른 복합 보호 소자는 다양한 방식으로 전자기기 내에 마련될 수 있는데, 이러한 실시 예들을 도 9 내지 도 12에 도시하였다. 도 9 내지 도 12는 본 발명의 제 2 내지 제 5 실시 예들에 따른 복합 보호 소자의 체결 방법을 설명하기 위한 도면이다.Meanwhile, the composite protection device according to embodiments of the present invention may be provided in an electronic device in various ways, which are illustrated in FIGS. 9 to 12. 9 to 12 are views for explaining a fastening method of the composite protective device according to the second to fifth embodiments of the present invention.
도 9에 도시된 바와 같이, 지지부(2400)가 도전부(2300)의 타단에 접촉되도록 마련되고, 지지부(2400)와 고정부(1600) 사이에 컨택부(2100) 및 복합 보호부(2200)이 마련될 수 있다. 즉, 도 5에 도시된 제 1 실시 예는 지지부(2400)가 고정부(1600)와 복합 보호부(2200) 사이에 마련되었지만, 도 9에 도시된 바와 같이 지지부(2400)가 도전부(2300)의 말단에 접촉되도록 마련되고 지지부(2400)와 고정부(1600) 사이에 복합 보호부(2200)가 마련될 수 있다. 이때, 지지부(2400)는 절연성 물질로 형성될 수 있다. 한편, 클립 형상의 컨택부(2100)은 도 6에 도시된 바와 같은 형상을 가질 수 있다.As shown in FIG. 9, the support part 2400 is provided to contact the other end of the conductive part 2300, and the contact part 2100 and the composite protective part 2200 are provided between the support part 2400 and the fixing part 1600. This can be arranged. That is, in the first embodiment illustrated in FIG. 5, the support part 2400 is provided between the fixing part 1600 and the complex protection part 2200, but as shown in FIG. 9, the support part 2400 is formed of the conductive part 2300. The composite protection part 2200 may be provided to be in contact with the end of the support part and between the support part 2400 and the fixing part 1600. In this case, the support 2400 may be formed of an insulating material. On the other hand, the clip-shaped contact portion 2100 may have a shape as shown in FIG.
또한, 도 10에 도시된 바와 같이, 고정부(1600) 사이에 지지부(2400a)가 마련될 수 있다. 즉, 연결 부재(1610)와 체결 부재(1620) 사이에 지지부(2400a)가 마련될 수 있다. 이때, 지지부(2400a)가 연결 부재(1610) 상에 접촉되어 마련되고 지지부(2400a) 상에 도전부(2300)이 접촉되도록 마련될 수 있다. 이를 위해 도전부(2300)의 일단에 지지부(2400a)가 마련되고 지지부(2400a)가 연결 부재(1610) 상에 마련된 후 체결 부재(1620)가 연결 부재(1610)에 체결될 수 있다. 또한, 연결 부재(1610) 상에 지지부(2400a)가 마련되고 지지부(2400a) 상에 도전부(2300)의 일단이 위치되도록 한 후 체결 부재(1620)를 이용하여 연결 부재(1610)와 결합할 수 있다. 따라서, 도 5 및 도 9에 도시된 지지부(2400)를 측면 케이스(1110) 내측에 마련하지 않고도 복합 보호 소자(2000)의 체결을 원활하게 할 수 있다. 한편, 지지부(2400a)는 도전성 물질로 형성될 수 있는데, 예를 들어 도전성 테이프로 형성될 수 있다. 지지부(2400a)를 도전성 물질로 형성해야 외부로부터 인가되는 과전압이 복합 보호부(2200)를 통해 접지 단자로 바이패스될 수 있다. 즉, 외부로부터 인가되는 과전압을 측면 케이스(1110) 및 고정부(1600)를 통해 전달되는데, 고정부(1600)는 연결 부재(1610) 및 체결 부재(1620)가 결합되므로 이들 사이에 절연성 물질이 마련되는 경우 과전압이 접지 단자로 바이패스될 수 없다. 따라서, 연결 부재(1610)와 체결 부재(1620) 사이에 마련되는 지지부(2400a)는 도전성 물질로 형성되어야 한다.In addition, as illustrated in FIG. 10, a support 2400a may be provided between the fixing units 1600. That is, the support 2400a may be provided between the connection member 1610 and the fastening member 1620. In this case, the support part 2400a may be provided to be in contact with the connection member 1610 and the conductive part 2300 may be in contact with the support part 2400a. To this end, the support part 2400a may be provided at one end of the conductive part 2300, the support part 2400a may be provided on the connection member 1610, and then the fastening member 1620 may be fastened to the connection member 1610. In addition, a support portion 2400a is provided on the connection member 1610 and one end of the conductive portion 2300 is positioned on the support portion 2400a, and then the coupling member 1620 may be used to engage the connection member 1610 using the fastening member 1620. Can be. Therefore, it is possible to smoothly fasten the composite protection device 2000 without providing the support part 2400 illustrated in FIGS. 5 and 9 inside the side case 1110. On the other hand, the support 2400a may be formed of a conductive material, for example, may be formed of a conductive tape. An overvoltage applied from the outside may be bypassed to the ground terminal through the composite protection unit 2200 only when the support part 2400a is formed of a conductive material. That is, an overvoltage applied from the outside is transmitted through the side case 1110 and the fixing part 1600. The fixing part 1600 is connected to the connecting member 1610 and the fastening member 1620, so that an insulating material is formed therebetween. If provided, overvoltages cannot be bypassed to the ground terminal. Therefore, the support 2400a provided between the connecting member 1610 and the fastening member 1620 should be formed of a conductive material.
그리고, 도 11에 도시된 바와 같이 도전부(2300a)는 굴곡진 형태로 마련될 수 있다. 즉, 고정부(1600)의 하측에 도전부(2300a)의 일단이 체결되고, 도전부(2300)는 일 영역에서 상향 경사지게 형성된 후 다시 수평하게 형성될 수 있다. 이때, 복합 보호부(2200)는 커버 케이스(1120) 방향으로 수평하게 형성된 부분의 소정 영역에 마련될 수 있다.And, as shown in FIG. 11, the conductive portion 2300a may be provided in a curved form. That is, one end of the conductive portion 2300a is fastened to the lower side of the fixing portion 1600, and the conductive portion 2300 may be formed to be inclined upward in one region and then horizontally formed again. In this case, the complex protection unit 2200 may be provided in a predetermined area of a portion formed horizontally in the direction of the cover case 1120.
또한, 도 12에 도시된 바와 같이 도전부(2300)와 브라켓(1400) 사이에 복합 보호부(2200) 및 컨택부(2100a)가 마련되고 이와 이격되어 지지부(2400)가 마련될 수 있다. 이때, 컨택부(2100a)는 전도성 고무, 전도성 실리콘, 내부에 전도성 도선이 삽입된 탄성체, 표면이 도체로 코팅 또는 접합된 가스켓을 포함할 수 있다. 즉, 컨택부(2100a)는 클립 형태로 형성될 수도 있고, 가스켓 형태로 형성될 수도 있다. 여기서, 컨택부(2100a)와 지지부(2400)는 수평을 이룰 수 있다. 또한, 수평을 이루는 컨택부(2100a) 및 지지부(2400)의 각각의 일면과 브라켓(1400) 사이에 전도성 접착제(2500)가 마련될 수 있다. 이를 위해 도전부(2300)의 일 영역에 복합 보호부(2200)를 실장하고 복합 보호부(2200) 상에 가스켓 형태의 컨택부(2100a)를 실장하며, 도전부(2300)의 타 영역에 지지부(2400)를 마련한 후 컨택부(2100a) 및 지지부(2400)의 일면 상에 도전성 접합제(2500)를 마련하고 도전성 접착제(2500)를 브라켓(1400) 상에 부착할 수 있다. 한편, 도전성 접착제(2500)를 이용하는 경우 지지부(2400)를 이용하지 않을 수 있다. 즉, 컨택부(2100a)의 일면 상에 도전성 접착제(2500)를 형성하고 이를 브라켓(1400)에 부착할 수 있으므로 별도의 지지부(2400)를 마련하지 않고 도전부(2300)를 고정부(1600)에 고정시킬 수 있다.In addition, as illustrated in FIG. 12, the composite protection part 2200 and the contact part 2100a may be provided between the conductive part 2300 and the bracket 1400 and spaced apart from each other to provide the support part 2400. In this case, the contact part 2100a may include a conductive rubber, a conductive silicon, an elastic body having a conductive wire inserted therein, and a gasket having a surface coated or bonded with a conductor. That is, the contact portion 2100a may be formed in the form of a clip or may be formed in the form of a gasket. Here, the contact portion 2100a and the support portion 2400 may be horizontal. In addition, a conductive adhesive 2500 may be provided between one surface of each of the horizontal contact portion 2100a and the support portion 2400 and the bracket 1400. To this end, the composite protective part 2200 is mounted in one area of the conductive part 2300, and the contact part 2100a in the form of a gasket is mounted on the composite protective part 2200, and the supporting part is supported in the other area of the conductive part 2300. After preparing the 2400, the conductive adhesive 2500 may be provided on one surface of the contact portion 2100a and the support 2400, and the conductive adhesive 2500 may be attached onto the bracket 1400. Meanwhile, when the conductive adhesive 2500 is used, the support 2400 may not be used. That is, since the conductive adhesive 2500 may be formed on one surface of the contact portion 2100a and attached to the bracket 1400, the conductive portion 2300 may be fixed to the conductive portion 2300 without providing a separate support portion 2400. Can be fixed at
이하에서는 본 발명의 일 실시 예에 따른 복합 보호부를 도 7 및 도 8을 이용하여 더욱 상세하게 설명한다. 하기 실시 예를 서프레서 타임의 복합 보호부를 도시하지만, 배리스터 타입의 복합 보호부도 가능하다.Hereinafter, the composite protection unit according to an embodiment of the present invention will be described in more detail with reference to FIGS. 7 and 8. Although the following example shows a composite protection part of suppressor time, the varistor type composite protection part is also possible.
도 7은 본 발명의 일 실시 예에 따른 복합 보호 소자의 사시도이고, 도 8은 단면도이다.7 is a perspective view of a composite protective device according to an embodiment of the present invention, Figure 8 is a cross-sectional view.
도 7 및 도 8을 참조하면, 본 발명의 일 실시 예에 따른 복합 보호 소자는 복수의 시트(100; 101 내지 111)가 적층된 적층체(2210)와, 적층체(2210) 내에 마련되며 복수의 내부 전극(200; 201 내지 208)을 구비하는 적어도 하나의 캐패시터부(2220a, 2220b; 2220)와, 적어도 하나의 방전 전극(310; 311, 312)과 과전압 보호 부재(320)를 구비하여 ESD 등의 과전압을 방호하는 과전압 보호부(2230)를 포함할 수 있다. 예를 들어, 적층체(2210) 내에 제 1 및 제 2 캐패시터부(2220a, 2220b)가 마련되고, 그 사이에 과전압 보호부(2230)가 마련될 수 있다. 즉, 적층체(2210) 내부에 제 1 캐패시터부(2220a), 과전압 보호부(2230) 및 제 2 캐패시터부(2220b)가 적층되어 복합 보호 소자가 구현될 수 있다. 또한, 적층체(2210)의 서로 대향하는 두 측면에 형성되어 캐패시터부(2220)와 과전압 보호부(2230)와 연결되는 외부 전극(2241, 2242; 4000)을 더 포함할 수 있다. 물론, 복합 보호 소자는 적어도 하나의 캐패시터부(2220)와 적어도 하나의 과전압 보호부(2230)를 포함할 수 있다. 즉, 과전압 보호부(2230)의 하측 또는 상측의 어느 하나에 캐패시터부(2220)가 마련될 수 있고, 서로 이격된 둘 이상의 과전압 보호부(2230)의 상측 및 하측에 적어도 하나의 캐패시터부(2220)가 마련될 수도 있다. 이러한 복합 보호 소자는 전자기기의 사용자가 접촉 가능한 도전체와 내부 회로, 예를 들어 금속 케이스와 PCB 사이에 마련되어 감전 전압을 차단하며, ESD 전압을 바이패스시키고, ESD에 의해 절연이 파괴되지 않아 감전 전압을 지속적으로 차단할 수 있다.7 and 8, a composite protection device according to an exemplary embodiment of the present invention may include a laminate 2210 in which a plurality of sheets 100 (101 to 111) are stacked, and a plurality of sheets 2210 are provided in a laminate 2210. At least one capacitor unit (2220a, 2220b; 2220) having internal electrodes (200; 201 to 208), at least one discharge electrode (310; 311, 312), and an overvoltage protection member (320). It may include an overvoltage protection unit 2230 for protecting the overvoltage, such as. For example, the first and second capacitor parts 2220a and 2220b may be provided in the stack 2210, and the overvoltage protection part 2230 may be provided therebetween. That is, the first capacitor part 2220a, the overvoltage protection part 2230, and the second capacitor part 2220b may be stacked in the stack 2210 to implement a composite protection device. In addition, the stack 2210 may further include external electrodes 2241, 2242 and 4000 formed on two opposite sides of the stack 2210 and connected to the capacitor unit 2220 and the overvoltage protection unit 2230. Of course, the composite protection device may include at least one capacitor unit 2220 and at least one overvoltage protection unit 2230. That is, the capacitor unit 2220 may be provided at either the lower side or the upper side of the overvoltage protection unit 2230, and at least one capacitor unit 2220 at the upper side and the lower side of the two or more overvoltage protection units 2230 spaced apart from each other. ) May be provided. These complex protection elements are provided between the conductors accessible by the user of the electronic device and internal circuitry, for example, a metal case and a PCB, to block the electric shock voltage, bypass the ESD voltage, and prevent the insulation from being destroyed by the ESD. The voltage can be cut off continuously.
1. 적층체1. Laminate
적층체(2210)는 대략 육면체 형상으로 마련될 수 있다. 즉, 적층체(2210)는 수평 방향으로 서로 직교하는 일 방향(예를 들어 X 방향) 및 타 방향(예를 들어 Y 방향)으로 각각 소정의 길이 및 폭을 갖고, 수직 방향(예를 들어 Z 방향)으로 소정의 높이를 갖는 대략 육면체 형상으로 마련될 수 있다. 즉, 외부 전극(2240)의 형성 방향을 X 방향으로 할 때, 이와 수평 방향으로 직교하는 방향을 Y 방향으로 하고 수직 방향을 Z 방향으로 할 수 있다. 여기서, X 방향으로의 길이는 Y 방향으로의 폭 및 Z 방향으로의 높이보다 크고, Y 방향으로의 폭은 Z 방향으로의 높이와 같거나 다를 수 있다. 폭(Y 방향)과 높이(Z 방향)가 다를 경우 폭은 높이보다 크거나 작을 수 있다. 예를 들어, 길이, 폭 및 높이의 비는 2∼5:1:0.3∼1일 수 있다. 즉, 폭을 기준으로 길이가 폭보다 2배 내지 5배 정도 클 수 있고, 높이는 폭보다 0.3배 내지 1배일 수 있다. 그러나, 이러한 X, Y 및 Z 방향의 크기는 하나의 예로서 복합 보호 소자가 연결되는 전자기기의 내부 구조, 복합 보호 소자의 형상 등에 따라 다양하게 변형 가능하다.The laminate 2210 may be provided in a substantially hexahedral shape. That is, the laminate 2210 has a predetermined length and width in one direction (for example, the X direction) and the other direction (for example, the Y direction) orthogonal to each other in the horizontal direction, and has a vertical direction (for example, Z). Direction) may be provided in an approximately hexahedral shape having a predetermined height. That is, when the direction in which the external electrodes 2240 are formed is the X direction, the direction orthogonal to the horizontal electrode 2 may be the Y direction, and the vertical direction may be the Z direction. The length in the X direction may be greater than the width in the Y direction and the height in the Z direction, and the width in the Y direction may be the same as or different from the height in the Z direction. If the width (Y direction) and the height (Z direction) are different, the width may be larger or smaller than the height. For example, the ratio of length, width and height may be 2-5: 1: 0.3-1. That is, the length may be about 2 to 5 times greater than the width and the height may be about 0.3 to 1 times greater than the width. However, the size of the X, Y and Z directions can be variously modified according to the internal structure of the electronic device to which the composite protective element is connected, the shape of the composite protective element, and the like, as one example.
적층체(2210)는 복수의 시트(101 내지 111; 100)가 적층되어 형성될 수 있다. 즉, 적층체(2210)는 X 방향으로 소정의 길이를 갖고 Y 방향으로 소정의 폭을 가지며, Z 방향으로 소정의 두께를 갖는 복수의 시트(100)를 적층하여 형성될 수 있다. 따라서, 시트(100)의 길이 및 폭에 의해 적층체(2210)의 길이 및 폭이 결정되고, 시트(100)의 적층 수에 의해 적층체(2210)의 높이가 결정될 수 있다. 한편, 적층체(2210)를 이루는 복수의 시트(100)는 MLCC, LTCC, HTCC 등의 유전체 재료를 이용하여 형성할 수 있다. 여기서, MLCC 유전체 물질은 BaTiO3 및 NdTiO3의 적어도 어느 하나를 주성분으로 Bi2O3, SiO2, CuO, MgO, ZnO 중 적어도 하나 이상이 첨가되고, LTCC 유전체 물질은 Al2O3, SiO2, 글래스 물질을 포함할 수 있다. 또한, 시트(100)는 MLCC, LTCC, HTCC 이외에 BaTiO3, NdTiO3, Bi2O3, BaCO3, TiO2, Nd2O3, SiO2, CuO, MgO, Zn0, Al2O3 중의 하나 이상을 포함하는 물질로 형성될 수 있다. 그리고, 시트(100)는 상기 물질들 이외에 예를 들어 Pr계, Bi계, ST계 세라믹 물질 등 바리스터 특성을 가지는 재료로 형성될 수도 있다. 물론, 시트(100)는 MLCC, LTCC, HTCC 및 바리스터 특성을 가지는 재료를 혼합하여 형성할 수도 있다. 예를 들어, 시트(100)는 BaTiO3, NdTiO3, Bi2O3, ZnO, TiO2, SiO2, Al2O3, B2O3를 포함할 수 있고, 이들 물질의 함량을 조절함으로써 유전율을 조절할 수 있다. 따라서, 시트(100)는 재질에 따라 각각 소정의 유전율, 예를 들어 5∼20000, 바람직하게는 7∼4000, 더욱 바람직하게는 100∼3000의 유전율을 가질 수 있다. 예를 들어, 시트(100)는 BaTiO3, NdTiO3, Bi2O3, ZnO, TiO2, SiO2, Al2O3, B2O3를 포함할 수 있는데, BaTiO3의 함량을 증가시켜 유전율을 높일 수 있고, NdTiO3 및 SiO2의 함량을 증가시켜 유전율을 낮출 수 있다. 한편, 시트(110) 중 적어도 하나는 다른 것과 유전율이 다를 수 있다. 예를 들어, 최외각의 시트, 즉 수직 방향으로 최하층 및 최상층에 위치하는 제 1 및 제 11 시트(101, 111)는 그 사이에 마련된 나머지 시트, 즉 제 2 내지 제 10 시트(102 내지 110)와 다른 유전율을 가질 수 있다. 즉, 제 1 및 제 11 시트(101, 111)의 유전율이 제 2 내지 제 10 시트(102 내지 110)의 유전율보다 낮을 수 있다. 예를 들어, 제 1 및 제 11 시트(101, 111)의 유전율이 100 이하이고, 제 2 내지 제 10 시트(102 내지 110)의 유전율이 500 이상일 수 있다. 예를 들어, 제 1 및 제 11 시트(101, 111)의 유전율이 5∼100이고, 제 2 내지 제 10 시트(102 내지 111)의 유전율이 500∼3000일 수 있다. 이렇게 시트(100)의 유전율을 다르게 하기 위해 시트를 형성하기 위한 조성물의 함량을 조절할 수 있다. 예를 들어, 제 1 내지 제 11 시트(101 내지 111)는 BaTiO3, NdTiO3, Bi2O3, ZnO, TiO2, SiO2, Al2O3, B2O3를 포함할 수 있는데, 제 1 및 제 11 시트(101 및 111)는 NdTiO3 및 SiO2의 함량을 증가시키고 BaTiO3의 함량을 감소시켜 유전율을 100이하로 형성할 수 있고, 제 2 내지 제 10 시트(102 내지 110)은 BaTiO3의 함량을 증가시키고 NdTiO3 및 SiO2의 함량을 감소시켜 유전율을 500 이상으로 형성할 수 있다. 즉, 제 1 및 제 11 시트(101 및 111)는 제 2 내지 제 10 시트(102 내지 110)에 비해 NdTiO3 및 SiO2의 함량을 증가시키고 BaTiO3의 함량을 감소시켜 유전율이 100 이하가 되도록 할 수 있다. 이에 비해, 제 2 내지 제 10 시트(102 내지 110)는 제 1 및 제 11 시트(101 및 111)에 비해 BaTiO3의 함량을 증가시키고 NdTiO3 및 SiO2의 함량을 감소시켜 유전율이 500 이상이 되도록 할 수 있다. 이렇게 최외곽 시트의 유전율을 낮게 함으로써 기생 캐패시턴스를 줄일 수 있다. 한편, 제 2 내지 제 10 시트(102 내지 110) 중에서 제 1 및 제 11 시트(101 및 111)에 인접한 시트, 예를 들어 제 2 및 제 10 시트(102 및 110)는 그 사이의 나머지 시트(103 내지 109)보다 유전율이 낮을 수 있다. 또한, 제 1 및 제 11 시트(101 및 111)로부터 중앙부로 갈수록 시트들의 유전율이 높아질 수 있다. 이는 적층체(2210)의 소결 시 제 1 및 제 11 시트(101 및 111)의 조성물이 적층체(2210)의 중앙부로 확산되기 때문이다.The stack 2210 may be formed by stacking a plurality of sheets 101 to 111; That is, the laminate 2210 may be formed by stacking a plurality of sheets 100 having a predetermined length in the X direction, a predetermined width in the Y direction, and a predetermined thickness in the Z direction. Accordingly, the length and width of the laminate 2210 may be determined by the length and width of the sheet 100, and the height of the laminate 2210 may be determined by the number of stacked sheets of the sheet 100. Meanwhile, the plurality of sheets 100 constituting the laminate 2210 may be formed using dielectric materials such as MLCC, LTCC, HTCC, and the like. The MLCC dielectric material includes at least one of Bi 2 O 3 , SiO 2 , CuO, MgO, and ZnO based on at least one of BaTiO 3 and NdTiO 3 , and the LTCC dielectric material is Al 2 O 3 , SiO 2. It may include a glass material. In addition, the sheet 100 is one of BaTiO 3 , NdTiO 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , SiO 2 , CuO, MgO, Zn0, and Al 2 O 3 in addition to MLCC, LTCC, and HTCC. It may be formed of a material containing the above. In addition to the above materials, the sheet 100 may be formed of a material having varistor characteristics such as Pr-based, Bi-based, and ST-based ceramic materials. Of course, the sheet 100 may be formed by mixing materials having MLCC, LTCC, HTCC and varistor characteristics. For example, the sheet 100 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 , and by adjusting the content of these materials The dielectric constant can be adjusted. Accordingly, the sheet 100 may have a predetermined dielectric constant, for example, 5 to 20000, preferably 7 to 4000, and more preferably 100 to 3000, depending on the material. For example, the sheet 100 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 , by increasing the content of BaTiO 3 The dielectric constant can be increased, and the dielectric constant can be lowered by increasing the contents of NdTiO 3 and SiO 2 . Meanwhile, at least one of the sheets 110 may have a dielectric constant different from that of the other sheets. For example, the outermost sheet, that is, the first and eleventh sheets 101 and 111 positioned in the lowermost layer and the uppermost layer in the vertical direction, are the remaining sheets provided therebetween, that is, the second to tenth sheets 102 to 110. It can have a different dielectric constant than. That is, the dielectric constants of the first and eleventh sheets 101 and 111 may be lower than those of the second to tenth sheets 102 to 110. For example, the dielectric constants of the first and eleventh sheets 101 and 111 may be 100 or less, and the dielectric constants of the second to tenth sheets 102 to 110 may be 500 or more. For example, the dielectric constants of the first and eleventh sheets 101 and 111 may be 5 to 100, and the dielectric constants of the second to tenth sheets 102 to 111 may be 500 to 3,000. Thus, in order to change the dielectric constant of the sheet 100, it is possible to adjust the content of the composition for forming the sheet. For example, the first to eleventh sheets 101 to 111 may include BaTiO 3 , NdTiO 3 , Bi 2 O 3 , ZnO, TiO 2 , SiO 2 , Al 2 O 3 , B 2 O 3 , The first and eleventh sheets 101 and 111 may increase the content of NdTiO 3 and SiO 2 and reduce the content of BaTiO 3 to form a dielectric constant of 100 or less, and the second to tenth sheets 102 to 110. The dielectric constant of 500 or more may be formed by increasing the content of BaTiO 3 and decreasing the content of NdTiO 3 and SiO 2 . That is, the first and eleventh sheets 101 and 111 increase the content of NdTiO 3 and SiO 2 and decrease the content of BaTiO 3 compared to the second to tenth sheets 102 to 110 so that the dielectric constant is 100 or less. can do. On the other hand, the second to tenth sheet (102 to 110) is the first and the 11 sheets (101 and 111) to increase the content of BaTiO 3 was NdTiO 3 and 500 or more dielectric constant by reducing the content of SiO 2 than the You can do that. By lowering the dielectric constant of the outermost sheet, parasitic capacitance can be reduced. Meanwhile, of the second to tenth sheets 102 to 110, the sheets adjacent to the first and eleventh sheets 101 and 111, for example, the second and tenth sheets 102 and 110, are the remaining sheets ( 103 to 109) may have a lower dielectric constant. In addition, the dielectric constant of the sheets may increase from the first and eleventh sheets 101 and 111 toward the center portion. This is because the compositions of the first and eleventh sheets 101 and 111 diffuse into the central portion of the laminate 2210 upon sintering of the laminate 2210.
또한, 복수의 시트(100)는 모두 동일 두께로 형성될 수 있고, 적어도 어느 하나가 다른 것들에 비해 두껍거나 얇게 형성될 수 있다. 예를 들어, 과전압 보호부(2230)의 시트는 캐패시터부(2220)의 시트와 다른 두께로 형성될 수 있고, 과전압 보호부(2230)와 캐패시터부(2220) 사이에 형성된 시트가 다른 시트들과 다른 두께로 형성될 수 있다. 예를 들어, 과전압 보호부(2230)와 캐패시터부(2220) 사이의 시트, 즉 제 5 및 제 7 시트(105, 107)의 두께는 과전압 보호부(2230)의 시트, 즉 제 6 시트(106)보다 얇거나 같은 두께로 형성되거나, 캐패시터부(2220)의 내부 전극 사이의 시트(102 내지 104, 108 내지 110)보다 얇거나 같은 두께로 형성될 수 있다. 즉, 과전압 보호부(2230)와 캐패시터부(2220) 사이의 간격은 캐패시터부(2220)의 내부 전극 사이의 간격보다 얇거나 같게 형성되거나, 과전압 보호부(2230)의 두께보다 얇거나 같게 형성될 수 있다. 물론, 캐패시터부(2000, 4000)의 시트(102 내지 104, 108 내지 110)은 동일 두께로 형성될 수 있고, 어느 하나가 다른 하나보다 얇거나 두꺼울 수도 있다. 한편, 복수의 시트(100)는 예를 들어 1㎛∼4000㎛의 두께로 형성될 수 있고, 3000㎛ 이하의 두께로 형성될 수 있다. 즉, 적층체(2210)의 두께에 따라 시트(100) 각각의 두께가 1㎛∼4000㎛일 수 있고, 바람직하게는 5㎛∼300㎛일 수 있다. 또한, 복합 보호 소자의 사이즈에 따라 시트(100)의 두께 및 적층 수 등이 조절될 수 있다. 즉, 사이즈가 작은 복합 보호 소자에 적용되는 경우 시트(100)는 얇은 두께로 형성될 수 있고, 사이즈가 큰 복합 보호 소자에 적용되는 경우 두꺼운 두께로 형성될 수 있다. 또한, 시트들(100)이 동일한 수로 적층되는 경우 복합 보호 소자의 사이즈가 작아 높이가 낮을수록 두께가 얇아지고 복합 보호 소자의 사이즈가 커질수록 두께가 두꺼울 수 있다. 물론, 얇은 시트가 큰 사이즈의 복합 보호 소자에도 적용될 수 있는데, 이 경우 시트의 적층 수가 증가하게 된다. 이때, 시트(100)는 ESD 인가 시 파괴되지 않는 두께로 형성될 수 있다. 즉, 시트들(100)의 적층 수 또는 두께가 다르게 형성되는 경우에도 적어도 하나의 시트가 ESD의 반복적인 인가에 의해 파괴되지 않는 두께로 형성될 수 있다.In addition, the plurality of sheets 100 may all be formed with the same thickness, and at least one may be formed thicker or thinner than the others. For example, the sheet of the overvoltage protection unit 2230 may be formed to have a different thickness from the sheet of the capacitor unit 2220, and the sheet formed between the overvoltage protection unit 2230 and the capacitor unit 2220 may be formed of another sheet. It can be formed in different thicknesses. For example, the thickness of the sheet between the overvoltage protection unit 2230 and the capacitor unit 2220, that is, the fifth and seventh sheets 105 and 107, may be the sheet of the overvoltage protection unit 2230, that is, the sixth sheet 106. It may be formed to a thickness thinner than or the same as), or may be formed to a thickness thinner than or equal to the sheets 102 to 104 and 108 to 110 between the internal electrodes of the capacitor unit 2220. That is, the interval between the overvoltage protection unit 2230 and the capacitor unit 2220 is formed to be thinner or the same as the interval between the internal electrodes of the capacitor unit 2220, or thinner or equal to the thickness of the overvoltage protection unit 2230. Can be. Of course, the sheets 102 to 104 and 108 to 110 of the capacitor parts 2000 and 4000 may be formed to have the same thickness, and either one may be thinner or thicker than the other. Meanwhile, the plurality of sheets 100 may be formed, for example, in a thickness of 1 μm to 4000 μm, and may be formed to a thickness of 3000 μm or less. That is, the thickness of each sheet 100 may be 1 μm to 4000 μm, and preferably 5 μm to 300 μm, depending on the thickness of the laminate 2210. In addition, the thickness of the sheet 100 and the number of stacked layers may be adjusted according to the size of the composite protection device. That is, the sheet 100 may be formed in a thin thickness when the composite protective element is small in size, and may be formed in a thick thickness when the composite protective element is large in size. In addition, when the sheets 100 are stacked in the same number, the smaller the size of the composite protection device is, the thinner the height becomes, and the larger the size of the composite protection device may be. Of course, a thin sheet can also be applied to a composite protective element of a large size, in which case the number of sheets of the sheet is increased. At this time, the sheet 100 may be formed to a thickness that does not break when the ESD is applied. That is, even when the number of stacks or the thickness of the sheets 100 are different, at least one sheet may be formed to a thickness that is not destroyed by repeated application of ESD.
또한, 적층체(2210)는 캐패시터부(2220)의 하부 및 상부에 각각 마련된 하부 커버층(미도시) 및 상부 커버층(미도시)을 더 포함할 수 있다. 즉, 적층체(2210)는 최하층 및 최상층에 각각 마련된 하부 및 상부 커버층을 포함할 수 있다. 물론, 최하층의 시트, 즉 제 1 시트(101)가 하부 커버층으로 기능하고, 최상층의 시트, 즉 제 11 시트(111)가 상부 커버층으로 기능할 수도 있다. 시트(100)와 별도로 마련되는 하부 및 상부 커버층은 동일 두께로 형성될 수 있다. 그러나, 하부 및 상부 커버층은 다른 두께로도 형성될 수 있는데, 예를 들어 상부 커버층이 하부 커버층보다 두껍게 형성될 수 있다. 여기서, 하부 및 상부 커버층은 복수의 자성체 시트가 적층되어 마련될 수 있다. 또한, 자성체 시트로 이루어진 하부 및 상부 커버층의 외측 표면, 즉 적층체(2210)의 하부 표면 및 상부 표면에 비자성 시트, 예를 들어 유리질 시트가 더 형성될 수 있다. 그러나, 하부 및 상부 커버층은 유리질 시트로 형성될 수도 있고, 적층체(2210)의 표면이 폴리머, 글래스 재질로 코팅될 수도 있다. 한편, 하부 및 상부 커버층은 시트들(100) 각각의 두께보다 두꺼울 수 있다. 즉, 커버층은 시트 하나의 두께보다 두꺼울 수 있다. 따라서, 최하층 및 최상층의 시트, 즉 제 1 및 제 11 시트(101, 111)가 하부 및 상부 커버층으로 기능하는 경우 그 사이의 시트들(102 내지 110) 각각보다 두껍게 형성될 수 있다.In addition, the laminate 2210 may further include a lower cover layer (not shown) and an upper cover layer (not shown) provided at the lower and upper portions of the capacitor unit 2220, respectively. That is, the laminate 2210 may include lower and upper cover layers respectively provided on the lowermost layer and the uppermost layer. Of course, the lowermost sheet, that is, the first sheet 101 may function as the lower cover layer, and the uppermost sheet, that is, the eleventh sheet 111 may function as the upper cover layer. The lower and upper cover layers provided separately from the sheet 100 may be formed to have the same thickness. However, the lower and upper cover layers may be formed in other thicknesses, for example, the upper cover layer may be formed thicker than the lower cover layer. Here, the lower and upper cover layers may be provided by stacking a plurality of magnetic sheets. In addition, a nonmagnetic sheet, for example, a glassy sheet, may be further formed on the outer surfaces of the lower and upper cover layers made of magnetic sheets, that is, the lower and upper surfaces of the laminate 2210. However, the lower and upper cover layers may be formed of glassy sheets, and the surface of the laminate 2210 may be coated with a polymer or glass material. Meanwhile, the lower and upper cover layers may be thicker than the thickness of each of the sheets 100. That is, the cover layer may be thicker than the thickness of one sheet. Thus, the lowermost and uppermost sheets, i.e., the first and eleventh sheets 101 and 111, may function thicker than each of the sheets 102 to 110 therebetween when functioning as the lower and upper cover layers.
2. 캐패시터부2. Capacitor
적어도 하나의 캐패시터부(2220a, 2220b; 2000)가 적층체(2210) 내부에 형성된다. 예를 들어, 과전압 보호부(2230)를 사이에 두고 그 하부 및 상부에 제 1 및 제 2 캐패시터부(2220a, 2220b)가 마련될 수 있다. 그러나, 제 1 및 제 2 캐패시터부(2220a, 2220b)는 복수의 내부 전극(200)이 과전압 보호부(2230)를 사이에 두고 나뉘어 형성되므로 편의상 지칭한 것이고, 적층체(2210) 내부에는 캐패시터로 기능하는 복수의 내부 전극(200)이 형성될 수 있다.At least one capacitor portion 2220a, 2220b; 2000 is formed in the stack 2210. For example, first and second capacitor parts 2220a and 2220b may be provided below and over the overvoltage protection part 2230. However, the first and second capacitor parts 2220a and 2220b are referred to for convenience because the plurality of internal electrodes 200 are formed by being divided with the overvoltage protection part 2230 interposed therebetween, and the inside of the laminate 2210 functions as a capacitor. A plurality of internal electrodes 200 may be formed.
캐패시터부(2220)는 과전압 보호부(2230)의 하측 및 상측에 각각 마련되며, 적어도 둘 이상의 내부 전극과, 이들 사이에 마련된 적어도 둘 이상의 시트를 포함할 수 있다. 예를 들어, 제 1 캐패시터부(2220a)는 제 1 내지 4 시트(101 내지 104)와, 제 1 내지 4 시트(101 내지 104) 상에 각각 형성된 제 1 내지 제 4 내부 전극(201 내지 204)를 포함할 수 있다. 또한, 제 2 캐패시터부(2220b)는 제 7 내지 제 10 시트(107 내지 110)와, 제 7 내지 제 10 시트(107 내지 110) 상에 각각 형성된 제 5 내지 제 8 내부 전극(205 내지 208)을 포함할 수 있다. 여기서, 내부 전극(201 내지 208; 200)는 각각 예를 들어 1㎛∼10㎛의 두께로 형성될 수 있다. 또한, 복수의 내부 전극(200)은 X 방향으로 서로 대향되도록 형성된 외부 전극(2241, 2242; 4000)과 일측이 연결되고 타측이 이격되도록 형성된다. 예를 들어, 제 1, 제 3, 제 5 및 제 7 내부 전극(201, 203, 205, 207)은 제 1, 제 3, 제 7 및 제 9 시트(101, 103, 107, 109) 상에 각각 소정 면적으로 형성되며, 일측이 제 2 외부 전극(2242)과 연결되고 타측이 제 1 외부 전극(2241)과 이격되도록 형성된다. 또한, 제 2, 제 4, 제 6 및 제 8 내부 전극(202, 204, 206, 208)은 제 2, 제 4, 제 8 및 제 10 시트(102, 104, 108, 110) 상에 각각 소정 면적으로 형성되며 일측이 제 1 외부 전극(2241)과 연결되고 타측이 제 2 외부 전극(2242)과 이격되도록 형성된다. 즉, 복수의 내부 전극(200)은 외부 전극(2240)의 어느 하나와 교대로 연결되며 그 사이의 시트들(102 내지 104, 108 내지 110)를 사이에 두고 소정 영역 중첩되도록 형성된다. 또한, 내부 전극(200)은 X 방향의 길이 및 Y 방향의 폭이 적층체(2210)의 길이 및 폭보다 작게 형성될 수 있다. 즉. 내부 전극(200)은 시트(100)의 길이 및 폭보다 작게 형성될 수 있다. 예를 들어, 내부 전극(200)은 적층체(2210) 또는 시트(100)의 길이의 10% 내지 90%의 길이와 10% 내지 90%의 폭으로 형성될 수 있다. 또한, 내부 전극(200)은 시트(100) 각각의 면적 대비 10% 내지 90%의 면적으로 각각 형성될 수 있다. 한편, 복수의 내부 전극(200)은 각각 예를 들어 정사각형, 직사각형, 소정의 패턴 형상, 소정 폭 및 간격을 갖는 스파이럴 형상 등 다양한 형상으로 형성될 수 있다. 이러한 캐패시터부(2220)는 내부 전극(200) 사이에 캐패시턴스가 각각 형성되며, 캐패시턴스는 내부 전극(200)의 중첩 면적, 시트들(100)의 두께 등에 따라 조절될 수 있다. 한편, 캐패시터부(2220)는 제 1 내지 제 8 내부 전극(201 내지 208) 이외에 적어도 하나 이상의 내부 전극이 더 형성되고, 적어도 하나의 내부 전극이 형성되는 적어도 하나의 시트가 더 형성될 수도 있다. 또한, 제 1 및 제 2 캐패시터부(2220a, 2220b)는 각각 두개의 내부 전극이 형성될 수도 있다. 즉, 본 실시 예는 제 1 및 제 2 캐패시터(2220a, 2220b)의 내부 전극이 각각 네개 형성되는 것을 예로 설명하였으나, 내부 전극은 둘 이상 복수로 형성될 수 있다.The capacitor unit 2220 is provided below and above the overvoltage protection unit 2230, respectively, and may include at least two or more internal electrodes and at least two or more sheets provided therebetween. For example, the first capacitor portion 2220a may include the first to fourth sheets 101 to 104 and the first to fourth internal electrodes 201 to 204 formed on the first to fourth sheets 101 to 104, respectively. It may include. In addition, the second capacitor unit 2220b includes seventh to tenth sheets 107 to 110 and fifth to eighth internal electrodes 205 to 208 formed on the seventh to tenth sheets 107 to 110, respectively. It may include. Herein, the internal electrodes 201 to 208 and 200 may be formed to have a thickness of, for example, 1 μm to 10 μm. In addition, the plurality of inner electrodes 200 are formed such that one side of the plurality of inner electrodes 200 and the outer electrodes 2241, 2242 and 4000 are formed to face each other in the X direction, and the other side thereof is spaced apart from each other. For example, the first, third, fifth, and seventh internal electrodes 201, 203, 205, 207 are disposed on the first, third, seventh, and ninth sheets 101, 103, 107, 109. Each of them is formed in a predetermined area, and is formed such that one side is connected to the second external electrode 2242 and the other side is spaced apart from the first external electrode 2241. In addition, the second, fourth, sixth, and eighth internal electrodes 202, 204, 206, and 208 are predetermined on the second, fourth, eighth, and tenth sheets 102, 104, 108, and 110, respectively. It is formed to have an area and is formed such that one side is connected to the first external electrode 2241 and the other side is spaced apart from the second external electrode 2242. That is, the plurality of internal electrodes 200 are alternately connected to any one of the external electrodes 2240 and formed to overlap a predetermined region with the sheets 102 to 104 and 108 to 110 therebetween. In addition, the internal electrode 200 may have a length in the X direction and a width in the Y direction smaller than the length and width of the laminate 2210. In other words. The internal electrode 200 may be formed smaller than the length and width of the sheet 100. For example, the internal electrode 200 may be formed to have a length of 10% to 90% and a width of 10% to 90% of the length of the laminate 2210 or the sheet 100. In addition, the internal electrode 200 may be formed with an area of 10% to 90% of the area of each sheet 100. Meanwhile, the plurality of internal electrodes 200 may be formed in various shapes, for example, square, rectangular, predetermined pattern shapes, spiral shapes having a predetermined width and spacing. Capacitors 2220 have capacitances formed between the internal electrodes 200, respectively, and the capacitance may be adjusted according to the overlapping area of the internal electrodes 200, the thickness of the sheets 100, and the like. Meanwhile, at least one internal electrode may be further formed in addition to the first to eighth internal electrodes 201 to 208, and at least one sheet on which at least one internal electrode is formed may be further formed in the capacitor unit 2220. In addition, two internal electrodes may be formed in the first and second capacitor parts 2220a and 2220b, respectively. That is, the present embodiment has been described as an example in which four internal electrodes of the first and second capacitors 2220a and 2220b are formed, respectively, but two or more internal electrodes may be formed.
이러한 내부 전극(200)은 도전성 물질로 형성될 수 있는데, 예를 들어 Al, Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 합금의 경우 예를 들어 Ag와 Pd 합금을 이용할 수 있다. 한편, Al은 소성 중 표면에 알루미늄 옥사이드(Al2O3)가 형성되고 내부는 Al을 유지할 수 있다. 즉, Al을 시트 상에 형성할 때 공기와 접촉하게 되는데, 이러한 Al은 소성 공정에서 표면이 산화되어 Al2O3가 형성되고, 내부는 Al을 그대로 유지한다. 따라서, 내부 전극(200)은 표면에 다공성의 얇은 절연층인 Al2O3로 피복된 Al로 형성될 수 있다. 물론, Al 이외에 표면에 절연층, 바람직하게는 다공성의 절연층이 형성되는 다양한 금속이 이용될 수 있다. 한편, 내부 전극(200)은 적어도 일 영역의 두께가 얇거나 적어도 일 영역이 제거되어 시트가 노출되도록 형성될 수 있다. 그러나, 내부 전극(200)의 적어도 일 영역의 두께가 얇거나 적어도 일 영역이 제거되더라도 전체적으로 연결된 상태를 유지하므로 전기 전도성에는 전혀 문제가 발생되지 않는다.The internal electrode 200 may be formed of a conductive material. For example, the internal electrode 200 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu. In the case of an alloy, for example, Ag and Pd alloys may be used. Meanwhile, Al may form aluminum oxide (Al 2 O 3 ) on its surface during firing and maintain Al therein. That is, when Al is formed on the sheet, it comes into contact with air. In the Al process, the surface is oxidized to form Al 2 O 3 , and the inside maintains Al as it is. Therefore, the internal electrode 200 may be formed of Al coated with Al 2 O 3 , which is a porous thin insulating layer on the surface. Of course, in addition to Al, various metals having an insulating layer, preferably a porous insulating layer, may be used on the surface. Meanwhile, the internal electrode 200 may be formed so that at least one region has a thin thickness or at least one region is removed to expose the sheet. However, even if the thickness of at least one region of the internal electrode 200 is thin or at least one region is removed, the connected state is maintained as a whole so that there is no problem in electrical conductivity.
한편, 제 1 캐패시터부(2220a)의 내부 전극들(201 내지 204)과 제 2 캐패시터부(2220b)의 내부 전극들(205 내지 208)은 동일 형상 및 동일 면적으로 형성될 수 있고, 중첩 면적 또한 동일할 수 있다. 그런데, 제 1 내부 전극(201)과 제 8 내부 전극(208)은 외부 전극(2240)과 중첩될 수 있으며, 이러한 제 1 및 제 8 내부 전극(201, 208)은 나머지 내부 전극들(202 내지 207)보다 길게 형성될 수 있다. 즉, 제 1 및 제 8 내부 전극(201, 208)은 말단부가 제 1 및 제 2 외부 전극(2241, 2242)과 각각 일부 중첩되도록 형성되어 이들 사이에 기생 캐패시턴스가 형성되므로 제 1 및 제 8 내부 전극(201, 208)은 나머지 내부 전극들(202 내지 207)보다 예를 들어 10% 정도 더 길게 형성될 수 있다. 또한, 제 1 및 제 8 내부 전극(201, 208)은 외부 전극(2240)과 중첩되는 영역이 나머지 영역보다 넓게 형성될 수도 있다. 예를 들어, 제 1 및 제 8 내부 전극(201, 208)은 외부 전극(2240)과 중첩되는 영역 또는 그와 인접한 영역이 중첩되지 않는 영역에 비해 10% 정도 더 넓게 형성될 수 있다. 이때, 제 1 및 제 8 내부 전극(201, 208)의 외부 전극(2240)과 중첩되지 않는 영역은 나머지 내부 전극(202 내지 209)의 너비와 동일할 수 있다. 한편, 제 1 캐패시터부(2220a)의 시트들(101 내지 104)와 제 2 캐패시터부(2220b)의 시트들(107 내지 110)은 동일 두께를 가질 수 있다. 이때, 제 1 시트(101)가 하부 커버층으로 기능할 경우 제 1 시트(101)는 나머지 시트들에 비해 두껍게 형성될 수 있다. 따라서, 제 1 및 제 2 캐패시터부(2220a, 2220b)는 캐패시턴스가 동일할 수 있다. 그러나, 제 1 및 제 2 캐패시터부(2220a, 2220b)는 캐패시턴스가 다를 수 있으며, 이 경우 내부 전극의 면적, 내부 전극의 중첩 면적, 시트의 두께의 적어도 어느 하나가 서로 다를 수 있다. 또한, 캐패시터부(2220)의 내부 전극(201 내지 208)는 과전압 보호부(2230)의 방전 전극(310)보다 길게 형성될 수 있고, 면적 또한 크게 형성될 수 있다.Meanwhile, the internal electrodes 201 to 204 of the first capacitor part 2220a and the internal electrodes 205 to 208 of the second capacitor part 2220b may be formed in the same shape and the same area, and the overlapping area may also be May be the same. However, the first internal electrode 201 and the eighth internal electrode 208 may overlap the external electrode 2240, and the first and eighth internal electrodes 201 and 208 may be formed of the remaining internal electrodes 202 to 202. 207 may be formed longer than. That is, the first and eighth internal electrodes 201 and 208 are formed to partially overlap the first and second external electrodes 2241 and 2242, respectively, so that parasitic capacitances are formed therebetween, so that the first and eighth internal electrodes 201 and 208 are formed. The electrodes 201 and 208 may be formed, for example, about 10% longer than the remaining internal electrodes 202 to 207. In addition, in the first and eighth internal electrodes 201 and 208, an area overlapping the external electrode 2240 may be formed wider than the remaining areas. For example, the first and eighth internal electrodes 201 and 208 may be formed to be about 10% wider than a region overlapping with the external electrode 2240 or a region not adjacent thereto. In this case, regions of the first and eighth internal electrodes 201 and 208 that do not overlap with the external electrodes 2240 may be the same as the widths of the remaining internal electrodes 202 to 209. Meanwhile, the sheets 101 to 104 of the first capacitor unit 2220a and the sheets 107 to 110 of the second capacitor unit 2220b may have the same thickness. In this case, when the first sheet 101 functions as the lower cover layer, the first sheet 101 may be formed thicker than the remaining sheets. Therefore, the first and second capacitor parts 2220a and 2220b may have the same capacitance. However, the first and second capacitor parts 2220a and 2220b may have different capacitances, and in this case, at least one of the area of the inner electrode, the overlapping area of the inner electrode, and the thickness of the sheet may be different from each other. In addition, the internal electrodes 201 to 208 of the capacitor unit 2220 may be formed longer than the discharge electrode 310 of the overvoltage protection unit 2230, and may have a large area.
3. 과전압 보호부3. Overvoltage Protection
과전압 보호부(2230)는 수직 방향으로 이격되어 형성된 적어도 두개의 방전 전극(311, 312; 310)과, 방전 전극(310) 사이에 마련된 적어도 하나의 과전압 보호 부재(320)를 포함할 수 있다. 예를 들어, 과전압 보호부(2230)는 제 5 및 제 6 시트(105, 106)와, 제 5 및 제 6 시트(105, 106) 상에 각각 형성된 제 1 및 제 2 방전 전극(311, 312)과, 제 6 시트(106)를 관통하여 형성된 과전압 보호 부재(320)를 포함할 수 있다. 여기서, 과전압 보호 부재(320)는 적어도 일부가 제 1 및 제 2 방전 전극(311, 312)과 연결되도록 형성될 수 있다. 제 1 및 제 2 방전 전극(311, 312)은 캐패시터부(2220)의 내부 전극들(200)과 동일 두께로 형성될 수 있다. 예를 들어, 제 1 및 제 2 방전 전극(311, 312)은 1㎛∼10㎛의 두께로 형성할 수 있다. 그러나, 제 1 및 제 2 방전 전극(311, 312)은 캐패시터부(2220)의 내부 전극(200)보다 얇거나 두껍게 형성될 수도 있다. 제 1 방전 전극(311)은 제 1 외부 전극(2241)과 연결되어 제 5 시트(105) 상에 형성되며 말단부가 과전압 보호 부재(320)와 연결되도록 형성된다. 제 2 방전 전극(312)은 제 2 외부 전극(2242)과 연결되어 제 6 시트(106) 상에 형성되며 말단부가 과전압 보호 부재(320)와 연결되도록 형성된다. The overvoltage protection unit 2230 may include at least two discharge electrodes 311, 312; 310 spaced apart in the vertical direction, and at least one overvoltage protection member 320 provided between the discharge electrodes 310. For example, the overvoltage protection unit 2230 may include the first and second discharge electrodes 311 and 312 formed on the fifth and sixth sheets 105 and 106 and the fifth and sixth sheets 105 and 106, respectively. ) And an overvoltage protection member 320 formed through the sixth sheet 106. Here, the overvoltage protection member 320 may be formed such that at least a portion thereof is connected to the first and second discharge electrodes 311 and 312. The first and second discharge electrodes 311 and 312 may be formed to have the same thickness as the internal electrodes 200 of the capacitor unit 2220. For example, the first and second discharge electrodes 311 and 312 may be formed to a thickness of 1 μm to 10 μm. However, the first and second discharge electrodes 311 and 312 may be formed thinner or thicker than the internal electrode 200 of the capacitor unit 2220. The first discharge electrode 311 is connected to the first external electrode 2241 and is formed on the fifth sheet 105, and the distal end part is connected to the overvoltage protection member 320. The second discharge electrode 312 is connected to the second external electrode 2242 and formed on the sixth sheet 106, and the distal end portion is connected to the overvoltage protection member 320.
여기서, 방전 전극(311, 312)은 인접한 내부 전극(200)과 동일 외부 전극(2240)과 연결되도록 형성된다. 즉, 제 1 방전 전극(311)은 인접한 제 4 내부 전극(204)과 제 1 외부 전극(2241)에 연결되며, 제 2 방전 전극(312)은 인접한 제 5 내부 전극(205)과 제 2 외부 전극(2242)에 연결된다. 이렇게 방전 전극(310)과 이와 인접한 내부 전극(200)이 동일 외부 전극(2240)과 연결됨으로써 절연 시트(100)가 열화, 즉 절연 파괴되는 경우에도 ESD 전압이 전자기기 내부로 인가되지 않는다. 즉, 방전 전극(310)과 인접한 내부 전극(200)이 서로 다른 외부 전극(2240)과 연결된 경우 절연 시트(100)가 절연 파괴되면 일 외부 전극(2240)을 통해 인가되는 ESD 전압이 방전 전극(310)과 인접한 내부 전극(200)을 통해 타 외부 전극(2240)으로 흐르게 된다. 예를 들어, 제 1 방전 전극(311)이 제 1 외부 전극(2241)과 연결되고 이와 인접한 제 4 내부 전극(204)이 제 2 외부 전극(2242)과 연결된 경우 절연 시트(100)가 절연 파괴되면 제 1 방전 전극(311)과 제 4 내부 전극(204) 사이에 도전 경로가 형성되어 제 1 외부 전극(2241)을 통해 인가되는 ESD 전압이 제 1 방전 전극(311), 절연 파괴된 제 5 절연 시트(105) 및 제 2 내부 전극(202)으로 흐르게 되고, 그에 따라 제 2 외부 전극(2242)을 통해 내부 회로로 인가될 수 있다. 이러한 문제를 해결하기 위해서는 절연 시트(100)의 두께를 두껍게 형성할 수 있지만, 이 경우 감전 방지 소자의 사이즈가 커지는 문제가 있다. 그러나, 방전 전극(310)과 이와 인접한 내부 전극(200)이 동일 외부 전극(2240)과 연결됨으로써 절연 시트(100)가 절연 파괴되는 경우에도 ESD 전압이 전자기기 내부로 인가되지 않는다. 또한, 절연 시트(100)의 두께를 두껍게 형성하지 않고도 ESD 전압이 인가되는 것을 방지할 수 있다.In this case, the discharge electrodes 311 and 312 are formed to be connected to the adjacent inner electrode 200 and the same outer electrode 2240. That is, the first discharge electrode 311 is connected to the adjacent fourth internal electrode 204 and the first external electrode 2241, and the second discharge electrode 312 is connected to the adjacent fifth internal electrode 205 and the second external. Is connected to an electrode 2242. As such, when the discharge electrode 310 and the inner electrode 200 adjacent thereto are connected to the same outer electrode 2240, the ESD voltage is not applied to the electronic device even when the insulating sheet 100 is deteriorated, that is, the dielectric breakdown. That is, when the insulating sheet 100 is dielectrically broken when the discharge electrode 310 and the inner electrode 200 adjacent to each other are connected to different external electrodes 2240, the ESD voltage applied through the one external electrode 2240 is discharge electrode ( The internal electrode 200 adjacent to 310 flows to the other external electrode 2240. For example, when the first discharge electrode 311 is connected to the first external electrode 2241 and the fourth internal electrode 204 adjacent thereto is connected to the second external electrode 2242, the insulating sheet 100 breaks down the insulation. When the conductive path is formed between the first discharge electrode 311 and the fourth internal electrode 204, the ESD voltage applied through the first external electrode 2241 is the first discharge electrode 311, and the dielectric breakdown fifth is performed. It may flow to the insulating sheet 105 and the second internal electrode 202, and thus may be applied to the internal circuit through the second external electrode 2242. In order to solve this problem, the thickness of the insulating sheet 100 can be formed to be thick, but in this case, there is a problem that the size of the electric shock prevention device increases. However, even when the discharge electrode 310 and the inner electrode 200 adjacent thereto are connected to the same outer electrode 2240, the ESD voltage is not applied into the electronic device even when the insulating sheet 100 is destroyed. In addition, it is possible to prevent the ESD voltage from being applied without forming the thickness of the insulating sheet 100 thickly.
한편, 제 1 및 제 2 방전 전극(311, 312)의 과전압 보호 부재(320)와 접촉되는 영역은 과전압 보호 부재(320)와 동일 크기 또는 이보다 작게 형성될 수 있다. 또한, 제 1 및 제 2 방전 전극(311, 312)은 과전압 보호 부재(320)를 벗어나지 않고 완전히 중첩되어 형성될 수도 있다. 즉, 제 1 및 제 2 방전 전극(311, 312)의 가장자리는 과전압 보호 부재(320)의 가장자리와 수직 성분을 이룰 수 있다. 물론, 제 1 및 제 2 방전 전극(311, 312)은 과전압 보호 부재(320)의 일부에 중첩되도록 형성될 수도 있다. 예를 들어, 제 1 및 제 2 방전 전극(311, 312)는 과전압 보호 부재(320)의 수평 면적의 10% 내지 100% 중첩되도록 형성될 수 있다. 즉, 제 1 및 제 2 방전 전극(311, 312)은 과전압 보호 부재(320)를 벗어나게 형성되지 않는다. 한편, 제 1 및 제 2 방전 전극(311, 312)은 과전압 보호 부재(320)와 접촉되는 일 영역이 접촉되지 않은 영역보다 크게 형성될 수 있다.Meanwhile, regions in contact with the overvoltage protection member 320 of the first and second discharge electrodes 311 and 312 may be formed the same size or smaller than the overvoltage protection member 320. In addition, the first and second discharge electrodes 311 and 312 may be formed to completely overlap without leaving the overvoltage protection member 320. That is, the edges of the first and second discharge electrodes 311 and 312 may form a vertical component with the edges of the overvoltage protection member 320. Of course, the first and second discharge electrodes 311 and 312 may be formed to overlap a part of the overvoltage protection member 320. For example, the first and second discharge electrodes 311 and 312 may be formed to overlap 10% to 100% of the horizontal area of the overvoltage protection member 320. That is, the first and second discharge electrodes 311 and 312 are not formed beyond the overvoltage protection member 320. Meanwhile, the first and second discharge electrodes 311 and 312 may be formed to have a larger area than one in contact with the overvoltage protection member 320.
과전압 보호 부재(320)는 제 6 시트(106)의 소정 영역, 예를 들어 중심부에 형성되어 제 1 및 제 2 방전 전극(311, 312)과 연결될 수 있다. 이때, 과전압 보호 부재(320)는 제 1 및 제 2 방전 전극(311, 312)과 적어도 일부 중첩되도록 형성될 수 있다. 즉, 과전압 보호 부재(320)는 제 1 및 제 2 방전 전극(311, 312)과 수평 면적의 10% 내지 100% 중첩되도록 형성될 수 있다. 과전압 보호 부재(320)는 제 6 시트(106)의 소정 영역, 예를 들어 중심부에 소정 크기의 관통홀을 형성하고 후막 인쇄 공정을 이용하여 관통홀을 매립하도록 형성될 수 있다. 보호층(330)은 예를 들어 100㎛∼500㎛의 직경과 10㎛∼50㎛의 두께로 형성될 수 있다. 이때, 과전압 보호 부재(320)의 두께가 얇을수록 방전 개시 전압이 낮아진다. 과전압 보호 부재(320)는 도전성 물질과 절연성 물질을 이용하여 형성할 수 있다. 예를 들어, 도전성 세라믹과 절연성 세라믹의 혼합 물질을 제 6 시트(106) 상에 인쇄하여 과전압 보호 부재(320)를 형성할 수 있다. 한편, 과전압 보호 부재(320)는 적어도 하나의 시트(100) 상에 형성될 수도 있다. 즉, 수직 방향으로 적층된 적어도 하나, 예를 들어 두개의 시트(100)에 과전압 보호 부재(320)가 각각 형성되고, 그 시트(100) 상에 서로 이격되도록 방전 전극이 형성되어 과전압 보호 부재(320)와 연결될 수 있다. 과전압 보호 부재(320)의 구조, 재료 등의 보다 자세한 설명은 후술하도록 하겠다.The overvoltage protection member 320 may be formed in a predetermined region, for example, a central portion of the sixth sheet 106, and may be connected to the first and second discharge electrodes 311 and 312. In this case, the overvoltage protection member 320 may be formed to at least partially overlap the first and second discharge electrodes 311 and 312. That is, the overvoltage protection member 320 may be formed to overlap 10% to 100% of the horizontal area with the first and second discharge electrodes 311 and 312. The overvoltage protection member 320 may be formed to form a through hole having a predetermined size in a predetermined region, for example, a central portion of the sixth sheet 106, and fill the through hole using a thick film printing process. The protective layer 330 may be formed, for example, with a diameter of 100 μm to 500 μm and a thickness of 10 μm to 50 μm. At this time, the thinner the thickness of the overvoltage protection member 320, the lower the discharge start voltage. The overvoltage protection member 320 may be formed using a conductive material and an insulating material. For example, the overvoltage protection member 320 may be formed by printing a mixed material of the conductive ceramic and the insulating ceramic on the sixth sheet 106. Meanwhile, the overvoltage protection member 320 may be formed on at least one sheet 100. That is, the overvoltage protection members 320 are formed on at least one sheet, for example, two sheets 100 stacked in a vertical direction, and discharge electrodes are formed on the sheet 100 so as to be spaced apart from each other. 320). The structure, material, and the like of the overvoltage protection member 320 will be described later.
4. 외부 전극4. External electrode
외부 전극(2241, 2242; 4000)는 적층체(2210) 외부의 서로 대향되는 두 면에 마련될 수 있다. 예를 들어, 외부 전극(2240)은 X 방향, 즉 길이 방향으로 적층체(2210)의 대향되는 두 면에 각각 형성될 수 있다. 또한, 외부 전극(2240)은 적층체(2210) 내부의 내부 전극(200) 및 방전 전극(310)과 연결될 수 있다. 이때, 외부 전극(2240)의 어느 하나는 전자기기 내부의 인쇄회로기판 등의 내부 회로와 접속될 수 있고, 다른 하나는 전자기기의 외부, 예를 들어 금속 케이스와 연결될 수 있다. 예를 들어, 제 1 외부 전극(2241)은 내부 회로에 접속될 수 있고, 제 2 외부 전극(2242)은 금속 케이스와 연결될 수 있다. 또한, 제 2 외부 전극(2242)은 도전성 부재, 예를 들어 컨택터 또는 도전성 가스켓을 통해 금속 케이스와 연결될 수 있다.The external electrodes 2241, 2242 and 4000 may be provided on two surfaces facing each other outside the stack 2210. For example, the external electrodes 2240 may be formed on two opposite surfaces of the stack 2210 in the X direction, that is, the length direction. In addition, the external electrode 2240 may be connected to the internal electrode 200 and the discharge electrode 310 in the stack 2210. In this case, any one of the external electrodes 2240 may be connected to an internal circuit such as a printed circuit board inside the electronic device, and the other may be connected to the outside of the electronic device, for example, a metal case. For example, the first external electrode 2241 may be connected to an internal circuit, and the second external electrode 2242 may be connected to a metal case. In addition, the second external electrode 2242 may be connected to the metal case through a conductive member, for example, a contactor or a conductive gasket.
이러한 외부 전극(2240)은 다양한 방법으로 형성될 수 있다. 즉, 외부 전극(2240)은 도전성 페이스트를 이용하여 침지 또는 인쇄 방법으로 형성하거나, 증착, 스퍼터링, 도금 등의 다양한 방법으로 형성될 수도 있다. 한편, 외부 전극(2240)은 Y 방향 및 Z 방향의 면에 연장 형성될 수 있다. 즉, 외부 전극(2240)은 X 방향으로 대향되는 두 면으로부터 이와 인접한 네 면에 연장 형성될 수 있다. 예를 들어, 도전성 페이스트에 침지하는 경우 X 방향의 대향되는 두 측면 뿐만 아니라 Y 방향의 전면 및 후면, 그리고 Z 방향의 상면 및 하면에도 외부 전극(2240)이 형성될 수 있다. 이에 비해, 인쇄, 증착, 스퍼터링, 도금 등의 방법으로 형성할 경우 X 방향의 두면에 외부 전극(2240)이 형성될 수 있다. 즉, 외부 전극(2240)은 인쇄회로기판에 실장되는 일 측면 및 금속 케이스와 연결되는 타 측면 뿐만 아니라 형성 방법 또는 공정 조건에 따라 그 이외의 영역에도 형성될 수 있다. 이러한 외부 전극(2240)은 전기 전도성을 가지는 금속으로 형성될 수 있는데, 예를 들어 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속으로 형성될 수 있다. 이때, 내부 전극(200) 및 방전 전극(310)과 연결되는 외부 전극(2240)의 적어도 일부, 즉 적층체(2210)의 적어도 일 표면에 형성되어 내부 전극(200) 및 방전 전극(310)과 연결되는 외부 전극(2240)의 일부는 내부 전극(200) 및 방전 전극(310)과 동일 물질로 형성될 수 있다. 예를 들어, 내부 전극(200) 및 방전 전극(310)이 구리를 이용하여 형성되는 경우 외부 전극(2240)의 이들과 접촉되는 영역으로부터 적어도 일부는 구리를 이용하여 형성할 수 있다. 이때, 구리는 앞서 설명한 바와 같이 도전성 페이스트를 이용한 침지 또는 인쇄 방법으로 형성하거나, 증착, 스퍼터링, 도금 등의 방법으로 형성할 수 있다. 바람직하게는 외부 전극(2240)은 도금으로 형성할 수 있다. 도금 공정으로 외부 전극(2240)을 형성하기 위해 적층체(2210)의 상하부면에 시드층을 형성한 후 시드층으로부터 도금층을 형성하여 외부 전극(2240)을 형성할 수 있다. 여기서, 외부 전극(2240)의 내부 전극(200) 및 방전 전극(310)과 연결되는 적어도 일부는 외부 전극(2240)이 형성되는 적층체(2210)의 측면 전체일 수 있고, 일부 영역일 수도 있다.The external electrode 2240 may be formed in various ways. That is, the external electrode 2240 may be formed by an immersion or printing method using a conductive paste, or may be formed by various methods such as deposition, sputtering, plating, and the like. On the other hand, the external electrode 2240 may be formed to extend on the surface in the Y direction and Z direction. That is, the external electrode 2240 may extend from two surfaces facing in the X direction to four adjacent surfaces. For example, when immersed in the conductive paste, the external electrodes 2240 may be formed not only on two opposite sides of the X direction, but also on the front and rear surfaces of the Y direction and the upper and lower surfaces of the Z direction. In contrast, when formed by printing, deposition, sputtering, plating, or the like, the external electrode 2240 may be formed on two surfaces in the X direction. That is, the external electrode 2240 may be formed not only on one side mounted on the printed circuit board and the other side connected to the metal case, but also in other areas according to the forming method or process conditions. The external electrode 2240 may be formed of a metal having electrical conductivity. For example, the external electrode 2240 may be formed of one or more metals selected from the group consisting of gold, silver, platinum, copper, nickel, palladium, and alloys thereof. In this case, at least one portion of the external electrode 2240 connected to the internal electrode 200 and the discharge electrode 310, that is, at least one surface of the stack 2210 may be formed to be connected to the internal electrode 200 and the discharge electrode 310. A portion of the external electrode 2240 to be connected may be formed of the same material as the internal electrode 200 and the discharge electrode 310. For example, when the internal electrode 200 and the discharge electrode 310 are formed using copper, at least a part of the internal electrode 200 and the external electrode 2240 may be formed using copper. In this case, copper may be formed by an immersion or printing method using a conductive paste as described above, or may be formed by deposition, sputtering, plating, or the like. Preferably, the external electrode 2240 may be formed by plating. In order to form the external electrode 2240 by the plating process, a seed layer may be formed on upper and lower surfaces of the laminate 2210, and then a plating layer may be formed from the seed layer to form the external electrode 2240. Here, at least a part of the external electrode 2240 connected to the internal electrode 200 and the discharge electrode 310 may be an entire side surface of the stack 2210 on which the external electrode 2240 is formed, or may be a partial region. .
또한, 외부 전극(2240)은 적어도 하나의 도금층을 더 포함할 수 있다. 외부 전극(2240)은 Cu, Ag 등의 금속층으로 형성될 수 있고, 금속층 상에 적어도 하나의 도금층이 형성될 수도 있다. 예를 들어, 외부 전극(2240)은 구리층, Ni 도금층 및 Sn 또는 Sn/Ag 도금층이 적층 형성될 수도 있다. 물론, 도금층은 Cu 도금층 및 Sn 도금층이 적층될 수도 있으며, Cu 도금층, Ni 도금층 및 Sn 도금층이 적층될 수도 있다. 또한, 외부 전극(2240)은 예를 들어 0.5%∼20%의 Bi2O3 또는 SiO2를 주성분으로 하는 다성분계의 글래스 프릿(Glass frit)을 금속 분말과 혼합하여 형성할 수 있다. 이때, 글래스 프릿과 금속 분말의 혼합물은 페이스트 형태로 제조되어 적층체(2210)의 두면에 도포될 수 있다. 이렇게 외부 전극(2240)에 글래스 프릿이 포함됨으로써 외부 전극(2240)과 적층체(2210)의 밀착력을 향상시킬 수 있고, 적층체(2210) 내부의 전극들의 콘택 반응을 향상시킬 수 있다. 또한, 글래스가 포함된 도전성 페이스트가 도포된 후 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(2240)이 형성될 수 있다. 즉, 글래스가 포함된 금속층과, 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(2240)이 형성될 수 있다. 예를 들어, 외부 전극(2240)은 글래스 프릿과 Ag 및 Cu의 적어도 하나가 포함된 층을 형성한 후 전해 또는 무전해 도금을 통하여 Ni 도금층 및 Sn 도금층 순차적으로 형성할 수 있다. 이때, Sn 도금층은 Ni 도금층과 같거나 두꺼운 두께로 형성될 수 있다. 물론, 외부 전극(2240)은 적어도 하나의 도금층만으로 형성될 수도 있다. 즉, 페이스트를 도포하지 않고 적어도 1회의 도금 공정을 이용하여 적어도 일층의 도금층을 형성하여 외부 전극(2240)을 형성할 수도 있다. 한편, 외부 전극(5000)은 2㎛∼100㎛의 두께로 형성될 수 있으며, Ni 도금층이 1㎛∼10㎛의 두께로 형성되고, Sn 또는 Sn/Ag 도금층은 2㎛∼10㎛의 두께로 형성될 수 있다.In addition, the external electrode 2240 may further include at least one plating layer. The external electrode 2240 may be formed of a metal layer such as Cu or Ag, and at least one plating layer may be formed on the metal layer. For example, the external electrode 2240 may be formed by laminating a copper layer, a Ni plating layer, and a Sn or Sn / Ag plating layer. Of course, the plating layer may be laminated with a Cu plating layer and a Sn plating layer, the Cu plating layer, Ni plating layer and Sn plating layer may be laminated. In addition, the external electrode 2240 may be formed by mixing, for example, glass frit having a multi-component glass frit containing 0.5% to 20% of Bi 2 O 3 or SiO 2 as a main component. In this case, the mixture of the glass frit and the metal powder may be manufactured in a paste form and applied to two surfaces of the laminate 2210. As the glass frit is included in the external electrode 2240, the adhesion between the external electrode 2240 and the stack 2210 may be improved, and the contact reaction between the electrodes in the stack 2210 may be improved. In addition, after the conductive paste containing glass is applied, at least one plating layer may be formed on the upper portion, thereby forming the external electrode 2240. That is, the metal layer including the glass and at least one plating layer thereon may be formed to form the external electrode 2240. For example, the external electrode 2240 may be sequentially formed of a Ni plating layer and a Sn plating layer through electrolytic or electroless plating after forming a layer including glass frit and at least one of Ag and Cu. In this case, the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer. Of course, the external electrode 2240 may be formed of only at least one plating layer. That is, the external electrode 2240 may be formed by forming at least one layer of the plating layer using at least one plating process without applying the paste. Meanwhile, the external electrode 5000 may be formed to have a thickness of 2 μm to 100 μm, the Ni plating layer may be formed to have a thickness of 1 μm to 10 μm, and the Sn or Sn / Ag plating layer may have a thickness of 2 μm to 10 μm. Can be formed.
한편, 외부 전극(2240)은 서로 다른 외부 전극(2240)과 연결되는 내부 전극(200)과 소정 영역 중첩되도록 형성될 수 있다. 예를 들어, 제 1 외부 전극(2241)의 적층체(2210) 하부 및 상부로 연장 형성된 부분은 내부 전극들(200)의 소정 영역과 중첩되어 형성될 수 있다. 또한, 제 2 외부 전극(2242)의 적층체(2210) 하부 및 상부로 연장 형성된 부분도 내부 전극들(200)의 소정 영역과 중첩되어 형성될 수 있다. 예를 들어, 외부 전극(2240)의 적층체(2210) 상부 및 하부로 연장된 부분이 제 1 및 제 8 내부 전극(201, 208)과 중첩되어 형성될 수 있다. 즉, 외부 전극(2240)의 적어도 하나가 적층체(2210) 상면 및 하면으로 연장 형성되고, 연장된 부분의 적어도 하나가 내부 전극(200)과 일부 중첩되어 형성될 수 있다. 이때, 외부 전극(2240)과 중첩되는 내부 전극(200)의 면적은 내부 전극(200) 전체 면적의 1% 내지 10%일 수 있다. 또한, 외부 전극(2240)은 복수회의 공정에 의해 적층체(2210)의 상면 및 하면의 적어도 어느 하나에 형성되는 면적을 증가시킬 수 있다.Meanwhile, the external electrode 2240 may be formed to overlap a predetermined region with the internal electrode 200 connected to the different external electrodes 2240. For example, a portion extending below and above the stack 2210 of the first external electrode 2241 may overlap a predetermined region of the internal electrodes 200. In addition, portions formed to extend below and above the stack 2210 of the second external electrode 2242 may also be formed to overlap the predetermined regions of the internal electrodes 200. For example, portions extending above and below the stack 2210 of the external electrode 2240 may overlap the first and eighth internal electrodes 201 and 208. That is, at least one of the external electrodes 2240 may be extended to the upper and lower surfaces of the stack 2210, and at least one of the extended portions may be partially overlapped with the internal electrodes 200. In this case, an area of the internal electrode 200 overlapping the external electrode 2240 may be 1% to 10% of the total area of the internal electrode 200. In addition, the external electrode 2240 may increase an area formed on at least one of the upper and lower surfaces of the laminate 2210 by a plurality of processes.
이렇게 외부 전극(2240)과 내부 전극(200)을 중첩함으로써 외부 전극(2240)과 내부 전극(200) 사이에 소정의 기생 캐패시턴스가 생성될 수 있다. 예를 들어, 제 1 및 제 8 내부 전극(201, 208)과 제 1 및 제 2 외부 전극(2241, 2242)의 연장부 사이에 캐패시턴스가 형성될 수 있다. 따라서, 외부 전극(2240)과 내부 전극(200)의 중첩 면적을 조절함으로써 복합 보호 소자의 캐패시턴스를 조절할 수 있다. 그런데, 복합 보호 소자의 캐패시턴스는 전자기기 내의 안테나 성능에 영향을 미치게 되므로 복합 보호 소자의 캐패시턴스의 산포를 20% 이내, 바람직하게는 5% 이내로 유지한다. 이를 위해 높은 유전율을 가진 재료를 이용하여 제작된 시트(100)를 이용하게 된다. 그러나, 시트(100)의 유전율이 높을수록 내부 전극(200)과 외부 전극(2240) 사이의 기생 캐패시턴스의 영향이 증가하게 된다. 즉, 내부 전극(200)과 외부 전극(2240) 사이에 마련된 제 1 및 제 11 시트(101 및 111)의 유전율이 높으면 기생 캐패시턴스가 증가하게 된다. 그러나, 최외곽에 위치하는 제 1 및 제 11 시트(101 및 111)의 유전율이 나머지 시트들(102 내지 110)의 유전율보다 낮으므로 내부 전극(200)과 외부 전극(2240) 사이의 기생 캐패시턴스의 영향을 감소시킬 수 있다. 즉, 제 1 및 제 11 시트(101 및 111)의 유전율이 낮으므로 내부 전극(200)과 외부 전극(2240) 사이의 기생 캐패시턴스를 줄일 수 있다.By overlapping the external electrode 2240 and the internal electrode 200, a predetermined parasitic capacitance may be generated between the external electrode 2240 and the internal electrode 200. For example, capacitance may be formed between the first and eighth internal electrodes 201 and 208 and the extensions of the first and second external electrodes 2241 and 2242. Therefore, the capacitance of the composite protective device may be adjusted by adjusting the overlapping area of the external electrode 2240 and the internal electrode 200. However, since the capacitance of the composite protective element affects the antenna performance in the electronic device, the dispersion of the capacitance of the composite protective element is maintained within 20%, preferably within 5%. To this end, the sheet 100 manufactured using a material having a high dielectric constant is used. However, as the dielectric constant of the sheet 100 increases, the influence of parasitic capacitance between the inner electrode 200 and the outer electrode 2240 increases. That is, when the dielectric constants of the first and eleventh sheets 101 and 111 provided between the inner electrode 200 and the outer electrode 2240 are high, the parasitic capacitance increases. However, since the permittivity of the outermost first and eleventh sheets 101 and 111 is lower than the permittivity of the remaining sheets 102 to 110, the parasitic capacitance between the inner electrode 200 and the outer electrode 2240 is reduced. Can reduce the impact. That is, since the dielectric constant of the first and eleventh sheets 101 and 111 is low, parasitic capacitance between the inner electrode 200 and the outer electrode 2240 may be reduced.
5. 표면 개질 부재5. Surface modification member
한편, 외부 전극(2240)을 형성하기 이전에 적층체(2210)의 표면에 산화물을 분포시켜 표면 개질 부재(미도시), 즉 절연 부재를 형성할 수 있다. 이때, 산화물은 입자 상태 또는 용융 상태로 적층체(2210)의 표면에 분산되어 분포될 수 있다. 또한, 산화물은 외부 전극(2240)의 일부를 인쇄 공정으로 형성하기 이전에 분포시킬 수도 있고, 도금 공정을 실시하기 이전에 분포시킬 수도 있다. 즉, 산화물은 도금 공정으로 외부 전극(2240)을 형성할 때 도금 공정 이전에 적층체(2210) 표면에 분포될 수 있다. 이렇게 도금 공정 이전에 산화물을 분포시킴으로써 적층체(2210) 표면의 저항을 균일하게 할 수 있고, 그에 따라 도금 공정이 균일하게 실시될 수 있다. 즉, 적층체(2210)의 표면은 적어도 일 영역의 저항이 다른 영역의 저항과 다를 수 있는데, 저항이 불균일한 상태에서 도금 공정을 실시하면 저항이 낮은 영역에 저항이 높은 영역보다 도금이 잘 진행되어 도금층의 성장 불균일이 발생된다. 따라서, 이러한 문제를 해결하기 위해 적층체(2210)의 표면 저항을 균일하게 유지해야 하고, 이를 위해 적층체(2210)의 표면에 입자 상태 또는 용융 상태의 산화물을 분산시켜 저항 조절 부재를 형성할 수 있다. 이때, 산화물은 적층체(2210)의 표면에 부분적으로 분포될 수도 있으며, 적층체(2210)의 표면에 전체적으로 분포되어 막 형태로 형성될 수 있고, 적어도 일 영역에 막 형태로 형성되고 적어도 일 영역에 부분적으로 분포될 수도 있다. 예를 들어, 산화물이 적층체의 표면에 섬(island) 형태로 분포되어 저항 조절 부재가 형성될 수 있다. 즉, 적층체(2210) 표면에 입자 상태 또는 용융 상태의 산화물이 서로 이격되어 섬 형태로 분포될 수 있고, 그에 따라 적층체(2210) 표면의 적어도 일부가 노출될 수 있다. 또한, 산화물이 적층체(2210)의 전체 표면에 분포되고, 입자 상태 또는 용융 상태의 산화물이 서로 연결되어 소정 두께의 산화물 막이 형성될 수 있다. 이때, 적층체(2210) 표면에 산화물 막이 형성되므로 적층체(2210)의 표면은 노출되지 않을 수 있다. 그리고, 산화물은 적어도 일 영역에는 막 형태로 형성되고, 적어도 일부에는 섬 형태로 분포될 수 있다. 즉, 적어도 둘 이상의 산화물이 연결되어 적어도 일 영역에는 막으로 형성되고, 적어도 일부에는 섬 형태로 형성될 수 있다. 따라서, 적층체 표면의 적어도 일부가 산화물에 의해 노출될 수 있다. 적어도 일부에 섬 형태로 분포되는 산화물로 이루어진 저항 조절 부재(400)의 총 면적은 적층체(2210) 표면 전체 면적의 예를 들어 10% 내지 90%일 수 있다. 여기서, 적층체(2210)의 표면 저항을 균일하게 하기 위한 입자 상태 또는 용융 상태의 산화물은 적어도 하나 이상의 산화물이 이용될 수 있는데, 예를 들어 Bi2O3, BO2, B2O3, ZnO, Co3O4, SiO2, Al2O3, MnO, H2BO3, H2BO3, Ca(CO3)2, Ca(NO3)2, CaCO3 중 적어도 하나 이상을 이용할 수 있다.Meanwhile, before forming the external electrode 2240, an oxide may be distributed on the surface of the laminate 2210 to form a surface modification member (ie, an insulation member). In this case, the oxide may be dispersed and distributed on the surface of the laminate 2210 in a particulate state or a molten state. In addition, the oxide may be distributed before forming a part of the external electrode 2240 by the printing process, or may be distributed before performing the plating process. That is, when the external electrode 2240 is formed by the plating process, the oxide may be distributed on the surface of the laminate 2210 before the plating process. Thus, by distributing the oxide before the plating process, the resistance of the surface of the laminate 2210 can be made uniform, whereby the plating process can be performed uniformly. That is, the surface of the laminate 2210 may have a resistance at least in one region different from that in other regions. If the plating process is performed in a state where the resistance is uneven, the plating proceeds better than the region having high resistance in the region having low resistance. As a result, growth unevenness of the plating layer occurs. Therefore, in order to solve this problem, the surface resistance of the laminate 2210 needs to be maintained uniformly, and for this purpose, a resistance control member may be formed by dispersing oxides in a particulate state or a molten state on the surface of the laminate 2210. have. In this case, the oxide may be partially distributed on the surface of the laminate 2210, may be distributed on the surface of the laminate 2210, and may be formed in a film form, and may be formed in a film form in at least one region and at least one region. It may be partially distributed at. For example, the oxide may be distributed in the form of islands on the surface of the laminate to form a resistance adjusting member. That is, oxides in a particulate state or a molten state may be spaced apart from each other and distributed in an island form on the surface of the laminate 2210, and thus at least a portion of the surface of the laminate 2210 may be exposed. In addition, oxides may be distributed over the entire surface of the laminate 2210, and oxides having a predetermined thickness may be formed by connecting oxides in a particle state or a molten state with each other. In this case, since an oxide film is formed on the surface of the stack 2210, the surface of the stack 2210 may not be exposed. The oxide may be formed in a film form in at least one region and distributed in an island form in at least a portion thereof. That is, at least two oxides may be connected to each other to form a film in at least one region and may be formed in an island form at least in part. Thus, at least a portion of the laminate surface may be exposed by the oxide. The total area of the resistance adjusting member 400 made of an oxide distributed in at least a portion may be, for example, 10% to 90% of the total area of the surface of the laminate 2210. Here, at least one oxide may be used as the oxide in the granular state or in the molten state to uniform the surface resistance of the laminate 2210. For example, Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO At least one of Co 3 O 4 , SiO 2 , Al 2 O 3 , MnO, H 2 BO 3 , H 2 BO 3 , Ca (CO 3 ) 2 , Ca (NO 3 ) 2 , and CaCO 3 may be used. .
한편, 표면 개질 부재는 적층체(2210)의 전체 영역에 분포할 수도 있고, 적어도 일 영역에만 분포할 수도 있다. 즉, 표면 개질 부재는 적층체(2210)의 표면 전체에 형성될 수도 있고, 적층체(2210)의 외부 전극(2240)과 접촉되는 영역에만 형성될 수 있다. 다시 말하면, 표면 개질 부재가 적층체(2210) 표면의 일부에 형성되는 표면 개질 부재는 적층체(2210)와 외부 전극(2240) 사이에 형성될 수 있다. 이때, 표면 개질 부재는 외부 전극(2240)의 연장 영역에 접촉되어 형성될 수 있다. 즉, 적층체(2210)의 상부면 및 하부면으로 연장 형성된 외부 전극(2240)의 일 영역과 적층체(2210) 사이에 표면 개질 부재가 마련될 수 있다. 또한, 표면 개질 부재는 그 상부에 형성되는 외부 전극(2240)보다 같거나 다른 크기로 마련될 수 있다. 예를 들어, 적층체(2210)의 상부면 및 하부면으로 연장 형성된 외부 전극(2240)의 일부의 면적보다 50% 내지 150%의 면적으로 형성될 수 있다. 즉, 표면 개질 부재는 외부 전극(2240)의 연장 영역의 크기보다 작거나 큰 크기로 형성될 수도 있고, 같은 크기로 형성될 수도 있다. 물론, 표면 개질 부재는 적층체(2210)의 측면에 형성된 외부 전극(2240)과의 사이에도 형성될 수 있다. 이러한 표면 개질 부재는 유리(glass) 물질을 포함할 수 있다. 예를 들어, 표면 개질 부재는 소정 온도, 예를 들어 950℃ 이하에서 소성 가능한 무(無)붕규산 유리(non-borosilicate glass)(SiO2-CaO-ZnO-MgO계 유리)를 포함할 수 있다. 또한, 표면 개질 부재는 자성체 물질이 더 포함될 수 있다. 즉, 표면 개질 부재가 형성될 영역이 자성체 시트로 이루어져 있으면 표면 개질 부재와 자성체 시트의 결합을 용이하게 하기 위해 표면 개질 부재 내에 자성체 물질이 일부 포함될 수 있다. 이때, 자성체 물질은 예를 들어 NiZnCu계 자성체 분말을 포함하며, 유리 물질 100wt%에 대하여 자성체 물질이 예를 들어 1∼15wt% 포함될 수 있다. 한편, 표면 개질 부재는 적어도 일부가 적층체(2210)의 표면에 형성될 수 있다. 이때, 유리 물질은 적어도 일부가 적층체(2210) 표면에 고르게 분포될 수 있고, 적어도 일부가 서로 다른 크기로 불규칙적으로 분포될 수도 있다. 물론, 표면 개질 부재는 적층체(2210)의 표면에 연속적으로 형성되어 막 형태를 가질 수도 있다. 또한, 적층체(2210)의 적어도 일부 표면에는 오목부가 형성될 수도 있다. 즉, 유리 물질이 형성되어 볼록부가 형성되고 유리 물질이 형성되지 않은 영역의 적어도 일부가 패여 오목부가 형성될 수도 있다. 이때, 유리 물질은 적층체(2210) 표면으로부터 소정 깊이로 형성되어 적어도 일부가 적층체(2210) 표면보다 높게 형성될 수 있다. 즉, 표면 개질 부재는 적어도 일부가 적층체(2210)의 표면과 동일 평면을 이룰 수 있고, 적어도 일부가 적층체(2210)의 표면보다 높게 유지될 수 있다. 이렇게 외부 전극(2240) 형성 이전에 적층체(2210)의 일부 영역에 유리 물질을 분포시켜 표면 개질 부재를 형성함으로써 적층체(2210) 표면을 개질시킬 수 있고, 그에 따라 표면의 저항을 균일하게 할 수 있다. 따라서, 외부 전극(2240)의 형상을 제어할 수 있고, 그에 따라 외부 전극의 형성을 용이하게 할 수 있다. On the other hand, the surface modification member may be distributed over the entire region of the laminate 2210, or may be distributed only in at least one region. That is, the surface modification member may be formed on the entire surface of the laminate 2210 or may be formed only in an area in contact with the external electrode 2240 of the laminate 2210. In other words, the surface modification member in which the surface modification member is formed on a part of the surface of the laminate 2210 may be formed between the laminate 2210 and the external electrode 2240. In this case, the surface modification member may be formed in contact with the extension region of the external electrode 2240. That is, a surface modification member may be provided between one region of the external electrode 2240 and the laminate 2210 that extends to the top and bottom surfaces of the laminate 2210. In addition, the surface modification member may be provided in the same or different size than the external electrode 2240 formed thereon. For example, an area of 50% to 150% of an area of a part of the external electrode 2240 extending to the upper and lower surfaces of the stack 2210 may be formed. That is, the surface modification member may be formed to be smaller or larger than the size of the extension region of the external electrode 2240, or may be formed to the same size. Of course, the surface modification member may also be formed between the external electrode 2240 formed on the side surface of the laminate 2210. Such surface modification members may comprise a glass material. For example, the surface modification member may include non-borosilicate glass (SiO 2 —CaO—ZnO—MgO-based glass) that is calcinable at a predetermined temperature, for example, 950 ° C. or less. In addition, the surface modification member may further include a magnetic material. That is, when the region on which the surface modification member is to be formed is formed of the magnetic sheet, a magnetic material may be partially included in the surface modification member to facilitate bonding of the surface modification member and the magnetic sheet. In this case, the magnetic material may include, for example, NiZnCu-based magnetic powder, and may include, for example, 1-15 wt% of the magnetic material with respect to 100 wt% of the glass material. Meanwhile, at least a portion of the surface modification member may be formed on the surface of the laminate 2210. In this case, at least a portion of the glass material may be evenly distributed on the surface of the laminate 2210, and at least a portion of the glass material may be irregularly distributed in different sizes. Of course, the surface modification member may be continuously formed on the surface of the laminate 2210 to have a film form. In addition, a recess may be formed on at least part of the surface of the laminate 2210. That is, a glass material may be formed to form a convex portion, and at least a portion of the region where the glass material is not formed may be dug to form a recess. In this case, the glass material may be formed to a predetermined depth from the surface of the laminate 2210, and at least a portion thereof may be formed higher than the surface of the laminate 2210. That is, at least a portion of the surface modification member may be coplanar with the surface of the laminate 2210, and at least a portion thereof may be maintained higher than the surface of the laminate 2210. Thus, the surface of the laminate 2210 may be modified by distributing a glass material in a portion of the laminate 2210 before forming the external electrode 2240 to form a surface modification member, thereby making the surface resistance uniform. Can be. Therefore, the shape of the external electrode 2240 can be controlled, thereby facilitating the formation of the external electrode.
한편, 본 발명에 따른 복합 보호부(2000)는 다양한 형상으로 변형 가능하며, 본 발명의 다른 실시 예에 따른 복합 보호부(2000)를 도 13 내지 도 16에 도시하였다.Meanwhile, the composite protection unit 2000 according to the present invention may be modified in various shapes, and the composite protection unit 2000 according to another embodiment of the present invention is illustrated in FIGS. 13 to 16.
도 13은 본 발명의 다른 실시 예에 따른 복합 보호부의 사시도이고, 도 14는 단면도이다. 또한, 도 15는 본 발명의 다른 실시 예의 변형 예에 따른 복합 보호부의 단면도이다. 그리고, 도 16은 본 발명의 다른 실시 예에 따른 복합 보호부와 컨택부의 형상을 도시한 단면도이다.13 is a perspective view of a composite protection unit according to another embodiment of the present invention, and FIG. 14 is a sectional view. 15 is a cross-sectional view of a composite protective part according to a modified example of another embodiment of the present invention. And, Figure 16 is a cross-sectional view showing the shape of the composite protective portion and the contact portion according to another embodiment of the present invention.
도 13 내지 도 16를 참조하면, 본 발명의 다른 실시 예에 따른 복합 보호 소자는 적층체(100)와, 적층체(1000) 내부에 마련된 적어도 둘 이상의 내부 전극(200)과, 적어도 둘 이상의 내부 전극(200) 사이에 마련된 적어도 하나의 과전압 과전압 보호부(300)와, 적어도 둘 이상의 내부 전극(200)과 각각 연결되도록 적층체(100) 내부에 마련된 적어도 둘 이상의 연결 전극(400)과, 연결 전극(400)과 연결되도록 적층체(100) 외부에 형성된 외부 전극(500)을 포함한다. 즉, 본 발명의 다른 실시 예는 별도의 방전 전극을 구비하지 않고 과전압 보호 부재가 두개의 내부 전극(200) 사이에 마련된다. 즉,과전압 보호 부재를 사이에 두고 마련된 내부 전극(200)이 외부로부터 방전 전극으로 기능하는 동시에 캐패시턴스를 형성하는 캐패시터부로 기능한다. 여기서, 적층체(100) 및 과전압 과전압 보호부(300)는 본 발명의 일 실시 예에서 설명한 적층체(2110) 및 과전압 보호부(2130)과 동일하고, 내부 전극(200)은 일 실시 예의 캐패시터(2200)의 내부 전극(200)과 그 구성이 동일하며, 외부 전극(500)은 외부 전극(2250)과 형상이 상이하고 구성은 동일하다. 따라서, 본 발명의 다른 실시 예는 일 실시 예의 설명과 차이나는 부분을 중심으로 설명하면 다음과 같다.13 to 16, a composite protection device according to another embodiment of the present invention may include a laminate 100, at least two internal electrodes 200 provided in the laminate 1000, and at least two interiors. At least one overvoltage overvoltage protection unit 300 provided between the electrodes 200, at least two connection electrodes 400 provided inside the stack 100 to be connected to at least two internal electrodes 200, respectively, It includes an external electrode 500 formed on the outside of the stack 100 to be connected to the electrode 400. That is, in another embodiment of the present invention, the overvoltage protection member is provided between the two internal electrodes 200 without having a separate discharge electrode. In other words, the internal electrode 200 provided with the overvoltage protection member interposed therebetween functions as a discharge electrode from the outside and functions as a capacitor to form capacitance. Here, the stack 100 and the overvoltage overvoltage protection unit 300 are the same as the stack 2110 and the overvoltage protection unit 2130 described in the embodiment of the present invention, and the internal electrode 200 is the capacitor of the embodiment. The internal electrode 200 of the 2200 has the same configuration, and the external electrode 500 has a different shape and the same configuration as the external electrode 2250. Accordingly, another embodiment of the present invention will be described below with reference to a part different from the description of the embodiment.
내부 전극Internal electrode
적어도 둘 이상의 내부 전극(210, 220; 200)은 적층체(100) 내부에 소정 간격 이격되어 마련될 수 있다. 즉, 적어도 둘 이상의 내부 전극(200)는 시트의 적층 방향, 즉 Z 방향으로 소정 간격 이격되어 형성될 수 있다. 또한, 적어도 둘 이상의 내부 전극(200)는 과전압 보호부(300)를 사이에 두고 형성될 수 있다. 예를 들어, Z 방향으로 과전압 보호부(300)의 하측에 제 1 내부 전극(210)이 형성되고, 과전압 보호부(300)의 상측에 제 2 내부 전극(220)이 형성될 수 있다. 물론, 제 1 및 제 2 내부 전극(210)과 최하층 및 최상층 시트 사이에 적어도 하나의 내부 전극이 더 형성될 수 있다. 여기서, 내부 전극(200)은 연결 전극(400)과 각각 연결되고 과전압 보호부(300)와 연결되도록 형성된다. 즉, 제 1 내부 전극(210)은 일측이 제 1 연결 전극(410)과 연결되고, 타측이 과전압 보호부(300)와 연결되도록 형성된다. 또한, 제 2 내부 전극(220)은 일측이 제 2 연결 전극(420)과 연결되고 타측이 과전압 보호부(300)와 연결되도록 형성된다. 이때, 제 1 및 제 2 내부 전극(210, 220)은 서로 대면하는 일 면이 과전압 보호부(300)와 연결된다. At least two internal electrodes 210, 220; 200 may be provided to be spaced apart from each other within the stack 100. That is, at least two internal electrodes 200 may be formed to be spaced apart by a predetermined interval in the stacking direction of the sheet, that is, the Z direction. In addition, at least two internal electrodes 200 may be formed with the overvoltage protection unit 300 interposed therebetween. For example, the first internal electrode 210 may be formed below the overvoltage protection part 300 in the Z direction, and the second internal electrode 220 may be formed above the overvoltage protection part 300. Of course, at least one internal electrode may be further formed between the first and second internal electrodes 210 and the lowermost and uppermost sheets. Here, the internal electrodes 200 are formed to be connected to the connection electrodes 400 and to the overvoltage protection unit 300, respectively. That is, the first internal electrode 210 is formed such that one side is connected to the first connection electrode 410 and the other side is connected to the overvoltage protection unit 300. In addition, the second internal electrode 220 is formed such that one side is connected to the second connection electrode 420 and the other side is connected to the overvoltage protection part 300. In this case, one surface of the first and second internal electrodes 210 and 220 facing each other is connected to the overvoltage protection unit 300.
이러한 내부 전극(200)은 캐패시터로 작용하는 동시에 과전압 보호부(300)의 방전 전극으로 작용할 수 있다. 캐패시터는 제 1 및 제 2 내부 전극(200)과, 그 사이의 시트에 의해 형성된다. 캐패시턴스는 제 1 및 제 2 내부 전극(200)의 중첩 면적, 제 1 및 제 2 내부 전극(200) 사이의 시트의 두께 등에 따라 조절될 수 있다. 또한, 제 1 및 제 2 내부 전극(200)은 적어도 과전압 보호부(300)와 중첩되는 영역이 방전 전극으로 작용하는데, 외부로부터 인가되는 ESD 등의 과전압을 과전압 보호부(300)로 전달하고, 과전압 보호부(300)를 통과하여 예를 들어 전자기기의 접지 단자로 바이패스되는 과전압을 전달한다.The internal electrode 200 may act as a capacitor and also as a discharge electrode of the overvoltage protection unit 300. The capacitor is formed by the first and second internal electrodes 200 and the sheets therebetween. The capacitance may be adjusted according to the overlapping area of the first and second internal electrodes 200, the thickness of the sheet between the first and second internal electrodes 200, and the like. In addition, at least a region overlapping the overvoltage protection unit 300 serves as a discharge electrode, and the first and second internal electrodes 200 transmit overvoltage such as ESD applied from the outside to the overvoltage protection unit 300. The overvoltage protection unit 300 transmits the overvoltage bypassed to the ground terminal of the electronic device, for example.
연결 전극Connecting electrode
연결 전극(400)은 적층체(100) 내부에 형성되며, 내부 전극(300)과 외부 전극(500) 사이에 형성된다. 즉, 연결 전극(400)은 내부 전극(300)과 외부 전극(500)을 연결하도록 형성된다. 따라서, 연결 전극(400)은 제 1 및 제 2 외부 전극(510, 520; 500)과 제 1 및 제 2 내부 전극(210, 220; 200) 사이에서 이들과 각각 연결되는 제 1 및 제 2 연결 전극(410, 420)을 포함할 수 있다. 이러한 연결 전극(400)은 평면 형상 및 단면 형상의 적어도 어느 하나가 대략 원형, 타원형, 직사각형, 정사각형, 오각형 이상의 다각형 형상을 갖고 소정의 두께를 가질 수 있다. 즉, 과전압 보호부(300)은 원통, 육면체, 다면체 등의 형상으로 형성될 수 있다. 또한, 연결 전극(400)은 과전압 보호부(300)와 적어도 중첩되도록 형성될 수 있다. 바람직하게, 연결 전극(400)은 적층체(100)의 중앙부에 형성될 수 있고, 과전압 보호부(300)와 중첩되도록 형성될 수 있다.The connection electrode 400 is formed in the stack 100 and is formed between the internal electrode 300 and the external electrode 500. That is, the connection electrode 400 is formed to connect the internal electrode 300 and the external electrode 500. Accordingly, the connecting electrode 400 is connected between the first and second external electrodes 510, 520; 500 and the first and second internal electrodes 210, 220; 200, respectively. It may include electrodes 410 and 420. At least one of the planar shape and the cross-sectional shape may have a polygonal shape of at least one of a circular shape, an ellipse shape, a rectangular shape, a square shape, a pentagon shape, and have a predetermined thickness. That is, the overvoltage protection unit 300 may be formed in the shape of a cylinder, a hexahedron, a polyhedron. In addition, the connection electrode 400 may be formed to at least overlap the overvoltage protection unit 300. Preferably, the connection electrode 400 may be formed at the center of the stack 100 and may overlap the overvoltage protection unit 300.
연결 전극(400)은 내부 전극(200) 상에 적층되는 적어도 하나 이상의 시트의 소정 영역에 개구를 형성하고 도전 물질을 이용하여 개구가 매립되도록 형성된다. 예를 들어, 연결 전극(400)은 Al, Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 물론, 연결 전극(400)은 금속 이외에 다양한 도전성 재료를 이용하여 형성할 수도 있다.The connection electrode 400 is formed to form an opening in a predetermined region of at least one or more sheets stacked on the internal electrode 200 and to fill the opening by using a conductive material. For example, the connection electrode 400 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu. Of course, the connection electrode 400 may be formed using various conductive materials in addition to the metal.
연결 전극(400)은 Z 방향, 즉 수직 방향으로의 높이가 과전압 보호부(300)의 높이와 같거나 다르게 형성될 수 있고, X 방향 및 Y 방향으로의 폭이 과전압 보호부(300)의 폭보다 같거나 다르게 형성될 수 있다. 즉, 연결 전극(400)은 과전압 보호부(300)의 높이보다 크거나 같게 형성되고, 직경 또는 폭보다 넓거나 같게 형성될 수 있다. 바람직하게, 연결 전극(400)의 높이는 과전압 보호부(300)의 높이보다 높고, 평면 넓이는 과전압 보호부(300)의 평면 넓이보다 크게 형성될 수 있다. 예를 들어, 제 1 및 제 2 연결 전극(410, 420) 각각은 과전압 보호부(300) 높이의 0.5배 내지 3배의 높이로 형성될 수 있다. 또한, 제 1 및 제 2 연결 전극(410, 420)의 높이의 합은 과전압 보호부(300) 높이의 1배 내지 6배로 형성될 수 있다. 예를 들어, 제 1 및 제 2 연결 전극(410, 420)의 높이의 합은 100㎛∼1000㎛, 바람직하게는 200㎛∼900㎛, 더욱 바람직하게는 400㎛∼700㎛로 형성될 수 있다. 이때, 제 1 및 제 2 연결 전극(410, 420)의 높이는 서로 다를 수 있고, 폭 또한 서로 다를 수 있다. 또한, 연결 전극(400)의 X 방향의 폭은 적층체(100)의 X 방향 길이의 1% 내지 90%로 형성될 수 있고, Y 방향의 폭은 적층체(100)의 Y 방향 폭의 5% 내지 90%로 형성될 수 있다. 이때, 연결 전극(400)의 X 방향 폭과 Y 방향 폭은 서로 같을 수도 있고, 다를 수도 있다. 즉, 연결 전극(400)의 X 방향 폭과 Y 방향 폭을 포함한 적어도 일 영역의 폭은 다른 영역의 폭보다 같거나 다를 수 있다. 다시 말하면, 연결 전극(400)은 적어도 일 영역이 비대칭 형상으로 형성될 수 있다. 그리고, 연결 전극(400)의 X 방향 및 Y 방향의 폭은 과전압 보호부(300) X 방향 및 Y 방향 폭의 1배 내지 10배로 형성될 수 있으며, 내부 전극(200)의 X 방향 길이 및 Y 방향 폭의 1/10배 내지 1배로 각각 형성될 수 있다. 즉, 연결 전극(400)의 폭은 적층체(100)의 X 방향 및 Y 방향의 길이 및 폭보다 짧고, 과전압 보호부(300)의 폭과 같거나 크며, 내부 전극(200)의 폭보다 작거나 같게 형성될 수 있다. The connection electrode 400 may be formed in the Z direction, that is, the height in the vertical direction is the same as or different from the height of the overvoltage protection part 300, and the width in the X direction and the Y direction is the width of the overvoltage protection part 300. It may be more identical or different. That is, the connection electrode 400 may be formed to be greater than or equal to the height of the overvoltage protection part 300, and may be formed to be equal to or greater than the diameter or width. Preferably, the height of the connection electrode 400 may be higher than the height of the overvoltage protection part 300, and the plane width may be larger than the plane width of the overvoltage protection part 300. For example, each of the first and second connection electrodes 410 and 420 may be formed to have a height of 0.5 to 3 times the height of the overvoltage protection part 300. In addition, the sum of the heights of the first and second connection electrodes 410 and 420 may be formed to be one to six times the height of the overvoltage protection part 300. For example, the sum of the heights of the first and second connection electrodes 410 and 420 may be formed to be 100 μm to 1000 μm, preferably 200 μm to 900 μm, and more preferably 400 μm to 700 μm. . In this case, heights of the first and second connection electrodes 410 and 420 may be different from each other, and widths thereof may also be different from each other. In addition, the width of the X direction of the connection electrode 400 may be formed from 1% to 90% of the length of the X direction of the laminate 100, and the width of the Y direction is 5 of the width of the Y direction of the laminate 100. It may be formed from% to 90%. In this case, the width of the X direction and the width of the Y direction of the connection electrode 400 may be the same or different. That is, the width of at least one region including the X-direction width and the Y-direction width of the connection electrode 400 may be the same as or different from the width of the other region. In other words, at least one region of the connection electrode 400 may be formed in an asymmetric shape. The width of the X and Y directions of the connection electrode 400 may be formed to be 1 to 10 times the width of the X and Y direction of the overvoltage protection part 300, and the X direction length and the Y direction of the internal electrode 200. It can be formed from 1/10 times to 1 times the width of the direction, respectively. That is, the width of the connection electrode 400 is shorter than the length and width of the laminate 100 in the X direction and the Y direction, is equal to or greater than the width of the overvoltage protection part 300, and is smaller than the width of the internal electrode 200. Or the same.
이러한 연결 전극(400)은 외부 전극(500)과 내부 전극(200)을 연결하는 기능을 한다. 따라서, 외부 전극(500)을 통해 인가되는 ESD 등의 과전압은 연결 전극(400)을 통해 내부 전극(200) 및 과전압 보호부(300)로 전달되고, 과전압 보호부(300)를 통한 과전압은 다시 내부 전극(200) 및 연결 전극(400)을 통해 외부 전극(500)으로 전달된다. 또한, 연결 전극(400)이 적층체(100)의 중앙부에 형성되고 과전압 보호부(300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 즉, 연결 전극(400)이 적층체(100)의 외곽에 형성되는 경우에 비해 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 따라서, 무선통신주파수 영역 700㎒∼3㎓에서 S21의 삽입 손실을 줄일 수 있다. 또한, 연결 전극(400)이 과전압 보호부(300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 반복적인 ESD 전압에 따른 열화를 방지할 수 있어 방전 개시 전압의 상승을 억제할 수 있다. 즉, 과전압 보호부(300)는 예를 들어 ESD 에너지에 의해 내부에서 스파크가 발생되어 ESD 전압을 바이패스하는데, 연결 전극(400)의 두께가 얇으면 반복적인 ESD 전압에 따라 연결 전극(400)이 소실되어 방전 개시 전압의 상승 현상이 발생될 수 있다. 그러나, 연결 전극(400)의 두께를 10㎛ 이상으로 형성함으로써 반복적인 ESD 전압에 의한 연결 전극(400)의 소실을 방지하고, 그에 따라 방전 개시 전압의 상승 현상을 방지할 수 있다.The connection electrode 400 functions to connect the external electrode 500 and the internal electrode 200. Therefore, an overvoltage such as ESD applied through the external electrode 500 is transferred to the internal electrode 200 and the overvoltage protection unit 300 through the connection electrode 400, and the overvoltage through the overvoltage protection unit 300 is again. It is transferred to the external electrode 500 through the internal electrode 200 and the connection electrode 400. In addition, since the connection electrode 400 is formed in the center of the stack 100 and preferably wider than the width of the overvoltage protection unit 300, parasitic resistance and parasitic inductance may be reduced. That is, the parasitic resistance and the parasitic inductance can be reduced as compared with the case where the connection electrode 400 is formed outside the laminate 100. Therefore, the insertion loss of S21 can be reduced in the wireless communication frequency range of 700 MHz to 3 GHz. In addition, since the connection electrode 400 is formed to have a width wider than the width of the overvoltage protection part 300, it is possible to prevent deterioration due to repetitive ESD voltages and to suppress an increase in the discharge start voltage. That is, the overvoltage protection unit 300 bypasses the ESD voltage by generating a spark therein, for example, by ESD energy. When the thickness of the connection electrode 400 is thin, the connection electrode 400 is repeated according to a repetitive ESD voltage. This loss may cause an increase in discharge start voltage. However, by forming the thickness of the connection electrode 400 to 10 μm or more, the loss of the connection electrode 400 due to the repetitive ESD voltage can be prevented, thereby preventing the rise of the discharge start voltage.
외부 전극External electrode
외부 전극(510, 520; 500)는 적층체(100) 외부의 서로 대향되는 두 면에 마련될 수 있다. 예를 들어, 외부 전극(500)은 Z 방향, 즉 수직 방향으로 적층체(100)의 대향되는 두 면. 즉 하부면 및 상부면에 각각 형성될 수 있다. 또한, 외부 전극(500)은 적층체(100) 내부의 연결 전극(400)과 각각 연결될 수 있다. 이때, 외부 전극(500)의 어느 하나는 전자기기 내부의 인쇄회로기판 등의 내부 회로와 접속될 수 있고, 다른 하나는 전자기기의 외부, 예를 들어 금속 케이스와 연결될 수 있다. 예를 들어, 제 1 외부 전극(510)은 내부 회로에 접속될 수 있고, 제 2 외부 전극(520)은 금속 케이스와 연결될 수 있다. 또한, 제 2 외부 전극(520)은 도전성 부재, 예를 들어 컨택터 또는 도전성 가스켓을 통해 금속 케이스와 연결될 수 있다.The external electrodes 510, 520 and 500 may be provided on two surfaces of the stack 100 that face each other. For example, the external electrodes 500 are two opposite surfaces of the stack 100 in the Z direction, that is, the vertical direction. That is, it may be formed on the lower surface and the upper surface, respectively. In addition, the external electrodes 500 may be connected to the connection electrodes 400 inside the stack 100, respectively. In this case, any one of the external electrodes 500 may be connected to an internal circuit such as a printed circuit board inside the electronic device, and the other may be connected to the outside of the electronic device, for example, a metal case. For example, the first external electrode 510 may be connected to an internal circuit, and the second external electrode 520 may be connected to a metal case. In addition, the second external electrode 520 may be connected to the metal case through a conductive member, for example, a contactor or a conductive gasket.
한편, 외부 전극(500)은 하부면 및 상부면의 전체면에 형성되거나, 하부면 및 상부면의 일부에 형성될 수 있다. 즉, 외부 전극(500)은 하부면 및 상부면의 가장자리로부터 소정 폭을 제외한 나머지 영역에 형성될 수 있다. 예를 들어, 외부 전극(500)은 하부면 및 상부면의 가장자리로부터 소정 폭을 제외한 50% 내지 95%의 면적으로 형성될 수 있다. 또한, 외부 전극(500)이 하부면 및 상부면의 전체 영역에 형성되고, 그로부터 상부 및 하부로 연장되어 다른 측면에 형성될 수도 있다. 즉, 외부 전극(500)은 Z 방향으로 대향되는 하부면 및 상부면 뿐만 아니라 X 방향 및 Y 방향으로 각각 대향되는 면의 소정 영역까지 연장 형성될 수 있다. 예를 들어, 도전성 페이스트에 침지하는 경우 Z 방향의 상하면 뿐만 아니라 X 방향 및 Y 방향으로의 측면에도 외부 전극(500)이 형성될 수 있다. 이에 비해, 인쇄, 증착, 스퍼터링, 도금 등의 방법으로 형성할 경우 Z 방향의 하부면 및 상부면에 소정 면적으로 외부 전극(500)이 형성될 수 있다. 즉, 외부 전극(500)은 인쇄회로기판에 실장되는 하부면 및 금속 케이스와 연결되는 상부면 뿐만 아니라 형성 방법 또는 공정 조건에 따라 그 이외의 영역에도 형성될 수 있다.On the other hand, the external electrode 500 may be formed on the entire surface of the lower surface and the upper surface, or may be formed on a portion of the lower surface and the upper surface. That is, the external electrode 500 may be formed in the remaining regions except for a predetermined width from edges of the lower and upper surfaces. For example, the external electrode 500 may be formed with an area of 50% to 95% except for a predetermined width from edges of the lower surface and the upper surface. In addition, the external electrode 500 may be formed on the entire area of the lower surface and the upper surface, and may extend from the upper and lower portions thereof to be formed on the other side. That is, the external electrode 500 may extend to a predetermined region of the lower and upper surfaces facing in the Z direction as well as the surfaces facing the X and Y directions, respectively. For example, when immersed in the conductive paste, the external electrode 500 may be formed not only on the upper and lower surfaces of the Z direction but also on the side surfaces in the X and Y directions. In contrast, when formed by printing, deposition, sputtering, plating, or the like, the external electrode 500 may be formed on the lower and upper surfaces of the Z direction with a predetermined area. That is, the external electrode 500 may be formed not only on the lower surface mounted on the printed circuit board and the upper surface connected to the metal case, but also in other areas according to the formation method or process conditions.
한편, 본 발명의 다른 실시 예에 따른 복합 보호부는 도 15에 도시된 바와 같이 과전압 과전압 보호부(300)가 적어도 일 영역의 폭이 넓어지도록 형성된 확장부(350)를 더 포함할 수 있다. 즉, 과전압 보호부(300)는 적어도 일 영역의 폭이 넓은 확장부(350)를 더 포함하여 형성될 수 있다. 확장부(350)는 과전압 보호부(300) 직경의 1% 내지 150%의 폭으로 형성될 수 있다. 즉, 확장부(350)의 폭은 확장부(350)가 형성되지 않은 과전압 보호부(300)의 다른 영역의 폭 대비 1% 내지 150%의 폭으로 형성될 수 있다. 예를 들어, 확장부(350)는 과전압 보호부(300) 직경에 10㎛∼100㎛를 더한 직경으로 형성될 수 있다. 또한, 확장부(350)의 높이는 과전압 보호부(300) 전체 높이의 10% 내지 70%의 높이로 형성될 수 있다. 이렇게 확장부(350)가 형성됨으로써 과전압 보호부(300)의 쇼트 경로를 차단할 수 있다. 즉, ESD 등의 과전압을 지속적으로 인가받게 되면 연결 전극(400)의 멜팅 현상이 발생되고, 그에 따라 과전압 보호부(300)의 관통홀 측벽에 연결 전극 물질이 고착될 수 있어 쇼트 현상이 발생될 수 있다. 그러나, 과전압 보호부(300)에 지름이 다른 확장부(350)가 형성됨으로써 쇼트 경로를 차단할 수 있다. Meanwhile, as shown in FIG. 15, the composite protection unit according to another embodiment of the present invention may further include an expansion unit 350 in which the overvoltage overvoltage protection unit 300 is widened at least one region. That is, the overvoltage protection unit 300 may further include an expansion unit 350 having a wide width of at least one region. The expansion unit 350 may have a width of 1% to 150% of the diameter of the overvoltage protection unit 300. That is, the width of the expansion unit 350 may be formed to have a width of 1% to 150% of the width of other regions of the overvoltage protection unit 300 in which the expansion unit 350 is not formed. For example, the expansion unit 350 may be formed to have a diameter of the overvoltage protection unit 300 plus 10 μm to 100 μm. In addition, the height of the expansion unit 350 may be formed to a height of 10% to 70% of the overall height of the overvoltage protection unit 300. As such, the expansion unit 350 is formed to block the short path of the overvoltage protection unit 300. That is, when an overvoltage such as ESD is continuously applied, a melting phenomenon of the connection electrode 400 occurs, and thus a connection phenomenon may occur due to the connection electrode material being adhered to the sidewall of the through hole of the overvoltage protection part 300. Can be. However, the short path may be blocked by the expansion unit 350 having a different diameter in the overvoltage protection unit 300.
상기한 바와 같이 본 발명의 다른 실시 예에 따른 복합 보호부는 연결 전극(400)이 적층체(100)의 중앙부에 형성되고 과전압 보호부(300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 즉, 연결 전극(400)이 적층체(100)의 외곽에 형성되는 경우에 비해 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 따라서, 무선통신주파수 영역 700㎒∼3㎓에서 S21의 삽입 손실을 줄일 수 있다. 또한, 연결 전극(400)이 과전압 보호부(300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 반복적인 ESD 전압에 따른 열화를 방지할 수 있어 방전 개시 전압의 상승을 억제할 수 있다. 즉, 과전압 보호부(300)는 예를 들어 ESD 에너지에 의해 내부에서 스파크가 발생되어 ESD 전압을 바이패스하는데, 연결 전극(400)의 두께가 얇으면 반복적인 ESD 전압에 따라 연결 전극(400)이 소실되어 방전 개시 전압의 상승 현상이 발생될 수 있다. 그러나, 연결 전극(400)의 두께를 10㎛ 이상으로 형성함으로써 반복적인 ESD 전압에 의한 연결 전극(400)의 소실을 방지하고, 그에 따라 방전 개시 전압의 상승 현상을 방지할 수 있다.As described above, the composite protective part according to another exemplary embodiment of the present invention may include a connection electrode 400 formed at the center of the laminate 100 and preferably formed in a wider width than the width of the overvoltage protection part 300. And parasitic inductance can be reduced. That is, the parasitic resistance and the parasitic inductance can be reduced as compared with the case where the connection electrode 400 is formed outside the laminate 100. Therefore, the insertion loss of S21 can be reduced in the wireless communication frequency range of 700 MHz to 3 GHz. In addition, since the connection electrode 400 is formed to have a width wider than the width of the overvoltage protection part 300, it is possible to prevent deterioration due to repetitive ESD voltages and to suppress an increase in the discharge start voltage. That is, the overvoltage protection unit 300 bypasses the ESD voltage by generating a spark therein, for example, by ESD energy. When the thickness of the connection electrode 400 is thin, the connection electrode 400 is repeated according to a repetitive ESD voltage. This loss may cause an increase in discharge start voltage. However, by forming the thickness of the connection electrode 400 to 10 μm or more, the loss of the connection electrode 400 due to the repetitive ESD voltage can be prevented, thereby preventing the rise of the discharge start voltage.
한편, 본 발명의 복합 보호 소자는 일 실시 예의 과전압 보호 부재(320) 또는 다른 실시 예의 과전압 보호부(300)를 다양한 형태로 형성할 수 있는데, 이러한 과전압 보호 부재(320) 또는 과전압 보호부(300)의 다양한 실시 예를 도 17 내지 도 19에 도시하였다. 이하의 실시 예는 과전압 보호 부재(320)를 예시하였으나, 다른 실시 예의 과전압 보호부(300) 또한 동일하다.Meanwhile, the composite protection device of the present invention may form the overvoltage protection member 320 or the overvoltage protection unit 300 of another embodiment in various forms, such as the overvoltage protection member 320 or the overvoltage protection unit 300. Various embodiments of the present invention are illustrated in FIGS. 17 to 19. Hereinafter, the overvoltage protection member 320 is illustrated, but the overvoltage protection unit 300 of another embodiment is also the same.
도 17은 본 발명의 복합 보호 소자의 제 1 실시 예에 따른 과전압 보호 부재(320)의 단면 개략도 및 단면 사진이다. 즉, 과전압 보호 부재(320)는 적어도 일 영역의 두께가 다른 영역보다 작거나 크게 형성될 수 있는데, 도 17은 과전압 보호 부재(320)의 일부 영역을 확대한 단면 개략도 및 단면 사진이다.17 is a schematic cross-sectional view and a cross-sectional photograph of the overvoltage protection member 320 according to the first embodiment of the composite protection device of the present invention. That is, the overvoltage protection member 320 may be formed at least one region smaller or larger than another region, and FIG. 17 is an enlarged cross-sectional schematic diagram and cross-sectional photograph of a portion of the overvoltage protection member 320.
도 17의 (a)에 도시된 바와 같이, 과전압 보호 부재(320)는 절연성 물질로 형성될 수 있다. 이때, 절연성 물질은 복수의 기공(미도시)을 포함하는 다공성 절연 물질을 이용할 수 있다. 즉, 과전압 보호 부재(320)에는 복수의 기공(미도시)이 형성될 수 있다. 기공이 형성됨으로써 ESD 등의 과전압을 더욱 용이하게 바이패스시킬 수 있다. 또한, 과전압 보호 부재(320)는 도전성 물질과 절연성 물질을 혼합하여 형성할 수 있다. 예를 들어, 과전압 보호 부재(320)는 도전성 세라믹과 절연성 세라믹을 혼합하여 형성할 수 있다. 이 경우 과전압 보호 부재(320)는 도전성 세라믹과 절연성 세라믹을 예를 들어 10:90 내지 90:10의 혼합 비율로 혼합하여 형성할 수 있다. 절연성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 높아지고, 도전성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 낮아질 수 있다. 따라서, 소정의 방전 개시 전압을 얻을 수 있도록 도전성 세라믹과 절연성 세라믹의 혼합 비율을 조절할 수 있다. As shown in FIG. 17A, the overvoltage protection member 320 may be formed of an insulating material. In this case, the insulating material may be a porous insulating material including a plurality of pores (not shown). That is, a plurality of pores (not shown) may be formed in the overvoltage protection member 320. By forming pores, it is possible to more easily bypass overvoltage such as ESD. In addition, the overvoltage protection member 320 may be formed by mixing a conductive material and an insulating material. For example, the overvoltage protection member 320 may be formed by mixing a conductive ceramic and an insulating ceramic. In this case, the overvoltage protection member 320 may be formed by mixing the conductive ceramic and the insulating ceramic in a mixing ratio of, for example, 10:90 to 90:10. As the mixing ratio of the insulating ceramic increases, the discharge starting voltage increases, and as the mixing ratio of the conductive ceramic increases, the discharge starting voltage decreases. Therefore, the mixing ratio of the conductive ceramic and the insulating ceramic can be adjusted to obtain a predetermined discharge start voltage.
또한, 과전압 보호 부재(320)는 도전층과 절연층을 적층하여 소정의 적층 구조로 형성할 수 있다. 즉, 과전압 보호 부재(320)는 도전층과 절연층을 적어도 1회 적층하여 도전층과 절연층이 구분되어 형성할 수 있다. 예를 들어, 과전압 보호 부재(320)는 도전층과 절연층이 적층되어 2층 구조로 형성될 수 있고, 도전층, 절연층 및 도전층이 적층되어 3층 구조로 형성될 수 있다. 또한, 도전층(321a, 321b; 321)과 절연층(322)이 복수회 반복 적층되어 3층 이상의 적층 구조로 형성될 수도 있다. 예를 들어, 도 17의 (b)에 도시된 바와 같이 제 1 도전층(321a), 절연층(322) 및 제 2 도전층(321b)이 적층된 3층 구조의 과전압 보호 부재(320)가 형성될 수 있다. 한편, 도전층과 절연층을 복수회 적층하는 경우 최상층 및 최하층은 도전층이 위치할 수 있다. 이때, 도전층(321)과 절연층(322)의 적어도 일부에는 복수의 기공(미도시)이 형성될 수 있다. 예를 들어, 도전층(321) 사이에 형성된 절연층(322)은 다공성 구조로 형성되므로 절연층(322) 내에 복수의 기공이 형성될 수 있다.In addition, the overvoltage protection member 320 may be formed in a predetermined stacked structure by stacking a conductive layer and an insulating layer. That is, the overvoltage protection member 320 may be formed by stacking the conductive layer and the insulating layer at least once and separating the conductive layer and the insulating layer. For example, the overvoltage protection member 320 may be formed in a two-layer structure by laminating a conductive layer and an insulating layer, and may be formed in a three-layer structure by laminating the conductive layer, the insulating layer, and the conductive layer. In addition, the conductive layers 321a, 321b; 321 and the insulating layer 322 may be repeatedly stacked a plurality of times to form a stacked structure of three or more layers. For example, as illustrated in FIG. 17B, an overvoltage protection member 320 having a three-layer structure in which the first conductive layer 321a, the insulating layer 322, and the second conductive layer 321b are stacked is provided. Can be formed. On the other hand, when the conductive layer and the insulating layer are laminated a plurality of times, the uppermost layer and the lowest layer may be a conductive layer. In this case, a plurality of pores (not shown) may be formed in at least a portion of the conductive layer 321 and the insulating layer 322. For example, since the insulating layer 322 formed between the conductive layers 321 has a porous structure, a plurality of pores may be formed in the insulating layer 322.
또한, 과전압 보호 부재(320)는 소정 영역에 공극(void)이 더 형성될 수도 있다. 예를 들어, 도전성 물질과 절연성 물질이 혼합된 층의 사이에 공극이 형성될 수 있고, 도전층과 절연층 사이에 공극이 형성될 수도 있다. 즉, 도전성 물질과 절연성 물질의 제 1 혼합층, 공극 및 제 2 혼합층이 적층 형성될 수 있고, 도전층, 공극 및 절연층이 적층 형성될 수도 있다. 예를 들어, 과전압 보호 부재(320)는 도 17의 (c)에 도시된 바와 같이 제 1 도전층(321a), 제 1 절연층(322a), 공극(323), 제 2 절연층(322b) 및 제 2 도전층(321b)이 적층되어 형성될 수 있다. 즉, 도전층(321a, 321b; 321) 사이에 절연층(322a, 322b; 322)이 형성되고, 절연층(322) 사이에 공극(323)이 형성될 수 있다. 물론, 도전층, 절연층, 공극이 반복 적층되어 과전압 보호 부재(320)가 형성될 수도 있다. 한편, 도전층(321), 절연층(322) 및 공극(323)이 적층되는 경우 이들 모두의 두께가 모두 동일할 수 있고, 적어도 어느 하나의 두께가 다른 것들에 비해 얇을 수 있다. 예를 들어, 공극(323)이 도전층(321) 및 절연층(322)보다 얇을 수 있다. 또한, 도전층(321)은 절연층(322)과 동일 두께로 형성될 수도 있고, 절연층(322)보다 두껍거나 얇게 형성될 수도 있다. 한편, 공극(323)은 고분자 물질을 충진한 후 소성 공정을 실시하여 고분자 물질을 제거함으로써 형성할 수 있다. 예를 들어, 도전성 세라믹이 포함된 제 1 고분자 물질, 절연성 세라믹이 포함된 제 2 고분자 물질, 그리고 도전성 세라믹 또는 절연성 세라믹 등이 포함되지 않은 제 3 고분자 물질을 비아홀 내에 충진한 후 소성 공정을 실시하여 고분자 물질을 제거함으로써 도전층, 절연층 및 공극이 형성될 수 있다. 한편, 공극(323)은 층이 구분되지 않고 형성될 수도 있다. 예를 들어, 도전층(321a, 321b) 사이에 절연층(322)이 형성되고 절연층(322) 내에 수직 방향 또는 수평 방향으로 복수의 기공이 연결되어 공극(323)이 형성될 수 있다. 즉, 공극(323)은 절연층(322) 내에 복수의 기공으로 형성될 수 있다. 물론, 공극(323)이 복수의 기공에 의해 도전층(321)에 형성될 수도 있다.In addition, a void may be further formed in the overvoltage protection member 320 in a predetermined region. For example, a void may be formed between the layer in which the conductive material and the insulating material are mixed, and a gap may be formed between the conductive layer and the insulating layer. That is, the first mixed layer, the void, and the second mixed layer of the conductive material and the insulating material may be laminated, and the conductive layer, the void, and the insulating layer may be laminated. For example, the overvoltage protection member 320 may include the first conductive layer 321a, the first insulating layer 322a, the void 323, and the second insulating layer 322b as shown in FIG. 17C. And the second conductive layer 321b may be stacked. That is, the insulating layers 322a, 322b; 322 may be formed between the conductive layers 321a, 321b; 321, and the voids 323 may be formed between the insulating layers 322. Of course, the overvoltage protection member 320 may be formed by repeatedly stacking the conductive layer, the insulating layer, and the gap. Meanwhile, when the conductive layer 321, the insulating layer 322, and the gap 323 are stacked, all of them may have the same thickness, and at least one thickness may be thinner than the others. For example, the void 323 may be thinner than the conductive layer 321 and the insulating layer 322. In addition, the conductive layer 321 may be formed to have the same thickness as the insulating layer 322, or may be formed thicker or thinner than the insulating layer 322. On the other hand, the void 323 may be formed by filling the polymer material and then performing a sintering process to remove the polymer material. For example, the first polymer material including conductive ceramics, the second polymer material including insulating ceramics, and the third polymer material not containing conductive ceramics or insulating ceramics are filled in the via hole, and then a firing process is performed. By removing the polymer material, a conductive layer, an insulating layer and a void can be formed. On the other hand, the gap 323 may be formed without being divided into layers. For example, the insulating layer 322 may be formed between the conductive layers 321a and 321b, and a plurality of pores may be connected in the insulating layer 322 in a vertical direction or a horizontal direction to form a gap 323. That is, the gap 323 may be formed with a plurality of pores in the insulating layer 322. Of course, the void 323 may be formed in the conductive layer 321 by a plurality of pores.
한편, 과전압 보호 부재(320)에 이용되는 도전층(321)은 소정의 저항을 갖고 전류를 흐르게 할 수 있다. 예를 들어, 도전층(321)은 수Ω 내지 수백㏁을 갖는 저항체일 수 있다. 이러한 도전층(321)은 ESD 등이 과전압이 유입될 경우 에너지 레벨을 낮춰 과전압에 의한 복합 보호 소자의 구조적인 파괴가 일어나지 않도록 한다. 즉, 도전층(321)은 전기 에너지를 열 에너지로 변환시키는 히트 싱크(heat sink)의 역할을 한다. 이러한 도전층(321)은 도전성 세라믹을 이용하여 형성할 수 있으며, 도전성 세라믹은 La, Ni, Co, Cu, Zn, Ru, Bi 중의 하나 이상을 포함한 혼합물을 이용할 수 있다. 또한, 도전층(321)은 1㎛∼50㎛의 두께로 형성할 수 있다. 즉, 도전층(321)이 복수의 층으로 형성될 경우 전체 두께의 합이 1㎛∼50㎛로 형성될 수 있다.On the other hand, the conductive layer 321 used for the overvoltage protection member 320 can flow a current with a predetermined resistance. For example, the conductive layer 321 may be a resistor having several kilowatts to several hundred kilowatts. The conductive layer 321 lowers the energy level when an overvoltage flows through the ESD, so that structural destruction of the composite protection device due to the overvoltage does not occur. That is, the conductive layer 321 serves as a heat sink that converts electrical energy into thermal energy. The conductive layer 321 may be formed using a conductive ceramic, and the conductive ceramic may use a mixture including at least one of La, Ni, Co, Cu, Zn, Ru, and Bi. In addition, the conductive layer 321 can be formed to a thickness of 1 μm to 50 μm. That is, when the conductive layer 321 is formed of a plurality of layers, the sum of the total thicknesses may be 1 μm to 50 μm.
또한, 과전압 보호 부재(320)에 이용되는 절연층(322)은 방전 유도 물질로 이루어질 수 있고, 다공성 구조를 가진 전기 장벽으로 기능할 수 있다. 이러한 절연층(322)은 절연성 세라믹으로 형성될 수 있고, 절연성 세라믹은 50∼50000 정도의 유전율을 갖는 강유전체 물질이 이용될 수 있다. 예를 들어, 절연성 세라믹은 MLCC 등의 유전체 재료 분말, ZrO, ZnO, BaTiO3, Nd2O5, BaCO3, TiO2, Nd, Bi, Zn, Al2O3 중의 하나 이상을 포함한 혼합물을 이용하여 형성할 수 있다. 이러한 절연층(322)은 1㎚∼5㎛ 정도 크기의 기공이 복수 형성되어 30%∼80%의 기공률로 형성된 다공성 구조로 형성될 수 있다. 이때, 기공 사이의 최단 거리는 1㎚∼5㎛ 정도일 수 있다. 즉, 절연층(322)은 전류가 흐르지 못하는 전기 절연성 물질로 형성되지만, 기공이 형성되므로 기공을 통해 전류가 흐를 수 있다. 이때, 기공의 크기가 커지거나 기공률이 커질수록 방전 개시 전압이 낮아질 수 있고, 이와 반대로 기공의 크기가 작아지거나 기공률이 낮아지면 방전 개시 전압이 높아질 수 있다. 그러나, 기공의 크기가 5㎛를 초과하거나 기공률이 80%를 초과하면 과전압 보호 부재(320)의 형상 유지가 어려울 수 있다. 따라서, 과전압 보호 부재(320)의 형상을 유지하면서 방전 개시 전압을 조절하도록 절연층(322)의 기공 크기 및 기공률을 조절할 수 있다. 한편, 과전압 보호 부재(320)가 절연 물질과 도전 물질의 혼합 물질로 형성되는 경우 절연 물질은 미세 기공 및 기공률을 갖는 절연성 세라믹을 이용할 수 있다. 또한, 절연층(322)은 미세 기공에 의해 시트의 저항보다 낮은 저항을 갖고, 미세 기공을 통해 부분 방전이 이루어질 수 있다. 즉, 절연층(322)은 미세 기공이 형성되어 미세 기공을 통해 부분 방전이 이루어진다. 이러한 절연층(322)은 1㎛∼50㎛의 두께로 형성할 수 있다. 즉, 절연층(322)이 복수의 층으로 형성될 경우 전체 두께의 합이 1㎛∼50㎛로 형성될 수 있다.In addition, the insulating layer 322 used for the overvoltage protection member 320 may be made of a discharge inducing material, and may function as an electrical barrier having a porous structure. The insulating layer 322 may be formed of an insulating ceramic, and the insulating ceramic may be a ferroelectric material having a dielectric constant of about 50 to 500,000. For example, the insulating ceramic uses a mixture containing one or more of dielectric material powders such as MLCC, ZrO, ZnO, BaTiO 3 , Nd 2 O 5 , BaCO 3 , TiO 2 , Nd, Bi, Zn, Al 2 O 3 Can be formed. The insulating layer 322 may have a porous structure in which a plurality of pores having a size of about 1 nm to about 5 μm are formed to have a porosity of about 30% to about 80%. In this case, the shortest distance between the pores may be about 1nm to 5㎛. That is, the insulating layer 322 is formed of an electrically insulating material that does not flow current, but since pores are formed, current may flow through the pores. In this case, as the size of the pores increases or the porosity increases, the discharge start voltage may decrease. On the contrary, when the size of the pores decreases or the porosity decreases, the discharge start voltage may increase. However, when the pore size exceeds 5 μm or the porosity exceeds 80%, it may be difficult to maintain the shape of the overvoltage protection member 320. Therefore, the pore size and the porosity of the insulating layer 322 may be adjusted to adjust the discharge start voltage while maintaining the shape of the overvoltage protection member 320. Meanwhile, when the overvoltage protection member 320 is formed of a mixed material of an insulating material and a conductive material, the insulating material may use an insulating ceramic having fine porosity and porosity. In addition, the insulating layer 322 has a resistance lower than that of the sheet due to the fine pores, and partial discharge may be performed through the fine pores. That is, the micropore is formed in the insulating layer 322 and partial discharge is performed through the micropore. The insulating layer 322 may be formed to a thickness of 1㎛ 50㎛. That is, when the insulating layer 322 is formed of a plurality of layers, the sum of the total thicknesses may be formed to be 1 μm to 50 μm.
한편, 과전압 보호 부재(320)는 PVA(Polyvinyl Alcohol) 또는 PVB(Polyvinyl Butyral) 등의 유기물에 Ru, Pt, Pd, Ag, Au, Ni, Cr, W, Fe 등에서 선택된 적어도 하나의 도전성 물질을 혼합한 물질로 형성할 수 있다. 또한, 과전압 보호 부재(320)는 상기 혼합 물질에 ZnO 등의 바리스터 물질 또는 Al2O3 등의 절연성 세라믹 물질을 더 혼합하여 형성할 수도 있다.Meanwhile, the overvoltage protection member 320 mixes at least one conductive material selected from Ru, Pt, Pd, Ag, Au, Ni, Cr, W, Fe, and the like with organic materials such as polyvinyl alcohol (PVA) or polyvinyl butyral (PVB). It can be formed from one material. In addition, the overvoltage protection member 320 may be formed by further mixing a varistor material such as ZnO or an insulating ceramic material such as Al 2 O 3 with the mixed material.
도 18은 본 발명의 복합 보호 소자의 제 2 실시 예에 따른 과전압 보호 부재(320)의 단면 개략도이다. 즉, 과전압 보호 부재(320)는 도 18의 (a)에 도시된 바와 같이 공극(323)을 포함할 수 있다. 즉, 과전압 보호 부재(320)는 시트를 관통하여 형성된 개구 내에 과전압 보호 물질을 충진하지 않고 공극(323)이 형성될 수 있다. 또한, 과전압 보호 부재(320)는 관통홀의 적어도 일 영역에 다공성 절연 물질이 형성될 수 있다. 즉, 도 18의 (b)에 도시된 바와 같이 관통홀의 측벽에 다공성 절연 물질이 도포되어 절연층(322)이 형성될 수 있고, 도 18의 (c)에 도시된 바와 같이 관통홀의 상부 및 하부의 적어도 하나에 절연층(322a, 322b; 322)이 형성될 수 있다. 18 is a schematic cross-sectional view of the overvoltage protection member 320 according to the second embodiment of the composite protection device of the present invention. That is, the overvoltage protection member 320 may include a gap 323 as shown in FIG. 18A. That is, the overvoltage protection member 320 may have a void 323 formed in the opening formed through the sheet without filling the overvoltage protection material. In addition, the overvoltage protection member 320 may have a porous insulating material formed in at least one region of the through hole. That is, as shown in (b) of FIG. 18, a porous insulating material may be applied to the sidewall of the through-hole to form an insulating layer 322, and as shown in (c) of FIG. 18, upper and lower portions of the through-hole. An insulating layer 322a, 322b; 322 may be formed on at least one of the insulating layers 322a, 322b;
도 19는 본 발명의 복합 보호 소자의 제 3 실시 예에 따른 과전압 보호 부재(320)의 단면 개략도로서, 도 19에 도시된 바와 같이 과전압 보호 부재(320)는 방전 전극(311, 312; 310)과 과전압 보호 부재(320) 사이에 형성된 방전 유도층(330)을 더 포함할 수 있다. 즉, 방전 전극(310)과 과전압 보호 부재(320) 사이에 방전 유도층(330)이 더 형성될 수 있다. 이때, 방전 전극(310)은 도전층(311a, 312a)과, 도전층(311a, 311a)의 적어도 일 표면에 형성된 다공성 절연층(311b, 312b)을 포함할 수 있다. 물론, 방전 전극(310)은 표면에 다공성 절연층이 형성되지 않은 도전층일 수도 있다. 19 is a schematic cross-sectional view of the overvoltage protection member 320 according to the third embodiment of the composite protection device of the present invention. As shown in FIG. 19, the overvoltage protection member 320 includes discharge electrodes 311, 312, and 310. And a discharge induction layer 330 formed between the overvoltage protection member 320. That is, the discharge induction layer 330 may be further formed between the discharge electrode 310 and the overvoltage protection member 320. In this case, the discharge electrode 310 may include conductive layers 311a and 312a and porous insulating layers 311b and 312b formed on at least one surface of the conductive layers 311a and 311a. Of course, the discharge electrode 310 may be a conductive layer on which a porous insulating layer is not formed.
이러한 방전 유도층(330)은 과전압 보호 부재(320)를 다공성 절연 물질을 이용하여 형성하는 경우 형성될 수 있다. 이때, 방전 유도층(330)은 과전압 보호 부재(320)보다 밀도가 높은 유전체층으로 형성될 수 있다. 즉, 방전 유도층(330)은 도전 물질로 형성될 수도 있고, 절연 물질로 형성될 수도 있다. 예를 들어, 다공성 ZrO를 이용하여 과전압 보호 부재(320)를 형성하고 Al을 이용하여 내부 전극(200)을 형성하는 경우 과전압 보호 부재(320)와 방전 전극(310) 사이에 AlZrO의 방전 유도층(330)이 형성될 수 있다. 한편, 과전압 보호 부재(320)로서 ZrO 대신에 TiO를 이용할 수 있고, 이 경우 방전 유도층(330)은 TiAlO로 형성될 수 있다. 즉, 방전 유도층(330)은 방전 전극(310)과 과전압 보호 부재(320)의 반응으로 형성될 수 있다. 물론, 방전 유도층(330)은 시트 물질이 더 반응하여 형성될 수 있다. 이 경우 방전 유도층(330)은 내부 전극 물질(예를 들어 Al), 보호부 물질(예를 들어 ZrO), 그리고 시트 물질(예를 들어 BaTiO3)의 반응에 의해 형성될 수 있다. 또한, 방전 유도층(330)은 시트 물질과 반응하여 형성될 수 있다. 즉, 과전압 보호 부재(320)가 시트와 접촉되는 영역에는 과전압 보호 부재(320)와 시트의 반응으로 방전 유도층(330)이 형성될 수 있다. 따라서, 방전 유도층(330)은 과전압 보호 부재(320)를 둘러싸도록 형성될 수 있다. 이때, 과전압 보호 부재(320)와 방전 전극(310) 사이의 방전 유도층(330)과 과전압 보호 부재(320)와 시트 사이의 방전 유도층(330)은 서로 다른 조성을 가질 수 있다. 한편, 방전 유도층(330)은 적어도 일 영역이 제거되어 형성될 수 있고, 적어도 일 영역의 두께가 다른 영역과 다르게 형성될 수도 있다. 즉, 방전 유도층(330)은 적어도 일 영역이 제거되어 불연속적으로 형성될 수 있고, 두께가 적어도 일 영역의 두께가 다르게 불균일하게 형성될 수 있다. 이러한 방전 유도층(330)은 소성 공정 시 형성될 수 있다. 즉, 소정의 온도에서 소성 공정 시 방전 전극 물질, ESD 보호 물질 등이 상호 확산하여 방전 전극(310)과 과전압 보호 부재(320) 사이에 방전 유도층(330)이 형성될 수 있다. 한편, 방전 유도층(330)은 과전압 보호 부재(320) 두께의 10%∼70%의 두께로 형성될 수 있다. 즉, 과전압 보호 부재(320)의 일부 두께가 방전 유도층(330)으로 변화될 수 있다. 따라서, 방전 유도층(330)은 과전압 보호 부재(320)보다 얇게 형성될 수 있고, 방전 전극(310)보다 두껍거나 같거나 얇은 두께로 형성될 수 있다. 이러한 방전 유도층(330)에 의해 과전압 보호 부재(320)으로 유도되는 ESD 전압의 방전 에너지의 레벨을 저하시킬 수 있다. 따라서, ESD 전압을 더욱 용이하게 방전하여 방전 효율을 향상시킬 수 있다. 또한, 방전 유도층(330)이 형성됨으로써 이종의 물질의 과전압 보호 부재(320)으로의 확산을 방지할 수 있다. 즉, 시트 물질과 내부 전극 물질의 과전압 보호 부재(320)으로의 확산을 방지할 수 있고, 과전압 보호 물질의 외부 확산을 방지할 수 있다. 따라서, 방전 유도층(330)이 확산 배리어(diffusion barrier)로서 이용될 수 있고, 그에 따라 과전압 보호 부재(320)의 파괴를 방지할 수 있다. 한편, 과전압 보호 부재(320)에 도전성 물질을 더 포함할 수 있는데, 이 경우 도전성 물질은 절연성 세라믹으로 코팅할 수 있다. 예를 들어, 도 17의 (a)를 이용하여 설명한 바와 같이 과전압 보호 부재(320)가 다공성 절연 물질과 도전성 물질이 혼합되어 형성되는 경우 도전 물질은 NiO, CuO, WO 등을 이용하여 코팅할 수 있다. 따라서, 도전성 물질이 다공성 절연 물질과 함께 과전압 보호 부재(320)의 재료로서 이용될 수 있다. 또한, 과전압 보호 부재(320)으로 다공성의 절연 물질 이외에 도전 물질을 더 이용하는 경우, 예를 들어 도 17의 (b) 및 도 17의 (c)에 도시된 바와 같이 두개의 도전층(321a, 321b) 사이에 절연층(322)이 형성되는 경우 방전 유도층(330)은 도전층(321)과 절연층(322) 사이에 형성될 수 있다. 한편, 방전 전극(310)은 일부 영역이 제거된 형상으로 형성될 수 있다. 즉, 방전 전극(310)은 부분적으로 제거되고 제거된 영역에 방전 유도층(330)이 형성될 수 있다. 그러나, 방전 전극(310)이 부분적으로 제거되더라도 평면 상으로 전체적으로 연결된 형상을 유지하므로 전기적인 특성이 저하되지는 않는다.The discharge induction layer 330 may be formed when the overvoltage protection member 320 is formed using a porous insulating material. In this case, the discharge induction layer 330 may be formed of a dielectric layer having a higher density than the overvoltage protection member 320. That is, the discharge induction layer 330 may be formed of a conductive material or may be formed of an insulating material. For example, when the overvoltage protection member 320 is formed by using porous ZrO and the internal electrode 200 is formed by using Al, a discharge induction layer of AlZrO is formed between the overvoltage protection member 320 and the discharge electrode 310. 330 may be formed. Meanwhile, TiO may be used instead of ZrO as the overvoltage protection member 320, and in this case, the discharge induction layer 330 may be formed of TiAlO. That is, the discharge induction layer 330 may be formed by the reaction of the discharge electrode 310 and the overvoltage protection member 320. Of course, the discharge induction layer 330 may be formed by further reacting the sheet material. In this case, the discharge induction layer 330 may be formed by a reaction of an internal electrode material (for example, Al), a protection material (for example, ZrO), and a sheet material (for example, BaTiO 3 ). In addition, the discharge induction layer 330 may be formed by reacting with the sheet material. That is, the discharge induction layer 330 may be formed in a region where the overvoltage protection member 320 contacts the sheet by the reaction between the overvoltage protection member 320 and the sheet. Therefore, the discharge induction layer 330 may be formed to surround the overvoltage protection member 320. In this case, the discharge induction layer 330 between the overvoltage protection member 320 and the discharge electrode 310 and the discharge induction layer 330 between the overvoltage protection member 320 and the sheet may have different compositions. On the other hand, the discharge induction layer 330 may be formed by removing at least one region, and may be formed differently from other regions in at least one region. That is, the discharge induction layer 330 may be discontinuously formed by removing at least one region, and the thickness of the discharge induction layer 330 may be differently formed. The discharge induction layer 330 may be formed during the firing process. That is, the discharge induction layer 330 may be formed between the discharge electrode 310 and the overvoltage protection member 320 by diffusion of the discharge electrode material, the ESD protection material, and the like during the firing process at a predetermined temperature. Meanwhile, the discharge induction layer 330 may be formed to have a thickness of 10% to 70% of the thickness of the overvoltage protection member 320. That is, some thicknesses of the overvoltage protection member 320 may be changed to the discharge induction layer 330. Therefore, the discharge induction layer 330 may be formed thinner than the overvoltage protection member 320, and may be formed to be thicker, equal to, or thinner than the discharge electrode 310. The discharge induction layer 330 may reduce the level of the discharge energy of the ESD voltage induced by the overvoltage protection member 320. Therefore, it is possible to discharge the ESD voltage more easily to improve the discharge efficiency. In addition, since the discharge induction layer 330 is formed, diffusion of heterogeneous materials into the overvoltage protection member 320 may be prevented. That is, diffusion of the sheet material and the internal electrode material into the overvoltage protection member 320 may be prevented, and external diffusion of the overvoltage protection material may be prevented. Accordingly, the discharge induction layer 330 may be used as a diffusion barrier, thereby preventing breakage of the overvoltage protection member 320. Meanwhile, the overvoltage protection member 320 may further include a conductive material, in which case the conductive material may be coated with an insulating ceramic. For example, as described with reference to FIG. 17A, when the overvoltage protection member 320 is formed by mixing a porous insulating material and a conductive material, the conductive material may be coated using NiO, CuO, WO, or the like. have. Thus, a conductive material may be used as the material of the overvoltage protection member 320 together with the porous insulating material. In addition, in the case of using a conductive material in addition to the porous insulating material as the overvoltage protection member 320, for example, two conductive layers 321a and 321b as shown in FIGS. 17B and 17C. In the case where the insulating layer 322 is formed therebetween, the discharge induction layer 330 may be formed between the conductive layer 321 and the insulating layer 322. Meanwhile, the discharge electrode 310 may be formed in a shape in which some regions are removed. That is, the discharge induction layer 330 may be formed in a region in which the discharge electrode 310 is partially removed and removed. However, even when the discharge electrode 310 is partially removed, the electrical characteristics are not degraded because the shape of the discharge electrode 310 is maintained as a whole.
방전 전극(310)은 표면에 절연층이 형성되는 금속 또는 금속 합금으로 형성될 수 있다. 즉, 방전 전극(310)은 도전층(311a, 312a)과, 도전층(311a, 312a)의 적어도 일 표면에 형성된 다공성 절연층(311b, 312b)을 포함할 수 있다. 이때, 다공성 절연층(311b, 312b)은 방전 전극(310)의 적어도 일 표면에 형성될 수 있다. 즉, 과전압 보호 부재(320)와 접촉되지 않는 일 표면 및 접촉되는 타 표면에만 각각 형성될 수도 있고, 과전압 보호 부재(320)와 접촉되지 않는 일 표면 및 과전압 보호 부재(320)와 접촉되는 타 표면에 모두 형성될 수 있다. 또한, 다공성 절연층(311b. 312b)은 도전층(311a, 312a)의 적어도 일 표면에 전체적으로 형성될 수도 있고, 적어도 일부에만 형성될 수도 있다. 그리고, 다공성 절연층(311b, 312b)은 적어도 일 영역이 제거되거나 얇은 두께로 형성될 수도 있다. 즉, 도전층(311a, 312a) 상의 적어도 일 영역에 다공성 절연층(311b, 312b)이 형성되지 않을 수 있고, 적어도 일 영역의 두께가 다른 영역의 두께보다 얇거나 두껍게 형성될 수도 있다. 이러한 방전 전극(310)은 소성 중 표면에 산화막이 형성되고 내부는 도전성을 유지하는 Al로 형성할 수 있다. 즉, Al을 시트 상에 형성할 때 공기와 접촉하게 되는데, 이러한 Al은 소성 공정에서 표면이 산화되어 Al2O3가 형성되고, 내부는 Al을 그대로 유지한다. 따라서, 내부 전극(200)은 표면에 다공성의 얇은 절연층인 Al2O3로 피복된 Al로 형성될 수 있다. 물론, Al 이외에 표면에 절연층, 바람직하게는 다공성의 절연층이 형성되는 다양한 금속이 이용될 수 있다.The discharge electrode 310 may be formed of a metal or a metal alloy on which an insulating layer is formed. That is, the discharge electrode 310 may include conductive layers 311a and 312a and porous insulating layers 311b and 312b formed on at least one surface of the conductive layers 311a and 312a. In this case, the porous insulating layers 311b and 312b may be formed on at least one surface of the discharge electrode 310. That is, only one surface which is not in contact with the overvoltage protection member 320 and the other surface which is in contact with each other may be formed, and one surface which is not in contact with the overvoltage protection member 320 and the other surface which is in contact with the overvoltage protection member 320. Can be formed on both. In addition, the porous insulating layers 311b and 312b may be formed on at least one surface of the conductive layers 311a and 312a or may be formed on at least a portion thereof. In addition, at least one region may be removed from the porous insulating layers 311b and 312b or may have a thin thickness. That is, the porous insulating layers 311b and 312b may not be formed in at least one region on the conductive layers 311a and 312a, and the thickness of at least one region may be thinner or thicker than the thickness of other regions. The discharge electrode 310 may be formed of Al to form an oxide film on the surface of the discharge electrode and maintain conductivity. That is, when Al is formed on the sheet, it comes into contact with air. In the Al process, the surface is oxidized to form Al 2 O 3 , and the inside maintains Al as it is. Therefore, the internal electrode 200 may be formed of Al coated with Al 2 O 3 , which is a porous thin insulating layer on the surface. Of course, in addition to Al, various metals having an insulating layer, preferably a porous insulating layer, may be used on the surface.
한편, 본 발명의 일 실시 예는 과전압 보호 부재(320)가 시트(106)에 형성된 관통홀에 과전압 보호 물질이 매립 또는 도포되어 형성되었다. 그러나, 과전압 보호 부재(320)는 시트의 소정 영역에 형성되고, 과전압 보호 부재(320)에 각각 접촉되도록 방전 전극(310)이 형성될 수 있다. 즉, 도 20의 다른 예의 단면도에 도시된 바와 같이 시트(105) 상에 두 방전 전극(311, 312)이 수평 방향으로 소정 간격 이격되어 형성되고, 두 방전 전극(311, 312) 사이에 과전압 보호 부재(320)가 형성될 수 있다.Meanwhile, in one embodiment of the present invention, the overvoltage protection member 320 is formed by embedding or applying an overvoltage protection material in a through hole formed in the sheet 106. However, the overvoltage protection member 320 may be formed in a predetermined region of the sheet, and the discharge electrode 310 may be formed to contact the overvoltage protection member 320, respectively. That is, as shown in the cross-sectional view of another example of FIG. 20, two discharge electrodes 311 and 312 are formed on the sheet 105 at predetermined intervals in the horizontal direction, and overvoltage protection is performed between the two discharge electrodes 311 and 312. Member 320 may be formed.
과전압 보호부(2230)는 동일 평면 상에 이격되어 형성된 적어도 두개의 방전 전극(311, 312)과, 적어도 두개의 방전 전극(311, 312) 사이에 마련된 적어도 하나의 ESD 과전압 보호 부재(320)를 포함할 수 있다. 즉, 시트의 소정 영역, 예를 들어 중앙부에서 서로 이격되도록 외부 전극(2240)이 형성된 방향, 즉 X 방향으로 두개의 방전 전극(311, 312)이 마련될 수 있고, 또한 이와 직교하는 방향으로 적어도 둘 이상의 방전 전극(미도시)이 더 마련될 수도 있다. 따라서, 외부 전극(2240)이 형성된 방향과 직교하는 방향으로 적어도 하나의 방전 전극이 형성되고, 소정 간격 이격되어 대향되도록 적어도 하나의 방전 전극이 형성될 수 있다. 예를 들어, 과전압 보호부(2230)는 도 9에 도시된 바와 같이 제 5 시트(105)와, 제 5 시트(105) 상에 이격되어 형성된 제 1 및 제 2 방전 전극(311, 312)과, 제 5 시트(105) 상에 형성된 과전압 보호 부재(320)를 포함할 수 있다. 여기서, 과전압 보호 부재(320)는 적어도 일부가 제 1 및 제 2 방전 전극(311, 312)과 연결되도록 형성될 수 있다. 제 1 방전 전극(311)은 외부 전극(2241)과 연결되어 제 5 시트(105) 상에 형성되며 말단부가 과전압 보호 부재(320)와 연결되도록 형성된다. 제 2 방전 전극(312)은 외부 전극(2242)과 연결되어 제 5 시트(105) 상에 제 1 방전 전극(311)과 이격되어 형성되며 말단부가 과전압 보호 부재(320)와 연결되도록 형성된다. 과전압 보호 부재(320)는 제 5 시트(105)의 소정 영역, 예를 들어 중심부에 제 1 및 제 2 방전 전극(311, 312)과 연결되도록 형성될 수 있다. 이때, 과전압 보호 부재(320)는 제 1 및 제 2 방전 전극(311, 312)과 일부 중첩되도록 형성될 수 있다. 과전압 보호 부재(320)가 제 1 및 제 2 방전 전극(311, 312) 사이의 노출된 제 5 시트(105) 상에 형성되어 제 1 및 제 2 방전 전극(311, 312)의 측면과 연결될 수도 있다. 그러나, 이 경우 과전압 보호 부재(320)가 제 1 및 제 2 방전 전극(311, 312)과 접촉되지 않고 이격될 수 있으므로 제 1 및 제 2 방전 전극(311, 312)과 중첩되도록 ESD 과전압 보호 부재(320)를 형성하는 것이 바람직하다. 이렇게 방전 전극(310) 및 과전압 보호 부재(320)가 동일 평면 상에 형성되는 경우에도 외부 전극(2240)이 내부 전극(200)과 적어도 일부 중첩되도록 형성되고, 최외곽 시트, 즉 제 1 및 제 10 시트(101, 110)는 그 사이에 나머지 시트들, 즉 제 2 내지 제 9 시트(102 내지 109)보다 유전율이 낮도록 형성될 수 있다.The overvoltage protection unit 2230 may include at least two discharge electrodes 311 and 312 formed on the same plane and at least one ESD overvoltage protection member 320 provided between the at least two discharge electrodes 311 and 312. It may include. That is, two discharge electrodes 311 and 312 may be provided in a direction in which the external electrodes 2240 are formed to be spaced apart from each other in a predetermined region of the sheet, for example, the center, that is, in the X direction, and at least in a direction orthogonal thereto Two or more discharge electrodes (not shown) may be further provided. Therefore, at least one discharge electrode may be formed in a direction orthogonal to the direction in which the external electrode 2240 is formed, and at least one discharge electrode may be formed to face each other at a predetermined interval. For example, the overvoltage protection unit 2230 may include a fifth sheet 105 and first and second discharge electrodes 311 and 312 spaced apart from the fifth sheet 105 as shown in FIG. 9. The overvoltage protection member 320 formed on the fifth sheet 105 may be included. Here, the overvoltage protection member 320 may be formed such that at least a portion thereof is connected to the first and second discharge electrodes 311 and 312. The first discharge electrode 311 is formed on the fifth sheet 105 by being connected to the external electrode 2241 and has a distal end connected with the overvoltage protection member 320. The second discharge electrode 312 is connected to the external electrode 2242 so as to be spaced apart from the first discharge electrode 311 on the fifth sheet 105, and the distal end thereof is connected to the overvoltage protection member 320. The overvoltage protection member 320 may be formed to be connected to the first and second discharge electrodes 311 and 312 at a predetermined region, for example, a central portion of the fifth sheet 105. In this case, the overvoltage protection member 320 may be formed to partially overlap the first and second discharge electrodes 311 and 312. The overvoltage protection member 320 may be formed on the exposed fifth sheet 105 between the first and second discharge electrodes 311 and 312 to be connected to the side surfaces of the first and second discharge electrodes 311 and 312. have. However, in this case, since the overvoltage protection member 320 may be spaced without contacting the first and second discharge electrodes 311 and 312, the ESD overvoltage protection member to overlap the first and second discharge electrodes 311 and 312. It is desirable to form 320. Even when the discharge electrode 310 and the overvoltage protection member 320 are formed on the same plane, the external electrode 2240 is formed to at least partially overlap the internal electrode 200, and the outermost sheet, that is, the first and the first The ten sheets 101 and 110 may be formed to have a lower dielectric constant than the remaining sheets, that is, the second to ninth sheets 102 to 109 therebetween.
상기한 바와 같이 본 발명의 실시 예들에 따른 복합 보호부는 과전압 보호 부재를 포함하는 서프레서 타입을 위주로 설명하였지만, 본 발명은 다양한 형태의 과전압 보호 부품이 복합 보호부로서 이용될 수 있다. 즉, 과전압을 바이패스시키고 감전 전압 등의 누설 전압 또는 전류를 차단하며, 통신 신호를 전달할 수 있는 기능을 갖는 다양한 형태의 과전압 보호 부품이 복합 보호부로서 이용될 수 있다. 예를 들어, 바리스터와 캐패시터가 결합된 구조 등이 이용될 수 있다.As described above, the composite protection unit according to the embodiments of the present invention has been described based on a suppressor type including an overvoltage protection member. However, in the present invention, various types of overvoltage protection components may be used as the composite protection unit. That is, various types of overvoltage protection components having a function of bypassing overvoltage, blocking leakage voltage or current such as electric shock voltage, and transmitting a communication signal may be used as the composite protection unit. For example, a structure in which a varistor and a capacitor are combined may be used.
상기한 바와 같은 본 발명의 실시 예들에 따른 복합 보호 소자는 전자기기의 금속 케이스, 즉 측면 케이스(1110)와 내부 회로, 즉 메인 보드(1500) 사이에 마련될 수 있다. 즉, 컨택부(2100)가 접지 단자에 연결될 수 있고, 복합 보호부(2200)가 도전부(2300)를 통해 측면 케이스(1110)에 연결될 수 있다. 이때, 접지 단자는 메인 보드(1500) 내에 마련될 수 있다. 따라서, 내부 회로의 접지 단자로부터 금속 케이스로 전달되는 감전 전압을 차단할 수 있고, 외부로부터 내부 회로로 인가되는 ESD 등의 과전압을 접지 단자로 바이패스시킬 수 있다. 즉, 본 발명의 복합 보호 소자는 정격 전압 및 감전 전압에서는 전류가 흐르지 못하고, ESD 전압에서는 과전압 보호 부재(320)를 통해 전류가 흘러 과전압이 접지 단자로 바이패스된다. 한편, 복합 보호 소자는 방전 개시 전압이 정격 전압보다 높고 ESD 전압보다 낮을 수 있다. 예를 들어, 복합 보호 소자는 정격 전압이 100V 내지 240V일 수 있고, 감전 전압은 회로의 동작 전압과 같거나 높을 수 있으며, 외부의 정전기 등에 의해 발생되는 ESD 전압은 감전 전압보다 높을 수 있다. 또한, 외부로부터의 통신 신호, 즉 교류 주파수는 내부 전극(200) 사이에 형성되는 캐패시터에 의해 내부 회로로 전달될 수 있다. 따라서, 별도의 안테나가 마련되지 않고 금속 케이스를 안테나로 이용하는 경우에도 외부로부터 통신 신호를 인가받을 수 있다. 결국, 본 발명에 따른 복합 보호 소자는 감전 전압을 차단하고, ESD 전압을 접지 단자로 바이패스시키며, 통신 신호를 내부 회로로 인가할 수 있다.The complex protection device according to the embodiments of the present invention as described above may be provided between the metal case of the electronic device, that is, the side case 1110 and the internal circuit, that is, the main board 1500. That is, the contact portion 2100 may be connected to the ground terminal, and the complex protection unit 2200 may be connected to the side case 1110 through the conductive portion 2300. In this case, the ground terminal may be provided in the main board 1500. Therefore, the electric shock voltage transmitted from the ground terminal of the internal circuit to the metal case can be cut off, and overvoltage such as an ESD applied from the outside to the internal circuit can be bypassed to the ground terminal. That is, in the composite protection device of the present invention, current does not flow at the rated voltage and the electric shock voltage, and current flows through the overvoltage protection member 320 at the ESD voltage so that the overvoltage is bypassed to the ground terminal. On the other hand, the composite protection device may have a discharge start voltage higher than the rated voltage and lower than the ESD voltage. For example, the composite protection device may have a rated voltage of 100V to 240V, an electric shock voltage may be equal to or higher than an operating voltage of a circuit, and an ESD voltage generated by external static electricity or the like may be higher than an electric shock voltage. In addition, the communication signal from the outside, that is, the AC frequency may be transmitted to the internal circuit by the capacitor formed between the internal electrode (200). Therefore, even when a separate antenna is not provided and a metal case is used as an antenna, communication signals can be received from the outside. As a result, the composite protection device according to the present invention can block the electric shock voltage, bypass the ESD voltage to the ground terminal, and apply a communication signal to the internal circuit.
또한, 본 발명의 일 실시 예에 따른 복합 보호 소자의 복합 보호부는 내압 특성이 높은 시트를 복수 적층하여 적층체(2210)를 형성함으로써 불량 충전기에 의한 내부 회로에서 금속 케이스)로의 예를 들어 310V의 감전 전압이 유입될 때 누설 전류가 흐르지 않도록 절연 저항 상태를 유지할 수 있고, 과전압 보호 부재(320) 역시 금속 케이스에서 내부 회로로의 과전압 유입 시 과전압을 바이패스시켜 소자의 파손없이 높은 절연 저항 상태를 유지할 수 있다. 즉, 과전압 보호 부재(320)는 다공성 구조로 이루어져 미세 기공을 통해 전류를 흐르게 하는 다공성 절연 물질을 포함하고, 에너지 레벨을 낮춰 전기 에너지를 열 에너지로 변환시키는 도전성 물질을 더 포함함으로써 외부로부터 유입되는 과전압을 바이패스시켜 회로를 보호할 수 있다. 따라서, 과전압에 의해서도 절연 파괴되지 않고, 그에 따라 금속 케이스를 구비하는 전자기기 내에 마련되어 불량 충전기에서 발생된 감전 전압이 전자기기의 금속 케이스를 통해 사용자에게 전달되는 것을 지속적으로 방지할 수 있다. 한편, 일반적인 MLCC(Multi Layer Capacitance Circuit)는 감전 전압은 보호하지만 ESD에는 취약한 소자로 이는 반복적인 ESD 인가 시 전하 차징(Charging)에 의한 누설 포인트(Leak point)로 스파크(Spark)가 발생하여 소자 파손 현상이 발생될 수 있다. 그러나, 본 발명은 내부 전극(200) 사이에 다공성 절연 물질을 포함하는 과전압 보호 부재(320)가 형성됨으로써 과전압을 과전압 보호 부재(320)를 통해 패스시킴으로써 적층체(2210)의 적어도 일부가 파괴되지 않는다.In addition, the composite protection unit of the composite protection device according to an embodiment of the present invention by stacking a plurality of sheets with high breakdown voltage characteristics to form a laminate (2210), such as a metal case in the internal circuit of a defective charger (for example 310V) The insulation resistance state can be maintained so that a leakage current does not flow when an electric shock voltage is introduced, and the overvoltage protection member 320 also bypasses the overvoltage when an overvoltage flows from the metal case to the internal circuit, thereby maintaining a high insulation resistance state without damaging the device. I can keep it. That is, the overvoltage protection member 320 includes a porous insulating material made of a porous structure to flow a current through the fine pores, and further includes a conductive material that converts electrical energy into thermal energy by lowering an energy level, thereby being introduced from the outside. Overvoltage can be bypassed to protect the circuit. Therefore, the insulation is not destroyed even by overvoltage, and thus, it is possible to continuously prevent the electric shock voltage generated in the defective charger from being transmitted to the user through the metal case of the electronic device provided in the electronic device having the metal case. On the other hand, the general MLCC (Multi Layer Capacitance Circuit) protects the electric shock voltage but is vulnerable to ESD. It is damaged due to sparking due to leakage point caused by charge charging when repeated ESD is applied. Phenomenon may occur. However, according to the present invention, the overvoltage protection member 320 including the porous insulating material is formed between the internal electrodes 200 so that at least a part of the laminate 2210 is not destroyed by passing the overvoltage through the overvoltage protection member 320. Do not.
그리고, 외부 전극(2240)과 내부 전극(200)이 중첩되도록 함으로써 외부 전극(2240)과 내부 전극(200) 사이에 소정의 기생 캐패시턴스가 생성될 수 있고, 외부 전극(2240)과 내부 전극(200)의 중첩 면적을 조절함으로써 복합 보호 소자의 캐패시턴스를 조절할 수 있다. 그런데, 복합 보호 소자의 캐패시턴스는 전자기기 내의 안테나 성능에 영향을 미치게 되므로 복합 보호 소자의 캐패시턴스의 산포를 바람직하게는 5% 이내로 유지하기 위해 높은 유전율을 가진 시트(100)를 이용하게 된다. 따라서, 시트(100)의 유전율이 높을수록 내부 전극(200)과 외부 전극(2240) 사이의 기생 캐패시턴스의 영향이 증가하게 된다. 그러나, 최외곽에 위치하는 시트의 유전율이 그 사이의 나머지 시트들의 유전율보다 낮으므로 내부 전극(200)과 외부 전극(2240) 사이의 기생 캐패시턴스의 영향을 감소시킬 수 있다.In addition, by allowing the external electrode 2240 and the internal electrode 200 to overlap, a predetermined parasitic capacitance may be generated between the external electrode 2240 and the internal electrode 200, and the external electrode 2240 and the internal electrode 200 may be generated. The capacitance of the composite protection element can be adjusted by adjusting the overlap area of However, since the capacitance of the composite protective element affects the antenna performance in the electronic device, the sheet 100 having a high dielectric constant is used to maintain the dispersion of the capacitance of the composite protective element within 5%. Therefore, as the dielectric constant of the sheet 100 increases, the influence of the parasitic capacitance between the inner electrode 200 and the outer electrode 2240 increases. However, since the dielectric constant of the outermost sheet is lower than that of the remaining sheets therebetween, the influence of the parasitic capacitance between the inner electrode 200 and the outer electrode 2240 can be reduced.
본 발명은 스마트 폰의 전자기기 내에 마련되어 외부로부터 인가되는 ESD 등의 과전압으로부터 전자기기를 보호하고, 전자기기 내부로부터의 누설 전류를 차단하여 사용자를 보호하는 복합 보호 소자를 예로 들어 설명하였다. 그러나, 본 발명의 복합 보호 소자는 스마트 폰 이외에 각종 전기전자 기기 내에 마련되어 적어 둘 이상의 보호 기능을 수행할 수 있다.The present invention has been described by taking an example of a composite protection device provided in the electronic device of the smart phone to protect the electronic device from overvoltage such as ESD applied from the outside, and protects the user by blocking the leakage current from the inside of the electronic device. However, the composite protection device of the present invention may be provided in various electric and electronic devices in addition to the smart phone to perform two or more protection functions.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.The present invention is not limited to the above-described embodiments, but may be implemented in various forms. In other words, the above embodiments are provided to make the disclosure of the present invention complete and to fully inform those skilled in the art of the scope of the present invention, and the scope of the present invention should be understood by the claims of the present application. .

Claims (14)

  1. 전자기기의 사용자가 접촉 가능한 도전체와 내부 회로 사이에 마련되는 복합 보호 소자로서,As a composite protection device provided between a conductor that can be contacted by the user of the electronic device and the internal circuit
    적어도 일부가 전자기기의 내부 회로와 접촉되는 컨택부;A contact portion at least partially in contact with an internal circuit of the electronic device;
    일면이 상기 컨택부와 결합된 복합 보호부;A composite protective part having one surface coupled with the contact part;
    일 영역에 상기 복합 보호부의 타면이 결합되고, 상기 전자기기 내부에 고정되는 도전부를 포함하는 복합 보호 소자.The other surface of the composite protection unit is coupled to one region, the composite protection device comprising a conductive portion fixed to the inside of the electronic device.
  2. 청구항 1에 있어서, 외부로부터 인가되는 과도 전압을 상기 전자기기 내부의 접지 단자로 바이패스시키고, 상기 전자기기 내부로부터 누설되는 전압 또는 전류를 차단시키며, 통신 신호를 전달하는 복합 보호 소자.The complex protection device of claim 1, wherein a transient voltage applied from the outside is bypassed to a ground terminal inside the electronic device, a voltage or a current leaking from the inside of the electronic device, and a communication signal is transmitted.
  3. 청구항 1에 있어서, 상기 컨택부 상에 마련된 도전성 접착 부재를 더 포함하는 복합 보호 소자.The composite protective device of claim 1, further comprising a conductive adhesive member provided on the contact portion.
  4. 청구항 1에 있어서, 상기 도전부와 일측이 접촉되어 마련된 지지부를 더 포함하는 복합 보호 소자.The composite protective device of claim 1, further comprising a support part provided at one side in contact with the conductive part.
  5. 청구항 4에 있어서, 상기 지지부는 상기 컨택부 및 복합 보호부의 높이로 마련되어 일측이 상기 도전부에 접촉되고 타측이 상기 전자기기 내부에 접촉되는 복합 보호 소자.The composite protective device of claim 4, wherein the support part is provided at a height of the contact part and the composite protection part so that one side contacts the conductive part and the other side contacts the inside of the electronic device.
  6. 청구항 4에 있어서, 상기 지지부는 절연성인 복합 보호 소자.The composite protective device of claim 4, wherein the support is insulative.
  7. 청구항 4에 있어서, 상기 지지부는 상기 도전부와 상기 전자기기의 고정부 사이에 마련된 복합 소자.The composite device of claim 4, wherein the support part is provided between the conductive part and the fixing part of the electronic device.
  8. 청구항 7에 있어서, 상기 지지부는 도전성인 복합 소자.The composite device of claim 7, wherein the support is conductive.
  9. 사용자가 접촉 가능한 도전체와 내부 회로 사이에 복합 보호 소자가 마련되는 전자기기로서,An electronic device in which a composite protective element is provided between a user contactable conductor and an internal circuit.
    윈도우 및 표시부와,Windows and displays,
    상기 표시부 하측에 마련된 브라켓과,A bracket provided below the display unit;
    상기 브라켓 하측에 마련된 메인 모드와,A main mode provided below the bracket,
    상기 메인 보드를 덮도록 마련된 커버 케이스와,A cover case provided to cover the main board;
    상기 윈도우로부터 커버 케이스 사이의 측면 공간을 폐쇄하는 측면 케이스를 포함하고,A side case for closing a side space between the cover case from the window,
    상기 복합 보호 소자가 상기 측면 케이스의 내측에 마련되는 전자기기.The composite protective device is provided on the inside of the side case.
  10. 청구항 9에 있어서, 상기 복합 보호 소자는,The method according to claim 9, wherein the composite protective element,
    적어도 일부가 전자기기의 내부 회로와 접촉되는 컨택부;A contact portion at least partially in contact with an internal circuit of the electronic device;
    일면이 상기 컨택부와 결합된 복합 보호부;A composite protective part having one surface coupled with the contact part;
    일 영역에 상기 복합 보호부의 타면이 결합되고, 상기 전자기기 내부에 고정되는 도전부를 포함하는 전자기기.The other surface of the composite protection unit is coupled to one region, the electronic device including a conductive part fixed inside the electronic device.
  11. 청구항 10에 있어서, 상기 측면 케이스의 내측에 마련되어 상기 복합 보호 소자를 고정하는 고정부를 더 포함하는 전자기기.The electronic device of claim 10, further comprising a fixing part provided inside the side case to fix the composite protective element.
  12. 청구항 11에 있어서, 상기 도전부가 상기 고정부에 고정되는 전자기기.The electronic device of claim 11, wherein the conductive part is fixed to the fixing part.
  13. 청구항 10에 있어서, 상기 컨택부는 메인 보드의 내부 회로와 전기적으로 연결된 전자기기.The electronic device of claim 10, wherein the contact unit is electrically connected to an internal circuit of the main board.
  14. 청구항 13에 있어서, 상기 브라켓은 적어도 일부가 도전성이고, 상기 상기 컨택부가 상기 브라켓과 접촉되며, 상기 브라켓이 상기 메인 보드의 내부 회로와 연결되는 전자기기.The electronic device of claim 13, wherein the bracket is at least partially conductive, the contact portion is in contact with the bracket, and the bracket is connected to an internal circuit of the main board.
PCT/KR2017/013465 2016-12-23 2017-11-24 Complex protective element and electronic device comprising same WO2018117447A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0178062 2016-12-23
KR1020160178062A KR101958775B1 (en) 2016-12-23 2016-12-23 Complex protection device and electronic device having the same

Publications (1)

Publication Number Publication Date
WO2018117447A1 true WO2018117447A1 (en) 2018-06-28

Family

ID=62626869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013465 WO2018117447A1 (en) 2016-12-23 2017-11-24 Complex protective element and electronic device comprising same

Country Status (2)

Country Link
KR (1) KR101958775B1 (en)
WO (1) WO2018117447A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106455B (en) * 2019-09-27 2022-12-20 法雷奥西门子新能源汽车(深圳)有限公司 Method for assembling an electrical device, electrical device and motor vehicle comprising such an electrical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106622A (en) * 2004-10-08 2006-04-20 Sumitomo Wiring Syst Ltd Liquid crystal display device and electronic apparatus with liquid crystal display function
JP2007227111A (en) * 2006-02-22 2007-09-06 Polymatech Co Ltd Connector sheet and portable electronic equipment
JP2008130758A (en) * 2006-11-20 2008-06-05 Nec Saitama Ltd Insulating structure and electronic equipment using the same
KR101585604B1 (en) * 2015-07-01 2016-01-14 주식회사 아모텍 Circuit protection contactor and mobile electronic device with the same
KR20160093563A (en) * 2015-01-29 2016-08-08 주식회사 아모텍 Mobile electronic device with circuit protection functionality

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876206B1 (en) 2007-04-11 2008-12-31 주식회사 이노칩테크놀로지 Circuit protection device and manufacturing method thereof
KR101978242B1 (en) * 2012-12-21 2019-05-14 삼성전자주식회사 Electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106622A (en) * 2004-10-08 2006-04-20 Sumitomo Wiring Syst Ltd Liquid crystal display device and electronic apparatus with liquid crystal display function
JP2007227111A (en) * 2006-02-22 2007-09-06 Polymatech Co Ltd Connector sheet and portable electronic equipment
JP2008130758A (en) * 2006-11-20 2008-06-05 Nec Saitama Ltd Insulating structure and electronic equipment using the same
KR20160093563A (en) * 2015-01-29 2016-08-08 주식회사 아모텍 Mobile electronic device with circuit protection functionality
KR101585604B1 (en) * 2015-07-01 2016-01-14 주식회사 아모텍 Circuit protection contactor and mobile electronic device with the same

Also Published As

Publication number Publication date
KR20180074204A (en) 2018-07-03
KR101958775B1 (en) 2019-03-18

Similar Documents

Publication Publication Date Title
WO2017003001A1 (en) Electric shock-preventing contactor and portable electronic device having same
WO2018105912A1 (en) Composite protection element and electronic device including same
WO2017209448A1 (en) Contactor
WO2018021786A1 (en) Complex device and electronic device having same
WO2018117447A1 (en) Complex protective element and electronic device comprising same
WO2018066871A1 (en) Complex protection device and electronic apparatus including same
WO2018182249A1 (en) Electric shock protection device, method for manufacturing same, and portable electronic device having same
WO2018203632A1 (en) Hybrid electric shock prevention device and portable electronic device having same
WO2019035559A1 (en) Composite device manufacturing method and composite device manufactured thereby
WO2017196151A1 (en) Contactor, and electronic device provided with same
WO2016178524A1 (en) Electric shock-prevention element and electronic device provided with same
WO2017135566A1 (en) Composite protection element and electronic device having same
WO2018084587A1 (en) Functional contactor
WO2016080623A1 (en) Electric shock protection device and portable electronic device having same
WO2018124535A1 (en) Complex device and electronic device having same
WO2017196150A1 (en) Contactor, and electronic device provided with same
WO2016178528A1 (en) Electric shock-prevention element and electronic device provided with same
WO2016178529A1 (en) Electric shock-prevention element and electronic device provided with same
WO2017196149A1 (en) Contactor, and electronic device provided with same
WO2020055139A1 (en) Method for producing composite device and composite device realized thereby
WO2017146517A1 (en) Functional contactor and portable electronic device comprising same
WO2019066221A1 (en) Stacked element and electronic device having same
WO2017074088A1 (en) Electric shock prevention apparatus
WO2016178533A1 (en) Electric shock-prevention element and electronic device provided with same
WO2019031738A1 (en) Complex-type electric shock prevention device and portable electronic device having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884319

Country of ref document: EP

Kind code of ref document: A1