WO2017135566A1 - Composite protection element and electronic device having same - Google Patents

Composite protection element and electronic device having same Download PDF

Info

Publication number
WO2017135566A1
WO2017135566A1 PCT/KR2016/014840 KR2016014840W WO2017135566A1 WO 2017135566 A1 WO2017135566 A1 WO 2017135566A1 KR 2016014840 W KR2016014840 W KR 2016014840W WO 2017135566 A1 WO2017135566 A1 WO 2017135566A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrodes
internal
dielectric layer
electrode
electrodes
Prior art date
Application number
PCT/KR2016/014840
Other languages
French (fr)
Korean (ko)
Inventor
조승훈
허성진
이동석
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Publication of WO2017135566A1 publication Critical patent/WO2017135566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations

Definitions

  • the present invention relates to a composite protection device, and more particularly, to a composite protection device capable of protecting an electronic device or a user from voltage and current.
  • the use of mobile communication terminal has evolved from the center of voice call to the convenience service of smartphone based life through data communication service.
  • various frequency bands are used according to the multifunctionalization of smart phones and the like. That is, a plurality of functions using different frequency bands, such as wireless LAN, Bluetooth, and GPS, are adopted in one smartphone.
  • the internal circuit density in a limited space is increased, and noise interference between the internal circuits is inevitably generated.
  • a plurality of circuit protection elements are used. For example, a capacitor, a chip bead, a common mode filter, and the like, which remove noise in different frequency bands, are used.
  • a shock current is generated by charging using a non-genuine charger or a poor charger using a low-quality device without built-in overcurrent protection circuit, and the shock current is conducted to the ground terminal of the smartphone, and again, a metal case The user who is in contact with the metal case may be electrocuted.
  • Varistors may be used to prevent such electric shocks.
  • Varistors have a very high nonlinear current-voltage characteristic, which protects the circuit in the event of transient voltages.
  • Varistors used as complex protection devices require breakdown voltages to be lower than the ESD voltage and higher than the electric shock voltage to protect the circuit from ESD voltages. That is, the breakdown voltage of the varistor must be lower than the ESD voltage and higher than the electric shock voltage, thereby blocking the electric shock voltage and bypassing the ESD voltage.
  • the thickness of the laminate sheet must be increased, in which case the capacitance is lowered.
  • the use of the composite protection device having a low capacitance may interfere with the RF signal, thereby reducing antenna sensitivity.
  • the commercial varistor composition (Bi-based, Pr-based) has a low dielectric constant of the material, it is difficult to implement a varistor for a composite protection device without high breakdown voltage and RF signal interference.
  • the present invention provides a composite protection device that is provided in an electronic device such as a smart phone and can prevent the electric shock of the user by the electric shock voltage input from the charger.
  • the present invention provides a composite protective device using a varistor.
  • the present invention provides a composite protection device capable of increasing the breakdown voltage and at the same time increasing the capacitance.
  • a composite protective device includes a laminate in which at least one sheet is laminated; A plurality of internal electrodes formed in the stack; A dielectric layer provided between at least two internal electrodes in the stack; And an external electrode formed on two opposite sides of the laminate and connected to the internal electrode, wherein the dielectric constant of the dielectric layer is higher than that of the laminate.
  • the dielectric constant of the dielectric layer is 2 to 300 times higher than that of the laminate.
  • the dielectric constant of the laminate is 20 to 600, and the dielectric constant of the dielectric layer is 100 to 3000.
  • the laminate is formed of a varistor material.
  • the dielectric layer is formed by printing on a selected sheet or formed into blocks.
  • An opening is formed in a selected sheet of the laminate and the dielectric layer is formed in the opening.
  • the dielectric layer and an inner electrode in contact with the dielectric layer form a capacitor portion, and an ESD protection portion is formed between the inner electrode of the capacitor portion and an inner electrode spaced therefrom.
  • the ESD protection part has a breakdown voltage higher than the electric shock voltage and lower than the ESD voltage.
  • the plurality of internal electrodes are formed to be spaced apart from each other by a predetermined interval in the thickness direction of the stack, and each of the internal electrodes is formed by alternately connecting one region with the first and second external electrodes and spaced from the other region.
  • first, second, and third internal electrodes spaced apart from each other, wherein the dielectric layer is partially exposed between the second and third internal electrodes, and a distance between the first and second internal electrodes is greater than the dielectric layer.
  • the distance between the second and third internal electrodes along the surface of is shorter, and the distance between the first and second internal electrodes is shorter than the distance between the first internal electrode and the external electrode spaced apart.
  • a first to fourth internal electrodes spaced apart from each other, the dielectric layer is formed between the third and fourth internal electrodes, an ESD protection part is formed between the first and second internal electrodes, and the first and second internal electrodes are formed.
  • the distance between the second internal electrodes is shorter than the distance between the third and fourth internal electrodes along the surface of the dielectric layer, and the distance between the first and second internal electrodes is spaced apart from the first and second internal electrodes. Shorter than the distance between the external electrodes.
  • a first to fourth internal electrode spaced apart from each other the first internal electrode including first and second internal electrodes having one end connected to the first and second external electrodes and the other end spaced apart from each other, and
  • the dielectric layer is formed between the third and fourth internal electrodes
  • an ESD protection part is formed between the first and second internal electrodes, and the distance between each of the first and first internal electrodes and the second internal electrode. The sum is shorter than the distance between the first and first internal electrodes, and the distance beam between the second internal electrode and the third and fourth internal electrodes is short.
  • At least one dielectric layer is formed between the at least two internal electrodes, and at least one conductive layer is formed between the internal electrode and the dielectric layer.
  • the distance to the conductive layer along the surface of the dielectric layer is longer than the distance between the internal electrodes.
  • At least a portion of the external electrode is formed by mixing glass and metal powder.
  • the inner electrode is formed to a thickness of 1 ⁇ m 10 ⁇ m
  • the outer electrode is formed to a thickness of 2 ⁇ m 100 ⁇ m.
  • the external electrode further includes a Ni plating layer and a Sn plating layer, wherein the Ni plating layer is formed to a thickness of 1 ⁇ m to 10 ⁇ m, and the Sn plating layer is formed to a thickness of 2 ⁇ m to 10 ⁇ m.
  • An electronic device is an electronic device including a conductor and an internal circuit that can be contacted by a user, the electronic device including a composite protection device provided between the conductor and the internal circuit, wherein the composite protection device is at least one A laminate in which sheets are stacked; A plurality of internal electrodes formed in the stack; A capacitor unit including a dielectric layer formed between at least two internal electrodes; And an ESD protection unit provided between the internal electrode of the capacitor unit and at least one internal electrode spaced apart from the internal electrode, wherein the dielectric constant of the dielectric layer is higher than the dielectric constant of the laminate, and the ESD protection unit is higher than the electric shock voltage and lower than the ESD voltage.
  • a breakdown voltage is provided between the internal circuit of the electronic device and the metal case to block the electric shock voltage and bypass the ESD voltage.
  • a dielectric layer having a second dielectric constant higher than the first dielectric constant is formed in the laminate having the first dielectric constant. Therefore, it is possible to increase the capacitance while increasing the breakdown voltage of the composite protective element. That is, in the composite protection device of the present invention, the capacitance does not decrease even when the breakdown voltage is increased, thereby blocking the electric shock voltage and bypassing the ESD voltage without interfering with the RF signal.
  • FIG. 1 is a perspective view of a composite protective device according to a first embodiment of the present invention.
  • FIG 2 and 3 are cross-sectional views of the composite protective device according to the first embodiment of the present invention.
  • 4 to 9 are cross-sectional views of the composite protective device according to the second to seventh embodiments of the present invention.
  • FIG. 1 is a perspective view of a composite protective device according to a first exemplary embodiment of the present invention
  • FIGS. 2 and 3 are cross-sectional views. That is, FIG. 2 is a cross-sectional view taken along one direction (X direction) of FIG. 1, and FIG. 3 is a cross-sectional view taken along another direction (Y direction) perpendicular to one direction.
  • the composite protection device includes a laminate 100 having a first dielectric constant, and a plurality of internal electrodes 210, 220, provided in the laminate 100. 230; 200, a dielectric layer 300 provided inside the laminate 100 and having a second dielectric constant higher than a first dielectric constant, and an external electrode provided outside the laminate 100 and connected to the internal electrode 200. 410, 420, and 400.
  • the ESD protection unit 1000 may be formed between at least two internal electrodes in the stack 100, for example, between the first and second internal electrodes 210 and 220, and the dielectric layer 300 may be interposed therebetween. At least two internal electrodes, for example, the second and third internal electrodes 220 and 230 may form the capacitor unit 2000.
  • the composite protection device includes an ESD protection part 1000 and a capacitor part 2000 having a higher dielectric constant than the ESD protection part 1000, and accordingly the capacitance ( capacitance) may increase.
  • a composite protective element of the present invention is provided, for example, between a metal case of an electronic device and an internal circuit. Therefore, the electric shock voltage transmitted through the internal circuit to the metal case can be cut off and the ESD voltage transmitted from the outside to the internal circuit through the metal case can be bypassed. That is, the composite protection device of the present invention functions as an electric shock prevention device provided in an electronic device to block an electric shock voltage, and functions as a circuit protection device for bypassing an ESD voltage.
  • the laminate 100 may be formed by stacking a plurality of sheets.
  • the sheet may have a substantially rectangular shape and may be provided in a plate shape having a predetermined thickness, and a plurality of such sheets may be stacked to form the laminate 100.
  • the laminate 100 may have a hexahedral shape, and as shown in FIG. 1, the length of one direction (for example, the X direction) is greater than the length of the other direction (for example, the Y direction) orthogonal thereto. Long, the height in the Z direction is shorter than the length in the X direction and may be produced in the shape of a cube that is shorter, equal to or longer than the length in the Y direction.
  • the plurality of sheets forming the laminate 100 may each have the same dielectric constant, for example, may have a dielectric constant of 10 to 600.
  • the plurality of sheets may have different dielectric constants, and each sheet may have 10 to 600 even when having different dielectric constants.
  • the sheet may be made of a material having varistor properties.
  • the sheet may be manufactured using Pr-based, Bi-based, or ST-based ceramic materials.
  • the laminate 100 may be formed using a material having diode characteristics. That is, the laminate 100 may be formed of a material having varistor characteristics or diode characteristics so that a current flows through the laminate 100 when a voltage equal to or higher than the breakdown voltage is applied.
  • the laminate 100 may have an outer surface coated with an insulating material, for example, a glassy material.
  • an insulating material for example, a glassy material.
  • the internal electrode 200 inside the stack 100 may be electrically connected to the external electrode 400.
  • a plurality of internal electrodes 210, 220, 230; 200 may be formed in the stack 100.
  • the first to third internal electrodes 210, 220, and 230 may be formed to be spaced apart from each other by the lower side of the stack 100.
  • the plurality of internal electrodes 200 may be formed of a conductive material.
  • the plurality of internal electrodes 200 may be formed of a metal or a metal alloy including at least one of Ag, Au, Pt, Pd, Ni, and Cu.
  • the internal electrode 200 may be formed to a thickness of 1 ⁇ m 10 ⁇ m.
  • first internal electrode 210 is connected to the first external electrode 410 and the other side is spaced apart from the second external electrode 420
  • the second internal electrode 220 has one side of the second external electrode ( 420, the other side of which is spaced apart from the first external electrode 410
  • the third internal electrode 230 has one side connected to the first external electrode 410 and the other side spaced apart from the second external electrode 420.
  • the plurality of internal electrodes 200 may be alternately connected to the first and second external electrodes 410 and 420 in the vertical direction and spaced apart from the external electrodes 400 in the other side.
  • the distance between the first and second internal electrodes 210 and 220 may be greater than the distance between the second and third internal electrodes 220 and 230.
  • At least one distance between the plurality of internal electrodes 200 may be different from at least one other.
  • An ESD protection part 1000 is formed between the first and second internal electrodes 210 and 220, and a dielectric layer 300 is provided between the second and third internal electrodes 220 and 230 to provide the capacitor part 2000. Can be formed.
  • the length in the horizontal direction of the first internal electrode 210 of the first and second external electrodes 410 and 420 is longer than the length in the horizontal direction of the second and third internal electrodes 220 and 230, and the first The width of the internal electrode 210 may be greater than or equal to the width of the second and third internal electrodes 220 and 230.
  • an area of the first internal electrode 210 may be larger than that of the second and third internal electrodes 220 and 230, and the second and third internal electrodes 220 and 230 may have the same area.
  • the length of the first internal electrode 210 may be longer than the distance between the first and second internal electrodes 210 and 220.
  • the first internal electrode 210 may be formed to have a length connected to the external electrode 400 while overlapping the dielectric layer 300. That is, the dielectric layer 300 is spaced apart from the external electrode 400 and is formed to have a predetermined length in the stack 100.
  • the first internal electrode 210 overlaps all the regions of the dielectric layer 300 and one side thereof is the first. It may be formed to a length connected to the external electrode 410.
  • the second and third internal electrodes 220 and 230 may be formed to be spaced apart from each other with the dielectric layer 300 interposed therebetween, and may be formed so that at least a portion thereof does not overlap the dielectric layer 300. That is, the second internal electrode 220 is connected to the second external electrode 420 to be formed in the direction of the first external electrode 410, that is, in the X direction, with a part overlapping the dielectric layer 300 and the other part of the dielectric layer ( It may not overlap with 300).
  • the third internal electrode 230 is connected to the first external electrode 410 and is formed in the direction of the second external electrode 420, that is, in the X direction, with a portion overlapping the dielectric layer 300 and a portion of the dielectric layer ( It may not overlap with 300).
  • the lower side of the dielectric layer 300 may be exposed by the second external electrode 220, the upper side thereof may be exposed by the third external electrode 230, and different regions may be exposed.
  • the exposed region of the dielectric layer 300 may be formed to have the same width on the second and third external electrodes 220 and 230.
  • a length of a region that does not overlap the dielectric layers 300 of the second and third internal electrodes 220 and 230, that is, between the second and third internal electrodes 220 and 230 through the exposed dielectric layer 300 may be used.
  • the shortest distance may be adjusted according to the distance between the first and second internal electrodes 210 and 220, and the distance between the first and second internal electrodes 210 and 220 may correspond to the second and third internal electrodes 220 and 220. It is formed to be shorter than the length of the region that does not overlap with the dielectric layer 300 of 230. That is, as shown in FIG.
  • the distance B between the first internal electrode 210 and the second internal electrode 220 passes through the dielectric layer 300 from the end of the third internal electrode 230 and passes through the second interior.
  • the distance A1 to the electrode 220 and the distance A2 from the end of the second internal electrode 220 to the third internal electrode 230 through the dielectric layer 300 may be shorter.
  • the widths of the second and third internal electrodes 220 and 230 may be smaller than the width of the dielectric layer 300. That is, as shown in FIG. 3, the second and third internal electrodes 220 and 230 are formed smaller than the width of the dielectric layer 300 at the center of the dielectric layer 300. In this case, as shown in FIG.
  • the distance B between the first internal electrode 210 and the second internal electrode 220 passes through the dielectric layer 300 from one end of the third internal electrode 230 and passes through the dielectric layer 300. Shorter than the distance A3 to one end of the internal electrode 220 and the distance A4 from the other end of the third internal electrode 230 to the other end of the second internal electrode 220 through the dielectric layer 300. Can be. That is, the ESD protection unit 1000 between the second internal electrode 220 and the first internal electrode 210 is not transmitted through the second and third internal electrodes 220 and 230 of the capacitor unit 2000. B may be formed shorter than A1 and A2 and A3 and A4 so as to be bypassed through).
  • the distance (C) from the end of the first internal electrode 210 to the external electrode 400 should be longer than B. This is to prevent the ESD voltage from being transferred from the external electrode 400 through the first internal electrode 210.
  • B should be shorter than A1, A2, A3, A4 and C. That is, since the ESD voltage is transmitted through the short conductive path, the distance between the ESD protection part 1000 and the capacitor part 2000 is equal to the dielectric layer of the capacitor part 2000 so that the ESD voltage is bypassed through the ESD protection part 1000. It should be shorter than the surface distance between 300 and internal electrodes 220, 230.
  • the interval between the first inner electrode 210 and the outer electrode 400 may be shorter than B, 50 ⁇ m or less, for example 10 ⁇ m-50 It may be formed in a micrometer.
  • the dielectric layer 300 may be formed to have a dielectric constant higher than that of the sheet of the laminate 100.
  • the dielectric layer 300 may have a dielectric constant 5 to 300 times higher than that of the sheet of the laminate 100.
  • the dielectric layer 300 may have a dielectric constant of 200 to 3000.
  • the dielectric layer 300 may be formed by a printing method, or after the predetermined region of the at least one sheet is removed, the dielectric layer 300 may be formed in a block shape.
  • the dielectric layer 300 may be formed by printing a material having a higher dielectric constant than the laminate 100 in the form of a paste.
  • the dielectric layer 300 is formed of a material including at least one of a dielectric material powder such as MLCC, BaTiO 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , Bi 2 O 3 , Zn0, Al 2 O 3 Can be.
  • a dielectric material powder such as MLCC, BaTiO 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , Bi 2 O 3 , Zn0, Al 2 O 3 Can be.
  • an opening having a predetermined size may be formed in the stack 100, and a block having a size corresponding to the opening may be formed and inserted into the opening.
  • the block may be formed by cutting the sheet to a predetermined thickness.
  • the dielectric layer 300 may be formed to a thickness of 1 ⁇ m or more, for example, may be formed to a thickness of 0.5% to 50% of the thickness of the laminate 100.
  • the dielectric layer 300 may be formed by forming an opening having a predetermined size in at least one sheet and then printing a dielectric paste in the opening. It may be. That is, the dielectric layer 300 may be printed on the surface of the sheet, or the dielectric layer 300 may be printed after the opening is formed in at least one sheet.
  • the dielectric layer 300 may be formed in an area of 25% to 85% of the area of the stack 100 in the horizontal direction of the stack 100.
  • the thickness when the dielectric layer 300 is formed using a material having a high dielectric constant, the thickness may be increased or the area may be reduced to increase the capacitance.
  • the dielectric layer 300 When the dielectric layer 300 is formed using a material having a low dielectric constant, the dielectric layer 300 may have a thin thickness or an area. Can be formed to increase the capacitance.
  • the capacitance increase effect of the composite protection device When the dielectric layer 300 is formed to have a thickness greater than or equal to the maximum value or less than the minimum value, the capacitance increase effect of the composite protection device may be insignificant, and when the dielectric layer 300 is formed to a thickness less than the minimum value, the capacitor portion 2000 of the composite protection device is formed. ) Is too thin to reduce the effect of blocking the short voltage, and if formed to exceed the maximum value of the area may cause a process failure such as cracks or delamination.
  • the external electrodes 410, 420 and 400 are provided on two opposite sides of the stack 100 to be selectively connected to the plurality of internal electrodes 200. That is, the external electrode 400 may include first and second external electrodes 410 and 420 formed on two side surfaces of the laminate 100 that face each other in the X direction.
  • the external electrode 400 may be formed of at least one layer.
  • the external electrode 400 may be formed of a metal layer such as Ag, and at least one plating layer may be formed on the metal layer.
  • the external electrode 400 may be formed by laminating a copper layer, a Ni plating layer, and a Sn plating layer.
  • the external electrode 400 may be formed by mixing, for example, glass frit having a multi-component glass frit containing 0.5% to 20% of Bi 2 O 3 or SiO 2 as a main component.
  • the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the laminate 100.
  • the adhesion between the external electrode 400 and the stack 100 may be improved, and the contact reaction between the internal electrode 200 and the external electrode 400 may be improved.
  • at least one plating layer may be formed on the upper portion thereof to form the external electrode 400.
  • the metal layer including the glass and at least one plating layer formed thereon may be formed to form the external electrode 400.
  • the external electrode 400 may sequentially form a Ni plating layer and a Sn plating layer through electrolytic or electroless plating after forming a layer including glass frit and at least one of Ag and Cu.
  • the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer.
  • the external electrode 400 may be formed to a thickness of 2 ⁇ m to 100 ⁇ m
  • the Ni plating layer may be formed to a thickness of 1 ⁇ m to 10 ⁇ m
  • the Sn plating layer may be formed to a thickness of 2 ⁇ m to 10 ⁇ m. .
  • the length L in one direction that is, the X direction is 0.3 mm to 1.1 mm
  • the width W in the other direction or the Y direction, orthogonal thereto is 0.15 mm to 0.55 mm. That is, the thickness in the Z direction may be 0.15 mm to 0.55 mm.
  • the composite protection element may have a length, a width, and a thickness of 0.9 mm to 1.1 mm, 0.45 mm to 0.55 mm, and 0.45 mm to 0.55 mm, respectively, 0.55 mm to 0.65 mm, 0.25 mm to 0.35 mm, and 0.25 mm, respectively.
  • the composite protective element may have a length: width: thickness ratio of 2 to 3: 1 to 2: 1 to 2.
  • the length ⁇ width ⁇ thickness may be 1.0 mm ⁇ 0.5 mm ⁇ 0.5 mm, 0.6 mm ⁇ 0.3 mm ⁇ 0.3 mm, and 0.4 mm ⁇ 0.2 mm ⁇ 0.2 mm.
  • the composite protection element may have a length: width: thickness ratio of 2: 1: 1.
  • the dimensions of these devices follow typical device specifications for SMT.
  • the composite protective element of the present invention may have a capacitance of 2 to 150 mA.
  • the dielectric layer 300 having a higher dielectric constant than the laminate 100 is formed in the laminate 100 formed of the varistor material.
  • the overall capacitance can be increased while realizing the high breakdown voltage of the composite protection element.
  • the rated voltage of the composite protection device may be, for example, 100V to 240V, and the breakdown voltage may be, for example, 320V or more.
  • the electric shock voltage may be equal to or higher than the operating voltage of the circuit, and the ESD voltage generated by external static electricity may be higher than the breakdown voltage.
  • the composite protection device of the present invention current does not flow between the first and second external electrodes 410 and 420 at a rated voltage and an electric shock voltage, and a current is passed through the ESD protection unit 1000 at an ESD voltage higher than the breakdown voltage. Flows and is bypassed. Therefore, the ESD voltage applied from the outside to the internal circuit through the metal case is bypassed through the composite protection element, and the electric shock voltage applied from the internal circuit to the metal case is blocked through the composite protection element. At this time, the RF signal flows through the capacitor unit 2000.
  • the thickness of the ESD protection part 1000 is smaller than the distance between the internal electrodes 220 and 230 and the dielectric layer 300 of the capacitor part 2000.
  • the short current according to the electric shock voltage flows through a short portion of the conductive layer in the composite protection device, and the thickness of the ESD protection part 1000 is greater than that of the internal electrodes 220 and 230 of the capacitor part 2000 and the dielectric layer ( The short current flows to the ESD protection part 1000 because it is shorter than the distance between 300.
  • the present invention can implement a high breakdown voltage without lowering the capacitance, and can function as a normal complex protection device by allowing the ESD voltage to be bypassed through the ESD protection unit 1000 even if the capacitance is increased.
  • the insulation resistance state can be maintained so that a leakage current does not flow when an electric shock voltage to the metal case is introduced from the internal circuit by the defective charger, and the ESD protection unit 1000 bypasses an ESD voltage higher than the electric shock voltage.
  • High insulation resistance can be maintained without breakage. Therefore, it is possible to continuously prevent the electric shock voltage provided in the defective charger provided to the user through the metal case of the electronic device to be provided in the electronic device having the metal case and not be destroyed by the ESD voltage.
  • the composite protection device of the present invention may be modified in various embodiments, and various embodiments of the present invention will be described below.
  • the content duplicated with the previous description will be omitted.
  • FIG. 4 is a cross-sectional view of a composite protection device according to a second embodiment of the present invention.
  • the composite protection device may include a stack 100 having a first dielectric constant and a plurality of internal electrodes 210, 220, 230; 200 provided in the stack 100. ), A dielectric layer 300 provided inside the laminate 100 and having a second dielectric constant higher than a first dielectric constant, and external electrodes 410 provided outside the laminate 100 and connected to the internal electrodes 200. 420; 400).
  • the dielectric layer 300 may be formed as a whole in the length direction of the first and second external electrodes 410 and 420. That is, the dielectric layer 300 may have one end connected to the first external electrode 410 and the other end connected to the second external electrode 420.
  • the dielectric layer 300 may be formed to the same size as the sheet constituting the laminate 100. That is, the dielectric layer 300 may be formed to have the same length as the laminate 100 in the X direction, and may be formed to have the same width or a different width as the laminate 100 in the Y direction. In this case, at least a portion of the dielectric layer 300 may not overlap the second and third internal electrodes 220 and 230. That is, the lower side of the dielectric layer 300 is in contact with one region of the stack 100 by the second internal electrode 220, and the upper side of the dielectric layer 300 is connected to the stack 100 by the third internal electrode 230.
  • the composite protection device includes the distance A1 and the second internal electrode 220 from the end of the third internal electrode 230 to the second external electrode 420 along the surface of the dielectric layer 300.
  • the distance A2 from the end of to the first external electrode 410 along the surface of the dielectric layer 300 is longer than the distance B between the first and second internal electrodes 210, 220.
  • the distance B between the first and second internal electrodes 210 and 220 is shorter than the distance C between the end of the first internal electrode 210 and the second external electrode 420.
  • the distance C between the first inner electrode 210 and the outer electrode 400 may be shorter than B, and may be 50 ⁇ m or less, for example, 10. It may be formed to a micrometer to 50 ⁇ m.
  • FIG. 5 is a cross-sectional view of a composite protection device according to a third embodiment of the present invention.
  • the composite protection device may include a laminate 100 having a first dielectric constant, and a plurality of internal electrodes 210 and 220 formed on the inside and the surface of the laminate 100. , 230, 240; 200, a dielectric layer 300 provided on the upper side of the stack 100 and having a second dielectric constant higher than the first permittivity, and disposed outside the stack 100, and having an internal electrode 200. It may include an external electrode (410, 420; 400) to be connected. That is, in the composite protection device according to the third embodiment of the present invention, the capacitor part 2000 may be formed on one surface of the laminate 100, for example, the upper surface, in the Z direction, that is, in the thickness direction.
  • the internal electrode 200 may include first to fourth internal electrodes 210, 220, 230, and 240.
  • the ESD protection unit 1000 may be disposed between the first and second internal electrodes 210 and 220.
  • the capacitor unit 2000 may be provided between the third and fourth internal electrodes 230 and 240.
  • the internal electrodes 210, 220, 230, and 240 may be provided in the stack 100, and a part thereof may be formed on the surface of the stack 100. That is, the first and second internal electrodes 210 and 220 are formed to be spaced apart from each other in the vertical direction by a predetermined interval in the stack 100, and are spaced apart from the second internal electrode 220 so as to form a third internal electrode on the upper portion thereof. 230 may be formed, and the fourth internal electrode 240 may be formed on the third internal electrode 230 and spaced apart from the third internal electrode 230. In this case, the fourth internal electrode 240 may be formed on the upper surface of the stack 100.
  • a cover layer (not shown) may be further formed on the fourth internal electrode 240 so that the fourth internal electrode 240 may not be exposed to the outside.
  • One side of the first internal electrode 210 is connected to the first external electrode 410, and the other side of the first internal electrode 210 is spaced apart from the second external electrode 420, and the second internal electrode 220 has one side of the second external electrode 410. And the other side is spaced apart from the first external electrode 420, and the third internal electrode 230 is connected at one side to the second external electrode 420 and the other side is spaced apart from the first external electrode 410.
  • the inner electrode 240 may have one side connected to the first external electrode 410 and the other side spaced apart from the second external electrode 420.
  • the ESD protection part 1000 may be formed between the first and second internal electrodes 210 and 220, and the capacitor part 2000 may be formed between the third and fourth internal electrodes 230 and 240.
  • the distance B between the first and second internal electrodes 210 and 220 is a distance A1 from the end of the fourth internal electrode 240 to the third internal electrode 230 through the dielectric layer 300.
  • the distance B between the first and second internal electrodes 210 and 220 is a distance C1 between the first internal electrode 210 and the second external electrode 420 and the second internal electrode 220.
  • C1 and C2 may be shorter than B, for example, may be formed to 10 ⁇ m ⁇ 50 ⁇ m.
  • the dielectric layer 300 may be formed in the longitudinal direction so as to be connected to the first and second external electrodes 410 and 420.
  • the area of the dielectric layer 300 may be smaller than the surface area of the laminate 100.
  • FIG. 6 is a cross-sectional view of a composite protection device according to a fourth embodiment of the present invention.
  • the composite protection device may be spaced apart from the laminate 100 having the first dielectric constant in a horizontal direction (that is, in the X direction) inside the laminate 100.
  • a third internal electrode 230 spaced apart from the second internal electrode 220 in a vertical direction
  • a fourth internal electrode 240 spaced apart from the third internal electrode 230 in a vertical direction.
  • a dielectric layer 300 having a second dielectric constant higher than the first dielectric constant is formed between the third and fourth internal electrodes 230 and 240 to form the capacitor part 2000, and to form the first and first internal electrodes 1a and 1b.
  • An ESD protection unit 1000 is formed between the 210a and 210b and the second internal electrode 220.
  • a portion of the fourth internal electrode 240 and the dielectric layer 300 may be formed on the surface of the stack 100.
  • a cover layer may be further formed on the fourth internal electrode 240, and thus the fourth internal electrode 240 may not be exposed.
  • the first and second internal electrodes 210a and 220b spaced apart from each other may be connected to the first and second external electrodes 410 and 420, respectively, and may be formed to be spaced apart from each other at a central portion inside the stack 100. . That is, the first internal electrode 210a is connected to the first external electrode 410 and the first internal electrode 210b is connected to the second external electrode 420. In this case, the separation distance D between the first and first internal electrodes 210a and 220b may be adjusted according to the length of the second internal electrode 220. The first and first internal electrodes 210a and 220b may be adjusted.
  • the separation distance D may be longer or shorter than the length of each of the first and first b internal electrodes 210a and 210b according to the length of the second internal electrode 220.
  • the sum of the distances B1 and B2 between each of the first and first internal electrodes 210a and 210b and the second internal electrode 220 spaced apart in the horizontal direction. (B1 + B2) is shorter than the separation distance D of the first and first internal electrodes 210a and 210b, and the third internal electrode 230 is formed through the dielectric layer 300 from the end of the fourth internal electrode 240. It may be shorter than the distance A1 and the distance A2 from the end of the third internal electrode 230 to the fourth internal electrode 240 through the dielectric layer 300.
  • B1 + B2 may be smaller than D, A1, and A2.
  • the sum B1 + B2 of the vertical distances B1 and B2 between each of the first and second internal electrodes 210a and 210b and the second internal electrode 220 spaced in the horizontal direction may correspond to the first a internal electrode ( The sum of the distance B1 between 210a and the second internal electrode 220 and the distance F between the third internal electrode 230 and the second internal electrode 220 corresponding to the distal end of the dielectric layer 300 ( B1 + F) and the third internal electrode 230 and the second internal electrode 220 corresponding to the distance B2 between the first internal electrode 210b and the second internal electrode 220 and the distal end of the dielectric layer 300.
  • B1 + B2 is smaller than B1 + F and B2 + E.
  • A1 and A2 may be the same length, and the length of E and F may be shorter than A1 and A2. Therefore, an electric shock voltage such as an ESD voltage flows between the first internal electrode 210a and the second internal electrode 220.
  • FIG. 7 is a cross-sectional view of a composite protection device according to a fifth embodiment of the present invention.
  • the composite protection device may include a stack 100 having a first dielectric constant and first and second gaps spaced apart from each other in a horizontal direction within the stack 100.
  • 1b internal electrodes 210a and 210b, and second internal electrodes 220 disposed to be spaced apart from the first and second internal electrodes 210a and 210b in the vertical direction, and spaced apart from the second internal electrodes 220 in the vertical direction.
  • the third internal electrode 230, the fourth internal electrode 240 provided to be spaced apart from the third internal electrode 230 in a vertical direction, and the third and fourth internal electrodes 230 and 240. It may include a dielectric layer 300 formed entirely in the longitudinal direction (ie, the X direction).
  • the sum of the distances B1 and B2 between the first and second internal electrodes 210a and 210b and the second internal electrode 220 spaced apart in the horizontal direction ( B1 + B2 is shorter than the separation distance D of the first and first internal electrodes 210a and 210b, and from the end of the fourth internal electrode 240 to the second external electrode 420 through the dielectric layer 300.
  • the distance A1 may be shorter than the distance A2 from the end of the third internal electrode 230 to the first external electrode 410 through the dielectric layer 300. That is, B1 + B2 may be smaller than D, A1, and A2.
  • the sum B1 + B2 of the vertical distances B1 and B2 between each of the first and second internal electrodes 210a and 210b and the second internal electrode 220 spaced in the horizontal direction may correspond to the first a internal electrode (
  • FIG. 8 is a cross-sectional view of a composite protective device according to a sixth embodiment of the present invention.
  • the composite protection device may include a stack 100 having a first dielectric constant, a plurality of internal electrodes 210, 220, 200 provided in the stack 100, A dielectric layer 300 provided inside the laminate 100 and having a second dielectric constant higher than a first dielectric constant, and external electrodes 410 and 420 provided outside the laminate 100 and connected to the internal electrodes 200; 400, and conductive layers 510, 520; 500 provided between the internal electrodes 210 and 220 and the dielectric layer 300.
  • the dielectric layer 300 may be formed in a length direction between the first and second external electrodes 410 and 420, and may be formed to have a predetermined thickness. In this case, the length of the dielectric layer 300 may be greater than the thickness, or the thickness may be greater than the length.
  • the first and second conductive layers 510 and 520 formed on and under the dielectric layer 300 may be formed to have a length shorter than the length of the dielectric layer 300.
  • the distance B between the first and second internal electrodes 210 and 220 is a distance I from the first conductive layer 510 to the second conductive layer 520 along the surface of the dielectric layer 300. Can be shorter.
  • the length and thickness of the dielectric layer 300 may be adjusted such that the distance I between the conductive layer 500 and the dielectric layer 300 is longer than the distance B between the internal electrodes 210 and 220.
  • the distance B between the first and second internal electrodes 210 and 220 may be a distance C1 between the first internal electrode 210 and the second external electrode 420 and the second internal electrode 220.
  • a distance C2 between the first external electrode 410 and the first external electrode 410 may be adjusted such that the distance I between the conductive layer 500 and the dielectric layer 300 is longer than the distance B between the internal electrodes 210 and 220.
  • the distance B between the first and second internal electrodes 210 and 220 may be a distance C1 between the first internal electrode 210 and the second external electrode 420 and the second internal electrode 220.
  • a distance C2 between the first external electrode 410 and the first external electrode 410 may be a distance C1 between the first internal electrode 210 and the second external electrode 420 and the second internal electrode 220.
  • FIG. 9 is a cross-sectional view of a composite protective device according to a seventh embodiment of the present invention.
  • the composite protection device may include a laminate 100 having a first dielectric constant, a plurality of internal electrodes 210, 220; 200 provided in the laminate 100, and
  • the dielectric layers 310, 320 and 300 provided inside the laminate 100 and having a second dielectric constant higher than the first dielectric constant and spaced apart by a predetermined interval in the horizontal direction are provided outside the laminate 100 and have internal electrodes 200.
  • the dielectric layers 310, 320; 300 may be formed in a length direction between the first and second external electrodes 410 and 420, and may be formed to have a predetermined thickness. In this case, the length of the dielectric layer 300 may be greater than the thickness.
  • the conductive layers 510, 520, 530, and 540 formed on and under the dielectric layer 300 may have a length shorter than that of the dielectric layer 300.
  • the distance B between the first and second internal electrodes 210 and 220 is a distance from the conductive layers 510 and 530 to the conductive layers 520 and 540 along the surfaces of the dielectric layers 310 and 320, respectively. It may be shorter than (I1, I2).
  • the distance B between the first and second internal electrodes 210 and 220 may be a distance C1 between the first internal electrode 210 and the second external electrode 420 and the second internal electrode 220. And a distance C2 between the first external electrode 410 and the first external electrode 410.

Abstract

The present invention provides a composite protection element comprising: a laminate; a plurality of inner electrodes formed in the laminate; a dielectric layer arranged between at least two inner electrodes in the laminate; and outer electrodes formed on two opposite side surfaces of the laminate and connected to the inner electrodes, wherein the dielectric layer has dielectric permittivity higher than that of the laminate.

Description

복합 보호 소자 및 이를 구비하는 전자기기Composite protection device and electronic device having same
본 발명은 복합 보호 소자에 관한 것으로, 특히 각종 전자기기에 마련되어 전압 및 전류로부터 전자기기 또는 사용자를 보호할 수 있는 복합 보호 소자에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite protection device, and more particularly, to a composite protection device capable of protecting an electronic device or a user from voltage and current.
이동통신 단말기의 이용은 과거 음성통화 중심에서 데이터 통신 서비스를 거쳐 스마트폰 기반의 생활편의 서비스로 진화되어 왔다. 또한, 스마트폰 등의 다기능화에 따라 다양한 주파수 대역이 사용되고 있다. 즉, 하나의 스마트폰 내에서 무선 LAN(wireless LAN), 블루투스(bluetooth), GPS 등 다른 주파수 대역을 이용하는 복수의 기능을 채용하게 되었다. 또한, 전자 기기의 고집적화에 따라 한정된 공간에서의 내부 회로 밀도가 높아지게 되고, 그에 따라 내부 회로 사이에 노이즈 간섭이 필연적으로 발생하게 된다. 휴대용 전자 기기의 다양한 주파수의 노이즈를 억제하고, 내부 회로 사이의 노이즈를 억제하기 위해 복수의 회로 보호 소자가 이용되고 있다. 예를 들어, 각각 서로 다른 주파수 대역의 노이즈를 제거하는 콘덴서, 칩 비드, 공통 모드 필터(common mode filter) 등이 이용되고 있다.The use of mobile communication terminal has evolved from the center of voice call to the convenience service of smartphone based life through data communication service. In addition, various frequency bands are used according to the multifunctionalization of smart phones and the like. That is, a plurality of functions using different frequency bands, such as wireless LAN, Bluetooth, and GPS, are adopted in one smartphone. In addition, due to the high integration of electronic devices, the internal circuit density in a limited space is increased, and noise interference between the internal circuits is inevitably generated. In order to suppress noise of various frequencies of a portable electronic device and to suppress noise between internal circuits, a plurality of circuit protection elements are used. For example, a capacitor, a chip bead, a common mode filter, and the like, which remove noise in different frequency bands, are used.
한편, 최근 들어 스마트폰의 고급스런 이미지와 내구성이 강조되면서 금속 소재를 이용한 단말기의 보급이 증가하고 있다. 즉, 테두리를 금속으로 제작하거나, 전면의 화면 표시부를 제외한 나머지 케이스를 금속으로 제작한 스마트폰의 보급이 증가하고 있다.On the other hand, in recent years, with the emphasis on luxury image and durability of smart phones, the spread of terminals using metal materials is increasing. In other words, the spread of smart phones, which are made of metal with the edges or with the case made of metal other than the front screen display unit, is increasing.
그런데, 금속 케이스를 이용한 스마트폰에 비정품 충전기를 이용한 충전 중 스마트폰을 이용하면 감전 사고가 발생할 수 있다. 즉, 과전류 보호 회로가 내장되지 않거나 저품질의 소자를 사용한 비정품 충전기 또는 불량 충전기를 이용하여 충전함으로써 쇼크 전류(Shock Current)가 발생되고, 이러한 쇼크 전류는 스마트폰의 그라운드 단자로 전도되고, 다시 금속 케이스로 전도되어 금속 케이스에 접촉된 사용자가 감전될 수 있다.However, using a smartphone during charging using a non-genuine charger in a smartphone using a metal case may cause an electric shock accident. That is, a shock current is generated by charging using a non-genuine charger or a poor charger using a low-quality device without built-in overcurrent protection circuit, and the shock current is conducted to the ground terminal of the smartphone, and again, a metal case The user who is in contact with the metal case may be electrocuted.
이러한 감전 방지를 위해 바리스터를 이용할 수 있다. 바리스터는 매우 높은 비선형성 전류전압 특성을 보이므로 과도 전압이 발생할 경우 회로를 보호하는 역할을 한다. 복합 보호 소자로 이용되는 바리스터는 ESD 전압에서 회로를 보호하기 위해 항복 전압(breakdown voltage)이 ESD 전압보다 낮은 동시에 감전 전압보다 높아야 한다. 즉, 바리스터의 항복 전압은 ESD 전압보다 낮고, 감전 전압보다 높아야 하며, 그에 따라 감전 전압을 차단하고 ESD 전압을 바이패스시킬 수 있다.Varistors may be used to prevent such electric shocks. Varistors have a very high nonlinear current-voltage characteristic, which protects the circuit in the event of transient voltages. Varistors used as complex protection devices require breakdown voltages to be lower than the ESD voltage and higher than the electric shock voltage to protect the circuit from ESD voltages. That is, the breakdown voltage of the varistor must be lower than the ESD voltage and higher than the electric shock voltage, thereby blocking the electric shock voltage and bypassing the ESD voltage.
한편, 바리스터의 높은 항복 전압을 구현하기 위해서는 적층체 시트의 두께가 증가되어야 하는데, 이 경우 캐패시턴스가 낮아지게 된다. 그러나, 전자기기의 메탈 케이스를 안테나로 이용하는 경우 캐패시턴스가 낮은 복합 보호 소자를 이용하게 되면 RF 신호에 간섭을 주게 되어 안테나 감도가 저하될 수 있다. 또한, 상용화 바리스터 조성(Bi계, Pr계)에서는 재료의 유전율이 낮아서 높은 항복 전압과 RF 신호 간섭이 없는 복합 보호 소자용 바리스터를 구현하기 어렵다.On the other hand, in order to realize the high breakdown voltage of the varistor, the thickness of the laminate sheet must be increased, in which case the capacitance is lowered. However, when the metal case of the electronic device is used as an antenna, the use of the composite protection device having a low capacitance may interfere with the RF signal, thereby reducing antenna sensitivity. In addition, the commercial varistor composition (Bi-based, Pr-based) has a low dielectric constant of the material, it is difficult to implement a varistor for a composite protection device without high breakdown voltage and RF signal interference.
(선행기술문헌)(Prior art document)
한국등록특허 제10-0876206호Korea Patent Registration No. 10-0876206
본 발명은 스마트폰 등의 전자기기 내에 마련되어 충전기로부터 입력되는 감전 전압에 의한 사용자의 감전을 방지할 수 있는 복합 보호 소자를 제공한다.The present invention provides a composite protection device that is provided in an electronic device such as a smart phone and can prevent the electric shock of the user by the electric shock voltage input from the charger.
본 발명은 바리스터를 이용한 복합 보호 소자를 제공한다.The present invention provides a composite protective device using a varistor.
본 발명은 항복 전압을 증가시키는 동시에 캐패시턴스를 증가시킬 수 있는 복합 보호 소자를 제공한다.The present invention provides a composite protection device capable of increasing the breakdown voltage and at the same time increasing the capacitance.
본 발명의 일 양태에 따른 복합 보호 소자는 적어도 하나의 시트가 적층된 적층체; 상기 적층체 내에 형성된 복수의 내부 전극; 상기 적층체 내의 적어도 두 내부 전극 사이에 마련된 유전층; 및 상기 적층체의 서로 대향되는 두 측면에 형성되며, 상기 내부 전극과 연결되는 외부 전극을 포함하며, 상기 유전층의 유전율이 상기 적층체의 유전율보다 높다.A composite protective device according to an aspect of the present invention includes a laminate in which at least one sheet is laminated; A plurality of internal electrodes formed in the stack; A dielectric layer provided between at least two internal electrodes in the stack; And an external electrode formed on two opposite sides of the laminate and connected to the internal electrode, wherein the dielectric constant of the dielectric layer is higher than that of the laminate.
상기 유전층의 유전율은 상기 적층체의 유전율보다 2배 내지 300배 높다.The dielectric constant of the dielectric layer is 2 to 300 times higher than that of the laminate.
상기 적층체의 유전율이 20 내지 600이고, 상기 유전층의 유전율은 100 내지 3000이다.The dielectric constant of the laminate is 20 to 600, and the dielectric constant of the dielectric layer is 100 to 3000.
상기 적층체는 바리스터 재료로 형성된다.The laminate is formed of a varistor material.
상기 유전층은 선택된 시트에 인쇄하여 형성되거나, 블록으로 형성된다.The dielectric layer is formed by printing on a selected sheet or formed into blocks.
상기 적층체의 선택된 시트에 개구가 형성되고 상기 유전층이 상기 개구 내에 형성된다.An opening is formed in a selected sheet of the laminate and the dielectric layer is formed in the opening.
상기 유전층과 이에 접하는 내부 전극이 캐패시터부를 이루고, 상기 캐패시터부의 내부 전극과 이로부터 이격된 내부 전극 사이가 ESD 보호부를 이룬다.The dielectric layer and an inner electrode in contact with the dielectric layer form a capacitor portion, and an ESD protection portion is formed between the inner electrode of the capacitor portion and an inner electrode spaced therefrom.
상기 ESD 보호부는 감전 전압보다 높고 ESD 전압보다 낮은 항복 전압을 갖는다.The ESD protection part has a breakdown voltage higher than the electric shock voltage and lower than the ESD voltage.
상기 복수의 내부 전극은 상기 적층체의 두께 방향으로 소정 간격 이격되어 형성되며, 상기 내부 전극 각각은 일 영역이 제 1 및 제 2 외부 전극과 교대로 연결되고 타 영역이 이격되어 형성된다.The plurality of internal electrodes are formed to be spaced apart from each other by a predetermined interval in the thickness direction of the stack, and each of the internal electrodes is formed by alternately connecting one region with the first and second external electrodes and spaced from the other region.
서로 이격된 제 1, 제 2 및 제 3 내부 전극을 포함하고, 상기 제 2 및 제 3 내부 전극 사이에 상기 유전층이 일부 노출되도록 형성되며, 상기 제 1 및 제 2 내부 전극 사이의 거리가 상기 유전층의 표면을 따르는 상기 제 2 및 제 3 내부 전극 사이의 거리보다 짧고, 제 1 및 제 2 내부 전극 사이의 거리가 상기 제 1 내부 전극과 이격된 상기 외부 전극 사이의 거리보다 짧다.And first, second, and third internal electrodes spaced apart from each other, wherein the dielectric layer is partially exposed between the second and third internal electrodes, and a distance between the first and second internal electrodes is greater than the dielectric layer. The distance between the second and third internal electrodes along the surface of is shorter, and the distance between the first and second internal electrodes is shorter than the distance between the first internal electrode and the external electrode spaced apart.
서로 이격된 제 1 내지 제 4 내부 전극을 포함하고, 상기 제 3 및 제 4 내부 전극 사이에 상기 유전층이 형성되며, 상기 제 1 및 제 2 내부 전극 사이에 ESD 보호부가 형성되며, 상기 제 1 및 제 2 내부 전극 사이의 거리가 상기 유전층의 표면을 따르는 상기 제 3 및 제 4 내부 전극 사이의 거리보다 짧고, 제 1 및 제 2 내부 전극 사이의 거리가 상기 제 1 및 제 2 내부 전극과 이격된 상기 외부 전극 사이의 거리보다 짧다.A first to fourth internal electrodes spaced apart from each other, the dielectric layer is formed between the third and fourth internal electrodes, an ESD protection part is formed between the first and second internal electrodes, and the first and second internal electrodes are formed. The distance between the second internal electrodes is shorter than the distance between the third and fourth internal electrodes along the surface of the dielectric layer, and the distance between the first and second internal electrodes is spaced apart from the first and second internal electrodes. Shorter than the distance between the external electrodes.
서로 이격된 제 1 내지 제 4 내부 전극을 포함하고, 상기 제 1 내부 전극은 일단이 제 1 및 제 2 외부 전극과 각각 연결되고 타단이 서로 이격된 제 1a 및 제 1b 내부 전극을 포함하며, 상기 제 3 및 제 4 내부 전극 사이에 상기 유전층이 형성되고, 상기 제 1 및 제 2 내부 전극 사이에 ESD 보호부가 형성되며, 상기 제 1a 및 제 1b 내부 전극 각각과 상기 제 2 내부 전극 사이의 거리의 합이 상기 제 1a 및 제 1b 내부 전극 사이의 거리보다 짧고, 상기 제 2 내부 전극과 상기 제 3 및 제 4 내부 전극 사이의 거리보가 짧다.A first to fourth internal electrode spaced apart from each other, the first internal electrode including first and second internal electrodes having one end connected to the first and second external electrodes and the other end spaced apart from each other, and The dielectric layer is formed between the third and fourth internal electrodes, an ESD protection part is formed between the first and second internal electrodes, and the distance between each of the first and first internal electrodes and the second internal electrode. The sum is shorter than the distance between the first and first internal electrodes, and the distance beam between the second internal electrode and the third and fourth internal electrodes is short.
상기 적어도 둘 이상의 내부 전극 사이에 적어도 하나의 유전층이 형성되고, 상기 내부 전극과 상기 유전층 사이에 적어도 하나의 도전층이 형성된다.At least one dielectric layer is formed between the at least two internal electrodes, and at least one conductive layer is formed between the internal electrode and the dielectric layer.
상기 유전층의 표면을 따라 상기 도전층까지의 거리가 상기 내부 전극 사이의 거리보다 길다.The distance to the conductive layer along the surface of the dielectric layer is longer than the distance between the internal electrodes.
상기 외부 전극은 적어도 일부가 글래스와 금속 분말이 혼합되어 형성된다.At least a portion of the external electrode is formed by mixing glass and metal powder.
상기 내부 전극은 1㎛ 내지 10㎛의 두께로 형성되고, 상기 외부 전극은 2㎛ 내지 100㎛의 두께로 형성된다.The inner electrode is formed to a thickness of 1㎛ 10㎛, the outer electrode is formed to a thickness of 2 100㎛.
상기 외부 전극은 Ni 도금층 및 Sn 도금층을 더 포함하고, 상기 Ni 도금층은 1㎛ 내지 10㎛의 두께로 형성되고, 상기 Sn 도금층은 2㎛ 내지 10㎛의 두께로 형성된다.The external electrode further includes a Ni plating layer and a Sn plating layer, wherein the Ni plating layer is formed to a thickness of 1 μm to 10 μm, and the Sn plating layer is formed to a thickness of 2 μm to 10 μm.
본 발명의 다른 양태에 따른 전자기기는 사용자가 접촉 가능한 도전체와 내부 회로를 포함하는 전자기기로서, 상기 도전체와 내부 회로 사이에 마련된 복합 보호 소자를 포함하고, 상기 복합 보호 소자는 적어도 하나의 시트가 적층된 적층체; 상기 적층체 내에 형성된 복수의 내부 전극; 적어도 두 내부 전극 사이에 형성된 유전층을 포함하는 캐패시터부; 및 상기 캐패시터부의 내부 전극과 이로부터 이격된 적어도 하나의 내부 전극 사이에 마련된 ESD 보호부를 포함하며, 상기 유전층의 유전율은 상기 적층체의 유전율보다 높고, 상기 ESD 보호부는 감전 전압보다 높고 ESD 전압보다 낮은 항복 전압을 가지며, 전자기기의 내부 회로와 금속 케이스 사이에 마련되어 상기 감전 전압을 차단하고, 상기 ESD 전압을 바이패스시킨다.An electronic device according to another aspect of the present invention is an electronic device including a conductor and an internal circuit that can be contacted by a user, the electronic device including a composite protection device provided between the conductor and the internal circuit, wherein the composite protection device is at least one A laminate in which sheets are stacked; A plurality of internal electrodes formed in the stack; A capacitor unit including a dielectric layer formed between at least two internal electrodes; And an ESD protection unit provided between the internal electrode of the capacitor unit and at least one internal electrode spaced apart from the internal electrode, wherein the dielectric constant of the dielectric layer is higher than the dielectric constant of the laminate, and the ESD protection unit is higher than the electric shock voltage and lower than the ESD voltage. A breakdown voltage is provided between the internal circuit of the electronic device and the metal case to block the electric shock voltage and bypass the ESD voltage.
본 발명의 실시 예들에 따른 복합 보호 소자는 제 1 유전율을 갖는 적층체 내에 제 1 유전율보다 높은 제 2 유전율을 갖는 유전층이 형성된다. 따라서, 복합 보호 소자의 항복 전압을 증가시키면서 캐패시턴스를 증가시킬 수 있다. 즉, 본 발명의 복합 보호 소자는 항복 전압이 증가하더라도 캐패시턴스가 저하되지 않으며, 그에 따라 RF 신호에 간섭되지 않으면서 감전 전압을 차단하고 ESD 전압을 바이패스시킬 수 있다.In the composite protection device according to the embodiments of the present invention, a dielectric layer having a second dielectric constant higher than the first dielectric constant is formed in the laminate having the first dielectric constant. Therefore, it is possible to increase the capacitance while increasing the breakdown voltage of the composite protective element. That is, in the composite protection device of the present invention, the capacitance does not decrease even when the breakdown voltage is increased, thereby blocking the electric shock voltage and bypassing the ESD voltage without interfering with the RF signal.
도 1은 본 발명의 제 1 실시 예에 따른 복합 보호 소자의 사시도.1 is a perspective view of a composite protective device according to a first embodiment of the present invention.
도 2 및 도 3은 본 발명의 제 1 실시 예에 따른 복합 보호 소자의 단면도.2 and 3 are cross-sectional views of the composite protective device according to the first embodiment of the present invention.
도 4 내지 도 9는 본 발명의 제 2 내지 제 7 실시 예에 따른 복합 보호 소자의 단면도.4 to 9 are cross-sectional views of the composite protective device according to the second to seventh embodiments of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information.
도 1은 본 발명의 제 1 실시 예에 따른 복합 보호 소자의 사시도이고, 도 2 및 도 3은 단면도이다. 즉, 도 2는 도 1의 일 방향(X 방향)을 따라 절단한 단면도이고, 도 3은 일 방향과 직교하는 타 방향(Y 방향)을 따라 절단한 단면도이다.1 is a perspective view of a composite protective device according to a first exemplary embodiment of the present invention, and FIGS. 2 and 3 are cross-sectional views. That is, FIG. 2 is a cross-sectional view taken along one direction (X direction) of FIG. 1, and FIG. 3 is a cross-sectional view taken along another direction (Y direction) perpendicular to one direction.
도 1 내지 도 3을 참조하면, 본 발명의 제 1 실시 예에 따른 복합 보호 소자는 제 1 유전율을 갖는 적층체(100)와, 적층체(100) 내에 마련된 복수의 내부 전극(210, 220, 230; 200)과, 적층체(100) 내부에 마련되며 제 1 유전율보다 높은 제 2 유전율을 갖는 유전층(300)과, 적층체(100)의 외부에 마련되어 내부 전극(200)과 연결되는 외부 전극(410, 420; 400)을 포함할 수 있다. 여기서, 적층체(100) 내의 적어도 두개의 내부 전극 사이, 예를 들어 제 1 및 제 2 내부 전극(210, 220) 사이에 ESD 보호부(1000)가 형성될 수 있고, 유전층(300)을 사이에 두고 적어도 두개의 내부 전극, 예를 들어 제 2 및 제 3 내부 전극(220, 230)이 캐패시터부(2000)를 이룰 수 있다. 즉, 본 발명의 일 실시 예에 따른 복합 보호 소자는 ESD 보호부(1000)와, ESD 보호부(1000)보다 높은 유전율을 갖는 캐패시터부(2000)를 포함하고, 그에 따라 복합 보호 소자의 캐패시턴스(capacitance)가 증가할 수 있다. 이러한 본 발명의 복합 보호 소자는 예를 들어 전자기기의 금속 케이스와 내부 회로 사이에 마련된다. 따라서, 내부 회로를 통해 금속 케이스로 전달되는 감전 전압은 차단하고 외부로부터 금속 케이스를 통해 내부 회로로 전달되는 ESD 전압을 바이패스시킬 수 있다. 즉, 본 발명의 복합 보호 소자는 전자기기 내에 마련되어 감전 전압을 차단하는 감전 방지 소자의 기능을 하며, ESD 전압을 바이패스시키는 회로 보호 소자의 기능을 한다.1 to 3, the composite protection device according to the first embodiment of the present invention includes a laminate 100 having a first dielectric constant, and a plurality of internal electrodes 210, 220, provided in the laminate 100. 230; 200, a dielectric layer 300 provided inside the laminate 100 and having a second dielectric constant higher than a first dielectric constant, and an external electrode provided outside the laminate 100 and connected to the internal electrode 200. 410, 420, and 400. Here, the ESD protection unit 1000 may be formed between at least two internal electrodes in the stack 100, for example, between the first and second internal electrodes 210 and 220, and the dielectric layer 300 may be interposed therebetween. At least two internal electrodes, for example, the second and third internal electrodes 220 and 230 may form the capacitor unit 2000. That is, the composite protection device according to an embodiment of the present invention includes an ESD protection part 1000 and a capacitor part 2000 having a higher dielectric constant than the ESD protection part 1000, and accordingly the capacitance ( capacitance) may increase. Such a composite protective element of the present invention is provided, for example, between a metal case of an electronic device and an internal circuit. Therefore, the electric shock voltage transmitted through the internal circuit to the metal case can be cut off and the ESD voltage transmitted from the outside to the internal circuit through the metal case can be bypassed. That is, the composite protection device of the present invention functions as an electric shock prevention device provided in an electronic device to block an electric shock voltage, and functions as a circuit protection device for bypassing an ESD voltage.
적층체(100)는 복수의 시트가 적층되어 형성될 수 있다. 시트는 대략 사각형의 형상을 갖고 소정의 두께를 갖는 판 형상으로 마련될 수 있고, 이러한 시트가 복수 적층되어 적층체(100)를 형성할 수 있다. 따라서, 적층체(100)는 육면체의 형상을 가질 수 있으며, 도 1에 도시된 바와 같이 일 방향(예를 들어 X 방향)의 길이가 이와 직교하는 타 방향(예를 들어 Y 방향)의 길이보다 길고, Z 방향으로의 높이가 X 방향의 길이보다 짧고 Y 방향의 길이보다 짧거나 같거나 긴 육면체 형상으로 제작될 수 있다. 한편, 적층체(100)를 형성하는 복수의 시트는 각각 동일 유전율을 가질 수 있는데, 예를 들어 10 내지 600의 유전율을 가질 수 있다. 물론, 복수의 시트가 서로 다른 유전율을 가질 수도 있는데, 서로 다른 유전율을 가질 경우에도 각각의 시트는 10 내지 600을 가질 수 있다. 여기서, 시트는 바리스터 특성을 가지는 재료로 제작될 수 있다. 예를 들어, Pr계, Bi계, ST계 세라믹 물질을 이용하여 시트가 제작될 수 있다. 한편, 적층체(100)는 다이오드 특성을 갖는 물질을 이용하여 형성할 수도 있다. 즉, 항복 전압 이상의 전압이 인가될 때 적층체(100)를 통해 전류가 흐를 수 있도록 적층체(100)는 바리스터 특성 또는 다이오드 특성을 갖는 물질로 형성될 수 있다. 또한, 적층체(100)는 외부 표면이 절연 물질, 예를 들어 유리질 물질로 코팅될 수 있다. 이때, 적층체(100) 외부에 절연 물질이 코팅되더라도 적층체(100) 내부의 내부 전극(200)은 외부 전극(400)과 전기적으로 연결될 수 있다. The laminate 100 may be formed by stacking a plurality of sheets. The sheet may have a substantially rectangular shape and may be provided in a plate shape having a predetermined thickness, and a plurality of such sheets may be stacked to form the laminate 100. Accordingly, the laminate 100 may have a hexahedral shape, and as shown in FIG. 1, the length of one direction (for example, the X direction) is greater than the length of the other direction (for example, the Y direction) orthogonal thereto. Long, the height in the Z direction is shorter than the length in the X direction and may be produced in the shape of a cube that is shorter, equal to or longer than the length in the Y direction. On the other hand, the plurality of sheets forming the laminate 100 may each have the same dielectric constant, for example, may have a dielectric constant of 10 to 600. Of course, the plurality of sheets may have different dielectric constants, and each sheet may have 10 to 600 even when having different dielectric constants. Here, the sheet may be made of a material having varistor properties. For example, the sheet may be manufactured using Pr-based, Bi-based, or ST-based ceramic materials. The laminate 100 may be formed using a material having diode characteristics. That is, the laminate 100 may be formed of a material having varistor characteristics or diode characteristics so that a current flows through the laminate 100 when a voltage equal to or higher than the breakdown voltage is applied. In addition, the laminate 100 may have an outer surface coated with an insulating material, for example, a glassy material. In this case, even when an insulating material is coated on the outside of the stack 100, the internal electrode 200 inside the stack 100 may be electrically connected to the external electrode 400.
복수의 내부 전극(210, 220, 230; 200)은 적층체(100) 내에 형성될 수 있다. 예를 들어, 적층체(100)의 하측으로부터 제 1 내지 제 3 내부 전극(210, 220, 230)이 소정 간격 이격되어 형성될 수 있다. 이러한 복수의 내부 전극(200)은 도전성 물질로 형성될 수 있는데, 예를 들어 Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 또한, 내부 전극(200)은 1㎛∼10㎛의 두께로 형성될 수 있다. 여기서, 제 1 내부 전극(210)은 일측이 제 1 외부 전극(410)과 연결되고 타측이 제 2 외부 전극(420)과 이격되며, 제 2 내부 전극(220)은 일측이 제 2 외부 전극(420)과 연결되고 타측이 제 1 외부 전극(410)과 이격되며, 제 3 내부 전극(230)은 일측이 제 1 외부 전극(410)과 연결되고 타측이 제 2 외부 전극(420)과 이격될 수 있다. 즉, 복수의 내부 전극(200)은 수직 방향으로 일측이 제 1 및 제 2 외부 전극(410, 420)과 교대로 연결되고 타측은 외부 전극(400)과 이격될 수 있다. 그리고, 제 1 및 제 2 내부 전극(210, 220) 사이의 거리가 제 2 및 제 3 내부 전극(220, 230) 사이의 거리보다 클 수 있다. 즉, 복수의 내부 전극(200) 사이의 거리는 적어도 하나가 다른 적어도 하나와 서로 다를 수 있다. 이러한 제 1 및 제 2 내부 전극(210, 220) 사이에 ESD 보호부(1000)가 형성되고, 제 2 및 제 3 내부 전극(220, 230) 사이에 유전층(300)이 마련되어 캐패시터부(2000)가 형성될 수 있다. 또한, 제 1 및 제 2 외부 전극(410, 420)의 제 1 내부 전극(210)의 수평 방향의 길이가 제 2 및 제 3 내부 전극(220, 230)의 수평 방향의 길이보다 길고, 제 1 내부 전극(210)의 너비가 제 2 및 제 3 내부 전극(220, 230)의 너비보다 크거나 같을 수 있다. 이에 따라, 제 1 내부 전극(210)의 면적이 제 2 및 제 3 내부 전극(220, 230)의 면적보다 크고, 제 2 및 제 3 내부 전극(220, 230)은 동일 면적을 가질 수 있다. 또한, 제 1 내부 전극(210)의 길이는 제 1 및 제 2 내부 전극(210, 220) 사이의 거리보다 길 수 있다. 이때, 제 1 내부 전극(210)은 유전층(300)과 중첩되면서 외부 전극(400)과 연결되는 길이로 형성될 수 있다. 즉, 유전층(300)은 외부 전극(400)과 이격되어 적층체(100) 내에 소정의 길이로 형성되는데, 제 1 내부 전극(210)은 유전층(300)의 모든 영역과 중첩되고 일측이 제 1 외부 전극(410)과 연결되는 길이로 형성될 수 있다. 한편, 제 2 및 제 3 내부 전극(220, 230)은 유전층(300)을 사이에 두고 이격되어 형성되며, 적어도 일부가 유전층(300)과 중첩되지 않도록 형성될 수 있다. 즉, 제 2 내부 전극(220)은 제 2 외부 전극(420)과 연결되어 제 1 외부 전극(410) 방향, 즉 X 방향으로 형성되는데, 일부가 유전층(300)과 중첩되고 나머지 일부가 유전층(300)과 중첩되지 않을 수 있다. 또한, 제 3 내부 전극(230)은 제 1 외부 전극(410)과 연결되어 제 2 외부 전극(420) 방향, 즉 X 방향으로 형성되는데, 일부가 유전층(300)과 중첩되고 나머지 일부가 유전층(300)과 중첩되지 않을 수 있다. 따라서, 유전층(300)은 하측이 제 2 외부 전극(220)에 의해 노출되고, 상측이 제 3 외부 전극(230)에 의해 노출되며, 서로 다른 영역이 노출될 수 있다. 또한, 유전층(300)의 노출 영역은 제 2 및 제 3 외부 전극(220, 230)에 동일한 폭으로 형성될 수 있다. 이때, 제 2 및 제 3 내부 전극(220, 230)의 유전층(300)과 중첩되지 않는 영역의 길이, 즉 노출된 유전층(300)을 통한 제 2 및 제 3 내부 전극(220, 230) 사이의 최단 거리는 제 1 및 제 2 내부 전극(210, 220) 사이의 거리에 따라 조절될 수 있는데, 제 1 및 제 2 내부 전극(210, 220) 사이의 거리가 제 2 및 제 3 내부 전극(220, 230)의 유전층(300)과 중첩되지 않는 영역의 길이보다 짧도록 형성된다. 즉, 도 2에 도시된 바와 같이 제 1 내부 전극(210)과 제 2 내부 전극(220) 사이의 거리(B)가 제 3 내부 전극(230)의 말단으로부터 유전층(300)을 지나 제 2 내부 전극(220)까지의 거리(A1) 및 제 2 내부 전극(220)의 말단으로부터 유전층(300)을 지나 제 3 내부 전극(230)까지의 거리(A2)보다 짧게 형성될 수 있다. 또한, 제 2 및 제 3 내부 전극(220, 230)의 폭은 유전층(300)의 폭보다 작을 수 있다. 즉, 도 3에 도시된 바와 같이 제 2 및 제 3 내부 전극(220, 230)은 유전층(300)의 중앙부에 유전층(300)의 폭보다 작게 형성된다. 이때, 도 3에 도시된 바와 같이 제 1 내부 전극(210)과 제 2 내부 전극(220) 사이의 거리(B)가 제 3 내부 전극(230)의 일측 말단으로부터 유전층(300)을 지나 제 2 내부 전극(220) 일측 말단까지의 거리(A3) 및 제 3 내부 전극(230)의 타측 말단으로부터 유전층(300)을 지나 제 2 내부 전극(220)의 타측 말단까지의 거리(A4)보다 짧게 형성될 수 있다. 즉, ESD 전압이 캐패시터부(2000)의 제 2 및 제 3 내부 전극(220, 230)을 통해 전달되지 않고 제 2 내부 전극(220)과 제 1 내부 전극(210) 사이의 ESD 보호부(1000)를 통해 바이패스되도록 B가 A1 및 A2, 그리고 A3 및 A4보다 짧게 형성될 수 있다. 또한, 제 1 내부 전극(210)의 말단으로부터 외부 전극(400)까지의 거리(C)가 B보다 길어야 한다. 이는 ESD 전압이 외부 전극(400)으로부터 제 1 내부 전극(210)을 통해 전달되는 것을 방지하기 위함이다. 결국, B는 A1, A2, A3, A4 및 C보다 짧아야 한다. 즉, ESD 전압이 짧은 도전 경로를 통해 전달되므로 ESD 전압이 ESD 보호부(1000)를 통해 바이패스되도록 하기 위해 ESD 보호부(1000)와 캐패시터부(2000) 사이의 거리는 캐패시터부(2000)의 유전층(300)과 내부 전극(220, 230) 사이의 표면 거리보다 짧아야 한다. 한편, 적층체(100)의 외부 표면이 절연 물질로 코팅되는 경우 제 1 내부 전극(210)과 외부 전극(400) 사이의 간격은 B보다 짧아도 되며, 50㎛ 이하, 예를 들어 10㎛∼50㎛로 형성될 수 있다.A plurality of internal electrodes 210, 220, 230; 200 may be formed in the stack 100. For example, the first to third internal electrodes 210, 220, and 230 may be formed to be spaced apart from each other by the lower side of the stack 100. The plurality of internal electrodes 200 may be formed of a conductive material. For example, the plurality of internal electrodes 200 may be formed of a metal or a metal alloy including at least one of Ag, Au, Pt, Pd, Ni, and Cu. In addition, the internal electrode 200 may be formed to a thickness of 1㎛ 10㎛. Here, one side of the first internal electrode 210 is connected to the first external electrode 410 and the other side is spaced apart from the second external electrode 420, and the second internal electrode 220 has one side of the second external electrode ( 420, the other side of which is spaced apart from the first external electrode 410, and the third internal electrode 230 has one side connected to the first external electrode 410 and the other side spaced apart from the second external electrode 420. Can be. That is, the plurality of internal electrodes 200 may be alternately connected to the first and second external electrodes 410 and 420 in the vertical direction and spaced apart from the external electrodes 400 in the other side. The distance between the first and second internal electrodes 210 and 220 may be greater than the distance between the second and third internal electrodes 220 and 230. That is, at least one distance between the plurality of internal electrodes 200 may be different from at least one other. An ESD protection part 1000 is formed between the first and second internal electrodes 210 and 220, and a dielectric layer 300 is provided between the second and third internal electrodes 220 and 230 to provide the capacitor part 2000. Can be formed. In addition, the length in the horizontal direction of the first internal electrode 210 of the first and second external electrodes 410 and 420 is longer than the length in the horizontal direction of the second and third internal electrodes 220 and 230, and the first The width of the internal electrode 210 may be greater than or equal to the width of the second and third internal electrodes 220 and 230. Accordingly, an area of the first internal electrode 210 may be larger than that of the second and third internal electrodes 220 and 230, and the second and third internal electrodes 220 and 230 may have the same area. In addition, the length of the first internal electrode 210 may be longer than the distance between the first and second internal electrodes 210 and 220. In this case, the first internal electrode 210 may be formed to have a length connected to the external electrode 400 while overlapping the dielectric layer 300. That is, the dielectric layer 300 is spaced apart from the external electrode 400 and is formed to have a predetermined length in the stack 100. The first internal electrode 210 overlaps all the regions of the dielectric layer 300 and one side thereof is the first. It may be formed to a length connected to the external electrode 410. Meanwhile, the second and third internal electrodes 220 and 230 may be formed to be spaced apart from each other with the dielectric layer 300 interposed therebetween, and may be formed so that at least a portion thereof does not overlap the dielectric layer 300. That is, the second internal electrode 220 is connected to the second external electrode 420 to be formed in the direction of the first external electrode 410, that is, in the X direction, with a part overlapping the dielectric layer 300 and the other part of the dielectric layer ( It may not overlap with 300). In addition, the third internal electrode 230 is connected to the first external electrode 410 and is formed in the direction of the second external electrode 420, that is, in the X direction, with a portion overlapping the dielectric layer 300 and a portion of the dielectric layer ( It may not overlap with 300). Thus, the lower side of the dielectric layer 300 may be exposed by the second external electrode 220, the upper side thereof may be exposed by the third external electrode 230, and different regions may be exposed. In addition, the exposed region of the dielectric layer 300 may be formed to have the same width on the second and third external electrodes 220 and 230. In this case, a length of a region that does not overlap the dielectric layers 300 of the second and third internal electrodes 220 and 230, that is, between the second and third internal electrodes 220 and 230 through the exposed dielectric layer 300, may be used. The shortest distance may be adjusted according to the distance between the first and second internal electrodes 210 and 220, and the distance between the first and second internal electrodes 210 and 220 may correspond to the second and third internal electrodes 220 and 220. It is formed to be shorter than the length of the region that does not overlap with the dielectric layer 300 of 230. That is, as shown in FIG. 2, the distance B between the first internal electrode 210 and the second internal electrode 220 passes through the dielectric layer 300 from the end of the third internal electrode 230 and passes through the second interior. The distance A1 to the electrode 220 and the distance A2 from the end of the second internal electrode 220 to the third internal electrode 230 through the dielectric layer 300 may be shorter. In addition, the widths of the second and third internal electrodes 220 and 230 may be smaller than the width of the dielectric layer 300. That is, as shown in FIG. 3, the second and third internal electrodes 220 and 230 are formed smaller than the width of the dielectric layer 300 at the center of the dielectric layer 300. In this case, as shown in FIG. 3, the distance B between the first internal electrode 210 and the second internal electrode 220 passes through the dielectric layer 300 from one end of the third internal electrode 230 and passes through the dielectric layer 300. Shorter than the distance A3 to one end of the internal electrode 220 and the distance A4 from the other end of the third internal electrode 230 to the other end of the second internal electrode 220 through the dielectric layer 300. Can be. That is, the ESD protection unit 1000 between the second internal electrode 220 and the first internal electrode 210 is not transmitted through the second and third internal electrodes 220 and 230 of the capacitor unit 2000. B may be formed shorter than A1 and A2 and A3 and A4 so as to be bypassed through). In addition, the distance (C) from the end of the first internal electrode 210 to the external electrode 400 should be longer than B. This is to prevent the ESD voltage from being transferred from the external electrode 400 through the first internal electrode 210. In the end, B should be shorter than A1, A2, A3, A4 and C. That is, since the ESD voltage is transmitted through the short conductive path, the distance between the ESD protection part 1000 and the capacitor part 2000 is equal to the dielectric layer of the capacitor part 2000 so that the ESD voltage is bypassed through the ESD protection part 1000. It should be shorter than the surface distance between 300 and internal electrodes 220, 230. On the other hand, when the outer surface of the laminate 100 is coated with an insulating material, the interval between the first inner electrode 210 and the outer electrode 400 may be shorter than B, 50㎛ or less, for example 10㎛-50 It may be formed in a micrometer.
유전층(300)은 적층체(100)의 시트의 유전율보다 높은 유전율을 갖도록 형성될 수 있다. 예를 들어, 유전층(300)은 적층체(100)의 시트의 유전율보다 5배 내지 300배 높은 유전율을 가질 수 있다. 예를 들어, 유전층(300)은 200 내지 3000의 유전율을 가질 수 있다. 이러한 유전층(300)은 인쇄 방법으로 형성되거나, 적어도 하나의 시트의 소정 영역이 제거된 후 유전층(300)이 블록 형상으로 매립되어 형성될 수 있다. 유전층(300)은 적층체(100)보다 유전율이 높은 물질을 페이스트 형태로 제조한 후 인쇄 방법으로 형성할 수 있다. 예를 들어, 유전층(300)은 MLCC 등의 유전체 재료 분말, BaTiO3, BaCO3, TiO2, Nd2O3, Bi2O3, Zn0, Al2O3 중의 하나 이상을 포함하는 물질로 형성될 수 있다. 또한, 유전층(300)을 블록으로 삽입되는 경우 적층체(100) 내에 소정 크기의 개구를 형성하고, 그 개구에 대응하는 크기의 블록을 형성하여 개구 내에 삽입할 수 있다. 이때, 블록은 소정의 두께를 시트를 절단하여 형성할 수 있다. 한편, 유전층(300)은 1㎛ 이상의 두께로 형성될 수 있는데, 예를 들어 적층체(100) 두께의 0.5% 내지 50%의 두께로 형성될 수 있다. 유전층(300)이 적층체(100)를 이루는 일 시트의 두께와 같거나 그보다 두껍게 형성되는 경우 적어도 일 시트에 소정 크기의 개구를 형성한 후 개구 내에 유전체 페이스트를 인쇄하여 유전층(300)을 형성할 수도 있다. 즉, 시트의 표면 상에 유전층(300)을 인쇄하여 형성할 수도 있고, 적어도 하나의 시트에 개구를 형성한 후 유전층(300)을 인쇄하여 형성할 수도 있다. 또한, 유전층(300)은 적층체(100)의 수평 방향으로 적층체(100) 면적의 25% 내지 85%의 면적으로 형성될 수 있다. 이때, 유전층(300)은 유전율이 높은 물질을 이용하여 형성할 경우 두께를 두껍게 형성하거나 면적을 작게 형성하여 캐패시턴스를 증가시킬 수 있고, 유전율이 낮은 물질을 이용하여 형성할 경우 두께를 얇게 형성하거나 면적을 크게 형성하여 캐패시턴스를 증가시킬 수 있다. 유전층(300)이 상기 최대 수치 이상의 두께 또는 최소 수치 미만의 면적으로 형성되는 경우 복합 보호 소자의 캐패시턴스 증가 효과가 미약할 수 있고, 최소 수치 이하의 두께로 형성되는 경우 복합 보호 소자의 캐패시터부(2000)의 두께가 너무 얇아져 쇼트 전압의 차단 효과가 저하될 수 있고, 면적의 최대 수치를 초과하여 형성되는 경우 크랙 또는 딜라미네이션 등의 공정 불량이 발생될 수 있다.The dielectric layer 300 may be formed to have a dielectric constant higher than that of the sheet of the laminate 100. For example, the dielectric layer 300 may have a dielectric constant 5 to 300 times higher than that of the sheet of the laminate 100. For example, the dielectric layer 300 may have a dielectric constant of 200 to 3000. The dielectric layer 300 may be formed by a printing method, or after the predetermined region of the at least one sheet is removed, the dielectric layer 300 may be formed in a block shape. The dielectric layer 300 may be formed by printing a material having a higher dielectric constant than the laminate 100 in the form of a paste. For example, the dielectric layer 300 is formed of a material including at least one of a dielectric material powder such as MLCC, BaTiO 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , Bi 2 O 3 , Zn0, Al 2 O 3 Can be. In addition, when the dielectric layer 300 is inserted into a block, an opening having a predetermined size may be formed in the stack 100, and a block having a size corresponding to the opening may be formed and inserted into the opening. In this case, the block may be formed by cutting the sheet to a predetermined thickness. Meanwhile, the dielectric layer 300 may be formed to a thickness of 1 μm or more, for example, may be formed to a thickness of 0.5% to 50% of the thickness of the laminate 100. When the dielectric layer 300 is formed to be the same as or thicker than the thickness of one sheet constituting the laminate 100, the dielectric layer 300 may be formed by forming an opening having a predetermined size in at least one sheet and then printing a dielectric paste in the opening. It may be. That is, the dielectric layer 300 may be printed on the surface of the sheet, or the dielectric layer 300 may be printed after the opening is formed in at least one sheet. In addition, the dielectric layer 300 may be formed in an area of 25% to 85% of the area of the stack 100 in the horizontal direction of the stack 100. In this case, when the dielectric layer 300 is formed using a material having a high dielectric constant, the thickness may be increased or the area may be reduced to increase the capacitance. When the dielectric layer 300 is formed using a material having a low dielectric constant, the dielectric layer 300 may have a thin thickness or an area. Can be formed to increase the capacitance. When the dielectric layer 300 is formed to have a thickness greater than or equal to the maximum value or less than the minimum value, the capacitance increase effect of the composite protection device may be insignificant, and when the dielectric layer 300 is formed to a thickness less than the minimum value, the capacitor portion 2000 of the composite protection device is formed. ) Is too thin to reduce the effect of blocking the short voltage, and if formed to exceed the maximum value of the area may cause a process failure such as cracks or delamination.
외부 전극(410, 420; 400)는 적층체(100)의 서로 대향되는 두 측면에 마련되어 복수의 내부 전극(200)과 선택적으로 연결된다. 즉, 외부 전극(400)은 적층체(100)의 X 방향의 서로 대향되는 두 측면에 형성된 제 1 및 제 2 외부 전극(410, 420)을 포함할 수 있다. 이러한 외부 전극(400)은 적어도 하나의 층으로 형성될 수 있다. 외부 전극(400)은 Ag 등의 금속층으로 형성될 수 있고, 금속층 상에 적어도 하나의 도금층이 형성될 수도 있다. 예를 들어, 외부 전극(400)은 구리층, Ni 도금층 및 Sn 도금층이 적층 형성될 수도 있다. 또한, 외부 전극(400)은 예를 들어 0.5%∼20%의 Bi2O3 또는 SiO2를 주성분으로 하는 다성분계의 글래스 프릿(Glass frit)을 금속 분말과 혼합하여 형성할 수 있다. 이때, 글래스 프릿과 금속 분말의 혼합물은 페이스트 형태로 제조되어 적층체(100)의 두면에 도포될 수 있다. 이렇게 외부 전극(400)에 글래스 프릿이 포함됨으로써 외부 전극(400)과 적층체(100)의 밀착력을 향상시킬 수 있고, 내부 전극(200)과 외부 전극(400)의 콘택 반응을 향상시킬 수 있다. 또한, 글래스가 포함된 도전성 페이스트가 도포된 후 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(400)이 형성될 수 있다. 즉, 글래스가 포함된 금속층과, 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(400)이 형성될 수 있다. 예를 들어, 외부 전극(400)은 글래스 프릿과 Ag 및 Cu의 적어도 하나가 포함된 층을 형성한 후 전해 또는 무전해 도금을 통하여 Ni 도금층 및 Sn 도금층 순차적으로 형성할 수 있다. 이때, Sn 도금층은 Ni 도금층과 같거나 두꺼운 두께로 형성될 수 있다. 한편, 외부 전극(400)은 2㎛∼100㎛의 두께로 형성될 수 있으며, Ni 도금층이 1㎛∼10㎛의 두께로 형성되고, Sn 도금층은 2㎛∼10㎛의 두께로 형성될 수 있다.The external electrodes 410, 420 and 400 are provided on two opposite sides of the stack 100 to be selectively connected to the plurality of internal electrodes 200. That is, the external electrode 400 may include first and second external electrodes 410 and 420 formed on two side surfaces of the laminate 100 that face each other in the X direction. The external electrode 400 may be formed of at least one layer. The external electrode 400 may be formed of a metal layer such as Ag, and at least one plating layer may be formed on the metal layer. For example, the external electrode 400 may be formed by laminating a copper layer, a Ni plating layer, and a Sn plating layer. In addition, the external electrode 400 may be formed by mixing, for example, glass frit having a multi-component glass frit containing 0.5% to 20% of Bi 2 O 3 or SiO 2 as a main component. In this case, the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the laminate 100. As the glass frit is included in the external electrode 400, the adhesion between the external electrode 400 and the stack 100 may be improved, and the contact reaction between the internal electrode 200 and the external electrode 400 may be improved. . In addition, after the conductive paste containing glass is applied, at least one plating layer may be formed on the upper portion thereof to form the external electrode 400. That is, the metal layer including the glass and at least one plating layer formed thereon may be formed to form the external electrode 400. For example, the external electrode 400 may sequentially form a Ni plating layer and a Sn plating layer through electrolytic or electroless plating after forming a layer including glass frit and at least one of Ag and Cu. In this case, the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer. Meanwhile, the external electrode 400 may be formed to a thickness of 2 μm to 100 μm, the Ni plating layer may be formed to a thickness of 1 μm to 10 μm, and the Sn plating layer may be formed to a thickness of 2 μm to 10 μm. .
한편, 본 발명의 복합 보호 소자는 일 방향, 즉 X 방향으로의 길이(L)가 0.3㎜∼1.1㎜이고, 이와 직교하는 타 방향, 즉 Y 방향으로의 너비(W)가 0.15㎜∼0.55㎜이며, 즉 Z 방향으로의 두께가 0.15㎜∼0.55㎜일 수 있다. 예를 들어, 복합 보호 소자는 길이, 너비 및 두께가 각각 0.9㎜∼1.1㎜, 0.45㎜∼0.55㎜ 및 0.45㎜∼0.55㎜일 수 있고, 0.55㎜∼0.65㎜, 0.25㎜∼0.35㎜ 및 0.25㎜∼0.35㎜일 수 있으며, 0.35㎜∼0.45㎜, 0.15㎜∼0.25㎜ 및 0.15㎜∼0.25㎜일 수 있다. 즉, 복합 보호 소자는 길이:너비:두께의 비율이 2∼3:1∼2:1∼2로 구성될 수 있다. 바람직하게는 길이×너비×두께가 1.0㎜×0.5㎜×0.5㎜, 0.6㎜×0.3㎜×0.3㎜ 및 0.4㎜×0.2㎜×0.2㎜일 수 있다. 즉, 복합 보호 소자는 길이:너비:두께의 비율이 2:1:1로 구성될 수 있다. 이러한 소자의 디멘젼(dimension)은 전형적인 SMT용 소자 규격을 따른다. 또한, 본 발명의 복합 보호 소자는 2∼150㎊의 캐패시턴스를 가질 수 있다.On the other hand, in the composite protective element of the present invention, the length L in one direction, that is, the X direction is 0.3 mm to 1.1 mm, and the width W in the other direction or the Y direction, orthogonal thereto, is 0.15 mm to 0.55 mm. That is, the thickness in the Z direction may be 0.15 mm to 0.55 mm. For example, the composite protection element may have a length, a width, and a thickness of 0.9 mm to 1.1 mm, 0.45 mm to 0.55 mm, and 0.45 mm to 0.55 mm, respectively, 0.55 mm to 0.65 mm, 0.25 mm to 0.35 mm, and 0.25 mm, respectively. 0.35 mm to 0.45 mm, 0.15 mm to 0.25 mm and 0.15 mm to 0.25 mm. That is, the composite protective element may have a length: width: thickness ratio of 2 to 3: 1 to 2: 1 to 2. Preferably, the length × width × thickness may be 1.0 mm × 0.5 mm × 0.5 mm, 0.6 mm × 0.3 mm × 0.3 mm, and 0.4 mm × 0.2 mm × 0.2 mm. That is, the composite protection element may have a length: width: thickness ratio of 2: 1: 1. The dimensions of these devices follow typical device specifications for SMT. In addition, the composite protective element of the present invention may have a capacitance of 2 to 150 mA.
상기한 바와 같이 본 발명의 일 실시 예에 따른 복합 보호 소자는 바리스터 재료로 형성된 적층체(100) 내에 적층체(100)보다 유전율이 높은 유전층(300)이 형성된다. 따라서, 복합 보호 소자의 높은 항복 전압(breakdown voltage)을 구현하는 동시에 전체 캐패시턴스가 증가될 수 있다. 이때, 복합 보호 소자의 정격 전압은 예를 들어 100V 내지 240V일 수 있고, 항복 전압은 예를 들어 320V 이상일 수 있다. 또한, 감전 전압은 회로의 동작 전압과 같거나 높을 수 있으며, 외부의 정전기 등에 의해 발생되는 ESD 전압은 항복 전압보다 높을 수 있다. 따라서, 본 발명의 복합 보호 소자는 정격 전압 및 감전 전압에서는 제 1 및 제 2 외부 전극(410, 420) 사이에서 전류가 흐르지 못하고, 항복 전압보다 높은 ESD 전압에서는 ESD 보호부(1000)를 통해 전류가 흘러 바이패스된다. 따라서, 외부로부터 메탈 케이스를 통해 내부 회로로 인가되는 ESD 전압은 복합 보호 소자를 통해 바이패스되고, 내부 회로로부터 메탈 케이스로 인가되는 감전 전압은 복합 보호 소자를 통해 차단된다. 이때, 캐패시터부(2000)를 통해서는 RF 신호가 흐르게 된다. 또한, 본 발명의 일 실시 예에 따른 복합 보호 소자는 캐패시터부(2000)의 내부 전극(220, 230)과 유전층(300) 사이의 거리보다 ESD 보호부(1000)의 두께가 더 작다. 즉, 감전 전압에 따른 쇼트 전류는 거리가 복합 보호 소자 내의 도전층의 짧은 부분을 통해 흐르게 되는데, ESD 보호부(1000)의 두께가 캐패시터부(2000)의 내부 전극(220, 230)과 유전층(300) 사이의 거리보다 짧기 때문에 쇼트 전류가 ESD 보호부(1000)로 흐르게 된다. 결국, 본 발명은 캐패시턴스를 저하시키지 않으면서 높은 항복 전압을 구현할 수 있고, 캐패시턴스를 증가시키더라도 ESD 전압이 ESD 보호부(1000)를 통해 바이패스되도록 하여 정상적인 복합 보호 소자로서 기능할 수 있다. 즉, 불량 충전기에 의한 내부 회로에서 메탈 케이스로의 감전 전압이 유입될 때 누설 전류가 흐르지 않도록 절연 저항 상태를 유지할 수 있고, ESD 보호부(1000)는 감전 전압보다 높은 ESD 전압을 바이패스시켜 소자의 파손없이 높은 절연 저항 상태를 유지할 수 있다. 따라서, 메탈 케이스를 구비하는 전자기기 내에 마련되어 불량 충전기에서 발생된 감전 전압이 전자기기의 메탈 케이스를 통해 사용자에게 전달되는 것을 지속적으로 방지할 수 있고, ESD 전압에 의해서도 절연 파괴되지 않을 수 있다.As described above, in the composite protection device according to the exemplary embodiment, the dielectric layer 300 having a higher dielectric constant than the laminate 100 is formed in the laminate 100 formed of the varistor material. Thus, the overall capacitance can be increased while realizing the high breakdown voltage of the composite protection element. In this case, the rated voltage of the composite protection device may be, for example, 100V to 240V, and the breakdown voltage may be, for example, 320V or more. In addition, the electric shock voltage may be equal to or higher than the operating voltage of the circuit, and the ESD voltage generated by external static electricity may be higher than the breakdown voltage. Therefore, in the composite protection device of the present invention, current does not flow between the first and second external electrodes 410 and 420 at a rated voltage and an electric shock voltage, and a current is passed through the ESD protection unit 1000 at an ESD voltage higher than the breakdown voltage. Flows and is bypassed. Therefore, the ESD voltage applied from the outside to the internal circuit through the metal case is bypassed through the composite protection element, and the electric shock voltage applied from the internal circuit to the metal case is blocked through the composite protection element. At this time, the RF signal flows through the capacitor unit 2000. In addition, in the composite protection device according to the exemplary embodiment, the thickness of the ESD protection part 1000 is smaller than the distance between the internal electrodes 220 and 230 and the dielectric layer 300 of the capacitor part 2000. That is, the short current according to the electric shock voltage flows through a short portion of the conductive layer in the composite protection device, and the thickness of the ESD protection part 1000 is greater than that of the internal electrodes 220 and 230 of the capacitor part 2000 and the dielectric layer ( The short current flows to the ESD protection part 1000 because it is shorter than the distance between 300. As a result, the present invention can implement a high breakdown voltage without lowering the capacitance, and can function as a normal complex protection device by allowing the ESD voltage to be bypassed through the ESD protection unit 1000 even if the capacitance is increased. That is, the insulation resistance state can be maintained so that a leakage current does not flow when an electric shock voltage to the metal case is introduced from the internal circuit by the defective charger, and the ESD protection unit 1000 bypasses an ESD voltage higher than the electric shock voltage. High insulation resistance can be maintained without breakage. Therefore, it is possible to continuously prevent the electric shock voltage provided in the defective charger provided to the user through the metal case of the electronic device to be provided in the electronic device having the metal case and not be destroyed by the ESD voltage.
한편, 본 발명의 복합 보호 소자는 다양한 실시 예로 변형 가능하며, 이하에서는 본 발명의 다양한 실시 예에 대해 설명한다. 하기 설명에서 이전 설명과 중복되는 내용은 생략하기로 한다.Meanwhile, the composite protection device of the present invention may be modified in various embodiments, and various embodiments of the present invention will be described below. In the following description, the content duplicated with the previous description will be omitted.
도 4는 본 발명의 제 2 실시 예에 따른 복합 보호 소자의 단면도이다.4 is a cross-sectional view of a composite protection device according to a second embodiment of the present invention.
도 4를 참조하면, 본 발명의 제 2 실시 예에 따른 복합 보호 소자는 제 1 유전율을 갖는 적층체(100)와, 적층체(100) 내에 마련된 복수의 내부 전극(210, 220, 230; 200)과, 적층체(100) 내부에 마련되며 제 1 유전율보다 높은 제 2 유전율을 갖는 유전층(300)과, 적층체(100)의 외부에 마련되어 내부 전극(200)과 연결되는 외부 전극(410, 420; 400)을 포함할 수 있다. 여기서, 유전층(300)은 제 1 및 제 2 외부 전극(410, 420)의 길이 방향으로 전체적으로 형성될 수 있다. 즉, 유전층(300)은 일 단부가 제 1 외부 전극(410)과 연결되고 타 단부가 제 2 외부 전극(420)과 연결될 수 있다. 또한, 유전층(300)은 적층체(100)를 이루는 시트와 동일 크기로 형성될 수 있다. 즉, 유전층(300)은 X 방향으로 적층체(100)와 동일 길이로 형성될 수 있고, Y 방향으로 적층체(100)와 동일 너비 또는 다른 너비로 형성될 수 있다. 이때, 유전층(300)은 적어도 일부가 제 2 및 제 3 내부 전극(220, 230)과 중첩되지 않을 수 있다. 즉, 제 2 내부 전극(220)에 의해 유전층(300)의 하측이 적층체(100)의 일 영역과 접촉되고, 제 3 내부 전극(230)에 의해 유전층(300)의 상측이 적층체(100)의 타 영역과 접촉될 수 있다. 이러한 제 2 실시 예에 따른 복합 보호 소자는 제 3 내부 전극(230)의 말단으로부터 유전층(300)의 표면을 따라 제 2 외부 전극(420)까지의 거리(A1) 및 제 2 내부 전극(220)의 말단으로부터 유전층(300)의 표면을 따라 제 1 외부 전극(410)까지의 거리(A2)가 제 1 및 제 2 내부 전극(210, 220) 사이의 거리(B)보다 길다. 또한, 제 1 및 제 2 내부 전극(210, 220) 사이의 거리(B)가 제 1 내부 전극(210)의 말단과 제 2 외부 전극(420) 사이의 거리(C)보다 짧다. 물론, 적층체(100)의 외부 표면이 절연 물질로 코팅되는 경우 제 1 내부 전극(210)과 외부 전극(400) 사이의 간격(C)은 B보다 짧아도 되며, 50㎛ 이하, 예를 들어 10㎛∼50㎛로 형성될 수 있다.Referring to FIG. 4, the composite protection device according to the second embodiment of the present invention may include a stack 100 having a first dielectric constant and a plurality of internal electrodes 210, 220, 230; 200 provided in the stack 100. ), A dielectric layer 300 provided inside the laminate 100 and having a second dielectric constant higher than a first dielectric constant, and external electrodes 410 provided outside the laminate 100 and connected to the internal electrodes 200. 420; 400). Here, the dielectric layer 300 may be formed as a whole in the length direction of the first and second external electrodes 410 and 420. That is, the dielectric layer 300 may have one end connected to the first external electrode 410 and the other end connected to the second external electrode 420. In addition, the dielectric layer 300 may be formed to the same size as the sheet constituting the laminate 100. That is, the dielectric layer 300 may be formed to have the same length as the laminate 100 in the X direction, and may be formed to have the same width or a different width as the laminate 100 in the Y direction. In this case, at least a portion of the dielectric layer 300 may not overlap the second and third internal electrodes 220 and 230. That is, the lower side of the dielectric layer 300 is in contact with one region of the stack 100 by the second internal electrode 220, and the upper side of the dielectric layer 300 is connected to the stack 100 by the third internal electrode 230. Contact with other areas of The composite protection device according to the second exemplary embodiment includes the distance A1 and the second internal electrode 220 from the end of the third internal electrode 230 to the second external electrode 420 along the surface of the dielectric layer 300. The distance A2 from the end of to the first external electrode 410 along the surface of the dielectric layer 300 is longer than the distance B between the first and second internal electrodes 210, 220. In addition, the distance B between the first and second internal electrodes 210 and 220 is shorter than the distance C between the end of the first internal electrode 210 and the second external electrode 420. Of course, when the outer surface of the laminate 100 is coated with an insulating material, the distance C between the first inner electrode 210 and the outer electrode 400 may be shorter than B, and may be 50 μm or less, for example, 10. It may be formed to a micrometer to 50㎛.
도 5는 본 발명의 제 3 실시 예에 따른 복합 보호 소자의 단면도이다.5 is a cross-sectional view of a composite protection device according to a third embodiment of the present invention.
도 5를 참조하면, 본 발명의 제 3 실시 예에 따른 복합 보호 소자는 제 1 유전율을 갖는 적층체(100)와, 적층체(100)의 내부 및 표면에 형성된 복수의 내부 전극(210, 220, 230, 240; 200)과, 적층체(100)의 상측에 마련되며 제 1 유전율보다 높은 제 2 유전율을 갖는 유전층(300)과, 적층체(100)의 외부에 마련되어 내부 전극(200)과 연결되는 외부 전극(410, 420; 400)을 포함할 수 있다. 즉, 본 발명의 제 3 실시 예에 따른 복합 보호 소자는 캐패시터부(2000)가 Z 방향, 즉 두께 방향으로 적층체(100)의 일 표면, 예를 들어 상측 표면에 형성될 수 있다. 또한, 내부 전극(200)은 제 1 내지 제 4 내부 전극(210, 220, 230, 240)을 포함할 수 있는데, 제 1 및 제 2 내부 전극(210, 220) 사이에 ESD 보호부(1000)가 마련되고, 제 3 및 제 4 내부 전극(230, 240) 사이에 캐패시터부(2000)가 마련될 수 있다.Referring to FIG. 5, the composite protection device according to the third embodiment of the present invention may include a laminate 100 having a first dielectric constant, and a plurality of internal electrodes 210 and 220 formed on the inside and the surface of the laminate 100. , 230, 240; 200, a dielectric layer 300 provided on the upper side of the stack 100 and having a second dielectric constant higher than the first permittivity, and disposed outside the stack 100, and having an internal electrode 200. It may include an external electrode (410, 420; 400) to be connected. That is, in the composite protection device according to the third embodiment of the present invention, the capacitor part 2000 may be formed on one surface of the laminate 100, for example, the upper surface, in the Z direction, that is, in the thickness direction. In addition, the internal electrode 200 may include first to fourth internal electrodes 210, 220, 230, and 240. The ESD protection unit 1000 may be disposed between the first and second internal electrodes 210 and 220. The capacitor unit 2000 may be provided between the third and fourth internal electrodes 230 and 240.
내부 전극(210, 220, 230, 240)는 적층체(100) 내에 마련되며 일부가 적층체(100) 표면에 형성될 수 있다. 즉, 제 1 및 제 2 내부 전극(210, 220)이 적층체(100) 내부에 수직 방향으로 소정 간격 이격되어 형성되고, 제 2 내부 전극(220)과 이격되어 그 상부에 제 3 내부 전극(230)이 형성되며, 제 3 내부 전극(230)과 이격되어 그 상부에 제 4 내부 전극(240)이 형성될 수 있다. 이때, 제 4 내부 전극(240)는 적층체(100)의 상부 표면에 형성될 수 있다. 물론, 제 4 내부 전극(240) 상에 커버층(미도시)이 더 형성되어 제 4 내부 전극(240)이 외부로 노출되지 않을 수도 있다. 제 1 내부 전극(210)은 일측이 제 1 외부 전극(410)과 연결되고 타측이 제 2 외부 전극(420)과 이격되며, 제 2 내부 전극(220)은 일측이 제 2 외부 전극(410)과 연결되고 타측이 제 1 외부 전극(420)과 이격되며, 제 3 내부 전극(230)은 일측이 제 2 외부 전극(420)과 연결되고 타측이 제 1 외부 전극(410)과 이격되고, 제 4 내부 전극(240)는 일측이 제 1 외부 전극(410)과 연결되고 타측이 제 2 외부 전극(420)과 이격될 수 있다. 여기서, 제 1 및 제 2 내부 전극(210, 220) 사이에 ESD 보호부(1000)가 형성될 수 있고, 제 3 및 제 4 내부 전극(230, 240) 사이에 캐패시터부(2000)가 형성될 수 있다. 또한, 제 1 및 제 2 내부 전극(210, 220) 사이의 거리(B)는 제 4 내부 전극(240)의 말단으로부터 유전층(300)을 통해 제 3 내부 전극(230)까지의 거리(A1) 및 제 3 내부 전극(230)의 말단으로부터 유전층(300)을 통해 제 4 내부 전극(240)까지의 거리(A2)보다 짧을 수 있다. 그리고, 제 1 및 제 2 내부 전극(210, 220) 사이의 거리(B)가 제 1 내부 전극(210)과 제 2 외부 전극(420)의 이격 거리(C1) 및 제 2 내부 전극(220)과 제 1 외부 전극(410)의 이격 거리(C2)보다 짧을 수 있다. 즉, A1, A2, C1 및 C2가 B보다 길게 형성된다. 따라서, 외부로부터 인가되는 쇼트 전류는 제 1 및 제 2 내부 전극(210, 220) 사이의 ESD 보호부(2000)로 흐를 수 있다. 이때, 적층체(100)의 외부 표면이 절연 물질로 코팅되는 경우 C1 및 C2는 B보다 짧아도 되며, 예를 들어 10㎛∼50㎛로 형성될 수 있다. The internal electrodes 210, 220, 230, and 240 may be provided in the stack 100, and a part thereof may be formed on the surface of the stack 100. That is, the first and second internal electrodes 210 and 220 are formed to be spaced apart from each other in the vertical direction by a predetermined interval in the stack 100, and are spaced apart from the second internal electrode 220 so as to form a third internal electrode on the upper portion thereof. 230 may be formed, and the fourth internal electrode 240 may be formed on the third internal electrode 230 and spaced apart from the third internal electrode 230. In this case, the fourth internal electrode 240 may be formed on the upper surface of the stack 100. Of course, a cover layer (not shown) may be further formed on the fourth internal electrode 240 so that the fourth internal electrode 240 may not be exposed to the outside. One side of the first internal electrode 210 is connected to the first external electrode 410, and the other side of the first internal electrode 210 is spaced apart from the second external electrode 420, and the second internal electrode 220 has one side of the second external electrode 410. And the other side is spaced apart from the first external electrode 420, and the third internal electrode 230 is connected at one side to the second external electrode 420 and the other side is spaced apart from the first external electrode 410. 4, the inner electrode 240 may have one side connected to the first external electrode 410 and the other side spaced apart from the second external electrode 420. Here, the ESD protection part 1000 may be formed between the first and second internal electrodes 210 and 220, and the capacitor part 2000 may be formed between the third and fourth internal electrodes 230 and 240. Can be. In addition, the distance B between the first and second internal electrodes 210 and 220 is a distance A1 from the end of the fourth internal electrode 240 to the third internal electrode 230 through the dielectric layer 300. And a distance A2 from the end of the third internal electrode 230 to the fourth internal electrode 240 through the dielectric layer 300. In addition, the distance B between the first and second internal electrodes 210 and 220 is a distance C1 between the first internal electrode 210 and the second external electrode 420 and the second internal electrode 220. It may be shorter than the separation distance C2 of the first external electrode 410. That is, A1, A2, C1 and C2 are formed longer than B. Therefore, the short current applied from the outside may flow to the ESD protection unit 2000 between the first and second internal electrodes 210 and 220. At this time, when the outer surface of the laminate 100 is coated with an insulating material, C1 and C2 may be shorter than B, for example, may be formed to 10㎛ ~ 50㎛.
한편, 본 발명의 제 3 실시 예의 경우에도 제 2 실시 예와 마찬가지로 유전층(300)이 제 1 및 제 2 외부 전극(410, 420)과 연결되도록 길이 방향으로 전체적으로 형성될 수 있다. 이때, 유전층(300)의 면적은 적층체(100)의 표면 면적보다 작을 수 있다.Meanwhile, in the third exemplary embodiment of the present invention, like the second exemplary embodiment, the dielectric layer 300 may be formed in the longitudinal direction so as to be connected to the first and second external electrodes 410 and 420. In this case, the area of the dielectric layer 300 may be smaller than the surface area of the laminate 100.
도 6은 본 발명의 제 4 실시 예에 따른 복합 보호 소자의 단면도이다.6 is a cross-sectional view of a composite protection device according to a fourth embodiment of the present invention.
도 6을 참조하면, 본 발명의 제 4 실시 예에 따른 복합 보호 소자는 제 1 유전율을 갖는 적층체(100)와, 적층체(100) 내부에 수평 방향(즉, X 방향)으로 소정 간격 이격되어 마련된 제 1a 및 제 1b 내부 전극(210a, 210b)과, 제 1a 및 제 1b 내부 전극(210a, 210b)과 수직 방향(즉, Z 방향)으로 이격되어 마련된 제 2 내부 전극(220)과, 제 2 내부 전극(220)과 수직 방향으로 이격되어 마련된 제 3 내부 전극(230)과, 제 3 내부 전극(230)과 수직 방향으로 이격되어 마련된 제 4 내부 전극(240)를 포함한다. 또한, 제 3 및 제 4 내부 전극(230, 240) 사이에 제 1 유전율보다 높은 제 2 유전율을 갖는 유전층(300)이 형성되어 캐패시터부(2000)가 형성되고, 제 1a 및 제 1b 내부 전극(210a, 210b)과 제 2 내부 전극(220) 사이에 ESD 보호부(1000)가 형성된다. 이때, 제 4 내부 전극(240) 및 유전층(300)의 일부는 적층체(100)의 표면에 형성될 수 있다. 물론, 제 4 내부 전극(240) 상에 커버층이 더 형성될 수 있고, 그에 따라 제 4 내부 전극(240)이 노출되지 않을 수도 있다.Referring to FIG. 6, the composite protection device according to the fourth exemplary embodiment may be spaced apart from the laminate 100 having the first dielectric constant in a horizontal direction (that is, in the X direction) inside the laminate 100. 1a and 1b internal electrodes 210a and 210b, and second internal electrodes 220 spaced apart from the 1a and 1b internal electrodes 210a and 210b in a vertical direction (ie, Z direction), And a third internal electrode 230 spaced apart from the second internal electrode 220 in a vertical direction, and a fourth internal electrode 240 spaced apart from the third internal electrode 230 in a vertical direction. In addition, a dielectric layer 300 having a second dielectric constant higher than the first dielectric constant is formed between the third and fourth internal electrodes 230 and 240 to form the capacitor part 2000, and to form the first and first internal electrodes 1a and 1b. An ESD protection unit 1000 is formed between the 210a and 210b and the second internal electrode 220. In this case, a portion of the fourth internal electrode 240 and the dielectric layer 300 may be formed on the surface of the stack 100. Of course, a cover layer may be further formed on the fourth internal electrode 240, and thus the fourth internal electrode 240 may not be exposed.
서로 이격된 제 1a 및 제 1b 내부 전극(210a, 220b)은 각각 제 1 및 제 2 외부 전극(410, 420)과 연결되고, 적층체(100) 내부의 중앙부에서 소정 간격 이격되어 형성될 수 있다. 즉, 제 1a 내부 전극(210a)은 제 1 외부 전극(410)과 연결되고 제 1b 내부 전극(210b)은 제 2 외부 전극(420)과 연결된다. 이때, 제 1a 및 제 1b 내부 전극(210a, 220b) 사이의 이격 거리(D)는 제 2 내부 전극(220)의 길이에 따라 조절될 수 있는데, 제 1a 및 제 1b 내부 전극(210a, 220b)의 이격 거리(D)는 제 2 내부 전극(220)의 길이에 따라 제 1a 및 제 1b 내부 전극(210a, 210b) 각각의 길이보다 길거나 짧을 수 있다. 이러한 본 발명의 제 4 실시 예에 따른 복합 보호 소자는 수평 방향으로 이격된 제 1a 및 제 1b 내부 전극(210a, 210b) 각각과 제 2 내부 전극(220) 사이의 거리(B1, B2)의 합(B1+B2)이 제 1a 및 제 1b 내부 전극(210a, 210b)의 이격 거리(D)보다 짧고, 제 4 내부 전극(240)의 말단으로부터 유전층(300)을 통해 제 3 내부 전극(230)까지의 거리(A1) 및 제 3 내부 전극(230)의 말단으로부터 유전층(300)을 통해 제 4 내부 전극(240)까지의 거리(A2)보다 짧을 수 있다. 즉, B1+B2는 D, A1 및 A2보다 작을 수 있다. 또한, 수평 방향으로 이격된 제 1a 및 제 1b 내부 전극(210a, 210b) 각각과 제 2 내부 전극(220) 사이의 수직 거리(B1, B2)의 합(B1+B2)은 제 1a 내부 전극(210a)과 제 2 내부 전극(220) 사이의 거리(B1)와 유전층(300)의 말단부에 대응되는 제 3 내부 전극(230)과 제 2 내부 전극(220) 사이의 거리(F)의 합(B1+F) 및 제 1b 내부 전극(210b)과 제 2 내부 전극(220) 사이의 거리(B2)와 유전층(300)의 말단부에 대응되는 제 3 내부 전극(230)과 제 2 내부 전극(220) 사이의 거리(E)의 합(B2+E)보다 작다. 즉, B1+B2는 B1+F 및 B2+E보다 작다. 또한, A1 및 A2는 길이가 같을 수 있고, A1 및 A2보다 E 및 F의 길이가 더 짧을 수 있다. 따라서, ESD 전압 등의 감전 전압은 제 1a 내부 전극(210a)과 제 2 내부 전극(220) 사이를 통해 흐르게 된다.The first and second internal electrodes 210a and 220b spaced apart from each other may be connected to the first and second external electrodes 410 and 420, respectively, and may be formed to be spaced apart from each other at a central portion inside the stack 100. . That is, the first internal electrode 210a is connected to the first external electrode 410 and the first internal electrode 210b is connected to the second external electrode 420. In this case, the separation distance D between the first and first internal electrodes 210a and 220b may be adjusted according to the length of the second internal electrode 220. The first and first internal electrodes 210a and 220b may be adjusted. The separation distance D may be longer or shorter than the length of each of the first and first b internal electrodes 210a and 210b according to the length of the second internal electrode 220. In the composite protection device according to the fourth exemplary embodiment, the sum of the distances B1 and B2 between each of the first and first internal electrodes 210a and 210b and the second internal electrode 220 spaced apart in the horizontal direction. (B1 + B2) is shorter than the separation distance D of the first and first internal electrodes 210a and 210b, and the third internal electrode 230 is formed through the dielectric layer 300 from the end of the fourth internal electrode 240. It may be shorter than the distance A1 and the distance A2 from the end of the third internal electrode 230 to the fourth internal electrode 240 through the dielectric layer 300. That is, B1 + B2 may be smaller than D, A1, and A2. In addition, the sum B1 + B2 of the vertical distances B1 and B2 between each of the first and second internal electrodes 210a and 210b and the second internal electrode 220 spaced in the horizontal direction may correspond to the first a internal electrode ( The sum of the distance B1 between 210a and the second internal electrode 220 and the distance F between the third internal electrode 230 and the second internal electrode 220 corresponding to the distal end of the dielectric layer 300 ( B1 + F) and the third internal electrode 230 and the second internal electrode 220 corresponding to the distance B2 between the first internal electrode 210b and the second internal electrode 220 and the distal end of the dielectric layer 300. Is smaller than the sum (B2 + E) of the distances E). That is, B1 + B2 is smaller than B1 + F and B2 + E. In addition, A1 and A2 may be the same length, and the length of E and F may be shorter than A1 and A2. Therefore, an electric shock voltage such as an ESD voltage flows between the first internal electrode 210a and the second internal electrode 220.
도 7은 본 발명의 제 5 실시 예에 따른 복합 보호 소자의 단면도이다.7 is a cross-sectional view of a composite protection device according to a fifth embodiment of the present invention.
도 7을 참조하면, 본 발명의 제 5 실시 예에 따른 복합 보호 소자는 제 1 유전율을 갖는 적층체(100)와, 적층체(100) 내부에서 수평 방향으로 소정 간격 이격되어 마련된 제 1a 및 제 1b 내부 전극(210a, 210b)과, 제 1a 및 제 1b 내부 전극(210a, 210b)과 수직 방향으로 이격되어 마련된 제 2 내부 전극(220)과, 제 2 내부 전극(220)과 수직 방향으로 이격되어 마련된 제 3 내부 전극(230)과, 제 3 내부 전극(230)과 수직 방향으로 이격되어 마련된 제 4 내부 전극(240)과, 제 3 및 제 4 내부 전극(230, 240) 사이에 형성되어 길이 방향(즉, X 방향)으로 전체적으로 형성된 유전층(300)을 포함할 수 있다.Referring to FIG. 7, the composite protection device according to the fifth embodiment of the present invention may include a stack 100 having a first dielectric constant and first and second gaps spaced apart from each other in a horizontal direction within the stack 100. 1b internal electrodes 210a and 210b, and second internal electrodes 220 disposed to be spaced apart from the first and second internal electrodes 210a and 210b in the vertical direction, and spaced apart from the second internal electrodes 220 in the vertical direction. The third internal electrode 230, the fourth internal electrode 240 provided to be spaced apart from the third internal electrode 230 in a vertical direction, and the third and fourth internal electrodes 230 and 240. It may include a dielectric layer 300 formed entirely in the longitudinal direction (ie, the X direction).
본 발명의 제 5 실시 예에 따른 복합 보호 소자는 수평 방향으로 이격된 제 1a 및 제 1b 내부 전극(210a, 210b) 각각과 제 2 내부 전극(220) 사이의 거리(B1, B2)의 합(B1+B2)이 제 1a 및 제 1b 내부 전극(210a, 210b)의 이격 거리(D)보다 짧고, 제 4 내부 전극(240)의 말단으로부터 유전층(300)을 통해 제 2 외부 전극(420) 까지의 거리(A1) 및 제 3 내부 전극(230)의 말단으로부터 유전층(300)을 통해 제 1 외부 전극(410) 까지의 거리(A2)보다 짧을 수 있다. 즉, B1+B2는 D, A1 및 A2보다 작을 수 있다. 또한, 수평 방향으로 이격된 제 1a 및 제 1b 내부 전극(210a, 210b) 각각과 제 2 내부 전극(220) 사이의 수직 거리(B1, B2)의 합(B1+B2)은 제 1a 내부 전극(210a)과 제 2 내부 전극(220) 사이의 거리(B1)와 제 3 내부 전극(230)과 제 2 내부 전극(220) 사이의 수직 거리(G)의 합(B1+G) 및 제 1b 내부 전극(210b)과 제 2 내부 전극(220) 사이의 거리(B2)와 제 4 내부 전극(240)의 제 1 외부 전극(410)과의 접촉 영역과 제 2 내부 전극(220) 사이의 최단 거리(H)의 합(B2+H)보다 작다. 즉, B1+B2는 B1+G 및 B2+H보다 작다.In the composite protection device according to the fifth embodiment, the sum of the distances B1 and B2 between the first and second internal electrodes 210a and 210b and the second internal electrode 220 spaced apart in the horizontal direction ( B1 + B2 is shorter than the separation distance D of the first and first internal electrodes 210a and 210b, and from the end of the fourth internal electrode 240 to the second external electrode 420 through the dielectric layer 300. The distance A1 may be shorter than the distance A2 from the end of the third internal electrode 230 to the first external electrode 410 through the dielectric layer 300. That is, B1 + B2 may be smaller than D, A1, and A2. In addition, the sum B1 + B2 of the vertical distances B1 and B2 between each of the first and second internal electrodes 210a and 210b and the second internal electrode 220 spaced in the horizontal direction may correspond to the first a internal electrode ( The sum B1 + G of the distance B1 between 210a and the second internal electrode 220 and the vertical distance G between the third internal electrode 230 and the second internal electrode 220 and the first b interior. The shortest distance between the contact area between the distance B2 between the electrode 210b and the second inner electrode 220 and the first outer electrode 410 of the fourth inner electrode 240 and the second inner electrode 220. It is less than the sum of (H) (B2 + H). That is, B1 + B2 is smaller than B1 + G and B2 + H.
도 8은 본 발명의 제 6 실시 예에 따른 복합 보호 소자의 단면도이다.8 is a cross-sectional view of a composite protective device according to a sixth embodiment of the present invention.
도 8을 참조하면, 본 발명의 제 6 실시 예에 따른 복합 보호 소자는 제 1 유전율을 갖는 적층체(100)와, 적층체(100) 내에 마련된 복수의 내부 전극(210, 220; 200)과, 적층체(100) 내부에 마련되며 제 1 유전율보다 높은 제 2 유전율을 갖는 유전층(300)과, 적층체(100)의 외부에 마련되어 내부 전극(200)과 연결되는 외부 전극(410, 420; 400)과, 내부 전극(210, 220)과 유전층(300) 사이에 마련된 도전층(510, 520; 500)을 포함할 수 있다. Referring to FIG. 8, the composite protection device according to the sixth embodiment of the present invention may include a stack 100 having a first dielectric constant, a plurality of internal electrodes 210, 220, 200 provided in the stack 100, A dielectric layer 300 provided inside the laminate 100 and having a second dielectric constant higher than a first dielectric constant, and external electrodes 410 and 420 provided outside the laminate 100 and connected to the internal electrodes 200; 400, and conductive layers 510, 520; 500 provided between the internal electrodes 210 and 220 and the dielectric layer 300.
유전층(300)의 제 1 및 제 2 외부 전극(410, 420) 사이의 길이 방향으로 형성될 수 있고, 소정의 두께로 형성될 수 있다. 이때, 유전층(300)은 길이가 두께보다 크게 형성되거나, 두께가 길이보다 크게 형성될 수 있다. 또한, 유전층(300)의 상부 및 하부에 형성된 제 1 및 제 2 도전층(510, 520)은 유전층(300)의 길이보다 짧은 길이로 형성될 수 있다. 이때, 제 1 및 제 2 내부 전극(210, 220) 사이의 거리(B)는 제 1 도전층(510)으로부터 유전층(300)의 표면을 따라 제 2 도전층(520)까지의 거리(I)보다 짧을 수 있다. 즉, 도전층(500)와 유전층(300) 사이의 거리(I)가 내부 전극들(210, 220) 사이의 거리(B)보다 길어지도록 유전층(300)의 길이 및 두께가 조절될 수 있다. 또한, 제 1 및 제 2 내부 전극(210, 220) 사이의 거리(B)는 제 1 내부 전극(210)과 제 2 외부 전극(420) 사이의 거리(C1) 및 제 2 내부 전극(220)과 제 1 외부 전극(410) 사이의 거리(C2)보다 짧을 수 있다. The dielectric layer 300 may be formed in a length direction between the first and second external electrodes 410 and 420, and may be formed to have a predetermined thickness. In this case, the length of the dielectric layer 300 may be greater than the thickness, or the thickness may be greater than the length. In addition, the first and second conductive layers 510 and 520 formed on and under the dielectric layer 300 may be formed to have a length shorter than the length of the dielectric layer 300. In this case, the distance B between the first and second internal electrodes 210 and 220 is a distance I from the first conductive layer 510 to the second conductive layer 520 along the surface of the dielectric layer 300. Can be shorter. That is, the length and thickness of the dielectric layer 300 may be adjusted such that the distance I between the conductive layer 500 and the dielectric layer 300 is longer than the distance B between the internal electrodes 210 and 220. In addition, the distance B between the first and second internal electrodes 210 and 220 may be a distance C1 between the first internal electrode 210 and the second external electrode 420 and the second internal electrode 220. And a distance C2 between the first external electrode 410 and the first external electrode 410.
도 9는 본 발명의 제 7 실시 예에 따른 복합 보호 소자의 단면도이다.9 is a cross-sectional view of a composite protective device according to a seventh embodiment of the present invention.
도 9를 참조하면, 본 발명의 제 7 실시 예에 따른 복합 보호 소자는 제 1 유전율을 갖는 적층체(100)와, 적층체(100) 내에 마련된 복수의 내부 전극(210, 220; 200)과, 적층체(100) 내부에 마련되며 제 1 유전율보다 높은 제 2 유전율을 갖고 수평 방향으로 소정 간격 이격된 유전층(310, 320; 300)과, 적층체(100)의 외부에 마련되어 내부 전극(200)과 연결되는 외부 전극(410, 420; 400)과, 내부 전극(210, 220)과 유전층(300) 사이에 마련된 도전층(510, 520, 530, 540; 500)을 포함할 수 있다.Referring to FIG. 9, the composite protection device according to the seventh embodiment of the present invention may include a laminate 100 having a first dielectric constant, a plurality of internal electrodes 210, 220; 200 provided in the laminate 100, and The dielectric layers 310, 320 and 300 provided inside the laminate 100 and having a second dielectric constant higher than the first dielectric constant and spaced apart by a predetermined interval in the horizontal direction are provided outside the laminate 100 and have internal electrodes 200. ) May include external electrodes 410, 420; 400, and conductive layers 510, 520, 530, 540; 500 provided between the internal electrodes 210, 220 and the dielectric layer 300.
유전층(310, 320; 300)은 제 1 및 제 2 외부 전극(410, 420) 사이의 길이 방향으로 형성될 수 있고, 소정의 두께로 형성될 수 있다. 이때, 유전층(300)은 길이가 두께보다 크게 형성될 수 있다. 또한, 유전층(300)의 상부 및 하부에 형성된 도전층(510, 520, 530, 540)은 유전층(300)의 길이보다 짧은 길이로 형성될 수 있다. 이때, 제 1 및 제 2 내부 전극(210, 220) 사이의 거리(B)는 도전층(510. 530)으로부터 유전층(310, 320) 각각의 표면을 따라 도전층(520, 540)까지의 거리(I1, I2)보다 짧을 수 있다. 또한, 제 1 및 제 2 내부 전극(210, 220) 사이의 거리(B)는 제 1 내부 전극(210)과 제 2 외부 전극(420) 사이의 거리(C1) 및 제 2 내부 전극(220)과 제 1 외부 전극(410) 사이의 거리(C2)보다 짧을 수 있다.The dielectric layers 310, 320; 300 may be formed in a length direction between the first and second external electrodes 410 and 420, and may be formed to have a predetermined thickness. In this case, the length of the dielectric layer 300 may be greater than the thickness. In addition, the conductive layers 510, 520, 530, and 540 formed on and under the dielectric layer 300 may have a length shorter than that of the dielectric layer 300. In this case, the distance B between the first and second internal electrodes 210 and 220 is a distance from the conductive layers 510 and 530 to the conductive layers 520 and 540 along the surfaces of the dielectric layers 310 and 320, respectively. It may be shorter than (I1, I2). In addition, the distance B between the first and second internal electrodes 210 and 220 may be a distance C1 between the first internal electrode 210 and the second external electrode 420 and the second internal electrode 220. And a distance C2 between the first external electrode 410 and the first external electrode 410.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.The present invention is not limited to the above-described embodiments, but may be implemented in various forms. In other words, the above embodiments are provided to make the disclosure of the present invention complete and to fully inform those skilled in the art of the scope of the present invention, and the scope of the present invention should be understood by the claims of the present application. .

Claims (18)

  1. 적어도 하나의 시트가 적층된 적층체;A laminate in which at least one sheet is laminated;
    상기 적층체 내에 형성된 복수의 내부 전극;A plurality of internal electrodes formed in the stack;
    상기 복수의 내부 전극 사이의 적어도 일부에 마련된 유전층;A dielectric layer provided on at least a portion of the plurality of internal electrodes;
    상기 적층체의 서로 대향되는 두 측면에 형성되며, 상기 내부 전극과 연결되는 외부 전극을 포함하며,It is formed on two opposite sides of the laminate and includes an external electrode connected to the internal electrode,
    상기 유전층의 유전율이 상기 적층체의 유전율보다 높은 복합 보호 소자.And a dielectric constant of the dielectric layer is higher than that of the laminate.
  2. 청구항 1에 있어서, 상기 유전층의 유전율은 상기 적층체의 유전율보다 2배 내지 300배 높은 복합 보호 소자.The composite protective device of claim 1, wherein a dielectric constant of the dielectric layer is two to 300 times higher than that of the laminate.
  3. 청구항 2에 있어서, 상기 적층체의 유전율이 20 내지 600이고, 상기 유전층의 유전율은 100 내지 3000인 복합 보호 소자.The composite protective device of claim 2, wherein the laminate has a dielectric constant of 20 to 600 and a dielectric constant of 100 to 3000. 4.
  4. 청구항 1에 있어서, 상기 적층체는 바리스터 재료로 형성된 복합 보호 소자.The composite protective device of claim 1, wherein the laminate is formed of a varistor material.
  5. 청구항 1에 있어서, 상기 유전층은 선택된 시트에 인쇄하여 형성되거나, 블록으로 형성되는 복합 보호 소자.The composite protective device of claim 1, wherein the dielectric layer is formed by printing on a selected sheet or formed as a block.
  6. 청구항 1에 있어서, 상기 적층체의 선택된 시트에 개구가 형성되고 상기 유전층이 상기 개구 내에 형성된 복합 보호 소자.The composite protective element of claim 1, wherein an opening is formed in a selected sheet of the laminate and the dielectric layer is formed in the opening.
  7. 청구항 1에 있어서, 상기 유전층과 이에 접하는 상기 내부 전극이 캐패시터부를 이루고, 상기 캐패시터부의 내부 전극과 이로부터 이격된 내부 전극 사이가 ESD 보호부를 이루는 복합 보호 소자.The composite protection device of claim 1, wherein the dielectric layer and the internal electrode in contact with the internal electrode form a capacitor portion, and the ESD protection portion is formed between the internal electrode and the internal electrode spaced apart from the capacitor portion.
  8. 청구항 7에 있어서, 상기 ESD 보호부는 감전 전압보다 높고 ESD 전압보다 낮은 항복 전압을 갖는 복합 보호 소자.The composite protection device of claim 7, wherein the ESD protection unit has a breakdown voltage higher than an electric shock voltage and lower than an ESD voltage.
  9. 청구항 1에 있어서, 상기 적층체의 두 측면에 마련된 제 1 및 제 2 외부 전극을 더 포함하고, 복수의 내부 전극은 상기 적층체의 두께 방향으로 소정 간격 이격되어 형성되며, 상기 내부 전극 각각은 일 영역이 상기 제 1 및 제 2 외부 전극과 교대로 연결되고 타 영역이 이격되어 형성된 복합 보호 소자.The display apparatus of claim 1, further comprising first and second external electrodes provided on two side surfaces of the stack, wherein the plurality of inner electrodes are formed spaced apart from each other in a thickness direction of the stack, and each of the inner electrodes is one A composite protective device formed by alternately connecting a region to the first and second external electrodes and spacing another region.
  10. 청구항 9에 있어서, 서로 이격된 제 1, 제 2 및 제 3 내부 전극을 포함하고, 상기 제 2 및 제 3 내부 전극 사이에 상기 유전층이 일부 노출되도록 형성되며, The method of claim 9, further comprising first, second and third internal electrodes spaced apart from each other, wherein the dielectric layer is partially exposed between the second and third internal electrodes,
    상기 제 1 및 제 2 내부 전극 사이의 거리가 상기 유전층의 표면을 따르는 상기 제 2 및 제 3 내부 전극 사이의 거리보다 짧고, 상기 제 1 및 제 2 내부 전극 사이의 거리가 상기 제 1 내부 전극과 이격된 상기 외부 전극 사이의 거리보다 짧은 복합 보호 소자.The distance between the first and second internal electrodes is shorter than the distance between the second and third internal electrodes along the surface of the dielectric layer, and the distance between the first and second internal electrodes is equal to the first internal electrode and A composite protective element shorter than the distance between the spaced external electrodes.
  11. 청구항 9에 있어서, 서로 이격된 제 1 내지 제 4 내부 전극을 포함하고, 상기 제 3 및 제 4 내부 전극 사이에 상기 유전층이 형성되며, 상기 제 1 및 제 2 내부 전극 사이에 ESD 보호부가 형성되며,The semiconductor device of claim 9, further comprising first to fourth internal electrodes spaced apart from each other, wherein the dielectric layer is formed between the third and fourth internal electrodes, and an ESD protection part is formed between the first and second internal electrodes. ,
    상기 제 1 및 제 2 내부 전극 사이의 거리가 상기 유전층의 표면을 따르는 상기 제 3 및 제 4 내부 전극 사이의 거리보다 짧고, 상기 제 1 및 제 2 내부 전극 사이의 거리가 상기 제 1 및 제 2 내부 전극과 이격된 상기 외부 전극 사이의 거리보다 짧은 복합 보호 소자.The distance between the first and second internal electrodes is shorter than the distance between the third and fourth internal electrodes along the surface of the dielectric layer, and the distance between the first and second internal electrodes is the first and second A composite protective element shorter than a distance between an inner electrode and the outer electrode spaced apart.
  12. 청구항 9에 있어서, 서로 이격된 제 1 내지 제 4 내부 전극을 포함하고, 상기 제 1 내부 전극은 일단이 상기 제 1 및 제 2 외부 전극과 각각 연결되고 타단이 서로 이격된 제 1a 및 제 1b 내부 전극을 포함하며, 상기 제 3 및 제 4 내부 전극 사이에 상기 유전층이 형성되고, 상기 제 1 및 제 2 내부 전극 사이에 ESD 보호부가 형성되며,The method of claim 9, wherein the first internal electrodes include first to fourth internal electrodes spaced apart from each other, and the first internal electrodes have one end connected to the first and second external electrodes, respectively, and the other ends spaced apart from each other. An electrode, wherein the dielectric layer is formed between the third and fourth internal electrodes, an ESD protection part is formed between the first and second internal electrodes,
    상기 제 1a 및 제 1b 내부 전극 각각과 상기 제 2 내부 전극 사이의 거리의 합이 상기 제 1a 및 제 1b 내부 전극 사이의 거리보다 짧고, 상기 제 2 내부 전극과 상기 제 3 및 제 4 내부 전극 사이의 거리보다 짧은 복합 보호 소자.The sum of the distances between each of the first internal electrodes and the first internal electrodes and the second internal electrodes is shorter than the distance between the first internal electrodes and the first internal electrodes, and between the second internal electrodes and the third and fourth internal electrodes. Composite protection element shorter than its distance.
  13. 청구항 9에 있어서, 상기 복수의 내부 전극 사이에 적어도 하나의 유전층이 형성되고, 상기 내부 전극과 상기 유전층 사이에 적어도 하나의 도전층이 형성된 복합 보호 소자.The composite protective device of claim 9, wherein at least one dielectric layer is formed between the plurality of internal electrodes, and at least one conductive layer is formed between the internal electrode and the dielectric layer.
  14. 청구항 13에 있어서, 상기 유전층의 표면을 따라 상기 도전층까지의 거리가 상기 내부 전극 사이의 거리보다 긴 복합 보호 소자.The composite protective device of claim 13, wherein a distance from the dielectric layer along the surface of the dielectric layer is longer than a distance between the internal electrodes.
  15. 청구항 1에 있어서, 상기 외부 전극은 적어도 일부가 글래스와 금속 분말이 혼합되어 형성된 복합 보호 소자.The composite protective device of claim 1, wherein at least a portion of the external electrode is formed by mixing glass and a metal powder.
  16. 청구항 1에 있어서, 상기 내부 전극은 1㎛ 내지 10㎛의 두께로 형성되고, 상기 외부 전극은 2㎛ 내지 100㎛의 두께로 형성되는 복합 보호 소자.The composite protective device of claim 1, wherein the internal electrode is formed to a thickness of 1 μm to 10 μm, and the external electrode is formed to a thickness of 2 μm to 100 μm.
  17. 청구항 16에 있어서, 상기 외부 전극은 Ni 도금층 및 Sn 도금층을 더 포함하고, 상기 Ni 도금층은 1㎛ 내지 10㎛의 두께로 형성되고, 상기 Sn 도금층은 2㎛ 내지 10㎛의 두께로 형성되는 복합 보호 소자.The composite protection of claim 16, wherein the external electrode further comprises a Ni plating layer and a Sn plating layer, wherein the Ni plating layer is formed to a thickness of 1 μm to 10 μm, and the Sn plating layer is formed to a thickness of 2 μm to 10 μm. device.
  18. 사용자가 접촉 가능한 도전체와 내부 회로를 포함하는 전자기기로서,An electronic device comprising a conductor and an internal circuit that can be contacted by a user,
    상기 도전체와 내부 회로 사이에 마련된 복합 보호 소자를 포함하고,Comprising a composite protection element provided between the conductor and the internal circuit,
    상기 복합 보호 소자는,The composite protective element,
    적어도 하나의 시트가 적층된 적층체;A laminate in which at least one sheet is laminated;
    상기 적층체 내에 형성된 복수의 내부 전극;A plurality of internal electrodes formed in the stack;
    상기 복수의 내부 전극 사이의 적어도 일부에 형성된 유전층을 포함하는 캐패시터부; 및A capacitor part including a dielectric layer formed on at least a portion of the plurality of internal electrodes; And
    상기 캐패시터부의 내부 전극과 이로부터 이격된 적어도 하나의 내부 전극 사이에 마련된 보호부를 포함하며,A protection part provided between the internal electrode of the capacitor part and at least one internal electrode spaced therefrom;
    상기 유전층의 유전율은 상기 적층체의 유전율보다 높고,The dielectric constant of the dielectric layer is higher than that of the laminate,
    상기 보호부는 감전 전압보다 높고 ESD 전압보다 낮은 항복 전압을 가지며,The protection part has a breakdown voltage higher than the electric shock voltage and lower than the ESD voltage,
    전자기기의 내부 회로와 금속 케이스 사이에 마련되어 상기 감전 전압을 차단하고, 상기 ESD 전압을 바이패스시키는 전자기기.An electronic device provided between an internal circuit of the electronic device and a metal case to block the electric shock voltage and bypass the ESD voltage.
PCT/KR2016/014840 2016-02-05 2016-12-16 Composite protection element and electronic device having same WO2017135566A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0014799 2016-02-05
KR1020160014799A KR101808796B1 (en) 2016-02-05 2016-02-05 Laminated device

Publications (1)

Publication Number Publication Date
WO2017135566A1 true WO2017135566A1 (en) 2017-08-10

Family

ID=59500248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014840 WO2017135566A1 (en) 2016-02-05 2016-12-16 Composite protection element and electronic device having same

Country Status (3)

Country Link
KR (1) KR101808796B1 (en)
TW (1) TWI614771B (en)
WO (1) WO2017135566A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149423A1 (en) * 2019-01-14 2020-07-23 이두형 Reclining chair
KR20210046259A (en) * 2019-10-18 2021-04-28 주식회사 아모텍 Hybrid electric shock protection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813195B1 (en) * 2006-04-20 2008-03-13 주식회사 이노칩테크놀로지 Electrostatic Electricity Protection Device
US20100182724A1 (en) * 2009-01-22 2010-07-22 Tomokazu Ito Composite electronic device and digital transmission circuit using thereof
KR101323145B1 (en) * 2011-10-27 2013-10-30 (주)아트로닉스 Manufacturing Method of Semiconductor Device For ESD Protection
KR20150062012A (en) * 2013-11-28 2015-06-05 삼성전기주식회사 Coil component and and method of manufacturing the same
KR101585619B1 (en) * 2014-11-20 2016-01-15 주식회사 아모텍 Circuit protection device and mobile electronic device with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201005770A (en) * 2008-07-25 2010-02-01 Darfon Electronics Corp Laminated ceramic capacitor and formation method thereof
KR20130065199A (en) * 2011-12-09 2013-06-19 삼성전기주식회사 Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813195B1 (en) * 2006-04-20 2008-03-13 주식회사 이노칩테크놀로지 Electrostatic Electricity Protection Device
US20100182724A1 (en) * 2009-01-22 2010-07-22 Tomokazu Ito Composite electronic device and digital transmission circuit using thereof
KR101323145B1 (en) * 2011-10-27 2013-10-30 (주)아트로닉스 Manufacturing Method of Semiconductor Device For ESD Protection
KR20150062012A (en) * 2013-11-28 2015-06-05 삼성전기주식회사 Coil component and and method of manufacturing the same
KR101585619B1 (en) * 2014-11-20 2016-01-15 주식회사 아모텍 Circuit protection device and mobile electronic device with the same

Also Published As

Publication number Publication date
KR20170093425A (en) 2017-08-16
KR101808796B1 (en) 2017-12-13
TW201732843A (en) 2017-09-16
TWI614771B (en) 2018-02-11

Similar Documents

Publication Publication Date Title
US10188019B2 (en) Electric shock protection contactor and portable electronic device including the same
US10631448B2 (en) Portable electronic device with embedded electric shock protection function
WO2018021786A1 (en) Complex device and electronic device having same
KR20170140135A (en) Laminated device and electronic device having the same
US20120169452A1 (en) Esd protection device and manufacturing method therefor
WO2018105912A1 (en) Composite protection element and electronic device including same
WO2017082451A1 (en) Circuit protection device
WO2017200250A1 (en) Element for protecting circuit
KR20150123203A (en) Electro-static protection component
WO2017209448A1 (en) Contactor
WO2017135566A1 (en) Composite protection element and electronic device having same
WO2018066871A1 (en) Complex protection device and electronic apparatus including same
WO2018182249A1 (en) Electric shock protection device, method for manufacturing same, and portable electronic device having same
WO2018203632A1 (en) Hybrid electric shock prevention device and portable electronic device having same
WO2019035559A1 (en) Composite device manufacturing method and composite device manufactured thereby
WO2016178524A1 (en) Electric shock-prevention element and electronic device provided with same
WO2018117447A1 (en) Complex protective element and electronic device comprising same
WO2019066221A1 (en) Stacked element and electronic device having same
WO2016178529A1 (en) Electric shock-prevention element and electronic device provided with same
WO2018124535A1 (en) Complex device and electronic device having same
KR101969020B1 (en) Circuit protection device and mobile electronic device with the same
WO2016178528A1 (en) Electric shock-prevention element and electronic device provided with same
KR101978426B1 (en) Circuit protection device and mobile electronic device with the same
WO2019031738A1 (en) Complex-type electric shock prevention device and portable electronic device having same
WO2018124492A1 (en) Complex device and electronic device having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889544

Country of ref document: EP

Kind code of ref document: A1