WO2018124363A1 - 생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물 - Google Patents

생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물 Download PDF

Info

Publication number
WO2018124363A1
WO2018124363A1 PCT/KR2017/000353 KR2017000353W WO2018124363A1 WO 2018124363 A1 WO2018124363 A1 WO 2018124363A1 KR 2017000353 W KR2017000353 W KR 2017000353W WO 2018124363 A1 WO2018124363 A1 WO 2018124363A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceria
nanocomposite
polyethylene glycol
nanoparticles
ceria nanocomposite
Prior art date
Application number
PCT/KR2017/000353
Other languages
English (en)
French (fr)
Inventor
이승훈
정한길
김도연
강동완
김재윤
차봉근
Original Assignee
서울대학교병원
주식회사 세닉스바이오테크
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170001312A external-priority patent/KR101782622B1/ko
Application filed by 서울대학교병원, 주식회사 세닉스바이오테크, 성균관대학교 산학협력단 filed Critical 서울대학교병원
Priority to US16/474,049 priority Critical patent/US11246944B2/en
Publication of WO2018124363A1 publication Critical patent/WO2018124363A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • a ceria nanocomposite for biomedical treatment and a pharmaceutical composition comprising the same. More specifically, the present invention discloses a ceria nanocomposite for biomedical treatment with excellent therapeutic effect against an inflammatory disease and a pharmaceutical composition comprising the same.
  • Biomedical treatment means the treatment of inflammatory or other diseases, such as infection, bacteremia, sepsis, and Systemic Inflammatory Response Syndrome (SIRS) with functional medicine. do.
  • inflammatory or other diseases such as infection, bacteremia, sepsis, and Systemic Inflammatory Response Syndrome (SIRS) with functional medicine. do.
  • SIRS Systemic Inflammatory Response Syndrome
  • An infection is a condition in which a pathogenic microorganism invades and propagates in a host organism and has a destructive effect on the host.
  • Pathogenicity of organisms and resistance of individuals play a decisive role in establishing infections, which are also governed by climate or other environmental conditions.
  • Pathogenic microorganisms that cause infection include protozoa, bacteria, Rickettsia, viruses and fungi.
  • Pathways of infection include contact, splash, dust, food and percutaneous transmission.
  • the period from the invasion of the pathogen to the onset afterwards is called the incubation period, and is a period in which no fever or symptoms specific to each infectious disease are common.
  • the length of the incubation period is several days to several weeks.
  • tuberculosis may be months in the case of tuberculosis or years or more in the case of leprosy.
  • Bacteremia is a condition in which bacteria enter the blood and circulate all over the body. Even if bacteria originally enter the human body, when they enter the blood vessels, they are soon removed by white blood cells, so there are no bacteria in the blood. However, if one or several parts of the body are inflamed so much that it is a lot of bacteria that go around in the blood vessels, this condition is called bacteremia.
  • typhoid fever for example, typhoid bacteria invade the intestinal tract, multiply in adjacent lymph nodes, and then enter the blood to spread throughout the body, creating lesions in many tissues, where bacteremia can be seen in the course of spreading throughout the system. Pseudomonas aeruginosa, typhoid bacteria, tuberculosis bacteria, anthrax, or Brucella is the cause of the very serious.
  • the most common pathology for bacteremia is the genitourinary system (25%), followed by the respiratory system (20%), abscess (10%), surgical wounds (5%), biliary tract (5%), other areas (10%), and no cause (25%). .
  • Bacteremia occurs when bacteria multiply at rates beyond the repellency of the reticuloendothelial system.
  • the most common route of propagation of blood fungi into the blood through lymphatic vessels is from blood vessels. have.
  • Sepsis means "life-threatening organ failure caused by abnormal host response by infection.”
  • Local infection by microorganisms causes a systemic inflammatory response as a normal protective mechanism in the host, a series of processes such as increased white blood cell count, increased vascular permeability and fever.
  • systemic inflammatory reactions occur abnormally excessively, resulting in sepsis, and if not treated early, blood pressure decrease, renal dysfunction, and multiple organ failure due to decreased effective blood circulation can lead to death.
  • Systemic inflammatory syndrome refers to two or more of the following: when the body temperature is too high or low than normal, the pulse rate and respiratory rate are increased, and the white blood cell count is higher or lower than normal.
  • a representative cause of systemic inflammatory reaction syndrome is sepsis, but there are various diseases such as severe trauma, burns, and pancreatitis, and there are many similar pathophysiology in each disease, and an effective treatment for the systemic inflammatory response itself is required.
  • One embodiment of the present invention provides a ceria nanocomposite for biomedical treatment comprising ceria nanoparticles.
  • Another embodiment of the present invention provides a pharmaceutical composition comprising the ceria nanocomposite for biomedical treatment.
  • the surface modification layer comprises a polyethylene glycol moiety
  • the content of Ce + 3 provides a number of bio-medical treatment for ceria nanocomposite than the content of Ce + 4.
  • the surface modification layer may include an outer layer including the polyethylene glycol residue and an inner layer having one end bonded to the ceria nanoparticles and the other end bonded to the polyethylene glycol residue.
  • the inner layer includes residues of a polyfunctional organic compound, and the polyfunctional organic compound has a first end group capable of binding to the ceria nanoparticles and a second end group capable of binding to a polyethylene glycol derivative which is a source of the polyethylene glycol residue. Can be.
  • the multifunctional organic compound may comprise aliphatic amino carboxylic acid.
  • the polyethyleneglycol derivatives include methoxy PEG succinimidyl glutarate, methoxy PEG succinimidyl barrate, methoxy PEG succinimidyl carbonate, methoxy PEG succinimidyl succinate, methoxy PEG succinimidyl propionate Or combinations thereof.
  • the particle size of the ceria nanocomposite may be 1nm to 100nm.
  • composition comprising the ceria nanocomposite for biomedical treatment.
  • the ceria nanocomposite for biomedical treatment according to the embodiment of the present invention is useful for the treatment of inflammatory diseases because it reduces mortality and tissue damage due to inflammatory diseases, exhibits excellent inhibition of reactive oxygen species generation and inflammatory response. Can be used.
  • FIG. 1 is a view schematically showing a ceria nanocomposite according to an embodiment of the present invention.
  • FIG. 2 is a transmission electron microscope (TEM) photograph of the ceria nanocomposite prepared in Example 1.
  • FIG. 1 is a transmission electron microscope (TEM) photograph of the ceria nanocomposite prepared in Example 1.
  • FIG. 3 is a transmission electron microscope (TEM) photograph of the ceria nanocomposite prepared in Comparative Example 1.
  • FIG. 3 is a transmission electron microscope (TEM) photograph of the ceria nanocomposite prepared in Comparative Example 1.
  • TEM 4 is a transmission electron microscope (TEM) photograph of the ceria nanocomposite prepared in Comparative Example 2.
  • FIG. 5 is a dynamic light scattering (DLS) spectrum of the ceria nanocomposite prepared in Example 1.
  • DLS dynamic light scattering
  • Figure 6 is a dynamic light scattering (DLS) spectrum of the ceria nanocomposite prepared in Comparative Example 2.
  • FIG. 7 is an X-ray photoelectron spectroscopy (XPS) spectrum of the ceria nanocomposite prepared in Example 1.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 8 is an X-ray photoelectron spectroscopy (XPS) spectrum of the ceria nanocomposite prepared in Comparative Example 1.
  • XPS X-ray photoelectron spectroscopy
  • Example 9 is a graph showing the antioxidant effect according to the particle concentration of the ceria nanocomposite prepared in Example 1 and the ceria nanocomposite prepared in Comparative Example 1.
  • Example 11 is an optical micrograph showing the degree of tissue damage and inflammation in the liver, stomach and caecum as a treatment effect of sepsis of the ceria nanocomposite prepared in Example 1 and PBS of Comparative Example 2.
  • Example 12 is a graph showing the survival rate as a sepsis treatment effect of the ceria nanocomposite prepared in Example 1, PBS of Comparative Example 2 and imipnem of Comparative Example 3.
  • the term “residue” refers to an atomic group (eg, a non-reactive atomic group) remaining after some atomic group (eg, reactive atomic group) is desorbed from an organic compound.
  • the ceria nanocomposite for biomedical treatment may be a ceria nanocomposite for treating inflammatory disease.
  • the inflammatory disease may include infection, bacteremia, sepsis, Systemic Inflammatory Response Syndrome (SIRS) or two or more of them.
  • SIRS Systemic Inflammatory Response Syndrome
  • the ceria nanocomposite for biomedical treatment includes ceria (CeO 2 ) nanoparticles and a surface modification layer disposed on the surface of the ceria nanoparticles.
  • the surface modification layer may be disposed to at least partially surround the surface of the ceria nanoparticles.
  • the surface modification layer may be composed of one or more materials disposed radially on the surface of the ceria nanoparticles at predetermined intervals.
  • the ceria nanoparticles have an excellent antioxidant and anti-inflammatory effect, and serve to reduce mortality and tissue damage due to inflammatory diseases.
  • the surface modification layer serves to improve biocompatibility and biosafety of the ceria nanocomposite including the same.
  • the surface modification layer serves to prevent the ceria nanocomposite from being taken up by phagocytes by increasing the overall size of the ceria nanocomposite.
  • the surface modification layer has a hydrophilic surface so that the ceria nanocomposites are first adhered to moisture in the blood when injected into the blood and prevent the ceria nanocomposites from adhering to other ions in the blood, thereby agglomerating the ceria nanocomposites. Prevents and improves the colloidal stability of the ceria nanocomposite.
  • the surface modification layer comprises a polyethylene glycol moiety.
  • polyethylene glycol residue may be a polyethylene glycol derivative.
  • polyethyleneglycol derivative means that at least one of the sock-term hydrogens of polyethyleneglycol is substituted with another substituent (eg, alkoxy group, succinimidyl ester group).
  • the polyethylene glycol derivative may have a weight average molecular weight of about 100 to 10,000 Daltons (Da) according to the number of ethylene oxide in the polymer chain.
  • the polyethylene glycol derivatives include methoxy polyethylene glycol (PEG) succinimidyl glutarate, methoxy PEG succinimidyl barrate, methoxy PEG succinimidyl carbonate, methoxy PEG succinimidyl succinate, methoxy PEG succinimi Dill propionate or combinations thereof.
  • PEG polyethylene glycol
  • the present invention is not limited thereto, and various other compounds may be used as the polyethylene glycol derivative as long as it can be combined with the polyfunctional organic compound described below.
  • the content of Ce 3 + is greater than the content of the Ce + 4. If the ceria nanoparticles, the content of Ce 3 + is greater than the content of the Ce + 4, the particle size of the ceria nanocomposite can be reduced, and improves the antioxidative effect and biocompatibility.
  • the surface modification layer may include an outer layer and an inner layer bonded to each other.
  • the outer layer may comprise the polyethylene glycol moiety.
  • One end of the inner layer may be bonded to the ceria nanoparticles, and the other end may be bonded to the polyethylene glycol residue.
  • one end of the inner layer may be chemically bonded to the ceria nanoparticles, and the other end may also be chemically bonded (eg, covalently bonded) to the polyethylene glycol residue.
  • the inner layer may comprise residues of a multifunctional organic compound.
  • the polyfunctional organic compound has a first end group (eg, a carboxyl group) capable of binding to the ceria nanoparticles and a second end group capable of binding to a polyethylene glycol derivative (specifically, a succinimidyl group) as a source of the polyethylene glycol residue. (Eg, amino group).
  • a polyethylene glycol derivative specifically, a succinimidyl group
  • the term "multifunctional organic compound” means an organic compound having two or more functional groups.
  • the multifunctional organic compound may comprise aliphatic amino carboxylic acid.
  • the aliphatic amino carboxylic acid may include 6-aminohexanoic acid, 5-aminopentanoic acid, 4-aminobutanoic acid, aminocaproic acid, aminoundecanoic acid, aminolauric acid, or a combination thereof.
  • the particle size of the ceria nanocomposite may be 1 nm to 100 nm, for example, 1 nm to 50 nm, for example, 1 nm to 5 nm, for example, 1 nm to 4 nm, for example, 2 nm to 3 nm. If the size of the ceria nanocomposite is within the range (1 nm to 100 nm), it may have excellent water dispersibility and biocompatibility. However, as the particle size of the ceria nanocomposite is smaller, water dispersibility and biocompatibility may be improved.
  • FIG. 1 is a view schematically showing a ceria nanocomposite 10 according to an embodiment of the present invention.
  • the ceria nanocomposite 10 includes a ceria nanoparticle 11 and a surface modification layer 12 disposed on a surface thereof.
  • the surface modification layer 12 includes an inner layer 12a and an outer layer 12b bonded to each other.
  • the inner layer 12a includes a multifunctional organic compound residue having a first terminal residue fg1 bound to the ceria nanoparticle 11 and a second terminal residue fg2 bound to the outer layer 12b.
  • the first terminal residue (fg1) can be a carboxyl group (-COOH) or a group derived therefrom.
  • the second terminal residue (fg2) can be an amino group (-NH 2 ) or a group derived therefrom.
  • the outer layer 12b includes a polyethyleneglycol derivative residue having a third terminal residue (fg3) associated with a second terminal residue (fg2) of the multifunctional organic compound residue contained in the inner layer 12a.
  • the third terminal residue (fg3) can be a succinimidyl group or a group derived therefrom.
  • Another embodiment of the present invention provides a pharmaceutical composition comprising the ceria nanocomposite for biomedical treatment.
  • the pharmaceutical composition may further include a pharmaceutically acceptable additive, and the additive may include, for example, a pH adjusting agent, an isotonic agent, a preservative, other excipients, or a combination thereof.
  • a pharmaceutically acceptable additive may include, for example, a pH adjusting agent, an isotonic agent, a preservative, other excipients, or a combination thereof.
  • the pH adjusting agent may include sodium hydroxide, potassium hydroxide, sodium bicarbonate, ammonia solution, potassium citrate, triethanolamine, sodium citrate or a combination thereof.
  • the isotonic agent D-mannitol, sorbitol or a combination thereof may be included.
  • the preservative may include methyl paraoxybenzoate, ethyl paraoxybenzoate, sorbic acid, phenol, cresol, chlorocresol or combinations thereof.
  • the administration route of the ceria nanocomposite or the pharmaceutical composition for biomedical treatment may be intravenous, intraarterial, intraperitoneal, oral, intramedullary, inhaled, intranasal, subcutaneous, intraparenchymal, Intraventricular administration, intrathecal administration, epidural administration, and the like.
  • the daily dose of the ceria nanocomposite or the pharmaceutical composition can be variously adjusted according to the age, symptoms, dosage form, etc. of the patient.
  • the daily dose of the ceria nanocomposite or the pharmaceutical composition may be 0.1 to 10 mg / kg, for example 1 to 2 mg / kg.
  • the ceria nanocomposite or the pharmaceutical composition can efficiently reach the cytoplasm through the cell membrane to reduce the amount of water and decrease the rate of apoptosis at the site of inflammatory disease and bleeding, thereby exhibiting excellent antioxidant and anti-inflammatory effects. This can lead to improved survival and functional recovery in surviving individuals.
  • the step (S30) may be referred to as PEGylation (PEGylation) of ceria nanoparticles.
  • the cerium precursors include cerium (III) acetate hydrate, cerium (III) acetylacetonate hydrate, cerium (III) carbonate hydrate, cerium (IV) hydroxide, cerium (III) fluoride, cerium (IV) fluoride, cerium (III) chloride, cerium (III) chloride heptahydrate, cerium (III) bromide, cerium (III) iodide, cerium (III) nitrate hexahydrate, cerium (III) oxalate hydrate, cerium (III) sulfate, Cerium (III) sulphate hydrate, cerium (IV) sulphate or combinations thereof.
  • the multifunctional dispersion stabilizer may be the same as the aforementioned multifunctional organic compound.
  • Heating of the mixed solution may be performed at 80 °C to 95 °C for 0.5 minutes to 8 hours.
  • the step (S10) and the step (S20) is to prepare a cerium precursor solution containing a cerium precursor and a first solvent, to prepare a dispersion stabilizer solution comprising a multifunctional dispersion stabilizer and a first solvent, the dispersion stabilizer solution It may be carried out by heating to 80 °C to 95 °C, the cerium precursor solution is added to the heated dispersion stabilizer solution and then maintained for 1 minute to 8 hours.
  • the polyethylene glycol derivative may be the same as the polyethylene glycol derivative described above.
  • the first solvent and the second solvent may each be an aqueous solvent.
  • the prepared ceria nanocomposite may have little or no toxicity and may minimize side effects when injected into the human body.
  • the aqueous solvent may include water, alcohols (eg, ethanol, methanol, propanol, etc.) or mixtures thereof.
  • 6-Aminohexanoic acid (1.3117 g, Sigma-Aldrich, St. Louis, USA) was dissolved in deionized water (60 mL) and heated to 95 ° C. in air with stirring to prepare a first solution.
  • 37 wt% of HCl 70 ⁇ l, Duksan Pure Chemicals, South Korea
  • cerium (III) nitrate hexahydrate (Ce (NO 3 ) 3 .6H 2 O, 1.08557 g, Alfa Aeser, Ward Hill, USA) was dissolved in deionized water (50 mL) at room temperature (about 20 ° C.).
  • a second solution was prepared.
  • the second solution was added to the first solution to prepare a third solution.
  • the temperature of the third solution was maintained at 95 ° C. for 1 minute, and then cooled to room temperature (about 20 ° C.).
  • ceria nanoparticles having 6-aminohexanoic acid bound to the surface were obtained.
  • the ceria nanoparticles were washed three times with acetone to remove unreacted materials.
  • a suspension was prepared by adding 20 mg of ceria nanoparticles prepared above to 2 mL of deionized water.
  • the suspension was mixed with 500 mg of methoxy polyethylene glycol succinimidyl glutarate (weight average molecular weight: 5,000 Daltons) dissolved in 40 mL of ethanol.
  • the mixture was stirred at room temperature (about 20 ° C.) for 12 hours to covalently bond the amino group of 6-aminohexanoic acid bonded to the surface of the ceria nanoparticles and the succinimidyl group of the methoxy polyethylene glycol succinimidyl glutarate. .
  • the content of Ce + 3 to obtain a large amount of ceria nanocomposite than Ce + 4.
  • 6-Aminohexanoic acid (1.3117 g, Sigma-Aldrich, St. Louis, USA) was dissolved in deionized water (60 mL) and heated to 95 ° C. in air with stirring to prepare a first solution.
  • a second solution was prepared.
  • the second solution was added to the first solution to prepare a third solution.
  • the temperature of the third solution was maintained at 95 ° C. for 8 hours and then cooled to room temperature (about 20 ° C.).
  • ceria nanoparticles having 6-aminohexanoic acid bound to the surface were obtained.
  • the ceria nanoparticles were washed three times with acetone to remove unreacted materials.
  • a suspension was prepared by adding 20 mg of ceria nanoparticles prepared above to 2 mL of deionized water.
  • the suspension was mixed with 500 mg of methoxy polyethylene glycol succinimidyl glutarate (weight average molecular weight: 5,000 Daltons) dissolved in 40 mL of ethanol.
  • the mixture was stirred at room temperature (about 20 ° C.) for 12 hours to covalently bond the amino group of 6-aminohexanoic acid bonded to the surface of the ceria nanoparticles and the succinimidyl group of the methoxy polyethylene glycol succinimidyl glutarate. .
  • the content of Ce + 3 to obtain a small amount of ceria nanocomposite than Ce + 4.
  • a suspension was prepared by adding 20 mg of ceria nanoparticles prepared above to 2 mL of deionized water. The suspension was mixed with 500 mg of methoxy polyethylene glycol succinimidyl glutarate (weight average molecular weight: 5,000 Daltons) dissolved in 40 mL of ethanol. The mixture was stirred at room temperature (about 20 ° C.) for 12 hours to proceed with PEGylation of the ceria nanoparticles.
  • Evaluation example 1 surface image analysis
  • FIGS. 2 to 4 TEM images of the ceria nanocomposites prepared in Example 1, Comparative Example 1 and Comparative Example 2 were taken and shown in FIGS. 2 to 4, respectively.
  • 2 is a TEM picture of the ceria nanocomposite prepared in Example 1
  • Figure 3 is a TEM picture of the ceria nanocomposite prepared in Comparative Example 1
  • Figure 4 is a TEM picture of the ceria nanocomposite prepared in Comparative Example 2 .
  • the TEM device used here was JEOL's JEM-3010 model.
  • the ceria nanocomposite prepared in Example 1 was found to have excellent particle dispersibility because the particle size was small and each particle was separated from each other.
  • the ceria nanocomposite prepared in Comparative Example 1 was found to have a larger particle size than the ceria nanocomposite prepared in Example 1, and thus, compared with the ceria nanocomposite prepared in Example 1 It is expected to exhibit low antioxidant effects and low biocompatibility.
  • the ceria nanocomposites prepared in Comparative Example 2 are ceria nanoparticles before being agglomerated with each other so that one ceria nanoparticle is not pegylated and the entire mass of ceria nanoparticles agglomerated with each other is pegylated. It is expected to exhibit a lower antioxidant effect and lower biocompatibility than the ceria nanocomposite prepared in Comparative Example 1.
  • Dynamic light scattering (DLS) spectra of the ceria nanocomposites prepared in Example 1 and Comparative Example 2 were analyzed and shown in FIGS. 5 and 6, respectively.
  • 5 is a DLS spectrum of the ceria nanocomposite prepared in Example 1
  • FIG. 6 is a DLS spectrum of the ceria nanocomposite prepared in Comparative Example 2.
  • FIG. The DLS device used here was a Malvern Zetasizer Nano ZS model.
  • the ceria nanocomposite prepared in Example 1 was found to have an average particle size of about 10 nm.
  • the ceria nanocomposite prepared in Comparative Example 2 was found to have an average particle size of about 800 nm.
  • XPS spectra of the ceria nanocomposite prepared in Example 1 and the ceria nanocomposite prepared in Comparative Example 1 were obtained by X-ray photoelectron spectroscopy (XPS) and are shown in FIGS. 7 and 8, respectively.
  • 7 is an XPS spectrum of the ceria nanocomposite prepared in Example 1
  • FIG. 8 is an XPS spectrum of the ceria nanocomposite prepared in Comparative Example 1.
  • FIG. The XPS device used here was an ESCALAB250 model from ThermoScientific.
  • the antioxidant effect of the ceria nanocomposite prepared in Example A and Comparative ceria nanocomposite prepared in Example 1 1 was analyzed by Amplex ® Red Hydrogen Peroxide / Peroxidase Assay Kit (A22188) (Invitrogen detection technologies, USA). Specifically, for each of the ceria nanocomposite prepared in Example 1 and the ceria nanocomposite prepared in Comparative Example 1, four solutions having a concentration of 0 ⁇ M, 50 ⁇ M, 100 ⁇ M or 250 ⁇ M and a concentration of hydrogen peroxide of 20 ⁇ M were prepared. It was. Then, each solution was maintained for 1 hour with stirring. Thereafter, the concentration of hydrogen peroxide in each solution was measured, and the results are shown in FIG. 9. The concentration of hydrogen peroxide was measured using a fluorescence analyzer (ThermoScientific, Varioskan lux).
  • Example 1 the ceria nanocomposite prepared in Example 1 was superior to the ceria nanocomposite prepared in Comparative Example 1 (ie, an H 2 O 2 removal effect).
  • the cultured RAW 264.7 cells were washed once with a phosphate buffer solution (PBS: Phosphate Buffered Saline, sodium chloride 137 mM, phosphate buffer 10 mM, potassium chloride 2.7 mM, Amresco, USA) and aspirated to fresh media (DMEM, 10% by weight Fetal Bovine Serum (FBS), 1% by weight penicillin + streptomycin) was aliquoted and harvested using a scraper. Thereafter, 2 ⁇ 10 6 cells per well were seeded in 6- well plates. All wells were injected with 1 ⁇ g / ml lipopolysaccharide (Sigma-Aldrich, USA) to stimulate the cells.
  • PBS Phosphate Buffered Saline, sodium chloride 137 mM, phosphate buffer 10 mM, potassium chloride 2.7 mM, Amresco, USA
  • DMEM 10% by weight Fetal Bovine Serum
  • penicillin + streptomycin penicillin + strepto
  • the dilutions obtained by diluting the substances shown in Table 1 at a concentration of 0.1 mM in PBS were reacted under 37 ° C. and CO 2 culture conditions for 6 hours after dispensing into wells or without dispensing any substances. After 6 hours, the medium was removed, washed with 4 ° C. cold PBS solution (2 mL), and then again dispensed with 4 ° C. cold PBS solution (2 mL) to separate cells by pipetting, collected in a tube, and 1200 rpm. Centrifugation for 3 minutes to obtain pelleted cell mass.
  • DCF-DA dilute 2 ', 7'-dichlorofluorescein diacetate
  • PI propidium iodide
  • PI propidium iodide
  • ROS reactive oxygen species
  • Example 1 was found to be superior to the active oxygen species removal effect compared to Comparative Examples 1 and 2.
  • Evaluation example 6 Ceria Reduced tissue damage and inflammation as a treatment for sepsis of nanocomposites
  • CLP was used to induce sepsis in 6-week-old male C57BL / 6 mice (CORETECH Co., Ltd.). Specifically, C57BL / 6 mice were anesthetized with isoflurane, then disinfected with betaine solution (10 wt% povidone-iodine), followed by skin dissection to expose the cecum. Thereafter, ligation of the caecum was performed at the distal ileocecal valve using 6-0 silk, and the ligation of the caecum was punctured using a 26-gauge needle. The perforation resulted in leakage of excreta into the peritoneum, which in turn caused multiply bacteremia and sepsis.
  • the degree of sepsis-induced tissue damage and inflammation was evaluated in two cases: C57BL / 6 mice treated with PBS of Comparative Example 2 and C57BL / 6 mice treated with ceria nanocomposite prepared in Example 1.
  • PBS case of Comparative Example 2 300 ⁇ l of PBS was administered intraperitoneally after the CLP method.
  • the ceria nanocomposite case prepared in Example 1 the ceria nanocomposite (2 mg / kg) was administered intraperitoneally after the CLP method.
  • the ceria nanocomposite prepared in Example 1 was found to have an excellent effect of reducing tissue damage and inflammation in the cecum, stomach, and liver, compared to PBS of Comparative Example 2.
  • Evaluation example 7 Ceria Increased survival rate as a treatment for sepsis of nanocomposite
  • CLP was used to cause sepsis in 6 week old male C57BL / 6 mice. Specifically, C57BL / 6 mice were anesthetized with isoflurane, then disinfected with betaine solution (10 wt% povidone-iodine), followed by skin dissection to expose the cecum. Thereafter, ligation of the caecum was performed at the distal ileocecal valve using 6-0 silk, and the ligation of the caecum was punctured using a 26-gauge needle. The perforation resulted in leakage of excreta into the peritoneum, which in turn caused multiply bacteremia and sepsis.
  • Sepsis-induced mortality was evaluated in three groups: 18 C57BL / 6 mice treated with PBS of Comparative Example 2, 15 C57BL / 6 mice treated with the ceria nanocomposite prepared in Example 1 and Comparative Example 3 15 C57BL / 6 mice treated with imipenem.
  • PBS group of Comparative Example 2 300 ⁇ l of PBS was administered intraperitoneally after the CLP method.
  • the ceria nanocomposite group prepared in Example 1 was administered intraperitoneally after the CLP method.
  • the survival rate when the ceria nanocomposite prepared in Example 1 is injected into a C57BL / 6 mouse is a survival rate when the PBS of Comparative Example 2 is injected into a C57BL / 6 mouse and the comparative example. It was shown that the survival rate was increased when imipenem of 4 was injected into C57BL / 6 mice.
  • Example 1 Comparative Example 2, and Comparative Example 4, as described above a plurality of C57BL / 6 mice were tested and the average value was expressed as survival rate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

세리아 나노입자를 포함하는 생체의학적 치료용 세리아 나노복합체 및 약학적 조성물이 개시된다. 개시된 생체의학적 치료용 세리아 나노복합체는 세리아 나노입자 및 상기 세리아 나노입자의 표면에 배치된 표면개질층을 포함하고, 상기 표면 개질층은 폴리에틸렌글리콜 잔기를 포함하고, 상기 세리아 나노입자에서 Ce3+의 함량이 Ce4+의 함량보다 많다.

Description

생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물
생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물이 개시된다. 보다 상세하게는, 염증성 질환에 대한 치료 효과가 우수한 생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물이 개시된다.
생체의학적 치료란 감염(infection), 균혈증(bacteremia), 패혈증(sepsis) 및 전신염증반응증후군(SIRS: Systemic Inflammatory Response Syndrome)과 같은 염증성 질환이나 기타 질병을 기능성 약물(functional medicine)로 치료하는 것을 의미한다.
감염이란 병원 미생물이 숙주 생체 내에 침입, 증식하고, 숙주에 파괴적 효과를 주는 상태를 말한다. 감염의 성립을 위해 미생물의 병원성과 개체의 저항력이 결정적 역할을 하는데, 기후 또는 그 밖의 환경 조건에 의해서도 지배된다. 감염을 일으키는 병원 미생물로는 원충, 세균, 리케차, 바이러스 및 진균 등이 있다.
감염의 경로로는 접촉, 비말, 비진(飛塵), 음식물 및 경피(經皮) 전염 등이 있다. 병원체가 생체 내에 침입한 다음 발병에 이르는 기간을 잠복기라고 부르고, 감염증 일반에 공통적인 발열 또는 각각의 감염증에 특이한 증상을 나타내지 않는 시기이다. 많은 감염증에 있어서는 이 잠복기의 길이는 수일 내지 수주간인데, 경우에 따라서는 콜레라와 같이 수십 시간의 잠복기의 예도 있고, 역으로 결핵의 경우에는 수개월, 나병인 경우에는 수년 또는 그 이상인 경우가 있다.
균혈증이란 균이 혈액 속에 들어가서 온몸을 순환하고 있는 상태를 말한다. 원래 인체에 세균이 들어오더라도 혈관에 들어가면 백혈구에 의해 곧 제거되므로 혈액 속에는 세균이 없다. 그러나, 몸의 한 곳 또는 여러 곳에 염증이 심해서 세균이 많으면 그것이 혈관을 타고 돌아다니는데 이런 상태를 균혈증이라고 한다.
예컨대 장티푸스에서는 티푸스균이 장관(腸管)에 침입하여 인접한 림프절에서 증식한 다음, 혈액 속에 들어가 전신에 퍼져 많은 조직에 병소를 만드는데, 이때 티푸스균이 전신에 퍼지는 과정에서 균혈증을 볼 수 있다. 화농균, 티푸스균, 결핵균, 탄저균 또는 브루셀라 등이 원인인 경우는 매우 위독하다.
균혈증의 전파 경로는 비뇨생식기계가 25%로 가장 많고, 호흡기계 20%, 농양 10%, 외과적 창상 5%, 담도계 5%의 순이며, 기타 부위 10%, 원인을 찾지 못하는 경우가 25%이다.
균혈증은 세균이 세망내피계의 제거능력을 넘는 속도로 증식할 때 발생한다. 혈액 내 균종의 전파 경로는 혈관 외에서 림프관을 통해 혈액으로 유입되는 경우가 가장 흔하고 감염성 심내막염, 동정맥루의 감염, 진균성 동맥류, 화농성 정맥염, 혈관 내 각종 카테테르의 감염 등에 의해 혈액으로 직접 전파되는 균혈증이 있다.
패혈증이란 "감염(infection)에 의한 비정상적인 숙주 반응 (dysregulated host response)으로 야기된, 생명을 위협하는 장기 부전"을 의미한다. 미생물에 의한 국소 감염이 발생하면 숙주에서는 이에 대한 정상적인 보호 기전으로 전신 염증 반응이 일어나며, 백혈구 수의 증가, 혈관 투과성 증가 및 발열 등 일련의 과정이 발생한다. 그러나, 중증 감염에서는 이러한 전신 염증 반응이 비정상적으로 과도하게 일어나 패혈증이 발생하며, 조기에 치료되지 않으면 유효 혈액 순환량 감소에 따른 혈압 저하, 신기능 장애 및 다발성 장기 부전으로 이어져 사망에 이를 수 있다.
현대의학에서도 패혈증은 여전히 사망률이 높고 예후가 나쁜 질환이다. 심한 패혈증과 패혈증 쇼크의 사망률은 각각 25-30% 및 40-70%에 이를 정도로 심각한 질환이다. 미국 자료에 의하면 2011년 1년 간 미국 전체 의료비의 5.2%인 200억달러가 패혈증 치료에 지출되었다.
이처럼 항생제 개발 등 의학 발전에도 불구하고, 감염에 의한 패혈증을 치료하기 어려운 까닭은 패혈증이 항생제만으로는 치료하기 어려운 질환이기 때문이다. 패혈증이 발생하면 염증성 사이토카인 (proinflammatory cytokine) 과다 분비 및 활성산소종 (reactive oxygen species) 과다 분비를 비롯한 일련의 염증 반응이 시작되고, 이로 인해 모세혈관 투과성 증가, 전해질 및 산염기 불균형, 혈압 저하가 연쇄적으로 일어난다.
현대 의학에서 이러한 연쇄반응을 차단하는 방법은 패혈증을 조기에 진단하고 항생제를 최대한 빨리 쓰는 것 외에는 전무하며, 염증성 사이토카인 억제제나 활성산소종 제거제 등 패혈증 초기의 비정상적 면역 반응을 억제할 수 있는 치료제는 개발되어 있지 않은 실정이다. 수액 및 전해질 주입, 혈액투석 등 장기부전을 막기 위한 관리가 이루어지지만 이는 패혈증의 병태생리를 근치적으로 제어하는 것이 아닌 대증적이고 보조적인 치료 방법에 불과하다.
전신염증반응증후군이란 체온이 정상보다 너무 높거나 낮은 경우, 맥박수와 호흡수가 증가한 경우, 백혈구 수가 정상치보다 증가하거나 낮은 경우 중 2가지 이상 해당되는 것을 말한다. 전신염증반응증후군의 대표적인 원인은 패혈증이지만, 이외에도 중증 외상, 화상, 췌장염 등 여러가지 질환이 있고, 각 질환에서 병태생리가 유사한 부분이 많아 전신적인 염증반응 자체에 대한 효과적인 치료법이 요구된다.
이에 전세계의 의학자 및 과학자들은 염증성 질환에 의한 사망률을 낮추고자 많은 노력을 기울이고 있다. 그러나, 인체 적합성이나 독성을 고려하면서 염증성 질환을 효과적으로 치료하는 약물은 아직 전무한 실정이다.
본 발명의 일 구현예는 세리아 나노입자를 포함하는 생체의학적 치료용 세리아 나노복합체를 제공한다.
본 발명의 다른 구현예는 상기 생체의학적 치료용 세리아 나노복합체를 포함하는 약학적 조성물을 제공한다.
본 발명의 일 측면은,
세리아 나노입자 및 상기 세리아 나노입자의 표면에 배치된 표면개질층을 포함하고,
상기 표면 개질층은 폴리에틸렌글리콜 잔기를 포함하고,
상기 세리아 나노입자에서 Ce3 +의 함량이 Ce4 +의 함량보다 많은 생체의학적 치료용 세리아 나노복합체를 제공한다.
상기 표면개질층은, 상기 폴리에틸렌글리콜 잔기를 포함하는 외층 및 일단부가 상기 세리아 나노입자에 결합되고 타단부가 상기 폴리에틸렌글리콜 잔기와 결합된 내층을 포함할 수 있다.
상기 내층은 다관능성 유기 화합물의 잔기를 포함하고, 상기 다관능성 유기 화합물은 상기 세리아 나노입자에 결합 가능한 제1 말단기 및 상기 폴리에틸렌글리콜 잔기의 근원인 폴리에틸렌글리콜 유도체에 결합 가능한 제2 말단기를 가질 수 있다.
상기 다관능성 유기 화합물은 지방족 아미노 카르복실산을 포함할 수 있다.
상기 폴리에틸렌글리콜 유도체는 메톡시 PEG 숙시니미딜 글루타레이트, 메톡시 PEG 숙시니미딜 바레이트, 메톡시 PEG 숙시니미딜 카보네이트, 메톡시 PEG 숙시니미딜 숙시네이트, 메톡시 PEG 숙시니미딜 프로피오네이트 또는 이들의 조합을 포함할 수 있다.
상기 세리아 나노복합체의 입자크기는 1nm 내지 100nm일 수 있다.
본 발명의 다른 측면은,
상기 생체의학적 치료용 세리아 나노복합체를 포함하는 약학적 조성물을 제공한다.
본 발명의 일 구현예에 따른 생체의학적 치료용 세리아 나노복합체는, 염증성 질환으로 인한 사망률 및 조직 손상을 감소시키고, 우수한 활성산소종 발생 억제 및 염증반응 억제 효과를 나타내므로, 염증성 질환의 치료에 유용하게 사용될 수 있다.
도 1은 본 발명의 일 구현예에 따른 세리아 나노복합체를 개략적으로 나타낸 도면이다.
도 2는 실시예 1에서 제조된 세리아 나노복합체의 투과전자현미경(TEM) 사진이다.
도 3은 비교예 1에서 제조된 세리아 나노복합체의 투과전자현미경(TEM) 사진이다.
도 4는 비교예 2에서 제조된 세리아 나노복합체의 투과전자현미경(TEM) 사진이다.
도 5는 실시예 1에서 제조된 세리아 나노복합체의 DLS(Dynamic light scattering) 스펙트럼이다.
도 6은 비교예 2에서 제조된 세리아 나노복합체의 DLS(Dynamic light scattering) 스펙트럼이다.
도 7은 실시예 1에서 제조된 세리아 나노복합체의 X선 광전자 분광(XPS) 스펙트럼이다.
도 8은 비교예 1에서 제조된 세리아 나노복합체의 X선 광전자 분광(XPS) 스펙트럼이다.
도 9는 실시예 1에서 제조된 세리아 나노복합체 및 비교예 1에서 제조된 세리아 나노복합체의 입자 농도에 따른 항산화 효과를 나타낸 그래프이다.
도 10은 실시예 1에서 제조된 세리아 나노복합체, 비교예 1에서 제조된 세리아 나노복합체 및 비교예 2의 PBS(phosphate buffered saline)의 패혈증 치료 효과로서 평균 형광강도(활성 산소종의 지표)를 나타낸 그래프이다.
도 11은 실시예 1에서 제조된 세리아 나노복합체 및 비교예 2의 PBS의 패혈증 치료 효과로서 간, 위 및 맹장에서의 조직 손상 및 염증 발생 정도를 나타낸 광학현미경 사진이다.
도 12는 실시예 1에서 제조된 세리아 나노복합체, 비교예 2의 PBS 및 비교예 3의 이미페넴(imipnem)의 패혈증 치료 효과로서 생존율을 나타낸 그래프이다.
이하, 본 발명의 일 구현예에 따른 생체의학적 치료용 세리아 나노복합체를 상세히 설명한다.
본 명세서에서, "잔기"란 유기화합물에서 어떤 원자단(예를 들어, 반응성 원자단)이 탈리한 후에 남은 원자단(예를 들어, 비반응성 원자단)을 의미한다.
상기 생체의학적 치료용 세리아 나노복합체는 염증성 질환 치료용 세리아 나노복합체일 수 있다.
상기 염증성 질환은 감염(infection), 균혈증(bacteremia), 패혈증(sepsis), 전신염증반응증후군(SIRS: Systemic Inflammatory Response Syndrome) 또는 이들 중 2 이상의 질환을 포함할 수 있다.
본 발명의 일 구현예에 따른 생체의학적 치료용 세리아 나노복합체는 세리아(CeO2) 나노입자 및 상기 세리아 나노입자의 표면에 배치된 표면개질층을 포함한다.
구체적으로, 상기 표면개질층은 상기 세리아 나노입자의 표면을 적어도 부분적으로 둘러싸도록 배치될 수 있다. 예를 들어, 상기 표면개질층은 상기 세리아 나노입자의 표면에 소정 간격으로 방사상으로 배치된 1종 이상의 물질로 구성된 것일 수 있다.
상기 세리아 나노입자는 항산화 및 항염증 효과가 우수하여 염증성 질환으로 인한 사망률 및 조직 손상을 감소시키는 역할을 수행한다.
상기 표면 개질층은 이를 포함하는 상기 세리아 나노복합체의 생체 적합성(biocompatibility) 및 생체안전성(biosafety)을 향상시키는 역할을 수행한다.
또한, 상기 표면 개질층은 상기 세리아 나노복합체의 전체 크기를 증가시킴으로써 상기 세리아 나노복합체가 식세포(phagocyte) 등에 의해 섭취(uptake)되지 않도록 하는 역할을 수행한다.
또한, 상기 표면 개질층은 친수성 표면을 가져서, 상기 세리아 나노복합체가 혈액내에 주사될 때 혈액내의 수분과 먼저 부착되도록 하고 혈액내의 다른 이온들과 부착되는 것을 방지함으로써, 상기 세리아 나노복합체들끼리 응집되는 것을 방지하고 상기 세리아 나노복합체의 콜로이드 안정성(colloidal stability)을 향상시키는 역할을 수행한다.
상기 표면 개질층은 폴리에틸렌글리콜 잔기를 포함한다.
상기 폴리에틸렌글리콜 잔기의 근원(origin)은 폴리에틸렌글리콜 유도체일 수 있다. 본 명세서에서, "폴리에틸렌글리콜 유도체"는 폴리에틸렌글리콜의 양말단 수소들 중의 적어도 하나가 다른 치환기(예를 들어, 알콕시기, 숙시니미딜 에스테르기)로 치환된 것을 의미한다.
상기 폴리에틸렌글리콜 유도체는 고분자 사슬 내의 에틸렌 옥사이드의 개수에 따라 약 100 내지 10,000달톤(Da)의 중량평균분자량을 가질 수 있다.
상기 폴리에틸렌글리콜 유도체는 메톡시 폴리에틸렌글리콜(PEG) 숙시니미딜 글루타레이트, 메톡시 PEG 숙시니미딜 바레이트, 메톡시 PEG 숙시니미딜 카보네이트, 메톡시 PEG 숙시니미딜 숙시네이트, 메톡시 PEG 숙시니미딜 프로피오네이트 또는 이들의 조합을 포함할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 상기 폴리에틸렌글리콜 유도체로는 후술하는 다관능성 유기 화합물과 결합될 수 있는 한 다른 다양한 화합물이 사용될 수 있다.
상기 세리아 나노입자에서 Ce3 +의 함량이 Ce4 +의 함량보다 많다. 상기 세리아 나노입자에서 Ce3 +의 함량이 Ce4 +의 함량보다 많을 경우, 상기 세리아 나노복합체의 입자크기가 감소하고, 항산화 효과 및 생체 적합성이 향상될 수 있다.
또한, 상기 표면 개질층은 서로 결합된 외층 및 내층을 포함할 수 있다.
상기 외층은 상기 폴리에틸렌글리콜 잔기를 포함할 수 있다.
상기 내층의 일단부는 상기 세리아 나노입자에 결합되고, 타단부는 상기 폴리에틸렌글리콜 잔기와 결합될 수 있다. 예를 들어, 상기 내층의 일단부는 상기 세리아 나노입자에 화학적으로 결합되고, 타단부는 상기 폴리에틸렌글리콜 잔기와 역시 화학적으로 결합(예를 들어, 공유결합)될 수 있다.
상기 내층은 다관능성 유기 화합물의 잔기를 포함할 수 있다.
상기 다관능성 유기 화합물은 상기 세리아 나노입자에 결합 가능한 제1 말단기(예를 들어, 카르복실기) 및 상기 폴리에틸렌글리콜 잔기의 근원인 폴리에틸렌글리콜 유도체(구체적으로, 숙시니미딜기)에 결합 가능한 제2 말단기(예를 들어, 아미노기)를 가질 수 있다. 본 명세서에서, "다관능성 유기 화합물"이란 2 이상의 관능기를 갖는 유기 화합물을 의미한다.
상기 다관능성 유기 화합물은 지방족 아미노 카르복실산을 포함할 수 있다.
상기 지방족 아미노 카르복실산은 6-아미노헥산산, 5-아미노펜탄산, 4-아미노부탄산, 아미노카프로산, 아미노운데칸산, 아미노라우르산, 또는 이들의 조합을 포함할 수 있다.
상기 세리아 나노복합체의 입자크기는 1nm 내지 100nm, 예를 들어, 1nm 내지 50nm, 예를 들어, 1nm 내지 5nm, 예를 들어, 1nm 내지 4nm, 예를 들어, 2nm 내지 3nm일 수 있다. 상기 세리아 나노복합체의 크기가 상기 범위(1nm 내지 100nm)이내이면, 우수한 수분산성 및 생체 적합성을 가질 수 있다. 다만, 상기 세리아 나노복합체의 입자크기가 작어질수록, 수분산성 및 생체 적합성이 향상될 수 있다.
도 1은 본 발명의 일 구현예에 따른 세리아 나노복합체(10)를 개략적으로 나타낸 도면이다.
도 1을 참조하면, 세리아 나노복합체(10)는 세리아 나노입자(11) 및 이의 표면에 배치된 표면개질층(12)을 포함한다.
표면개질층(12)은 서로 결합된 내층(12a) 및 외층(12b)을 포함한다.
내층(12a)은 세리아 나노입자(11)에 결합된 제1 말단 잔기(fg1) 및 외층(12b)에 결합된 제2 말단 잔기(fg2)를 갖는 다관능성 유기 화합물 잔기를 포함한다.
제1 말단 잔기(fg1)는 카르복실기(-COOH) 또는 이로부터 유도된 기일 수 있다.
제2 말단 잔기(fg2)는 아미노기(-NH2) 또는 이로부터 유도된 기일 수 있다.
외층(12b)은 내층(12a)에 포함된 상기 다관능성 유기 화합물 잔기의 제2 말단 잔기(fg2)와 결합된 제3 말단 잔기(fg3)를 갖는 폴리에틸렌글리콜 유도체 잔기를 포함한다.
제3 말단 잔기(fg3)는 숙시니미딜기 또는 이로부터 유도된 기일 수 있다.
본 발명의 다른 구현예는 상기 생체의학적 치료용 세리아 나노복합체를 포함하는 약학적 조성물을 제공한다.
상기 약학적 조성물은 약학적으로 허용되는 첨가제를 더 포함할 수 있고, 상기 첨가제는, 예를 들면, pH 조절제, 등장액화제, 보존제, 기타 부형제 또는 이들의 조합을 포함할 수 있다.
상기 pH 조절제는 수산화나트륨, 수산화칼륨, 탄산수소나트륨, 암모니아액, 구연산칼륨, 트리에탄올아민, 구연산나트륨 또는 이들의 조합을 포함할 수 있다.
상기 등장액화제 D-만니톨, 소르비톨 또는 이들의 조합을 포함할 수 있다.
상기 보존제는 파라옥시벤조산메틸, 파라옥시벤조산에틸, 소르브산, 페놀, 크레졸, 클로로크레졸 또는 이들의 조합을 포함할 수 있다.
상기 생체의학적 치료용 세리아 나노복합체 또는 상기 약학적 조성물의 투여경로는 정맥내 투여, 동맥내 투여, 복강내 투여, 경구 투여, 골수내 투여, 흡입 투여, 비강내 투여, 피하 투여, 뇌실질내 투여, 뇌실내 투여, 척수강내 투여, 경막외 투여 등일 수 있다.
상기 세리아 나노복합체 또는 상기 약학적 조성물의 일일 투여 용량은, 환자의 연령, 증상, 투여 제형 등에 따라 다양하게 조절 가능하다. 일례로, 상기 세리아 나노복합체 또는 상기 약학적 조성물의 일일 투여량은 0.1 내지 10 mg/kg, 예를 들어, 1 내지 2 mg/kg일 수 있다.
상기 세리아 나노복합체 또는 상기 약학적 조성물은 세포막을 통과하여 세포질 내에 효율적으로 도달해 염증성 질환 부위 및 출혈 주변 부위에서 수분량 감소, 세포사멸율 감소를 유도하여 우수한 항산화, 항염증 등의 효과를 나타낼 수 있으며, 이를 통해 생존율 향상 및 생존 개체에서의 기능적 회복 향상 효과를 나타낼 수 있다.
이하, 상기 생체의학적 치료용 세리아 나노복합체의 제조방법을 상세히 설명한다.
상기 세리아 나노복합체의 제조방법은 세륨 전구체, 다관능성 분산 안정제 및 제1 용매를 포함하는 혼합 용액을 제조하는 단계(S10), 상기 혼합 용액을 가열하여 상기 다관능성 분산 안정제가 표면에 부착된 세리아 나노입자를 제조하는 단계(S20), 및 상기 세리아 나노입자와 폴리에틸렌글리콜 유도체를 제2 용매내에서 혼합하여 상기 다관능성 분산 안정제와 상기 폴리에틸렌글리콜 유도체를 결합시켜 세리아 나노복합체를 제조하는 단계(S30)를 포함한다.
상기 단계(S30)는 세리아 나노입자의 페길레이션(PEGylation)으로 지칭될 수 있다.
상기 세륨 전구체는 세륨(III) 아세테이트 하이드레이트, 세륨(III) 아세틸아세토네이트 하이드레이트, 세륨(III) 카보네이트 하이드레이트, 세륨(IV) 하이드록사이드, 세륨(III) 플루오라이드, 세륨(IV) 플루오라이드, 세륨(III) 클로라이드, 세륨(III) 클로라이드 헵타하이드레이트, 세륨(III) 브로마이드, 세륨(III) 아이오다이드, 세륨(III) 나이트레이트 헥사하이드레이트, 세륨(III) 옥살레이트 하이드레이트, 세륨(III) 설페이트, 세륨(III) 설페이트 하이드레이트, 세륨(IV) 설페이트 또는 이들의 조합을 포함할 수 있다.
상기 다관능성 분산 안정제는 전술한 다관능성 유기 화합물과 동일한 것일 수 있다.
상기 혼합 용액의 가열은 80℃ 내지 95℃에서 0.5분 내지 8시간 동안 진행될 수 있다.
상기 단계(S10) 및 상기 단계(S20)는 세륨 전구체 및 제1 용매를 포함하는 세륨 전구체 용액을 제조하고, 다관능성 분산 안정제 및 제1 용매를 포함하는 분산 안정제 용액을 제조하고, 상기 분산 안정제 용액을 80℃ 내지 95℃로 가열하고, 상기 세륨 전구체 용액을 상기 가열된 분산 안정제 용액에 첨가한 후 1분 내지 8시간 동안 유지함으로써 수행될 수 있다.
상기 폴리에틸렌글리콜 유도체는 전술한 폴리에틸렌글리콜 유도체와 동일한 것일 수 있다.
상기 제1 용매 및 상기 제2 용매는 각각 수계 용매일 수 있다. 상기 제1 용매 및 상기 제2 용매가 각각 수계 용매일 경우, 상기 제조된 세리아 나노복합체는 독성이 거의 없거나 낮아 인체에 주입될 경우 부작용의 발생이 최소화될 수 있다.
상기 수계 용매는 물, 알코올(예를 들어, 에탄올, 메탄올, 프로판올 등) 또는 이들의 혼합물을 포함할 수 있다.
이하, 본 발명을 하기 실시예를 들어 설명하지만, 본 발명이 하기 실시예로만 한정되는 것은 아니다.
실시예
실시예 1: 세리아 나노복합체의 제조
(세리아 나노입자의 제조)
6-아미노헥산산(1.3117 g, Sigma-Aldrich, St. Louis, USA)을 탈이온수(60 mL)에 용해시킨 후 교반하면서 공기 중에서 95℃로 가열하여 제1 용액을 제조하였다. 상기 제1 용액에 37중량%의 HCl(70㎕, Duksan Pure Chemicals, South Korea)을 첨가하여 상기 제1 용액의 pH를 5.5로 조절하였다. 한편, 세륨(Ⅲ) 나이트레이트 헥사하이드레이트(Ce(NO3)3·6H2O, 1.08557 g, Alfa Aeser, Ward Hill, USA)를 실온(약 20℃)의 탈이온수(50 mL)에 용해시켜 제2 용액을 제조하였다. 이후, 상기 제2 용액을 상기 제1 용액에 첨가하여 제3 용액을 제조하였다. 이후, 상기 제3 용액의 온도를 95℃로 1분간 유지한 다음, 실온(약 20℃)으로 냉각하였다. 결과로서, 6-아미노헥산산이 표면에 결합된 세리아 나노입자를 얻었다. 이후, 상기 세리아 나노입자를 아세톤으로 3회 세척하여 미반응 물질들을 제거하였다.
(상기 세리아 나노입자의 페길레이션)
상기에서 제조된 세리아 나노입자 20mg을 탈이온수 2mL에 첨가하여 현탁액을 제조하였다. 상기 현탁액을 에탄올 40mL에 용해된 메톡시 폴리에틸렌글리콜 숙시니미딜 글루타레이트(중량평균분자량: 5,000달톤) 500mg과 혼합하였다. 상기 혼합물을 실온(약 20℃)에서 12시간 교반하여 상기 세리아 나노입자의 표면에 결합된 6-아미노헥산산의 아미노기와 상기 메톡시 폴리에틸렌글리콜 숙시니미딜 글루타레이트의 숙시니미딜기를 공유결합시켰다. 결과로서, Ce3 +의 함량이 Ce4 +의 함량보다 많은 세리아 나노복합체를 얻었다.
비교예 1: 세리아 나노복합체의 제조
(세리아 나노입자의 제조)
6-아미노헥산산(1.3117 g, Sigma-Aldrich, St. Louis, USA)을 탈이온수(60 mL)에 용해시킨 후 교반하면서 공기 중에서 95℃로 가열하여 제1 용액을 제조하였다. 상기 제1 용액에 37중량%의 HCl(7㎕, Duksan Pure Chemicals, South Korea)을 첨가하여 상기 제1 용액의 pH를 6.5로 조절하였다. 한편, 세륨(Ⅲ) 나이트레이트 헥사하이드레이트(Ce(NO3)3·6H2O, 1.08557 g, Alfa Aeser, Ward Hill, USA)를 실온(약 20℃)의 탈이온수(50 mL)에 용해시켜 제2 용액을 제조하였다. 이후, 상기 제2 용액을 상기 제1 용액에 첨가하여 제3 용액을 제조하였다. 이후, 상기 제3 용액의 온도를 95℃로 8시간 동안 유지한 다음, 실온(약 20℃)으로 냉각하였다. 결과로서, 6-아미노헥산산이 표면에 결합된 세리아 나노입자를 얻었다. 이후, 상기 세리아 나노입자를 아세톤으로 3회 세척하여 미반응 물질들을 제거하였다.
(상기 세리아 나노입자의 페길레이션)
상기에서 제조된 세리아 나노입자 20mg을 탈이온수 2mL에 첨가하여 현탁액을 제조하였다. 상기 현탁액을 에탄올 40mL에 용해된 메톡시 폴리에틸렌글리콜 숙시니미딜 글루타레이트(중량평균분자량: 5,000달톤) 500mg과 혼합하였다. 상기 혼합물을 실온(약 20℃)에서 12시간 교반하여 상기 세리아 나노입자의 표면에 결합된 6-아미노헥산산의 아미노기와 상기 메톡시 폴리에틸렌글리콜 숙시니미딜 글루타레이트의 숙시니미딜기를 공유결합시켰다. 결과로서, Ce3 +의 함량이 Ce4 +의 함량보다 적은 세리아 나노복합체를 얻었다.
비교예 2: 세리아 나노복합체의 제조
(세리아 나노입자의 제조)
세륨(Ⅲ) 나이트레이트 헥사하이드레이트(Ce(NO3)3·6H2O, 0.5 g, Alfa Aeser, Ward Hill, USA)를 실온(약 20℃)의 탈이온수(50 mL)에 용해시켜 세륨 용액을 제조하였다. 이후, 상기 세륨 용액에 29중량%의 암모늄 하이드록사이드(NH4OH, 50㎕, Sigma-Aldrich, St. Louis, USA)를 첨가하였다. 결과로서, 미정제 세리아 나노입자를 얻었다. 이후, 상기 미정제 세리아 나노입자에 과량의 NaCl(10g, Samchun, Pyeong-Taek, KOREA)를 첨가하여 미반응 물질들을 제거하였다. 결과로서, 정제된 세리아 나노입자(이하, 간단히 "세리아 나노입자"라고 함)를 얻었다.
(상기 세리아 나노입자의 페길레이션)
상기에서 제조된 세리아 나노입자 20mg을 탈이온수 2mL에 첨가하여 현탁액을 제조하였다. 상기 현탁액을 에탄올 40mL에 용해된 메톡시 폴리에틸렌글리콜 숙시니미딜 글루타레이트(중량평균분자량: 5,000달톤) 500mg과 혼합하였다. 상기 혼합물을 실온(약 20℃)에서 12시간 교반하여 상기 세리아 나노입자의 페길레이션을 진행시켰다.
평가예
평가예 1: 표면 이미지 분석
상기 실시예 1, 비교예 1 및 비교예 2에서 제조된 세리아 나노복합체의 TEM 사진을 촬영하여 도 2 내지 도 4에 각각 나타내었다. 도 2는 실시예 1에서 제조된 세리아 나노복합체의 TEM 사진이고, 도 3은 비교예 1에서 제조된 세리아 나노복합체의 TEM 사진이고, 도 4는 비교예 2에서 제조된 세리아 나노복합체의 TEM 사진이다. 여기에서 사용된 TEM 장치는 JEOL사의 JEM-3010모델이었다.
도 2를 참조하면, 상기 실시예 1에서 제조된 세리아 나노복합체는 입자크기가 작고 각 입자가 서로 분리되어 있어서 분산성이 우수한 것으로 나타났다.
도 3을 참조하면, 상기 비교예 1에서 제조된 세리아 나노복합체는 상기 실시예 1에서 제조된 세리아 나노복합체 보다 입자크기가 큰 것으로 나타났으며, 이로 인해 상기 실시예 1에서 제조된 세리아 나노복합체 보다 낮은 항산화 효과 및 낮은 생체 적합성을 나타낼 것으로 예상된다.
도 4를 참조하면, 상기 비교예 2에서 제조된 세리아 나노복합체는 페길레이션되기 전의 세리아 나노입자들이 서로 뭉쳐서 세리아 나노입자 하나 하나가 페길레이션되지 않고, 서로 뭉쳐진 세리아 나노입자들의 덩어리 전체가 페길레이션되는 것으로 나타났으며, 이로 인해 상기 비교예 1에서 제조된 세리아 나노복합체 보다 더 낮은 항산화 효과 및 낮은 생체 적합성을 나타낼 것으로 예상된다.
평가예 2: 입자크기 분포 분석
상기 실시예 1 및 비교예 2에서 제조된 세리아 나노복합체의 DLS(Dynamic light scattering) 스펙트럼을 분석하여 도 5 및 도 6에 각각 나타내었다. 도 5는 실시예 1에서 제조된 세리아 나노복합체의 DLS 스펙트럼이고, 도 6은 비교예 2에서 제조된 세리아 나노복합체의 DLS 스펙트럼이다. 여기에서 사용된 DLS 장치는 Malvern사의 Zetasizer Nano ZS 모델이었다.
도 5를 참조하면, 상기 실시예 1에서 제조된 세리아 나노복합체는 평균 입자크기가 약 10nm인 것으로 나타났다.
도 6을 참조하면, 상기 비교예 2에서 제조된 세리아 나노복합체는 평균 입자크기가 약 800nm인 것으로 나타났다.
평가예 3: 세륨의 산화상태 분석
상기 실시예 1에서 제조된 세리아 나노복합체 및 비교예 1에서 제조된 세리아 나노복합체의 XPS 스펙트럼을 X선 광전자 분광법(XPS)으로 획득하여 도 7 및 도 8에 각각 나타내었다. 도 7는 실시예 1에서 제조된 세리아 나노복합체의 XPS 스펙트럼이고, 도 8는 비교예 1에서 제조된 세리아 나노복합체의 XPS 스펙트럼이다. 여기에서 사용된 XPS 장치는 ThermoScientific사의 ESCALAB250모델이었다.
도 7를 참조하면, 상기 실시예 1에서 제조된 세리아 나노복합체에서 Ce3 +(57중량%)의 함량이 Ce4 +(43중량%)의 함량보다 많은 것으로 나타났다.
도 8를 참조하면, 상기 비교예 1에서 제조된 세리아 나노복합체에서 Ce3 +(25중량%)의 함량이 Ce4 +(75중량%)의 함량보다 적은 것으로 나타났다.
평가예 4: 항산화 효과 분석
상기 실시예 1에서 제조된 세리아 나노복합체 및 비교예 1에서 제조된 세리아 나노복합체의 항산화 효과를 Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit (A22188) (Invitrogen detection technologies, USA)를 사용하여 분석하였다. 구체적으로, 상기 실시예 1에서 제조된 세리아 나노복합체 및 비교예 1에서 제조된 세리아 나노복합체 각각에 대하여, 입자의 농도가 0μM, 50μM, 100μM 또는 250μM이고 과산화수소의 농도가 20μM인 4개의 용액을 제조하였다. 이후, 상기 각 용액을 교반하면서 1시간 동안 유지시켰다. 이후, 상기 각 용액 중의 과산화수소의 농도를 측정하여, 그 결과를 도 9에 나타내었다. 과산화수소의 농도는 형광분석 장비(ThermoScientific, Varioskan lux)를 이용하여 측정하였다.
도 9을 참조하면, 상기 실시예 1에서 제조된 세리아 나노복합체가 비교예 1에서 제조된 세리아 나노복합체에 비해 항산화 효과(즉, H2O2 제거 효과)가 우수한 것으로 나타났다.
평가예 5: 패혈증 치료 효과로서 활성산소종 ( ROS ) 제거 효과
배양한 RAW 264.7 세포를 인산완충용액(PBS: Phosphate Buffered Saline, 염화나트륨 137 mM, 인산 완충액 10 mM, 염화칼륨 2.7 mM, Amresco, USA)으로 1회 세척하고 흡인(suction)하여, 배지(fresh media) (DMEM, 10중량%의 FBS(Fetal Bovine Serum) 첨가, 1중량% 페니실린 + 스트렙토마이신 첨가)에 분주하고, 스크래퍼(scrapper)를 사용하여 수확하였다. 이후, 6-웰(well) 플레이트에 각 웰 당 2x106 개의 세포를 식종(seeding)하였다. 세포를 자극하기 위해 모든 웰에 지질다당류(lipopolysaccharide) (Sigma-Aldrich, USA) 1㎍/ml를 주입하였다. 동시에, 하기 표 1에 기재된 물질을 PBS에 0.1mM의 농도로 희석하여 얻은 희석액을 웰에 분주한 후 또는 아무런 물질도 분주하지 않은 상태에서 6시간 동안 37℃ 및 CO2 배양 조건하에서 반응시켰다. 6시간 후, 배지를 제거하고 4℃의 차가운 PBS 용액(2mL)로 세척한 다음, 다시 4℃의 차가운 PBS 용액(2mL)을 분주하여 피펫팅으로 세포를 떼어낸 뒤, 튜브에 모은 후 1200 rpm으로 3분 동안 원심분리하여 펠렛 형태의 세포 덩어리를 얻었다. 이후, 2',7'-디클로로플로리세린 디아세테이트(DCF-DA)를 37℃의 따뜻한 PBS에 최종 농도(2uM)로 묽혀 튜브 당 1mL씩 분주하여 상기 얻어진 펠렛 형태의 세포 덩어리를 분산시켜서 20분 동안 빛을 차단하여 37℃ 및 CO2 배양조건하에서 반응시켰다. 이후, 원심분리하여 펠렛 형태의 세포 덩어리를 얻은 후 이를 4℃의 차가운 PBS 용액(2mL)으로 분산시켜 1회 세척후 다시 원심분리하여 펠렛 형태의 세포 덩어리를 얻었다. 마지막으로, 요오드화프로피디움(PI, Life technologies)을 3uM 농도로 4℃의 차가운 PBS 용액에 묽힌 후 튜브 당 1.5mL씩 분주하여 상기 얻어진 펠렛 형태의 세포 덩어리를 분산시켰다. 그 후, ROS(reactive oxygen species)의 함량을 측정하기 위해 형광표지세포분류기(Fluorescence-activated cell sorting) (BD-FACSCalibur, BD Biosciences, New Jersey, US)를 이용하여 30,000개의 요오드화프로피디움(PI) 음성 세포(즉, 살아있는 세포)의 평균형광강도(mean fluoresence intensity)를 측정하여, 그 결과를 도 10에 나타내었다. 평가 결과의 신뢰성을 높이기 위하여 각 군당 4회 반복하여 실험을 진행하여, 그 평균값을 평균형광강도로 기록하였다.
도 10을 참조하면, 실시예 1이 비교예 1~2에 비해 활성산소종 제거 효과가 우수한 것으로 나타났다.
사용된 물질의 종류
실시예 1 실시예 1에서 제조된 세리아 나노복합체
비교예 1 비교예 1에서 제조된 세리아 나노복합체
비교예 2 어떠한 물질도 첨가하지 않음
평가예 6: 세리아 나노 복합체의 패혈증 치료 효과로서 조직 손상 및 염증 감소 효과
<CLP(Cecal ligation and puncture)법>
모든 실험 절차는 서울대학교 실험동물운영위원회(Seoul National University Institutional Animal Care and Use Committee)의 승인을 받았다. 생후 6주된 수컷 C57BL/6 마우스(코아텍 주식회사)에 패혈증을 일으키기 위하여 CLP법을 사용하였다. 구체적으로, C57BL/6 마우스를 이소플루란으로 마취시킨 후, 베타인 용액(10중량% 포비돈-아이오딘)으로 소독한 다음, 피부 절개를 실시하여 맹장을 노출시켰다. 이후, 6-0 실크를 사용하여 회맹판(ileocecal valve) 원위부에서 상기 맹장의 결찰(ligation)을 실시하였으며, 상기 결찰된 맹장을 26-게이지 바늘을 사용하여 천공하였다. 상기 천공은 복막으로의 배설물의 누출을 일으켰으며, 이어서 다균성의 균혈증 및 패혈증을 일으켰다.
<약물 투여>
패혈증-유발 조직 손상 및 염증 발생 정도를 하기 2개의 케이스에서 평가하였다: 비교예 2의 PBS로 처리한 C57BL/6 마우스 및 실시예 1에서 제조된 세리아 나노복합체로 처리한 C57BL/6 마우스. 비교예 2의 PBS 케이스에서, CLP법 이후 PBS 300㎕를 복강내에 투여하였다. 실시예 1에서 제조된 세리아 나노복합체 케이스에서, CLP법 이후 세리아 나노복합체 (2 mg/kg)를 복강내에 투여하였다.
<병리조직학적 분석>
CLP법을 실시한 후 8시간 경과 후에, 각각의 C57BL/6 마우스의 맹장, 위 및 간을 적출하였다. 동결 조직 절편들을 인산완충용액(PBS: Phosphate Buffered Saline)(Amresco사 제품, pH 7.1~7.3) 중의 4중량% 포르말린내에 고정시킨 후, 헤마톡실린과 에오신으로 염색하였다. 광학 현미경을 사용하여 상기 각 조직 절편의 사진을 촬영하여, 그 결과를 도 11에 나타내었다.
도 11을 참조하면, 실시예 1에서 제조된 세리아 나노복합체가 비교예 2의 PBS에 비해 맹장, 위 및 간 모두에서 조직 손상과 염증을 줄여주는 효과가 우수한 것으로 나타났다.
평가예 7: 세리아 나노 복합체의 패혈증 치료 효과로서 생존율 증가 효과
<CLP(Cecal ligation and puncture)법>
모든 실험 절차는 서울대학교 실험동물운영위원회(Seoul National University Institutional Animal Care and Use Committee)의 승인을 받았다. 생후 6주된 수컷 C57BL/6 마우스에 패혈증을 일으키기 위하여 CLP법을 사용하였다. 구체적으로, C57BL/6 마우스를 이소플루란으로 마취시킨 후, 베타인 용액(10중량% 포비돈-아이오딘)으로 소독한 다음, 피부 절개를 실시하여 맹장을 노출시켰다. 이후, 6-0 실크를 사용하여 회맹판(ileocecal valve) 원위부에서 상기 맹장의 결찰(ligation)을 실시하였으며, 상기 결찰된 맹장을 26-게이지 바늘을 사용하여 천공하였다. 상기 천공은 복막으로의 배설물의 누출을 일으켰으며, 이어서 다균성의 균혈증 및 패혈증을 일으켰다.
<사망률의 평가>
패혈증-유발 사망률을 하기 3개의 그룹에서 평가하였다: 비교예 2의 PBS로 처리한 C57BL/6 마우스 18마리, 실시예 1에서 제조된 세리아 나노복합체로 처리한 C57BL/6 마우스 15마리 및 비교예 3의 이미페넴으로 처리한 C57BL/6 마우스 15마리. 비교예 2의 PBS 그룹에서, CLP법 이후 PBS 300㎕를 복강내에 투여하였다. 실시예 1에서 제조된 세리아 나노복합체 그룹에서, CLP법 이후 세리아 나노복합체 (2 mg/kg)를 복강내에 투여하였다. 비교예 4의 이미페넴 그룹에서, CLP법 이후, 이미페넴(Prepenem®, 530/532 mg imipenem/cilastatin per vial, JW Pharmaceutical, Seoul, Korea) 500㎍을 C57BL/6 마우스가 죽지 않을 때까지 12시간마다 복강내 투여하였다. 상기 C57BL/6 마우스들을 14일 동안 관찰하였으며 24시간 마다 생존여부를 측정하여, 그 생존율 결과를 도 12에 나타내었다.
도 12를 참조하면, 상기 실시예 1에서 제조된 세리아 나노복합체를 C57BL/6 마우스에 주입한 경우의 생존율이, 상기 비교예 2의 PBS를 C57BL/6 마우스에 주입한 경우의 생존율 및 상기 비교예 4의 이미페넴을 C57BL/6 마우스에 주입한 경우의 생존율에 비해 증가한 것으로 나타났다. 상기 실시예 1, 비교예 2 및 비교예 4에서는 상술한 바와 같이 다수개의 C57BL/6 마우스를 대상으로 실험하여, 그 평균값을 생존율로 표시하였다.
본 발명은 도면 및 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 구현예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (7)

  1. 세리아 나노입자 및 상기 세리아 나노입자의 표면에 배치된 표면개질층을 포함하고,
    상기 표면 개질층은 폴리에틸렌글리콜 잔기를 포함하고,
    상기 세리아 나노입자에서 Ce3 +의 함량이 Ce4 +의 함량보다 많은 생체의학적 치료용 세리아 나노복합체.
  2. 제1항에 있어서,
    상기 표면개질층은, 상기 폴리에틸렌글리콜 잔기를 포함하는 외층 및 일단부가 상기 세리아 나노입자에 결합되고 타단부가 상기 폴리에틸렌글리콜 잔기와 결합된 내층을 포함하는 생체의학적 치료용 세리아 나노복합체.
  3. 제1항에 있어서,
    상기 내층은 다관능성 유기 화합물의 잔기를 포함하고, 상기 다관능성 유기 화합물은 상기 세리아 나노입자에 결합 가능한 제1 말단기 및 상기 폴리에틸렌글리콜 잔기의 근원인 폴리에틸렌글리콜 유도체에 결합 가능한 제2 말단기를 갖는 생체의학적 치료용 세리아 나노복합체.
  4. 제3항에 있어서,
    상기 다관능성 유기 화합물은 지방족 아미노 카르복실산을 포함하는 생체의학적 치료용 세리아 나노복합체.
  5. 제3항에 있어서,
    상기 폴리에틸렌글리콜 유도체는 메톡시 PEG 숙시니미딜 글루타레이트, 메톡시 PEG 숙시니미딜 바레이트, 메톡시 PEG 숙시니미딜 카보네이트, 메톡시 PEG 숙시니미딜 숙시네이트, 메톡시 PEG 숙시니미딜 프로피오네이트 또는 이들의 조합을 포함하는 생체의학적 치료용 세리아 나노복합체.
  6. 제1항에 있어서,
    상기 세리아 나노복합체의 입자크기는 1nm 내지 100nm인 생체의학적 치료용 세리아 나노복합체.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 생체의학적 치료용 세리아 나노복합체를 포함하는 약학적 조성물.
PCT/KR2017/000353 2016-12-29 2017-01-11 생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물 WO2018124363A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/474,049 US11246944B2 (en) 2016-12-29 2017-01-11 Ceria nanocomposite for biomedical treatment and pharmaceutical composition containing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160182978 2016-12-29
KR10-2016-0182978 2016-12-29
KR10-2017-0001312 2017-01-04
KR1020170001312A KR101782622B1 (ko) 2017-01-04 2017-01-04 생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물

Publications (1)

Publication Number Publication Date
WO2018124363A1 true WO2018124363A1 (ko) 2018-07-05

Family

ID=62709384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000353 WO2018124363A1 (ko) 2016-12-29 2017-01-11 생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물

Country Status (2)

Country Link
US (1) US11246944B2 (ko)
WO (1) WO2018124363A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11123301B2 (en) 2016-10-21 2021-09-21 Cenyx Biotech Inc. Ceria nanocomposite comprising ceria nanoparticle for treating subarachnoid hemorrhage, method for preparing same, and pharmaceutical composition
CN114259503A (zh) * 2021-12-28 2022-04-01 厦门海强生科技有限公司 一种人用聚维酮碘溶液及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130114469A (ko) * 2012-04-09 2013-10-17 서울대학교산학협력단 세리아 나노복합체와 이를 포함하는 약학 조성물 및 이들의 제조 방법
US20140271899A1 (en) * 2013-03-14 2014-09-18 Peroxyium, Inc., Delaware C Corp. Method of enhancing the biodistribution and tissue targeting properties of therapeutic ceco2 particles via nano-encapsulation and coating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040242729A1 (en) 2003-05-30 2004-12-02 3M Innovative Properties Company Stabilized particle dispersions containing surface-modified inorganic nanoparticles
US7888119B2 (en) * 2005-10-14 2011-02-15 University Of Central Florida Research Foundation, Inc. Tissue substitutes comprising stem cells and reduced ceria
WO2012036786A1 (en) * 2010-09-17 2012-03-22 University Of L'aquila Nanoparticles of cerium oxide targeted to an amyloid-beta antigen of alzheimer's disease
CN106456723B (zh) * 2014-04-29 2021-03-09 康达医药科技有限公司 采用精氨酸酶i调节免疫系统的方法和组合物
US11123301B2 (en) 2016-10-21 2021-09-21 Cenyx Biotech Inc. Ceria nanocomposite comprising ceria nanoparticle for treating subarachnoid hemorrhage, method for preparing same, and pharmaceutical composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130114469A (ko) * 2012-04-09 2013-10-17 서울대학교산학협력단 세리아 나노복합체와 이를 포함하는 약학 조성물 및 이들의 제조 방법
US20140271899A1 (en) * 2013-03-14 2014-09-18 Peroxyium, Inc., Delaware C Corp. Method of enhancing the biodistribution and tissue targeting properties of therapeutic ceco2 particles via nano-encapsulation and coating

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM, TAEHO: "Mesoporous silica-coated luminescent Eu3+ doped Gd04 nanoparticles for multimodal imaging and drug delivery", RSC ADVANCES, vol. 4, no. 86, 2014, pages 45687 - 45695, XP055605864 *
KORSVIK, CASSANDRA: "Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles", CHEMICAL COMMUNICATIONS, vol. 10, 2007, pages 1056 - 1058, XP055612949 *
YU , TAEKYUNG: "Aqueous-phase synthesis of single-crystal ceria nanosheets", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 49, no. 26, 2010, pages 4484 - 4487, XP055605859 *

Also Published As

Publication number Publication date
US11246944B2 (en) 2022-02-15
US20190381187A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
ES2575908T3 (es) Composiciones farmacéuticas antibacterianas
US9913862B2 (en) Methods of treating gram-negative microbial infections
ITBO930099A1 (it) Uso di rifaximin e di formulazioni che la contengono nel trattamento delle dispepsie gastriche originate da helicobacter pylori
WO2018074641A1 (ko) 세리아 나노입자를 포함하는 지주막하출혈 치료용 세리아 나노복합체와 그의 제조방법, 및 약학적 조성물
Rajinikanth et al. Formulation and evaluation of clarithromycin microspheres for eradication of Helicobacter pylori
ES2803556T3 (es) Compuestos para el tratamiento de enfermedades asociadas a clostridium difficile
WO2018124363A1 (ko) 생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물
WO2011049327A2 (en) A skin external composition comprising a salt and sugar as active ingredients for preventing and treating vaginosis and the use thereof
WO2023014113A1 (ko) 안구건조증 치료를 위한 레코플라본 함유 점안 조성물
WO2022260366A1 (ko) 프러시안 블루/폴리비닐피롤리돈 나노입자 복합체 및 이의 용도
TW477707B (en) Pharmaceutical compositions for treating or preventing systemic bacterial diseases in mammals
US20070021508A1 (en) Method for treatment of Helicobacter pylori infection and/or an associated disease
KR101782622B1 (ko) 생체의학적 치료용 세리아 나노복합체 및 이를 포함하는 약학적 조성물
US6426369B1 (en) Oxethazaine as antimicrobial agent
US20210393666A1 (en) Methods and compositions for treating oral mucositis
JPH06506939A (ja) 血小板由来の成長因子に依る消化管潰瘍の治療方法
EP2035020A2 (en) Pharmaceutical composition for injectional, particularly targeted local administration
ITRM20100274A1 (it) Composizioni per il trattamento della infezione da helicobacter pylori.
WO2021261941A1 (ko) 기능화된 전이금속 디칼코게나이드를 포함하는 패혈증 예방 또는 치료용 약학적 조성물
WO2009103209A1 (zh) 一种稳定的s-(-)-那氟沙星l-精氨酸盐组合物、其制备方法及用途
WO2021194287A1 (ko) 신규한 산화 세륨 나노 복합체 및 이의 용도
WO2019104213A1 (en) Antibiofilm formulations and use thereof
WO2022245032A1 (ko) 염증성 질환 또는 감염성 질환의 예방 또는 치료용 광반응성 마이셀 복합체
WO2018235976A1 (ko) 세리아-지르코니아 고용체 나노입자와 세리아-지르코니아 나노복합체의 합성 및 이의 패혈증 치료제로서의 응용
AU2020397005A1 (en) New multi-functional oligopeptides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 13/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17889266

Country of ref document: EP

Kind code of ref document: A1