WO2018124236A1 - 難治性心疾患治療用医薬組成物 - Google Patents

難治性心疾患治療用医薬組成物 Download PDF

Info

Publication number
WO2018124236A1
WO2018124236A1 PCT/JP2017/047100 JP2017047100W WO2018124236A1 WO 2018124236 A1 WO2018124236 A1 WO 2018124236A1 JP 2017047100 W JP2017047100 W JP 2017047100W WO 2018124236 A1 WO2018124236 A1 WO 2018124236A1
Authority
WO
WIPO (PCT)
Prior art keywords
administration
pharmaceutical composition
inhibitor
group
composition according
Prior art date
Application number
PCT/JP2017/047100
Other languages
English (en)
French (fr)
Inventor
芳樹 澤
繁 宮川
芳紀 酒井
裕啓 柳
Original Assignee
国立大学法人大阪大学
株式会社カルディオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 株式会社カルディオ filed Critical 国立大学法人大阪大学
Priority to EP17885962.5A priority Critical patent/EP3569249A4/en
Priority to JP2018559613A priority patent/JPWO2018124236A1/ja
Priority to US16/474,142 priority patent/US20190343841A1/en
Publication of WO2018124236A1 publication Critical patent/WO2018124236A1/ja
Priority to US15/929,975 priority patent/US20200360391A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/235Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
    • A61K31/24Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/235Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
    • A61K31/24Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
    • A61K31/245Amino benzoic acid types, e.g. procaine, novocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4174Arylalkylimidazoles, e.g. oxymetazolin, naphazoline, miconazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4409Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 4, e.g. isoniazid, iproniazid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4418Non condensed pyridines; Hydrogenated derivatives thereof having a carbocyclic group directly attached to the heterocyclic ring, e.g. cyproheptadine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • A61K31/558Eicosanoids, e.g. leukotrienes or prostaglandins having heterocyclic rings containing oxygen as the only ring hetero atom, e.g. thromboxanes
    • A61K31/5585Eicosanoids, e.g. leukotrienes or prostaglandins having heterocyclic rings containing oxygen as the only ring hetero atom, e.g. thromboxanes having five-membered rings containing oxygen as the only ring hetero atom, e.g. prostacyclin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/34Oxygen atoms in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/28Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/30Oxygen atoms, e.g. delta-lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/04Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
    • C07D473/06Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3
    • C07D473/08Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3 with methyl radicals in positions 1 and 3, e.g. theophylline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to a pharmaceutical composition for treating refractory heart disease.
  • DCM Dilated cardiomyopathy
  • ARB angiotensin II receptor blockers
  • ACE inhibitors ACE inhibitors
  • diuretics diquitaris
  • antialdosterone drugs and oral cardiotonic drugs
  • LVAD Assisted artificial heart
  • LVAD is performed as a waiting treatment for patients who are eligible for heart transplantation, but there is a high risk of complications (cerebral infarction, infection, etc.), and many patients die on waiting.
  • LVAD Assisted artificial heart
  • myocardial infarction associated with coronary atherosclerosis is one of the three major diseases in Japan.
  • Japan where an aging society is unparalleled in the world, the number of patients is expected to increase further in the future. ing.
  • the “Patient Survey” by the Ministry of Health, Labor and Welfare 756,000 cases of ischemic heart disease, 558,000 cases of angina pectoris, 41,000 cases of acute myocardial infarction, and 110,000 cases of old myocardial infarction were reported in 2011.
  • specific figures for ischemic cardiomyopathy are not shown, it is thought to account for about 10-20% of old myocardial infarction.
  • Ischemic cardiomyopathy is an intractable disease with a high incidence of progressive and poor prognosis that is expected to increase in the future.
  • non-invasive treatment centering on drug treatment and revascularization are performed as standard treatments, both are not definitive treatments, and the development of new treatments with a different approach from conventional treatments is desired. Yes.
  • Ischemic cardiomyopathy is a pathological condition in which left ventricular wall motion is severely reduced due to coronary sclerosis, resulting in extensive myocardial ischemia or myocardial infarction, and chronic congestive heart failure.
  • the Guidelines for Implantable Assisted Artificial Heart Treatment for Severe Heart Failure 2013 states that ischemic cardiomyopathy is a disease state with extensive myocardial infarction and multivessel lesions, abnormal wall motion, and highly impaired cardiac function. Is defined.
  • the contraction function and dilatation function of the left ventricle are reduced, resulting in pulmonary congestion due to a decrease in cardiac output and an increase in left ventricular end-diastolic pressure.
  • the left ventricle expands in compensatory manner, and this progresses to a progressive expansion and deterioration of the function of the left ventricle called left ventricular remodeling.
  • the standard treatment for ischemic cardiomyopathy is a combination of non-invasive treatment and invasive treatment.
  • Non-invasive treatment is centered on drug therapy, and ⁇ blockers, angiotensin II receptor antagonists (ARB), angiotensin converting enzyme (ACE) inhibitors, antiplatelet drugs, nitrate drugs, and Ca antagonists are widely used.
  • cardiac rehabilitation and adaptive assisted ventilation (ASV) are also used.
  • invasive treatment is centered on coronary artery bypass surgery and percutaneous coronary angioplasty, but these indications have central severe stenosis or occlusion lesions and have sufficient perfusion area on the periphery Limited to cases.
  • Non-patent Document 1 a treatment method in which a self-skeletal myoblast sheet is attached to a heart for patients with severe cardiomyopathy.
  • Etc. has been approved.
  • this treatment method is an angiogenesis / myocardial regeneration effect by various body regeneration factors (HGF, VEGF, SDF-1, etc.) secreted from the cell sheet (Non-patent Document 2).
  • ONO-1301 ((E)-[5- [2- [1-phenyl-1- (3-pyridyl) methylideneamino] as a low molecular weight synthetic compound having a new mechanism of action. Oxy] ethyl] -7,8-dihydronaphthalen-1-yloxy] acetic acid). That is, ONO-1301, which is an oxime derivative, was originally found as a prostaglandin (PG) I2 receptor agonist and was developed as an oral antithrombotic drug (Patent Document 1). Development, diarrhea, etc.) and its effectiveness (platelet aggregation inhibitory action) were narrowly discontinued. *
  • prostaglandin (PG) I2 receptor (IP) agonists examples include ONO-1301, beraprost, selexipag (NS-304), etc. It acts on fibroblasts, etc. at a concentration lower than the concentration shown by the above, and various body regeneration factors such as hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF-1) , And high mobility group box protein1 (HMGB1), fibroblast growth factor (a / bFGF), epidermal growth factor (EGF), hypoxia inducing factor (HIF), granulocyte colony stimulating factor (G-CSF), etc.
  • HGF hepatocyte growth factor
  • VEGF vascular endothelial growth factor
  • SDF-1 stromal cell-derived factor
  • HMGB1 high mobility group box protein1
  • fibroblast growth factor a / bFGF
  • EGF epidermal growth factor
  • HIF hypoxia inducing factor
  • Patent Document 2 As a regenerative drug, a new indication including refractory heart disease was found (Patent Document 2). This is because PGI2 and PGE2 are involved in the initial stage of the wound healing process associated with inflammation, ischemia and the like. In other words, it is suggested that cyclooxygenase (COX II) is induced in the ischemic and inflamed sites, and that PGs (PGI2, PGE2, etc.) are biosynthesized to induce many in vivo regenerative factors and wound healing. ing.
  • COX II cyclooxygenase
  • Non-Patent Document 3 a doctor-initiated clinical trial is conducted for ischemic cardiomyopathy and dilated cardiomyopathy as a body-guided cardiac regeneration therapy Medium.
  • Non-Patent Document 3 The present inventors have also developed a disease local specific liposome nanosphere preparation containing ONO-1301 and the like.
  • the present inventors are also planning a clinical trial with iPS cardiomyocyte sheet cardiac patch therapy.
  • these cell therapies and cardiac patch administration methods can be expected to have selective effects because they are locally administered to the heart, there are many problems in invasiveness, economy, safety, versatility and the like.
  • YS-1402 formulation was administered intravenously in a small amount to accumulate YS-1402 formulation in the lungs, and the drug was gradually released in the lungs to maintain a high drug concentration in the lungs.
  • a pulmonary disease site-specific therapeutic agent (Patent Document 5) is known.
  • Patent Document 5 A pulmonary disease site-specific therapeutic agent
  • this method has a problem of safety because there is a concern that pulmonary embolism may occur due to a large dose.
  • Patent No. 2691679 WO2004 / 032965 WO2008 / 047863 WO2014 / 046065 WO2014 / 069401
  • the present inventor has made refractory heart by early treatment intervention with non-invasive and versatile administration methods such as oral administration and intermittent subcutaneous administration instead of cell sheet therapy with LVAD attachment, heart transplantation, and thoracotomy.
  • non-invasive and versatile administration methods such as oral administration and intermittent subcutaneous administration instead of cell sheet therapy with LVAD attachment, heart transplantation, and thoracotomy.
  • cardiovascular / myocardial regenerative therapies with the aim of suppressing the severity of disease and delaying and avoiding LVAD and heart transplantation
  • several new compounds have been found that are effective against this disease when administered in safe amounts.
  • the present inventors have used “metabolome / proteosome pathological analysis” and “development of drug discovery screening system using disease-specific iPS cells” and “iPS cell-derived myocardial cells in cardiovascular diseases” for patients with refractory heart disease.
  • the spontaneously expanded cardiomyopathy hamster model, rat coronary artery ischemia model, and canine rapid pacing dilated cardiomyopathy model centered on several drugs selected from the viewpoint of drug repositioning
  • some pharmaceuticals were effective at their safe doses. Since these selected pharmaceuticals have no antihypertensive action, ⁇ -blockers, angiotensin converting enzyme (ACE) inhibitors, and angiotensin II receptor antagonists currently used as antihypertensive therapeutic agents for heart failure ( This is revolutionary in that it can be used in combination with ARB).
  • ACE angiotensin converting enzyme
  • Selected mechanisms of action include: protease inhibitors, thromboxane A 2 biosynthetic enzyme inhibitors, and antagonists thereof, phosphodiesterase (PDE) inhibitors, kinase inhibitors, HMG-CoA reductase inhibitors, and Antifibrotic agents and the like are included.
  • PDE inhibitors include non-selective PDE inhibitors, PDEIII inhibitors, PDEV inhibitors, and the like
  • kinase inhibitors include tyrosine kinase inhibitors.
  • the present inventors newly produced a microsphere preparation in which these selected drugs are encapsulated in a biodegradable polymer.
  • These can show intravenous infusion-like blood kinetics stably for a long period of time by subcutaneous administration or intramuscular administration once a week to 3 months.
  • these preparations are more convenient for intermittent administration, show blood kinetics similar to intravenous infusion, avoid side effects in avoiding high blood concentrations, and maintain long-lasting blood kinetics. Expected to sustain the effect.
  • the present invention is a treatment target disease of refractory heart tissue fibrosis associated with chronic heart failure is dilated cardiomyopathy, ischemic cardiomyopathy, myocardial infarction, angina, arteriosclerosis, vasculitis syndrome, myocarditis, Hypertrophic cardiomyopathy, aortic stenosis, valvular disease, aortic regurgitation, HFpEF (heart failure with preserved ejection fraction), diastolic failure, systolic failure, supraventricular tachyarrhythmia, congestive heart failure, coronary artery disease, idiopathic It is an object of the present invention to provide a pharmaceutical composition effective for the treatment of intractable cardiac tissue fibrosis, which is diabetic cardiomyopathy and atrial fibrillation.
  • the object of the present invention is to provide an antihypertensive agent currently used as a chronic heart failure drug by non-invasively administering selected existing pharmaceuticals that do not exhibit an antihypertensive action as an early therapeutic intervention.
  • New epoch-making heart tissue fibrosis aimed at delaying and avoiding artificial heart attachment and heart transplantation by providing versatile drugs that can be used in combination with ACE inhibitors, ARBs and ⁇ -blockers It is to provide a remedy for the disease.
  • the present inventors have selected about 2,000 kinds of about 16,000 kinds of pharmaceuticals marketed in Japan, and have made intensive studies on pathological analysis for heart diseases and in vitro systems using iPS cells and the like. As a result, some pharmaceuticals have angiogenesis, anti-fibrotic, anti-apoptotic, cytoprotective, reverse remodeling, mesenchymal stem cell differentiation / induction, in vivo regeneration factor induction, anti-inflammation It was found that the action, the circulatory improvement action, etc. are effective against heart diseases. Using these as Merckmar, in vitro search screening for drugs for treating heart disease was conducted.
  • Newly effective pharmaceuticals are: (1) protease inhibitors, (2) phosphodiesterase (PDE) inhibitors, (3) tyrosine kinase inhibitors, (4) thromboxane (TX) A 2 biosynthetic enzymes Inhibitors, (5) HMG-CoA reductase inhibitors, and (6) antifibrotic agents.
  • PDE phosphodiesterase
  • TX thromboxane
  • a 2 biosynthetic enzymes Inhibitors (5) HMG-CoA reductase inhibitors
  • antifibrotic agents e.g., antifibrotic agents.
  • Prostaglandin IP receptor agonists showed similar effects, but these are known drugs already discovered by the present inventors (Patent Document 2).
  • a microsphere (MS) preparation in which these discovered drug groups are encapsulated in a biodegradable polymer lactic acid-glycolic acid copolymer (PLGA) is less than 1/10 of the total oral dose. It is epoch-making to show an effect in the subcutaneous injection or intramuscular administration for about once every 2 weeks to 3 months.
  • a pharmaceutical composition used for the prevention and / or treatment of intractable cardiac tissue fibrosis associated with chronic heart failure comprising a protease inhibitor.
  • the pharmaceutical composition according to [1] comprising a thromboxane A 2 biosynthesis enzyme inhibitor and / or an antagonist thereof.
  • the pharmaceutical composition according to [1], comprising a phosphodiesterase (PDE) inhibitor.
  • PDE phosphodiesterase
  • the pharmaceutical composition according to [1] comprising a tyrosine kinase inhibitor.
  • the pharmaceutical composition according to [1] comprising an HMG-CoA reductase inhibitor.
  • composition according to [1] comprising an antifibrotic agent.
  • an antifibrotic agent comprising an antifibrotic agent.
  • Consisting of a protease inhibitor, a thromboxane A 2 biosynthetic enzyme inhibitor and its antagonist, a phosphodiesterase (PDE) inhibitor, a tyrosine kinase inhibitor, an HMG-CoA reductase inhibitor, and an antifibrotic agent comprising at least two selected from the group.
  • composition comprising at least one selected from the group consisting of the following compounds (1) to (6) and salts thereof: (1) As a protease inhibitor, camostat; (2) As thromboxane A 2 synthase inhibitor, ozagrel; (3) Theophylline, cilostazol and sildenafil as phosphodiesterase inhibitors; (4) Nintedanib as a tyrosine kinase inhibitor; (5) Lovastatin as an HMG-CoA reductase inhibitor; and (6) Pirferidone as an antifibrotic agent.
  • compounds (1) to (6) and salts thereof (1) As a protease inhibitor, camostat; (2) As thromboxane A 2 synthase inhibitor, ozagrel; (3) Theophylline, cilostazol and sildenafil as phosphodiesterase inhibitors; (4) Nintedanib as a tyrosine kinase inhibitor; (5) Lovastatin as an HMG-CoA reduct
  • the biodegradable polymer is a lactic acid-glycolic acid copolymer and is a microsphere preparation.
  • the pharmaceutical composition according to item 11 comprising at least one selected from the group consisting of the following compounds (1) to (5) and salts thereof: (1) As a protease inhibitor, camostat; (2) As thromboxane A 2 synthase inhibitor, ozagrel; (3) Cilostazol and sildenafil as phosphodiesterase inhibitors; (4) Nintedanib as a tyrosine kinase inhibitor; (5) Pirferidone as an antifibrotic agent.
  • intravenous administration, intracoronary administration, inhalation, intramuscular administration, subcutaneous administration, transmucosal administration, transdermal administration, or cardiac patch administration [1] The pharmaceutical composition according to any one of to [13].
  • Refractory heart tissue fibrosis associated with chronic heart failure is dilated cardiomyopathy, ischemic cardiomyopathy, myocardial infarction, angina, arteriosclerosis, vasculitis syndrome, myocarditis, hypertrophic cardiomyopathy, aorta Valve stenosis, valvular disease, aortic regurgitation, heart failure with preserved ejection fraction (HFpEF), diastolic failure, systolic failure, supraventricular tachyarrhythmia, congestive heart failure, coronary artery disease, idiopathic cardiomyopathy, or atrium
  • the pharmaceutical composition according to any one of [1] to [14], which is fibrillation.
  • the group of compounds typified by pharmaceuticals having six types of mechanisms of action may be the same type of pharmaceuticals already on the market, or new compounds having the same mechanism of action that will be developed in the future.
  • a preparation containing these compounds may be a commercial preparation or a new preparation.
  • the new preparation may be an improved oral preparation or a combination preparation, a sustained release microsphere preparation containing a biodegradable polymer in various production methods, a nanosphere preparation, or the like.
  • the drugs of the present invention containing various kinds of these may be oral administration, intravenous administration, intraarterial administration, intramuscular administration, subcutaneous administration, inhalation administration, patch administration, ointment, etc.
  • These six types of pharmaceuticals are, as a rule, therapeutic agents currently used as antihypertensive agents, such as ⁇ -blockers, ARBs, and ACE inhibitors. It is preferably administered in combination with a diuretic. In addition, among 6 types, it is preferable to administer one or more types in combination as long as the effect can be expected and side effects do not occur. In addition to the convenience of administration and the effect-enhancing action, in addition to the currently used antihypertensive drugs, it is also possible to prepare and use a combination with two or more kinds of pharmaceuticals having six types of action mechanisms. Good.
  • Proteolytic enzyme inhibitors mainly include serine protease, cysteine protease, metalloprotease, aspartic protease, and the like.
  • camostat mesylic acid is used as an oral agent for the relief of acute symptoms in chronic pancreatitis and postoperative reflux esophagitis.
  • Camostat has a strong inhibitory action on trypsin, plasma kallikrein, plasmin, thrombin, prostasin, C1r-, C1 esterase.
  • the inhibitory action against pancreatin and pancreatic kallikrein is weak and does not show any inhibitory action against ⁇ -chymotrypsin, pepsin, bromelain, seratiopeptidase, and elastase 5 (in vitro).
  • gabexate mesylate is a disease with proteolytic enzyme (trypsin, kallikrein, plasmin, etc.) deviation (acute pancreatitis, acute exacerbation of chronic recurrent pancreatitis, postoperative acute pancreatitis), and generalized Used as vascular blood coagulation (DIC).
  • This drug inhibits trypsin, kallikrein (kinin system), thrombin (coagulation system), activated factor X (coagulation system), plasmin (fibrinolytic system), C1-esterase (complement system), etc. (in vitro).
  • Nafamostat mesilate improves acute symptoms of pancreatitis, generalized intravascular blood coagulation (DIC), and prevents coagulation of perfused blood during extracorporeal circulation in patients with bleeding lesions or bleeding tendency in use.
  • This agent is used for blood coagulation / fibrinolytic system (thrombin, XIIa, Xa, VIIa, plasmin), kallikrein-kinin system (kallikrein), complement system (C1r, C1s, B, D) and pancreatic enzyme (trypsin, pancreatic kallikrein). It has a strong inhibitory action (in vitro).
  • sivelestat sodium hydrate is used as a neutrophil elastase inhibitor as an remedy for acute lung injury associated with systemic inflammatory response syndrome (SIRS).
  • SIRS systemic inflammatory response syndrome
  • serine protease inhibitors and elastase inhibitors are effective against heart disease, and plasmin inhibitors, plasma kallikrein inhibitors, thrombin inhibitors, prostasin inhibitors, and elastase inhibitors are particularly effective. It turned out that.
  • An inhibitor selective to these target proteolytic enzymes may be used, and even if it has an inhibitory action on a plurality of proteolytic enzymes, it is effective.
  • camostat mesylate which mainly inhibits serine protease, was studied as a representative (see Examples). However, it may be a known inhibitor, and it will be developed against these proteases to be developed in the future. It may be an inhibitor.
  • biodegradable polymer-encapsulated sustained-release preparations are also effective, and in particular, a lactic acid-glycolic acid copolymer (PLGA) microsphere (MS) preparation of camostat mesylate and sivelestat sodium hydrate Is effective.
  • PLGA lactic acid-glycolic acid copolymer
  • MS microsphere
  • Phosphodiesterase (PDE) inhibitor Phosphodiesterase (PDE) is an enzyme that regulates intracellular signal transduction by hydrolyzing the intracellular second messengers cAMP and cGMP to 5'-AMP and 5'-GMP, respectively. .
  • PDE1 to PDE11 are enzymes that regulates intracellular signal transduction by hydrolyzing the intracellular second messengers cAMP and cGMP to 5'-AMP and 5'-GMP, respectively.
  • 21 types of PDE genes have been cloned, and these have been classified into 11 families (PDE1 to PDE11) based on amino acid sequence homology, biochemical properties, and differences in sensitivity to inhibitors.
  • Theophylline and aminophylline are used as non-selective PDE inhibitors for bronchial asthma, asthmatic (like) bronchitis, chronic bronchitis, and emphysema.
  • Cilostazol is a PDEIII inhibitor and, as an oral agent, improves ischemic symptoms such as ulcers, pain and coldness based on chronic arterial occlusion, and after the onset of cerebral infarction (excluding cardiogenic cerebral embolism) Used as a recurrence inhibitor.
  • amrinone, milrinone, and olprinone hydrochloride hydrate are also selective PDEIII inhibitors and are used as acute heart failure drugs as injections.
  • Sildenafil citrate is a PDEV inhibitor and is used as a treatment for erectile dysfunction.
  • PDEIV inhibitors are being investigated as drugs for atopic dermatitis and chronic obstructive pulmonary disease (COPD).
  • COPD chronic obstructive pulmonary disease
  • the present invention was evaluated using theophylline as a non-selective PDE inhibitor, cilostazol as a PDEIII inhibitor, and sildenafil citrate as a PDEV inhibitor as representatives of each (see Examples). These are also used as acute heart failure and cardiotonic agents, but are not used as therapeutic agents for cardiac tissue fibrosis such as dilated cardiomyopathy treatment agents.
  • the PDE inhibitor may be a known inhibitor or an inhibitor for PDE that will be developed in the future.
  • biodegradable polymer-encapsulated sustained-release preparations are also effective, and in particular, sildenafil citrate, theophylline and cilostazol lactic acid-glycolic acid copolymer (PLGA) microsphere (MS) preparations are effective. is there.
  • Tyrosine kinase inhibitors Tyrosine kinase type receptors are growth factor receptors. Phosphorylation of tyrosine in amino acids that can be phosphorylated (serine, threonine, tyrosine) advances signal transduction and proliferates cells. If this signal transduction system is inhibited, cell proliferation can be suppressed. There are many types of tyrosine kinase enzymes, all of which have a role in altering tyrosine proteins (autophosphorylation).
  • tyrosine kinases are abnormally activated, and the altered protein tyrosine binds to intracellular signaling substances, causing cell proliferation, invasion, metastasis, angiogenesis, etc. It is believed that. Therefore, many tyrosine kinase inhibitors have been developed as anticancer agents.
  • Gefitinib non-small cell lung cancer
  • erlotinib hydrochloride lung cancer, pancreatic cancer
  • afatinib-maleate non-small cell lung cancer
  • osmeltinib non-small cell lung cancer
  • nintedanib ethanesulfonate is used for idiopathic pulmonary fibrosis.
  • nintedanib ethane sulfonate see Examples
  • An agent may be used.
  • biodegradable polymer-encapsulated sustained-release preparations are also effective, and in particular, a lactic acid-glycolic acid copolymer (PLGA) microsphere (MS) preparation of nintedanib ethane sulfonate is effective. .
  • PLGA lactic acid-glycolic acid copolymer
  • MS microsphere
  • TXA 2 is produced mainly by platelets and is a substance that causes platelet aggregation, vascular permeability enhancement, and vascular wall contraction.
  • TXA 2 has an action opposite to that of PGI2 produced mainly in vascular endothelial cells.
  • PGI2 has a platelet aggregation inhibitory action and vasodilating action and the like, by a balance between TXA 2 and PGI2, is maintained homeostasis.
  • biodegradable polymer-encapsulated sustained-release preparations are also effective, and in particular, ozagrel hydrochloride, ozagrel sodium, and seratrodust lactic acid-glycolic acid copolymer (PLGA) microsphere (MS) preparations are effective. .
  • Ozagrel hydrochloride (oral) inhibits TXA 2 biosynthetic enzyme and suppresses the production of TXA 2 to suppress bronchial asthma.
  • Ozagrel sodium (intravenous) is cerebral vasospasm after subarachnoid hemorrhage and It is used as an agent for improving the cerebral ischemic symptoms accompanying this and the movement disorder associated with cerebral thrombosis (acute stage).
  • Seratrodast and ramatroban are used as drugs for bronchial asthma or allergic rhinitis by antagonistically inhibiting the thromboxane A 2 receptor.
  • evaluation was made using ozagrel hydrochloride (see Examples). However, it may be a known inhibitor or antagonist, or an inhibitor or antagonist developed in the future. There may be.
  • HMG-CoA reductase inhibitors reduce the biosynthesis of cholesterol in the liver by inhibiting the action of HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway.
  • HMG-CoA reductase the rate-limiting enzyme of the mevalonate pathway.
  • LDL receptor expression in the liver is increased to maintain cholesterol homeostasis, and LDL cholesterol uptake from blood to the liver is promoted.
  • LDL causes atherosclerosis by forming an atheroma in the blood vessel wall.
  • VLDL secretion into the blood also decreases, resulting in a decrease in plasma triglyceride levels.
  • HMG-CoA reductase inhibitors As HMG-CoA reductase inhibitors, rosuvastatin, pitavastatin, atorvastatin, cerivastatin, fluvastatin, simvastatin, pravastatin, lovastatin and the like are used as hypercholesterolemia and familial hypercholesterolemia drugs.
  • lovastatin see Examples, but it may be an already known inhibitor or an inhibitor developed in the future.
  • biodegradable polymer-encapsulated sustained-release preparations are also effective, especially atorvastatin, pravastatin, fluvastatin and lovastatin lactic acid-glycolic acid copolymer (PLGA) microsphere (MS) preparations It is.
  • Piruferidon As an agent antifibrotic agents idiopathic pulmonary fibrosis, Piruferidon are commercially available. Pirferidone has been shown to exhibit various pharmacological actions such as anti-fibrotic action, anti-inflammatory action and antioxidant action in addition to anti-fibrotic action, but the mechanism of action is still unclear.
  • TGF- ⁇ Transforming Growth Factor- ⁇
  • IFN interferon
  • pirferidone As a representative (see Examples), but it may be a known antifibrotic agent or may be an antifibrotic agent developed in the future. .
  • anti-fibrotic agents associated with induction of regenerative factors in the body include AT1 receptor antagonist (ARB), There are peroxisome proliferator-activated receptor gamma (PPAR ⁇ ) agonists, IL-1, TNF- ⁇ , INF and the like.
  • ARB AT1 receptor antagonist
  • PPAR ⁇ peroxisome proliferator-activated receptor gamma
  • biodegradable polymer-encapsulated sustained-release preparations are also effective, especially atorvastatin, pravastatin, fluvastatin and lovastatin lactic acid-glycolic acid copolymer (PLGA) microsphere (MS) preparations It is.
  • subjects for administration of the pharmaceutical composition of the present invention diseases for intractable cardiac tissue fibrosis with chronic heart failure are dilated cardiomyopathy, ischemic cardiomyopathy, myocardial infarction, Angina pectoris, arteriosclerosis, vasculitis syndrome, myocarditis, hypertrophic cardiomyopathy, aortic stenosis, valvular disease, aortic regurgitation, HFpEF (heart failure with preserved ejection fraction), diastolic failure, systolic failure, above Mammals that develop ventricular tachyarrhythmia, congestive heart failure, coronary artery disease, idiopathic cardiomyopathy, atrial fibrillation, and the like are preferred.
  • Mammals include humans, monkeys, cows, sheep, goats, horses, pigs, rabbits, dogs, cats, rats, mice, guinea pigs, etc., especially having developed cardiac tissue fibrosis cardiovascular disease or Humans suspected of developing are preferred.
  • the administration method of the pharmaceutical composition of the present invention is not particularly limited as long as the active ingredient can reach the diseased site, but oral administration, intravenous administration, infusion / infusion administration, intracoronary administration, inhalation administration, intramuscular administration , Subcutaneous administration, suppository, intraperitoneal / thoracic administration, transmucosal administration, transdermal administration, injectable preparation for organs, or patch administration, etc., but generally oral administration.
  • intravenous administration infusion / infusion administration, intraarterial administration, inhalation administration
  • Intramuscular administration subcutaneous administration, suppository, intraperitoneal and intrathoracic administration, transmucosal administration, transdermal administration, patches, injection preparations for organs, or organ patch administration, etc.
  • the amount of the present drug etc. contained in the pharmaceutical composition of the present invention depends on the type of the drug and its dosage form, age, weight, symptom, therapeutic effect, administration interval, or administration route. Although different, in the case of an oral preparation, it can be appropriately selected from the results of each long-term toxicity test and the range of the maximum tolerated dose in the phase I clinical test. The lower limit is not particularly limited as long as it is a dose that provides the desired effect.
  • (H) theophylline is divided into two doses of 400 mg (6.7 mg / kg) daily, (I) sildenafil is 50 mg (0.83 mg / kg) once daily, and (J) robustan is 1 It is orally administered at 20 mg (0.33 mg / kg) daily.
  • the administration period is appropriately determined in consideration of safety, convenience, patient burden, compliance, etc., depending on the disease and its treatment method. Any effective administration interval can be expected, and in the case of an oral preparation, it is preferably once a day, twice a day, or three times a day, but once a day A range of 2 times is more preferred.
  • ozagrel hydrochloride hydrate has no safety problems except for a slight increase in bleeding time even at a daily dose of 400 mg.
  • 194 adverse reactions were observed in 154 cases (2.0%) out of 7,694 cases that were subject to side effect counting in the survey up to the time of approval and post-marketing surveillance.
  • the main cases were 25 cases (0.3%) such as an increase in AST (GOT) / ALT (GPT), 21 cases of nausea (0.3%), 16 cases of pruritus (0.2%), 12 cases of rash (0.2%), Abdominal discomfort 9 cases (0.1%), bleeding tendency 9 cases (0.1%), etc. (at the end of reexamination).
  • Cilostazol showed abnormal laboratory values in 3,335 patients who were subject to safety analysis in the use-results survey for the improvement of ischemic symptoms such as ulcers, pain and coldness based on chronic arterial occlusion. Including 209 side-effects (6.3%). The main side effects were headache / headache (3.4%), palpitation (0.7%), dizziness (0.5%), diarrhea (0.3%), nausea / vomiting (0.3%) (at the end of pre-tal tablet reexamination). .
  • Theophylline had side effects in 85 of 939 patients (9.05%) subject to safety analysis at the time of approval.
  • the main side effects were nausea / nausea 38% (4.05%) and headache 24% (2.56%).
  • Abdominal pain was 14 cases (1.49%), anorexia was 12 cases (1.28%), and palpitations were 11 cases (1.17%).
  • microsphere sustained-release preparations containing this drug subcutaneous administration or intramuscular injection once a week, once every two weeks, once every four weeks, or once every three months. Administration is preferred.
  • nanosphere preparations containing this drug it is administered intravenously once a day, once every three days, once a week, once every two weeks, or once every four weeks. Or subcutaneous administration is preferred.
  • oral solid preparations for oral administration liquids for internal use, injections for parenteral administration, subcutaneous / muscular Used as injections, external preparations, suppositories, inhalants, etc.
  • the single dose in the intermittent administration of these sustained-release preparations may be not more than the total dose for oral administration, and generally a dose of 1/10 or less of the total dose is used.
  • the oral preparation of the present invention a commercially available pharmaceutical preparation may be used as it is.
  • the solid preparation for internal use for oral administration include tablets, pills, capsules, powders, granules and the like.
  • the capsule includes a hard capsule and a soft capsule.
  • one or more active substances are used as they are or in the form of various salts, excipients (lactose, mannitol, glucose, microcrystalline cellulose, starch, etc.), binders (Hydroxypropyl cellulose, polyvinyl pyrrolidone, magnesium aluminate metasilicate, etc.), disintegrating agents (such as calcium glycolate), lubricants (such as magnesium stearate), stabilizers, solubilizers (glutamic acid, aspartic acid, etc.) ) And formulated into a conventional method.
  • excipients lactose, mannitol, glucose, microcrystalline cellulose, starch, etc.
  • binders Hydroxypropyl cellulose, polyvinyl pyrrolidone, magnesium aluminate metasilicate, etc.
  • disintegrating agents such as calcium glycolate
  • lubricants such as magnesium stearate
  • solubilizers glycolutamic acid, aspartic acid, etc
  • a coating agent sucrose, gelatin, hysoxypropylcellulose, hydroxypropylmethylcellulose phthalate, etc.
  • a coating agent sucrose, gelatin, hysoxypropylcellulose, hydroxypropylmethylcellulose phthalate, etc.
  • capsules of absorbable substances such as gelatin.
  • Oral solutions for oral administration include pharmaceutically acceptable solutions, suspensions, emulsions, syrups, elixirs and the like. In such a solution, it is dissolved, suspended or emulsified in one or more active substances, or in the form of their respective salts, in a commonly used diluent (purified water, ethanol or a mixture thereof). . Furthermore, this liquid agent may contain a wetting agent, a suspending agent, an emulsifier, a sweetening agent, a fragrance, a preservative, a buffering agent and the like.
  • the sustained-release preparation of the present invention is not limited as long as the active ingredient can be continuously supplied in the blood concentration or heart tissue. Examples thereof include subcutaneous injection, intramuscular administration, intravenous administration, and cardiac patch administration of sustained-release preparations (for example, microcapsule preparations, microsphere preparations, nanosphere preparations, etc.).
  • microcapsule preparation, microsphere preparation, and nanosphere preparation of the present invention are preferably a fine-particle pharmaceutical composition containing any active ingredient as an active ingredient and a biodegradable polymer.
  • the drug sustained-release system of the present invention includes a bioabsorbable polymer, and specifically includes a natural polymer or a synthetic polymer.
  • Control mechanisms of the sustained release rate from these include a decomposition control type, a diffusion control type, and a membrane permeation control type.
  • the natural polymer that is the bioabsorbable polymer of the present invention includes plant-produced polysaccharides (eg, cellulose, starch, alginic acid, etc.), animal-produced polysaccharides and proteins (eg, chitin, chitosan, collagen, gelatin, albumin, glucosamino). Glycans, etc.), microorganism-produced polyesters and polysaccharides (eg, poly-3-hydroxyalkanoates, hyaluronic acid, etc.).
  • plant-produced polysaccharides eg, cellulose, starch, alginic acid, etc.
  • animal-produced polysaccharides and proteins eg, chitin, chitosan, collagen, gelatin, albumin, glucosamino
  • Glycans, etc. microorganism-produced polyesters and polysaccharides (eg, poly-3-hydroxyalkanoates, hyaluronic acid, etc.).
  • Biodegradable polymers include fatty acid ester polymers or copolymers thereof, polyacrylic acid esters, polyhydroxybutyric acids, polyalkylene oxalates, polyorthoesters, polycarbonates and polyamino acids. These can be used alone or in combination.
  • Fatty acid ester polymer or copolymer thereof means polylactic acid, polyglycolic acid, polycitric acid, polymalic acid, polyethylene succinate, polybutylene succinate, poly- ⁇ -caprolactone, polybutylene terephthalate adipate or lactic acid-glycolic acid A copolymer is mentioned, These can be used 1 type or in mixture.
  • poly ⁇ -cyanoacrylic acid ester poly ⁇ -hydroxybutyric acid, polytrimethylene oxide, polyorthoester, polyorthocarbonate, polyethylene carbonate, poly ⁇ -benzyl-L-glutamic acid, polyvinyl alcohol, polyester carbonate, poly Mixtures of one or more of acid anhydride, polycyanoacrylate, polyphosphazene or poly L-alanine can also be used.
  • Polylactic acid, polyglycolic acid or lactic acid-glycolic acid copolymer is preferred, and lactic acid-glycolic acid copolymer is more preferred.
  • the average molecular weight of the biodegradable polymer used in the present invention is preferably about 2,000 to about 800,000, more preferably about 5,000 to about 200,000.
  • polylactic acid preferably has a weight average molecular weight of about 5,000 to about 100,000. More preferably from about 6,000 to about 50,000.
  • Polylactic acid can be synthesized according to a production method known per se.
  • the composition ratio of lactic acid to glycolic acid is preferably about 100/0 to about 50/50 (W / W), and particularly about 90/10 to 50/50 (W / W). ) Is preferred.
  • the weight average molecular weight of the lactic acid-glycolic acid copolymer is preferably from about 5,000 to about 100,000. More preferably from about 10,000 to 80,000.
  • the lactic acid-glycolic acid copolymer can be synthesized according to a production method known per se. In order to suppress the initial burst, basic amino acids (for example, alginic acid, etc.) may be added.
  • the weight average molecular weight refers to a molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the biodegradable polymer described above can be changed depending on the strength of the pharmacological activity of the active ingredient and the desired drug release as long as the object of the present invention is achieved. It is used in an amount of about 0.2 to 10,000 times (mass ratio), preferably about 1 to 1,000 times (mass ratio), more preferably about 1 to 100 times (mass ratio). Is good.
  • Examples of the method for producing the microsphere, microcapsule and nanocapsule of the present invention include an underwater drying method (eg, o / w method, w / o method, w / o / w method), phase separation method, spray drying. Method, a granulation method using a supercritical fluid, or a method equivalent thereto.
  • underwater drying method eg, o / w method, w / o method, w / o / w method
  • phase separation method e.g., spray drying.
  • Method eg, a granulation method using a supercritical fluid, or a method equivalent thereto.
  • an organic solvent solution of a biodegradable polymer is first prepared.
  • the organic solvent used in the production of the microspheres, microcapsules, and nanocapsules of the present invention preferably has a boiling point of 120 ° C. or lower.
  • the organic solvent include halogenated hydrocarbons (eg, dichloromethane, chloroform, etc.), aliphatic esters (eg, ethyl acetate, etc.), ethers, aromatic hydrocarbons, ketones (acetone, etc.) and the like. Two or more of these may be mixed and used at an appropriate ratio.
  • Preferred organic solvents are dichloromethane and acetonitrile.
  • the organic solvent is preferably dichloromethane.
  • concentration of the biodegradable polymer in the organic solvent solution varies depending on the molecular weight of the biodegradable polymer, the type of the organic solvent, etc., but is generally about 0.01 to about 80% (v / w). Chosen from. Preferably it is about 0.1 to about 70% (v / w), more preferably about 1 to about 60% (v / w).
  • the active ingredient is added and dissolved in the organic solvent solution of the biodegradable polymer thus obtained.
  • the amount of the active ingredient to be added varies depending on the kind of drug, the angiogenic action and the duration of the effect, but the concentration of the biodegradable polymer in the organic solvent solution is about 0.001% to about 90%. % (W / w), preferably about 0.01% to about 80% (w / w), more preferably about 0.3 to 30% (w / w).
  • the organic solvent solution thus prepared is further added to the aqueous phase, and an o / w emulsion is formed using a stirrer, an emulsifier, or the like.
  • the aqueous phase volume at this time is generally selected from about 1 to about 10,000 times the oil phase volume. More preferably, it is selected from about 2 times to about 5,000 times. Particularly preferably, it is selected from about 5 times to about 2,000 times.
  • An emulsifier may be added to the aqueous phase of the outer phase. Any emulsifier may be used as long as it can form a generally stable o / w emulsion.
  • the emulsifier examples include anionic surfactants, nonionic surfactants, polyoxyethylene castor oil derivatives, polyvinyl pyrrolidone, polyvinyl alcohol, carboxymethyl cellulose, lecithin, and gelatin. You may use these in combination suitably.
  • the concentration of the emulsifier in the outer aqueous phase is preferably from about 0.001% to about 20% (w / w). It is more preferably about 0.01% to about 10% (w / w), particularly preferably about 0.05% to about 5% (w / w).
  • microspheres may be produced by a method in which an active ingredient is dispersed in an organic solvent solution of a biodegradable polymer, that is, an s / o / w method.
  • microspheres are produced by spray drying, the organic solvent or emulsion in which the biodegradable polymer and the active ingredient are dissolved is dried in the drying chamber of the spray dryer (spray dryer) using a nozzle. And microspheres are prepared by volatilizing the organic solvent or water in the atomized droplets in a very short time.
  • the nozzle include a two-liquid nozzle type, a pressure nozzle type, and a rotating disk type.
  • an organic solvent or an aqueous solution of an aggregation inhibitor (mannitol, lactose, gelatin, etc.) from another nozzle for the purpose of preventing microsphere aggregation at the same time as spraying of the o / w emulsion. is there.
  • the microspheres thus obtained are heated if necessary, and the moisture and solvent in the microspheres are completely removed by reducing the pressure.
  • the film preparation is obtained by dissolving the biodegradable polymer and the active ingredient in an organic solvent, and then distilling to dryness to form a film or the biodegradable polymer and the active ingredient in an appropriate solvent. Thereafter, a gelling agent is added by adding a granulating agent (celluloses, polycarbonates, etc.).
  • microspheres, microcapsules, and nanospheres of the present invention can be used in various dosage forms using, for example, pharmaceutical compositions in the form of spheres, rods, needles, bolts, threads, pellets, films, and creams as raw materials. It can also be formulated.
  • this preparation can be used to administer a parenteral agent for local administration (for example, intramuscular, subcutaneous, intradermal, intramyocardial, intraperitoneal, intrabronchial, intravascular, alveolar, intravascular alveolar site, intracerebral, Intramedullary, intradural, epidural, intra-articular, intra-vertebral, bone, periodontal and various organs or solid surfaces such as implants, granules, powders and suspensions Liquids such as agents, patches, film preparations, ointments, etc., medical devices containing active ingredients in medical devices (stents, bolts, sutures, etc.) or coated coating agents) You can also. Further, it can be directly administered to, for example, a myocardial ischemic site using a vascular catheter or the like.
  • a parenteral agent for local administration for example, intramuscular, subcutaneous, intradermal, intramyocardial, intraperitoneal, intrabronchial, intravascular, alve
  • microspheres are made into an aqueous suspension together with a dispersant, a preservative, an isotonic agent, a buffer, a pH adjusting agent, etc. Is obtained.
  • a dispersant e.g., a preservative, an isotonic agent, a buffer, a pH adjusting agent, etc.
  • it is made into the injection which can be actually used as an oily suspension by dispersing with vegetable oil or a mixture thereof with phospholipid such as lecithin, or medium chain fatty acid triglyceride (eg, miglycol 812).
  • the particle diameter of the microsphere may be in a range satisfying the degree of dispersion and needle penetration when used as a suspension injection, for example, the average particle diameter is in the range of about 0.1 to about 300 ⁇ m. Can be mentioned.
  • the particle size is preferably in the range of about 1 to 150 ⁇ m, more preferably about 2 to 100 ⁇ m.
  • the pharmaceutical composition of the present invention is preferably a suspension as described above.
  • the pharmaceutical composition of the present invention is preferably in the form of fine particles. This is because the pharmaceutical composition is not excessively painful to the patient when administered through a needle used for normal subcutaneous or intramuscular injection.
  • the pharmaceutical composition of the present invention is particularly preferred as an injection.
  • the action of the active ingredient has sustained release, and the sustained release period varies depending on the type and blending amount of the biodegradable polymer, but usually from 1 week to 3 months. Since it has a period, various compounds can be gradually released in (ischemic) organ lesions and used as a high-concentration maintenance preparation at the lesion site.
  • the dosage of the pharmaceutical composition of the present invention varies depending on the type and content of the active ingredient, the dosage form, the duration of drug release, the animal to be administered, etc., but it may be an effective amount of the active ingredient.
  • the dose per administration is about 0.001 mg to 500 mg, preferably about 0.01 mg to 100 mg as an active ingredient per day for adults (50 kg body weight). It may be administered once a month.
  • these compounds currently used ⁇ -blockers, ARB, ACE inhibitors and other antihypertensive agents, PG IP receptor agonists, EP2 and EP4 receptors It is also preferable to administer a combination of two or more drugs selected from agonists.
  • the said drug is obtained as a commercial item, or can be easily manufactured according to a well-known method.
  • oral administration is mainly used.
  • parenteral administration is used, such as intermittent subcutaneous administration or intermittent intramuscular injection administration.
  • intermittent intravenous injection, intermittent subcutaneous injection, intermittent intramuscular injection, etc. are mainly used.
  • microsphere preparations and nanosphere preparations which are sustained release preparations, are administered parenterally, they are suitable for use in compounds with low bioavailability (BA) and low absorption rate for oral administration. Yes.
  • BA bioavailability
  • administration of intermittent subcutaneous injection or intermittent intramuscular injection shows long-term intravenous infusion-like blood kinetics, improving administration convenience, avoiding side effects, and sustaining effects Usefulness increases with sex.
  • camostat mesylate is inactivated by esterase in the digestive tract, so it is modified to a prodrug itself, but the active substance absorption rate is low. Therefore, intermittent subcutaneous administration or intramuscular administration of a lactic acid-glycolic acid copolymer microsphere (PLGA / MS) preparation significantly improves the effectiveness because the blood concentration of the active substance is maintained.
  • PLGA / MS lactic acid-glycolic acid copolymer microsphere
  • sivelestat sodium hydrate which is an infusion
  • sivelestat sodium hydrate is also administered intermittently as a PLGA / MS formulation, giving blood kinetics similar to intravenous infusion over a long period of time, improving convenience, for example It is also useful for chronic diseases such as chronic obstructive pulmonary disease (COPD).
  • COPD chronic obstructive pulmonary disease
  • nanospheres improvement in oral absorption and local accumulation of diseases can be expected.
  • the present invention can be expected to improve life prognosis and dramatically increase QOL as a new treatment for patients with severe heart disease.
  • cardiovascular / myocardial regeneration therapy which can avoid or delay heart transplantation or LVAD wearing by delaying the progression of heart failure by combining these drugs, is a revolutionary new treatment for heart failure.
  • early treatment interventions are expected to reduce the severity of the disease and to enable radical treatment at a lower cost than heart transplantation or LVAD, contributing to the medical economy.
  • the present invention provides a minimally invasive, general-purpose treatment through early treatment intervention by oral administration instead of artificial heart, heart transplantation, and cell therapy, which are treatments for diabetic cardiomyopathy and refractory heart disease, which are rare diseases.
  • a cardiovascular / myocardial regenerative therapeutic agent that is feasible and economical, it becomes possible to delay or avoid heart transplantation and LVAD wearing. It is also useful for promoting LVAD withdrawal after wearing LVAD and maintenance therapy after bypass surgery in ischemic cardiomyopathy.
  • the present compound is a protease inhibitor, phosphodiesterase (PDE) inhibitor, tyrosine kinase inhibitor, thromboxane (TX) A 2 biosynthesis enzyme inhibitor, HMG-CoA reductase inhibitor, and anti-fibrotic agent.
  • PDE phosphodiesterase
  • TX thromboxane
  • a 2 biosynthesis enzyme inhibitor HMG-CoA reductase inhibitor
  • anti-fibrotic agent e.g., anti-fibrotic agent.
  • These compounds can be administered in combination with ⁇ -blockers, ARBs, and ACE inhibitors that are currently used clinically as antihypertensive agents. All of these compounds are marketed as oral pharmaceutical preparations and are safe for humans. It has been confirmed that there is.
  • Dose setting basis The basis for setting the dose of the test substance used in the pharmacological test is shown below. The data used as the basis of each was quoted from the inventor's own background material and each interview form.
  • Nintedanib was administered by oral gavage once a day at doses of 30 and 60 mg / kg.
  • the inhibitory effect on pulmonary fibrosis was slightly higher with 60 mg / kg than with 30 mg / kg. It was.
  • a clear effect on both inflammation and fibrosis has been observed only at 60 mg / kg.
  • 20 mg / kg / day showed decreased red blood cell count, decreased PCV, decreased hemoglobin, decreased organ weight (thymus, adrenal gland), etc., and the non-toxic dose was 5 mg / kg. Met. Therefore, the dose was set to 5 mg / kg ⁇ 2 times / day.
  • Theophylline was orally administered to Fischer 344 rats for 13 weeks. Increased periarteritis of arteries near the mesenteric lymph nodes and MCH (average erythrocyte hemoglobin) were observed from 37.5 mg / kg. It was. Therefore, the maximum dose was set to 20 mg / kg ⁇ 2 times / day.
  • Sildenafil citrate Oral administration of sildenafil to SD rats for 6 months showed increased liver weight, centrilobular hepatocyte hypertrophy, and thyroid follicular epithelium hypertrophy in the 60 mg / kg group It was. The non-toxic amount was 60 mg / kg / day.
  • the dose was set to 30 mg / kg ⁇ 2 times / day.
  • Carvedilol has the action of blocking both ⁇ 1 and ⁇ receptors and was developed as a treatment for hypertension and angina. Later, further development confirmed its effects on chronic heart failure and tachycardiac atrial fibrillation. The main component is ⁇ -blocking action and antihypertensive action is mainly based on this. However, blocking ⁇ -receptor increases the ⁇ 1-receptor action of endogenous catecholamines and may cause vasoconstriction. It is a drug with added receptor blocking action. The dose was a clinical dose.
  • biodegradable polymer-encapsulated microsphere preparations can be produced as preparations 1 to 3 in the following production examples of PLGA / MS sustained-release preparations.
  • sildenafil MS (Formulation 3)
  • the lethal dose of intravenous administration of sildenafil in rats is 10 mg / kg or more, and oral administration is 1000 mg / kg or more, so 1/30 of 30 mg / kg is administered subcutaneously once every 4 weeks. Set.
  • Various drugs are administered by oral gavage twice a day (at least 8 hours apart), and echocardiography is performed at 4 and 8 weeks (before dissection), and administration of each group begins Comparison was made with the difference (change amount; ⁇ ) from the previous (grouping) and cardiac function (EF value, FS%, etc.) in the medium group (1 group).
  • the heart was removed, electron microscope, RNA / protein measurement, and various immunopathological specimens were collected and evaluated.
  • test 1 The effect of test 1 (AE) on the non-toxic dose was examined.
  • CMC-Na sodium carboxymethylcellulose
  • Wako Pure Chemical methylcellulose 400; Wako Pure Chemical Industries, Ltd.
  • One group (Control) was administered with 0.5% CNC-Na (vehicle).
  • ⁇ > Change value compared with 0 W Each value represents an average value ⁇ SD.
  • EF Left ventricular ejection fraction **: Significant difference compared to control P ⁇ 0.01 (Student's t-test).
  • ⁇ > Change value compared with 0 W Each value represents an average value ⁇ SD.
  • % FS Left chamber diameter shortening rate% (fractional shortening) **: Significant difference compared to control P ⁇ 0.01 (Student's t-test).
  • LVIDd diastolic left ventricular internal dimension
  • LVIDs systolic left ventricular internal dimension *: Significant difference compared to control P ⁇ 0.05 (Student's t-test or Aspin-Welch's test).
  • (A) ONO-1301 used as a test substance was set as a positive control in this model.
  • (B) camostat mesil hydrochloride, (C) ozagrel hydrochloride hydrate, (D) cilostazol, and (E) pirfenidone have already been used as pharmaceuticals for various diseases, and were determined from each toxicity test. As a result of administration based on a safe dose, it was confirmed that it was also useful for dilated cardiomyopathy.
  • Test 2 The effect of FJ on non-toxic doses was examined.
  • Table 8 shows the group structure.
  • Each drug was administered in suspension in 0.5% CMC-Na (sodium carboxymethyl cellulose; Wako Pure Chemical Industries). G was administered after suspending in distilled water.
  • CMC-Na sodium carboxymethyl cellulose
  • LVIDd diastolic left ventricular internal dimension
  • LVIDs systolic left ventricular internal dimension
  • the clinical dose of G (nintedanib sulfonate; OB) was 150 mg x 2 times / day, so the dose was 2.5 mg / kg x 2 times / day.
  • the clinical dose of P (carvedilol; CV) was 10 mg x 2 times / day, so the dose was 0.17 mg / kg x 2 times / day.
  • Formulation 2; Camostat PLGA ⁇ MS formulation; B ⁇ MS) the clinical dose of the active camostat is 200 mg ⁇ 3 times / day for a total of 600 mg / day.
  • a 10 mg / kg dose was subcutaneously administered once every 4 weeks for a total of 2 times. This dose is 1/28 of the total oral dose.
  • the dose volume for oral administration was 5 mL / kg (the dose volume for each individual was calculated based on the latest body weight), and forced administration was performed using a polypropylene disposable syringe and a rat gastric sonde.
  • the administration period was 8 weeks. Results; (1) Change in body weight (Table 14) All administration groups showed almost the same changes in body weight as those in the Control group until 8 weeks after administration of the test substance, and it was confirmed that no side effects occurred.
  • Trial 4 consists of three pharmaceuticals selected in Trial 1, 2 and Trial 3, O (CV; Carvedilol), C (OZ; Ozagrel), and E (PF; Pirfenidone), alone and in combination at clinical doses. The effects were compared.
  • the dosage setting basis was set according to Test 3, and was orally administered twice a day in the same manner. Based on carvedilol, which is a ⁇ -blocker that is widely used clinically, the effect of the combined use of ozagrel and pirfenidone was confirmed.
  • MI rat ischemia
  • the rat left anterior descending coronary artery was completely occluded to create a coronary artery complete ischemia model.
  • Each test substance was orally administered twice a day from the day after model preparation (24 hours later), and body weight measurement and echocardiography were performed 1, 2, and 4 weeks after administration.
  • body weight measurement and echocardiography were performed 1, 2, and 4 weeks after administration.
  • the heart was removed, electron microscope, RNA / protein measurement, and various immunopathological specimens were collected and evaluated.
  • Echocardiographic laboratory animal inhalation anesthesia machine (TK-5, Bio Machinery Co., Ltd.) and small animal anesthesia machine (MK-A110S, Muromachi Kikai Co., Ltd.) 2.0% isoflurane (isoflurane inhalation anesthetic solution, Pfizer Co., Ltd.) was fixed in the dorsal position under anesthesia, and echocardiograms were measured using an ultrasonic diagnostic imaging apparatus (Nemio SSA-550A, Toshiba Medical Systems Co., Ltd.).
  • the measurement was performed by measuring three heartbeats in one image, and the average value was taken as the measurement value.
  • the measurement time was the day after complete coronary artery ligation (grouping time: 1 day), 7 days after complete coronary artery ligation (before the first administration on day 7; 7 day), 14 days after complete coronary artery ligation (on the 14th day after administration) Measurement was performed four times before administration; 14 days), and 29 days after complete coronary artery ligation (before dissection on the 28th day after the last administration; 29 days).
  • the heart was removed by euthanasia by lethality. After measuring the heart weight, the heart was divided into three short axes, including the left ventricle and right ventricle, and a photo of the short axis cross section was taken. That is, except for the apical portion, the midle region was divided into 2 mm at intervals of about 2 mm, and then two sections of photographs on the apical side and the basals side were taken and recorded. After photography, the Apical side (bottom) and the Basal side (top) were stored in buffered formalin. In addition, a piece of the periphery of the infarction was collected from the middle part, immersed in RNALater and stored overnight in a refrigerator (5 ° C.).
  • RNALater was removed on the next day, and then frozen as it was with liquid nitrogen, and stored frozen in a temperature of ⁇ 64.5 ° C. or lower (ultra-low temperature bath (CLN-35C, Nippon Freezer Co., Ltd.): set temperature ⁇ 80 ° C.). The rest of the midle part was stored frozen.
  • Table 21 shows the group configuration of Test 1.
  • Table 22 shows changes in body weight.
  • A ONO-1301 administration group,
  • C ozagrel hydrochloride hydrate administration group,
  • F beraprost +
  • C ozagrel hydrochloride hydrate administration group,
  • D cilostazol administration group and
  • E pirfenidone administration group Until 29 days, the body weight was almost the same as that in the Control group.
  • the measured values showed significant increases in the P ⁇ 0.05 vs. Cont group in the cilostazol administration group and the P ⁇ 0.01 vs. Cont group in the administration group other than cilostazol.
  • each treatment group showed a significant increase (P ⁇ 0.01 vs Cont group) in both the measured value and the amount of change compared to the Control group.
  • each treatment group showed a significant increase in EF value (P ⁇ 0.01 vs Cont group) compared to the Control group, both for the measured value and the amount of change.
  • left ventricular systolic dysfunction ejection rate; EF decrease, left ventricular diameter shortening rate;% FS decrease
  • EF decrease left ventricular diameter shortening rate
  • % FS decrease left ventricular diameter shortening rate
  • Test substance A ONO-1301
  • Test substance F Beraprost
  • Test substance C Olet + Ogrel hydrochloride hydrate
  • Test substance F + C Belaprost + Ozagrel hydrochloride hydrate
  • Test substance D Cirostazole
  • E pirfenidone
  • test substance F beraprost
  • test substance C ozagrel hydrochloride hydrate
  • Test 2 The effect of repeated oral administration of B, G, I, and C and single subcutaneous administration of B, C, I sustained-release (formulation 1 to 3) formulations was examined.
  • Table 25 shows the group structure.
  • Oral administration group Repeated oral administration was performed for 28 days for the stated dose ⁇ 2 times / day. In addition, there was an interval of 8 hours or more between twice daily administration.
  • vehicle (CMC-Na) was orally administered.
  • Subcutaneous administration group A single subcutaneous administration of each dose was performed 24 hours after complete coronary artery ligation.
  • Dosage setting basis Reasons for setting the dose
  • B camostat mesylate
  • G non-toxic dose toxicity study in rats
  • the non-toxic dose is 5 mg / kg. Therefore, 5 mg / kg ⁇ 2 times / day was set as the maximum dose.
  • B ⁇ MS (formulation 2; camostat ⁇ MS) had LD50 of 1329 mg / kg in rat subcutaneous administration of camostat, about 1/10 of its amount was set to 100 mg / kg.
  • C ⁇ MS (formulation 1; ozagrel hydrochloride ⁇ MS) has an LD50 of 2049 mg / kg in the rat subcutaneous administration of ozagrel, 50 mg / kg, which is 1/40 of that, was set.
  • test substance was compared with (A) ONO-1301 and (K) candesartan as ARB.
  • the test method was carried out in the same manner as in “1. Examination of effects in spontaneously dilated cardiomyopathy (J2N-k) hamster model”.
  • ONO-1301 was administered 3 mg / kg ⁇ 2 times / day, candesartan was administered 3 mg / kg ⁇ 1 time / day, and the vehicle was administered only the second time.
  • Each value represents the mean ⁇ SE. *: P ⁇ 0.05, **: p ⁇ 0.01, ***: p ⁇ 0.001, significant difference compared to control (Dunnett-test). a: p ⁇ 0.05, aaa: p ⁇ 0.001, significant difference compared to control (Steel-test).
  • the EF (left ventricular ejection fraction) value which is an index of heart failure, was improved in the ONO-1301-3.0 mg / kg group.
  • the control substance (ARB) candesartan-3.0 mg / kg group a similar improvement effect was observed until about 20 weeks after administration, but the heart function started to appear around 5 months after administration, There was an increase in deaths. From these results, it was confirmed that ONO-1301 was superior to candesartan, which is usually used as an antihypertensive agent, for dilated cardiomyopathy even in long-term administration.
  • ONO-1301 has a long-term transition from dilated cardiomyopathy to heart failure, i.e. heart It was confirmed that function deterioration was suppressed and mortality was suppressed.
  • Echocardiogram measurement Echocardiography is measured before measurement (Pre), 4 weeks [grouping (before test substance administration), 2 weeks after test substance administration, 4 weeks (1 month), 2 months, 3 months, It was performed at 4 months, 5 months, and 6 months (at the time of dissection).
  • LVIDd left ventricular end-diastolic diameter
  • LVIDs left ventricular end-systolic diameter
  • IVSTd ventricular septal thickness
  • LVPWd left ventricular posterior wall end-diastolic thickness
  • the survival rate at 26 weeks after administration was 0% (survival number: 0/6 cases).
  • the ONO-1301 repeated oral administration group deaths were confirmed for the first time 44 days after administration. Thereafter, 4 deaths were observed by day 92, but one survived at 26 weeks after administration (number of survivors: 1/6).
  • the ONO-1301 repeated oral administration group showed a significant (*: P ⁇ 0.05) prolonging survival rate compared to the Control group.
  • Heart rate (echocardiography) ONO-1301; At Tmax at 3 mg / kg orally (between 1.5 and 2.5 hours after oral administration), the heart rate in echocardiography was not affected. This confirmed that the present antihypertensive effect associated with the vasodilatory effect does not appear even at Tmax (Cmax) at this dose.
  • the ONO-1301 repeated oral administration group was a long-term model of canine rapid pacing-induced severe dilated cardiomyopathy, and the Kaplan-Meiyer curve showed a significant increase in survival rate compared to the Control group, and left ventricular systolic function during heart failure It was revealed that there was a significant improvement effect on failure.
  • the recovered particles were lyophilized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

慢性心不全を伴う難治性心臓組織線維化心疾患の治療のために用いられる医薬組成物を提供する。 有効成分として、蛋白分解酵素阻害剤、トロンボキサンA2生合成酵素阻害剤及びその拮抗剤、ホスホジエステラーゼ(PDE)阻害剤、チロシンキナーゼ阻害剤、HMG-CoA還元酵素阻害剤、並びに抗線維化剤からなる群より選択される少なくとも一種を用いる、慢性心不全を伴う難治性心臓組織線維化疾患の治療のために用いられる医薬組成物(これらの生体分解性高分子内包持続性製剤を含む)。

Description

難治性心疾患治療用医薬組成物
 本発明は、難治性心疾患治療用医薬組成物に関する。
 希少疾病医薬品指定疾患である拡張型心筋症(DCM)は、末期心不全にあっては1年死亡率が75%とされる。DCMに対する根本治療は心臓移植であるが、臓器移植法改定後においてもドナーの絶対的不足状態は変わらない。薬物療法としては、βブロッカー、アンギオテンシンII受容体拮抗薬(ARB)、ACE阻害薬、利尿薬、ジキタリス、抗アルドステロン薬、及び経口強心薬等が広く用いられているが、その効果は十分ではない。心臓移植適応患者には、待機的治療として補助人工心臓(LVAD)が施行されるが、合併症(脳梗塞、感染症等)の危険性も高く、待機死する患者も多い。我が国における深刻なドナー不足を鑑みると、早期治療介入による心臓移植・LVAD装着の回避及び遅延を目指した新しい再生創薬医薬品の開発は喫緊の課題である。
 また、冠動脈硬化症に伴う心筋梗塞は、我が国における3大疾患のうちの1つであるが、世界に類を見ない高齢化社会を迎えた日本においては、今後さらに患者数の増加が予想されている。厚生労働省の「患者調査」においては、2011年度の虚血性心疾患は756,000症例、狭心症は558,000症例、急性心筋梗塞は41,000症例、陳旧性心筋梗塞は110,000症例と報告されている。虚血性心筋症の具体的な数字は示されていないが、陳旧性心筋梗塞の10-20%程度を占めるものと考えられる。
 虚血性心筋症は、罹患頻度が多く、今後増加が予想される進行性、予後不良の難治性疾患である。薬物治療を中心とした非侵襲治療と血行再建が標準治療として行われているものの、いずれも決定的な治療とは言い難く、これまでの治療とは異なるアプローチによる新規治療の開発が望まれている。
 虚血性心筋症は、冠動脈硬化症が原因となり、広範囲に及ぶ心筋虚血あるいは心筋梗塞を来したために左心室壁運動が重度に低下し、慢性的にうっ血性心不全を呈している病態である。『重症心不全に対する植込型補助人工心臓治療ガイドライン 2013』では、虚血性心筋症を『広範に及ぶ心筋梗塞や多枝病変例で、壁運動異常があり、心機能が高度に低下している病態』と定義されている。心筋虚血あるいは心筋梗塞を生じた部位では、左心室の収縮機能および拡張機能が低下するために、心拍出量の低下、左室拡張末期圧の上昇から肺うっ血を来す。また代償性に左心室の拡大が生じ、これが進行することにより左室リモデリングと呼ばれる左心室の進行性の拡大および機能低下に陥る。
 虚血性心筋症の標準的治療法は、非侵襲的治療と侵襲的治療の組み合わせで行われている。非侵襲的治療は、薬物療法が中心であり、βブロッカー、アンギオテンシンII受容体拮抗剤(ARB)、アンジオテンシン変換酵素(ACE)阻害剤、抗血小板薬、硝酸薬、Ca拮抗薬が広く用いられており、心臓リハビリテーションや適応補助換気(ASV)なども併用されている。一方、侵襲的治療には、冠動脈バイパス手術と経皮的冠動脈形成術が中心となるが、これらの適応は中枢性の高度狭窄あるいは閉塞病変があり、かつその末梢側に十分な潅流領域を有する症例に限られる。
 非侵襲治療は虚血性心筋症の全症例に行われるものの、これらのみでは、心臓超音波検査上の左室駆出率が40%以下の症例における5年生存率は50%程度であることが報告されている。これに、侵襲的治療が加わった症例においては、5年生存率は60-70%と改善するものの、依然としてその予後は不良と言わざるを得ない。
 これらの治療が十分に行われたにもかかわらず、病変の進行が見られ末期的な症状を呈する症例は、年齢や合併症の制限があるものの、心臓移植、植込み型人工心臓(LVAD)の適応となる。
 本発明者らはすでに重症心筋症患者に対して、自己骨格筋筋芽細胞シートを心臓貼付する治療法(ハートシート)を開発(非特許文献1)し、2015年に本邦にて「再生医療等製品」として承認を得ている。また、本治療法は、細胞シートから分泌される各種体内再生因子(HGF、VEGF、SDF-1等)による血管新生・心筋再生効果であること(非特許文献2)を解明した。
 また、本発明者らは、新しく同作用機序を有する低分子合成化合物として、ONO-1301((E)-[5-[2-[1-フェニル-1-(3-ピリジル)メチリデンアミノオキシ ]エチル]-7,8-ジヒドロナフタレン-1-イルオキシ]酢酸)を見出した。即ち、オキシム誘導体であるONO-1301は、当初プロスタグランジン(PG)I2受容体作動薬として見出され、経口抗血栓薬として開発された(特許文献1)が、臨床試験において副作用(血管拡張作用、下痢等)と有効性(血小板凝集抑制作用)との乖離が狭いことから、開発が中止されていた。 
 本発明者らは、ONO-1301、ベラプロスト、セレキシパグ(NS-304)等を含むプロスタグランジン(PG)I2受容体(IP)作動薬、EP2作動薬、及びEP4作動薬が、血小板凝集抑制作用を示す濃度より低濃度で、線維芽細胞等に作用し、各種の体内再生因子、例えば肝細胞増殖因子(HGF)、血管内皮細胞増殖因子(VEGF)、ストローマー細胞由来因子(SDF-1)、及びhigh mobility group box protein1(HMGB1)、線維芽細胞増殖因子(a/bFGF)、上皮細胞増殖因子(EGF)、低酸素誘導因子(HIF)、及び顆粒球コロニー刺激因子(G-CSF)等の多くの体内再生因子を産生促進することから、再生創薬として難治性心疾患を含む新しい適応症を見出した(特許文献2)。このことは、炎症、虚血等に伴う創傷治癒過程において、PGI2、及びPGE2がその初期において関与している。即ち、虚血や炎症部位局所にてシクロオキシゲナーゼ(COX II)が誘導され、PGs(PGI2及びPGE2等)が生合成されることにより、多くの体内再生因子が誘導され、創傷治癒することが示唆されている。
 また、ONO-1301を生体分解性高分子(乳酸・グリコール酸共重合体;PLGA)に内包した徐放性マイクロイスフェアー製剤(YS-1402)を開発し、本製剤の新しく心臓貼付投与法を確立した(特許文献3、特許文献4)。
 現在、YS-1402をゼラチンシートに含ませて心臓貼付投与することにより、体内誘導型心臓再生治療法として虚血性心筋症及び拡張型心筋症を対象として医師主導治験(P-IIIa試験)を実施中(非特許文献3)である。また、本発明者らは、ONO-1301等を含有する疾患局所特異的リポソームナノスフェアー製剤も開発している。また、本発明者らは、iPS心筋細胞シート心臓貼付療法での治験も計画している。しかし、これらの細胞療法や心臓貼付投与法は、心臓局所投与である分選択的効果は期待できるが、侵襲性、経済性、安全性、汎用性等に問題点も多い。
 一方、YS-1402製剤を少量静注投与することにより、肺臓にYS-1402製剤を集積させ、肺臓にて徐々に薬剤を放出することにより肺臓内での薬剤濃度の高濃度維持を目的とした肺疾患部位特異的治療剤(特許文献5)が知られている。しかし、本法は、大量投与による肺塞栓症の発症が危惧され、安全性に問題がある。
特許第2691679号 WO2004/032965 WO2008/047863 WO2014/046065 WO2014/069401
Surg Today (2012) 42:181-184 Ann Thorac Surg (2011)91:320-9 Heart Fail Rev (2015) 20:401-413
 本発明者らが、LVAD装着、心臓移植、開胸手術を伴う細胞シート療法等に代わり、経口投与や間歇皮下投与等非侵襲性で汎用性ある投与法での早期治療介入により、難治性心疾患の重症化を抑制し、LVAD装着や心臓移植の遅延及び回避を目指して、汎用性、経済性、安全性、及び低侵襲性の心血管・心筋再生療法剤を検討した結果、驚くことにすでに市販されている医薬品の中で、その安全量での投与にて本疾患に効果を示す化合物が幾つか新しく見出された。
 本発明者らは、難治性心疾患患者の「メタボローム・プロテオソーム病態解析」、及び「疾患特異的iPS細胞を用いた創薬スクリーニングシステムの開発」や「循環器疾患におけるiPS細胞由来心筋細を用いた再生創薬に関する研究」等の研究テーマを掲げ、血管内皮細胞、線維芽細胞、iPS心筋細胞等を用いたin vitro系にて難治性心疾患治療薬の検索スクリーニングを行ってきた。
 これらのin vitroスクリーニングにて、ドラッグリポジショニングの観点から選択された幾つかの医薬品類を中心として、自然発症拡張型心筋症ハムスターモデル、ラット冠動脈虚血モデル、及びイヌ高速ペーシング拡張型心筋症モデル等を用いてin vivoスクリーニングを実施した結果、幾つかの医薬品がその安全量にて効果を有することが確認された。これらの選択された医薬品類は、降圧作用を有しないため、現在降圧作用を有する心不全治療薬として使用されている、βブロッカー、アンジオテンシン変換酵素(ACE)阻害剤、及びアンギオテンシンII受容体拮抗薬(ARB)等との併用投与が可能となるという点において画期的である。
 選択された作用機序としては、蛋白分解酵素阻害剤、トロンボキサンA2生合成酵素阻害剤、およびその拮抗剤、ホスホジエステラーゼ(PDE)阻害剤、キナーゼ阻害剤、HMG-CoA還元酵素阻害剤、及び抗線維化剤等が含まれる。PDE阻害剤には、非選択的PDE阻害剤、PDEIII阻害剤、及びPDEV阻害剤等が含まれ、キナーゼ阻害剤にはチロシンキナーゼ阻害剤が含まれる。
 また、本発明者らは、これらの選択された薬剤が生体分解性高分子に内包されたマイクロスフェアー製剤を新たに作製した。これらは、1週間~3ヶ月に1回程度、皮下投与又は筋注投与により長期間、安定的に点滴静注様の血中動態を示すことが可能となる。これらの製剤は、毎日の経口投与に比し、間歇投与における投与利便性が増し、点滴静注様の血中動態を示すため高い血中濃度回避における副作用回避、及び長期間持続した血中動態による効果の持続が期待できる。
 よって、本発明は、慢性心不全を伴う難治性心臓組織線維化疾患治療対象疾患が、拡張型心筋症、虚血性心筋症、心筋梗塞、狭心症、動脈硬化症、血管炎症候群、心筋炎、肥大型心筋症、大動脈弁狭窄症、弁膜症、大動脈弁閉鎖不全、HFpEF(heart failure with preserved ejection fraction)、拡張不全、収縮不全、上室性頻脈性不整脈、うっ血性心不全、冠動脈疾患、特発性心筋症、心房細動である難治性心臓組織線維化疾患治療に有効な医薬組成物を提供することを課題とする。
 より具体的には、本発明の課題は、降圧作用を示さない選択された既存の医薬品類を早期治療介入として非侵襲的に投与することにより、現在、慢性心不全薬として使用されている降圧剤であるACE阻害剤、ARB及びβブロッカー等と併用することが可能な汎用性ある医薬品を提供することにより、人工心臓装着、及び心臓移植の遅延、回避を目指した新しい画期的心臓組織線維化疾患治療薬を提供することである。
 本発明者らは、本邦で市販されている約16,000種の医薬品から約2,000種を選択し、心臓疾患に対する病態解析、及びiPS細胞等を用いたin vitro系にて鋭意評価した。その結果、幾つかの医薬品類が、血管新生作用、抗線維化作用、抗アポトーシス作用、細胞保護作用、リバース・リモデリング作用、間葉系幹細胞分化・誘導作用、体内再生因子誘導作用、抗炎症作用、循環改善作用等が心臓疾患に対して有効であることを見出した。これらをメルクマールとして心臓疾患治療薬のin vitro検索スクリーニングを実施した。これらのin vitroスクリーニングから、ドラッグリポジショニング(既存薬再開発)として選択された幾つかの医薬品類を中心として、自然発症拡張型心筋症ハムスターモデル、ラット冠動脈虚血モデル、及びイヌ高速ペーシング拡張型心筋症モデル等を用いてin vivoスクリーニングを実施した。これらの疾患モデルへの投与量は、長期毒性試験における無毒性量(NOAEL)及び臨床投与量を基準として反復経口投与にてin vivo評価した。新しく有効性を示した医薬品類は、(1)蛋白分解酵素阻害剤、(2)ホスホジエステラーゼ(PDE)阻害剤、(3)チロシンキナーゼ阻害剤、(4)トロンボキサン(TX)A2生合成酵素阻害剤、(5)HMG-CoA還元酵素阻害剤、及び(6)抗線維化剤であった。尚、プロスタグランジンIP受容体作動薬も同様に効果を示したが、これらは、すでに本発明者らが見出している公知の薬剤(特許文献2)である。
 またこれらの見出された薬剤群を生体分解性高分子である乳酸-グリコール酸共重合体(PLGA)に内包させたマイクロスフェアー(MS)製剤が、総経口投与量の1/10以下の2週~3ヶ月に1回程度の間歇皮下注投与又は筋注投与において、効果を示すことは画期的である。
 本発明者らは、鋭意研究を行った結果、驚くことに、上記6種の作用機序を有する医薬品類が上記目的を達成することを新しく見出した。また、これらの生体分解性内包マイクロスフェアー持続性製剤が間歇投与においてもさらに有用であることを見出し、本発明を完成した。
 すなわち、本発明は、以下の態様を含む。
[1] 慢性心不全を伴う難治性心臓組織線維化疾患の予防及び/又は治療のために用いられる医薬組成物。
[2] 蛋白分解酵素阻害剤を含む、[1]に記載の医薬組成物。
[3] トロンボキサンA2生合成酵素阻害剤及び/又はその拮抗剤を含む、[1]に記載の医薬組成物。
[4] ホスホジエステラーゼ(PDE)阻害剤を含む、[1]に記載の医薬組成物。
[5] チロシンキナーゼ阻害剤を含む、[1]に記載の医薬組成物。
[6] HMG-CoA還元酵素阻害剤を含む、[1]に記載の医薬組成物。
[7] 抗線維化剤を含む、[1]に記載の医薬組成物。
[8] 蛋白分解酵素阻害剤、トロンボキサンA2生合成酵素阻害剤及びその拮抗剤、ホスホジエステラーゼ(PDE)阻害剤、チロシンキナーゼ阻害剤、HMG-CoA還元酵素阻害剤、並びに抗線維化剤からなる群より選択される少なくとも2種を含む、[1]に記載の医薬組成物。
[9] 以下(1)~(6)の化合物及びそれらの塩からなる群より選択される少なくとも1種を含む、[1]~[8]のいずれか一項に記載の医薬組成物:
(1)蛋白分解酵素阻害剤として、カモスタット;
(2)トロンボキサンA2合成酵素阻害剤として、オザグレル;
(3)ホスホジエステラーゼ阻害剤として、テオフィリン、シロスタゾールおよびシルデナフィル;
(4)チロシンキナーゼ阻害剤として、ニンテダニブ;
(5)HMG-CoA還元酵素阻害剤として、ロバスタチン;及び
(6)抗線維化剤として、ピルフェリドン。
[10] さらに、生体分解性高分子を含有する持続性製剤である、[1]~[9]のいずれか一項に記載の医薬組成物。
[11]持続性製剤が、マイクロスフェアー製剤、マイクロカプセル製剤、またはナノスフェアー製剤である、[10]に記載の医薬組成物。
[12]前記生体分解性高分子が、乳酸-グリコール酸共重合体であり、かつマイクロスフェアー製剤である、項10に記載の医薬組成物。
[13]以下(1)~(5)の化合物及びそれらの塩からなる群より選択される少なくとも1種を含む、項11に記載の医薬組成物:
(1)蛋白分解酵素阻害剤として、カモスタット;
(2)トロンボキサンA2合成酵素阻害剤として、オザグレル;
(3)ホスホジエステラーゼ阻害剤として、シロスタゾール及びシルデナフィル;
(4)チロシンキナーゼ阻害剤として、ニンテダニブ;
(5)抗線維化剤として、ピルフェリドン。
[14] 経口投与用、静脈内投与用、冠動脈内投与用、吸入用、筋注投与用、皮下投与用、経粘膜投与用、経皮投与用、又は心臓貼付投与用である、[1]~[13]のいずれか一項に記載の医薬組成物。
[15] 慢性心不全を伴う難治性心臓組織線維化疾患が、拡張型心筋症、虚血性心筋症、心筋梗塞、狭心症、動脈硬化症、血管炎症候群、心筋炎、肥大型心筋症、大動脈弁狭窄症、弁膜症、大動脈弁閉鎖不全、HFpEF(heart failure with preserved ejection fraction)、拡張不全、収縮不全、上室性頻脈性不整脈、うっ血性心不全、冠動脈疾患、特発性心筋症、又は心房細動である、[1]~[14]のいずれか一項に記載の医薬組成物。
 6種の作用機序を有する医薬品類を代表とする化合物群は、すでに上市されている同種の医薬品類でもよく、また今後開発される同作用機序を有する新しい化合物類でもよい。
またこれらの化合物を含む製剤は、市販品製剤や新しい製剤としてもよい。新しい製剤とは、改良型経口製剤や配合剤、及び各種製法における生体分解性高分子内包の徐放性マイクロスフェアー製剤や、ナノスフェアー製剤等でもよい。各種これらを含有する本発明の薬剤類は、経口投与、静脈内投与、動脈内投与、筋肉内投与、皮下投与、吸入投与、貼付投与、又は軟膏剤等でもよいが、基本的には投与コンプライアンスにすぐれたこれらの化合物を含有する改良型経口剤、市販品製剤、又はこれらの生体分解性高分子内包の徐放性製剤であって、皮下投与、筋注投与、臓器貼付投与、静注投与又は吸入投与のために使用される製剤である。
 プロスタグランジンIP受容体作動薬の心臓疾患に対する有用性に関しては、本発明者らは、すでに特許文献2 WO2004/032965にて詳細に報告している。また、プロスタグランジンに対する効果としては、IP受容体作動薬以外に、EP2受容体作動薬、EP4受容体作動薬、及びPGI2誘導体、PGE1誘導体、PGE2誘導体でも有用であることが記載されている。
 これらの6種の医薬品(生体分解性高分子内包の徐放性製剤を含む)は、原則として、現在降圧剤等として使用されている治療薬である、βブロッカー、ARB、及びACE阻害剤や利尿剤等と併用投与することが好ましい。また、6種の中でも、1種又は2種以上、効果が期待でき、副作用が発症しない範囲において併用投与することが好ましい。また、投薬利便性及び効果増強作用から、現在使用されている降圧剤に加えて、6種の作用機序を有する医薬品の2種又は3種以上との配合剤を作製して使用してもよい。
長期投与における生存率変化の結果を示すグラフである。 生存率曲線を示すグラフである(Control:非投与、ONO-1301:経口投与(1回/2日、26週間)、*:P<0.05有意差(ControlとONO-1301 3mg/kg(Log rank test))。 体重変化の結果を示すグラフである([ ]:投与後の時間、Control:非投与;ONO-1301:経口投与(1回/2日、26週間);それぞれの値は、平均値±S.D.を表わす;**:コントロールと比較した有意差P<0.01(Student’s t-test))。 心機能(EF)変化(群分け時との変化量;Δ)の結果を示すグラフである(Control:非投与;ONO-1301:経口投与(1回/2日、26週間);それぞれの値は、平均値±S.D.を表わす;*:コントロールと比較した有意差P<0.05(Student’s t-test))。 オザグレル塩酸塩の光学顕微鏡観察写真である。 オザグレル塩酸塩のUV吸収スペクトルである。 カモスタットメシル酸塩の光学顕微鏡観察写真である。 カモスタットメシル酸塩のUV吸収スペクトルである。 シルデナフィルクエン酸塩の光学顕微鏡観察写真である。 シルデナフィルクエン酸塩のUV吸収スペクトルである。
1.蛋白分解酵素阻害剤
 蛋白質分解酵素には、主に、セリンプロテアーゼ、システインプロテアーゼ、金属プロテアーゼ、及びアスパラギン酸プロテアーゼ等が存在する。
 蛋白分解酵素阻害剤としては、カモスタットメシル酸は経口剤として慢性膵炎における急性症状の緩解、及び術後逆流性食道炎に対して使用されている。カモスタットはトリプシン、血漿カリクレイン、プラスミン、トロンビン、プロスタシン、C1r-、C1エステラーゼに対して強い阻害作用を示す。一方、パンクレアチン、膵臓カリクレインに対する阻害作用は弱く、α-キモトリプシン、ペプシン、ブロメライン、セラチオペプチダーゼ、エラスターゼ5に対しては阻害作用を示さない(in vitro)。
 一方、注射剤としては、ガベキサートメシル酸が蛋白分解酵素(トリプシン、カリクレイン、プラスミン等)逸脱を伴う諸疾患(急性膵炎、慢性再発性膵炎の急性増悪期、術後の急性膵炎)、及び汎発性血管内血液凝固症(DIC)として使用されている。本剤はトリプシン、カリクレイン(キニン系)、トロンビン(凝固系)、活性化第X因子(凝固系)、プラスミン(線溶系)、C1-エステラーゼ(補体系)等を阻害する(in vitro)。
 ナファモスタットメシル酸塩は、膵炎の急性症状の改善、汎発性血管内血液凝固症(DIC)、及び出血性病変又は出血傾向を有する患者の血液体外循環時の灌流血液の凝固防止に対して使用されている。本剤は、血液凝固・線溶系(トロンビン、XIIa、Xa、VIIa、プラスミン)、カリクレイン-キニン系(カリクレイン)、補体系(C1r、C1s、B、D)及び膵酵素(トリプシン、膵カリクレイン)に対して強力な阻害作用を有している(in vitro)。
 また、シベレスタットナトリウム水和物は、好中球エラスターゼ阻害剤として、全身性炎症反応症候群(Systemic Inflammatory Response Syndrome;SIRS)伴う急性肺障害の改善薬として使用されている。
 種々検討した結果、セリンプロテアーゼ阻害剤、及びエラスターゼ阻害剤が心疾患に対して有効であり、特に、プラスミン阻害剤、血漿カリクレイン阻害剤、トロンビン阻害剤、プロスタシン阻害剤、及びエラスターゼ阻害剤が有効であることが判った。
 これらの標的蛋白分解酵素に選択的な阻害剤であってもよく、また複数の蛋白分解酵素に対して阻害作用を有していても有効である。本発明の完成においては、主にセリンプロテアーゼを阻害するカモスタットメシル酸を代表として検討した(実施例参照)が、すでに公知の阻害剤であってもよく、また、今後開発されるこれらのプロテアーゼに対する阻害剤であってもよい。
 また、これらの生体分解性高分子内包徐放性製剤も有効であり、特に、カモスタットメシル酸、及びシベレスタットナトリウム水和物の乳酸-グリコール酸共重合体(PLGA)マイクロスフェアー(MS)製剤が有効である。
2.ホスホジエステラーゼ(PDE)阻害剤
 ホスホジエステラーゼ(PDE)は,細胞内セカンドメッセンジャーであるcAMP およびcGMP をそれぞれ5'-AMP 及び5'-GMP に加水分解することにより,細胞内のシグナル伝達を調節する酵素である.PDE は,現在までに21 種の遺伝子がクローニングされ,これらはアミノ酸配列の相同性,生化学的特性及び阻害薬に対する感受性の違いから11 種類のファミリー(PDE1~PDE11)に分類されている。
 テオフィリンやアミノフィリンは、非選択的PDE阻害剤として、気管支喘息,喘息性(様)気管支炎,慢性気管支炎,肺気腫に対して使用されている。
 シロスタゾールはPDEIII阻害剤であり、経口剤として、慢性動脈閉塞症に基ずく潰瘍、疼痛及び冷感等の虚血性諸症状の改善、及び脳梗塞(心原性脳塞栓症を除く)発症後の再発抑制剤として使用されている。一方、アムリノン、ミルリノン、及びオルプリノン塩酸塩水和物も選択的PDEIII阻害剤であり、注射剤として急性心不全薬として使用されている。
 シルデナフィルクエン酸塩はPDEV阻害剤であり、勃起不全治療薬として使用されている。その他、PDEIV阻害剤はアトピー性皮膚炎や慢性閉塞性肺疾患(COPD)薬として検討されている。
 本発明は、各々の代表として、非選択的PDE阻害剤として、テオフィリンを、PDEIII阻害剤としてシロスタゾールを、また、PDEV阻害剤としてシルデナフィルクエン酸塩を用いて評価した(実施例参照)。これらは、急性心不全や強心剤としても使用されているが、拡張型心筋症治療剤等の心臓組織線維化疾患治療薬としては使用されていない。
 PDE阻害剤は、すでに公知の阻害剤であってもよく、また、今後開発されるPDEに対する阻害剤であってもよい。
 また、これらの生体分解性高分子内包徐放性製剤も有効であり、特に、シルデナフィルクエン酸塩、テオフィリン及びシロスタゾールの乳酸-グリコール酸共重合体(PLGA)マイクロスフェアー(MS)製剤が有効である。
3.チロシンキナーゼ阻害剤
 チロシンキナーゼ型受容体は増殖因子の受容体である。リン酸化されうるアミノ酸(セリン、スレオニン、チロシン)の中のチロシンをリン酸化することでシグナル伝達を進行させ、細胞を増殖させる。このシグナル伝達系を阻害すれば、細胞増殖を抑制することが可能となる。チロシンキナーゼ酵素には多くの種類があるが、どれもチロシンタンパク質を変化させる役割をもっている(自己リン酸化)。多くのがんではチロシンキナーゼが異常に活性化しており,それによって変化したタンパクであるチロシンが,細胞内にあるシグナル伝達物質と結合し,細胞増殖や,浸潤,転移,血管新生などが引き起こされると考えられている。よって、多くのチロシンキナーゼ阻害剤が抗がん剤として開発されている。
 ゲフィチニブ(非小細胞肺癌)、エルロチニブ塩酸塩(肺癌、膵癌)、アファチニブ マレイン酸塩(非小細胞肺癌)、及びオシメルチニブ(非小細胞肺癌)等が知られている。一方、ニンテダニブエタンスルホン酸塩は、特発性肺線維症に使用されている。
 本発明の完成においては、代表として、ニンテダニブエタンスルホン酸塩を用いて評価した(実施例参照)が、すでに公知の阻害剤であってもよく、また、今後開発されるチロシンキナーゼに対する阻害剤であってもよい。
 また、これらの生体分解性高分子内包徐放性製剤も有効であり、特に、ニンテダニブエタンスルホン酸塩の乳酸-グリコール酸共重合体(PLGA)マイクロスフェアー(MS)製剤が有効である。
4.TXA 2 合成酵素阻害薬、及びTXA 2 受容体拮抗剤
 細胞膜リン脂質から遊離されたアラキドン酸は、アラキドン酸カスケードに従い、シクロオキシゲナーゼ(COX)によりプロスタグランジン(PG)G2に酸化され、さらにペルオキシダーゼ活性によりPGH2へと変換される。その後細胞質へ移動したPGH2は各種酵素により種々のプロスタグランジン(PG)類及びトロンボキサン(TX)A2 へ代謝され、種々の生理活性を示す。TXA2は主に血小板にて産生され、血小板の凝集作用、血管透過性亢進作用、及び血管壁の収縮を引き起こす物質である。また、TXA2は、主に血管内皮細胞で産生されるPGI2と相反する作用を有している。例えば、PGI2は血小板凝集抑制作用や血管拡張作用等を有しており、TXA2とPGI2とのバランスにより、恒常性が維持されている。
 また、これらの生体分解性高分子内包徐放性製剤も有効であり、特に、塩酸オザグレル、オザグレルナトリウム、及びセラトロダストの乳酸-グリコール酸共重合体(PLGA)マイクロスフェアー(MS)製剤が有効である。
 塩酸オザグレル(経口剤)は、TXA2生合成酵素を阻害し、TXA2の産生を抑制することにより気管支喘息の薬として、オザグレルナトリウム(静注剤)はクモ膜下出血術後の脳血管攣縮およびこれに伴う脳虚血症状の改善、及び脳血栓症(急性期)に伴う運動障害の改善剤として用いられている。また、セラトロダスト、及びラマトロバンは、トロンボキサンA2受容体を拮抗的に阻害することで気管支喘息、又はアレルギー性鼻炎の薬として用いられる。本発明の完成においては、代表として、塩酸オザグレルを用いて評価した(実施例参照)が、すでに公知の阻害剤や拮抗剤であってもよく、また、今後開発される阻害剤や拮抗剤であってもよい。
5.HMG-CoA還元酵素阻害剤
 HMG-CoA還元酵素阻害剤はメバロン酸経路の律速酵素であるHMG-CoA還元酵素の働きを阻害することで、肝臓でのコレステロール生合成を低下させる。その結果、コレステロール恒常性維持のため肝臓でのLDL受容体発現が上昇し、血液から肝臓へのLDLコレステロールの取り込みが促進される。LDLは、血管壁にアテロームを形成して動脈硬化症の原因となる。コレステロール生合成の抑制を持続することにより、血液中へのVLDL分泌も低下するため、血漿トリグリセリド値も低下する。
 HMG-CoA還元酵素阻害剤としては、ロスバスタチン、ピタバスタチン、アトロバスタチン、セリバスタチン、フルバスタチン、シンバスタチン、プラバスタチン、及びロバスタチン等が高コレステロール血症、及び家族性高コレステロール血症薬として使用されている。
 本発明の完成においては、代表として、ロバスタチンを用いて評価した(実施例参照)が、すでに公知の阻害剤であってもよく、また、今後開発される阻害剤であってもよい。
 また、これらの生体分解性高分子内包徐放性製剤も有効であり、特に、アトロバスタチン、プラバスタチン、フルバスタチン及びロバスタチンの乳酸-グリコール酸共重合体(PLGA)マイクロスフェアー(MS)製剤が有効である。
6.抗線維化剤
 特発性肺線維症の薬剤として、ピルフェリドンが市販されている。ピルフェリドンは抗線維化作用のほか、抗炎症作用や抗酸化作用など多様な薬理作用を示すことが明らかになっているが、その作用機序はいまだ不明な点が多い。マウスのブレオマイシン誘発肺線維症モデルを用いた検討では、線維化形成に関与する TGF-β(Transforming Growth Factor-β)などの増殖因子の産生抑制に加え、肺線維化の進行に伴うインターフェロン(IFN)-γの低下を抑制することが明らかになっており、このような多様な作用の複合的関与により抗線維化作用を示すと考えられる。
 本発明の完成においては、代表としてピルフェリドンを用いて評価した(実施例参照)が、すでに公知の抗線維化剤であってもよく、また、今後開発される抗線維化剤であってもよい。
 また、体内再生因子誘導に伴う抗線維化剤としては、コレラ毒素(Cholera toxin)、8-ブロモ-cAMP、ジブチリル-cAMP、ホルスコリン(Forskolin)等に加えて、AT1受容体拮抗剤(ARB)、ペルオキシソーム増殖因子活性化受容体ガンマ(PPARγ)作動薬、IL-1、TNF-α、INF等がある。
 また、これらの生体分解性高分子内包徐放性製剤も有効であり、特に、アトロバスタチン、プラバスタチン、フルバスタチン及びロバスタチンの乳酸-グリコール酸共重合体(PLGA)マイクロスフェアー(MS)製剤が有効である。
7.本発明に係る化合物の製造方法
 本発明に係る化合物類は、すでに医薬品として使用されており、一般に試薬又は医薬品として購入することが可能である。また、これらの生体分解性高分子内包の徐放性製剤は、公知の方法により製造することが可能である(国際公開第WO2004/032965号)
8.本発明の医薬組成物の投与対象
 本発明の医薬組成物の投与対象としては、慢性心不全を伴う難治性心臓組織線維化疾患治療対象疾患が、拡張型心筋症、虚血性心筋症、心筋梗塞、狭心症、動脈硬化症、血管炎症候群、心筋炎、肥大型心筋症、大動脈弁狭窄症、弁膜症、大動脈弁閉鎖不全、HFpEF(heart failure with preserved ejection fraction)、拡張不全、収縮不全、上室性頻脈性不整脈、うっ血性心不全、冠動脈疾患、特発性心筋症、心房細動等を発症している哺乳動物が好適である。哺乳動物としては、ヒト、サル、ウシ、ヒツジ、ヤギ、ウマ、ブタ、ウサギ、イヌ、ネコ、ラット、マウス、モルモット等が挙げられ、特に心臓組織線維化循環器系疾患を発症しているまたは発症していることが疑われるヒトが好ましい。
 本発明の医薬組成物の投与方法は、有効成分が疾患部位に到達できる方法であれば特に限定されないが、経口投与、静脈内投与、点滴・輸液投与、冠動脈内投与、吸入投与、筋肉内投与、皮下投与、座剤、腹腔・胸腔内投与、経粘膜投与、経皮投与、臓器用の注射用製剤、又は貼付投与等があるが、一般的には経口投与である。また、これらの医薬組成物含有する生体分解性高分子を用いたマイクロスフェアー徐放性製剤、及びナノスフェアー製剤の場合には、静脈内投与、点滴・輸液投与、動脈内投与、吸入投与、筋肉内投与、皮下投与、座剤、腹腔・胸腔内投与、経粘膜投与、経皮投与、貼付剤、臓器用の注射用製剤、又は臓器貼付投与等であるが、一般的には皮下投与、筋注投与、臓器貼付投与、静注投与、又は吸入投与である。
9.本発明の医薬組成物の投与方法
 本発明の医薬組成物に含まれる本薬剤等の量は、本薬剤の種類とその剤形、年齢、体重、症状、治療効果、投与間隔、または投与経路によって異なるが、経口剤の場合、各々の長期毒性試験結果、及び第I相臨床試験における最大耐量の範囲から適宜選択することができる。下限は特に限定されず目的の効果が得られる投与量であればよい。
 例えば、通常、臨床における最大投与量として、(B)カモスタットメシル酸塩は1日量として600mg(10mg/kg)を3回に分けて、(C)オザグレル塩酸塩水和物は1日量400mg(6.7mg/kg)を2回に分けて、(D)シロスタゾールは1日量200mg(3.3mg/kg)を2回に分けて、(E)ピルフェリドンは、1日量1,800mg(30mg/kg)を3回に分けて(G)ニンテダニブエタンスルホン酸塩は1日量300mg(5mg/kg)を2回に分けて経口投与されている。
 また、(H)テオフィリンは、1日量400mg(6.7mg/kg)を2回に分けて、(I)シルデナフィルは、50mg(0.83mg/kg)を1日1回、(J)ロバスタンは1日20mg(0.33mg/kg)にて経口投与されている。
 投与期間は、疾患とその治療法により、安全性、利便性、患者負担、コンプライアンス等を考慮して適宜決定される。効果が期待でき、利便性のよい投与間隔であればいずれでもよいが、経口剤の場合は、1日1回、1日2回、又は1日3回が好ましいが、1日に1回から2回の範囲がより好ましい。
 臨床試験における副作用は、以下の通りである。
 (B)カモスタットメシル酸塩は1日量として600mgでも認めなかったが、慢性膵炎における急性症状の緩解における承認時までの調査及び市販後調査において副作用集計の対象となった3,806例中69例(1.8%)に83件の副作用(臨床検査値の異常を含む)が認められた。主なものは発疹15件(0.4%)、そう痒9件(0.2%)、嘔気10件(0.3%)、腹部不快感7件(0.2%)、腹部膨満感6件(0.2%)等であった(再審査終了時)。
 (C)オザグレル塩酸塩水和物は1日量400mgでも出血時間の軽度延長を認めた以外は安全性に問題ないことが確認されている。承認時までの調査及び市販後調査において副作用集計の対象となった7,694例中154例(2.0%)に194件の副作用(臨床検査値の異常を含む)が認められた。主なものはAST(GOT)・ALT(GPT)の上昇等25 件(0.3%)、嘔気21 件(0.3%)、そう痒16 件(0.2%)、発疹12件(0.2%)、胃・腹部不快感9件(0.1%)、出血傾向9件(0.1%)等であった(再審査終了時)。
 (D)シロスタゾールは、慢性動脈閉塞症に基づく潰瘍、疼痛及び冷感等の虚血性諸症状の改善における使用成績調査では、安全性解析の対象となった3,335 例中、臨床検査値の異常を含む副作用が209 例(6.3%)に認められた。主な副作用は、頭痛・頭重感(3.4%)、動悸(0.7%)、めまい(0.5%)、下痢(0.3%)、悪心・嘔吐(0.3%)であった(プレタール錠再審査終了時)。
 (E)ピルフェリドンは、承認時における安全性評価対象例265例中、副作用は233例(87.9%)に認められた。主なものは、光線過敏症137例(51.7%)、食欲不振61例(23.0%),胃不快感37例(14.0%)、嘔気32例(12.1%)であった。また、臨床検査値の異常変動は安全性評価対象例265例中120例(45.3%)に認められた。主なものは、γ-GTP上昇53例(20.0%)であった。
 (G)ニンテダニブエタンスルホン酸塩は、第III相国際共同試験の2試験は1061例を対象に実施され、638例に本剤が投与された。これらの2試験は、本剤150mgの1日2回投与で52週間の無作為化、二重盲検のプラセボ対照試験全体での主な副作用は、下痢342例(53.6%)、悪心122例(19.1%)、肝酵素上昇67例(10.5%)及び腹痛65例(10.2%)であった(承認申請時)。
 (H)テオフィリンは、承認時の安全性解析対象症例939 例中85 例(9.05%)に副作用が認められ,主な副作用は悪心・嘔気38 件(4.05%),頭痛24 件(2.56%)、腹痛14 件(1.49%),食欲不振12 件(1.28%),動悸11 件(1.17%)であった。
 (I)シルデナフィルは、承認時の国内臨床試験157 例において、65 例(41.40%)に副作用又は臨床検査値異常が認められた。主な副作用又は臨床検査値異常は、血管拡張(ほてり、潮紅)17 例(10.83%)、頭痛17 例(10.83%)、CK(CPK)増加9 例(5.73%)等であった。
 また、(J)ロバスタチンでは、国内・外の臨床試験において、副作用評価対象例10380例中1950例(18.8%)に臨床検査値異常を含む副作用が認められた。主な副作用は筋肉痛335例(3.2%)、ALT(GPT)上昇179例(1.7%)、CK(CPK)上昇171例(1.6%)であった(承認時)。 
 一方、本薬剤を含有するマイクロイスフェアー徐放性製剤の場合は、1週間に1回、2週間に1回、4週間に1回、又は3ヶ月に1回程度の皮下投与、又は筋注投与が好ましい。
 また、本薬剤を含有するナノスフェアー製剤の場合には、1日に1回、3日に1回、1週間に1回、2週間に1回、又は4週間に1回程度の静注投与、又は皮下投与が好ましい。
 本発明の薬剤、又は本発明の薬剤と他の薬剤の併用剤を投与する際には、経口投与のための内服固形剤、内服用液剤、及び非経口投与にための注射剤、皮下・筋注剤、外用剤、座剤、吸入剤等として用いられる。
 これらの徐放性製剤の間歇投与における1回投与量は、経口投与での総投与量以下であればよく、一般的には総投与量の1/10以下の投与量が用いられる。
 本発明の経口剤の場合には、市販されている医薬品製剤をそのまま使用してもよい。経口投与のための内服用固形剤には、錠剤、丸剤、カプセル剤、散剤、顆粒剤等が含まれる。また、カプセル剤には、ハードカプセル、及びソフトカプセルが含まれる。
この様な内服用固形剤においては、1つまたはそれ以上の活性物質はそのままか、又は各種塩の形にて、賦形剤(ラクトース、マンニトール、グルコース、微結晶セルロース、デンプン等)、結合剤(ヒドロキシプロピルセルロース、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウム等)、崩壊剤(繊維素グリコール酸カルシューム等)、滑沢剤(ステアリン酸マグネシウム等)、安定化剤、溶解補助剤(グルタミン酸、アスパラギン酸等)と混合され、常法に従って製剤化して用いられる。また、必要によりコーティング剤(白糖、ゼラチン、ヒソロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等)で被覆してもよく、また2以上の層で被覆してもよい。さらにゼラチンの様な吸収されうる物質のカプセルも包含される。
 経口投与のための内服用液剤は、薬剤的に許容される水剤、懸濁剤、乳剤、シロップ剤、エリキシル剤等を含む。このような液剤においては、1つまたはそれ以上の活性物質、又は各々の塩の形で、一般に用いられる希釈剤(精製水、エタノールまたはそれらの混液等)に溶解、懸濁、又は乳化される。さらにこの液剤は、湿潤剤、懸濁剤、乳化剤、甘味剤、芳香剤、保存剤、緩衝剤等を含有していてもよい。
 本発明の持続性製剤としては、有効成分を血中濃度、もしくは心臓組織にて持続的に供給できればよく、その製剤形態は限定されない。例えば、徐放性製剤(例えば、マイクロカプセル製剤、マイクロスフェアー製剤、ナノスフェアー製剤等)の皮下注投与、筋注投与、静注投与、及び心臓貼付投与等が挙げられる。
 本発明のマイクロカプセル製剤、マイクロスフェアー製剤、ナノスフェアー製剤とは、好ましくは、活性成分として任意の有効成分と、生体内分解性高分子とを含有する、微粒子状の医薬組成物である。
 本発明の薬物徐放システムは、生体吸収性高分子を含み、具体的には、天然高分子、または合成高分子を含む。これらからの徐放速度の制御機構には、分解制御型、拡散制御型、および膜透過制御型等がある。
 本発明の生体吸収性高分子である天然高分子では、植物産生多糖(例えば、セルロース、デンプン、アルギン酸等)、動物産生多糖およびタンパク質(例えば、キチン、キトサン、コラーゲン、ゼラチン、アルブミン、グルコサミノグリカン等)、微生物産生ポリエステルおよび多糖(例えば、ポリ-3-ヒドロキシアルカノエート、ヒアルロン酸等)等が用いられる。
 また、生体内分解性重合物とは、脂肪酸エステル重合体またはその共重合体、ポリアクリル酸エステル類、ポリヒドロキシ酪酸類、ポリアルキレンオキサレート類、ポリオルソエステル、ポリカーボネートおよびポリアミノ酸類が挙げられ、これらは1種類またはそれ以上混合して使用することができる。脂肪酸エステル重合体またはその共重合体とは、ポリ乳酸、ポリグリコール酸、ポリクエン酸、ポリリンゴ酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリ-ε-カプロラクトン、ポリブチレンテレフタレート・アジペートまたは乳酸-グリコール酸共重合体が挙げられ、これらは1種類またはそれ以上混合して使用することができる。その他に、ポリα-シアノアクリル酸エステル、ポリβ-ヒドロキシ酪酸、ポリトリメチレンオキサート、ポリオルソエステル、ポリオルソカーボネート、ポリエチレンカーボネート、ポリγ-ベンジル-L-グルタミン酸、ポリビニルアルコール、ポリエステルカーボネート、ポリ酸無水物、ポリシアノアクリレート、ポリホスファゼンまたはポリL-アラニンの1種類またはそれ以上混合も使用することができる。好ましくは、ポリ乳酸、ポリグルコール酸または乳酸-グリコール酸共重合体であり、より好ましくは、乳酸-グリコール酸共重合体である。
 本発明に使用されるこれらの生体内分解性高分子重合物の平均分子量は約2,000ないし約800,000のものが好ましく、より好ましくは約5,000ないし約200,000である。例えば、ポリ乳酸において、その重量平均分子量は約5,000から約100,000のものが好ましい。さらに好ましくは約6,000から約50,000である。ポリ乳酸は、自体公知の製造方法に従って合成できる。乳酸-グリコール酸共重合物においては、その乳酸とグリコール酸との組成比は約100/0から約50/50(W/W)が好ましく、特に約90/10から50/50(W/W)が好ましい。乳酸-グリコール酸共重合物の重量平均分子量は約5,000から約100,000が好ましい。さらに好ましくは約10,000から80,000である。乳酸-グリコール酸共重合物は、自体公知の製造方法に従って合成できる。また初期バーストを抑制するために、塩基性アミノ酸類(例えばアルギン酸等)等を添加してもよい。
 本明細書中、重量平均分子量は、ゲルパーミェーションクロマトグラフィー(GPC)で測定したポリスチレン換算の分子量をいう。
 前記した生体内分解性高分子重合物は、本発明の目的が達成される限り、有効成分の薬理活性の強さと、目的とする薬物放出によって変えることができ、例えば当該生理活性物質に対して約0.2ないし10,000倍(質量比)の量で用いられ、好ましくは約1ないし1,000倍(質量比)、さらに好ましくは約1ないし100倍(質量比)の量で用いるのがよい。
 本発明のマイクロスフェアー、マイクロカプセル、ナノカプセルの製造方法としては、例えば水中乾燥法(例えば、o/w法、w/o法、w/o/w法等)、相分離法、噴霧乾燥法、超臨界流体による造粒法あるいはこれらに準ずる方法などが挙げられる。
 以下に水中乾燥法(o/w法)と噴霧乾燥法について、具体的な製造方法を記述する。
(1)水中乾燥法(o/w法)本方法においては、まず生体内分解性重合物の有機溶媒溶液を作製する。本発明のマイクロスフェアー、マイクロカプセル、ナノカプセルの製造の際に使用する有機溶媒は、沸点が120℃以下であることが好ましい。有機溶媒としては、例えばハロゲン化炭化水素(例、ジクロロメタン、クロロホルム等)、脂肪族エステル(例、酢酸エチル等)、エーテル類、芳香族炭化水素、ケトン類(アセトン等)等が挙げられる。これらは2種以上適宜の割合で混合して用いてもよい。好ましい有機溶媒は、ジクロロメタン、アセトニトリルである。有機溶媒は、好ましくはジクロロメタンである。
生体内分解性重合物の有機溶媒溶液中の濃度は、生体内分解性重合物の分子量、有機溶媒の種類などによって異なるが、一般的には約0.01~約80%(v/w)から選ばれる。
好ましくは約0.1~約70%(v/w)、さらに好ましくは約1~約60%(v/w)である。
 このようにして得られた生体内分解性重合物の有機溶媒溶液中に、有効成分を添加し、溶解させる。この有効成分の添加量は、薬物の種類、血管形成作用および効果の持続時間等により異なるが、生体内分解性高分子重合物の有機溶媒溶液中の濃度として、約0.001%~約90%(w/w)、好ましくは約0.01%~約80%(w/w)、さらに好ましくは約0.3~30%(w/w)である。
 次いで、このようにして調製された有機溶媒溶液をさらに水相中に加えて、撹拌機、乳化機などを用いてo/wエマルジョンを形成させる。この際の水相体積は一般的には油相体積の約1倍~約10,000倍から選ばれる。さらに好ましくは、約2倍~約5,000倍から選ばれる。特に好ましくは、約5倍~約2,000倍から選ばれる。前記外相の水相中に乳化剤を加えてもよい。乳化剤は、一般的に安定なo/wエマルジョンを形成できるものであれば何れでもよい。乳化剤としては、例えばアニオン性界面活性剤、非イオン性界面活性剤、ポリオキシエチレンヒマシ油誘導体、ポリビニルピロリドン、ポリビニルアルコール、カルボキシメチルセルロース、レシチン、ゼラチンなどが挙げられる。これらは適宜組み合わせて使用してもよい。外水相中の乳化剤の濃度は、好ましくは約0.001%~約20%(w/w)である。さらに好ましくは約0.01%~約10%(w/w)、特に好ましくは約0.05%~約5%(w/w)である。
 油相の溶媒の蒸発には、通常用いられる方法が採用される。その方法としては、撹拌機、あるいはマグネチックスターラー等で撹拌しながら常圧もしくは徐々に減圧して行なうか、ロータリーエバポレーターなどを用いて、真空度を調節しながら行なう。このようにして得られたマイクロスフェアーは遠心分離法あるいはろ過して分取した後、マイクロスフェアの表面に付着している遊離の有効成分、乳化剤などを、例えば界面活性剤溶液またはアルコール等で数回繰り返し洗浄した後、再び、蒸留水または賦形剤(マンニトール、ソルビトール、ラクトース等)を含有した分散媒などに分散して凍結乾燥する。前記したo/w法においては、有効成分を生体内分解性重合物の有機溶媒溶液中に分散させる方法、すなわちs/o/w法によりマイクロスフェアーを製造してもよい。
(2)噴霧乾燥法によりマイクロスフェアーを製造する場合には、生体内分解性重合物と有効成分を溶解した有機溶媒またはエマルジョンを、ノズルを用いてスプレードライヤー装置(噴霧乾燥機)の乾燥室内へ噴霧し、きわめて短時間に微粒化液滴内の有機溶媒または水を揮発させマイクロスフェアーを調製する。ノズルとしては、二液体ノズル型、圧力ノズル型、回転ディスク型等がある。このとき、所望により、o/wエマルジョンの噴霧と同時にマイクロスフェアーの凝集防止を目的として、有機溶媒または凝集防止剤(マンニトール、ラクトース、ゼラチン等)の水溶液を別ノズルより噴霧することも有効である。このようにして得られたマイクロスフェアーは、必要があれば加温し、減圧化でマイクロスフェアー中の水分及び溶媒の除去をより完全に行なう。
 フィルム製剤とは、前記の生体内分解性重合物と有効成分を有機溶媒に溶解した後、蒸留乾固し、フィルム状としたものまたは生体内分解性重合物と有効成分を適当な溶剤に溶かした後、増粒剤(セルロース類、ポリカーボネート類等)を加えて、ゲル化したもの等がある。
 本発明のマイクロスフェアー、マイクロカプセル、ナノスフェアーは、例えばそのまま、あるいは球状、棒状、針状、ボルト状、糸状、ペレット状、フィルム状、クリーム状の医薬組成物を原料物質として種々の剤型に製剤化することもできる。
 また、この製剤を用いて、局所投与用の非経口剤(例えば、筋肉内、皮下、皮内、心筋内、腹腔内、気管支内、血管内、肺胞内、血管内皮損傷部位、脳内、髄内、硬膜内、硬膜外、関節内、脊椎内、骨部位、歯周部位および各種臓器内又は臓器表面などへの注射剤、埋め込み剤、顆粒剤、散剤等の固形製剤、懸濁剤等の液剤、貼付剤、フィルム製剤、軟膏剤等、医療用具(ステント、ボルト、縫合糸等)に有効成分を含有させた医療用具含有剤、またはコーティングしたコーティング剤等)などとして投与することもできる。また、血管カテーテル等を用いて、例えば、心筋虚血部等に直接投与することが出来る。
 例えば、マイクロスフェアーを注射剤とするには、マイクロスフェアーを分散剤、保存剤、等張化剤、緩衝剤、pH調整剤等と共に水性懸濁剤とすることにより実用的な注射用製剤が得られる。また、植物油あるいはこれにレシチンなどのリン脂質を混合したもの、あるいは中鎖脂肪酸トリグリセリド(例、ミグリオール812等)と共に分散して油性懸濁剤として実際に使用できる注射剤とする。
 マイクロスフェアーの粒子径は、例えば懸濁注射剤として使用する場合にはその分散度、通針性を満足する範囲であればよく、例えば平均粒子径として約0.1~約300μmの範囲が挙げられる。好ましくは、約1~150μm、さらに好ましくは、約2~100μmの範囲の粒子径である。本発明の医薬組成物は、前記のように懸濁液であることが好ましい。本発明の医薬組成物は微粒子状であることが好ましい。なぜならばその医薬組成物は、通常の皮下あるいは筋肉内注射に使用される注射針を通して投与される方が、患者に対し過度の苦痛を与えることがないからである。本発明の医薬組成物は特に注射剤として好ましい。マイクロスフェアーを無菌製剤にするには、製造全工程を無菌にする方法、ガンマ線で滅菌する方法、防腐剤を添加する方法等が挙げられるが、特に限定されない。
 本発明の医薬組成物は、有効成分の作用が徐放性を有し、生体内分解性重合物の種類、配合量などによりその徐放期間は異なるが、通常1週から3カ月の徐放期間を有するので、(虚血性)臓器障害部において各種化合物を徐々に放出し、障害部位で高濃度の維持製剤として用いることができる。
 本発明の医薬組成物の投与量は、有効成分の種類と含量、剤型、薬物放出の持続時間、投与対象動物などにより異なるが、有効成分の有効量であればよい。例えばマイクロスフェアとして虚血部位に使用する場合、1回当りの投与量として、成人(体重50kg)当たり、有効成分として約0.001mgから500mg、好ましくは約0.01mgから100mgを1日ないし3カ月に1回投与すればよい。
 本発明においては、目的に応じて、これらの化合物類、現在使用されているβブロッカー、ARB、ACE阻害剤等との降圧剤、及びPGのIP受容体作動薬、同EP2及び同EP4受容体作動薬から選択される2種以上の薬物を組み合わせて併用投与することも好ましい。なお、上記薬物は市販品として入手するか、もしくは公知の方法に準じて容易に製造することができる。
 本発明の投与形態としては、長期投与となるため、経口投与が主となるが、各々の活性体のマイクロスフェアー製剤の場合は非経口投与である間歇皮下投与、または間歇筋注投与等であり、ナノスフェアー製剤の場合は、間歇静注投与、間歇皮下注投与、及び間歇筋注投与等が主となる。
 徐放性製剤であるマイクロスフェアー製剤、及びナノスフェアー製剤等は非経口投与であるため、経口投与での生物学的利用度(BA)、及び吸収率の低い化合物に対して応用が適している。また、点滴静注が必要な化合物の場合は、間歇皮下投与、又は間歇筋注投与等により長期間点滴静注様の血中動態を示すため、投与利便性の向上、副作用回避、及び効果持続性により有用性が増加する。
 一方、ナノスフェアーの場合には、経口吸収性の向上も期待できる。
 例えば、カモスタットメシル酸塩は消化管内エステラーゼにより多くが失活するため、自体プロドラッグに修飾されているが、尚、活性体の吸収率は低い。よって、乳酸-グリコール酸共重合体マイクロスフェアー(PLGA・MS)製剤の間歇皮下投与又は筋注投与は持続した活性体の血中濃度維持のため有効性が飛躍的に向上する。
 また、点滴注射剤であるシベレスタットナトリウム水和物は、同様にPLGA・MS製剤として間歇皮下投与することにより長期間点滴静注様の血中動態が得られ、利便性が向上し、例えは慢性閉塞性肺疾患(COPD)の様な慢性疾患に対しても有用性が発揮される。一方、ナノスフェアーの場合には、経口吸収性の向上及び疾患局所集積性も期待できる。
 本発明は、重症心臓疾患患者に対する新たな治療法として、生命予後を改善し、QOLを飛躍的に高めることが期待できる。また、これらの薬剤の組み合わせにより、心不全の進行を遅らせることにより、心臓移植やLVAD装着の回避や遅延を可能とする心血管・心筋再生療法は、画期的な新しい心不全治療法となる。加えて、早期治療介入により、疾患の重症化を抑制すると共に、心臓移植やLVADと比較して安価で根治的治療が可能となり、医療経済へも貢献すると期待される。
 拡張型心筋症等である特定疾患・難治性疾患治療研究は陽の目を見てこなかった。これまでは希少疾病であるが故に取り残されてきたが、本発明は、かかる未解決の課題の解決に資するものである。
 本発明は、希少疾病疾患である拡張型心筋症や難治性心疾患の治療法である人工心臓、心臓移植、及び細胞療法に代わり、経口投与での早期治療介入にて、低侵襲性、汎用性、経済性ある心血管・心筋再生療法剤を開発することにより、心臓移植やLVAD装着を遅らせたり回避することが可能となる。また、LVAD装着後のLVAD離脱促進、虚血性心筋症におけるバイパス手術後の維持療法としても有用である。
 本発明化合物である蛋白分解酵素阻害剤、ホスホジエステラーゼ(PDE)阻害剤、チロシンキナーゼ阻害剤、トロンボキサン(TX)A2生合成酵素阻害剤、HMG-CoA還元酵素阻害剤、及び抗線維化剤は、ラット長期経口投与毒性試験での最大安全量(NOAEL)及び臨床投与量を基準とした投与量にて、ラット冠動脈完全虚血モデル、自然発症拡張型心筋症ハムスターの心疾患モデル動物にて評価した結果、これらは全て媒体対照群に対して有意な有効性を示した。また、これらのPLGA・MS製剤は、反復経口投与での総投与量の1/10以下で4週間に1回の間歇皮下投与において有効性を示した。これらの化合物は、現在降圧剤として臨床使用されている、βブロッカー、ARB、及ACE阻害剤等との併用投与が可能であり、全て経口医薬品製剤として市販されており、ヒトに対して安全であることが確認されている。
 以下、実施例によって本発明を具体的に詳述するが、本発明はこれらに限定されるものではない。
 尚、実施例に示した医薬品類及び化合物類を以下に示す。尚、実施例記載においては、これらの略語(塩を含まない一般名)又は化合物記号(A~O及びB・MS、C・MS、I・MS)にて記載する場合もある。
これ等は、下記記載会社から市販されていおり、一般に購入することができる。各被験物質名、作用機序、適応症、及び市販会社名を表1に示す。
(被験物質)
(1)プロスタグランジンIP受容体作動薬
 i)(A)ONO-1301(CAS:176391-41-6)(小野薬品/Sigma-Aldrich)
 ii)(F)ベラプロストナトリウム(CAS:88475-69-8)(アステラス/Cayman社)
(2)蛋白分解酵素阻害剤;(B)カモスタットメシル酸塩CAS:59721-29-8)(小野薬品/和光純薬)
(3)トロンボキサンA2合成酵素阻害剤;(C)オザグレル塩酸塩水和物(CAS:78712-43-3)(小野薬品/東京化成工業)
(4)ホスホジエステラーゼ(PDE)阻害剤;
 i) PDE III阻害剤;(D)シロスタゾール(CAS:73963-72-1)(大塚製薬/東京化成工業)
 ii) PDEV阻害剤;(I)シルデナフィルクエン酸塩(CAS:171599-83-0)(ファイザー/SIGMA)
 iii) 非選択的PDE阻害剤;(H)テオフィリン(CAS:58-55-9)(大塚製薬/ナカライテスク)
(5)抗線維化剤;(E)ピルフェニドン(CAS:53179-13-8)(塩野義製薬/東京化成工業)
(6)チロシンキナーゼ阻害剤;(G)ニンテダニブエタンスルホン酸塩(CAS:656247-18-6(日本ベーリンガーインゲルハイム/LCラボラトリーズ)
(7)HMG-CoA還元酵素阻害剤;(J)ロスバスタチンカルシウム(CAS:147098-20-2)
 (アストラゼネカ/ 東京化成)
(8)(K)カンデサルタンシレキセチル(ARB)(CAS:145040-37-5)(武田薬品/東京化成)
(9)(0)カルベジロール(CAS:72956-09-3)(ファイザー/東京化成)
Figure JPOXMLDOC01-appb-T000001
(投与量設定根拠)
薬効薬理試験に使用した被験物質の投与量設定根拠を以下に示す。各々の根拠となるデータは、本発明者自身のバックグランド資料、及び各々のインタビューフォームから引用した。
(A) ONO-1301;自然発症拡張型心筋症(J2N-k)ハムスターを用いた最小有効投与量は、0.3~1mg/kgであった。また、ラット及びイヌ反復経口投与における無毒性量は、3mg/kgであるため、確実に効果が確認出来る投与量として、3mg/kgx2回/日を設定した。
(B) カモスタットメシル酸塩;コリン欠乏食で飼育したマウスにエチオニンの投与により作成したエチオニン膵炎に20~300mg/kgを1日2回経口投与すると、膵臓内の蛋白分解酵素活性の上昇を抑制(300mg/kg)し、死亡率を低下(20~300mg/kg)させた。
また、ラット6箇月反復経口投与において、550 mg/kg以上で体重増加抑制が認められたので、最大安全量は235 mg/kg~550 mg/kgである。よって、投与量として150 mg/kgx2回/日を設定した。
(C) オザグレル塩酸塩水和物; 感作ラット及び感作モルモットの抗原誘発気道収縮を100mg/kg、及び300mg/kgの経口又は十二指腸内投与で抑制した。
 また、ラット3箇月反復経口投与において、500 mg/kg以上で尿中Na、K及び白血球の増加、血清Caの減少が認められ、無影響量は150 mg/kgであるため、投与量として50 mg/kgx2回/日を設定した。
(D) シロスタゾール;ADPあるいはコラーゲン注入により誘導されるマウス肺塞栓モデルにおいて、シロスタゾールはADPに対しては30mg/kg、コラーゲンに対しては10mg/kgの前投与(経口)により有意に肺塞栓死を抑制した。
 また、ラット13週間反復経口投与では高用量で肝重量の増加が認められ、無毒性量は30 mg/kgであるため、投与量として30 mg/kgx2回/日を設定した。
(E) ピルフェニドン;BLM誘発マウス肺線維症モデルにおいて、ピルフェニドンはBLM投与に伴うヒドロキシプロリン量の増加が用量依存的に抑制され、抗線維化における最小有効投与量は30 mg/kg/日であった。
また、ラット1箇月反復経口投与では100 mg/kg以上で肝薬物代謝酵素活性の上昇が認められ、無毒性量は100 mg/kgであるため、投与量として50 mg/kgx2回/日を設定した。
(F) ベラプロストナトリウム;ラウリン酸誘発ラット後肢循環障害モデルにおいて、300μg/kg/日7日間連続経口投与で後肢の障害を有意に改善した。
 また、ラットにおける12箇月間反復経口投与毒性試験において、0.1 mg/kg/日以上で四肢、耳介及び鼻端の紅潮等が認められ、無影響量は0.01 mg/kg/日であった。よって、最大投与量として0.1 mg/kg×2回/日を設定した。
(G) ニンテダニブエタンスルホン酸塩 ;ブレオマイシン誘発肺線維症モデルマウスにおける,ニンテダニブの予防的投与(ブレオマイシン投与後0日目から14日目に投与)及び治療的投与(ブレオマイシン投与後7日目から21日目に投与)による肺線維症及び肺炎症抑制作用が検討されている。ニンテダニブは30及び60 mg/kgの用量で1日1回強制経口投与した結果、予防的投与では肺線維症に対する阻害効果は、30 mg/kg投与より60 mg/kg投与の方がわずかに高かった。治療的投与では、60 mg/kg投与のみで炎症及び線維化の両方に対する明らかな作用が認められている。
また、ラット6ヵ月間反復投与毒性試験において、20 mg/kg/日で赤血球数減少、PCV減少、ヘモグロビン減少、器官重量減少(胸腺,副腎)等が見られ、無毒性量は5 mg/kgであった。よって、投与量として、5 mg/kg×2回/日を設定した。
(H) テオフィリン;Fischer344系ラットにテオフィリンを13週間経口投与したところ、37.5 mg/kgより腸間膜リンパ節付近の動脈の動脈周囲炎の増加とMCH(平均赤血球血色素量)の増加が認められた。よって、最大投与量として、20 mg/kg×2回/日を設定した。
(I) シルデナフィルクエン酸塩;SD系ラットにシルデナフィルを6ヵ月間経口投与した結果、60 mg/kg 群では肝臓重量の増加、小葉中心性の肝細胞の肥大、甲状腺濾胞上皮の肥大が認められた。無毒性量は60 mg/kg/日であった。よって、投与量として、30 mg/kg×2回/日を設定した。
(J) ロスバスタチンカルシウム;ラット1ヵ月、3ヵ月及び6ヵ月の反復経口投与試験の無毒性量は、それぞれ15 mg/kg、10 mg/kg及び2 mg/kgであった。よって、投与量として、5 mg/kg×2回/日を設定した。
(K) カンデサルタンシレキセチル;高血圧自然発症ラット(SHR) に0.1、1 及び10mg/kg を2 週間経口投与すると、用量に依存して血圧を下げ、血漿レニン濃度を上昇させた。また、ラット6ヶ月毒性試験での無毒性量は10mg/kg、イヌ6ヶ月毒性試験での無毒性量は20mg/kgであった。よって、安全量として、3mg/kgx1回/日を設定した。
(O) カルベジロール;カルベジロールは、α1 受容体とβ受容体の両者を遮断する作用を有し、高血圧と狭心症の治療薬として開発された。その後、更なる開発により慢性心不全及び頻脈性心房細動への作用が確認された。主体はβ遮断作用で降圧作用は主としてこれに基づくが、β受容体を遮断することにより、内因性のカテコールアミンのα1 受容体作用が強まり血管収縮が起こることがあるため、その抑制を目的にα1 受容体遮断作用が付加された薬物である。投与量は臨床投与量とした。
 また、以下の生体分解性高分子内包マイクロスフェアー製剤は、以下PLGA・MS持続性製剤の製造例において、製剤1~3として製造することが可能である。
 投与量設定根拠を以下に示す。
(B・MS)カモスタットMS(製剤2)
  カモスタットのラット皮下投与におけるLD50;1329 mg/kgであるため、その約1/10量の100 mg/kgの4週に1回の間歇皮下投与を設定した。また、臨床投与量としては、活性体であるカモスタットの臨床投与量は200 mg×3回/日で計600 mg/日であるため、その1/28である10 mg/kgの4週に1回の間歇皮下投与を設定した。
 (C・MS)オザグレルMS(製剤1)
  オザグレルのラット皮下投与におけるLD50;2049 mg/kgであるため、その1/40量である50 mg/kgの4週に1回の間歇皮下投与を設定した。
 (I・MS)シルデナフィルMS(製剤3)
シルデナフィルのラット静注投与における致死量は10 mg/kg以上であり、経口投与では1000 mg/kg以上であるためその1/30である30 mg/kgの4週に1回の間歇皮下投与を設定した。
Figure JPOXMLDOC01-appb-T000002
 以下、各種薬効薬理試験結果例を具体的に詳述する。
1.自然発症拡張型心筋症(J2N-k)ハムスターモデルでの効果の検討
 各種医薬品の投与量はラットを用いた長期毒性試験での無毒性量を根拠として設定した。δ-筋グリカン欠損自然発症拡張型心筋症(J2N-k)雄性ハムスター(日本SLC株式会社)を18週齢にて納入し、2週間の検疫・馴化後、心エコー検査を行った。EF値が25%以下、及び55%以上の動物は除外とし、他をEF値及び体重を指標にして層別無作為化割付法により各投与群が均等になるように振り分けた。
 各種医薬品(A~K,O)を1日2回(8時間以上の間隔)、強制経口投与を行い、4週及び8週後(解剖前)に心エコー検査を行い、各群の投与開始前(群分け)との差(変化量;Δ)、及び媒体群(1群)における心機能(EF値及びFS%等)と比較検討した。また、投与8週間後に心臓を摘出し、電顕、RNA・蛋白測定、及び各種免疫病理用標本を採取し、評価した。
 以下、3試験の体重変化及び心機能変化を詳述する。
1)試験1(A~E)の無毒性量における効果を検討した。
2)群構成を表3に示す。
Figure JPOXMLDOC01-appb-T000003
*:記載投与量×2回/日の8週間反復強制経口投与を行い、1回目と2回目の投与には8時間以上間隔を設けた。尚、投与容量は5 mL/kg(1回あたり)とした。
 各医薬品は、0.5%CMC-Na(カルボキシメチルセルロースナトリウム;和光純薬)に
用時懸濁して投与した。尚、Bは、0.5%MC(メチルセルロース400;和光純薬)にて用時懸濁して投与した。1群(Control)は、0.5%CNC-Na(媒体)を投与した。
  結果;(1)体重変化(表4)
 (A)ONO-1301投与群、(B)カモスタットメシル酸塩投与群、(C)オザグレル塩酸塩水和物投与群、(D)シロスタゾール投与群及び(E)ピルフェニドン投与群は、いずれも被験物質投与8週間後までControl群とほぼ同様の体重推移を示し、毒性は発現していないことが確認された。
Figure JPOXMLDOC01-appb-T000004
 それぞれの値は、平均値±S.D.を表わす。
 コントロールと比較して有意な差は認められなかった(Student’s t-test又はAspin-Welch’s test)。
(2)心機能検査(EF値);(表5)
群分け時(0W);A~Eのいずれの投与群もControl群と比較して有意な差は認められなかった。
4W値;実測値、変化量ともにA~Eの各投与群は、Control群と比較して有意な増加(P<0.01 vs Cont群)が認められた。
8W値;実測値、変化量ともにA~Eの各投与群は、Control群と比較して有意な増加(P<0.01 vs Cont群)が認められた。
Figure JPOXMLDOC01-appb-T000005
 <>:0Wと比較した変化値
 それぞれの値は、平均値±S.D.を表わす。
 E.F.:左室駆出分画(ejection fraction)
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
(3)心機能検査(FS%);(表6)
群分け時(0W);A~Eのいずれの投与群もControl群と比較して有意な差は認められなかった。
4W値;実測値、変化量ともにA~Eの各投与群は、Control群と比較して有意な増加(P<0.01 vs Cont群)が認められた。
8W値;実測値、変化量ともにA~Eの各投与群は、Control群と比較して有意な増加(P<0.01 vs Cont群)が認められた。
Figure JPOXMLDOC01-appb-T000006
 <>:0Wと比較した変化値
 それぞれの値は、平均値±S.D.を表わす。
 %F.S.:左室内径短縮率%(fractional shortening)
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
(4)内腔壁厚(LVIDs;左室収縮末期径);(表7)
LVIDsにおいては、(B)カモスタット、(C)オザグレル、及び(E)ピルフェリドンの実測値において、Control群と比較して有意な低下が認められた。
Figure JPOXMLDOC01-appb-T000007
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 それぞれの値は、平均値±S.D.を表わす。
 LVIDd:diastolic left ventricular internal dimension
 LVIDs:systolic left ventricular internal dimension
 *:コントロールと比較した有意差 P<0.05(Student’s t-test又はAspin-Welch’s test)。
 自然発症拡張型心筋症(J2N-k)ハムスターモデルで病態発症20週齢から28週齢まで各種医薬品(A~E)を1日2回、8週間反復経口投与した結果、心機能のEF及びFS%において、いずれも有意な心機能の改善、又は悪化抑制作用を示した。またいずれも体重への有意な影響は認められなかった。
 尚、被験物質として使用した(A)ONO-1301は、本モデルのおける陽性対照として設定した。 また、(B)カモスタットメシル塩酸、(C)オザグレル塩酸塩水和物、(D)シロスタゾール、及び(E)ピルフェニドンは、すでに各種疾患に対して医薬品として使用されており、各々の毒性試験から求めた安全量を基準にして投与した結果、拡張型心筋症に対しても有用であることが確認された。
1)試験2;F~Jの無毒性量における効果を検討した。
2)群構成を表8に示す。
Figure JPOXMLDOC01-appb-T000008
*:記載投与量×2回/日の8週間反復強制経口投与を行い、1回目と2回目の投与には8時間以上間隔を設けた。  なお、投与容量は5 mL/kg(1回あたり)とした。
 各医薬品は、0.5%CMC-Na(カルボキシメチルセルロースナトリウム;和光純薬)に用時懸濁して投与した。尚、Gは、蒸留水にて用時懸濁して投与した。
結果;(1)体重変化(表9)
 (F)ベラプロスト投与群、(G)ニンテダニブ投与群、(H)テオフィリン投与群、及び(I)シルデナフィル投与群は、被験物質投与8週間後までControl群とほぼ同様の体重推移を示し、副作用は発現していないことが確認された。一方、(J)ロバスタチンは、被験物質投与後、5週間目から体重減少が確認され、8週においても10%程度の有意な体重減少が認められた。
Figure JPOXMLDOC01-appb-T000009
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d..
 それぞれの値は、平均値±S.D.を表わす。
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
(2)心機能検査(EF値);(表10)
群分け時(0W);F~Jのいずれの投与群もControl群と比較して有意な差は認められなかった。
4W値;(H)テオフィリン及び(J)ロバスタチン以外の(F)ベラプロスト投与群、(G)ニンテダニブ投与群、及び(I)シルデナフィル投与群の実測値においては、Control群と比較して有意な増加が認められた。変化量においては、(H)テオフィリン以外の全ての検体においてControl群と比較して有意な増加が認められた。
8W値;実測値、変化量ともにF~Jの各投与群は、Control群と比較して有意な増加が認められた。
Figure JPOXMLDOC01-appb-T000010
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:0Wと比較した変化値
 それぞれの値は、平均値±S.D.を表わす。
 E.F.:左室駆出分画(ejection fraction)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
(3)心機能検査(FS%);(表11)
群分け時(0W);F~Jのいずれの投与群もControl群と比較して有意な差は認められなかった。
4W値;(H)テオフィリンの実測値及び変化量、及び(J)ロバスタチンの実測値以外の(F)ベラプロスト投与群、(G)ニンテダニブ投与群、及び(I)シルデナフィル投与群は実測値及び変化量において、Control群と比較して有意な増加が認められた。(J)ロバスタチンは変化量においてのみ、Control群と比較して有意な増加が認められた。
8W値;実測値、変化量ともにF~Jの各投与群は、Control群と比較して有意な増加が認められた。
Figure JPOXMLDOC01-appb-T000011
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:0Wと比較した変化値
 それぞれの値は、平均値±S.D.を表わす。
 %F.S.:左室内径短縮率%(fractional shortening)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
(4)内腔壁厚(LVIDs;左室収縮末期径);(表12)
LVIDsにおいては、(G)ニンテダニブ、(I)シルデナフィル、及び(J)ロバスタチンの実測値において、Control群と比較して有意な低下が認められた。
Figure JPOXMLDOC01-appb-T000012
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 それぞれの値は、平均値±S.D.を表わす。
 LVIDd:diastolic left ventricular internal dimension
 LVIDs:systolic left ventricular internal dimension
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
 #:コントロールと比較した有意差 P<0.05(Aspin-Welch’s test)。
 自然発症拡張型心筋症(J2N-k)ハムスターモデルで病態発症20週齢から28週齢まで各種医薬品を1日2回、8週間反復経口投与した結果、F~JのEF及びFS%のいずれも有意な心機能の悪化抑制作用を示した。一方、体重においては、(J)ロバスタチンはControl群と比較して10%程度の有意な体重減少が認められたが、その他のF~IはいずれもControl群と比較して変化は認められなかった。
 5)試験3)
試験3は、試験1及び試験2で選択された医薬品類を臨床投与量において比較検討した。群構成を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 投与量の設定理由(成人体重を60 kgとし、最大臨床投与量と同量を設定した)
1)C(オザグレル;OZ)の臨床投与量は、200 mg×2回/日であるため、3.3 mg/kg×2回/日投与量とした。
2)D(シロスタゾール;CS)の臨床投与量は、100 mg×2回/日であるため、1.7 mg/kg×2回/日投与量とした。
3)E(ピルフェリドン;PF)の臨床投与量は、600 mg×3回/日で計1800 mg/日であるため、15 mg/kg×2回/日投与量とした。
4)G(ニンテダニブスルフォン酸塩;OB)の臨床投与量は、150 mg×2回/日であるため、2.5 mg/kg×2回/日投与量とした。
5)P(カルベジロール;CV)の臨床投与量は、10 mg×2回/日であるため、0.17 mg/kg×2回/日投与量とした。
6)製剤2;カモスタットのPLGA・MS製剤;B・MS)は、活性体であるカモスタットの臨床投与量は200 mg×3回/日で計600 mg/日であるため、1日投与量である10 mg/kgの4週間に1回、計2回の間歇皮下投与とした。本投与量は総経口投与量の1/28となる。
経口投与の投与容量は、5 mL/kg(個体別の投与液量は最新の体重に基づいて算出した)とし、ポリプロピレン製ディスポーザブル注射筒及びラット用胃ゾンデを用いて強制投与した。
 いずれも投与期間は8週間とした。
結果;(1)体重変化(表14)
いずれの投与群も被験物質投与8週間後までControl群とほぼ同様の体重推移を示し、副作用は発現していないことが確認された。
Figure JPOXMLDOC01-appb-T000014
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 それぞれの値は、平均値±S.D.を表わす。
 括弧内の数字は動物の数を表す。
 Student’s t-test)。
 コントロールに対する有意差は観察されなかった(Student’s t-test又はAspin-Welch’s test)
 (2)心機能検査;EF値(表15)及びFS%値(表16)
群分け時(0W)は、いずれの投与群もControl群と比較して有意な差は認められなかった。
4W値では、(C)オザグレル、(D)シロスタゾール、(E)ペリフェニドン、及び(P)カルベジロールの1日2回反復経口投与、及び(B・MS)カモスタットMS投与の4週に1回、計2回の皮下投与において、各群の実測値又は変化率において、Control群と比較して有意な心機能の改善効果が認められた。8W値では、(D)、(E)、(G)、及び(P)の実測値、及び/又は変化量においてControl群と比較して心機能の有意な改善効果が認められた。
Figure JPOXMLDOC01-appb-T000015
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:0Wと比較したE.F.の変化値
 それぞれの値は、平均値±S.D.を表わす。
 括弧内の数字は動物の数を表す。
 E.F.:左室駆出分画(ejection fraction)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
Figure JPOXMLDOC01-appb-T000016
  a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:0Wと比較したF.S.の変化値
 それぞれの値は、平均値±S.D.を表わす。
 括弧内の数字は動物の数を表す。
 %F.S.:左室内径短縮率%(fractional shortening)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
 (C)オザグレル、(D)シロスタゾール、(E)ペリフェニドン、及び(P)カルベジロールの1日2回反復経口投与、及び(B・MS)カモスタットMS投与の4週に1回、計2回の皮下投与において、心機能の改善効果が認められた。
 6)試験4;幼若動物における併用投与効果の検討
 δ-筋グリカン欠損自然発症拡張型心筋症(J2N-k)雄性ハムスター(日本SLC株式会社)を4週齢にて納入し、1週間の検疫・馴化後、心エコー検査を行い、EF値、及び体重を指標にして層別無作為化割付法により各投与群が均等になるように振り分けた。
各種被験物質を1日2回(8時間以上の間隔)、強制経口投与を行い、投与4週及び8週後(解剖前)に心エコー検査を行い、各群の投与開始前(群分け)との差(変化量;Δ)、及び媒体群(1群)における心機能(EF値及びFS%等)と比較検討した。
(1)試験4)の群構成を表17に示す。
Figure JPOXMLDOC01-appb-T000017
 試験4は、試験1、2及び試験3で選択されたO(CV;カルベジロール)、C(OZ;オザグレル)、及びE(PF;ピルフェニドン)の3種の医薬品類を臨床投与量における単独及び併用効果について比較検討した。
 投与量設定根拠は、試験3に従い設定し、同様に1日2回経口投与した。 臨床的に汎用されているβブロッカーであるカルベジロールを基準として、オザグレル及びピルフェニドンとの2種及び3種併用投与の効果を確認した。
 結果;(1)体重変化(表18)
いずれの投与群も被験物質投与8週間後までControl群とほぼ同様の体重推移を示し、副作用は発現していないことが確認された。
Figure JPOXMLDOC01-appb-T000018
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 それぞれの値は、平均値±S.D.を表わす。
 コントロールに対する有意差は観察されなかった(Student’s t-test又はAspin-Welch’s test)
 心機能検査;EF値(表19)及びFS%(表20)
カルベジロール及びオザグレル塩酸塩水和物の単独投与は、臨床投与量においても左室収縮機能の有意な低下抑制作用が見られた。更に、カルベジロールとオザグレル塩酸塩水和物の2剤併用投与では、さらに効果が増強し、及びカルベジロールとオザグレル塩酸塩水和物、及びピルフェニドンの3剤併用投与により、さらに相乗的な左室収縮機能の低下抑制作用が認められた。
Figure JPOXMLDOC01-appb-T000019
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:0Wと比較したE.F.の変化値
 それぞれの値は、平均値±S.D.を表わす。
 E.F.:左室駆出分画(ejection fraction)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
Figure JPOXMLDOC01-appb-T000020
  a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:0Wと比較したF.S.の変化値
 それぞれの値は、平均値±S.D.を表わす。
 %F.S.:左室内径短縮率%(fractional shortening)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
 以上の結果より、自然発症拡張型心筋症J2N-k幼若ハムスターに対する(O)カルベジロール及び(C)オザグレル塩酸塩水和物の単独投与は、臨床投与量においても左室収縮機能の有意な低下抑制作用が見られ、心筋症の悪化を抑制する効果が確認された。更に、(O)カルベジロール、(C)オザグレル塩酸塩水和物、及び(E)ピルフェニドンの3剤併用投与により、さらに相乗的な左室収縮機能の低下抑制作用が認められた。
 各々の毒性試験から求めた安全量を基準にして投与した結果、拡張型心筋症に対して、A~Jのいずれも心機能悪化抑制作用において有効であることが確認された。
2.ラット冠動脈完全結紮による虚血(MI)モデルに対する効果の検討
 ラットの冠動脈完全虚血モデルを作製し、各被験物質投与における心機能変化について比較検討した。
 ラットの左冠動脈前下行枝(LAD)を完全閉塞し、冠動脈完全虚血モデルを作製した。
モデル作製翌日(24時間後)から各被験物質を1日2回経口投与し、投与1、2及び4週間後に体重測定及び心エコー検査を行った。また、投与4週間後に心臓を摘出し、電顕、RNA・蛋白測定、及び各種免疫病理用標本を採取し、評価した。
(1)心筋虚血モデルの作製
 ラットをペントバルビタールナトリウム(ソムノペンチル、共立製薬(株):35~45 mg/kg、i.p.)で麻酔する。麻酔後、背位に固定し、気道に気管チューブを経口的に挿入し、小動物用人工呼吸器(Model 683、HARVARD Apparatus, Inc.)により人工呼吸(Tidal volume:1.5~2.0 mL/stroke、呼吸回数:70 strokes/min)を施し、胸部側壁を開胸して心臓を露出する。糸付縫合針(ELP、エルプ糸付縫合針:M10-60B2)を用いて左冠動脈前下行枝(LAD)を完全閉塞する。この時、心電図用アンプ(AC-601G、日本光電工業(株))を介して心電図(第II誘導、ただし測定困難な場合はaVR誘導)を測定し、ST電位の上昇及び心筋の白色化を肉眼的に観察し、閉塞の有無(心筋虚血の発生)を確認する。なお、心室細動(ventricular fibrillation:VF)が出現した場合は、リング鑷子により心臓を直接刺激することにより蘇生処置を行い、VF が消失すれば採用とする。その後、閉胸して切開部を縫合し、動物用イソジン液(Meiji Seikaファルマ(株))を用いて消毒する。なお、冠動脈完全虚血モデル作製翌日を1日後とする。
(2)群分け
 冠動脈完全虚血モデル作製翌日に一般症状観察で病態による衰弱(自発運動低下、呼吸促迫、耳介蒼白(体温低下)など)の見られない個体を抽出した。冠動脈完全結紮翌日に心エコー検査を実施し、正常動物(EF 90%)の左室駆出率(EF)から25%以上低下した動物を選択した。群分けは、心エコー検査の内、駆出率(EF)及び体重を指標にして層別無作為化割付法により各投与群均等になるように振り分けた。
 (3)心エコー検査
実験動物用吸入麻酔器(TK-5、(株)バイオマシナリー)及び小動物用麻酔器(MK-A110S、室町機械(株))にて2.0%イソフルラン(イソフルラン吸入麻酔液、ファイザー(株))麻酔下で背位に固定し、超音波画像診断装置(Nemio SSA-550A、東芝メディカルシステムズ(株))を用いて心エコーを測定した。ラットの胸部にリニアプローブ(14MHz)を当て、左室内径短縮率[%FS=(LVIDd-LVIDs)×100/LVIDd]及び駆出率[EF=(LVIDd3-LVIDs3)/LVIDd3]を算出した。測定は、1画像で3心拍分計測し、その平均値を測定値とした。
 測定時期は、冠動脈完全結紮翌日(群分け時;1 Day)、冠動脈完全結紮7日後(投与7日目1回目の投与前;7 Day)、冠動脈完全結紮14日後(投与14日目1回目の投与前;14 Day)、及び冠動脈完全結紮29日後(最終投与28日目の翌日の解剖前;29 Day)の4回測定した。
 最終体重測定、心エコー検査終了後、イソフルラン麻酔下に腹部大動脈よりディスポーザブル注射筒(ニプロシリンジ)を用いて約3 mL採血した。血液はヘパリン処理(ベノジェクト真空採血管)し、高速冷却遠心機(Model 6000、久保田商事(株))により遠心分離(3000 rpm、4℃、10分)し、血漿を採取した。
 採血終了後、放血致死により安楽死させて心臓を摘出した。心臓は心臓重量測定後、梗塞領域を左室及び右室を含めて、短軸の3分割し短軸断面の写真を撮影した。すなわち、Apical部を除き、Midle領域を約2 mm間隔で2 分割した後、Apical側とBasals側の2切片の写真を撮影し記録した。写真撮影後、Apical側(最下部)及びBasal側(最上部)を緩衝ホルマリンにて保存した。また、Midle部から梗塞周辺部の1片を採取し、RNALaterに浸けて冷蔵庫(5℃)に一晩保存した。翌日にRNALaterを除いた後、そのまま液体窒素で凍結し、-64.5℃以下[超低温槽(CLN-35C、日本フリーザー(株)):設定温度-80℃]で凍結保存した。Midle部の残りはそのまま凍結保存した。
 試験1)安全量(NOAEL)投与におけるMIモデル試験1
 試験1の群構成を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 *:記載投与量×2回/日の28日間反復経口投与を行った。1日2回の投与間では8時間以上の間隔を空けた。
結果;(1)体重変化を表22に示す。
 (A)ONO-1301投与群、(C)オザグレル塩酸塩水和物投与群、(F)ベラプロスト+ (C)オザグレル塩酸塩水和物投与群、(D)シロスタゾール投与群及び(E)ピルフェニドン投与群は、29 DayまでControl群とほぼ同様の体重推移を示した。
 (F)ベラプロスト投与群はControl群に比べて、14 Dayから29 Dayに亘って有意な体重の増加抑制(いずれもP<0.05 vs. Control群)が観察された。なお、体重に有意な変化(測定2時点)が認められたが、変化量としては軽微であり生物学的意義はないものと考えられた。 
Figure JPOXMLDOC01-appb-T000022
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 それぞれの値は、平均値±S.D.を表わす。
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 (2)心機能検査(EF値);(表13)
 群分け時(1day)は、いずれの投与群もControl群と比較して有意な差は認められなかった。
 7dayでは、実測値ではシロスタゾール投与群がP<0.05 vs Cont群、シロスタゾール以外の投与群はP<0.01 vs Cont群で有意な増加が認められた。
 変化量ではシロスタゾール投与群のみ有意な増加が認められなかったが、シロスタゾール以外の投与群はP<0.05 vs Cont群で有意な増加が認められた。
 14dayでは、実測値、変化量ともに各投与群は、Control群と比較して有意な増加(P<0.01 vs Cont群)が認められた。
 29day(最終日)では、実測値、変化量ともに各投与群は、Control群と比較して有意な増加(P<0.01 vs Cont群)が認められた。
Figure JPOXMLDOC01-appb-T000023
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:1 Dayと比較した変化値
 それぞれの値は、平均値±S.D.を表わす。
 E.F.:左室駆出分画(ejection fraction)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差P<0.01(Student’s t-test)。
(3)心機能検査(%FS);(表14)
 群分け時(1 Day)は、いずれの投与群もControl群と比較して有意な差は認められなかった。
 7 Dayでは、実測値ではシロスタゾール投与群のみP<0.05 vs Cont群、シロスタゾー以外の投与群はP<0.01 vs Cont群で有意なEF値の増加が認められた。変化量ではシロスタゾール投与群のみ有意な増加が認められなかったが、シロスタゾール以外の投与群はP<0.05 vs Cont群で有意なEF値の増加が認められた。
 14 Dayでは、実測値、変化量ともに各投与群は、Control群と比較して有意なEF値の増加(P<0.01 vs Cont群)が認められた。
 29 Dayでは、実測値では各投与群は、Control群と比較して有意な増加(P<0.01 vs Cont群)が認められた。変化量ではシロスタゾール投与群がP<0.05 vs Cont群、シロスタゾール以外の投与群はP<0.01 vs Cont群で有意な増加が認められた。
Figure JPOXMLDOC01-appb-T000024
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:1 Dayと比較した変化値
 それぞれの値は、平均値±S.D.を表わす。
 %F.S.:左室内径短縮率%(fractional shortening)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差P<0.01(Student’s t-test)。
 以上の結果より、本試験で作製した冠動脈完全虚血モデル(Control群)では、左室収縮機能不全(駆出率;EFの低下、左室内径短縮率;%FSの低下)が観察され心筋梗塞モデルであることが確認された。
 被験物質A(ONO-1301)、被験物質F(ベラプロスト)、被験物質C(オザグレル塩酸塩水和物)、被験物質F + C(ベラプロスト + オザグレル塩酸塩水和)、被験物質D(シロスタゾール)及び被験物質E(ピルフェニドン)ともに、左室収縮機能の悪化抑制作用が見られ、心筋梗塞を改善する作用を示した。
 一方、被験物質F(ベラプロスト)と被験物質C(オザグレル塩酸塩水和物)の併用投与ではControl群に比べ、左室収縮機能の有意な改善が認められたが、F及びC単独投与に比し、併用投与における効果増強作用は認められなかった。本試験系においては、すでに単独投与においてほぼ最大効果を発揮していることが示唆された。
 2)試験2
 B、G、I、及びCの反復経口投与及びB、C、Iの徐放性(製剤1~製剤3)製剤の単回皮下投与での効果の検討を行った。
(1)群構成を表25に示す。
Figure JPOXMLDOC01-appb-T000025
 経口投与群:記載投与量×2回/日の28日間反復経口投与を行った。なお、1日2回の投与間では8時間以上の間隔を空けた。 Control群は媒体(CMC-Na)を経口投与した。
皮下投与群:冠動脈完全結紮24時間後に各々の投与量を単回皮下投与を行った。
 投与量設定根拠;
 投与量設定理由
各被験物質の投与量は、無毒性量から最大投与可能量を設定した。
B(カモスタットメシル酸塩)は、ラット6箇月反復経口投与において、550 mg/kg以上で体重増加抑制が認められたので、最大安全量は235 mg/kg~550 mg/kgである。よって、最大投与可能量として150 mg/kgを設定した。
G(ニンテダニブエタンスルホン酸塩)は、ラット6箇月間反復投与毒性試験において、20 mg/kg/日で副作用が発現し、無毒性量は5 mg/kgである。よって、最大投与量として、5 mg/kg×2回/日を設定した。
I(シルデナフィルクエン酸塩)は、SD系ラットにシルデナフィルを6箇月間経口投与した結果、60 mg/kg群で副作用が認められた。無毒性量は60 mg/kg/日である。よって、最大投与量として、30 mg/kg×2回/日を設定した。
C(オザグレル塩酸塩水和物)は、ラット3箇月反復経口投与において、500 mg/kg以上で副作用が認められ、無影響量は150 mg/kgであるため、その1では、安全量として50 mg/kgを設定した。試験1では50 mg/kgで十分効果が確認できたため、試験2では、臨床投与量(6.7 mg/kg)に近い、10 mg/kgを設定した。
B・MS(製剤2;カモスタット・MS)は、カモスタットのラット皮下投与におけるLD50;1329 mg/kgであるため、その約1/10量の100 mg/kgを設定した。また、ハムスター試験1の2群(被験物質B)の1日投与量は300 mg/kg(150 mg/kg×2回)であり、その1/3量を設定した(総投与量比率;150×2×28/100にて1/84となる)。
C・MS(製剤1;オザグレル塩酸塩・MS)は、オザグレルのラット皮下投与におけるLD50;2049 mg/kgであるため、その1/40量である50 mg/kgを設定した。また、ハムスター試験1の4群では、50 mg/kg×2回/日投与で有効性が確認されているため、その1回量である50 mg/kgを設定した。一方、本試験5群(被験物質L)の1日投与量は20 mg/kg(10 mg/kg×2回/日)であった(総投与量;10×2×28/50にて1/11.2となる)。
I・MS(製剤3;シルデナフィル・MS)は、シルデナフィルのラット静注投与における致死量は10 mg/kg以上であり、経口投与では1000 mg/kg以上であるため30 mg/kgを設定した。また、ハムスター試験2の5群では、30 mg/kg×2回/日投与で有効性が確認されているため、その1回量である30 mg/kgを設定した。また、本試験4群(被験物質I)の投与量も30 mg/kg×2回/日であった(総投与量;30×2×28/30にて1/56となる)。
 結果;(1)体重変化(表26)
B(カモスタット)投与群、G(オフェブ)投与群、I(シルデナフィル)投与群、C(オザグレル)投与群、B・MS(カモスタット・MS)投与群、C・MS(オザグレル・MS)投与群及びI・MS(シルデナフィル・MS)投与群は、29 DayまでControl群とほぼ同様の体重推移を示した。
Figure JPOXMLDOC01-appb-T000026
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 それぞれの値は、平均値±S.D.を表わす。
 括弧内の数字は動物の数を表す。
 コントロールに対する有意差は観察されなかった(Student’s t-test又はAspin-Welch’s test)
 (2)心機能検査(EF値);(表27)
群分け時(1day)は、いずれの投与群もControl群と比較して有意な差は認められなかった。14day、及び29day共に、B、G、I、及びCの1日2回反復経口投与群は、いずれもControl群に比し実測値及び/又は変化量で有意な増加を認めた。また、B・MS(製剤2)、C・MS(製剤1)、及びI・MS(製剤3)は、いずれも単回皮下投与において、14day、及び29day共に、いずれもControl群に比し実測値及び/又は変化量で有意な増加を認めた。
Figure JPOXMLDOC01-appb-T000027
 a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:1 Dayと比較したE.F.変化値
 それぞれの値は、平均値±S.D.を表わす。
 括弧内の数字は動物の数を表す。
 E.F.:左室駆出分画(ejection fraction)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
 (3)心機能検査(%FS);(表28)
群分け時(1day)は、いずれの投与群もControl群と比較して有意な差は認められなかった。14day、及び29day共に、EFと同様に被験物質投与群は、いずれもControl群に比し実測値及び/又は変化量で有意な増加を認めた。
Figure JPOXMLDOC01-appb-T000028
  a):0.5%CMC-Na 5mL/kg, p.o., b.i.d.
 <>:1 Dayと比較したF.S.変化値
 それぞれの値は、平均値±S.D.を表わす。
 括弧内の数字は動物の数を表す。
 %F.S.:左室内径短縮率%(fractional shortening)
 *:コントロールと比較した有意差 P<0.05(Student’s t-test)。
 **:コントロールと比較した有意差 P<0.01(Student’s t-test)。
 B、G、I、及びCの1日2回の4週間反復経口投与群、及びB・MS(製剤29、C・MS(製剤1)、及びI・MS(製剤3)の単回皮下投与において、いずれもControl群に比し心機能(EF、FS%)の有意な増加を認めた。特に、B・MSはBに対して1/84、C・MSはCに対して1/11.2、及びI・MSはIに対して1/56投与量で有効性を認めたことは、画期的である。
3.自然発症拡張型心筋症(J2N-k)ハムスターモデルでの長期効果の比較検討
 δ-筋グリカン欠損自然発症拡張型心筋症(J2N-k)ハムスターモデルに、病態発症後(20週齢)から、ONO-1301及びARBである(K)カンデサルタンを1日2回、36週間反復経口投与し、長期投与での心機能変化、及び生存率にて比較評価した。即ち、病態発症後(20週齢)にて心エコー測定を行い、駆出率(EF値)及び体重にて等しく群分け(表15)を行い、36週間被験物質を投与した。
 被験物質は、(A)ONO-1301、及びARBとして(K)カンデサルタンにて比較検討した。
試験方法は「1.自然発症拡張型心筋症(J2N-k)ハムスターモデルでの効果の検討」と同様に実施した。
Figure JPOXMLDOC01-appb-T000029
 ONO-1301は3mg/kgx2回/日、カンデサルタンは、3mg/kgx1回/日投与し、2回目は媒体のみを投与した。Contは、媒体(0.5%CMC-Na)を1日2回投与した。
(2)心機能検査(EF値);(表16)
 ONO-1301-3.0mg/kg群は,投与期間を通じていずれもControl群に比し有意な改善効果を示した.一方,カンデサルタン-3.0 mg/kg群は,投与20週まではONO-1301-3.0mg/kg群と同等の効果を示したが,以降効果が減弱し,30週および36週(final)では有意差は消失した。
Figure JPOXMLDOC01-appb-T000030
 それぞれの値は、平均値±S.E.を表わす。
 *:p<0.05、**:p<0.01、***:p<0.001、コントロールと比較した有意差(Dunnett-test)。
 a:p<0.05、aaa:p<0.001、コントロールと比較した有意差(Steel-test)。
(3)心機能検査(FS%);(表17)
 ONO-1301-3.0mg/kg群の投与1,2,3,4,5,6,7および8ヶ月(34および36週),及びCandesartan-3.0 mg/kg群の投与1,2,3,4,5,6,7および8ヶ月(34週)はControl群と比較して有意な高値を示したが、カンデサルタンの36週(final)では有意差が消失した。
Figure JPOXMLDOC01-appb-T000031
 それぞれの値は、平均値±S.E.を表わす。
 *:p<0.05、**:p<0.01、***:p<0.001、コントロールと比較した有意差(Dunnett-test)。
(4)生存率;(図1)
生存率については,Cont群の死亡率が低かったため、被験物質投与群との間に有意な差はみられなかったが,被験物質投与群においては,カンデサルタン群は被験物質投与開始29週から急激な生存率の低下が見られ、ONO-1301-3.0 mg/kg群との間で生存率の開きが確認された。
 心エコーによる左室機能測定では,心不全の指標とされるEF(左室駆出率)値において,ONO-1301-3.0 mg/kg群では,改善効果が認められた.また,対照物質(ARB)のカンデサルタン-3.0 mg/kg群においても,投与20週頃までは同様の改善効果が認められたが、投与5ヶ月頃から心機能に翳りがみえ始め,終盤には死亡例の増加がみられた。
 このことからONO-1301には,長期投与においても、拡張型心筋症に対して降圧剤として通常使用されているカンデサルタンより勝った効果があることが確認された。  
 以上のことから,ONO-1301は,現在の拡張型心筋症での第一選択薬の1つであるARBのカンデサルタンに比し、長期に渡り,拡張型心筋症から心不全への移行、すなわち心機能の悪化を抑制し,死亡率を抑制することが確認された。
4.イヌ高速ペーシング重症拡張型心筋症モデルにおける長期反復経口投与における効果の検討
 本試験は、拡張型心筋症患者に早期治療介入としてONO-1301を長期間反復経口投与することにより、DCMの重症化を抑制し、心臓移植や人工心臓の装着を遅らせたり、回避することを目的とした汎用性ある心血管・心筋再生療法剤の開発を検討するために実施した。
即ち、イヌ高速ペーシング重症拡張型心筋症モデルを用いて、長期間でのONO-1301反復経口投与による心機能改善効果と生存率延長効果について検討した。
1)高速ペーシング誘発イヌ心不全モデルの作製と被験物質投与
(1)ペースメーカーの埋め込み手術;
 麻酔下、動物の右側頸部を切開し、動物用体内式心臓ペースメーカー(以下ペースメーカー、SIP-501、スターメディカル(株))を皮下に埋め込み、X線透視診断装置で右頸静脈よりリトラクタブルスクリューインリード(TENDRILTMSTS 2088TC、58cm 6Fr:セント・ジュード・メディカル(株))を挿入し、先端を右心室壁に留置した。Sham群については偽手術を行った。ペースメーカーを作動させパルスレートに連動した心臓の拍動が得られることを心電図(第II誘導)にて確認後、切開部を縫合した。
(2)高速ペーシングと被験物質投与;
 イヌに高速ペーシング(拍動数:226~240 beats/min)を行うことにより誘発させた重症拡張型心筋症モデルを用い、高速ペーシング4週後に心機能(EF)により等しく群分けを行い、ONO-1301(3mg/kg)の1日2回、6ヶ月(26週)間反復経口投与(モデル作製後30週)による長期有効性(生存率)に対する効果について検討した。尚、ONO-1301は、直近の体重により投与量を設定(1週間に1回)し、ONO-1301をカプセルに充填し、強制経口投与を行った。対照群には同様に空カプセルを投与した。
(3)ペースメーカー作動状態の確認;
 心電図(第II誘導)検査として、 病態作製期間(4週間)は、週に1回の頻度で測定した。なお、被験物質投与後は心エコー測定時に実施した。また、聴診器の検査は毎日実施した。即ち、毎日、10秒間の拍動数を測定し、聴診器の検査で異常があった場合は、心電図を測定し、ペーシングエラーの有無を確認した。
2)症状観察;
 毎日(朝夕投与時の2回)、動物の一般状態(死亡の有無、姿勢、活動性、歯茎の色、腹水貯留の有無、便等)及び摂餌量を観察した。生存率の算出は、試験中は、動物の死亡の有無を観察し、各投与群における生存率を算出した。生存率は被験物質投与開始日を起算日とし、1日2回、6箇月間観察した。なお、瀕死状態は耳介反射、聴覚反射、痛覚反射の検査において1項目でも反応しない場合をもって死亡と判断した。
3)体重測定;ペースメーカー埋め込み日、ペースメーカー作動日及びそれ以降1週間毎に行った。
4)心エコーの測定;
 心エコーの測定は、測定ポイントとして、モデル作製前(Pre)、4週[群分け時(被験物質投与前)、被験物質投与後2週、4週(1ヶ月)、2ヶ月、3ヶ月、4ヶ月、5ヶ月、6ヶ月(解剖時)に実施した。
 測定は、無麻酔下、超音波画像診断装置を用いて心エコーを測定した。胸部にセクタープローブ(10 MHz)を当てM-modeで左室拡張末期径(LVIDd)及び左室収縮末期径(LVIDs)、心室中隔壁厚(IVSTd)、左室後壁拡張末期厚(LVPWd)を測定した。また駆出率[EF=(LVIDd3-LVIDs3)/LVIDd3]及び左室内径短縮率[%FS=(LVIDd-LVIDs)×100/LVIDd]を算出した。
5)結果;1)生存率(図2)
 Control群は、投与後13日から死亡例が出現し、投与後61日目に全例(6/6例)が死亡した。
 投与後26週時点における生存率は0%(生存数:0/6例)であった。一方、ONO-1301反復経口投与群は、 投与後44日で初めて死亡例が確認された。その後、92日までに4例の死亡が観察されたが、1例については、投与後26週時点において生存した(生存数:1/6例)。
Kaplan-Meiyer曲線におけるONO-1301反復経口投与群は、Control群に比し、有意(*:P<0.05)な生存率の延長効果を認めた。
 2)体重変化;(図3)
 ONO-1301投与群は、投与後6週及び8週で体重増加がControl群に比し抑制されていたが、Control群における投与後6週及び8週の体重増加は、腹水貯留によるものと考えられることから、ONO-1301投与により、腹水貯留が抑制されていることが確認された。
 3)心機能検査(EF);(図4)
 Control群は、モデル作製前のEFは72±5%(N=6)であった。モデル作製後6週(投与後2週)のEFは43±3%(N=5)、モデル作製後8週(投与後4週)のEFは41±5%(N=5)であり、病態によるEF低下が認められた。一方、ONO-1301投与群はモデル作製後6週(投与後2週)及びモデル作製後8週(投与後4週)におけるEFは、Control群と比較してEF変化量(Δ)にて有意な上昇(いずれもP<0.05 vs. Control群)が認められた。
 4)心拍数(心エコー検査)
 ONO-1301;3mg/kg経口投与でのTmax時(経口投与後1.5~2.5時間の間)においては、心エコー検査における心拍数に影響を与えなかった。このことは、本投与量においては、Tmax(Cmax)においても血管拡張作用に伴う降圧作用は発現しないことが確認された。    
 以上、ONO-1301の3 mg/kg×2回/日反復経口投与群では、投与後44日で初めて死亡例が認められ、投与後26週(モデル作製後30週後の最終評価時点)においても1例生存(生存数:1/6例)していた。なお、本個体におけるペースメーカーの作動状況に問題はなかった。また、心不全による死亡時期がControl群に比べ遅延したことにより、生存率の有意な延長効果が認められた。さらに、ONO-1301反復経口投与では、心不全時の左室収縮機能不全に対して、Control群に比し、投与後2週及び4週でEF値の有意な改善効果が認められた。また、有意ではないが、腹水貯留による体重増加も抑制されていた。
 ONO-1301の反復経口投与群はイヌ高速ペーシング誘発重症拡張型心筋症長期モデルに対して、Kaplan-Meiyer曲線はControl群に比べ有意な生存率の延長を示すこと及び心不全時の左室収縮機能不全に対して有意な改善効果を示すことが明らかとなった。
 ONO-1301反復経口投与での早期治療介入は、拡張型心筋症の心機能の重症化を抑制し、生存率を延長させることにより、心不全の悪化を予防することが確認された。
5.PLGA・MS持続性製剤の製造
1)オザグレル塩酸塩、カモスタットメシル酸塩及びシルデナフィルクエン酸塩の3化合物の乳酸・グリコル酸共重合体(PLGA)マイクロイスフェアー(MS)製剤を作製した。
2)製造方法
 各化合物1.0g、PLGA5-50(三井化学製)4.0gをジクロロメタン40mL/メタノール16mLの混液に溶解し、0.5%PVA水溶液(ポリビニルアルコール;日本合成化学工業製)を400mL/min、化合物溶液を2mL/minにてホモミクサーに送液、ホモミクサー(プライミクス製)を3500rpmにて攪拌した。その後、水中乾燥3時間、静置2時間、上清1/4廃棄、冷蔵静置一晩の後、遠心処理によって、粒子の洗浄(MilliQ水2回)を行い、粒子を回収した。回収後の粒子は凍結乾燥した。凍結乾燥後の粒子は、UV吸収測定により含有化合物の濃度を測定し、光学顕微鏡観察により粒子形成の状態と平均粒子径を確認した。また、PLGA5-50(分子量5万の乳酸/グリコール酸=50/50)を用いたPLGA・MSの徐放性は約4週間であることが確認されている。
3)製造結果
(1)C・MS;オザグレル塩酸塩PLGA・MS(製剤1)
 本製造にて、表18に示す通り粒子総重量3.31g、化合物含有量0.24g、内包効率7.4%の粒子を得た。内包率(含有量)測定時のUV吸収スペクトルを図6に示す。図5に示す通り光学顕微鏡観察の結果より平均粒子径約30μmの粒子径を有する事が確認された。
Figure JPOXMLDOC01-appb-T000032
(2)B・MS;カモスタットメシル酸塩PLGA・MS(製剤2)
本製造にて、表19に示す通り粒子総重量3.47g、化合物含有量0.20g、内包効率5.8%の粒子を得た。内包率(含有量)測定時のUV吸収スペクトルを図8に示す。図7に示す通り光学顕微鏡観察の結果より平均粒子径約30μmの粒子径を有する事が確認された。
Figure JPOXMLDOC01-appb-T000033
(3)I・MS;シルデナフィルクエン酸塩PLGA・MS(製剤3)
 本製造にて、表20に示す通り粒子総重量3.98g、化合物含有量0.45g、内包効率11.2%の粒子を得た。内包率(含有量)測定時のUV吸収スペクトルを図9に示す。図10に示す通り光学顕微鏡観察の結果より平均粒子径約30μmの粒子径を有する事が確認された。
Figure JPOXMLDOC01-appb-T000034
 

Claims (15)

  1.  慢性心不全を伴う難治性心臓組織線維化疾患の予防及び/又は治療のために用いられる、医薬組成物。
  2.  蛋白分解酵素阻害剤を含む、請求項1に記載の医薬組成物。
  3.  トロンボキサンA2生合成酵素阻害剤及び/又はその拮抗剤を含む、請求項1に記載の医薬組成物。
  4.  ホスホジエステラーゼ(PDE)阻害剤を含む、請求項1記載の医薬組成物。
  5.  チロシンキナーゼ阻害剤を含む、請求項1記載の医薬組成物。
  6.  HMG-CoA還元酵素阻害剤を含む、請求項1記載の医薬組成物。
  7.  抗線維化剤を含む、請求項1記載の医薬組成物。
  8.  蛋白分解酵素阻害剤、トロンボキサンA2生合成酵素阻害剤及びその拮抗剤、ホスホジエステラーゼ(PDE)阻害剤、チロシンキナーゼ阻害剤、HMG-CoA還元酵素阻害剤、並びに抗線維化剤からなる群より選択される少なくとも2種を含む、請求項1記載の医薬組成物。
  9.  以下(1)~(6)の化合物及びそれらの塩からなる群より選択される少なくとも1種を含む、請求項1~8のいずれか一項に記載の医薬組成物:
    (1)蛋白分解酵素阻害剤として、カモスタット;
    (2)トロンボキサンA2合成酵素阻害剤として、オザグレル;
    (3)ホスホジエステラーゼ阻害剤として、テオフィリン、シロスタゾールおよびシルデナフィル;
    (4)チロシンキナーゼ阻害剤として、ニンテダニブ;
    (5)HMG-CoA還元酵素阻害剤として、ロバスタチン;及び
    (6)抗線維化剤として、ピルフェリドン。
  10.  さらに、生体分解性高分子を含有する持続性製剤である、請求項1~9のいずれか一項に記載の医薬組成物。
  11. 持続性製剤が、マイクロスフェアー製剤、マイクロカプセル製剤、またはナノスフェアー製剤である、請求項10に記載の医薬組成物。
  12.  前記生体分解性高分子が、乳酸-グリコール酸共重合体であり、かつマイクロスフェアー製剤である、請求項10に記載の医薬組成物。
  13.  以下(1)~(5)の化合物及びそれらの塩からなる群より選択される少なくとも1種を含む、請求項11に記載の医薬組成物:
    (1)蛋白分解酵素阻害剤として、カモスタット;
    (2)トロンボキサンA2合成酵素阻害剤として、オザグレル;
    (3)ホスホジエステラーゼ阻害剤として、シロスタゾール及びシルデナフィル;
    (4)チロシンキナーゼ阻害剤として、ニンテダニブ;
    (5)抗線維化剤として、ピルフェリドン。
  14.  経口投与用、静脈内投与用、冠動脈内投与用、吸入用、筋注投与用、皮下投与用、経粘膜投与用、経皮投与用、又は心臓貼付投与用である、請求項1~13のいずれか一項に記載の医薬組成物。
  15.  慢性心不全を伴う難治性心臓組織線維化疾患が、拡張型心筋症、虚血性心筋症、心筋梗塞、狭心症、動脈硬化症、血管炎症候群、心筋炎、肥大型心筋症、大動脈弁狭窄症、弁膜症、大動脈弁閉鎖不全、HFpEF(heart failure with preserved ejection fraction)、拡張不全、収縮不全、上室性頻脈性不整脈、うっ血性心不全、冠動脈疾患、特発性心筋症、又は心房細動等である、請求項1~14のいずれか一項に記載の医薬組成物。
     
     
PCT/JP2017/047100 2016-12-27 2017-12-27 難治性心疾患治療用医薬組成物 WO2018124236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17885962.5A EP3569249A4 (en) 2016-12-27 2017-12-27 MEDICAL COMPOSITION FOR TREATMENT OF CONTINUOUS HEART DISEASE
JP2018559613A JPWO2018124236A1 (ja) 2016-12-27 2017-12-27 難治性心疾患治療用医薬組成物
US16/474,142 US20190343841A1 (en) 2016-12-27 2017-12-27 Medicinal Composition for Treating Intractable Heart Disease
US15/929,975 US20200360391A1 (en) 2016-12-27 2020-06-01 Medicinal Composition for Treating Intractable Heart Disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254279 2016-12-27
JP2016254279 2016-12-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/474,142 A-371-Of-International US20190343841A1 (en) 2016-12-27 2017-12-27 Medicinal Composition for Treating Intractable Heart Disease
US15/929,975 Division US20200360391A1 (en) 2016-12-27 2020-06-01 Medicinal Composition for Treating Intractable Heart Disease

Publications (1)

Publication Number Publication Date
WO2018124236A1 true WO2018124236A1 (ja) 2018-07-05

Family

ID=62711086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047100 WO2018124236A1 (ja) 2016-12-27 2017-12-27 難治性心疾患治療用医薬組成物

Country Status (4)

Country Link
US (2) US20190343841A1 (ja)
EP (1) EP3569249A4 (ja)
JP (1) JPWO2018124236A1 (ja)
WO (1) WO2018124236A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022187317A1 (en) * 2021-03-04 2022-09-09 The University Of Vermont And State Agricultural College Therapeutic for heart failure with preserved ejection fraction

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691679B2 (ja) 1992-07-21 1997-12-17 小野薬品工業株式会社 オキシム誘導体およびそれを含有する医薬品
JP2002145770A (ja) * 2000-08-30 2002-05-22 Sankyo Co Ltd 心不全の予防又は治療のための医薬組成物
WO2004032965A1 (ja) 2002-10-10 2004-04-22 Ono Pharmaceutical Co., Ltd. 内因性修復因子産生促進剤
WO2004100988A1 (ja) * 2003-05-13 2004-11-25 Mizuo Miyazaki 心保護剤
JP2005504064A (ja) * 2001-08-28 2005-02-10 ロングウッド ファーマシューティカル リサーチ, インコーポレイテッド コレステロール低下薬、レニン・アンギオテンシン阻害剤およびアスピリンを含有する組み合わせ剤形
JP2007532483A (ja) * 2004-03-15 2007-11-15 ザ・スクリプス・リサーチ・インステイチユート 心筋梗塞の治療方法
JP2008510705A (ja) * 2004-08-17 2008-04-10 ザ・ジョンズ・ホプキンス・ユニバーシティ Pde5阻害剤組成物及び心臓疾患を治療する方法
WO2008047863A1 (fr) 2006-10-19 2008-04-24 Ono Pharmaceutical Co., Ltd. Préparation à libération prolongée pour thérapie de régénération cellulaire
JP2009502773A (ja) * 2005-07-22 2009-01-29 ザ プロクター アンド ギャンブル カンパニー 薬物による不整脈の発生を低減するための組成物
JP2009513713A (ja) * 2005-11-01 2009-04-02 インターミューン インコーポレイテッド p38阻害剤化合物による心房細動の治療方法
JP2011510976A (ja) * 2008-01-31 2011-04-07 韓国科学技術研究院 イノシトール1,4,5−三リン酸受容体サブタイプ3の阻害用の組成物
JP2012515800A (ja) * 2009-01-26 2012-07-12 インターミューン, インコーポレイテッド 急性心筋梗塞および関連障害を処置するための方法
WO2014046065A1 (ja) 2012-09-21 2014-03-27 国立大学法人大阪大学 心筋・血管再生デバイスとしての重症心不全治療材
WO2014069401A1 (ja) 2012-10-29 2014-05-08 株式会社カルディオ 肺疾患特異的治療剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030130209A1 (en) * 1999-12-22 2003-07-10 Cheresh David A. Method of treatment of myocardial infarction
JP2006111563A (ja) * 2004-10-14 2006-04-27 Japan Health Science Foundation 動脈硬化抑制剤
EP3142655B1 (en) * 2014-05-16 2020-12-02 Cumberland Pharmaceuticals Inc. Compositions and methods of treating cardiac fibrosis with ifetroban

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691679B2 (ja) 1992-07-21 1997-12-17 小野薬品工業株式会社 オキシム誘導体およびそれを含有する医薬品
JP2002145770A (ja) * 2000-08-30 2002-05-22 Sankyo Co Ltd 心不全の予防又は治療のための医薬組成物
JP2005504064A (ja) * 2001-08-28 2005-02-10 ロングウッド ファーマシューティカル リサーチ, インコーポレイテッド コレステロール低下薬、レニン・アンギオテンシン阻害剤およびアスピリンを含有する組み合わせ剤形
WO2004032965A1 (ja) 2002-10-10 2004-04-22 Ono Pharmaceutical Co., Ltd. 内因性修復因子産生促進剤
WO2004100988A1 (ja) * 2003-05-13 2004-11-25 Mizuo Miyazaki 心保護剤
JP2007532483A (ja) * 2004-03-15 2007-11-15 ザ・スクリプス・リサーチ・インステイチユート 心筋梗塞の治療方法
JP2008510705A (ja) * 2004-08-17 2008-04-10 ザ・ジョンズ・ホプキンス・ユニバーシティ Pde5阻害剤組成物及び心臓疾患を治療する方法
JP2009502773A (ja) * 2005-07-22 2009-01-29 ザ プロクター アンド ギャンブル カンパニー 薬物による不整脈の発生を低減するための組成物
JP2009513713A (ja) * 2005-11-01 2009-04-02 インターミューン インコーポレイテッド p38阻害剤化合物による心房細動の治療方法
WO2008047863A1 (fr) 2006-10-19 2008-04-24 Ono Pharmaceutical Co., Ltd. Préparation à libération prolongée pour thérapie de régénération cellulaire
JP2011510976A (ja) * 2008-01-31 2011-04-07 韓国科学技術研究院 イノシトール1,4,5−三リン酸受容体サブタイプ3の阻害用の組成物
JP2012515800A (ja) * 2009-01-26 2012-07-12 インターミューン, インコーポレイテッド 急性心筋梗塞および関連障害を処置するための方法
WO2014046065A1 (ja) 2012-09-21 2014-03-27 国立大学法人大阪大学 心筋・血管再生デバイスとしての重症心不全治療材
WO2014069401A1 (ja) 2012-10-29 2014-05-08 株式会社カルディオ 肺疾患特異的治療剤

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ANN. THORAC. SURG., vol. 91, 2011, pages 320 - 9
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 145040-37-5
FUJIMURA, MASAKI: "non official translation; Medical treatment-thromboxane A2 inhibitor", RESPIRATION, vol. 9, no. 9, pages 1114 - 1120 *
HEART FAIL REV., vol. 20, 2015, pages 401 - 413
OGURA, TOSHITSUGU ET AL: "Effects of oky-046, a selective thromboxane A2 synthetase inhibitor, on venticular arrhythmias and prostaglandins during coronary artery ", JAPANESE J. PHARMACOL, vol. 47, no. 1, 1 January 1988 (1988-01-01), pages 95 - 98, XP055612581, DOI: 10.1254/jjp.47.95 *
OKUNO, MASATAKA ET AL.: "S5-5: Inhibition of liver fibrosis by serine protease inhibitor", KANZO = ACTA HEPATOLOGICA JAPONICA, vol. 43, no. suppl. 2, 2002, pages A269, XP009515329 *
SASAKI, SHINICHI: "The specified disease treatment research program in terms of idiopathic interstitial pneumonias", THE MEDICAL FRONTLINE, vol. 71, no. 7, 1 July 2016 (2016-07-01), pages 128 - 137, XP9515330 *
See also references of EP3569249A4
SURG. TODAY, vol. 42, 2012, pages 181 - 184
TSUCHIYA, KEN: "A patient with dilated hypertropic cardiomyopathy who improved sinus bradycaria and heart insufficiency after prescription of cilostazol", RINSHŌ-TO-KENKYŪ = THE JAPANESE JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 83, no. 5, 2006, pages 753 - 758, XP009515328, ISSN: 0021-4965 *
YATABE, SAKON: "Effect of Cilostazol in a patient with heart failure caused by Bradyarrhythmia (non official translation)", JOURNAL OF JAPAN PHYSICIANS ASSOCIATION, vol. 21, no. 4, 2006, pages 426 - 430, XP9515327 *

Also Published As

Publication number Publication date
US20200360391A1 (en) 2020-11-19
US20190343841A1 (en) 2019-11-14
EP3569249A4 (en) 2020-11-11
EP3569249A1 (en) 2019-11-20
JPWO2018124236A1 (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
JP5287761B2 (ja) 内因性修復因子産生促進剤
JP6480420B2 (ja) コルヒチンの徐放性製剤およびその使用方法
US20080153827A1 (en) Method for the Treatment or Prevention of Cardiac Hypertrophy
US20240050456A1 (en) Use of sglt-2 inhibitors for the prevention and/or treat-ment of cardiac diseases in felines
TW200817000A (en) New paediatric indications for direct thrombin inhibitors
WO2018124236A1 (ja) 難治性心疾患治療用医薬組成物
IL268224B1 (en) A pharmaceutical compound for the prevention and treatment of pancreatic cancer, containing GOSSYPOL and PHENFORMIN as active ingredients
TW200306853A (en) Therapeutic agent for glomerular disease
JP2020125346A (ja) 血管破壊剤を含む肝臓癌治療用の組成物
CN100438872C (zh) 2-[4-[2-(苯并咪唑-2-基-硫代)乙基]哌嗪-1-基]-n-[2,4-二(甲基硫代)-6-甲基-3-吡啶基]乙酰胺的制药用途
JP2012514652A (ja) 心血管疾患および脂質異常症を治療するための分泌ホスホリパーゼa2(spla2)インヒビターとナイアシン薬との組成物および方法
ES2423944T3 (es) Uso de acetato de megestrol para la mejora de la función cardiaca y el tratamiento de insuficiencia coronaria
CN116829168A (zh) 环孢菌素类似物作为抗血栓形成剂的用途
KR20170018969A (ko) 의약 조성물
JP2020040892A (ja) 肺高血圧治療薬
WO2002083142A1 (fr) Nouvelle utilisation du derive arylethenesulfonamide
EP2393358A1 (en) Traitement d&#39;événements cardiaques majeurs indésirables et du syndrome coronaire aigu à l&#39;aide de traitements thérapeutiques utilisant un inhibiteur de la phospholipase sécrétée a2 (spla2) ou de combinaisons thérapeutiques avec un inhibiteur de spla2
KR20240045138A (ko) 이나보글리플로진을 포함하는 심혈관 노화 질환 예방 또는 치료용 약학 조성물
JP2023520021A (ja) チロシンキナーゼ阻害剤の小児用製剤
US20040048807A1 (en) Angiogenesis inhibitors
TW202310839A (zh) 用於預防或治療纖維化之醫藥組成物
CN115427060A (zh) 环孢菌素类似物用于治疗纤维化的用途
US20110262398A1 (en) Cardiac treatment using anti-fibrotic agents

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885962

Country of ref document: EP

Effective date: 20190729