WO2018124230A1 - 研磨用組成物 - Google Patents

研磨用組成物 Download PDF

Info

Publication number
WO2018124230A1
WO2018124230A1 PCT/JP2017/047089 JP2017047089W WO2018124230A1 WO 2018124230 A1 WO2018124230 A1 WO 2018124230A1 JP 2017047089 W JP2017047089 W JP 2017047089W WO 2018124230 A1 WO2018124230 A1 WO 2018124230A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
polishing
polishing composition
soluble polymers
soluble polymer
Prior art date
Application number
PCT/JP2017/047089
Other languages
English (en)
French (fr)
Inventor
修平 松田
規章 杉田
隆幸 松下
Original Assignee
ニッタ・ハース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ・ハース株式会社 filed Critical ニッタ・ハース株式会社
Priority to JP2018559610A priority Critical patent/JP7077236B2/ja
Priority to KR1020197017169A priority patent/KR20190098142A/ko
Priority to CN201780075054.6A priority patent/CN110036086B/zh
Publication of WO2018124230A1 publication Critical patent/WO2018124230A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition.
  • Polishing of a silicon wafer by CMP achieves high-precision smoothing and flattening by performing multi-stage polishing of three or four stages.
  • demands on the surface quality of wafers have become stricter, it is required to obtain higher levels of smoothness and flatness even in secondary polishing.
  • the surface roughness can be reduced, but there is a problem that the polishing rate is lowered. Further, not only the polishing rate and the surface roughness, but also stricter control is required for the wafer shape.
  • An object of the present invention is to provide a polishing composition capable of obtaining a good wafer shape while maintaining the polishing rate and surface smoothness.
  • a water-soluble polymer having a structure number of less than 10 and the other one of the two or more water-soluble polymers is a water-soluble polymer having 10 or more hydroxy groups or lactam structures in one molecule. It is a polymer.
  • a polishing composition according to an embodiment of the present invention includes an alkylenediamine structure in which one of two or more water-soluble polymers has two nitrogens represented by the following general formula (1), and the alkylenediamine A diamine compound in which at least one block-type polyether is bonded to two nitrogen atoms of the structure, wherein the block-type polyether is a diamine compound in which an oxyethylene group and an oxypropylene group are bonded. Good.
  • the other one of the two or more water-soluble polymers may be hydroxyethyl cellulose.
  • one of the two or more types of water-soluble polymers is the diamine compound described above, and the other of the two or more types of water-soluble polymers.
  • One type is hydroxyethyl cellulose.
  • a good wafer shape can be obtained while maintaining the polishing rate and the surface smoothness.
  • FIG. 1 is a diagram for explaining the difference GBIR.
  • FIG. 2 is a polishing amount (removal allowance) profile when polishing with a polishing composition containing no water-soluble polymer.
  • FIG. 3 is a profile of the polishing amount (removal allowance) when polishing with a polishing composition containing poloxamine.
  • FIG. 4 is a profile of a polishing amount (removal allowance) when polishing with a polishing composition containing HEC.
  • FIG. 5 is a profile of the polishing amount (removal allowance) when polishing with a polishing composition containing poloxamine and HEC.
  • the present inventors conducted various studies in order to solve the above problems. As a result, the following knowledge was obtained.
  • the polishing composition In order to control the shape of the polished wafer, it is effective to contain an appropriate amount of two or more water-soluble polymers in the polishing composition. Two or more kinds of water-soluble polymers act on a relatively inner region and an outer region of the wafer, respectively, due to the difference in affinity with the wafer. Furthermore, by appropriately controlling the concentration ratio between each of the two or more water-soluble polymers and the abrasive grains, the wafer shape can be controlled at a higher level without reducing the polishing rate.
  • the polishing composition according to an embodiment of the present invention includes abrasive grains, a basic compound, and two or more water-soluble polymers.
  • the polishing composition according to the present embodiment is suitably used for secondary polishing of a silicon wafer.
  • the abrasive grains are, for example, colloidal silica, fumed silica, colloidal alumina, fumed alumina, cerium oxide, silicon carbide, silicon nitride and the like. Of these, colloidal silica is preferably used.
  • the content of the abrasive grains is not particularly limited, but is 0.1 to 15% by weight of the entire polishing composition, for example.
  • the content of abrasive grains is preferably larger from the viewpoint of increasing the polishing rate, and is preferably smaller from the viewpoint of reducing polishing scratches and foreign matter residue.
  • the lower limit of the content of abrasive grains is preferably 0.5% by weight, and more preferably 1% by weight.
  • the upper limit of the content of abrasive grains is preferably 12% by weight, and more preferably 10% by weight.
  • Basic compounds are chemically polished by etching the wafer surface.
  • the basic compound is, for example, an amine compound or an inorganic alkali compound.
  • amine compound examples include a primary amine, a secondary amine, a tertiary amine, a quaternary ammonium and a salt thereof, and a heterocyclic amine.
  • ammonia tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrabutylammonium hydroxide (TBAH), methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, hexylamine, Cyclohexylamine, ethylenediamine, hexamethylenediamine, diethylenetriamine (DETA), triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, monoethanolamine, diethanolamine, triethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, anhydrous piperazine Piperazine hexahydrate, 1- (2-aminoethyl
  • Inorganic alkali compounds include, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkaline earth metal hydroxides, alkaline earth metal carbonates, alkaline earth metal carbonates. Hydrogen salt etc. are mentioned.
  • Specific examples of the inorganic alkali compound include potassium hydroxide (KOH), sodium hydroxide, potassium hydrogen carbonate, potassium carbonate (K 2 CO 3 ), sodium hydrogen carbonate, sodium carbonate, and the like.
  • the basic compound is an alkali metal hydroxide, an alkali metal carbonate, an alkaline earth metal hydroxide, an alkaline earth metal carbonate, a quaternary ammonium, or the group of substances listed above. Quaternary ammonium salts are preferably used.
  • the polishing composition according to the present embodiment is suitably used for secondary polishing of a silicon wafer.
  • the polishing composition for final polishing final polishing
  • the polishing composition for secondary polishing is finished polishing.
  • the polishing rate is required as compared with the polishing composition for use. Therefore, it is preferable to use a basic compound having a strong chemical polishing action in the polishing composition for secondary polishing.
  • the basic compounds described above may be used singly or in combination of two or more.
  • the total content of the basic compounds is not particularly limited, but is, for example, 0.1 to 5% by weight of the entire polishing composition.
  • the lower limit of the basic compound content is preferably 0.5% by weight.
  • the upper limit of the content of the basic compound is preferably 3% by weight.
  • the polishing composition according to this embodiment contains two or more water-soluble polymers.
  • the water-soluble polymer is adsorbed on the surface of the wafer and modifies the surface of the wafer. Thereby, the uniformity of polishing can be improved and the surface roughness can be reduced.
  • water-soluble polymers examples include celluloses such as hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, carboxymethyl cellulose, cellulose acetate, and methyl cellulose, vinyl polymers such as polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), and glycosides ( Glycoside), polyethylene glycol, polypropylene glycol, polyglycerin, poloxamine, poloxamer, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, polyoxyalkylene alkylamine, alkylene oxide derivative of methyl glucoside (described later), polyhydric alcohol alkylene oxide addition Products, polyhydric alcohol fatty acid esters and the like.
  • HEC hydroxyethyl cellulose
  • PVPVP polyvinyl pyrrolidone
  • Glycoside glycoside
  • these two or more water-soluble polymers act on the relatively inner and outer regions of the wafer, respectively, according to the difference in affinity with the wafer. Thereby, the shape of the wafer can be controlled at a higher level.
  • the upper limit of the weight% concentration ratio between each of the two or more water-soluble polymers and the abrasive is preferably 0.0009 for the water-soluble polymer / abrasive, and more preferably for the water-soluble polymer / abrasive. 0.0007.
  • One of the water-soluble polymers includes an alkylenediamine structure having two nitrogens represented by the following general formula (1), and at least one block-type polyether is bonded to the two nitrogens of the alkylenediamine structure.
  • the block-type polyether is a diamine compound in which an oxyethylene group and an oxypropylene group are bonded (hereinafter referred to as “diamine compound having a block-type polyether bonded”). preferable.
  • ether groups represented by the following general formulas (2) to (5) can be used.
  • EO represents an oxyethylene group
  • PO represents an oxypropylene group
  • a, b and x are integers of 1 or more.
  • the number a of oxyethylene groups is 1 to 500
  • the number b of oxypropylene groups is 1 to 200.
  • diamine compound to which the block polyether is bonded examples include N, N, N ′, N′-tetrakis / polyoxyethylene / polyoxypropylene / ethylenediamine (poloxamine).
  • One type of water-soluble polymer is preferably HEC.
  • one or more water-soluble polymers contained in the polishing composition one or more water-soluble polymers that do not impart wettability to the wafer surface and one or more water-soluble polymers that impart wettability to the wafer surface are selected. To do.
  • a water-soluble polymer that does not impart wettability to the wafer surface is a water-soluble polymer in which the number of hydroxy groups or lactam structures in one molecule is less than 10 (the total is less than 10 when both hydroxy groups and lactam structures are present). It refers to a functional polymer.
  • the water-soluble polymer that does not impart wettability to the wafer surface include, for example, poloxamer, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, polyoxyalkylene alkylamine, and the following general formula (6), in addition to the poloxamine described above.
  • polyoxyalkylene alkyl ether examples include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether and the like.
  • polyoxyalkylene fatty acid ester examples include polyoxyethylene monolaurate and polyoxyethylene monostearate.
  • polyoxyalkylene alkylamine examples include polyoxyethylene laurylamine and polyoxyethylene oleylamine.
  • alkylene oxide derivative of methyl glucoside include polyoxyethylene methyl glucoside and polyoxypropylene methyl glucoside.
  • polyhydric alcohol alkylene oxide adduct examples include alkylene oxide adducts such as glycerin, pentaerythritol, and ethylene glycol.
  • a water-soluble polymer that imparts wettability to the wafer surface is a water-soluble polymer in which the number of hydroxy groups or lactam structures in one molecule is 10 or more (the total is 10 or more when both hydroxy groups and lactam structures are present). It refers to a functional polymer.
  • water-soluble polymers that impart wettability to the wafer surface include celluloses such as hydroxyethylcellulose (HEC), hydroxypropylcellulose, carboxymethylcellulose, cellulose acetate, and methylcellulose, polyvinyl alcohol (PVA), and polyvinylpyrrolidone (PVP). Vinyl polymer, glycoside (glycoside), polyglycerin and the like.
  • the two or more types of water-soluble polymers contained in the polishing composition are selected from the group consisting of poloxamine, poloxamer, polyoxyethylene methyl glucoside, polyoxypropylene methyl glucoside, and the other types are HEC, PVA, and PVP. Preferably, it is selected from the group consisting of polyglycerin. More preferably, the two or more water-soluble polymers contained in the polishing composition are poloxamine as one type and HEC as the other type.
  • the polishing composition according to the present embodiment may contain a chelating agent in addition to the above.
  • a chelating agent include aminocarboxylic acid chelating agents and organic sulfonic acid chelating agents.
  • aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediaminetriacetic acid sodium salt, Examples include diethylenetriaminepentaacetic acid (DTPA), sodium diethylenetriaminepentaacetate, triethylenetetramine hexaacetic acid, sodium triethylenetetramine hexaacetate, and the like.
  • DTPA diethylenetriaminepentaacetic acid
  • organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (Methylenephosphonic acid), ethane-1,1, -diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1, 2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid, and ⁇ -methylphosphonosuccinic acid.
  • the polishing composition according to the present embodiment may further contain a pH adjusting agent.
  • the pH of the polishing composition according to this embodiment is preferably 8.0 to 12.0.
  • polishing composition according to the present embodiment may optionally contain any compounding agent generally known in the field of polishing composition.
  • the polishing composition according to the present embodiment is produced by appropriately mixing abrasive grains, a basic compound, two or more water-soluble polymers and other compounding materials and adding water.
  • the polishing composition according to the present embodiment is alternatively produced by sequentially mixing abrasive grains, a basic compound, two or more water-soluble polymers, and other compounding materials with water.
  • means for mixing these components means commonly used in the technical field of polishing compositions such as a homogenizer and ultrasonic waves are used.
  • the polishing composition described above is used for polishing a silicon wafer after being diluted with water to an appropriate concentration.
  • Polishing compositions of Examples 1 to 4 shown in Table 1 and Comparative Examples 1 to 4 shown in Table 2 were prepared.
  • the polishing composition of Example 1 contained colloidal silica having a particle diameter of 70 nm as abrasive grains, DTPA as a chelating agent, KOH and K 2 CO 3 as basic compounds, and poloxamine and HEC as water-soluble polymers. .
  • the balance of the polishing composition is water.
  • the contents of abrasive grains, DTPA, KOH, K 2 CO 3 , poloxamine, and HEC are 3 wt%, 0.01 wt%, 0.3 wt%, 1 wt%, 0.0004 wt%, and 0, respectively. 0004 wt%.
  • the weight percent concentration ratio between the abrasive grains and poloxamine and the weight percent concentration ratio between the abrasive grains and HEC are both 1: 0.0001.
  • the polishing compositions of Examples 2 to 4 are based on the polishing composition of Example 1, and the contents of poloxamine and HEC are changed, so that the weight percent concentration ratio between the abrasive grains and each water-soluble polymer is 1. : 0.0003, 1: 0.0007, 1: 0.001.
  • the polishing composition of Comparative Example 1 is based on the polishing composition of Example 1 with no water-soluble polymer added.
  • the polishing composition of Comparative Example 2 is based on the polishing composition of Example 1, and the content of poloxamine and HEC is changed, so that the weight percent concentration ratio between the abrasive grains and each water-soluble polymer is 1: 0. .0013.
  • the polishing composition of Comparative Example 3 is based on the polishing composition of Example 4 with no HEC added.
  • the polishing composition of Comparative Example 4 is based on the polishing composition of Example 4 with no poloxamine added.
  • polishing compositions of these examples and comparative examples the surface of a P-type silicon wafer (100) having a diameter of 300 mm was polished.
  • the polishing apparatus SPP800S manufactured by Okamoto Machine Tool Co., Ltd. was used.
  • the polishing pad a suede polishing pad was used.
  • the polishing composition was diluted 10 times and supplied at a supply rate of 0.6 L / min.
  • the surface plate was rotated at 43 rpm, the head rotated at 40 rpm, and the polishing load was 0.012 MPa. Polishing was performed for 4 minutes.
  • the surface roughness Ra of the silicon wafer was measured using a non-contact surface roughness measuring machine (WycoNT9300, manufactured by Veeco).
  • the wafer shape was evaluated using “difference GBIR” described below.
  • FIG. 1 is a diagram for explaining the difference GBIR.
  • the profile P1 of the thickness (distance from the back reference plane) of the silicon wafer before polishing is measured.
  • the thickness profile P2 of the polished silicon wafer is measured.
  • a profile ⁇ P of “thickness removed by polishing (removal allowance)” is obtained.
  • the difference between the maximum value ⁇ P max and the minimum value ⁇ P min of the machining allowance profile ⁇ P in the region excluding the predetermined edge region is defined as “difference GBIR”.
  • the thickness profile of the silicon wafer before and after polishing was measured using a wafer flatness inspection apparatus (Nonmetro 300TT-A, Kuroda Seiko Co., Ltd.). Further, the average thickness of the machining allowance was divided by the polishing time to obtain a polishing rate.
  • the polishing rate, surface roughness Ra, and differential GBIR are shown in Tables 1 and 2 above.
  • the numerical values of the polishing rate, surface roughness Ra, and differential GBIR in Tables 1 and 2 are relative values when the value according to Comparative Example 1 (polishing composition not containing a water-soluble polymer) is 100. In this evaluation, it was aimed that the polishing rate was 90 or more, the surface roughness Ra110 or less, and the difference GBIR was 70 or less.
  • the polishing composition of Comparative Example 5 is based on the polishing composition of Example 1 with no water-soluble polymer added.
  • the polishing compositions of Comparative Examples 6 to 8 were based on the polishing composition of Comparative Example 4 and the HEC content was changed so that the weight percent concentration ratio of abrasive grains to HEC was 1: 0.0013, 1 : 0027, 1: 0.005.
  • the polishing composition of Comparative Example 9 is based on the polishing composition of Comparative Example 3, with the content of poloxamine being changed, and the weight percent concentration ratio of abrasive grains to poloxamine being 1: 0.0013. is there.
  • the weight percent concentration ratio of abrasive grains to poloxamine and the weight percent concentration ratio of abrasive grains to HEC were both set to 1: 0.0013.
  • polishing was performed under the same conditions as in Polishing Example 1. Then, similarly to the polishing example 1, the polishing rate, the surface roughness Ra, and the differential GBIR were obtained. The results are shown in Table 3 above.
  • the numerical values of the polishing rate, surface roughness Ra, and difference GBIR in Table 3 are relative values when the value of Comparative Example 5 (polishing composition not containing a water-soluble polymer) is 100.
  • Comparative Example 6 was not sufficiently improved in the difference GBIR as compared with Comparative Example 5.
  • Comparative Examples 7 and 8 although the difference GBIR was improved, the polishing rate was greatly reduced.
  • Comparative Example 9 the difference GBIR was worse than that of Comparative Example 5.
  • Comparative Example 5 without water-soluble polymer
  • Comparative Example 9 only poloxamine
  • Comparative Example 6 only HEC
  • Comparative Example 10 combined use of poloxamine and HEC
  • HEC reduces the machining allowance at the wafer center and increases the machining allowance at the outermost periphery of the wafer.
  • polishing compositions of Examples 5 to 8 shown in Table 4, Examples 10 and 11 shown in Table 5, and Comparative Examples 11 to 13 were prepared.
  • the polishing compositions of Examples 5 to 7 were prepared by replacing HEC with other water-soluble polymers based on the polishing composition of Example 2. Specifically, the polishing compositions of Examples 5 to 7 were obtained by replacing HEC with PVA, PVP, and polyglycerol, respectively.
  • the polishing compositions of Examples 8 to 10 were prepared by replacing poloxamine with another water-soluble polymer based on the polishing composition of Example 2. Specifically, the polishing compositions of Examples 8 to 10 were prepared by replacing poloxamine with poloxamer, polyoxyethylene methyl glucoside, and polyoxypropylene methyl glucoside, respectively.
  • the polishing composition of Comparative Example 11 is based on the polishing composition of Example 1 with no water-soluble polymer added.
  • the polishing composition of Comparative Example 12 is based on the polishing composition of Comparative Example 4, with the HEC content being changed, and the weight percent concentration ratio of abrasive grains to HEC was 1: 0.002. is there.
  • the polishing composition of Comparative Example 13 is based on the polishing composition of Comparative Example 3, with the content of poloxamine varied, and the weight percent concentration ratio of abrasive grains to poloxamine being 1: 0.002. is there.
  • polishing was performed under the same conditions as in Polishing Example 1. Then, similarly to the polishing example 1, the polishing rate, the surface roughness Ra, and the differential GBIR were obtained. The results are shown in Tables 4 and 5 above.
  • the numerical values of the polishing rate, surface roughness Ra, and differential GBIR in Tables 4 and 5 are relative values when the value according to Comparative Example 11 (polishing composition not containing a water-soluble polymer) is 100.
  • Example 5 the polishing rate and the surface roughness Ra were the same as or higher than those of Comparative Example 11, and the difference GBIR was greatly improved.
  • Example 5 water-soluble polymers were poloxamine and PVA
  • Example 7 water-soluble polymers were poloxamine and polyglycerin
  • the polishing rate was also significantly improved.
  • the shape of the polished wafer can be controlled at a high level by adding an appropriate amount of two or more water-soluble polymers to the polishing composition.

Abstract

研磨速度及び表面平滑性を維持しつつ、良好なウェーハ形状が得られる研磨用組成物を提供する。砥粒と、塩基性化合物と、二種以上の水溶性高分子とを含み、砥粒と二種以上の水溶性高分子のそれぞれとの重量%濃度比が、砥粒:水溶性高分子=1:0.0001~1:0.0010であり、二種以上の水溶性高分子のうちの一種が、1分子中のヒドロキシ基又はラクタム構造の数が10未満である水溶性高分子であり、二種以上の水溶性高分子のうちの他の一種が、1分子中のヒドロキシ基又はラクタム構造の数が10以上である水溶性高分子である。

Description

研磨用組成物
 本発明は、研磨用組成物に関する。
 CMPによるシリコンウェーハの研磨は、3段階又は4段階の多段階の研磨を行うことで、高精度の平滑化・平坦化を実現している。近年、ウェーハの表面品質に対する要求が厳しくなるのにともなって、二次研磨においても、より高水準の平滑性・平坦性を得られることが求められている。
 研磨用組成物に水溶性高分子を加えることで、ウェーハの表面粗さを低減できることが知られている(例えば、特許第5505987号公報を参照。)。
 研磨用組成物に水溶性高分子を加えると、表面粗さは低減できるものの、研磨速度が低下するという問題がある。また、研磨速度や表面粗さだけではなく、ウェーハ形状に対してもより厳しい制御が求められている。
 本発明の目的は、研磨速度及び表面平滑性を維持しつつ、良好なウェーハ形状が得られる研磨用組成物を提供することである。
 本発明の一実施形態による研磨用組成物は、砥粒と、塩基性化合物と、二種以上の水溶性高分子とを含み、砥粒と二種以上の水溶性高分子のそれぞれとの重量%濃度比が、砥粒:水溶性高分子=1:0.0001~1:0.0010であり、前記二種以上の水溶性高分子のうちの一種が、1分子中のヒドロキシ基又はラクタム構造の数が10未満である水溶性高分子であり、前記二種以上の水溶性高分子のうちの他の一種が、1分子中のヒドロキシ基又はラクタム構造の数が10以上である水溶性高分子である。
 本発明の一実施形態による研磨用組成物は、二種以上の水溶性高分子のうちの一種が、下記一般式(1)で示される2つの窒素を有するアルキレンジアミン構造を含み、該アルキレンジアミン構造の2つの窒素に、少なくとも1つのブロック型ポリエーテルが結合されたジアミン化合物であって、該ブロック型ポリエーテルが、オキシエチレン基とオキシプロピレン基とが結合してなるジアミン化合物であってもよい。
Figure JPOXMLDOC01-appb-C000003
 本発明の一実施形態による研磨用組成物は、二種以上の水溶性高分子のうちの他の一種が、ヒドロキシエチルセルロースであってもよい。
 本発明の一実施形態による研磨用組成物は、好ましくは、二種以上の水溶性高分子のうちの一種が、上述したジアミン化合物であり、二種以上の水溶性高分子のうちの他の一種が、ヒドロキシエチルセルロースである。
 本発明によれば、研磨速度及び表面平滑性を維持しつつ、良好なウェーハ形状が得られる。
図1は、差分GBIRを説明するための図である。 図2は、水溶性高分子を含有しない研磨用組成物で研磨したときの研磨量(取り代)のプロファイルである。 図3は、ポロキサミンを含有する研磨用組成物で研磨したときの研磨量(取り代)のプロファイルである。 図4は、HECを含有する研磨用組成物で研磨したときの研磨量(取り代)のプロファイルである。 図5は、ポロキサミン及びHECを含有する研磨用組成物で研磨したときの研磨量(取り代)のプロファイルである。
 本発明者らは、上記の課題を解決するため、種々の検討を行った。その結果、以下の知見を得た。
 研磨後のウェーハの形状を制御するためには、研磨用組成物に二種以上の水溶性高分子を適量含有させることが有効である。二種以上の水溶性高分子は、ウェーハとの親和性の違いによって、それぞれウェーハの相対的に内側の領域と外側の領域とに作用する。さらに、二種以上の水溶性高分子のそれぞれと砥粒との濃度比を適切に制御することで、研磨速度を低下させることなく、ウェーハの形状をより高い水準で制御することができる。
 本発明は、これらの知見に基づいて完成された。以下、本発明の一実施形態による研磨用組成物を詳述する。
 本発明の一実施形態による研磨用組成物は、砥粒と、塩基性化合物と、二種以上の水溶性高分子とを含む。本実施形態による研磨用組成物は、シリコンウェーハの二次研磨に好適に用いられる。
 砥粒は、この分野で常用されるものを使用できる。砥粒は例えば、コロイダルシリカ、ヒュームドシリカ、コロイダルアルミナ、ヒュームドアルミナ、酸化セリウム、炭化ケイ素、窒化ケイ素等である。これらのうち、コロイダルシリカが好適に用いられる。
 砥粒の含有量は、特に限定されないが、例えば研磨用組成物全体の0.1~15重量%である。砥粒の含有量は、研磨速度を大きくする観点からは多い方が好ましく、研磨傷や異物残りを低減するという観点からは少ない方が好ましい。砥粒の含有量の下限は、好ましくは0.5重量%であり、さらに好ましくは1重量%である。砥粒の含有量の上限は、好ましくは12重量%であり、さらに好ましくは10重量%である。
 塩基性化合物は、ウェーハの表面をエッチングして化学的に研磨する。塩基性化合物は、例えば、アミン化合物、無機アルカリ化合物等である。
 アミン化合物は、例えば、第一級アミン、第二級アミン、第三級アミン、第四級アンモニウム及びその塩、複素環式アミン等である。具体的には、アンモニア、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム(TEAH)、水酸化テトラブチルアンモニウム(TBAH)、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ヘキシルアミン、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン(DETA)、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-(β-アミノエチル)エタノールアミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、ピペラジン塩酸塩、炭酸グアニジン等が挙げられる。
 無機アルカリ化合物は、例えば、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ金属の炭酸水素塩、アルカリ土類金属の水酸化物、アルカリ土類金属の炭酸塩、アルカリ土類金属の炭酸水素塩等が挙げられる。無機アルカリ化合物は、具体的には、水酸化カリウム(KOH)、水酸化ナトリウム、炭酸水素カリウム、炭酸カリウム(KCO)、炭酸水素ナトリウム、炭酸ナトリウム等である。
 塩基性化合物は、上記に挙げた物質群のうち、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ土類金属の水酸化物、アルカリ土類金属の炭酸塩、第四級アンモニウム、又は第四級アンモニウムの塩が好適に用いられる。上述のとおり、本実施形態による研磨用組成物は、シリコンウェーハの二次研磨に好適に用いられる。仕上げ研磨(ファイナル研磨)用の研磨用組成物では、純度の要求が非常に高いため、アルカリ金属等の含有量が制限されるのに対し、二次研磨用の研磨用組成物では、仕上げ研磨用の研磨用組成物に比べて、研磨レートが要求される。そのため、二次研磨用の研磨用組成物では、化学的研磨作用の強い塩基性化合物を用いることが好ましい。
 上述した塩基性化合物は、一種を単独で使用してもよいし、二種以上を混合して使用してもよい。塩基性化合物の合計の含有量は、特に限定されないが、例えば研磨用組成物全体の0.1~5重量%である。塩基性化合物の含有量の下限は、好ましくは0.5重量%である。塩基性化合物の含有量の上限は、好ましくは3重量%である。
 本実施形態による研磨用組成物は、二種以上の水溶性高分子を含む。水溶性高分子は、ウェーハの表面に吸着して、ウェーハの表面を改質する。これによって研磨の均一性が向上し、表面粗さを低減することができる。
 水溶性高分子は、例えば、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、酢酸セルロース、メチルセルロース等のセルロース類、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)等のビニルポリマー、配糖体(グリコシド)、ポリエチレングリコール、ポリプロピレングリコール、ポリグリセリン、ポロキサミン、ポロキサマー、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルアミン、メチルグルコシドのアルキレンオキシド誘導体(後述)、多価アルコールアルキレンオキシド付加物、多価アルコール脂肪酸エステル等が挙げられる。
 研磨時、これら二種以上の水溶性高分子は、ウェーハとの親和性の違いに応じて、それぞれウェーハの相対的に内側の領域と外側の領域とに作用する。これによって、ウェーハの形状をより高い水準で制御することができる。
 本実施形態による研磨用組成物では、二種以上の水溶性高分子のそれぞれと砥粒との重量%濃度比が、砥粒:水溶性高分子=1:0.0001~1:0.0010である。
 砥粒:水溶性高分子=1:0.0001よりも水溶性高分子が少なくなると、その水溶性高分子の作用が十分に得られず、二種以上の水溶性高分子を含有させたことによる効果が十分に得られなくなる。その結果、目標とするウェーハ形状が得られなくなる。一方、砥粒:水溶性高分子=1:0.0010よりも水溶性高分子が多くなると、研磨速度が低下する。また、二種以上の水溶性高分子を含有させたことによる効果が十分に得られなくなり、やはり目標とするウェーハ形状が得られなくなる。二種以上の水溶性高分子のそれぞれと砥粒との重量%濃度比の上限は、好ましくは水溶性高分子/砥粒で0.0009であり、さらに好ましくは水溶性高分子/砥粒で0.0007である。
 水溶性高分子のうちの一種は、下記一般式(1)で示される2つの窒素を有するアルキレンジアミン構造を含み、該アルキレンジアミン構造の2つの窒素に、少なくとも1つのブロック型ポリエーテルが結合されたジアミン化合物であって、該ブロック型ポリエーテルが、オキシエチレン基とオキシプロピレン基とが結合してなるジアミン化合物(以下「ブロック型ポリエーテルが結合されたジアミン化合物」という。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 ブロック型ポリエーテルは、下記一般式(2)~(5)で示されるエーテル基から選ばれる少なくとも一種を用いることができる。
  -[(EO)-(PO)-H         ・・・(2)
  -[(PO)-(EO)-H         ・・・(3)
  -(EO)-[(PO)-(EO)-H   ・・・(4)
  -(PO)-[(EO)-(PO)-H   ・・・(5)
 式中、EOはオキシエチレン基、POはオキシプロピレン基を表し、a、b、xは1以上の整数である。好ましくは、オキシエチレン基の数aは1~500であり、オキシプロピレン基の数bは1~200である。好ましくは、オキシエチレン基とオキシプロピレン基との質量比が、EO:PO=10:90~80:20である。
 ブロック型ポリエーテルが結合されたジアミン化合物の具体例としては、N,N,N’,N’-テトラキス・ポリオキシエチレン・ポリオキシプロピレン・エチレンジアミン(ポロキサミン)が挙げられる。
 水溶性高分子のうちの一種は、HECであることが好ましい。
 研磨用組成物が含有する二種以上の水溶性高分子として、ウェーハ表面に濡れ性を付与しない水溶性高分子から一種以上、ウェーハ表面に濡れ性を付与する水溶性高分子から一種以上を選択する。
 ウェーハ表面に濡れ性を付与しない水溶性高分子は、1分子中のヒドロキシ基又はラクタム構造の数が10未満(ヒドロキシ基及びラクタム構造の両方がある場合にはその合計が10未満)である水溶性高分子を指す。ウェーハ表面に濡れ性を付与しない水溶性高分子としては、例えば、上述したポロキサミンの他、ポロキサマー、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルアミン、及び下記一般式(6)で示されるメチルグルコシドのアルキレンオキシド誘導体、多価アルコールアルキレンオキシド付加物、多価アルコール脂肪酸エステル、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 ポリオキシアルキレンアルキルエーテルは具体的には、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル等である。ポリオキシアルキレン脂肪酸エステルは具体的には、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート等である。ポリオキシアルキレンアルキルアミンは具体的には、ポリオキシエチレンラウリルアミン、ポリオキシエチレンオレイルアミン等である。メチルグルコシドのアルキレンオキシド誘導体は例えば、ポリオキシエチレンメチルグルコシド、ポリオキシプロピレンメチルグルコシド等である。多価アルコールアルキレンオキシド付加物は具体的には、グリセリン、ペンタエリスリトール、エチレングリコール等のアルキレンオキシド付加物等が挙げられる。
 ウェーハ表面に濡れ性を付与する水溶性高分子は、1分子中のヒドロキシ基又はラクタム構造の数が10以上(ヒドロキシ基及びラクタム構造の両方がある場合にはその合計が10以上)である水溶性高分子を指す。ウェーハ表面に濡れ性を付与する水溶性高分子は、例えば、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、酢酸セルロース、メチルセルロース等のセルロース類、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)等のビニルポリマー、配糖体(グリコシド)、ポリグリセリン等が挙げられる。
 研磨用組成物が含有する二種以上の水溶性高分子は、一種をポロキサミン、ポロキサマー、ポリオキシエチレンメチルグルコシド、ポリオキシプロピレンメチルグルコシドからなる群から選択し、他の一種をHEC、PVA、PVP、ポリグリセリンからなる群から選択することが好ましい。研磨用組成物が含有する二種以上の水溶性高分子は、さらに好ましくは、一種をポロキサミンとし、他の一種をHECとする。
 本実施形態による研磨用組成物は、上記に加えて、キレート剤を含んでいてもよい。キレート剤は、例えば、アミノカルボン酸系キレート剤、有機スルホン酸キレート剤等である。
 アミノカルボン酸系キレート剤としては、具体的には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸(DTPA)、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸、トリエチレンテトラミン六酢酸ナトリウム等が挙げられる。
 有機ホスホン酸系キレート剤としては、具体的には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1,-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸、α-メチルホスホノコハク酸等が挙げられる。
 本実施形態による研磨用組成物は、pH調整剤をさらに含んでいてもよい。本実施形態による研磨用組成物のpHは、好ましくは8.0~12.0である。
 本実施形態による研磨用組成物は、上記の他、研磨用組成物の分野で一般に知られた配合剤を任意に配合することができる。
 本実施形態による研磨用組成物は、砥粒、塩基性化合物、二種以上の水溶性高分子その他の配合材料を適宜混合して水を加えることによって作製される。本実施形態による研磨用組成物は、あるいは、砥粒、塩基性化合物、二種以上の水溶性高分子その他の配合材料を、順次、水に混合することによって作製される。これらの成分を混合する手段としては、ホモジナイザー、超音波等、研磨用組成物の技術分野において常用される手段が用いられる。
 以上で説明した研磨用組成物は、適当な濃度となるように水で希釈した後、シリコンウェーハの研磨に用いられる。
 以下、実施例によって本発明をより具体的に説明する。本発明はこれらの実施例に限定されない。
 [研磨例1]
 表1に示す実施例1~4、及び表2に示す比較例1~4の研磨用組成物を作製した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例1の研磨用組成物は、砥粒として粒径70nmのコロイダルシリカを、キレート剤としてDTPAを、塩基性化合物としてKOH及びKCOを、水溶性高分子としてポロキサミン及びHECを含有した。研磨用組成物の残部は水である。砥粒、DTPA、KOH、KCO、ポロキサミン、及びHECの含有量はそれぞれ、3重量%、0.01重量%、0.3重量%、1重量%、0.0004重量%、及び0.0004重量%とした。砥粒とポロキサミンとの重量%濃度比、及び砥粒とHECとの重量%濃度比はともに1:0.0001である。
 実施例2~4の研磨用組成物は、実施例1の研磨用組成物をベースに、ポロキサミン及びHECの含有量を変えて、砥粒と各水溶性高分子との重量%濃度比を1:0.0003、1:0.0007、1:0.001にしたものである。
 比較例1の研磨用組成物は、実施例1の研磨用組成物をベースに、水溶性高分子を非添加にしたものである。
 比較例2の研磨用組成物は、実施例1の研磨用組成物をベースに、ポロキサミン及びHECの含有量を変えて、砥粒と各水溶性高分子との重量%濃度比を1:0.0013にしたものである。比較例3の研磨用組成物は、実施例4の研磨用組成物をベースに、HECを非添加にしたものである。比較例4の研磨用組成物は、実施例4の研磨用組成物をベースに、ポロキサミンを非添加にしたものである。
 これら実施例及び比較例の研磨用組成物を使用して、直径300mmのP型シリコンウェーハ(100)面の研磨を行った。研磨装置は、株式会社岡本工作機械製作所製SPP800Sを使用した。研磨パッドは、スウェードの研磨パッドを使用した。研磨用組成物を10倍に希釈して、0.6L/分の供給速度で供給した。定盤の回転速度は43rpm、ヘッドの回転速度は40rpm、研磨荷重は0.012MPaとして、4分間の研磨を行った。
 研磨終了後、非接触表面粗さ測定機(WycoNT9300,Veeco社製)を用いて、シリコンウェーハの表面粗さRaを測定した。
 ウェーハ形状の評価は、以下に説明する「差分GBIR」を用いて行った。
 図1は、差分GBIRを説明するための図である。まず、研磨前のシリコンウェーハの厚さ(裏面基準平面からの距離)のプロファイルP1を測定する。同様に、研磨後のシリコンウェーハの厚さのプロファイルP2を測定する。研磨前のプロファイルP1と研磨後のプロファイルP2との差分をとって、「研磨によって除去された厚さ(取り代)」のプロファイルΔPを求める。所定のエッジ領域を除いた領域における取代のプロファイルΔPの最大値ΔPmaxと最小値ΔPminとの差を「差分GBIR」と定義する。
 差分GBIRを用いてウェーハ形状を評価することで、通常のGBIRを用いる場合と比較して、研磨前のシリコンウェーハのばらつきやイレギュラーな要素による影響が緩和され、研磨工程自体の評価をより正確に行うことができる。
 研磨前後のシリコンウェーハの厚さのプロファイルは、ウェーハ用平坦度検査装置(Nonometro 300TT-A、黒田精工株式会社製)を用いて測定した。また、取り代の平均厚さを研磨時間で除して、研磨レートとした。
 研磨レート、表面粗さRa、差分GBIRを、前掲の表1及び表2に示す。表1及び表2の研磨レート、表面粗さRa、差分GBIRの数値は、比較例1(水溶性高分子を含有しない研磨用組成物)による値を100としたときの相対値である。本評価では、研磨レートが90以上、表面粗さRa110以下、差分GBIRが70以下となることを目標とした。
 表1に示すように、実施例1~5では、研磨レートが比較例1と同等に維持され、表面粗さRa及び差分GBIRが大きく改善していた。実施例1~4を比較すると、概ね同じ品質が得られているが、砥粒に対する水溶性高分子の濃度比が小さい実施例1及び2の方が、差分GBIRが小さくなる傾向が見られた。
 表2に示すように、比較例2は、比較例1と比較して表面粗さRaは改善していたものの、研磨レートが低下していた。また、差分GBIRは改善していなかった。これは、砥粒に対する水溶性高分子の濃度比が高すぎたためと考えられる。
 比較例3、4は、比較例1と比較して研磨レートは大きくなっていたものの、差分GBIRの改善は十分ではなかった。これは、これらの研磨用組成物が水溶性高分子を一種しか含有していなかったためと考えられる。
 [研磨例2]
 続いて、表3に示す比較例5~10の研磨用組成物を作製した。
Figure JPOXMLDOC01-appb-T000008
 比較例5の研磨用組成物は、比較例1と同様、実施例1の研磨用組成物をベースに、水溶性高分子を非添加としたものである。
 比較例6~8の研磨用組成物は、比較例4の研磨用組成物をベースに、HECの含有量を変えて、砥粒とHECとの重量%濃度比を1:0.0013、1:0027、1:0.005にしたものである。比較例9の研磨用組成物は、比較例3の研磨用組成物をベースに、ポロキサミンの含有量を変えて、砥粒とポロキサミンとの重量%濃度比を1:0.0013にしたものである。比較例10の研磨用組成物は、砥粒とポロキサミンとの重量%濃度比、及び砥粒とHECとの重量%濃度比を、ともに1:0.0013にしたものである。
 これらの研磨用組成物を使用して、研磨例1と類似の条件で研磨を行った。そして、研磨例1と同様に、研磨レート、表面粗さRa、差分GBIRを求めた。結果を前掲の表3に示す。表3の研磨レート、表面粗さRa、差分GBIRの数値は、比較例5(水溶性高分子を含有しない研磨用組成物)による値を100としたときの相対値である。
 比較例6は、比較例5と比較して、差分GBIRの改善が十分ではなかった。比較例7及び8は、差分GBIRは改善していたものの、研磨レートの低下が大きかった。比較例9は、差分GBIRが、比較例5よりも悪化していた。このように、水溶性高分子が一種の場合には、含有量を調整しても、研磨レート、表面粗さRa、差分GBIRの3つの指標をバランスよく満たす条件が得られなかった。
 図2~図5はそれぞれ、比較例5(水溶性高分子なし)、比較例9(ポロキサミンのみ)、比較例6(HECのみ)、及び比較例10(ポロキサミンとHECとを併用)の研磨用組成物によって研磨したシリコンウェーハの取り代のプロファイルである。
 図2と図3との比較から、ポロキサミンは、ウェーハ中心の取り代は変化させず、ウェーハ最外周の取り代を小さくすることが分かる。
 図2と図4との比較から、HECは、ウェーハ中心の取り代を小さくし、ウェーハ最外周の取り代を大きくすることが分かる。
 図5に示すように、ポロキサミンとHECとを併用することで、ウェーハ中心から外周近傍までの取り代の変化が少なくなり、ウェーハの中心と中心から100mmの位置との間で、取り代をほぼ一定にすることができる。
 [研磨例3]
 続いて、表4に示す実施例5~8、表5に示す実施例10、11、比較例11~13の研磨用組成物を作製した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 実施例5~7の研磨用組成物は、実施例2の研磨用組成物をベースに、HECを他の水溶性高分子に置き換えたものである。実施例5~7の研磨用組成物は、具体的には、HECをそれぞれ、PVA、PVP、及びポリグリセリンに置き換えたものである。実施例8~10の研磨用組成物は、実施例2の研磨用組成物をベースに、ポロキサミンを他の水溶性高分子に置き換えたものである。実施例8~10の研磨用組成物は、具体的には、ポロキサミンをそれぞれ、ポロキサマー、ポリオキシエチレンメチルグルコシド、及びポリオキシプロピレンメチルグルコシドに置き換えたものである。
 比較例11の研磨用組成物は、比較例1と同様、実施例1の研磨用組成物をベースに、水溶性高分子を非添加としたものである。
 比較例12の研磨用組成物は、比較例4の研磨用組成物をベースに、HECの含有量を変えて、砥粒とHECとの重量%濃度比を1:0.002にしたものである。比較例13の研磨用組成物は、比較例3の研磨用組成物をベースに、ポロキサミンの含有量を変えて、砥粒とポロキサミンとの重量%濃度比を1:0.002にしたものである。
 これらの研磨用組成物を使用して、研磨例1と類似の条件で研磨を行った。そして、研磨例1と同様に、研磨レート、表面粗さRa、差分GBIRを求めた。結果を前掲の表4及び表5に示す。表4及び表5の研磨レート、表面粗さRa、差分GBIRの数値は、比較例11(水溶性高分子を含有しない研磨用組成物)による値を100としたときの相対値である。
 実施例5~10では、研磨レート及び表面粗さRaが比較例11と同等か同等以上であり、差分GBIRが大きく改善していた。特に、実施例5(水溶性高分子がポロキサミンとPVA)、実施例7(水溶性高分子がポロキサミンとポリグリセリン)では、研磨レートも顕著に向上していた。
 比較例12、13は、差分GBIRの改善が十分ではなかった。これは、これらの研磨用組成物が水溶性高分子を一種しか含有していなかったためと考えられる。
 以上の結果から、研磨用組成物に二種以上の水溶性高分子を適量含有させることで、研磨後のウェーハの形状を高い水準で制御できることが確認された。
 以上、本発明の実施の形態を説明した。上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。

Claims (4)

  1.  砥粒と、
     塩基性化合物と、
     二種以上の水溶性高分子とを含み、
     前記二種以上の水溶性高分子のそれぞれと前記砥粒との重量%濃度比が、砥粒:水溶性高分子=1:0.0001~1:0.0010であり、
     前記二種以上の水溶性高分子のうちの一種が、1分子中のヒドロキシ基又はラクタム構造の数が10未満である水溶性高分子であり、
     前記二種以上の水溶性高分子のうちの他の一種が、1分子中のヒドロキシ基又はラクタム構造の数が10以上である水溶性高分子である、研磨用組成物。
  2.  請求項1に記載の研磨用組成物であって、
     前記二種以上の水溶性高分子のうちの一種が、下記一般式(1)で示される2つの窒素を有するアルキレンジアミン構造を含み、該アルキレンジアミン構造の2つの窒素に、少なくとも1つのブロック型ポリエーテルが結合されたジアミン化合物であって、該ブロック型ポリエーテルが、オキシエチレン基とオキシプロピレン基とが結合してなるジアミン化合物である、研磨用組成物。
    Figure JPOXMLDOC01-appb-C000001
  3.  請求項1に記載の研磨用組成物であって、
     前記二種以上の水溶性高分子のうちの他の一種が、ヒドロキシエチルセルロースである、研磨用組成物。
  4.  請求項1に記載の研磨用組成物であって、
     前記二種以上の水溶性高分子のうちの一種が、下記一般式(1)で示される2つの窒素を有するアルキレンジアミン構造を含み、該アルキレンジアミン構造の2つの窒素に、少なくとも1つのブロック型ポリエーテルが結合されたジアミン化合物であって、該ブロック型ポリエーテルが、オキシエチレン基とオキシプロピレン基とが結合してなるジアミン化合物であり、
     前記二種以上の水溶性高分子のうちの他の一種が、ヒドロキシエチルセルロースである、研磨用組成物。
    Figure JPOXMLDOC01-appb-C000002
PCT/JP2017/047089 2016-12-28 2017-12-27 研磨用組成物 WO2018124230A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018559610A JP7077236B2 (ja) 2016-12-28 2017-12-27 研磨用組成物
KR1020197017169A KR20190098142A (ko) 2016-12-28 2017-12-27 연마용 조성물
CN201780075054.6A CN110036086B (zh) 2016-12-28 2017-12-27 研磨用组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016255099 2016-12-28
JP2016-255099 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124230A1 true WO2018124230A1 (ja) 2018-07-05

Family

ID=62709419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047089 WO2018124230A1 (ja) 2016-12-28 2017-12-27 研磨用組成物

Country Status (5)

Country Link
JP (1) JP7077236B2 (ja)
KR (1) KR20190098142A (ja)
CN (1) CN110036086B (ja)
TW (1) TWI755467B (ja)
WO (1) WO2018124230A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035870A (ja) * 2018-08-29 2020-03-05 株式会社フジミインコーポレーテッド 研磨用組成物
KR20220136235A (ko) 2021-03-30 2022-10-07 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 질화규소를 선택적으로 제거하는 방법
EP4083152A4 (en) * 2019-12-24 2023-04-05 NITTA DuPont Incorporated POLISHING COMPOSITION

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111378379B (zh) * 2018-12-29 2022-08-05 安集微电子(上海)有限公司 一种化学机械抛光液及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517791A (ja) * 2004-10-28 2008-05-29 キャボット マイクロエレクトロニクス コーポレイション 界面活性剤を含むcmp組成物
WO2009004169A2 (fr) * 2007-06-12 2009-01-08 Comptoir Hydro Electro Thermique (Sarl) Espaces fumeurs modulables
JP2010153626A (ja) * 2008-12-25 2010-07-08 Fujifilm Corp 研磨液
JP2015205348A (ja) * 2012-08-30 2015-11-19 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP2016056220A (ja) * 2014-09-05 2016-04-21 日本キャボット・マイクロエレクトロニクス株式会社 スラリー組成物、リンス組成物、基板研磨方法およびリンス方法
JP2016529356A (ja) * 2013-07-18 2016-09-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se セリアを含有する研磨粒子を含むcmp組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821835B (zh) * 2007-09-28 2013-03-27 霓达哈斯股份有限公司 研磨用组合物
WO2014034425A1 (ja) * 2012-08-31 2014-03-06 株式会社 フジミインコーポレーテッド 研磨用組成物及び基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517791A (ja) * 2004-10-28 2008-05-29 キャボット マイクロエレクトロニクス コーポレイション 界面活性剤を含むcmp組成物
WO2009004169A2 (fr) * 2007-06-12 2009-01-08 Comptoir Hydro Electro Thermique (Sarl) Espaces fumeurs modulables
JP2010153626A (ja) * 2008-12-25 2010-07-08 Fujifilm Corp 研磨液
JP2015205348A (ja) * 2012-08-30 2015-11-19 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP2016529356A (ja) * 2013-07-18 2016-09-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se セリアを含有する研磨粒子を含むcmp組成物
JP2016056220A (ja) * 2014-09-05 2016-04-21 日本キャボット・マイクロエレクトロニクス株式会社 スラリー組成物、リンス組成物、基板研磨方法およびリンス方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035870A (ja) * 2018-08-29 2020-03-05 株式会社フジミインコーポレーテッド 研磨用組成物
EP4083152A4 (en) * 2019-12-24 2023-04-05 NITTA DuPont Incorporated POLISHING COMPOSITION
KR20220136235A (ko) 2021-03-30 2022-10-07 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 질화규소를 선택적으로 제거하는 방법

Also Published As

Publication number Publication date
CN110036086B (zh) 2022-04-26
TW201829717A (zh) 2018-08-16
CN110036086A (zh) 2019-07-19
KR20190098142A (ko) 2019-08-21
TWI755467B (zh) 2022-02-21
JP7077236B2 (ja) 2022-05-30
JPWO2018124230A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
WO2018124230A1 (ja) 研磨用組成物
CN106663619B (zh) 硅晶圆研磨用组合物
US20110217845A1 (en) Polishing Composition and Polishing Method Using The Same
EP3366747B1 (en) Polishing composition
WO2017069202A1 (ja) 研磨用組成物
JP2016124943A (ja) 研磨用組成物
JP5939578B2 (ja) 研磨用組成物およびそれを用いた研磨方法
CN111527589A (zh) 研磨用组合物
JP6691774B2 (ja) 研磨用組成物およびその製造方法
JPWO2019017407A1 (ja) 基板の研磨方法および研磨用組成物セット
WO2010005103A1 (ja) 研磨組成物
JP5690609B2 (ja) 研磨組成物
JP7002354B2 (ja) 研磨用組成物
JP7157651B2 (ja) 研磨用組成物
JP6360694B2 (ja) 研磨用組成物
JPWO2018025656A1 (ja) シリコンウェーハ粗研磨用組成物の製造方法、シリコンウェーハ粗研磨用組成物セット、およびシリコンウェーハの研磨方法
CN112400005B (zh) 研磨用组合物
JP7467342B2 (ja) 研磨用組成物
CN111512419A (zh) 研磨用组合物
TW202033689A (zh) 研磨用組合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559610

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197017169

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887928

Country of ref document: EP

Kind code of ref document: A1