WO2018124181A1 - mRNAの機能化方法 - Google Patents

mRNAの機能化方法 Download PDF

Info

Publication number
WO2018124181A1
WO2018124181A1 PCT/JP2017/046906 JP2017046906W WO2018124181A1 WO 2018124181 A1 WO2018124181 A1 WO 2018124181A1 JP 2017046906 W JP2017046906 W JP 2017046906W WO 2018124181 A1 WO2018124181 A1 WO 2018124181A1
Authority
WO
WIPO (PCT)
Prior art keywords
mrna
sequence
rna
oligomer
bases
Prior art date
Application number
PCT/JP2017/046906
Other languages
English (en)
French (fr)
Inventor
智士 内田
啓史 位高
片岡 一則
直人 吉永
Original Assignee
国立大学法人東京大学
公益財団法人 川崎市産業振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 公益財団法人 川崎市産業振興財団 filed Critical 国立大学法人東京大学
Priority to CN202310810591.8A priority Critical patent/CN116949050A/zh
Priority to JP2018559579A priority patent/JP6792847B2/ja
Priority to KR1020197022206A priority patent/KR102259447B1/ko
Priority to EP17889018.2A priority patent/EP3564375A4/en
Priority to CN201780080567.6A priority patent/CN110168090B/zh
Priority to US16/473,535 priority patent/US11364259B2/en
Publication of WO2018124181A1 publication Critical patent/WO2018124181A1/ja
Priority to US17/745,314 priority patent/US20220296632A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7115Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0001Archaeal antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0003Invertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5154Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6025Nucleotides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a method for functionalizing mRNA. More specifically, the present invention relates to a method for stabilizing an mRNA transport carrier, an mRNA vaccine, and the like.
  • MRNA delivery is attracting attention as a method for safely and continuously supplying therapeutic proteins.
  • methods for protecting mRNA from degradation using an mRNA transport carrier and methods for improving mRNA molecules themselves have been studied, but further innovating due to the extremely strong RNase in vivo. Is required.
  • Non-Patent Document 1 a method of substituting a part of the mRNA base with a chemically modified one has been studied.
  • Various chemically modified bases have been comprehensively studied so far, but no one that can greatly improve the enzyme resistance of mRNA has been reported yet.
  • free chemical modification was difficult.
  • Patent Document 1 describes a polycationic polymer and a polyion complex of mRNA, and describes that this is used for delivery of mRNA.
  • Non-Patent Document 2 describes the stability of polymeric micelle-type mRNA transport carriers, the evaluation of enzymatic degradation, and the effect of cholesterol modification on polymers.
  • these documents do not describe a method for stabilizing an mRNA transport carrier that can improve enzyme resistance of mRNA without greatly reducing the efficiency of protein translation from mRNA in vivo.
  • Nucleic acid vaccines such as DNA vaccines and mRNA vaccines use nucleic acids to present antigenic proteins. That is, the nucleic acid vaccine activates immunity by transferring the administered nucleic acid into the nucleus or cytoplasm of the antigen-presenting cell to express the antigen protein and presenting the antigen protein. Nucleic acid vaccines are considered to be safer than live vaccines because there is no problem of reversion of pathogenicity. In addition, in the nucleic acid vaccine, the antigen-presenting cells present the antigen protein, so that cellular immunity can be induced. For this reason, the nucleic acid vaccine can be developed for cancer and chronic infectious diseases. Furthermore, it is possible to design a relatively free nucleic acid simply by changing the sequence of the nucleic acid vaccine. Therefore, the nucleic acid vaccine can be used for individualized treatment of cancer, and can respond quickly to viral mutations. There are also advantages such as being able to respond quickly to a pandemic.
  • DNA vaccines are considered to be at risk of mutagenesis due to random insertion into the host genome.
  • mRNA vaccines that use mRNA to present antigenic proteins are considered to be free from the risk of mutagenesis into the host genome and have attracted attention in recent years.
  • Such a conventional mRNA vaccine has the following three problems.
  • the first problem is that when a foreign substance is used as an adjuvant, considerable attention must be paid to its safety.
  • the second problem is that if the administered mRNA and the tissue distribution of the adjuvant are different, a sufficient inflammatory reaction may not be induced in cells expressing the antigen protein.
  • a third problem is that when administering mRNA to a living body, a transport carrier is often required to protect the mRNA from enzymatic degradation, but an adjuvant may affect the function of the transport carrier.
  • Non-Patent Document 3 describes an mRNA vaccine in which mRNA is integrated with protamine, which is an adjuvant component.
  • the first aspect of the present invention aims to provide a new method for stabilizing an mRNA transport carrier.
  • the second and third aspects of the present invention aim to provide a new mRNA vaccine that enables efficient protein expression and immunity induction.
  • mRNA can be functionalized by hybridizing RNA oligomer having a sequence complementary to mRNA to mRNA, and the present invention has been completed.
  • the present inventors can chemically modify mRNA by chemically modifying an RNA oligomer having a sequence complementary to mRNA and hybridizing it to mRNA, thereby stabilizing the mRNA. It has been found that the transport carrier can be stabilized by mounting the mRNA on the transport carrier, and the first aspect of the present invention has been completed.
  • the present inventors achieved both efficient protein expression and immune induction from mRNA by hybridizing to the mRNA an RNA oligomer having a sequence complementary to the poly A sequence of the mRNA encoding the antigen.
  • the inventors have found out what can be done and have completed the second aspect of the present invention.
  • the inventors hybridize a first RNA oligomer having a sequence complementary to the sequence of mRNA encoding the antigen to the mRNA, and a second sequence having a sequence complementary to the first RNA oligomer. It has been found that by hybridizing an RNA oligomer to a first RNA oligomer, both efficient protein expression and immunity induction from mRNA can be achieved, and the third aspect of the present invention has been completed.
  • the present invention is as follows.
  • a functionalized mRNA comprising double stranded RNA comprising mRNA and at least one modified RNA oligomer hybridized to the mRNA.
  • the first aspect of the present invention is as follows. [1-1] A transport carrier for the mRNA containing mRNA encoding a target gene and at least one RNA oligomer hybridized to the mRNA, RNA oligomers (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and A transport carrier comprising an RNA sequence that hybridizes to mRNA and is chemically modified.
  • [1-1A] A transport carrier for the mRNA containing mRNA encoding a target gene and at least one RNA oligomer hybridized to the mRNA, RNA oligomers (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and A transport carrier comprising an RNA sequence that hybridizes to mRNA and not chemically modified or chemically modified. [1-2] The transport carrier according to [1-1] or [1-1A] above, wherein the RNA sequence consists of a sequence of 15 to 23 bases.
  • RNA sequence is a 17-base sequence.
  • the chemical modification is performed at the 5 ′ end or 3 ′ end of the RNA oligomer sequence via an overhang sequence of 1 to 5 bases, [1-1] to [1- [3] The transport carrier according to any one of [3].
  • the overhang sequence is a sequence of 2 bases.
  • the chemical modification is modification with a hydrophobic group.
  • the transport carrier according to [1-6] above, wherein the modification with the hydrophobic group is cholesterol modification.
  • RNA oligomers (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and A method for stabilizing a transport carrier, comprising an RNA sequence that hybridizes to mRNA and chemically modified.
  • RNA oligomers (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and A method for stabilizing a transport carrier, comprising an RNA sequence that hybridizes to mRNA and not chemically modified or chemically modified.
  • Double-stranded RNA comprising mRNA encoding a target gene and at least one RNA oligomer hybridized to the mRNA, RNA oligomers (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and Double-stranded RNA comprising an RNA sequence that hybridizes to mRNA and not chemically modified or chemically modified. [1-13] The double-stranded RNA according to [1-12] above, wherein the RNA sequence consists of a sequence of 15 to 23 bases.
  • [1-14] The double-stranded RNA according to [1-13] above, wherein the RNA sequence consists of a 17-base sequence.
  • the above chemical modification is performed at the 5 ′ end or 3 ′ end of the RNA oligomer sequence via an overhang sequence of 1 to 5 bases, [1-12] to [1- [14] The double-stranded RNA according to any one of [14].
  • [1-16] The double-stranded RNA according to [1-15] above, wherein the overhang sequence is a 2-base sequence.
  • [1-17] The double-stranded RNA according to any one of [1-12] to [1-16] above, wherein the chemical modification is modification with a hydrophobic group.
  • [1-18] The double-stranded RNA according to [1-17] above, wherein the modification with the hydrophobic group is cholesterol modification.
  • [1-19] The double-stranded RNA according to any one of [1-12 to [1-16] above, wherein the chemical modification is a polyethylene glycol modification.
  • a pharmaceutical composition comprising the transport carrier according to any one of [1-20] and [1-21] above.
  • the second aspect of the present invention is as follows.
  • [2-1] A double-stranded RNA comprising an mRNA encoding an antigen and at least one RNA oligomer hybridized to at least a poly A sequence of the mRNA, wherein the at least one RNA oligomer is not chemically modified, mRNA vaccine.
  • [2-1A] a double-stranded RNA comprising mRNA encoding an antigen and at least one RNA oligomer hybridized to at least a poly A sequence of the mRNA, wherein the at least one RNA oligomer is not chemically modified; or An mRNA vaccine that is chemically modified.
  • RNA vaccine according to [2-1] or [2-1A] above, wherein the RNA oligomer consists of 10 to 500 base sequences.
  • RNA vaccine according to any one of [2-1] to [2-2] above, wherein the RNA oligomer has a triphosphate structure at the 5 ′ end.
  • RNA vaccine The double-stranded RNA according to any one of [2-1] to [2-3] above, wherein one RNA oligomer is hybridized to at least a poly A sequence of mRNA. mRNA vaccine.
  • [2-6] The mRNA vaccine according to any one of [2-1] to [2-5], which is not used with an adjuvant.
  • [2-7] The mRNA vaccine according to any one of [2-1] to [2-6] above, which is used for the prevention or treatment of a disease in a subject in need of the prevention or treatment of the disease.
  • Disease prevention or treatment comprising administering to the subject in need of disease prevention or treatment the mRNA vaccine of any one of [2-1] to [2-6] above Method of treatment.
  • the third aspect of the present invention is as follows.
  • Double-stranded RNA comprising mRNA encoding an antigen, at least one first RNA oligomer hybridized to the mRNA, and a second RNA oligomer hybridized to the first RNA oligomer Including
  • the first RNA oligomer is (A) a first RNA sequence consisting of a 12-40 base sequence complementary to the mRNA sequence and a second RNA sequence consisting of a 10-200 base sequence complementary to the second RNA oligomer sequence; An RNA sequence comprising in this order from the 5 ′ end, (B) 90% identity with a sequence of 12 to 40 bases complementary to the mRNA sequence and complementary to the sequence of the first RNA sequence and the second RNA oligomer that hybridize to the mRNA An RNA sequence comprising a second RNA sequence having at least 90% identity with a 10-200 base sequence and hybridizing to the second RNA oligomer in this order from the 5 ′ end, (C) a second
  • the first RNA oligomer includes the RNA sequence of (a) or the RNA sequence of (b), and the second RNA oligomer has a triphosphate structure at the 5 ′ end, [3 The mRNA vaccine according to any one of [-1] to [3-3].
  • the first RNA oligomer includes the RNA sequence of (c) or the RNA sequence of (d), and the first RNA oligomer has a triphosphate structure at the 5 ′ end, [3 The mRNA vaccine according to any one of [-1] to [3-3]. [3-6] The above [3-1] to [3-5], wherein the end of the double-stranded RNA on the side where the second RNA oligomer is hybridized to the first RNA oligomer is a blunt end The mRNA vaccine according to any one of the above. [3-7] The mRNA vaccine according to any one of [3-1] to [3-6] above, wherein the second RNA oligomer comprises a sequence of 10 to 200 bases.
  • [3-8] The mRNA vaccine according to any one of [3-1] to [3-7] above, wherein the double-stranded RNA is in naked form.
  • [3-9] The mRNA vaccine according to any one of [3-1] to [3-8], which is not used with an adjuvant.
  • [3-10] The mRNA vaccine according to any one of the above [3-1] to [3-9] for use in the prevention or treatment of a disease in a subject in need of the prevention or treatment of the disease.
  • the present invention can provide functionalized mRNA.
  • the first aspect of the present invention provides a new method for stabilizing mRNA or mRNA transport carrier.
  • the first aspect of the present invention can achieve relatively free mRNA modification in vivo while maintaining protein translation efficiency from mRNA. More preferably, the first aspect of the present invention can inhibit enzymatic degradation of mRNA in vivo.
  • the second and third aspects of the present invention provide a new mRNA vaccine that enables efficient protein expression and immunity induction.
  • the mRNA vaccine of the second and third aspects of the present invention is capable of antigen presentation and immunity induction without simultaneous administration of an adjuvant.
  • the mRNA vaccine of the second and third aspects of the present invention can induce stronger cellular immunity.
  • the second and third mRNA vaccines of the present invention can induce stronger humoral immunity than administration of mRNA alone.
  • A PEG-PAsp (DET) + RNA oligo (-);
  • B PEG-PAsp (DET)-Chol + RNA oligo (-);
  • C PEG-PAsp (DET) + unmodified RNA oligo;
  • D PEG -PAsp (DET) -Chol + unmodified RNA oligo;
  • E PEG-PAsp (DET) + Chol-RNA oligo;
  • F PEG-PAsp (DET) -Chol + Chol-RNA oligo. It is a figure which shows the influence on stability by hybridization to mRNA of Chol modification RNA oligomer.
  • A PEG-PAsp (DET) -Chol
  • B PEG-PAsp
  • C PEG-PAsp
  • D PEG-PAsp
  • E PEG-PAsp
  • A PEG-PAsp (DET) -Chol + oligo ( ⁇ );
  • B PEG-PAsp (DET) -Chol + Chol oligo;
  • C PEG-PAsp (DET) + oligo ( ⁇ );
  • D PEG-PAsp (DET) + Chol oligo.
  • FBS condition 10v / v%. It is a figure which shows the influence on the protein translation efficiency at the time of introduce
  • the underlined part is open reading frame.
  • the underlined part is open reading frame. This is the sequence of poly U produced in the example (SEQ ID NO: 56).
  • a functionalized mRNA comprising double stranded RNA comprising mRNA and at least one modified RNA oligomer hybridized to the mRNA.
  • a functionalized mRNA comprising double stranded RNA comprising mRNA and at least one modified RNA oligomer hybridized to the mRNA.
  • First aspect of the present invention 1.1. Outline of the First Aspect of the Invention Conventionally, it has been difficult to design a free chemical modification in the base modification of mRNA. Therefore, the present inventors considered that it is possible to chemically modify mRNA by chemically modifying an RNA oligomer having a sequence complementary to mRNA and hybridizing it to mRNA (FIG. 1). . In this case, since the mRNA itself is natural, it was expected that the translation process was not hindered and free chemical modification was possible. On the other hand, since there was a concern about the failure of the translation process due to hybridization, first, RNA oligomers of various chain lengths were hybridized, and the influence on translation efficiency was examined.
  • the mRNA-carrying transport carrier for example, polymer micelle
  • the stabilization effect by such a Chol modification oligomer is acquired in the composition of several polymeric micelle (FIG. 11), and it can be said that it is a highly versatile platform for improving the enzyme resistance of mRNA.
  • RNA oligomer modification of the Chol group to either the 5 'or 3' end did not significantly affect the stability and efficiency of protein expression from mRNA (Fig. 8). It is also possible to insert an overhang sequence that does not hybridize between the complementary sequence of the RNA oligomer and the Chol group. For example, when a block copolymer modified with Chol is used, there is a tendency that a higher stabilization effect is obtained in the case where there is an overhang sequence of 2 bases compared to the case where there is no overhang sequence ( FIG. 4 (A) and (C)). On the other hand, when a block copolymer in which Chol was not modified was used, a more excellent stabilizing effect was obtained even without an overhang sequence (FIGS. 4B and 4D).
  • mRNA can be chemically modified freely by chemically modifying RNA oligomer and hybridizing it to mRNA.
  • chemically modified mRNA since there is a concern that the efficiency of translation from mRNA may decrease due to hybridization, studies have not been made to hybridize chemically modified mRNA for use in the inhibition of enzymatic degradation of mRNA. .
  • RNA oligomers of various chain lengths As a composition having a chain length capable of forming a stable hybrid and not affecting translation efficiency, a complementary sequence of 12 to 40 bases. I found that something with is good. In addition, in the stabilization of polymer micelles using hybridization of chemically modified RNA oligomers, it was found that the chemical modification position may be 5 ′ end or 3 ′ end (FIG. 8). It was also found that there may be no overhang sequence between the complementary sequence of the RNA oligomer and the Chol group, or there may be an overhang sequence of 1 to 5 bases.
  • the first aspect of the present invention is a versatile technique capable of suppressing the enzymatic degradation of mRNA in mRNA itself or various transport carriers (for example, polymer micelles).
  • a first aspect of the present invention is a double-stranded RNA comprising mRNA encoding a target gene and at least one RNA oligomer hybridized to the mRNA, RNA oligomers (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and Provided is a double-stranded RNA comprising an RNA sequence that hybridizes to mRNA and not chemically modified or chemically modified.
  • Double-stranded RNA may be encapsulated in a transport carrier.
  • the double-stranded RNA may not be encapsulated in the transport carrier, that is, it may be in naked form.
  • the first aspect of the present invention is a transport carrier for the mRNA containing mRNA encoding a target gene and at least one RNA oligomer hybridized to the mRNA, RNA oligomers (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and Provided is a transport carrier comprising an RNA sequence that hybridizes to mRNA and is either not chemically modified or chemically modified.
  • the transport carrier is not particularly limited as long as it can enclose nucleic acid and can be delivered to a suitable location in the body of the subject.
  • the transport carrier is, for example, a polymer micelle, a lipidic mRNA carrier, or a cationic polymer complex, and more preferably a polymer micelle or a lipidic mRNA carrier.
  • the polymer micelle has a two-layer structure of an inner core formed of condensed nucleic acid and a cationic polymer and an outer shell formed of a hydrophilic polymer.
  • the cationic polymer is, for example, a polyamino acid derivative.
  • the hydrophilic polymer is, for example, polyethylene glycol (“PEG”).
  • the inner core physically or chemically encapsulates the mRNA.
  • the outer shell delivers mRNA encapsulated in the inner shell to a predetermined tissue due to its physicochemical properties.
  • Polymeric micelles can enter cells by endocytosis.
  • polymer micelle for example, an interaction between a polycation and a nucleic acid on a block polymer (polyion complex (“PIC”)) can be used, and a hybrid micelle of an inorganic molecule can also be used.
  • PIC polyion complex
  • PIC polymer micelles examples include PEG micelles formed by polymolecular association of PEG-PAsp (DET) -Chol, PEG-PAsp (DET), PEG-PLys and mRNA (see Examples below) and , PAsp (TET), PAsp (TEP) using another polycation as a block copolymer (Uchida, S., et al., Biomaterials (2016) 82, p.221-228) and triblock copolymer Examples include those using a polymer (Osawa, S., et al. Biomacromolecules 17, p354-361 (2016)).
  • hybrid micelles with inorganic molecules include PEGylated calcium phosphate (CaP) particles (Pittela, et al., Biomaterials (2011) 32, p. 3106-3114), PEGylated silica particles (Miyata, K., et al. Biomaterials (2010) 31, p4764-4770).
  • CaP PEGylated calcium phosphate
  • the lipidic mRNA carrier is formed using lipid or cationic lipid as a carrier, and the mRNA is in an encapsulated or bound form.
  • lipid or cationic lipid for example, N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA), 2,3-dioleyloxy-N- [2- (sperminecarboxamide) Ethyl] -N, N-dimethyl-1-propanaminium trifluoroacetic acid (DOSPA), 1,2-dioleoyloxy-3- (trimethylammonium) propane (DOTAP), N- [1- (2,3 -Dimyristyloxy) propyl] -N, N-dimethyl-N- (2-hydroxyethyl) ammonium bromide (DMRIE) or DC-Cholesterol; cationic lipids; distearoylphosphatidylcholine (DSPC) or
  • the cationic polymer complex is, for example, a mixture of linear or branched polyethyleneimine, polylysine, polyarginine, chitosan derivative, polymethacrylic acid derivative and mRNA.
  • the amount of mRNA encapsulated in the transport carrier is, for example, 0.5-200 in the ratio of the cation charge (+) in the transport carrier to the anion charge ( ⁇ ) of the mRNA (+/ ⁇ ratio). It is preferably 1 to 50, and more preferably 1 to 10.
  • the target gene can be appropriately selected by those skilled in the art according to the purpose.
  • the target gene is, for example, a reporter gene, a growth factor gene, a cell growth factor gene, a cell growth inhibitory factor gene, a cell death promoting factor gene, a cell death inhibitory factor gene, a cancer suppressor gene, a transcription factor gene, a genome editing gene or a vaccine antigen It is a gene.
  • a disease or condition in the subject can be treated by administering a transport carrier encapsulating mRNA encoding the growth factor gene of the specific cell to a subject in need of growing the specific cell. it can.
  • reporters include photoproteins and fluorescent proteins.
  • growth factors examples include epidermal growth factor (EGF), insulin-like growth factor (IGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), granulocyte colony Stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), erythropoietin (EPO), thrombopoietin (TPO), basic fibroblast growth factor (bFGF or FGF- 2) and hepatocyte growth factor (HGF).
  • EGF epidermal growth factor
  • IGF insulin-like growth factor
  • NGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • VEGF vascular endothelial growth factor
  • G-CSF granulocyte colony Stimulating factor
  • GM-CSF granulocyte macrophage colony stimulating factor
  • PDGF platelet derived growth factor
  • EPO erythrop
  • Examples of the cell growth inhibitory factor include p21, p17, p16 and p53.
  • cell death promoting factor examples include Smac / Diablo, apoptosis-inducing factor (AIF), HtrA2, Bad, Bim, Bax, p53, caspase 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 (Eg, caspase 2, 3, 6, 7, 8, 9 and 10, preferably caspase 3, 6 and 7), Fas ligand (FasL), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and FoxO1.
  • AIF apoptosis-inducing factor
  • HtrA2 HtrA2
  • Bad Bim
  • Bax Bax
  • p53 caspase 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10
  • caspase 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 Eg, caspase 2, 3, 6, 7, 8, 9 and 10, preferably caspase 3, 6 and 7
  • Fas ligand Fas ligand
  • TRAIL tumor necrosis factor-related apoptosis-inducing
  • cell death inhibitory factor examples include anti-apoptotic factors (for example, FLIP, Mcl-1, Xiap, crmA, Bcl-2 and Bcl-xL).
  • anti-apoptotic factors for example, FLIP, Mcl-1, Xiap, crmA, Bcl-2 and Bcl-xL.
  • tumor suppressor gene examples include p53, retinoblastoma gene (Rb), colorectal adenomatous gene (APC), neurofibromatosis type 1 gene (NF1), neurofibromatosis type 2 gene (NF2), and WT1.
  • Rb retinoblastoma gene
  • APC colorectal adenomatous gene
  • NF1 neurofibromatosis type 1 gene
  • NF2 neurofibromatosis type 2 gene
  • transcription factors examples include Runt-related transcription factor 1 (Runx1), p53, c-fos, c-Jun, CREB, C / EBP, MyoD, c-Myc, c-Myb, Oct3 / 4, NF- ⁇ B, NF-AT, Mef-2 and extracellular signal response factor (SRF).
  • Runx1 Runt-related transcription factor 1
  • p53 p53
  • c-fos c-Jun
  • CREB C / EBP
  • MyoD MyoD
  • c-Myc c-Myb
  • Oct3 / 4 NF- ⁇ B
  • Mef-2 extracellular signal response factor
  • Genomic editing genes include, for example, zinc fingerer nuclease (ZNF), transcribable activator like effector nuclease (TALEN), and clustered, regularly interspaced, shortISCR.
  • ZNF zinc fingerer nuclease
  • TALEN transcribable activator like effector nuclease
  • clustered, regularly interspaced, shortISCR clustered, regularly interspaced, shortISCR.
  • vaccine antigen genes include pathogen antigens and tumor-specific antigens.
  • mRNA means messenger RNA and usually comprises a 5 ′ untranslated region (5′UTR), a coding region and a 3 ′ untranslated region (3′UTR).
  • the mRNA usually further comprises a cap structure (5 ′ Cap) at the 5 ′ end and a poly A sequence at the 3 ′ end.
  • the mRNA used here may be any of the following. (1) mRNA containing 5 ′ Cap, 5 ′ UTR, coding region, 3 ′ UTR, and poly A in this order. (2) mRNA containing 5′Cap, 5′UTR, coding region, and poly A in this order. (3) mRNA containing 5′UTR, coding region, 3′UTR, and poly A in this order.
  • mRNA containing 5′UTR, coding region, and poly A in this order (5) mRNA containing 5′Cap, 5′UTR, coding region, and 3′UTR in this order. (6) mRNA containing 5 ′ Cap, 5 ′ UTR and coding region in this order. (7) mRNA containing 5′UTR, coding region, and 3′UTR in this order. (8) mRNA containing 5′UTR and coding region in this order.
  • MRNA encoding the target gene can be prepared by transcription of the template DNA encoding the target gene in an in vitro environment by a known method. For example, it can be produced according to the method described in Blood 108 (13) (2006) 4009-17. Specifically, a template DNA in which a poly A / T chain is incorporated downstream of a protein coding sequence is cleaved immediately downstream of the poly A / T chain and placed in a buffer solution containing a translation enzyme, a nucleoside, and a 5 ′ cap analog. In vitro transcription can be performed, and then mRNA can be purified. A more specific method for preparing mRNA is as described in Examples below.
  • chemical modification of the base of the mRNA itself is not performed. In this case, since the mRNA itself is natural, it can be expected that the translation process is hardly impaired. In some other embodiments, chemical modification of the base of the mRNA itself is performed. It is known that chemical modification of the base of mRNA itself can improve the enzyme resistance of mRNA or reduce immunogenicity, for example.
  • Such chemically modified bases of mRNA itself include, for example, methylated bases (eg, 5-methylcytosine), sulfur modified bases (eg, 2-thiouridine), pseudouridine, N1 methyl pseudouridine, and 5 methoxyuridine. .
  • RNA oligomers (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and An RNA strand comprising an RNA sequence that hybridizes to mRNA.
  • RNA sequence having 90% or more identity is, for example, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, It is 99.7% or more, 99.8% or more, or 99.9% or more.
  • identity of the RNA sequence can be determined using an analysis program such as BLAST (see, for example, Altzshul SF et al., J. Mol. Biol. 215, 403 (1990)). When using BLAST, the default parameters of each program are used.
  • Hybridizes to mRNA means that an RNA oligomer hybridizes to mRNA under the hybridization conditions described below.
  • RNA oligomers are designed to hybridize to a sequence of 12 to 40 bases of mRNA.
  • the RNA oligomer sequence consists of a 12-30 base sequence complementary to the mRNA sequence. More preferably, the sequence of the RNA oligomer consists of a sequence of 15 to 23 bases complementary to the sequence of mRNA. More preferably, the sequence of the RNA oligomer is a 17-base sequence complementary to the sequence of mRNA.
  • the position in the mRNA to which the RNA oligomer is hybridized may be any position of 5'UTR, coding region, 3'UTR, and poly A sequence. It is desirable that the RNA oligomer is designed so that the secondary structure of the mRNA is predicted and the mRNA chain is hybridized to a portion having no secondary structure. That is, the RNA oligomer is preferably designed so as to hybridize to a portion having no secondary structure in the entire mRNA sequence. Examples of the software for predicting the secondary structure of mRNA include those described in the examples described later.
  • the RNA oligomer is designed to hybridize to the poly A sequence of mRNA.
  • Oligo RNA chemical modification may be performed without an overhang sequence, or may be performed through an overhang sequence.
  • the “overhang sequence” is a sequence that does not hybridize to mRNA.
  • the oligo RNA preferably comprises only the RNA sequence (a) or (b). In this case, the chemical modification is performed at the 5 'end or 3' end of the sequence of the RNA oligomer.
  • the transport carrier is a transport carrier that is not modified with a hydrophobic group (eg, a block copolymer that is not modified with a hydrophobic group)
  • the chemical modification of the oligo RNA is an overhang sequence. Do not go through.
  • the oligo RNA when the chemical modification is performed via an overhang sequence, preferably comprises the RNA sequence (a) or (b) and an overhang sequence.
  • chemical modification is carried out via an overhang sequence of 1 to 5 bases at the 5 ′ end or 3 ′ end of the RNA sequence of the RNA oligomer (a) or (b).
  • the chain length of the overhang sequence is preferably 1 to 4 bases, more preferably 1 to 3 bases, and further preferably 2 bases. If the chain length of the overhang sequence is 1 to 5 bases, a relatively high mRNA stabilizing effect can be expected.
  • the transport carrier is a transport carrier modified with a hydrophobic group (eg, a block copolymer modified with a hydrophobic group)
  • the chemical modification of the oligo RNA is 1-5 bases.
  • the RNA sequence of (a) or (b) is made at the 5 ′ end or 3 ′ end of the RNA oligomer.
  • RNA oligomer either the 5 ′ end or the 3 ′ end of the RNA sequence (a) or (b) may be chemically modified via an overhang sequence.
  • an RNA oligomer chemically modified through an overhang sequence may be referred to as a “chemically modified oligomer”.
  • a chemical modification is, for example, a modification that can stabilize a naked double-stranded RNA or mRNA transport carrier.
  • Examples of such chemical modification include modification with a hydrophobic group and modification with polyethylene glycol.
  • Examples of the modification with a hydrophobic group include cholesterol modification and tocopherol modification.
  • the modification with a hydrophobic group is a cholesterol modification.
  • the modification with a hydrophobic group can be carried out, for example, by the phosphoramidite method described in (SL BEAucage, et al., Tetrahedron Letters (1981) 22, p. 1859-1862) or a method analogous thereto. .
  • Modification with a hydrophobic group can be performed, for example, as follows. After synthesizing the RNA oligomer, an RNA oligomer having a hydrophobic group introduced at the 5 ′ end can be obtained by reacting the amidite hydrophobic group with the 5 ′ terminal OH group of the RNA oligomer.
  • transduced the hydrophobic group into 3 'terminal can be obtained by performing RNA synthesis by the phosphoramidite method from the hydrophobic group of OH group terminal.
  • chemical modification does not include the 5′-terminal triphosphate structure.
  • an RNA oligomer is synthesized using an initiator such as DMS (O) MT-AMINO-MODIFIER (GLENRESERCH) and deprotected to obtain a 5'-terminal aminated RNA oligomer.
  • a PEGylated RNA oligomer can be obtained by reacting the 5'-terminal aminated RNA oligo with, for example, PEG-N-hydroxysuccinimide.
  • the polyethylene glycol to be used include linear PEG having a weight average molecular weight of 1,000 to 80,000, and branched PEG having the same molecular weight such as 2-branch, 4-branch, and 8-branch. .
  • the number of non-chemically modified RNA oligomers or chemically modified RNA oligomers to be hybridized to mRNA is at least 1, preferably 1-50, more preferably 1-15, and still more preferably. 1 to 5 pieces. As the number of RNA oligomers is increased, the stability of mRNA is further improved. If the number of RNA oligomers is in the range of 1 to 50, the translation efficiency of mRNA can be maintained at a relatively high level.
  • each unmodified RNA oligomer or chemically modified RNA oligomer does not overlap on the mRNA.
  • Hybridization of RNA oligomers to mRNA can be performed by known methods and conditions. In hybridization, after heating and allowing to stand for a certain time, the temperature is gradually lowered. Heating is performed for the purpose of binding mRNA and oligomer more efficiently by releasing complementary bonds existing in and between mRNA and oligomer molecules. If proper hybridization is ensured, the temperature time can be appropriately adjusted. The slower the temperature drop, the more specific the hybridization. Further, the oligomer chain length does not greatly affect the setting of hybridization conditions. Conditions should be set as appropriate while evaluating the hybridization efficiency. For example, the methods and conditions described in the examples described later can be mentioned.
  • the first aspect of the present invention includes hybridizing at least one RNA oligomer to mRNA encoding a target gene to obtain double-stranded RNA, RNA oligomers (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and Provided is a method for stabilizing mRNA, comprising an RNA sequence that hybridizes to mRNA and that is not chemically modified or chemically modified.
  • the RNA oligomer not chemically modified or the mRNA hybridized with the chemically modified RNA oligomer may be encapsulated in a transport carrier.
  • the RNA oligomer not chemically modified or the mRNA hybridized with the chemically modified RNA oligomer may not be encapsulated in the transport carrier, that is, may be in the form of naked.
  • the RNA oligomer not chemically modified or the mRNA hybridized with the chemically modified RNA oligomer is encapsulated in a transport carrier.
  • the first aspect of the present invention includes encapsulating mRNA encoding a target gene and at least one RNA oligomer hybridized with the mRNA in a transport carrier, (A) an RNA sequence comprising a sequence of 12 to 40 bases complementary to the sequence of mRNA, or (b) 90% or more identity with a sequence of 12 to 40 bases complementary to the sequence of mRNA, and Also provided is a method for stabilizing a transport carrier that includes an RNA sequence that hybridizes to mRNA and that is unmodified or chemically modified.
  • mRNA, RNA oligomer, transport carrier, chemical modification, etc. used in the stabilization method are as described in the description of the transport carrier.
  • the first aspect of the present invention provides a pharmaceutical composition containing the double-stranded RNA or transport carrier.
  • the pharmaceutical composition is used to deliver mRNA or a transport carrier encapsulating mRNA into the body of a subject.
  • a “subject” is a human or non-human organism, such as avian and non-human mammals (eg, cows, monkeys, cats, mice, rats, guinea pigs, hamsters, pigs, dogs, rabbits, sheep, and horses). is there.
  • avian and non-human mammals eg, cows, monkeys, cats, mice, rats, guinea pigs, hamsters, pigs, dogs, rabbits, sheep, and horses.
  • the pharmaceutical composition is administered intravenously, intraarterially, orally, or intratissue (eg, intravesical, intrathoracic, intraperitoneal, intraocular, intracerebral) or transdermal administration to a subject.
  • intravenous administration, transdermal administration, and transmucosal administration are desirable.
  • These dosage forms are suitable for administration, for example, various injections, oral preparations, drops, inhalants, eye drops, ointments, lotions, and suppositories.
  • Each condition such as dosage, number of administrations, and administration period is appropriately determined by those skilled in the art after considering the type of mRNA, dosage form, subject state such as age and weight, administration route, nature and degree of disease. Can be set.
  • the pharmaceutical composition can be used for treatment of introducing mRNA encoding a desired gene into cells causing various diseases. Therefore, the 1st aspect of this invention can also provide the treatment method of various diseases including administering a pharmaceutical composition to the subject which needs treatment of various diseases.
  • the conditions such as the dose, the number of administrations and the administration period are the same as described above.
  • Various diseases to be treated include, for example, cancer, viral diseases, metabolic diseases, cardiovascular diseases, neurological diseases, renal urological diseases, hematological malignancies, diseases for which promotion or suppression of apoptosis is desired, collagen diseases, respiratory diseases And gastrointestinal diseases.
  • excipients for pharmaceutical compositions, excipients, fillers, extenders, binders, wetting agents, disintegrants, lubricants, surfactants, dispersants, buffers, preservatives, solubilizers commonly used in drug production
  • Preservatives, flavoring agents, soothing agents, stabilizers, tonicity agents and the like can be appropriately selected and used according to conventional methods.
  • an intravenous injection for example, it is provided in the state of a unit dose ampoule or a multi-dose container.
  • the dosage of mRNA is, for example, 1 for adults, taking into account the type of mRNA, dosage form, subject condition such as age and weight, route of administration, nature and extent of disease. Within the range of 0.1 mg to 5 g / human per day, preferably within the range of 1 mg to 2 g.
  • This dosage may vary depending on the type of target disease, dosage form, and target molecule. Therefore, in some cases, a lower dose may be sufficient, and conversely, a higher dose may be required. Moreover, it can be administered once to several times a day or at intervals of 1 day to several days.
  • the mRNA delivery kit according to the first aspect of the present invention is characterized in that it contains mRNA hybridized with the above-mentioned RNA oligomer not chemically modified or chemically modified RNA oligomer.
  • the RNA oligomer not chemically modified or the mRNA hybridized with the chemically modified RNA oligomer may be encapsulated in a transport carrier.
  • the RNA oligomer not chemically modified or the mRNA hybridized with the chemically modified RNA oligomer may not be encapsulated in the transport carrier, that is, may be in the form of naked.
  • the RNA oligomer not chemically modified or the mRNA hybridized with the chemically modified RNA oligomer is encapsulated in a transport carrier.
  • the former kit for mRNA delivery according to the first aspect of the present invention is characterized by comprising a transport carrier.
  • the kit can be preferably used for, for example, a method for treating various diseases using mRNA or a transport carrier that is hybridized with the RNA oligomer not chemically modified or the chemically modified RNA oligomer.
  • the state of preservation of the RNA oligomer not chemically modified or the mRNA or transport carrier hybridized with the chemically modified RNA oligomer is not limited, taking into account its stability (preservation) and ease of use.
  • a state such as solution or powder can be selected.
  • the kit may contain other components in addition to the mRNA or transport carrier hybridized with the unmodified RNA oligomer or chemically modified RNA oligomer.
  • other components include various buffers and instructions for use (use manual).
  • Second aspect of the present invention 2.1. Outline of Second Aspect of Present Invention Since mRNA itself has low immunogenicity, it hardly causes an inflammatory reaction. Therefore, conventional vaccines using single-stranded mRNA cannot avoid the combined use of adjuvants for effectively inducing an inflammatory reaction.
  • RNA molecules themselves exist in a living body and do not use foreign substances it is considered that relatively high safety is ensured when double-stranded RNA is used.
  • the second aspect of the present invention includes a double-stranded RNA comprising mRNA encoding an antigen and at least one RNA oligomer hybridized to at least a poly A sequence of the mRNA, wherein the at least one RNA oligomer is Provided are mRNA vaccines that are not chemically modified or chemically modified.
  • the mRNA vaccine of the second aspect of the present invention can achieve both efficient protein expression and immunity induction ability.
  • the ability of the mRNA vaccine of the second aspect of the present invention to actually improve the vaccine effect was evaluated by focusing attention on cellular immunity in terms of immunity induction ability in mice (FIG. 25 (A)).
  • ovalbumin (OVA) was used as a model antigen, and OVA-expressed mRNA was administered to the inguinal lymph nodes of mice. Subsequently, spleen cells one week later were collected, and the number of cells specifically reacting with OVA was evaluated by the ELISPOT method. Then, when administered to a lymph node, mRNA obtained by hybridizing a complementary RNA (poly U) to a poly A sequence significantly increases antigen-specific cellular immunity compared to unhybridized mRNA. It became clear that it induced (FIG. 25 (B)). Thus, it was demonstrated that the cellular immunity induction effect is improved by using the mRNA vaccine of the second aspect of the present invention.
  • mice were evaluated for humoral immunity using the mRNA vaccine of the second aspect of the present invention (FIG. 26 (A)), and a complementary strand RNA (poly U) was hybridized to the poly A sequence. It was clarified that the treated mRNA induces antigen-specific humoral immunity significantly stronger than the unhybridized mRNA (FIG. 26 (B)).
  • RNA double stranded RNA induces a strong inflammatory reaction when introduced into cells.
  • binding of a full-length complementary strand to mRNA inhibits protein expression from mRNA.
  • an inflammatory response can be induced while maintaining protein expression from mRNA by site-specific hybridization of complementary strands centering on the poly A sequence.
  • mRNA mRNA means messenger RNA and usually comprises a 5 ′ untranslated region (5′UTR), a coding region and a 3 ′ untranslated region (3′UTR).
  • the mRNA usually further comprises a cap structure (5 ′ Cap) at the 5 ′ end and a poly A sequence at the 3 ′ end.
  • the mRNA used for the mRNA vaccine may be any of the following. (1) mRNA containing 5 ′ Cap, 5 ′ UTR, coding region, 3 ′ UTR, and poly A in this order. (2) mRNA containing 5′Cap, 5′UTR, coding region, and poly A in this order. (3) mRNA containing 5′UTR, coding region, 3′UTR, and poly A in this order.
  • the mRNA used for the mRNA vaccine can be prepared by transcription of a template DNA encoding the target gene in an in vitro environment by a known method. For example, it can be produced according to the method described in Blood 108 (13) (2006) 4009-17. Specifically, a template DNA in which a poly A / T chain is incorporated downstream of a protein coding sequence is cleaved immediately downstream of the poly A / T chain and placed in a buffer solution containing a translation enzyme, a nucleoside, and a 5 ′ cap analog. In vitro transcription is performed, and then mRNA is purified. A more specific method for preparing mRNA is as described in Examples below.
  • the antigen encoded by the coding region of mRNA can be arbitrarily selected from known antigens suitable for inducing an immune response. More specifically, examples of the antigen include tumor antigens, virus-derived antigens, bacteria-derived antigens, fungal-derived antigens, protozoan-derived antigens, animal-derived antigens, plant-derived antigens, and autoimmune disease self-antigens.
  • the antigen encoded by the mRNA may be one antigen, or two or more (eg, 2, 3, 4, or 5 or more) identical or different antigens. In some aspects of the second aspect of the invention, the antigen encoded by the mRNA is a single antigen.
  • the length of the poly A sequence of mRNA is, for example, 10 to 500 bases, preferably 30 to 300 bases, and more preferably 60 to 250 bases.
  • the 5'UTR and 3'UTR sequences of the mRNA may have 100% sequence identity with the naturally occurring sequence, or may be partially or wholly in other 5'UTR and / or 3'UTR sequences. It may be replaced with a sequence.
  • Other 5 ′ UTR and / or 3 ′ UTR sequences include, for example, 5 ′ UTR and / or 3 ′ UTR sequences of mRNA encoding globin, hydrosteroid (17- ⁇ ) dehydrogenase 4, or albumin. .
  • the mRNA is not modified. In this case, since the mRNA itself is natural, it can be expected that the translation process is hardly impaired.
  • the mRNA is modified to further stabilize the mRNA.
  • the modification of mRNA include chemical modification of the base of mRNA, modification of the G / C content of the coding region of mRNA, modification of the Cap structure of mRNA, and the like.
  • the chemical modification of the base of mRNA is, for example, known to improve the enzyme resistance of mRNA.
  • Such chemically modified bases of mRNA itself include, for example, methylated bases (eg, 5-methylcytosine), sulfur modified bases (eg, 2-thiouridine), pseudouridine, N1 methyl pseudouridine, and 5-methoxyuridine. It is done.
  • the modification of the G / C content of the coding region of mRNA is to modify the content of G (guanine) / C (cytosine) so that more stable mRNA can be obtained.
  • Modification of the Cap structure of mRNA is also known to make the 2 ′ position of the first or second ribose on the 5 ′ side a methoxy group, thereby improving the expression efficiency.
  • Preparation and modification of mRNA can be performed by a known method or a method analogous thereto.
  • RNA oligomer In the second aspect of the present invention, at least one RNA oligomer is hybridized to at least the poly A sequence of mRNA. The RNA oligomer does not contain chemical modification.
  • sequence of mRNA to which one RNA oligomer hybridizes is, for example, one of the following sequences.
  • RNA oligomer hybridizes to the whole (100%) or a part of the poly A sequence, but the sequence immediately before that (ie, 3′UTR)
  • the RNA oligomer is designed so that the RNA oligomer does not hybridize to the coding region.
  • a part of the poly A sequence has a base length of more than 0% and less than 100% of the total length of the poly A sequence, for example, a base length of 10 bases or more (preferably a base length of 17 bases or more). Is an array.
  • the poly A sequence portion of the mRNA preferably has a complementary sequence of 17 bases or more to which the RNA oligomer hybridizes.
  • the sequence in which one RNA oligomer hybridizes is (2) a continuous sequence in the 3′UTR of the mRNA and the poly A sequence. It may be.
  • the RNA oligomer is designed so that one RNA oligomer hybridizes to the entire (100%) or part of the poly A sequence and a part of the 3′UTR sequence immediately before that.
  • one RNA oligomer is, for example, a base length of more than 0% and less than 100% of the total length of the poly A sequence, and a base length of, for example, 10 bases or more (for example, 10, 11, 12, 13, 14 , 15, 16 or 17 base length or more, preferably 17 base length or more) and a sequence having a base length of more than 0% and less than 100% of the total length of the immediately preceding 3′UTR sequence.
  • the poly A sequence portion and the 3 'UTR sequence portion of mRNA have a complementary sequence of 17 bases or more in total, to which the RNA oligomer hybridizes.
  • the shorter the 3′UTR sequence portion of mRNA to which the RNA oligomer hybridizes is, the shorter, for example, 1 to 30 bases in length, preferably 1 to 25 bases in length, more preferably 1 to 2 bases in length. It is.
  • the sequence to which one RNA oligomer hybridizes may be (3) a continuous sequence in the mRNA coding sequence and the poly A sequence.
  • the RNA oligomer is designed so that one RNA oligomer hybridizes to the whole (100%) or a part of the poly A sequence and a part of the coding sequence immediately before that.
  • one RNA oligomer is, for example, a base length of more than 0% and less than 100% of the total length of the poly A sequence, and a base length of, for example, 10 bases or more (for example, 10, 11, 12, 13, 14 , 15, 16 or 17 base length or more, preferably 17 base length or more) and a sequence having a base length of more than 0% and less than 100% of the total length of the immediately preceding coding sequence.
  • the poly A sequence portion and the coding sequence portion of mRNA preferably have a complementary sequence of 17 bases or more in total to which the RNA oligomer hybridizes.
  • the coding sequence portion of mRNA to which the RNA oligomer hybridizes is preferably as short as possible, for example, 1 to 30 bases in length, preferably 1 to 25 bases in length, more preferably 1 to 2 bases in length. .
  • RNA oligomer examples include the following. (A) an RNA oligomer having a sequence complementary to the continuous sequence of any one of (1) to (3) above, or (B) An RNA oligomer having an RNA sequence having 90% or more identity with a sequence complementary to any of the continuous sequences of (1) to (3) above and hybridizing to mRNA.
  • RNA sequence having 90% or more identity is, for example, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, It is 99.7% or more, 99.8% or more, or 99.9% or more. In general, the larger the numerical value of identity, the better.
  • the identity of the RNA sequence can be determined using an analysis program such as BLAST (see, for example, Altzshul SF et al., J. Mol. Biol. 215, 403 (1990)). When using BLAST, the default parameters of each program are used. “Hybridizes to mRNA” means that an RNA oligomer hybridizes to mRNA under the hybridization conditions described below.
  • the RNA oligomer may further contain other sequences, or may not contain other sequences.
  • the “other sequence” is, for example, a promoter sequence, a restriction enzyme sequence, or other sequences that are unavoidably left when designing an RNA oligomer, or a part thereof.
  • the base length of “other sequence” is, for example, 1 to 30 bases, preferably 1 to 25 bases, and more preferably 1 to 2 bases.
  • the RNA oligomer preferably comprises a sequence of at least 10 bases, more preferably comprises a sequence of at least 17 bases, further preferably comprises a sequence of at least 30 bases, and particularly preferably comprises a sequence of at least 60 bases.
  • the RNA oligomer preferably consists of a sequence of 10 to 500 bases, more preferably a sequence of 17 bases to 500 bases, and even more preferably a sequence of 30 to 300 bases. Particularly preferably, it consists of a sequence of 60 to 250 bases.
  • the base length of the RNA oligomer can be appropriately designed in consideration of the length of the poly A sequence of mRNA. Some embodiments of RNA oligomers are those that do not contain chemical modifications.
  • the chemical modification include modification with a hydrophobic group.
  • the modification with a hydrophobic group include cholesterol modification and tocopherol modification.
  • the chemical modification include polyethylene glycol modification.
  • the definition of “chemical modification” does not include the 5′-terminal triphosphate structure.
  • the RNA oligomer can be prepared by a known method or a method analogous thereto.
  • the RNA oligomer is prepared from the template DNA by in vitro transcription.
  • RNA oligomers can be prepared in substantially the same way as the above-mentioned mRNA preparation, but mRNA has a 5 ′ cap analog added during transcription, whereas RNA oligomer preparation. At this time, the cap analog is not added.
  • an RNA oligomer When an RNA oligomer is thus biologically prepared, it can have a triphosphate structure at the 5 'end. The method for removing triphosphoric acid is as described later.
  • Double stranded RNA is obtained by hybridizing at least one of the aforementioned RNA oligomers to the aforementioned mRNA.
  • Double-stranded RNA can be prepared by hybridization of mRNA and RNA oligomer. More specifically, the hybridization can be performed under the conditions described in Examples described later or conditions equivalent thereto.
  • the number of RNA oligomers to be hybridized to one mRNA is at least 1, preferably 1 to 5, more preferably 1 to 3, further preferably 1 to 2, especially Preferably, it is one.
  • Hybridization of RNA oligomers to mRNA can be performed by known methods and conditions. More specifically, in hybridization, the temperature is gradually lowered after heating and allowing to stand for a certain period of time. Heating is performed for the purpose of binding mRNA and oligomer more efficiently by releasing complementary bonds existing in and between mRNA and oligomer molecules. If proper hybridization is ensured, the temperature time can be appropriately adjusted. In particular, poly A and poly U are unlikely to be combined with other sequences in advance, and more gentle heating conditions can be set. The slower the temperature drop, the more specific the hybridization. Further, the oligomer chain length does not greatly affect the setting of hybridization conditions. Conditions should be set as appropriate while evaluating the hybridization efficiency. For example, the methods and conditions described in the examples described later can be mentioned.
  • the double stranded RNA has a triphosphate structure at the 5 ′ end of the RNA oligomer.
  • a triphosphate structure at the 5 ′ end of the RNA oligomer By having a triphosphate structure at the 5 ′ end of the RNA oligomer, a stronger inflammatory reaction can be induced.
  • the double stranded RNA does not have a triphosphate structure at the 5 ′ end of the RNA oligomer.
  • the method for removing triphosphorylation can be carried out by a known method or a method analogous thereto. As a method for removing triphosphorylation, for example, as in Examples described later, a method using an artificial phosphatase (New England Biolabs, cat. No. M0289S) can be mentioned.
  • the double stranded RNA is in naked form. That is, double-stranded RNA is not accompanied by a transport carrier. In some other embodiments, the double-stranded RNA is in a form encapsulated in a transport carrier.
  • the transport carrier is not particularly limited as long as it can enclose the double-stranded mRNA and deliver it to a suitable site in the body of the subject.
  • the transport carrier is a lipidic mRNA carrier or a cationic polymer complex, more preferably a polymeric micelle or a lipidic mRNA carrier.
  • the polymer micelle has a two-layer structure of an inner core formed of condensed nucleic acid and a cationic polymer and an outer shell formed of a hydrophilic polymer.
  • the cationic polymer is, for example, a polyamino acid derivative.
  • the hydrophilic polymer is, for example, polyethylene glycol (“PEG”).
  • the inner core physically or chemically encapsulates the mRNA.
  • the outer shell delivers mRNA encapsulated in the inner shell to a predetermined tissue due to its physicochemical properties.
  • Polymeric micelles can enter cells by endocytosis.
  • the polymer micelle can use, for example, a combined action of a polycation and a nucleic acid (polyion complex (“PIC”)) on a block polymer, or a hybrid micelle of the polymer and an inorganic molecule.
  • PIC polyion complex
  • PIC polymer micelle examples include PEG-PAsp (DET) -Chol, PEG-PAsp (DET), PIC micelle formed by polymolecular association of PEG-PLys and mRNA, PAsp (TET), PAsp ( Those using another polycation such as TEP) as a block copolymer (Uchida, S., et al., Biomaterials (2016) 82, p.221-228) and those using a triblock copolymer (Osawa) , S., et al., Biomacromolecules 17, p354-361 (2016)).
  • hybrid polymer micelles with inorganic particles examples include PEGylated calcium phosphate (CaP) particles (Pittela, et al., Biomaterials (2011) 32, p. 3106-3114), PEGylated silica particles (Miyata, K. et al. , Et al., Biomaterials (2010) 31, p4764-4770).
  • CaP PEGylated calcium phosphate
  • the lipidic mRNA carrier is formed using lipid or cationic lipid as a carrier, and the mRNA is in an encapsulated or bound form.
  • lipid or cationic lipid for example, N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA), 2,3-dioleyloxy-N- [2- (sperminecarboxamide) Ethyl] -N, N-dimethyl-1-propanaminium trifluoroacetic acid (DOSPA), 1,2-dioleoyloxy-3- (trimethylammonium) propane (DOTAP), N- [1- (2,3 -Dimyristyloxy) propyl] -N, N-dimethyl-N- (2-hydroxyethyl) ammonium bromide (DMRIE) or DC-cholesterol; lipids such as distearoyl phosphatidylcholine (DSPC) or dio
  • the cationic polymer complex is, for example, a mixture of linear or branched polyethyleneimine, polylysine, polyarginine, chitosan derivative, polymethacrylic acid derivative and mRNA.
  • These transport carriers can be prepared by a known method or a method analogous thereto.
  • RNA vaccines are not used with adjuvants. In some other embodiments, the RNA vaccine is used with an adjuvant. When used with an adjuvant, the RNA vaccine may be formulated with an adjuvant.
  • An adjuvant is any compound suitable for enhancing an immune response. Such adjuvants are known, and those skilled in the art can select an appropriate one from any adjuvant.
  • the mRNA vaccine can be used for prevention or treatment of the disease in a subject in need of prevention or treatment of the disease.
  • diseases to be prevented or treated include cancer, viral infections, bacterial infections, fungal infections, protozoal infections, and autoimmune diseases.
  • the disease can be prevented or treated.
  • a “subject” is a human or non-human organism, such as avian and non-human mammals (eg, cows, monkeys, cats, mice, rats, guinea pigs, hamsters, pigs, dogs, rabbits, sheep, and horses). is there.
  • avian and non-human mammals eg, cows, monkeys, cats, mice, rats, guinea pigs, hamsters, pigs, dogs, rabbits, sheep, and horses.
  • the MRNA vaccine can be formulated according to a conventional method.
  • the mRNA vaccine comprises a pharmaceutically acceptable additive.
  • Pharmaceutically acceptable additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, Sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin, mannitol, sorbitol, lactose And pharmaceutically acceptable surfactants.
  • the above additives are selected from the above alone or in appropriate combination depending on the dosage form of the mRNA vaccine.
  • a solvent for example, physiological saline, buffer solution, glucose solution, etc.
  • Tween 80, Tween 20, gelatin, human serum albumin, etc. are added thereto.
  • Tween 80, Tween 20, gelatin, human serum albumin, etc. are added thereto.
  • it may be freeze-dried to obtain a dosage form that dissolves before use.
  • Freeze-drying excipients include, for example, sugars such as mannitol, glucose, lactose, sucrose, mannitol, sorbitol, starch such as corn, wheat, rice, potato or other plant-derived starch, methylcellulose, hydroxypropylmethylcellulose or carboxy Examples thereof include cellulose such as sodium methylcellulose, rubber such as gum arabic and gum tragacanth, gelatin, collagen and the like.
  • the dosage of the mRNA vaccine can be appropriately selected depending on the age, sex, symptom, administration route, administration frequency, dosage form, etc. of the subject.
  • An effective dosage of an mRNA vaccine is the amount of vaccine that reduces the symptoms or condition of the disease.
  • the therapeutic efficacy and toxicity of such mRNA vaccines is based on standard pharmaceutical procedures in cell cultures or laboratory animals such as ED50 (therapeutically effective dose in 50% of the population) and LD50 (in 50% of the population). The dose which is lethal to).
  • the dosage of mRNA vaccine ranges from 10 ng to 1 g, 100 ng to 100 mg, 1 ⁇ g to 10 ⁇ g, or 30 ⁇ g to 300 ⁇ g of mRNA per day for an adult.
  • the route of administration of the mRNA vaccine can be appropriately selected and includes, for example, transdermal, intranasal, transbronchial, intramuscular, intraperitoneal, intravenous, subcutaneous, rectal, and intravaginal routes.
  • the route is not limited.
  • the number of administrations of mRNA vaccine can be one time or multiple times as long as side effects are within the clinically acceptable range.
  • antibody titer or cellular immune activity upon mRNA vaccine administration is measured.
  • the antibody titer can be evaluated by collecting blood from a living body and quantifying IgG in serum.
  • Cellular immune activity can be evaluated by isolating and culturing lymphocytes from a living body and measuring 3 H-thymidine incorporation.
  • Kit The kit according to the second aspect of the present invention is characterized by comprising the mRNA vaccine.
  • the kit can be preferably used, for example, in the method for treating various diseases using the RNA vaccine.
  • the storage state of the mRNA vaccine is not limited, and a solution state or a powder state can be selected in consideration of its stability (storage property) and ease of use.
  • the kit may contain other components other than the mRNA vaccine. Examples of other components include various buffers and instructions for use (use manual).
  • the kit may or may not include an adjuvant. Preferably, the kit does not include an adjuvant.
  • the specific mRNA vaccine of the second aspect of the present invention has a slightly reduced protein expression efficiency (“mRNA: pU” in FIG. 40), the translation activity is sufficiently maintained when the above double-stranded mRNA is used. ("1", “2", and “3” in FIG. 40). Furthermore, the intensity of the immune response could be adjusted by adjusting the number of RNA oligomers to hybridize (“1”, “2” and “3” in FIGS. 38 and 39). Excessive inflammation can cause side effects and may be undesirable for obtaining a vaccine effect. The fact that the intensity of the current immune response can be adjusted by changing the number of RNA oligomers is extremely important in obtaining an inflammatory reaction having an appropriate intensity for obtaining a vaccine effect.
  • the mRNA vaccine of the third aspect of the present invention is easier to construct a blunt 5 ′ terminal triphosphorylated structure necessary for RIG-I recognition than the mRNA vaccine of the second aspect.
  • the complementary RNA of the target RNA is transcribed as a by-product when preparing the second RNA strand by in vitro transcription, but the specific mRNA of the second aspect Compared to vaccines, the production of by-products can be easily avoided.
  • a third aspect of the present invention comprises mRNA encoding an antigen, at least one first RNA oligomer hybridized to the mRNA, and a second RNA oligomer hybridized to the first RNA oligomer.
  • a double-stranded RNA consisting of The first RNA oligomer is (A) a first RNA sequence consisting of a 12-40 base sequence complementary to the mRNA sequence and a second RNA sequence consisting of a 10-200 base sequence complementary to the second RNA oligomer sequence; An RNA sequence comprising in this order from the 5 ′ end, (B) 90% identity with a sequence of 12 to 40 bases complementary to the mRNA sequence and complementary to the sequence of the first RNA sequence and the second RNA oligomer that hybridize to the mRNA An RNA sequence comprising a second RNA sequence having at least 90% identity with a 10-200 base sequence and hybridizing to the second RNA oligomer in this order from the 5 ′ end, (C) a second RNA sequence consisting of a sequence of 10 to 200 bases complementary to the sequence of the second RNA oligomer, and a first RNA sequence consisting of a sequence of 12 to 40 bases complementary to the sequence of mRNA An RNA sequence comprising in this order from
  • mRNA mRNA means messenger RNA and usually comprises a 5 ′ untranslated region (5′UTR), a coding region and a 3 ′ untranslated region (3′UTR).
  • the mRNA usually further comprises a cap structure (5 ′ Cap) at the 5 ′ end and a poly A sequence at the 3 ′ end.
  • the mRNA used for the mRNA vaccine may be any of the following.
  • mRNA containing 5 ′ Cap, 5 ′ UTR, coding region, 3 ′ UTR, and poly A in this order (2) mRNA containing 5′Cap, 5′UTR, coding region, and poly A in this order. (3) mRNA containing 5′UTR, coding region, 3′UTR, and poly A in this order. (4) mRNA containing 5′UTR, coding region, and poly A in this order.
  • RNA ⁇ / RTI> used for the mRNA vaccine can be prepared by transcription of a template DNA encoding a target gene in an in vitro environment by a known method. For example, it can be produced according to the method described in Blood 108 (13) (2006) 4009-17. Specifically, a template DNA in which a poly A / T chain is incorporated downstream of a protein coding sequence is cleaved immediately downstream of the poly A / T chain and placed in a buffer solution containing a translation enzyme, a nucleoside, and a 5 ′ cap analog. In vitro transcription is performed, and then mRNA is purified. A more specific method for preparing mRNA is as described in Examples below.
  • the antigen encoded by the coding region of mRNA can be arbitrarily selected from known antigens suitable for inducing an immune response. More specifically, examples of the antigen include tumor antigens, virus-derived antigens, bacteria-derived antigens, fungal-derived antigens, protozoan-derived antigens, animal-derived antigens, plant-derived antigens, and autoimmune disease self-antigens.
  • the antigen encoded by the mRNA may be one antigen, or two or more (eg, 2, 3, 4, or 5 or more) identical or different antigens. In some aspects of the third aspect of the invention, the antigen encoded by the mRNA is a single antigen.
  • the length of the poly A sequence of mRNA is, for example, 10 to 500 bases, preferably 30 to 300 bases, and more preferably 60 to 250 bases.
  • the 5'UTR and 3'UTR sequences of the mRNA may have 100% sequence identity with the naturally occurring sequence, or may be partially or wholly in other 5'UTR and / or 3'UTR sequences. It may be replaced with a sequence.
  • Other 5 ′ UTR and / or 3 ′ UTR sequences include, for example, 5 ′ UTR and / or 3 ′ UTR sequences of mRNA encoding globin, hydrosteroid (17- ⁇ ) dehydrogenase 4, or albumin. .
  • the mRNA is not modified. In this case, since the mRNA itself is natural, it can be expected that the translation process is hardly impaired.
  • the mRNA is modified to further stabilize the mRNA.
  • the modification of mRNA include chemical modification of the base of mRNA, modification of the G / C content of the coding region of mRNA, modification of the Cap structure of mRNA, and the like.
  • the chemical modification of the base of mRNA is, for example, known to improve the enzyme resistance of mRNA.
  • Such chemically modified bases of mRNA itself include, for example, methylated bases (eg, 5-methylcytosine), sulfur modified bases (eg, 2-thiouridine), pseudouridine, N1 methyl pseudouridine, and 5-methoxyuridine. It is done.
  • the modification of the G / C content of the coding region of mRNA is to modify the content of G (guanine) / C (cytosine) so that more stable mRNA can be obtained.
  • the modification of the cap structure of mRNA is that the 2nd position of the first or second ribose on the 5 'side is a methoxy group, thereby improving the expression efficiency.
  • MRNA can be prepared and modified by a known method or a method analogous thereto.
  • RNA oligomer In the third aspect of the invention, at least one first RNA oligomer hybridizes to mRNA. Furthermore, the second RNA oligomer is hybridized to the first RNA oligomer.
  • the first RNA oligomer is (A) a first RNA sequence consisting of a 12-40 base sequence complementary to the mRNA sequence and a second RNA sequence consisting of a 10-200 base sequence complementary to the second RNA oligomer sequence; An RNA sequence comprising in this order from the 5 ′ end, (B) 90% identity with a sequence of 12 to 40 bases complementary to the mRNA sequence and complementary to the sequence of the first RNA sequence and the second RNA oligomer that hybridize to the mRNA An RNA sequence comprising a second RNA sequence having at least 90% identity with a 10-200 base sequence and hybridizing to the second RNA oligomer in this order from the 5 ′ end, (C) a second RNA sequence consisting of a sequence of 10 to 200 bases complementary to the sequence of the second RNA oligomer, and a first RNA sequence consisting of a sequence of 12 to 40 bases complementary to the sequence of mRNA An RNA sequence comprising in this order from the 5 ′ end, or (d)
  • RNA sequence having 90% or more identity is, for example, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, It is 99.7% or more, 99.8% or more, or 99.9% or more.
  • identity of the RNA sequence can be determined using an analysis program such as BLAST (see, for example, Altzshul SF et al., J. Mol. Biol. 215, 403 (1990)). When using BLAST, the default parameters of each program are used.
  • Hybridizes to mRNA means that an RNA oligomer hybridizes to mRNA under the hybridization conditions described below. “Hybridizes to the first RNA” means that the second RNA oligomer hybridizes to the first RNA under the hybridization conditions described later.
  • the first RNA sequence of the first RNA oligomer is designed to hybridize to a sequence of 12 to 40 bases of mRNA.
  • the first RNA sequence of the first RNA oligomer consists of a 12-30 base sequence complementary to the mRNA sequence. More preferably, the first RNA sequence of the first RNA oligomer consists of a sequence of 15 to 23 bases complementary to the sequence of mRNA. More preferably, the first RNA sequence of the first RNA oligomer sequence is a 17-base sequence complementary to the mRNA sequence.
  • the position in the mRNA to which the RNA oligomer is hybridized may be any position of 5'UTR, coding region, 3'UTR, and poly A sequence. It is desirable that the RNA oligomer is designed so that the secondary structure of the mRNA is predicted and the mRNA chain is hybridized to a portion having no secondary structure. That is, the RNA oligomer is preferably designed so as to hybridize to a portion having no secondary structure in the entire mRNA sequence. Examples of the software for predicting the secondary structure of mRNA include those described in the examples described later. In some aspects, the RNA oligomer is designed to hybridize to at least one sequence of the 5'UTR, coding region and 3'UTR of the mRNA.
  • the second RNA sequence of the first RNA oligomer is hybridized with a sequence of 10 to 200 bases of the second RNA oligomer in addition to the first RNA sequence having the respective base lengths. Designed. In some embodiments, the second RNA sequence of the first RNA oligomer is 15-150 complementary to the sequence of the second RNA oligomer in addition to the first RNA sequence being each base length. Consists of a base sequence. More preferably, the second RNA sequence of the first RNA oligomer has 20 to 100 bases complementary to the sequence of the second RNA oligomer in addition to the first RNA sequence having the base length. It consists of an array. More preferably, the second RNA sequence of the sequence of the first RNA oligomer is 20 to 80 complementary to the sequence of the second RNA oligomer in addition to the first RNA sequence having the respective base lengths. It consists of a base sequence.
  • the second RNA sequence of the first RNA oligomer is designed as follows. That is, it is designed to satisfy at least one of the following (i) to (iv), more preferably to satisfy two, three, or four. In some preferred embodiments, the second RNA sequence of the first RNA oligomer satisfies at least the following (i) and (ii), more preferably the following (iii) and (iv): Design to satisfy at least one.
  • RNA oligomer When preparing a second RNA oligomer containing 5′-terminal triphosphorylation by transcription of template DNA in an in vitro environment, a complementary strand RNA (byproduct) to the target RNA oligomer should not be formed.
  • the end of the double-stranded RNA on the side where the second RNA oligomer is hybridized to the first RNA oligomer has a 5 ′ end triphosphorylated structure, preferably a smooth 5 ′ end triphosphorylated structure.
  • the second RNA sequence and the second RNA oligomer do not hybridize to the sequence on the mRNA, and (iv) the first and second RNA oligomers do not form secondary structures.
  • RNA oligomer containing 5′-terminal triphosphorylation by transcription of template DNA in an in vitro environment complementary strand RNA (by-product) to the target RNA oligomer is not formed.
  • the following design is performed. That is, a second RNA oligomer is prepared by removing a base necessary for transcription of complementary RNA. Therefore, the template DNA is designed so that the target second RNA oligomer is transcribed even if the base is removed.
  • the sequence GUGUGUGUGU (SEQ ID NO: 67) is transcribed in vitro
  • the sequence ACACACACAC (SEQ ID NO: 68) can be generated as a by-product, but the generation of this by-product is avoided by in vitro transcription except A.
  • the second RNA sequence of the first RNA oligomer is designed so that such a second RNA oligomer can be prepared.
  • the end of the double-stranded RNA on the side where the second RNA oligomer is hybridized to the first RNA oligomer has a 5′-end triphosphorylated structure, preferably a smooth 5′-end triphosphorylated structure.
  • design as follows. That is, when the first RNA oligomer is the RNA sequence (a) or the RNA sequence (b), the second RNA oligomer having a triphosphorylated structure at the 5 ′ end is transcribed in vitro. 2 oligomers are prepared.
  • the first oligomer is prepared so as to have a blunt end when the 5 ′ end of the second oligomer and the 3 ′ end of the first oligomer are hybridized. Then, a second RNA sequence of the first RNA oligomer is designed so that such first and second RNA oligomers can be prepared.
  • the first RNA oligomer is the RNA sequence (c) or the RNA sequence (d)
  • the first RNA oligomer is prepared by in vitro transcription of the first RNA oligomer.
  • the second oligomer is prepared so as to have a blunt end when the 5 ′ end of the first RNA oligomer and the 3 ′ end of the second RNA oligomer are hybridized. Then, a second RNA sequence of the first RNA oligomer is designed so that such first and second RNA oligomers can be prepared.
  • the secondary structure after the design is predicted as the secondary structure of a plurality of RNA strands. It verifies with software (NUPACK, http://www.nupack.org) etc. which can be performed.
  • the secondary structure after the design is software (NUPACK, (http://www.nupack.org) etc.
  • a linker sequence may or may not be included between the first RNA sequence and the second RNA sequence of the first RNA oligomer.
  • a linker sequence is included.
  • the base length of the linker sequence is preferably 1 to 100 bases, more preferably 2 to 30 bases in addition to the base lengths of the first RNA sequence and the second RNA sequence, Preferably it is 2 to 20 bases.
  • the linker sequence is designed so as not to hybridize with other sites of mRNA or RNA oligomer, or to be difficult to hybridize.
  • a linker using adenine (A) or uracil (U) is designed so that the linker sequence is difficult to hybridize to mRNA.
  • the linker sequence is an oligoadenine sequence having the base length.
  • the mRNA corresponding to the position of the linker sequence is uracil (U)
  • it will be hybridized to the mRNA if the base at that position is adenine (A).
  • the base at that position is preferably changed to uracil (U).
  • the first RNA oligomer may further include other sequences, or may not include other sequences. In some embodiments, other sequences are included.
  • the “other sequence” is, for example, a promoter sequence, a restriction enzyme sequence, a sequence remaining unavoidable when designing an RNA oligomer, or a part thereof.
  • the base length of “other sequence” is, for example, 1 to 30 bases, preferably 1 to 25 bases, and more preferably 1 to 2 bases.
  • the second RNA oligomer includes a sequence of, for example, 10 to 200 bases that hybridizes to the second RNA sequence of the first RNA oligomer, preferably includes a sequence of 15 to 150 bases, and more preferably includes 20 to 100 bases. And more preferably a 24 base sequence.
  • the method for designing the second RNA oligomer is as described for the second RNA sequence of the first RNA oligomer.
  • the second RNA oligomer may further contain other sequences, or may not contain other sequences.
  • the “other sequence” is, for example, a promoter sequence, a restriction enzyme sequence, a sequence remaining unavoidable when designing an RNA oligomer, or a part thereof.
  • the base length of “other sequence” is, for example, 1 to 30 bases, preferably 1 to 25 bases, and more preferably 1 to 2 bases.
  • the first and second RNA oligomers are those that do not contain chemical modifications. In some other embodiments, the first and second RNA oligomers comprise chemical modifications. Examples of the chemical modification include modification with a hydrophobic group. Examples of the modification with a hydrophobic group include cholesterol modification and tocopherol modification. Examples of the chemical modification include polyethylene glycol modification. The definition of “chemical modification” does not include the 5′-terminal triphosphate structure.
  • the first and second RNA oligomers can be prepared by a known method or a method analogous thereto. Specifically, the first and second RNA oligomers are produced, for example, from template DNA by in vitro transcription. In principle, the preparation of the first and second RNA oligomers can be carried out in substantially the same manner as the preparation of mRNA described above, whereas mRNA has a 5 ′ cap analog added during transcription. The first and second RNA oligomers are prepared without adding a cap analog. When the first and second RNA oligomers are thus biologically prepared, they can have a triphosphate structure at the 5 'end. The method for removing triphosphoric acid is as described later. The RNA oligomer having no triphosphate structure at the 5 'end can be chemically synthesized.
  • Double stranded RNA is obtained by hybridizing at least one of the aforementioned first RNA oligomers to the aforementioned mRNA and hybridizing the second RNA oligomer to the first RNA oligomer. Moreover, what consists of a 1st RNA oligomer and the 2nd RNA oligomer hybridized to the 1st RNA oligomer may be called "double stranded RNA oligomer.”
  • Double-stranded RNA can be prepared by hybridization of mRNA and first RNA oligomer, and hybridization of first RNA oligomer and second RNA oligomer. More specifically, the hybridization can be performed under the conditions described in Examples described later or conditions equivalent thereto.
  • the number of the first RNA oligomers to be hybridized to one mRNA is at least 1, preferably 1 to 50, more preferably 1 to 15, and further preferably 1 to 5. is there. If the number of first RNA oligomers is in the range of 1-50, the translation efficiency of mRNA can be maintained at a relatively high level. Further, when the number of double-stranded RNA oligomers composed of the first RNA oligomer and the second RNA oligomer to be hybridized with one mRNA increases, the immunostimulatory action is improved. Therefore, the immune reaction can be controlled by adjusting the number of double-stranded RNA oligomers composed of the first RNA oligomer and the second RNA oligomer hybridized to one mRNA. Thus, here, a method for regulating an immune response is provided, which comprises regulating the number of double-stranded RNA oligomers that are hybridized to one mRNA.
  • the number of second RNA oligomers to be hybridized to one first RNA oligomer is one.
  • Hybridization of RNA oligomers to mRNA can be performed by known methods and conditions. More specifically, in hybridization, the temperature is gradually lowered after heating and allowing to stand for a certain period of time. Heating is performed for the purpose of binding mRNA and oligomer more efficiently by releasing complementary bonds existing in and between mRNA and oligomer molecules. If proper hybridization is ensured, the temperature time can be appropriately adjusted. In particular, poly A and poly U are unlikely to be combined with other sequences in advance, and more gentle heating conditions can be set. The slower the temperature drop, the more specific the hybridization. Further, the oligomer chain length does not greatly affect the setting of hybridization conditions. Conditions should be set as appropriate while evaluating the hybridization efficiency. For example, the methods and conditions described in the examples described later can be mentioned.
  • the double stranded RNA has a triphosphate structure at the 5 'end of the RNA oligomer.
  • a triphosphate structure at the 5 'end of the RNA oligomer By having a triphosphate structure at the 5 'end of the RNA oligomer, a stronger inflammatory reaction can be induced.
  • the double-stranded RNA does not have a triphosphate structure at the 5 'end of the RNA oligomer.
  • the method for removing triphosphorylation can be carried out by a known method or a method analogous thereto.
  • a method for removing triphosphorylation for example, a method using an artificial phosphatase (New England Biolabs, cat. No. M0289S) as in Examples described later can be mentioned.
  • the double-stranded RNA has a blunt end at the end where the second RNA oligomer is hybridized to the first RNA oligomer. It is known that immunity induction via RIG-I is improved when a triphosphorylated structure is present at the blunt end 5 '.
  • RNA containing 5'-terminal triphosphorylation is transcribed by in vitro transcription, it is designed so that complementary strand RNA to the target RNA is not formed.
  • RNA is prepared by removing a base necessary for transcription of complementary strand RNA. Therefore, even if the base is removed, it is designed so that the target RNA is transcribed.
  • sequence GUGUGUGUGU (SEQ ID NO: 67) is transcribed in vitro
  • sequence ACACACACAC (SEQ ID NO: 68) can be generated as a by-product, but the generation of this by-product is avoided by in vitro transcription except A.
  • the double stranded RNA is in naked form. That is, double-stranded RNA is not accompanied by a transport carrier. In some other embodiments, the double-stranded RNA is in a form encapsulated in a transport carrier.
  • the transport carrier is not particularly limited as long as it can enclose the double-stranded mRNA and deliver it to a suitable site in the body of the subject.
  • the transport carrier is a lipidic mRNA carrier or a cationic polymer complex, more preferably a polymeric micelle or a lipidic mRNA carrier.
  • the polymer micelle has a two-layer structure of an inner core formed of condensed nucleic acid and a cationic polymer and an outer shell formed of a hydrophilic polymer.
  • the cationic polymer is, for example, a polyamino acid derivative.
  • the hydrophilic polymer is, for example, polyethylene glycol (“PEG”).
  • the inner core physically or chemically encapsulates the mRNA.
  • the outer shell delivers mRNA encapsulated in the inner shell to a predetermined tissue due to its physicochemical properties.
  • Polymeric micelles can enter cells by endocytosis.
  • the polymer micelle can use, for example, a combined action of a polycation and a nucleic acid (polyion complex (“PIC”)) on a block polymer, or a hybrid micelle of the polymer and an inorganic molecule.
  • PIC polymer micelle examples include PEG-PAsp (DET) -Chol, PEG-PAsp (DET), PIC micelle formed by polymolecular association of PEG-PLys and mRNA, PAsp (TET), PAsp ( Those using another polycation such as TEP) as a block copolymer (Uchida, S., et al., Biomaterials (2016) 82, p.
  • hybrid polymer micelles with inorganic particles include PEGylated calcium phosphate (CaP) particles (Pittela, et al., Biomaterials (2011) 32, p. 3106-3114), PEGylated silica particles (Miyata, K. et al. , Et al., Biomaterials (2010) 31, p4764-4770).
  • CaP PEGylated calcium phosphate
  • the lipidic mRNA carrier is formed using lipid or cationic lipid as a carrier, and the mRNA is in an encapsulated or bound form.
  • lipid or cationic lipid for example, N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA), 2,3-dioleyloxy-N- [2- (sperminecarboxamide) Ethyl] -N, N-dimethyl-1-propanaminium trifluoroacetic acid (DOSPA), 1,2-dioleoyloxy-3- (trimethylammonium) propane (DOTAP), N- [1- (2,3 -Dimyristyloxy) propyl] -N, N-dimethyl-N- (2-hydroxyethyl) ammonium bromide (DMRIE) or DC-cholesterol; lipids such as distearoyl phosphatidylcholine (DSPC) or dio
  • the cationic polymer complex is, for example, a mixture of linear or branched polyethyleneimine, polylysine, polyarginine, chitosan derivative, polymethacrylic acid derivative and mRNA.
  • These transport carriers can be prepared by a known method or a method analogous thereto.
  • RNA vaccines are not used with adjuvants. In some other embodiments, the RNA vaccine is used with an adjuvant. When used with an adjuvant, the RNA vaccine may be formulated with an adjuvant.
  • An adjuvant is any compound suitable for enhancing an immune response. Such adjuvants are known, and those skilled in the art can select an appropriate one from any adjuvant.
  • the mRNA vaccine can be used for prevention or treatment of the disease in a subject in need of prevention or treatment of the disease.
  • Diseases to be prevented or treated can include, for example, cancer, viral infections, bacterial infections, fungal infections, protozoal infections, and autoimmune diseases.
  • the disease can be prevented or treated.
  • a “subject” is a human or non-human organism, such as avian and non-human mammals (eg, cows, monkeys, cats, mice, rats, guinea pigs, hamsters, pigs, dogs, rabbits, sheep, and horses). is there.
  • avian and non-human mammals eg, cows, monkeys, cats, mice, rats, guinea pigs, hamsters, pigs, dogs, rabbits, sheep, and horses.
  • the MRNA vaccine can be formulated according to a conventional method.
  • the mRNA vaccine comprises a pharmaceutically acceptable additive.
  • Pharmaceutically acceptable additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, Sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin, mannitol, sorbitol, lactose And pharmaceutically acceptable surfactants.
  • the above additives are selected from the above alone or in appropriate combination depending on the dosage form of the mRNA vaccine.
  • a solvent for example, physiological saline, buffer solution, glucose solution, etc.
  • Tween 80, Tween 20, gelatin, human serum albumin, etc. are added thereto.
  • Tween 80, Tween 20, gelatin, human serum albumin, etc. are added thereto.
  • it may be freeze-dried to obtain a dosage form that dissolves before use.
  • Freeze-drying excipients include, for example, sugars such as mannitol, glucose, lactose, sucrose, mannitol, sorbitol, starch such as corn, wheat, rice, potato or other plant-derived starch, methylcellulose, hydroxypropylmethylcellulose or carboxy Examples thereof include cellulose such as sodium methylcellulose, rubber such as gum arabic and gum tragacanth, gelatin, collagen and the like.
  • the dosage of the mRNA vaccine can be appropriately selected depending on the age, sex, symptom, administration route, administration frequency, dosage form, etc. of the subject.
  • An effective dosage of an mRNA vaccine is the amount of vaccine that reduces the symptoms or condition of the disease.
  • the therapeutic efficacy and toxicity of such mRNA vaccines is based on standard pharmaceutical procedures in cell cultures or laboratory animals such as ED50 (therapeutically effective dose in 50% of the population) and LD50 (in 50% of the population). The dose which is lethal to).
  • the dosage of mRNA vaccine ranges from 10 ng to 1 g, 100 ng to 100 mg, 1 ⁇ g to 10 ⁇ g, or 30 ⁇ g to 300 ⁇ g of mRNA per day for an adult.
  • the route of administration of the mRNA vaccine can be appropriately selected and includes, for example, transdermal, intranasal, transbronchial, intramuscular, intraperitoneal, intravenous, subcutaneous, rectal, and intravaginal routes.
  • the route is not limited.
  • the number of administrations of mRNA vaccine can be one time or multiple times as long as side effects are within the clinically acceptable range.
  • antibody titer or cellular immune activity upon mRNA vaccine administration is measured.
  • the antibody titer can be evaluated by collecting blood from a living body and quantifying IgG in serum.
  • Cellular immune activity can be evaluated by isolating and culturing lymphocytes from a living body and measuring 3 H-thymidine incorporation.
  • Kit The kit according to the third aspect of the present invention is characterized by comprising the mRNA vaccine.
  • the kit can be preferably used, for example, in the method for treating various diseases using the RNA vaccine.
  • the storage state of the mRNA vaccine is not limited, and a solution state or a powder state can be selected in consideration of its stability (storage property) and ease of use.
  • the kit may contain other components other than the mRNA vaccine. Examples of other components include various buffers and instructions for use (use manual).
  • the kit may or may not include an adjuvant. Preferably, the kit does not include an adjuvant.
  • Example 1-1 Synthesis of various block copolymers 1.1. Synthesis of PEG-PAsp (DET) -Chol PEG-PAsp (DET) -Chol was synthesized according to a report (Oba, M., et al., Biomaterials (2011) 32, p. 652-663) (Scheme 1). The synthesis scheme is as follows.
  • NCA- ⁇ -benzyl-L-aspartate-N-carboxylic acid anhydride
  • M w of PEG: 12 kDa ⁇ -methoxy- ⁇ -amino-polyethylene glycol
  • PEG-PBLA PEG-poly ( ⁇ -benzyl L-aspartate)
  • a cholesterol group was introduced into the ⁇ -terminal of the synthesized PEG-PBLA.
  • Cholesterol chloroform (328 mg) dissolved in 11 v / v% triethylamine (TEA) / DCM mixed solution (200 ⁇ L) was slowly added to PEG-PBLA (200 mg) dissolved in DCM (4 mL) and stirred at room temperature for 24 hours. did.
  • the reaction solution was reprecipitated in diethyl ether, and PEG-PBLA-Cholesterol (Chol) was recovered.
  • PEG-PAsp (DET) -Chol was synthesized by aminolysis reaction of the collected PEG-PBLA-Chol.
  • PEG-PBLA-Chol 100 mg was dissolved in benzene, freeze-dried, and dried PEG-PBLA-Chol and Dry diethylenetriamine (DET) (50 equivalents to PBLA) in 0.5 M thiourea N-methyl- Dissolved in 2-pyrrolidone (NMP). These solutions were cooled to 10 ° C., and the PEG-PBLA-Chol solution was slowly added dropwise to the DET solution and stirred for 1 hour. After the reaction, the reaction solution was neutralized with 5N HCl aqueous solution while keeping the solution temperature at 10 ° C.
  • Example 1-2 Preparation of mRNA mRNA is prepared from template DNA by in vitro transcription, and the template DNA was prepared as follows. First, T7-Gluc plasmid inserts the Gluc coding sequence (FIG. 15 and SEQ ID NO: 32) from pCMV-Gluc control plasmid (New England BioLabs, Ipswich, MA, USA) into the HindIII of the pSP73 vector (Promega), Xba1 site. It was produced by. Thereafter, T7-Gluc poly A120 plasmid was prepared by inserting A120- (BsmBI cleavage site) into the EcoR1-Bgl2 site of T7-Gluc plasmid. Then, after cutting with BsmBI, end blunting was performed with T4 DNA Polymerase (Takara Bio), and used for the following in vitro transcription.
  • T7-Gluc plasmid inserts the Gluc coding sequence (FIG. 15 and SEQ ID NO: 32) from
  • the mRNA was subjected to the above restriction enzyme treatment encoding Gaussia luciferase (Gluc) using mMESSAGE mMACHINE (trade name) T7 (Thermo Fisher Scientific), and the smoothed template DNA (T7-Gluc poly A120 plasmid) was stored in the mRNA. It was prepared by transferring in a vitro environment. The transcribed mRNA was purified and recovered using RNeasy Mini Kit (QIAGEN). The recovered mRNA concentration was measured by NanoDrop (Thermo Fisher Scientific). In addition, it was confirmed that the target mRNA was prepared by electrophoresis using an Agilent 2100 bioanalyzer (Agilent technologies).
  • Agilent 2100 bioanalyzer Agilent 2100 bioanalyzer
  • NanoDrop confirmed the production of high-purity mRNA having an absorbance ratio of 260 to 280 nm of 2.0 to 2.2 at a high concentration of 500 to 1,000 ng / ⁇ L.
  • bioanalyzer analysis confirmed the production of mRNA of the intended size.
  • the sequence of the prepared mRNA is shown in FIG. In the sequence of FIG. 14, the underlined portion is an open reading frame (ORF), the upstream of the ORF is 5′UTR (54 bases), the downstream of the ORF is 3′UTR (52 bases), and further downstream 120A is a poly A array.
  • ORF open reading frame
  • the upstream of the ORF is 5′UTR (54 bases)
  • the downstream of the ORF is 3′UTR (52 bases)
  • further downstream 120A is a poly A array.
  • the number of Poly A is theoretically incorporated into the template DNA at 120 bp, and the mRNA is 119 bases. However, the number can be increased or decreased at the stage of DNA amplification or mRNA preparation.
  • RNA Oligomer Hybridization RNA oligomers were designed and prepared as follows.
  • RNA secondary structure prediction software http://rtips.dna.bio.keio.ac.jp/ipknot/) predicts the secondary structure of Gluc mRNA, and the RNA strand has no secondary structure RNA oligomers were designed.
  • the RNA oligomer was requested and synthesized at Hokkaido System Science, including cholesterol modification at the 5 ′ end or 3 ′ end.
  • sequence of the following RNA oligomer shows an overhang sequence.
  • Mismatched Chol-RNA oligo is a 19-mer Chol-modified poly A that does not hybridize to mRNA.
  • “Chol-overhang” indicates that the 5 ′ end of the RNA oligomer is cholesterol-modified
  • RNA oligomer 17mer (1) (SEQ ID NO: 2): UCUUUGAGCACCUCCCAG 17mer (2) (SEQ ID NO: 3): CUCUAGAUGCAUUGCUCG 17mer (3) (SEQ ID NO: 4): CUCGGCCCACAGCGAUGC 17mer (4) (SEQ ID NO: 5): GCGGCAGCCCAUUCUUG 17mer (5) (SEQ ID NO: 6): AUCUCAGGAAUGUCGAC
  • overhang 2base (1) (SEQ ID NO: 10): AA UCUUUGAGCACCUCCCAG
  • Mismatch Chol-RNA oligo (SEQ ID NO: 24): AAAAAAAAAAAAAAAAAAAAA
  • Hybridization was performed by heating 1 equivalent of an RNA oligomer (overhang 2base (1)) to mRNA at 65 ° C. for 5 minutes and cooling to 30 ° C. over 10 minutes.
  • the prepared RNA oligomer-modified mRNA was evaluated by polyacrylamide gel electrophoresis. A glycerol solution was added to an mRNA solution (1 ⁇ TBE buffer) so that the final concentration was 5 wt%, and electrophoresis was performed under conditions of 100 V, 800 mA, 200 W, and 30 min.
  • FIG. 1 (2) and (3) electrophoresis was performed for RNA oligomers (overhang C 2base (1)) not subjected to Chol modification and unhybridized mRNA, respectively.
  • FIG. 1 (1) only 1/16 of the amount of RNA oligomer (overhangh2base (1)) hybridized in FIG. 1 (2) was electrophoresed. If hybridization did not occur in FIG. 1 (2), a band derived from an RNA oligomer should be seen at the same position as in FIG. 1 (1), but almost no band was actually seen. That is, it was confirmed that the majority of RNA oligomers were hybridized.
  • Example 1-4 Evaluation of mRNA expression ability in cultured cells and cell-free system
  • RAW264.7 cells were seeded on a 12-well plate so as to give 300,000 cells / well, and 10 v / v%. Incubation was carried out in Dulbecco's Modified Eagle Medium (DMEM) containing fetal bovine serum (FBS) for 24 h. After incubation, DMEM was replaced with Opti-MEM (trade name) (Thermo Fisher Scientific), and Gluc mRNA prepared in Example 1-2 or RNA oligomer prepared in Example 1-3 (17mer (1), 23mer, 40mer).
  • DMEM Dulbecco's Modified Eagle Medium
  • FBS fetal bovine serum
  • a complex consisting of Lipofectamine (trade name) LTX (Thermo Fisher Scientific) and mRNA was added so that the Gluc mRNA hybridized with 60 mer) was 1 ⁇ g / well. Four hours after transfection, the medium was collected, and the amount of Gluc contained therein was evaluated with a luminometer.
  • Lipofectamine trade name
  • LTX Thermo Fisher Scientific
  • the mRNA prepared in Example 1-2 or the RNA oligomer prepared in Example 1-3 (17mer (1), 23mer, 40mer or the like) using Rabbit Reticulocyte Lysate System (Promega)
  • the expression ability of Gluc mRNA hybridized with 60mer was evaluated.
  • a mixed solution containing mRNA was prepared according to the protocol, and then incubated at 30 ° C. for 90 minutes.
  • the expressed Gluc was evaluated by measuring the luminescence intensity using a luminometer.
  • FIG. 2 (A) the efficiency of introducing mRNA into cultured cells was examined.
  • an oligomer having a chain length of 23 mer or longer was hybridized (23 mer, 40 mer, 60 mer), unhybridized mRNA was used.
  • the expression level of Gluc was significantly reduced as compared with the case (oligo ( ⁇ )).
  • the expression level when the 17-mer oligomer was modified was almost the same as that when mRNA not hybridized was used.
  • FIG. 2 (B) the protein translation efficiency in the cell-free system was constant regardless of the chain length of the RNA oligomer, and was almost the same as that of unhybridized mRNA.
  • the chain length of the RNA oligomer is desirably 12 to 40 mer.
  • Example 1-5 Preparation of mRNA-encapsulated PMs
  • Gluc mRNA prepared in Example 1-2 or RNA oligomer (overhang 2base (1) or Chol-overhang 2base (1)) prepared in Example 1-3 was used.
  • Hybridized Gluc mRNA was used.
  • PEG-PAsp (DET) -Chol and Gluc mRNA were independently dissolved in 10 mM HEPES buffer (pH 7.4).
  • the concentration of PEG-PAsp (DET) -Chol is 1.5 ((number of positive charges of PAsp (DET)) / (number of negative charges of mRNA)) (N + / P ⁇ ratio) at pH 7.4. Adjusted as follows.
  • PEG-PAsp (DET) -Chol solution was added to the mRNA solution so that the final mRNA concentration was 33.3 ⁇ g / mL to prepare polymer micelles (PMs).
  • the particle size and polydispersity of PMs were evaluated by Zetasizer Nano (Malvern Instruments). Moreover, PMs prepared using a transmission electron microscope (TEM) were observed. PMs consisting of PEG-PAsp (DET) were prepared in the same manner. The results are shown in Tables 1 and 2 and FIG.
  • Example 1-6 Enzyme resistance test in serum
  • Gluc mRNA prepared in Example 1-2 or Gluc mRNA hybridized with the following RNA oligomer prepared in Example 1-3 was used.
  • RNA oligomer used in the experiments of FIGS. 4 (A) and 4 (B) Chol-overhang 0 (1) Chol-overhang 2base (1) Chol-overhang 5base (1) Mismatch Chol-RNA oligo
  • RNA oligomer used in the experiments of FIGS. 4 (C) and (D) Chol-overhang 0 (2) Chol-overhang 2base (2) Chol-overhang 5base (2) Mismatch Chol-RNA oligo
  • Fetal bovine serum was diluted with 10 mM HEPES buffer (pH 7.4) to a predetermined concentration, PM solution was added thereto, and the mixture was allowed to stand at 37 ° C. for 15 minutes. Then, RNA was extracted from the solution using RNeasy Mini Kit (QIAGEN). The extracted RNA was reverse transcribed into complementary DNA (cDNA), and the remaining cDNA was quantitatively evaluated by qRT-PCR. Relative values are shown with the amount of mRNA in the presence of FBS not standing at 37 ° C. as 100%.
  • FIG. 4 (A) when PEG-PAsp (DET) -Chol was used, significant serum was obtained in the group hybridized with the oligomer having a 2-base overhang compared to the group not hybridized. An improvement in stability was observed. In addition, when there was no overhang, although the tendency for stability to improve was seen, the significant difference was not obtained. In the case of 5base, no stabilizing effect was observed. On the other hand, when PEG-PAsp (DET) was used, stability was improved when there was no overhang and when there was a 2base overhang (FIG. 4B). The above data were also reproduced when another oligo with a different hybridization location was used (FIG.
  • the mismatched chol-RNA oligo was prepared by mixing PM with 19-mer Chol-modified poly A that does not hybridize with mRNA, but in this case, the enzyme resistance in serum was not improved, It was shown that it is necessary to hybridize to obtain the effect.
  • Example 1-7 Agarose gel electrophoresis
  • Gluc mRNA prepared in Example 1-2 or Gluc mRNA hybridized with RNA oligomer (Chol-overhang 2base (1)) prepared in Example 1-3 is used. It was.
  • Tris 40 mM, acetic acid 20 mM, ethylenediaminetetraacetic acid (EDTA) 2Na 1 mM was prepared in 1 ⁇ TAE buffer (Tris-acetic acid-EDTA buffer) and adjusted to pH 7.4 using an aqueous sodium hydroxide solution.
  • a buffer for electrophoresis was used.
  • a 0.9 wt% agarose gel was prepared, and 5 ⁇ L of dextran sulfate and 5 ⁇ L of a 750 mM NaCl solution corresponding to the A / P ratio (number of negative charges of polyanion / number of phosphate groups of mRNA) were added to 15 ⁇ L of PM solution, and then 37 ° C. And incubated for 1 hour. After incubation, 2.5 ⁇ L of loading buffer was added and electrophoresis was performed at 100 V for 60 minutes to confirm the presence or absence of mRNA release.
  • FIG. 5A to 5D the naked mRNA is placed in the leftmost column.
  • mRNA is released from the micelle, a band is seen at the same position as the naked mRNA.
  • the chol-modified oligomer is not hybridized, that is, when PEG-PAsp (DET) -Chol of FIG. 5 (A) is used and when PEG-PAsp (DET) of FIG. 5 (C) is used
  • the release of a large amount of mRNA from micelles was observed at an A / P ratio of 1.5 to 2.
  • Chol-modified oligomers were hybridized, no mRNA was observed even when any polymer was used, even at an A / P ratio of 2 (FIGS. 5B and 5D).
  • Example 1-8 Enzyme resistance test in serum when the number of hybridizing oligos was increased
  • Gluc mRNA prepared in Example 1-2 or the following prepared in Example 1-3 Gluc mRNA hybridized with RNA oligomers was used.
  • Chol-overhang 2base (1) Chol-overhang 2base (2) Chol-overhang 2base (3) Chol-overhang 2base (4) Chol-overhang 2base (5)
  • Example 1-9 PMs Luciferase Expression Test
  • Gluc mRNA prepared in Example 1-2 or Gluc mRNA hybridized with the following RNA oligomer prepared in Example 1-3 was used.
  • Chol-overhang 2base (1) Chol-overhang 2base (2) Chol-overhang 2base (3) Chol-overhang 2base (4) Chol-overhang 2base (5) 17mer (1)
  • Each PMs was prepared using PEG-PAsp (DET) -Chol under the same conditions as in Example 5.
  • Huh-7 cells (5,000 cells-well) were seeded on 96-well plates and incubated in DMEM (100 ⁇ L) containing 10 v / v% FBS for 24 hours. After the medium was replaced with a new one containing 10 v / v% FBS, 7.5 ⁇ L of PMs solution containing 250 ng mRNA was added. After incubation for 24 hours, 10 ⁇ L of the DMEM supernatant was collected, and the luminescence intensity of Gluc was measured using a luminometer.
  • Example 1-10 Comparison of Chol modified to 5 ′ side and 3 ′ side
  • Gluc mRNA prepared in Example 1-2 the following RNA oligomer prepared in Example 1-3 was used, or Gluc mRNA designed in the same place and hybridized with an oligomer having the following sequence having a 2base overhang sequence on the 3 ′ side was used.
  • Each PMs was prepared using PEG-PAsp (DET) -Chol under the same conditions as in Example 5.
  • a serum resistance test was performed in the same manner as in Example 1-8, PM was introduced into HuH-7 cells in the same manner as in Example 1-9, and the expression level of Gluc was evaluated.
  • the result of the serum resistance test is shown in FIG. 8 (A), and the result of the expression level of Gluc is shown in FIG. 8 (B). In any evaluation, no significant difference was observed between the modification position of Chol at 3 ′ and 5 ′.
  • Example 1-11 Evaluation of translation efficiency from Chol-modified mRNA in a cell-free system
  • Gluc mRNA prepared in Example 1-2 or the following RNA oligomer prepared in Example 1-3 was hybridized. mRNA was used.
  • Chol-overhang 2base (1) Chol-overhang 2base (2) Chol-overhang 2base (3) Chol-overhang 2base (4) Chol-overhang 2base (5)
  • mRNA was not included in PM but used alone.
  • the expression ability of mRNA modified with the Chol-RNA oligomer was evaluated using Rabbit Reticulocyte Lysate System (Promega). A mixed solution containing mRNA was prepared according to the protocol, and then incubated at 30 ° C. for 90 minutes. The expressed Gluc was evaluated by measuring the luminescence intensity using a luminometer.
  • Chol-overhang 2base (1) was used in an experiment with one Chol-RNA oligomer.
  • chol-overhang 2base (1) and (3) were used.
  • chol-overhang 2base (1) to (3) was used.
  • chol-overhang 2base (1) to (4) was used.
  • chol-overhang 2base (1) to (5) was used.
  • Example 1-12 Influence on Endogenous Gene Expression
  • the following RNA oligos designed and prepared in the same manner as in Example 1-3 or the following siRNAs prepared as described below were used.
  • “Chol-” indicates that the 5 ′ end of the RNA oligomer is cholesterol-modified.
  • RNA oligomer sequence of Luc mRNA used for designing the RNA oligomer is shown in FIG. 16 and SEQ ID NO: 33.
  • luc oligo (SEQ ID NO: 25): UCGAAGAUCUCAGCGUA Chol-oligo luc (SEQ ID NO: 26): AA UCGAAGAUCUCAGCGUA oligo Scr (SEQ ID NO: 27): UCUUUGAGCACCUCCCAG Chol-oligo Scr (SEQ ID NO: 27): UCUUUGAGCACCUCCCAG siLuc (sense strand) (SEQ ID NO: 28): CUUACGCUGAGUACUUCGAdTdT siLuc (antisense strand) (SEQ ID NO: 29): UCGAAGUACUCAGCGUAGAGdTdT siScramble (siScr) (sense strand) (SEQ ID NO: 30): UUCCUCCGAACGUGUACACGUdTdT siScr (antisense strand) (SEQ ID NO: 31): ACGUGACACGUUCGGGAGAAdTdT
  • siRNA was synthesized by request from Hokkaido System Science Co., Ltd. and used as it was.
  • Hela-luc cells (Caliper LifeScience) (5,000 cells / well) constitutively expressing Luc were seeded on 96-well plates and incubated in DMEM (100 ⁇ L) containing 10 v / v% FBS for 24 hours. Thereafter, the medium was replaced with serum-free medium (Opti-MEM (trade name) (Thermo Fisher Scientific)) (100 ⁇ L), and a complex composed of Lipofectamine RNAiMax (Thermo Fisher Scientific) and RNA oligo or siRNA was added to the cells. After 4 hours of incubation, each added complex was removed. 24 hours after transfection, the cells were lysed using a Cell lysate buffer, and the expression level of luciferase in the 10 ⁇ L cell lysate was evaluated using a luminometer.
  • siLuc, Luc Oligo, and Chol Oligo Luc indicate siRNA, unmodified RNA Oligo, and Chol-modified RNA Oligo targeting the Luc sequence, respectively.
  • SiRNA, unmodified RNA Oligo and Chol-modified RNA Oligo are shown.
  • oligo at a concentration of 8 nM was used, but endogenous gene expression did not decrease at that concentration. Since the decrease in endogenous gene expression was not observed unless the concentration was as high as 1,000 times that of siRNA, the effect on the endogenous gene is assumed to be very slight. As shown in FIG.
  • RNA oligomer group having the same sequence as the antisense strand of siRNA and the other sequence RNA oligomer group did not knock down the endogenous gene as compared with siRNA. From the above results, it was confirmed that the RNA oligomer functionalizes mRNA without inhibiting the endogenous gene.
  • Example 1-13 Investigation by PEG-Plys PEG-PLys was synthesized according to a report (K. Osada et al., Biomaterials 33, 325-332, (2012)) (Scheme 3). The synthesis scheme is as follows.
  • MeO-PEG-NH 2 400 mg was taken, dissolved in benzene and lyophilized overnight. After lyophilization, MeO-PEG-NH 2 and NCA-Lys (TFA) were completely dissolved in 0.5M dimethylformamide (DMF) solvent under Ar atmosphere. NCA-Lys (TFA) solution was added to the MeO-PEG-NH 2 solution and stirred at 25 ° C. for 3 days. The reaction solution was reprecipitated in a mixed solution of n-hexane / ethyl acetate (3: 2), and PEG-PLys (TFA) was recovered. Thereafter, PEG-PLys (TFA) was vacuum-dried to obtain a white powder.
  • DMF dimethylformamide
  • Example 1-2 Gluc mRNA prepared in Example 1-2 or Gluc mRNA hybridized with the following RNA oligomer prepared in Example 1-3 was used.
  • Chol-overhang 2base (1) Chol-overhang 2base (2) Chol-overhang 2base (3) Chol-overhang 2base (4) Chol-overhang 2base (5)
  • PEG-PLys and mRNA were independently dissolved in 10 mM HEPES buffer (pH 7.4).
  • the concentration of PEG-PLys was adjusted so that ((PLys positive charge number) / (mRNA negative charge number)) (N + / P ⁇ ratio) was 2 at pH 7.4.
  • the PEG-PLys solution was added to the mRNA solution so that the final mRNA concentration was 33.3 ⁇ g / mL to prepare PMs.
  • Example 1-14 Blood stability test using mice Here, Gluc mRNA prepared in Example 1-2 or Gluc mRNA hybridized with the following RNA oligomer prepared in Example 1-3 was used.
  • Chol-overhang 2base (1) Chol-overhang 2base (2) Chol-overhang 2base (3) Chol-overhang 2base (4) Chol-overhang 2base (5) Chol-overhang 2base (6) Chol-overhang 2base (7) Chol-overhang 2base (8) Chol-overhang 2base (9) Chol-overhang 2base (10)
  • PEG-PAsp (DET) -Chol and mRNA were independently dissolved in 10 mM HEPES buffer (pH 7.4).
  • the concentration of PEG-PAsp (DET) -Chol is 1.5 ((number of positive charges of PAsp (DET)) / (number of negative charges of mRNA)) (N + / P ⁇ ratio) at pH 7.4. Adjusted as follows. PMs were prepared by adding a PEG-PAsp (DET) -Chol solution to the mRNA solution so that the final mRNA concentration was 200 ⁇ g / mL.
  • Example 1-15 Local administration of PMs to lungs using mice
  • Gluc mRNA prepared in Example 1-2 or Gluc mRNA hybridized with the following RNA oligomer prepared in Example 1-3 is used. It was.
  • Chol-overhang 2base (1) Chol-overhang 2base (2) Chol-overhang 2base (3) Chol-overhang 2base (4) Chol-overhang 2base (5)
  • the trachea of a Balb / C mouse (female, 6 weeks old) was incised, and 50 ⁇ L of a PMs solution containing 1.67 ⁇ g of mRNA was directly administered to the lungs using a nebulizer. After 24 hours, the mouse lungs were removed and homogenized, and the amount of Gluc protein contained therein was quantified with a luminometer. In addition, for the purpose of quantifying the amount of Gluc mRNA remaining in the lung using the lung 4 hours after administration, mRNA was extracted using RNeasy Mini Kit (QIAGEN), and the extracted RNA was reverse transcribed into cDNA. Thereafter, the remaining cDNA was quantitatively evaluated by qRT-PCR. At this time, the mRNA expression level was normalized based on the amount of actin contained in the tissue.
  • FIG. 13 (A) significantly higher protein expression efficiency was obtained with mRNA hybridized with five Chol-modified oligomers than with unhybridized mRNA.
  • FIG. 13B the amount of mRNA remaining in the lung tissue without being degraded is significantly increased by hybridizing five Chol-modified oligomers, so that stability in vivo It became clear that improved.
  • the expression levels of (c) interferon ⁇ and (d) interleukin 6 in the lung tissue after administration are significantly changed by hybridization of 5 non-hybridized mRNA and 5 chol-modified oligomers. However, it was considered to have been secured because it remained low.
  • FIG. 13B As described above, as a result of improvement in stability (FIG. 13B), it was found that expression was improved (FIG. 13A). This shows that it is also effective in vivo.
  • Example 1-15 Preparation of polyethylene glycol (PEG) -modified mRNA PEGylated mRNA was prepared as follows.
  • RNA secondary structure prediction software http://rtips.dna.bio.keio.ac.jp/ipknot/) predicts the secondary structure of Gluc mRNA, and the RNA strand has no secondary structure RNA oligomers were designed.
  • the RNA oligomer was synthesized by Gene Design, including PEG modification at the 5 ′ end. Here, linear PEG having a weight average molecular weight of 12,000 was used. And the following 5 'terminal PEG modification RNA oligomer was purchased from Gene Design.
  • Sequence p1 (SEQ ID NO: 34): 5′-PEG-ACUCUUUGUCGCCUUCG-3 ′
  • Sequence p2 (SEQ ID NO: 35): 5′-PEG-CUCGGCCACAGCGAUGC-3 ′
  • Sequence p3 (SEQ ID NO: 36): 5′-PEG-UCUUUGAGCACCUCCCAG-3 ′
  • Sequence p4 (SEQ ID NO: 37): 5′-PEG-CUCUAGUAUGCAUGCUCG-3 ′
  • Sequence p5 (SEQ ID NO: 38): 5′-PEG-GCGGGCAGCCACUCUCUG-3 ′
  • Sequence p6 (SEQ ID NO: 39): 5′-PEG-AUCUCAGGAAUGUCGAC-3 ′
  • Sequence p7 (SEQ ID NO: 40): 5′-PEG-GCAGCCAGCUUUCCGGG-3 ′
  • Sequence p8 (SEQ ID NO: 41):
  • Example 1-16 to 18 the mRNA prepared in Example 1-3 was used as mRNA.
  • Hybridization was performed by adding 1 equivalent of RNA oligomer to mRNA, heating at 65 ° C. for 5 minutes, and cooling to 30 ° C. over 10 minutes. This produced PEGylated mRNA.
  • Example 1-16 Change in translation efficiency due to hybridization of PEG-modified RNA oligomer to mRNA mRNA in which PEG-modified RNA oligomer was hybridized at 1, 5, 10, or 15 sites was used. In each experiment of 1, 5, 10, and 15 PEGRNA-modified oligomers, the following PEG-modified RNA oligomer prepared in Example 1-15 was used.
  • the protein translation efficiency in the cell-free system of the prepared mRNA sample was evaluated using Rabbit Reticulocyte Lysate System, Nuclease treated (Promega Co., Madison, WI).
  • a sample solution containing 300 ng of GLuc mRNA was added to Rabbit reticulocyte lysate and incubated at 30 ° C. for 90 minutes, and then the luminescence intensity of 10 ⁇ L of the reaction solution was quantified using Renilla Luciferase assay kit (Promega).
  • Mitras LB 940 (Berthold technologies Co.) was used.
  • Example 1-17 Stabilization effect by hybridization of PEG-modified RNA oligomer to mRNA mRNA in which PEG-modified RNA oligomer was hybridized at 1, 5, 10, or 15 sites was used.
  • PEG-modified RNA oligomer Stabilization effect by hybridization of PEG-modified RNA oligomer to mRNA mRNA in which PEG-modified RNA oligomer was hybridized at 1, 5, 10, or 15 sites was used.
  • the following PEG-modified oligomers prepared in Example 1-15 were used.
  • the test procedure for confirming stability against FBS is as shown in FIG.
  • a sample containing 100 ng of GLuc mRNA was incubated at 37 ° C. for 15 minutes in a 0.5% Fetal Bovine Serum (FBS, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan) solution. Thereafter, 350 ⁇ L of RLT buffer (Quiag, Hilden, Germany) containing 1 v / v% 2-mercaptoethanol was added, incubated at 65 ° C. for 5 minutes, and then rapidly cooled on ice to denaturate the PEG-RNA oligomer.
  • FBS Fetal Bovine Serum
  • Reverse-transcribed cDNA was quantitatively evaluated by quantitative RT-PCR (qRT-PCR).
  • primers having the following sequences were used for qRT-PCR measurement.
  • Example 1-18 Expression Test of PEGylated mRNA 15 mRNAs hybridized with PEG-modified RNA oligomers were used. In the experiment with 15 PEG-modified oligomers, the following PEG-modified oligomers prepared in Example 1-15 were used.
  • the mRNA expression test on cultured cells was performed as follows. Human hepatoma cells (HuH-7 cells) were seeded on a 96-well plate at 5,000 cells / well and incubated at a humidified with 5% CO 2 at 37 ° C for 24 hours. After removing the serum medium, 100 ⁇ L of serum-free medium (Opti-MEM, Thermo Fisher Scientific Inc., Waltham, Mass.) was added, and a sample solution containing 250 ng of Gluc mRNA was added. After 4 hours, the luminescence intensity in 10 ⁇ L of the supernatant was quantified using Renilla Luciferase assay kit (Promega). For the measurement, Mitras LB 940 (Berthold technologies Co.) was used.
  • Example 2-1 Production of various double-stranded RNAs T7-Gluc plasmid was obtained from pCMV-Gluc control plasmid (New England BioLabs, Ipswich, MA, USA) with a Gluc coding sequence (SEQ ID NO: 57 and FIG. 33). It was prepared by inserting into the HindIII, Xba1 site of the vector (Promega).
  • T7-Gluc poly A120 plasmid was prepared by inserting A120- (BsmB1 cleavage site) into the EcoR1-Bgl2 site of T7-Gluc plasmid.
  • the Gluc sense strand was prepared by cleaving T7-Gluc poly A120 plasmid with BsmBI and transcribed with mMESSAGE mMACHINE T7 Ultra Kit (Thermo Fisher Scientific). When RNA is prepared with this kit, the 5 'end is Cap-modified.
  • the Gluc antisense chain (including poly U) was cut with T7-Gluc poly A120 plasmid with HindIII, and transferred from MEGAscript (registered trademark) SP6 Transcribing Kit (ThermoFisciS6 promoter). It was produced by doing.
  • MEGAscript registered trademark
  • SP6 Transcribing Kit ThermoFisciS6 promoter
  • the Gluc antisense chain (without poly U) is cut with T7-Gluc plasmid with HindIII, and transferred from MEGAscript (registered trademark) SP6 Transcribation Kit (Thermo Fisher Scientific 6 promoter). It was made with.
  • poly U cuts T7-Gluc poly A120 plasmid with SmaI, and was transcribed from Sp6 promoter with MEGAscript (registered trademark) SP6 Transcribation Kit (Thermo Fisher Scientific).
  • poly U is complementary to the entire sequence of poly A (120 bases) and downstream of it, a part of the 3 ′ UTR of mRNA (ie, a sequence having a base length of about 37% of 3 ′ UTR). Sequence (19 bases).
  • poly U further contains the sequence in the SP6 promoter and the restriction enzyme sequence used for cloning as other sequences (17 bases) upstream. That is, poly U used here has a sequence of 156 bases in length. It also has a triphosphate structure at the 5 'end.
  • Gluc sense chain SEQ ID NO: 51 and FIG. 27
  • Gluc antisense chain including poly U
  • SEQ ID NO: 52 and FIG. 28 Gluc antisense chain (no poly U)
  • poly U SEQ ID NO: 54 and FIG. 30
  • the underlined portion is an open reading frame (ORF)
  • the upstream of the ORF is 5'UTR (54 base length)
  • the downstream of the ORF is 3'UTR (52 base length)
  • 119A downstream thereof is a poly A sequence.
  • the number of Poly A is theoretically incorporated into the template DNA at 120 bp, mRNA transcribed from the T7 promoter has 119 base A, and RNA transcribed from the Sp6 promoter has 120 base U.
  • the number can be increased or decreased at the stage of DNA amplification or mRNA preparation.
  • double-stranded RNA was prepared as follows. First, a solution in which an equimolar amount of a sense strand, an antisense strand or poly U was contained in a 10 mM Hepes buffer and an RNA concentration was 300 ⁇ g / ml was prepared. The solution was maintained at 65 ° C. for 5 minutes, and then hybridized by lowering to 30 ° C. over 10 minutes.
  • FIG. 22 shows a schematic diagram of the prepared double-stranded RNA.
  • 22 (A) shows mRNA: RNA
  • FIG. 22 (B) shows mRNA: RNA poly U ( ⁇ )
  • FIG. 22 (C) shows mRNA: poly U
  • FIG. 22 (D) shows mRNA: poly U pppp (-).
  • FIG. 22 there is a 5 ′ UTR upstream of the protein coding sequence of mRNA, and a 3 ′ UTR downstream.
  • Example 2-2 Optimization of a double-stranded RNA vaccine using a dendritic cell line DC2.4 cells were seeded at 1,000,000 / well in a 6-well plate, the medium was changed after 24 hours, and the serum-free medium Opti- After substituting MEM (trade name) (Thermo Fisher Scientific), mRNA was administered at 2.5 ⁇ g / well using Lipofectamine (trade name) LTX (Thermo Fisher Scientific). After 4 hours, RNA was purified from the cells using RNeasy mini kit (QIAGEN), converted to complementary DNA (cDNA) using ReverseTra Ace qPCR RT Master Mix (TOYOBO), and then taqman gene expression assay (A) Then, the expression level of interferon ⁇ was examined. At this time, the expression level of actin b was normalized. The amount of Gluc protein contained in the medium was quantified with Renilla Luciferase Assay System (Promega).
  • FIG. MRNA hybridized to the full length Although RNA could induce a strong inflammatory reaction (FIG. 23 (A)), the expression level of Gluc protein from mRNA was reduced by about 100 times compared to single-stranded mRNA (FIG. 23 ( B)). On the other hand, in mRNA: RNA poly U ( ⁇ ), the inflammatory reaction was significantly reduced compared to mRNA: RNA (FIG. 23 (A)), and the expression level of Gluc was similar to that of mRNA: RNA. (FIG. 23B). On the other hand, in the case where only the poly U portion was hybridized, in addition to the strong inflammatory reaction as seen in mRNA: RNA (FIG.
  • the protein expression level from mRNA was also one.
  • the level was almost the same as that of the strand mRNA (FIG. 23B).
  • the 5 ′ end of the antisense strand RNA is triphosphorylated, and this is recognized by the intracellular nucleic acid receptor RIG-I and is known to induce a strong inflammatory reaction. . Therefore, in order to examine the relationship between triphosphate and inflammatory reaction, when mRNA hybridized with poly U excluding triphosphate was introduced, the inflammatory reaction was slightly reduced as compared with triphosphorylated poly U. Therefore, it was revealed that a stronger inflammatory reaction is elicited when the RNA oligomer has a 5'-terminal triphosphate.
  • RNA poly U did not cause much inflammation, which strongly suggests that triphosphate recognition by RIG-I differs depending on the complementary strand used.
  • poly U the 5 'end is exposed at the end of the mRNA, and triphosphate may be sterically easily recognized by RIG-I.
  • the sequence around triphosphate contains a lot of U, but AU binding is weak. It is assumed that the mobility of triphosphoric acid has increased and it has become easier to recognize. Thus, it was strongly suggested that the selection of the complementary strand may be important for the innate immune response via RIG-I.
  • Example 2-3 Administration of poly U hybridized mRNA into lymph node mRNA: poly U was prepared in the same manner as in Example 2-2. 10 ⁇ L of 10 mM Hepes solution containing 3 ⁇ g of Gluc mRNA was administered to the inguinal lymph nodes of C57BL6N mice. After 4 hours, the inguinal lymph nodes were collected, lysed with Passive lysis buffer (Promega), and the Luc expression level was quantified with Renilla Luciferase Assay System (Promega).
  • poly U-hybridized mRNA elicits a strong inflammatory reaction even in vivo without significantly impairing translation efficiency.
  • Example 2-4 Induction of Cellular Immunity by Poly U Hybridized mRNA T7-OVA poly A120 plasmid was obtained by using an OVA coding sequence (SEQ ID NO: 58 and FIG. 34), which had been codon-optimized by Genscript, pSP73 vector ( Promega) was inserted into the XhoI and EcoR1 sites.
  • the OVA sense chain was prepared by cleaving T7-OVA poly A120 plasmid with BsmBI and transferring it from the T7 promoter with mMESSAGE mMACHINE T7 Ultra Kit (Thermo Fisher Scientific).
  • poly U was prepared by cleaving T7-Gluc poly A120 plasmid with EcoRI and transcribed from Sp6 promoter with MEGAscript (registered trademark) SP6 transcription kit (Thermo Fisher Scientific).
  • poly U is a sequence complementary to the entire sequence of poly A (120 bases), and downstream thereof, a part of 3′UTR of mRNA (that is, a sequence having a base length of about 83% of 3′UTR).
  • the poly U used here further includes the sequence in the SP6 promoter and the restriction enzyme sequence used for cloning as other sequences (17 bases). That is, poly U used here has a sequence of 142 bases in length. It also has a triphosphate structure at the 5 ′ end.
  • the underlined portion is an open reading frame (ORF)
  • the upstream of the ORF is 5′UTR (16 bases)
  • the downstream of the ORF is 3′UTR (6 bases).
  • 119A downstream is the poly A sequence.
  • the number of A and U is the same as in Example 2-1.
  • the mRNA transcribed from the T7 promoter has 119 bases A
  • the RNA transcribed from the Sp6 promoter has 120 bases U. However, the number can be increased or decreased at the stage of DNA amplification or mRNA preparation.
  • OVA-expressed mRNA (mRNA: poly U) hybridized with poly U was prepared in the same manner as in Example 2-2. Specifically, a solution containing an equimolar amount of sense strand, antisense strand, or poly U in 10 mM Hepes buffer and an RNA concentration of 300 ⁇ g / ml was prepared. The solution was maintained at 65 ° C. for 5 minutes, and then hybridized by lowering to 30 ° C. over 10 minutes.
  • FIG. 25 (A) shows the procedure of the following experiment.
  • 10 ⁇ L of 10 mM Hepes solution containing 3 ⁇ g of OVA mRNA was administered to the inguinal lymph nodes of C57BL6N mice. Seven days later, spleen cells were collected, and an Enzyme-Linked ImmunoSpot (ELISPOT) assay was performed using an IFN- ⁇ ELISpot PLUS and a Mouse ( ⁇ ) HRP kit (MABTECH).
  • ELISPOT Enzyme-Linked ImmunoSpot
  • 250,000 cells / well were plated on a 96-well plate. After culturing for 24 hours at a final OVA concentration of 10 ⁇ g / mL, the number of IFN- ⁇ producing cells was counted.
  • FIG. 25 (B) The result is shown in FIG.
  • the vertical axis in FIG. 25 (B) indicates the number of splenocytes that produced IFN- ⁇ in response to OVA, and serves as an index of cellular immunity.
  • cellular immunity was hardly induced with single-stranded OVA mRNA, whereas OVA mRNA (mRNA: poly U) hybridized with poly U was hybridized. A significant cellular immune response was observed.
  • Example 2-5 Induction of humoral immunity by poly U hybridized mRNA OVA mRNA was administered to C57BL6N mice in the same manner as in Example 2-4, and blood was collected 7 days later (FIG. 26 (A)). . Anti-OVA IgG in the serum was quantified with Mouse Anti-OVA IgG Antibody Assay Kit (Condolex).
  • Example 2-6 Optimization of double-stranded RNA vaccine using dendritic cells
  • protein expression from mRNA in dendritic cells (DC 2.4 cells) The amount (ie luciferase expression level) was quantified.
  • D.C. C. Experiments were performed by placing 2.4 cells in a 96-well plate at 40,000 / well.
  • the following three were used as RNA oligomers.
  • poly U chain length of a sequence complementary to 3′UTR: 5 bases
  • SEQ ID NO: 56, FIG. 36 (B) poly U (chain length of the sequence complementary to 3′UTR: 19 bases)
  • SEQ ID NO: 54, FIG. 36 (B) poly U (chain length of complementary sequence to 3′UTR: 50 bases) (SEQ ID NO: 59, FIG. 36 (B))
  • Poly U (chain length of a complementary sequence to 3′UTR: 5 bases) (SEQ ID NO: 56) is a part of the 3′UTR of mRNA (ie, 3′UTR (52 bases long)). A sequence (5 bases) complementary to a 10% base length sequence). Further, poly U (chain length of a sequence complementary to 3′UTR: 19 bases) is a sequence having a base length of about 36% of a part of 3′UTR of mRNA (that is, 3′UTR (52 bases long)). ) To the complementary sequence (19 bases).
  • Poly U (chain length of complementary sequence to 3′UTR: 50 bases)” was obtained by cleaving T7-Gluc poly A120 plasmid with NotI, and using MEGAscript (registered trademark) SP6 Transcriter Kit (Thermo Fisher Science 6). It was prepared by transcription from a promoter (FIG. 36 (A)).
  • poly U is a sequence complementary to the entire sequence of poly A (120 bases), and downstream thereof, a portion of 3′UTR of mRNA (ie, about 96% of 3′UTR (52 bases long)) Sequence (50 bases) complementary to the base length sequence of
  • the poly U used here further includes the sequence in the SP6 promoter and the restriction enzyme sequence used for cloning as other sequences (17 bases). That is, poly U used here has a sequence of 187 bases in length. In addition, it has a triphosphate structure at the 5 ′ end.
  • RNA oligomer hybridization A synthetic RNA oligomer was prepared as follows. First, for the first sequence complementary to Gluc mRNA, the secondary structure of Gluc mRNA is determined using RNA secondary structure prediction software (http://rtips.dna.bio.keio.ac.jp/ipknot/). As predicted, an RNA oligomer was designed for the portion where the RNA strand had no secondary structure. The overhang sequence was designed using A or U so as not to hybridize with the mRNA strand as much as possible. Regarding the second sequence complementary to the 5′ppp-RNA oligomer, first, the sequence of the 5′ppp-RNA oligomer was designed, and a second sequence complementary to the sequence was obtained.
  • a GU repeat sequence was used in the 5'ppp-RNA oligomer. This is because in vitro transcription in a system that does not contain ATP suppresses the generation of by-products of complementary strands. It is characteristic that secondary structure is not formed by RNA itself.
  • the second sequence was obtained as a sequence complementary to the 5′ppp-RNA oligomer, and the sequence was designed so that the triphosphorylated 5 ′ end of the 5′ppp-RNA oligomer was smooth. . .
  • the synthetic RNA oligomer designed as such was requested, and from the 5 ′ side, a 17-base sequence complementary to Gluc mRNA, a 2-base overhang sequence, and a 24-base sequence complementary to the 5′ppp-RNA oligomer
  • the following synthetic RNA oligomers were purchased: Synthetic RNA oligomers were purchased from Hokkaido System Science.
  • Synthetic RNA oligomer sequence 1 (SEQ ID NO: 60): CAGCCACGCUUUCCCGGGCUACACACACACACACACACACACAACC
  • Synthetic RNA oligomer sequence 2 (SEQ ID NO: 61): ACUCUUUGUCGCCUUCGAUCACACACACACACACACACACACC
  • Synthetic RNA oligomer sequence 3 (SEQ ID NO: 62): GCGGCAGCCCAUUCUGUACACACACACACACACACACACACACACACACACACACACACACACACACC
  • a 5'ppp-RNA oligomer was prepared as follows. First, DR274 vector (addgene) was cleaved with BsaI, and the hybridized two kinds of oligomers were inserted therein.
  • DNA oligomer (SEQ ID NO: 63): TAGGTTGTGTGTGTGTGTGTGTGTGTGTGTGGTGGGCCC
  • DNA oligomer (SEQ ID NO: 64): AAACGGGCCCACACACACACACACACACACACACACACACACACACACACA
  • a vector having the base sequence (SEQ ID NO: 65) shown in FIG. 41 was prepared.
  • a 5'ppp-RNA oligomer was prepared by in vitro transcription by cleaving a vector having the base sequence (SEQ ID NO: 65) shown in FIG. 41 with ApaI and SnaBI.
  • transcription of complementary strand RNA of the target sequence was suppressed by using a reaction solution that did not contain ATP.
  • the following 5'ppp-RNA oligomer in which 5 'was triphosphorylated was prepared.
  • 24nt 1 piece 5'ppp-RNA oligomer, synthetic RNA oligomer sequence 1 and Gluc mRNA mixed at a molar ratio of 1: 1: 1 and hybridized.
  • 24nt 2 pieces 5'ppp-RNA oligomer, synthetic RNA oligomer sequence 1 and 2, and Gluc mRNA mixed at a molar ratio of 1: 1: 1: 1 and hybridized.
  • Example 3-2 and 3-3 Gluc mRNA prepared in Example 1-3 was used. Hybridization was performed by heating at 65 ° C. for 5 minutes and cooling to 30 ° C. over 10 minutes.
  • Example 3-3 “mRNA: polyU” prepared in Example 2-1 was used as “mRNA: pU”.
  • Example 3-2 Immunostimulation DC2.4 cells were seeded at 400,000 / well in a 12-well plate, the medium was replaced after 24 hours, and replaced with serum-free medium Opti-MEM (trade name) (Thermo Fisher Scientific). Thereafter, 2.5 ⁇ g / well of mRNA was administered using Lipofectamine (trade name) LTX (Thermo Fisher Scientific). Four hours later, RNA was purified from cells using RNeasy mini kit (QIAGEN), converted to complementary DNA (cDNA) using ReverseTra Ace qPCR RT Master Mix (TOYOBO), and then taqman gene expression assay (Aqman gene expression assay) The expression levels of interferon ⁇ and interleukin 6 were examined. At this time, the expression level of actin b was normalized.
  • Example 3-3 Protein translation After DC2.4 cells were seeded at 40,000 / well in 96 well plate, the medium was changed after 24 hours, and replaced with serum-free medium Opti-MEM (trade name) (Thermo Fisher Scientific). , MRNA was administered at 0.25 ⁇ g / well using Lipofectamine (trade name) LTX (Thermo Fisher Scientific). After 4 hours, the amount of Gluc protein was quantified with Renilla Luciferase Assay System (Promega).
  • MRNA delivery is expected to be applied to medicine as a technique for safely and continuously supplying therapeutic proteins.
  • it has been a major problem that mRNA is rapidly subjected to enzymatic degradation in vivo.
  • the enzymatic degradation of mRNA when encapsulated in the polymer micelle is remarkably suppressed, and the mRNA introduction efficiency is successfully increased. did.
  • the mRNA-encapsulating polymer micelle used here has shown excellent effects in therapeutic experiments on model animals with various diseases such as central nervous system diseases, motor sensory organ diseases, liver diseases, malignant tumors, etc. Research with a view to the future is underway.
  • the composition of the polymer micelle varies depending on the target organ and administration method, but the technique of the first aspect of the present invention can be widely applied because it can stabilize micelles of various compositions.
  • MRNA vaccine is positioned as a pharmaceutical with a completely different mechanism from conventional vaccines.
  • Features include the ability to freely construct antigen proteins to be expressed and the induction of cellular immunity.
  • DNA vaccine as a nucleic acid vaccine of the same type, but DNA has a risk of mutagenesis due to random insertion into the host genome, which is an obstacle to practical use, whereas mRNA has no risk.
  • the development of vaccines using conventional single-stranded mRNA has been progressing mainly in the United States and Germany, but it has been inevitable to use an adjuvant in order to effectively induce an inflammatory reaction.
  • the mRNA vaccine according to the second and third aspects of the present invention does not necessarily require an adjuvant, and can effectively induce an inflammatory response only with mRNA, and simultaneously and sympatricly with antigen presentation. Can elicit an inflammatory response.
  • MRNA vaccine can be flexibly adapted according to the purpose and purpose, regardless of administration route (subcutaneous administration, intramuscular administration, transmucosal administration, etc.), transport carrier, etc.
  • mRNA used in the mRNA vaccine is purified on the basis of a chemical reaction, and can be applied to any protein simply by changing the base sequence. These are clearly different merits from conventional vaccines.
  • the vaccine according to the second and third aspects of the present invention is expected to have a wide market as a new vaccine system, such as individualized treatment for cancer and the like, and an infectious disease vaccine capable of quickly responding to virus mutation.
  • Synthetic RNA SEQ ID NOs: 1-27 Synthetic RNA SEQ ID NOs: 28 to 31: Synthetic DNA / RNA SEQ ID NO: 32: synthetic DNA SEQ ID NO: 33: synthetic RNA SEQ ID NOs: 34 to 48: Synthetic RNA SEQ ID NOs: 49 and 50: synthetic DNA
  • SEQ ID NOs: 51-56 Synthetic RNA
  • SEQ ID NOs: 57 and 58 synthetic DNA
  • SEQ ID NO: 59 Synthetic RNA
  • SEQ ID NOs: 60-62 Synthetic RNA
  • SEQ ID NOs: 63-65 Synthetic DNA
  • SEQ ID NOs: 66-68 Synthetic RNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は、mRNAと、mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを含む二本鎖RNAを含む、機能化mRNAを提供する。これにより、機能化mRNAが提供される。

Description

mRNAの機能化方法
 本発明は、mRNAの機能化方法に関する。より具体的には、本発明は、mRNA輸送担体の安定化方法、mRNAワクチンなどに関する。
 mRNA送達は、治療用タンパク質を安全かつ持続的に供給するための手法として注目を集めている。一方でmRNAが生体内で速やかに酵素分解を受けてしまうことが大きな課題である。これに対して、mRNA輸送担体を用いてmRNAを分解から保護する方法、及びmRNA分子自体を改良する方法が検討されているが、生体内でのRNA分解酵素が非常に強いため、さらなる技術革新が求められている。
 mRNA分子自体を改良する方法について、mRNA塩基の一部を化学修飾したものに置換する方法が検討されている(例えば、非特許文献1)。これまでに様々な化学修飾塩基が網羅的に検討されたが、mRNAの酵素耐性を大幅に向上させることができるものは未だに報告されていない。また、修飾を行うことでしばしばmRNAからのタンパク質翻訳効率が大きく低下してしまうことから、自由な化学修飾は困難であった。
 ここで、特許文献1には、ポリカチオン性ポリマーとmRNAのポリイオンコンプレックスが記載され、これをmRNAの送達に用いることが記載されている。また、非特許文献2には、高分子ミセル型mRNA輸送担体の安定性、酵素分解の評価、およびポリマーにコレステロール修飾を行う効果について記載されている。しかしながら、これらの文献には、生体内において、mRNAからのタンパク質翻訳効率を大きく低下させることなく、mRNAの酵素耐性を向上させることできる、mRNA輸送担体の安定化方法は記載されていない。
 また、病原体の病原性を弱めて用いる従来の生ワクチンは病原性の復帰により副作用が生じる恐れがある。また、病原体の病原性をなくして用いる従来の不活化ワクチンは感染細胞が出現しないため細胞性免疫を誘導しにくいという問題がある。
 DNAワクチン、mRNAワクチンなどの核酸ワクチンでは、抗原タンパク質を提示するために核酸を用いる。すなわち、核酸ワクチンは、投与した核酸を抗原提示細胞の核内又は細胞質に移行させて抗原タンパク質を発現させ、抗原タンパク質を提示させることによって免疫を賦活化させる。核酸ワクチンは、病原性の復帰の問題がないため生ワクチンと比較して安全性が高いと考えられている。また、核酸ワクチンでは抗原提示細胞が抗原タンパク質を提示するため細胞性免疫を誘導することが可能であり、このため、核酸ワクチンは、がんや慢性感染症への展開が可能である。さらに、核酸ワクチンでは配列を変えるだけで比較的自由な核酸の設計が可能であり、このため、核酸ワクチンには、がんの個別化治療に用いることができること、ウイルス変異にも迅速に対応可能あることからパンデミックへの素早い対応が可能であること、などの利点もある。
 このうちDNAワクチンでは、ホストゲノムへのランダムな挿入による変異誘発のリスクがあると考えられている。その一方で、抗原タンパク質を提示するためにmRNAを用いるmRNAワクチンは、ホストゲノムへの変異誘発のリスクがないと考えられており、近年注目を集められている。
 mRNAワクチンにより免疫誘導効果を得るためには、抗原タンパク質を発現させると同時に、炎症反応を惹起する必要がある。しかしながら、mRNA自体は免疫原性が低いために炎症反応を惹起しにくい。そこで従来、mRNAとは別に炎症反応を惹起するためのアジュバンドを同時に投与する必要があった(例えば、特許文献2)。
 このような従来のmRNAワクチンには、以下の3つの問題がある。1つ目の問題は、外来物質をアジュバントとして用いる場合にはその安全性に相当の注意を払う必要が生じることである。2つ目の問題は、投与したmRNAとアジュバントの組織分布が異なると、抗原タンパク質を発現する細胞に十分な炎症反応が惹起されない可能性があることである。3つ目の問題は、mRNAを生体へ投与する際、mRNAを酵素分解から保護するためにしばしば輸送担体が必要になるが、アジュバントが輸送担体の機能に影響する可能性があることである。
 ここで、非特許文献3には、mRNAワクチンとして、mRNAをアジュバント成分であるプロタミンと一体化したものが記載されている。
WO2015/121924A 特表2012-502074号公報
Meis,J.E.and Chen,F.(2002)EPICENTRE Forum 9(1),10 Uchida,S.,et al.,Biomaterials(2016)82,p.221-228. Karl-Josef Kallen et al.,Human Vaccines&Immunotherapeutics(2013)9:10,p.2263-2276
 このような状況のもと、機能化mRNAが求められていた。
 本発明の第1の態様は、mRNA輸送担体の新たな安定化方法を提供することを目的とする。
 本発明の第2及び第3の態様は、効率のよいタンパク質発現及び免疫誘導を可能とする新たなmRNAワクチンを提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、mRNAと相補的な配列を持つRNAオリゴマーをmRNAにハイブリダイズさせることによりmRNAを機能化できることを見出し、本発明を完成するに至った。
 また、本発明者らは、mRNAと相補的な配列を持つRNAオリゴマーに化学修飾を行い、それをmRNAにハイブリダイズさせることでmRNAの化学修飾を行うことができ、これによりそのmRNAを安定化できること、あるいはそのmRNAを輸送担体に搭載することにより輸送担体を安定化できることを見出し、本発明の第1の態様を完成するに至った。
 また、本発明者らは、抗原をコードするmRNAのpoly A配列と相補的な配列をもつRNAオリゴマーをmRNAにハイブリダイズさせることで、mRNAからの効率のよいタンパク質発現及び免疫誘導の両方を達成できることなどを見出し、本発明の第2の態様を完成するに至った。
 さらに、本発明者らは、抗原をコードするmRNAの配列と相補的な配列をもつ第1のRNAオリゴマーをmRNAにハイブリダイズさせ、かつ第1のRNAオリゴマーと相補的な配列をもつ第2のRNAオリゴマーを第1のRNAオリゴマーにハイブリダイズさせることで、mRNAからの効率のよいタンパク質発現及び免疫誘導の両方を達成できることなどを見出し、本発明の第3の態様を完成するに至った。
 本発明は以下のとおりである。
 mRNAと、mRNAにハイブリダイズした少なくとも1つの修飾されたRNAオリゴマーとを含む二本鎖RNAを含む、機能化mRNA。
 本発明の第1の態様は以下のとおりである。
[1-1] 目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを内包した前記mRNAの輸送担体であって、
 RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
 を含み、かつ化学修飾されている、輸送担体。
[1-1A] 目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを内包した前記mRNAの輸送担体であって、
 RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
 を含み、かつ化学修飾されていない又は化学修飾されている、輸送担体。
[1-2] 前記RNA配列が15~23塩基の配列からなる、上記[1-1]又は[1-1A]に記載の輸送担体。
[1-3] 前記RNA配列が17塩基の配列からなる、上記[1-2]に記載の輸送担体。
[1-4] 前記化学修飾は、1~5塩基のオーバーハング配列を介してRNAオリゴマーの配列の5’末端又は3’末端になされたものである、上記[1-1]~[1-3]のいずれか1項に記載の輸送担体。
[1-5] 前記オーバーハング配列が2塩基の配列である、上記[1-4]に記載の輸送担体。
[1-6] 前記化学修飾が疎水性基による修飾である、上記[1-1]~[1-5]のいずれか1項に記載の輸送担体。
[1-7] 前記疎水性基による修飾がコレステロール修飾である、上記[1-6]に記載の輸送担体。
[1-8] 前記化学修飾がポリエレングリコール修飾である、上記[1-1]~[1-5]のいずれか1項に記載の輸送担体。
[1-9] 前記輸送担体が、高分子ミセル又は脂質性mRNAキャリアである、上記[1-1]~[1-8]のいずれか1項に記載の輸送担体。
[1-10] 上記[1-1]~[1-9]のいずれか1項に記載の輸送担体を含有する、医薬組成物。
[1-11] 目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを輸送担体に内包させることを含み、
 RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
を含み、かつ化学修飾されている、輸送担体の安定化方法。
[1-11A] 目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを輸送担体に内包させることを含み、
 RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
を含み、かつ化学修飾されていない又は化学修飾されている、輸送担体の安定化方法。
[1-12] 目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを含む二本鎖RNAであって、
 RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
 を含み、かつ化学修飾されていない又は化学修飾されている、二本鎖RNA。
[1-13] 前記RNA配列が15~23塩基の配列からなる、上記[1-12]に記載の二本鎖RNA。
[1-14] 前記RNA配列が17塩基の配列からなる、上記[1-13]に記載の二本鎖RNA。
[1-15] 前記化学修飾は、1~5塩基のオーバーハング配列を介してRNAオリゴマーの配列の5’末端又は3’末端になされたものである、上記[1-12]~[1-14]のいずれか1項に記載の二本鎖RNA。
[1-16] 前記オーバーハング配列が2塩基の配列である、上記[1-15]に記載の二本鎖RNA。
[1-17] 前記化学修飾が疎水性基による修飾である、上記[1-12]~[1-16]のいずれか1項に記載の二本鎖RNA。
[1-18] 前記疎水性基による修飾がコレステロール修飾である、上記[1-17]に記載の二本鎖RNA。
[1-19] 前記化学修飾がポリエレングリコール修飾である、上記[1-12~[1-16]のいずれか1項に記載の二本鎖RNA。
[1-20] 上記[1-12]~[1-19]のいずれか1項に記載の二本鎖RNAが輸送担体に内包されている、mRNA輸送担体。
[1-21] 前記輸送担体が、高分子ミセル又は脂質性mRNAキャリアである、上記[1-20]に記載の輸送担体。
[1-22] 上記[1-20]または[1-21]のいずれか1項に記載の輸送担体を含有する、医薬組成物。
 本発明の第2の態様は以下のとおりである。
[2-1] 抗原をコードするmRNAと、当該mRNAの少なくともpoly A配列にハイブリダイズした少なくとも1つのRNAオリゴマーからなる二本鎖RNAを含み、前記少なくとも1つのRNAオリゴマーは化学修飾されていない、mRNAワクチン。
[2-1A] 抗原をコードするmRNAと、当該mRNAの少なくともpoly A配列にハイブリダイズした少なくとも1つのRNAオリゴマーからなる二本鎖RNAを含み、前記少なくとも1つのRNAオリゴマーは化学修飾されていない又は化学修飾されている、mRNAワクチン。
[2-2] RNAオリゴマーは、10~500塩基配列からなる、上記[2-1]又は[2-1A]に記載のmRNAワクチン。
[2-3] RNAオリゴマーは、5’末端にトリリン酸構造を有する、上記[2-1]~[2-2]のいずれか1項に記載のmRNAワクチン。
[2-4] 二本鎖RNAは、mRNAの少なくともpoly A配列に1つのRNAオリゴマーがハイブリダイズしたものである、上記[2-1]~[2-3]のいずれか1項に記載のmRNAワクチン。
[2-5] 二本鎖RNAがネイキッドの形態である、上記[2-1]~[2-4]のいずれか1項に記載のmRNAワクチン。
[2-6] アジュバントと共に用いない、上記[2-1]~[2-5]のいずれか1項に記載のmRNAワクチン。
[2-7] 疾患の予防又は治療を必要とする対象において当該疾患の予防又は治療に用いるための、上記[2-1]~[2-6]のいずれか1項に記載のmRNAワクチン。
[2-8] 疾患の予防又は治療を必要とする対象に、上記[2-1]~[2-6]のいずれか1項に記載のmRNAワクチンを投与することを含む、疾患の予防又は治療方法。
 本発明の第3の態様は以下の通りである。
[3-1] 抗原をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つの第1のRNAオリゴマーと、当該第1のRNAオリゴマーにハイブリダイズした第2のRNAオリゴマーからなる二本鎖RNAを含み、
 第1のRNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなる第1のRNA配列と、第2のRNAオリゴマーの配列に相補的な10~200塩基の配列からなる第2のRNA配列を、5’末端よりこの順に含むRNA配列、
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズする第1のRNA配列と、第2のRNAオリゴマーの配列に相補的な10~200塩基の配列と90%以上の同一性を有し、かつ第2のRNAオリゴマーにハイブリダイズする第2のRNA配列を、5’末端よりこの順に含むRNA配列、
(c)第2のRNAオリゴマーの配列に相補的な10~200塩基の配列からなる第2のRNA配列と、mRNAの配列に相補的な12~40塩基の配列からなる第1のRNA配列を、5’末端よりこの順に含むRNA配列、又は
(d)第2のRNAオリゴマーの配列に相補的な10~200塩基の配列と90%以上の同一性を有し、かつ第2のRNAオリゴマーにハイブリダイズする第2のRNA配列と、mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズする第1のRNA配列と、5’末端よりこの順に含むRNA配列
 を含む、mRNAワクチン。
[3-2] 第1のRNAオリゴマーは、22~240塩基の配列からなる、上記[3-1]に記載のmRNAワクチン。
[3-3] 1つのmRNAにハイブリダイズさせる第1のRNAオリゴマーの数が、1~50個である、上記[3-1]または[3-2]に記載のmRNAワクチン。
[3-4] 第1のRNAオリゴマーは、前記(a)のRNA配列又は前記(b)のRNA配列を含み、第2のRNAオリゴマーは、5’末端にトリリン酸構造を有する、上記[3-1]~[3-3]のいずれか1項に記載のmRNAワクチン。
[3-5] 第1のRNAオリゴマーは、前記(c)のRNA配列又は前記(d)のRNA配列を含み、第1のRNAオリゴマーは、5’末端にトリリン酸構造を有する、上記[3-1]~[3-3]のいずれか1項に記載のmRNAワクチン。
[3-6] 第2のRNAオリゴマーが第1のRNAオリゴマーにハイブリダイズしている側の二本鎖RNAの末端が、平滑末端である、上記[3-1]~[3-5]のいずれか1項に記載のmRNAワクチン。
[3-7] 第2のRNAオリゴマーは10~200塩基の配列を含む、上記[3-1]~[3-6]のいずれか1項に記載のmRNAワクチン。
[3-8] 二本鎖RNAがネイキッドの形態である、上記[3-1]~[3-7]のいずれか1項に記載のmRNAワクチン。
[3-9] アジュバントと共に用いない、上記[3-1]~[3-8]のいずれか1項に記載のmRNAワクチン。
[3-10] 疾患の予防又は治療を必要とする対象において当該疾患の予防又は治療に用いるための、上記[3-1]~[3-9]のいずれか1項に記載のmRNAワクチン。
 本発明は、機能化mRNAを提供することができる。
 本発明の第1の態様は、mRNA、又はmRNA輸送担体の新たな安定化方法を提供する。好ましくは、本発明の第1の態様は、生体内において、mRNAからのタンパク質翻訳効率を維持したまま、比較的自由なmRNA修飾を実現することができる。より好ましくは、本発明の第1の態様は、生体内でのmRNAの酵素分解を抑制することができる。
 本発明の第2及び第3の態様は、効率のよいタンパク質発現及び免疫誘導を可能とする新たなmRNAワクチンを提供する。好ましくは、本発明の第2及び第3の態様のmRNAワクチンは、アジュバントを同時投与しなくても、抗原提示及び免疫誘導が可能である。より好ましくは、本発明の第2及び第3の態様のmRNAワクチンは、より強い細胞性免疫を誘導することができる。さらに好ましくは、本発明の第2及び第3のmRNAワクチンは、mRNA単独で投与するよりも強い液性免疫を誘導することができる。
RNAオリゴマーがmRNAにハイブリダイズしたことを示す電気泳動画像である。(1)overhang 2base(1)のみ;(2)overhang 2base(1)をハイブリダイズさせたmRNA;(3)overhang 2base(1)をハイブリダイズしていないmRNA。 RNAオリゴマーのmRNAへのハイブリダイズによる影響を示す図である。(A)培養細胞へのmRNA導入効率;(B)無細胞系でのタンパク質翻訳効率。 RNAオリゴマーをハイブリダイズしたmRNAを内包した高分子ミセルの物理化学的性質を示す図である。(A)PEG-PAsp(DET)+RNAオリゴ(-);(B)PEG-PAsp(DET)-Chol+RNAオリゴ(-);(C)PEG-PAsp(DET)+未修飾RNAオリゴ;(D)PEG-PAsp(DET)-Chol+未修飾RNAオリゴ;(E)PEG-PAsp(DET)+Chol-RNAオリゴ;(F)PEG-PAsp(DET)-Chol+Chol-RNAオリゴ。 Chol修飾RNAオリゴマーのmRNAへのハイブリダイズによる安定性への影響を示す図である。(A)PEG-PAsp(DET)-Chol;(B)PEG-PAsp(DET);(C)PEG-PAsp(DET)-Chol;(D)PEG-PAsp(DET);(E)PEG-PAsp(DET)-Chol。 上記の通りである。 Chol修飾RNAオリゴマーのmRNAへのハイブリダイズによる安定性への影響を示す図である。(A)PEG-PAsp(DET)-Chol+オリゴ(-);(B)PEG-PAsp(DET)-Chol+Cholオリゴ;(C)PEG-PAsp(DET)+オリゴ(-);(D)PEG-PAsp(DET)+Cholオリゴ。 複数のChol修飾RNAオリゴマーをmRNAへハイブリダイズさせたことによる安定性への影響を示す図である。10v/v%のFBS条件。 複数のChol修飾RNAオリゴマーをmRNAへハイブリダイズさせたことによる、細胞へ導入した際のたんぱく質翻訳効率への影響を示す図である。10v/v%のFBS条件。 オリゴマーへのChol修飾を3’側に行った場合と、5’側に行った場合を比較する図である。(A)安定性への影響、(B) 細胞に導入した際のたんぱく質翻訳効率。 Chol修飾RNAオリゴマーのmRNAへのハイブリダイズによる無細胞系でのタンパク質翻訳効率への影響を示す図である。 Chol修飾RNAオリゴマーの内因性遺伝子発現に対する影響を示す図である。 Chol修飾RNAオリゴマーのmRNAへのハイブリダイズによる安定性への影響を示す図である。(A)ゲル電気泳動(PEG-PLys+オリゴ(-));(B)ゲル電気泳動(PEG-PLys+Cholオリゴ);(C)翻訳効率。 マウスを用いた血中安定性試験の結果を示す図である。 Chol修飾RNAオリゴマーを肺へ投与した結果を示す図である。(A)タンパク質発現効率;(B)mRNA量。 実施例で作製したガウシアルシフェラーゼ(Gluc)のmRNAの配列である(配列番号1)。下線部がopen reading flameである。 実施例で使用したガウシアルシフェラーゼ(Gluc)のコード配列である(配列番号32)。 実施例で使用したLucのmRNAの配列である(配列番号33)。下線部がopen reading flameである。 mRNA輸送担体の安定化の概念図である。 PEG修飾RNAオリゴマーのmRNAへのハイブリダイズによる翻訳効率の変化を示す図である。 PEG修飾RNAオリゴマーのmRNAへのハイブリダイズによる安定化効果の変化を示す図である。(A)実験手順、(B)安定性への影響。 PEG化mRNAの発現試験の結果を示す図である。
ガウシアルシフェラーゼ(Gluc又はLuc)mRNAのセンス鎖及びアンチセンス鎖を示す図である。(A) Gluc sense鎖、(B)Gluc antisense鎖(poly U込み)、(C)Gluc antisense鎖(poly Uなし)、及び(D)poly U。 二本鎖RNAを示す図である。(A)mRNA:RNA、(B)mRNA:RNA poly U(-)、(C)mRNA:poly U、及び(D)mRNA:poly U ppp(-)。 二本鎖RNAを樹状細胞株(DC2.4)へ導入した結果を示す図である。(A)インターフェロンβ発現量、及び(B)Luc発現量。 二本鎖RNAをマウスに投与した結果を示す図である。(A)Luc発現量、(B)インターフェロンβ発現量、及び(C)インターロイキン6発現量。 二本鎖RNAをマウスに投与した結果を示す図である。(A)投与から細胞数定量までの手順、及び(B)IFN-γ産生細胞数。 二本鎖RNAをマウスに投与した結果を示す図である。(A)投与から抗OVA IgGの血清中濃度定量までの手順、及び(B)抗OVA IgGの血清中濃度。 実施例で作製したGluc sense鎖の配列である(配列番号51)。下線部がopen reading flameである。 実施例で作製したGluc antisense鎖(poly U込み)の配列である(配列番号52)。 実施例で作製したGluc antisense鎖(poly Uなし)の配列である(配列番号53)。 実施例で作製したpoly Uの配列である(配列番号54)。 実施例で作製したOVA sense鎖の配列である(配列番号55)。下線部がopen reading flameである。 実施例で作製したpoly Uの配列である(配列番号56)。 実施例で使用したガウシアルシフェラーゼ(Gluc)のコード配列である(配列番号57)。 実施例で使用した卵白アルブミン(OVA)のコード配列である(配列番号58)。 二本鎖RNAを樹状細胞株(DC2.4)へ導入し、ルシフェラーゼ発現量を確認した結果を示す図である。 実施例で作製した3つのpoly Uの配列である。(A)各poly Uの作製方法、及び(B)各poly Uの配列(それぞれ、配列番号56、54及び59)。
二本鎖RNAを示す図である。 二本鎖RNAを樹状細胞株(DC2.4)へ導入した結果を示す図である。未投与に対するインターフェロンβの相対発現量。 二本鎖RNAを樹状細胞株(DC2.4)へ導入した結果を示す図である。未投与に対するインターロイキン6の相対発現量。 二本鎖RNAを樹状細胞株(DC2.4)へ導入した結果を示す図である。一本鎖RNAに対するLucの相対発現量。 実施例で使用したベクターの配列である(配列番号65)。
 以下、本発明を詳細に説明するが、以下の実施の形態は本発明を説明するための例示であり、本発明はその要旨を逸脱しない限りさまざまな形態で実施することができる。また、本明細書において引用した全ての刊行物、例えば、先行技術文献及び公開公報、特許公報その他の特許文献は、その全体が本明細書において参照として組み込まれる。また、本明細書は、本願の優先権主張の基礎となる日本国特許出願である特願2016-252487号(2016年12月27日出願)及び特願2016-252488号(2016年12月27日出願)の特許請求の範囲、明細書、及び図面の開示内容を参照して組み込むものとする。
 ここでは、mRNAと、mRNAにハイブリダイズした少なくとも1つの修飾されたRNAオリゴマーとを含む二本鎖RNAを含む、機能化mRNAが提供される。以下、機能化mRNAの各態様について説明する。
1.本発明の第1の態様
1.1.本発明の第1の態様の概要
 mRNAの塩基修飾では、従来は、自由な化学修飾の設計が困難であった。そこで、本発明者らは、mRNAと相補的な配列を持つRNAオリゴマーに化学修飾を行い、それをmRNAにハイブリダイズさせることで、mRNAの化学修飾を行うことができないかと考えた(図1)。この場合、mRNA自体は天然のものであるため、翻訳の過程は障害されず、自由な化学修飾が可能になることが期待された。一方でハイブリダイズを行うことによる翻訳過程の障害も懸念されたため、まず、様々な鎖長のRNAオリゴマーをハイブリダイズさせ、翻訳効率への影響を調べた。すると、RNAオリゴマー鎖長を長くすればするほど翻訳効率が低下していく傾向にあることが明らかとなった。一方で、17~40塩基のRNAオリゴマーでは、ハイブリダイズに伴う発現の低下を十分に防ぐことができることがわかった(図2)。特に、17塩基のオリゴマーでは、ハイブリダイズに伴う発現の低下がほとんど見られなかった(図2)。これらのことから、12~40塩基のRNAオリゴマーを用いることで、翻訳効率を十分に維持することができることが分かった。
 次に、化学修飾の1例として、コレステロール(Chol)修飾RNAオリゴマーのハイブリダイズを検討した(図17)。Chol修飾を行うとmRNA輸送担体にmRNAを搭載した際、輸送担体が疎水性相互作用により安定化され、結果的にmRNAの酵素分解を防ぐことができることが期待された(図17)。mRNA輸送担体として、生体適合性ポリマー、ポリエチレングリコール(PEG)で覆われた高分子ミセルを用いた(図3、図17)。この高分子ミセルは、とりわけin vivo環境で高い安全性及びmRNA導入効率を示すことが明らかとなっている。
 Chol修飾RNAオリゴマーをハイブリダイズしたmRNAを搭載した高分子ミセルの血清中での酵素耐性を調べたところ、ハイブリダイズにより酵素耐性が顕著に向上することが明らかとなった(図4)。結果的に、培養細胞に対するmRNAの導入効率を有意に向上させることに成功した(図7)。また、生体内は、ポリアニオンが豊富に存在することから、ポリアニオン存在下での高分子ミセルの安定性は重要であるが、実際に本技術によりポリアニオン存在下でミセルの崩壊が抑制された(図5)。さらに、マウスの経気道肺投与において、mRNA導入効率を比較したところ、ここでもハイブリダイズによる導入効率向上効果が得られた(図13)。以上のことから、本発明の第1の態様により、mRNA搭載輸送担体(例えば、高分子ミセル)が安定化され、結果的にmRNA酵素分解を様々な環境下で抑制できることが明らかとなった。また、このようなChol修飾オリゴマーによる安定化効果は、複数の高分子ミセルの組成において得られており(図11)、mRNAの酵素耐性を向上させるための汎用性の高いプラットフォームと言える。
 RNAオリゴマーに関して、Chol基を5’及び3’のどちらの末端に修飾しても、安定性及びmRNAからのタンパク質発現効率に大きく影響しなかった(図8)。また、RNAオリゴマーの相補配列とChol基との間にハイブリダイズしないオーバーハング配列を挿入することもできる。例えば、Cholが修飾されたブロック共重合体を用いた場合、オーバーハング配列がない場合と比較して、2塩基のオーバーハング配列がある場合でより高い安定化効果が得られる傾向があった(図4(A)及び(C))。一方で、Cholが修飾されていないブロック共重合体を用いた場合は、オーバーハング配列がなくてもより優れた安定化効果が得られた(図4(B)及び(D))。
 ハイブリダイズするChol修飾RNAオリゴマーの数に関して、1つだけでも非常に高い安定性向上効果が得られたが、数を増やすにしたがって、安定性はさらに向上した(図6、11)。一方で、数を大きく増やすと過度の安定化による、mRNA翻訳の阻害の傾向が見られた(図9)。投与システムにより求められる安定性は異なるので、それに伴ったChol修飾オリゴマーの最適な数も異なると想定される。
 RNAオリゴマーに化学修飾を行い、それをmRNAにハイブリダイズさせることで、mRNAを自由に化学修飾できると考えられる。しかし、ハイブリダイズすることにより、mRNAからの翻訳効率が低下してしまうことが懸念されるため、化学修飾したmRNAをハイブリダイズしてmRNAの酵素分解の抑制に用いるという検討は行われてこなかった。
 本発明者らは、様々な鎖長のRNAオリゴマーをハイブリダイズさせて検討を行ったところ、安定なハイブリダイズを形成できる鎖長をもち、翻訳効率に影響しない組成として12~40塩基の相補配列を持つものがよいということを見出した。また、化学修飾RNAオリゴマーのハイブリダイズを用いた高分子ミセルの安定化において、化学修飾位置に関して5’末端でも3’末端でもよいことを見出した(図8)。また、RNAオリゴマーの相補配列とChol基との間に、オーバーハング配列がなくてもよいし、あるいは1~5塩基のオーバーハング配列があってもよいことを見出した。これらの特徴を持つ化学修飾RNAオリゴマーを用いることで、比較的高い酵素分解抑制効果が得られることは、従来の生物学的知見からは予想されない結果である。
 さらに本発明の第1の態様は、mRNA自体、又は様々な輸送担体(例えば、高分子ミセル)においてmRNAの酵素分解を抑制できる汎用性がある技術である。
1.2.二本鎖RNAおよび輸送担体
 本発明の第1の態様は、目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを含む二本鎖RNAであって、
 RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
 を含み、かつ化学修飾されていない又は化学修飾されている、二本鎖RNAを提供する。
 二本鎖RNAは、輸送担体に内包されていてよい。あるいは、二本鎖RNAは輸送担体に内包されていなくてもよく、すなわちネイキッドの形態でもよい。前者の本発明の第1の態様は、目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを内包した前記mRNAの輸送担体であって、
 RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
 を含み、かつ化学修飾されていない又は化学修飾されている、輸送担体を提供する。
 輸送担体は、核酸を内包して、対象の体内の好適な箇所に送達することができるものであればよく、特に限定されない。輸送担体は、例えば、高分子ミセル、脂質性mRNAキャリア、又はカチオン性ポリマー複合体であり、より好ましくは、高分子ミセル又は脂質性mRNAキャリアである。
 高分子ミセルは、凝縮した核酸とカチオン性ポリマーで形成される内核と親水性ポリマーで形成される外殻との二層構造を有している。カチオン性ポリマーは、例えば、ポリアミノ酸誘導体である。親水性ポリマーは、例えば、ポリエチレングリコール(「PEG」)である。内核は、mRNAを物理的又は化学的に封入する。外殻は、その物理化学的な性質によって、内殻に封入されたmRNAを所定の組織に送達する。高分子ミセルは、エンドサイトーシスによって細胞内に入り込むことができる。高分子ミセルは、例えば、ブロックポリマー上のポリカチオンと核酸の相互作用(ポリイオンコンプレックス(「PIC」))を利用することもできるほか、それと無機分子とのハイブリッドミセルを利用することもできる。PIC型高分子ミセルとしては、例えば、PEG-PAsp(DET)-Chol、PEG-PAsp(DET)、PEG-PLysとmRNAの多分子会合により形成されるPICミセル(後述の実施例を参照)や、PAsp(TET)、PAsp(TEP)といった別のポリカチオンをブロック共重合体に用いたもの(Uchida,S.,et al.,Biomaterials(2016)82,p.221-228)及びトリブロック共重合体を用いたもの(Osawa,S.,et al.Biomacromolecules 17,p354-361(2016))が挙げられる。無機分子とのハイブリッドミセルとしては、例えば、PEG化リン酸カルシウム(CaP)粒子(Pittela,et al.,Biomaterials(2011)32,p.3106-3114)、PEG化シリカ粒子(Miyata,K.,et al.Biomaterials(2010)31,p4764-4770)が挙げられる。
 脂質性mRNAキャリアは、リピッドまたはカチオニックリピッドをキャリアとして形成され、そしてmRNAが内包もしくは結合された形態にある。例えば、N-[1-(2,3-ジオレイルオキシ)プロピル]-N,N,N-トリメチルアンモニウムクロリド(DOTMA)、2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキシアミド)エチル]-N,N-ジメチル-1-プロパナミニウムトリフルオロ酢酸(DOSPA)、1、2-ジオレオイルオキシ-3-(トリメチルアンモニウム)プロパン(DOTAP)、N-[1-(2、3-ジミリスチルオキシ)プロピル]-N、N-ジメチル-N-(2-ヒドロキシエチル)アンモニウムブロミド(DMRIE)又はDC-Cholesterolといったカチオン性脂質;ジステアロイルホスファチジルコリン(DSPC)又はジオレオイルホスファチジルエタノールアミン(DOPE)といった中性リン脂質;PEG化脂質;及びコレステロールからなる群より選択される一つまたは複数からなり、それとmRNAを混合して得られるものである。
 カチオン性ポリマー複合体は、例えば、直鎖状もしくは分枝状ポリエチレンイミン、ポリリジン、ポリアルギニン、キトサン誘導体、ポリメタクリル酸誘導体とmRNAの混合物である。
 これらの輸送担体は、公知の方法又はそれに準ずる方法にて調製することができる。
 いくつかの態様では、輸送担体に内包させるmRNAの量は、輸送担体中のカチオン電荷(+)とmRNAのアニオン電荷(-)の比(+/-比)において、例えば、0.5~200であり、好ましくは1~50であり、より好ましくは1~10である。
 目的遺伝子は、当業者であれば目的に応じて適宜選択することができる。目的遺伝子は、例えば、レポーター遺伝子、成長因子遺伝子、細胞増殖因子遺伝子、細胞増殖抑制因子遺伝子、細胞死促進因子遺伝子、細胞死抑制因子遺伝子、癌抑制遺伝子、転写因子遺伝子、ゲノム編集遺伝子又はワクチン抗原遺伝子である。例えば、特定の細胞を増殖させることが必要な対象に対して該特定の細胞の増殖因子遺伝子をコードするmRNAを内包する輸送担体を投与することで、該対象における疾患や状態を処置することができる。
 レポーターとしては、例えば、発光タンパク質、及び蛍光タンパク質が挙げられる。
 成長因子としては、例えば、上皮成長因子(EGF)、インスリン様成長因子(IGF)、神経成長因子(NGF)、脳由来神経栄養因子(BDNF)、血管内皮細胞増殖因子(VEGF)、顆粒球コロニー刺激因子(G-CSF)、顆粒球マクロファージコロニー刺激因子(GM-CSF)、血小板由来成長因子(PDGF)、エリスロポエチン(EPO)、トロンボポエチン(TPO)、塩基性繊維芽細胞増殖因子(bFGF又はFGF-2)及び肝細胞増殖因子(HGF)が挙げられる。
 細胞増殖抑制因子としては、例えば、p21、p17、p16及びp53が挙げられる。
 細胞死促進因子としては、例えば、Smac/Diablo、アポトーシス誘導因子(AIF)、HtrA2、Bad、Bim、Bax、p53、カスパーゼ1、2、3、4、5、6、7、8、9及び10(例えば、カスパーゼ2、3、6、7、8、9及び10、好ましくはカスパーゼ3、6及び7)、Fasリガンド(FasL)、腫瘍壊死因子関連アポトーシス誘導リガンド(TRAIL)並びにFoxO1が挙げられる。
 細胞死抑制因子としては、例えば、抗アポトーシス因子(例えば、FLIP、Mcl-1、Xiap、crmA、Bcl-2及びBcl-xL)が挙げられる。
 癌抑制遺伝子としては、例えば、p53、網膜芽細胞腫遺伝子(Rb)、大腸腺腫症遺伝子(APC)、神経線維腫症1型遺伝子(NF1)、神経線維腫症2型遺伝子(NF2)、WT1、VHL、BRCA1、BRCA2、CHEK2、マスピン、p73、Smad4、MSH2、MLH1、PMS2、DCC、ホスファターゼテンシンホモログ(PTEN)、SDHD、p16、p57Kip2、PTC、TSC1、TSC2、EXT1及びEXT2が挙げられる。
 転写因子としては、例えば、Runt関連転写因子1(Runx1)、p53、c-fos、c-Jun、CREB、C/EBP、MyoD、c-Myc、c-Myb、Oct3/4、NF-κB、NF-AT、Mef-2及び細胞外シグナル応答因子(SRF)が挙げられる。
 ゲノム編集遺伝子としては、例えば、zinc finger nuclease(ZNF)、transcription activator like effector nuclease(TALEN)及びclustered,regularly interspaced,short palindromic repeat(CRISPR)/CRISPR-associated(Cas)9遺伝子が挙げられる。
 ワクチン抗原遺伝子としては、例えば、病原体抗原及び腫瘍特異的抗原が挙げられる。
 mRNAは、メッセンジャーRNAを意味し、通常、5’非翻訳領域(5’UTR)とコード領域と3’非翻訳領域(3’UTR)とを含む。mRNAは、さらに、通常、5’末端のキャップ構造(5’Cap)と3’末端のpoly A配列を含む。
 ここで用いるmRNAは、次のいずれかのものであってよい。
 (1)5’Cap、5’UTR、コード領域、3’UTR、及びpoly Aをこの順に含むmRNA。
 (2)5’Cap、5’UTR、コード領域、及びpoly Aをこの順に含むmRNA。
 (3)5’UTR、コード領域、3’UTR、及びpoly Aをこの順に含むmRNA。
 (4)5’UTR、コード領域、及びpoly Aをこの順に含むmRNA。
 (5)5’Cap、5’UTR、コード領域、及び3’UTRをこの順に含むmRNA。
 (6)5’Cap、5’UTR、コード領域をこの順に含むmRNA。
 (7)5’UTR、コード領域、及び3’UTRをこの順に含むmRNA。
 (8)5’UTR、コード領域をこの順に含むmRNA。
 目的遺伝子をコードするmRNAは、公知の方法により、目的遺伝子をコードするテンプレートDNAをin vitro環境下で転写することで作製することができる。例えば、Blood 108(13)(2006)4009-17に記載の方法に従って、作製することができる。具体的には、タンパク質コード配列の下流にpoly A/T鎖が組み込まれた鋳型DNAをpoly A/T鎖のすぐ下流で切断し、翻訳酵素、ヌクレオシド、5’キャップアナログを含むバッファー溶液中にてin vitro転写を行い、その後、mRNAを精製することで作製することができる。mRNAのより具体的な調製方法は後述の実施例に記載した通りである。
 いくつかの態様では、mRNA自体の塩基の化学修飾は行わない。この場合、mRNA自体は天然のものであるため、翻訳の過程はほとんど障害されないことが期待できる。別のいくつかの態様では、mRNA自体の塩基の化学修飾を行う。mRNA自体の塩基の化学修飾は、例えば、mRNAの酵素耐性を向上させることや免疫原性を軽減できることが知られているものである。そのようなmRNA自体の化学修飾塩基は、例えば、メチル化塩基(例えば、5-メチルシトシン)、硫黄修飾塩基(例えば、2-チオウリジン)、シュードウリジン、N1メチルシュードウリジン及び5メトキシウリジンが挙げられる。
 RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
を含むRNA鎖である。
 「90%以上の同一性を有するRNA配列」における「90%以上」の範囲は、例えば、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上、99.7%以上、99.8%以上、又は99.9%以上である。上記同一性の数値は、一般的に大きいほど好ましい。なお、RNA配列の同一性は、BLAST(例えば、Altzshul S.F.et al.,J.Mol.Biol.215,403(1990)参照)等の解析プログラムを用いて決定できる。BLASTを用いる場合は、各プログラムのデフォルトパラメーターを用いる。
 「mRNAにハイブリダイズする」とは、後述のハイブリダイズ条件で、RNAオリゴマーがmRNAにハイブリダイズすることを意味する。
 RNAオリゴマーは、mRNAの連続する12~40塩基の配列にハイブリダイズするように設計されている。いくつかの態様では、RNAオリゴマーの配列は、mRNAの配列に相補的な12~30塩基の配列からなる。より好ましくは、RNAオリゴマーの配列は、mRNAの配列に相補的な15~23塩基の配列からなるものである。さらに好ましくは、RNAオリゴマーの配列は、mRNAの配列に相補的な17塩基の配列からなるものである。
 RNAオリゴマーをハイブリダイズさせるmRNA中の位置は、5’UTR、コード領域、3’UTR、及びpoly A配列のいずれの位置でもよい。RNAオリゴマーは、mRNAの2次構造を予測し、mRNA鎖が2次構造を持たない部分に対してハイブリダイズするようにRNAオリゴマーを設計するのが望ましい。すなわち、RNAオリゴマーは、mRNA全配列のうち2次構造を持たない部分に対してハイブリダイズするように設計するのが好ましい。mRNAの2次構造を予測するソフトウエアとしては、例えば、後述の実施例に記載のものが挙げられる。
 いくつかの態様では、RNAオリゴマーは、mRNAのポリAの配列にハイブリダイズするように設計する。
 オリゴRNAの化学修飾は、オーバーハング配列を介さずに行ってよく、あるいは、オーバーハング配列を介して行ってもよい。ここで、「オーバーハング配列」は、mRNAにハイブリダイズしない配列である。
 化学修飾は、オーバーハング配列を介さずに行う場合、オリゴRNAは、好ましくは、前記(a)又は(b)のRNA配列のみからなる。この場合、化学修飾は、RNAオリゴマーの配列の例えば5’末端又は3’末端に行う。いくつかの態様では、輸送担体が、疎水性基により修飾されていない輸送担体(例えば、疎水性基により修飾されていないブロック共重合体)であるときに、オリゴRNAの化学修飾はオーバーハング配列を介さずに行う。
 一方、化学修飾は、オーバーハング配列を介して行う場合、オリゴRNAは、好ましくは、前記(a)又は(b)のRNA配列とオーバーハング配列からなる。この場合、化学修飾は、RNAオリゴマーの前記(a)又は(b)のRNA配列の5’末端又は3’末端に、1~5塩基のオーバーハング配列を介して行う。化学修飾をオーバーハング配列を介して行う場合、オーバーハング配列の鎖長は、好ましくは、1~4塩基であり、より好ましくは、1~3塩基であり、さらに好ましくは、2塩基である。オーバーハング配列の鎖長が1~5塩基あれば、比較的高いmRNA安定化効果が期待できる。いくつかの態様では、輸送担体が、疎水性基により修飾された輸送担体(例えば、疎水性基により修飾されたブロック共重合体)であるときに、オリゴRNAの化学修飾は、1~5塩基のオーバーハング配列を介してRNAオリゴマーの前記(a)又は(b)のRNA配列の5’末端又は3’末端になされる。
 RNAオリゴマーに関して、オーバーハング配列を介して前記(a)又は(b)のRNA配列の5’末端及び3’末端のどちらの末端を化学修飾してもよい。ここでは、オーバーハング配列を介して化学修飾したRNAオリゴマーを、「化学修飾オリゴマー」という場合がある。
 化学修飾は、例えば、ネイキッドの二本鎖RNA又はmRNA輸送担体を安定化させることができる修飾である。そのような化学修飾としては、例えば、疎水性基による修飾、ポリエチレングリコールによる修飾が挙げられる。疎水性基による修飾としては、コレステロール修飾、及びトコフェロール修飾が挙げられる。疎水性基による修飾を行うとmRNA輸送担体にmRNAを搭載した際、輸送担体が疎水性相互作用により安定化され、結果的にmRNAの酵素分解を防ぐことができることが期待できる。いくつかの態様では、疎水性基による修飾は、コレステロール修飾である。疎水性基による修飾は、例えば、(S.L.Beaucage,et al.,Tetrahedron Letters(1981)22,p.1859-1862)に記載のホスホロアミダイト法又はそれに準ずる方法にて行うことができる。疎水性基による修飾は、例えば、次のようにして行うことができる。RNAオリゴマーを合成した後、アミダイト化した疎水性基とRNAオリゴマーの5’末端OH基を反応させることで、5’末端に疎水性基を導入したRNAオリゴマーを得ることができる。また、OH基末端の疎水性基からホスホロアミダイト法によりRNA合成を行うことで、3’末端に疎水性基を導入したRNAオリゴマーを得ることができる。
 尚、「化学修飾」の定義には、5’末端のトリリン酸構造は含まれない。
 ポリエチレングリコール(PEG)による修飾を行うと、mRNA輸送担体にmRNAを搭載した際、輸送担体がポリエチレングリコール鎖により覆われ、そのステルス性により安定化されることに加え、ポリエチレングリコール鎖のシールディング効果により表面電位が減少し、カチオン性タンパク質である分解酵素からの認識を抑えることができる。その結果、mRNAの酵素分解を防ぐことができることが期待できる。ポリエチレングリコールによる修飾は、例えば、文献M.Oishi,etal.,ChemBioChem 6(4),2005,718-725に記載の方法又はそれに準ずる方法にて行うことができる。より具体的には、DMS(O)MT-AMINO-MODIFIER(GLENRESERCH)などの開始剤を用いてRNAオリゴマーを合成し、脱保護することで5’末端アミノ化RNAオリゴマーを得る。この5’末端アミノ化RNAオリゴと例えばPEG-N-hydroxysuccinimideと反応させることでPEG化RNAオリゴマーを得ることができる。用いるポリエチレングリコールとしては、例えば、重量平均分子量1,000~80,000の直鎖状のPEGや、同分子量の2分岐型、4分岐型、8分岐型などの分岐状のPEGなどが挙げられる。
 mRNAにハイブリダイズさせる化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーの数は、少なくとも1つであり、好ましくは1~50個であり、より好ましくは1~15個であり、さらに好ましくは、1~5個である。RNAオリゴマーの数を増やすにしたがって、mRNAの安定性はさらに向上する。RNAオリゴマーの数が1~50個の範囲であれば、mRNAの翻訳効率を比較的高いレベルに維持することができる。
 複数の化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをmRNAにハイブリダイズさせる場合、いくつかの態様では、それぞれの化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーがmRNA上で重ならないようにRNAオリゴマーを設計する。
 RNAオリゴマーのmRNAへのハイブリダイズは、公知の方法及び条件により行うことができる。ハイブリダイズでは、加温して、一定時間静置したのち、徐々に温度を低下させる。加温は、mRNAやオリゴマーの分子内、分子間にあらかじめ存在する相補的結合を解くことで、mRNAとオリゴマーをより効率的に結合させることを目的として行う。適切なハイブリダイズが保証されるならば、その温度時間は適宜調整可能である。温度低下は緩やかな方がハイブリダイズの特異性が増す。また、オリゴマー鎖長は、ハイブリダイズの条件設定に大きく影響しない。ハイブリダイズ効率を評価しながら、適宜条件を設定するべきである。例えば、後述の実施例に記載の方法及び条件が挙げられる。
 また、本発明の第1の態様は、目的遺伝子をコードするmRNAに、少なくとも1つのRNAオリゴマーをハイブリダイズさせて二本鎖RNAを得ることを含み、
 RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
 を含み、かつ化学修飾されていない又は化学修飾されている、mRNAの安定化方法を提供する。
 安定化方法において、化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNAは、輸送担体に内包されていてよい。あるいは、化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNAは輸送担体に内包されていなくてもよく、すなわちネイキッドの形態でもよい。好ましくは、化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNAは、輸送担体に内包されていている。前者の本発明の第1の態様は、目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを輸送担体に内包させることを含み、RNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
を含み、かつ化学修飾されていない又は化学修飾されている、輸送担体の安定化方法も提供する。
 安定化方法に用いる、mRNA、RNAオリゴマー、輸送担体、化学修飾等は、前記輸送担体に関する説明で記載した通りである。
1.3.医薬組成物
 本発明の第1の態様は、前記二本鎖RNA又は輸送担体を含有する医薬組成物を提供する。医薬組成物は、mRNA、又はmRNAを内包する輸送担体を、対象の体内に送達することに用いられる。
 「対象」は、ヒト、又はヒト以外の生物、例えば、トリ及び非ヒト哺乳動物(例えば、ウシ、サル、ネコ、マウス、ラット、モルモット、ハムスター、ブタ、イヌ、ウサギ、ヒツジ、及びウマ)である。
 医薬組成物は、対象に対し、静脈内投与、動脈内投与、経口投与、組織内投与(例えば、膀胱内投与、胸腔内投与、腹腔内投与、眼内投与、脳内投与)、経皮投与、経粘膜投与、経肺投与又は経直腸投与することができる。特に静脈内投与、経皮投与、経粘膜投与が望ましい。これらの投与に適した剤型、例えば、各種の注射剤、経口剤、点滴剤、吸入剤、点眼剤、軟膏剤、ローション剤、座剤で投与される。投与量、投与回数及び投与期間などの各条件は、mRNAの種類、剤型、年齢や体重等の対象の状態、投与経路、疾患の性質や程度を考慮した上で、当業者であれば適宜設定することができる。
 医薬組成物は、各種疾患の原因となる細胞に所望の遺伝子をコードするmRNAを導入する治療に用いることができる。よって、本発明の第1の態様は、医薬組成物を、各種疾患の治療を必要とする対象に投与することを含む、各種疾患の治療方法を提供することもできる。なお、投与量、投与回数及び投与期間などの各条件は前記と同様である。
 治療する各種疾患は、例えば、癌、ウイルス性疾患、代謝性疾患、循環器疾患、神経疾患、腎泌尿器疾患、血液学的悪性疾患、アポトーシスの促進又は抑制が所望される疾患、膠原病、呼吸器疾患及び消化器疾患が挙げられる。
 医薬組成物については、薬剤製造上一般に用いられる賦形材、充填材、増量剤、結合剤、湿潤剤、崩壊剤、潤滑剤、界面活性剤、分散剤、緩衝剤、保存剤、溶解補助剤、防腐剤、矯味矯臭剤、無痛化剤、安定化剤及び等張化剤等を適宜選択して使用し、常法により調製することができる。静脈内注射剤(点滴を含む)とする場合、例えば、単位投与量アンプル又は多投与量容器の状態等で提供される。
 いくつかの態様では、mRNAの投与量は、mRNAの種類、剤型、年齢や体重等の対象の状態、投与経路、疾患の性質や程度を考慮した上で、例えば、成人に対して、1日当たり0.1mg~5g/ヒトの範囲内が、好ましくは1mg~2gの範囲内が一般的である。この投与量は、標的とする疾患の種類、投与形態、標的分子によっても異なる場合がある。従って、場合によってはこれ以下でも十分であるし、また逆にこれ以上の用量を必要とするときもある。また1日1回から数回の投与又は1日から数日間の間隔で投与することができる。
1.4.mRNA送達用キット
 本発明の第1の態様のmRNA送達用キットは、前記化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNAを含むことを特徴とするものである。化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNAは、輸送担体に内包されていてよい。あるいは、化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNAは輸送担体に内包されていなくてもよく、すなわちネイキッドの形態でもよい。好ましくは、化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNAは、輸送担体に内包されていている。前者の本発明の第1の態様のmRNA送達用キットは、輸送担体を含むことを特徴とするものである。当該キットは、例えば、前記化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNA又は輸送担体を用いた各種疾患の治療方法に好ましく用いることができる。
 キットにおいて、前記化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNA又は輸送担体の保存状態は、限定はされず、その安定性(保存性)及び使用容易性等を考慮して溶液状又は粉末状等の状態を選択できる。
 キットは、前記化学修飾されていないRNAオリゴマー又は化学修飾RNAオリゴマーをハイブリダイズしたmRNA又は輸送担体以外に、他の構成要素を含んでいてもよい。他の構成要素としては、例えば、各種バッファー及び使用説明書(使用マニュアル)を挙げることができる。
2.本発明の第2の態様
2.1.本発明の第2の態様の概要
 mRNA自体は免疫原性が低いために炎症反応を惹起しにくい。そのため、従来の一本鎖のmRNAを用いたワクチンは、効果的に炎症反応を惹起するためのアジュバント併用が避けられなかった。
 ここで、RNAを二本鎖にするとより強い炎症反応が誘導されることが知られている。そこで、本発明者らは、抗原タンパク質をコードする一本鎖のmRNAに対して、そのmRNAに相補的な配列を持つRNA鎖(「相補鎖RNA」)をハイブリダイズさせ二本鎖RNAとして投与することに着想した。相補鎖RNAからのタンパク質発現が起こらない制御を加えることで、二本鎖RNAが目的とするタンパク質発現を得つつ、十分な免疫誘導を同時に達成することが期待できる。また、RNA分子自体は生体内に存在し、外来物質を用いるわけではないので、二本鎖RNAを用いる場合、比較的高い安全性が担保されると考えられる。
 mRNAの全長に対して相補鎖RNAをハイブリダイズさせた場合、ハイブリダイズさせていないmRNAと比べ、非常に強い炎症反応が見られたものの(図23(A))、mRNAからのタンパク質発現効率が1/100以下に低下した(図23(B))。そこで、本発明者らは、より短い相補鎖を部分的にハイブリダイズさせることに着想した。二本鎖を形成させる部位としてコード配列にハイブリダイズさせた場合は、タンパク質発現効率が低下したが、3’末端に付加されるpoly A配列に相補鎖(poly U)を主にハイブリダイズさせると、タンパク質発現効率をほとんど低下させることなく(図23(B))、強い炎症反応を惹起することが分かった(図23(A))。
 そこで、本発明の第2の態様は、抗原をコードするmRNAと、当該mRNAの少なくともpoly A配列にハイブリダイズした少なくとも1つのRNAオリゴマーからなる二本鎖RNAを含み、前記少なくとも1つのRNAオリゴマーは化学修飾されていない又は化学修飾されている、mRNAワクチンを提供する。本発明の第2の態様のmRNAワクチンは、効率よいタンパク質発現及び免疫誘導能を共に達成することができる。
 本発明の第2の態様のmRNAワクチンを用いて、実際にワクチンの効果を向上できるかについて、マウスにおける免疫誘導能を細胞性免疫に着目して評価した(図25(A))。ここでは、モデル抗原として卵白アルブミン(OVA)を用い、OVA発現mRNAをマウスの鼠径リンパ節に投与した。続いて、その1週間後の脾臓の細胞を回収し、その中でOVAに特異的に反応する細胞の数をELISPOT法にて評価した。すると、リンパ節に投与した場合に、poly A配列に相補鎖RNA(poly U)をハイブリダイズさせたmRNAが、ハイブリダイズしていないmRNAと比べて、有意に強く抗原特異的な細胞性免疫を誘導していることが明らかとなった(図25(B))。このように、本発明の第2の態様のmRNAワクチンを用いることで、細胞性免疫誘導効果が向上することが、実証された。
 さらに、本発明の第2の態様のmRNAワクチンを用いてマウスにおける免疫誘導能を液性免疫について評価したところ(図26(A))、poly A配列に相補鎖RNA(poly U)をハイブリダイズさせたmRNAが、ハイブリダイズしていないmRNAと比べて、有意に強く抗原特異的な液性免疫を誘導していることが明らかとなった(図26(B))。
 poly A配列にpoly UをハイブリダイズさせたmRNAが炎症反応を惹起するメカニズムに関する検証も行った。二本鎖RNA認識において細胞内受容体であるRIG-Iが重要な役割を担うことが知られている。そして、RIG-Iと二本鎖RNAの結合において、片方のRNA鎖の5’末端がトリリン酸化されていることが重要であるとの報告もある。5’末端がトリリン酸化された相補鎖RNA(poly U)をpoly A配列にハイブリダイズしたmRNAを用いた場合、5’末端がトリリン酸化されていない相補鎖RNA(RNA ppp(-))をpoly A配列にハイブリダイズしたmRNAを用いた場合と比較して、より強い炎症反応が惹起されることが分かった(図23(A))。従って、RIG-Iがpoly A配列をハイブリダイズさせたmRNAに対する炎症反応に強く関わっていることが示唆された。
 ここで、poly Uをハイブリダイズさせた時は炎症反応が惹起された一方で、タンパク質コード配列に対する相補鎖をハイブリダイズさせた時はあまり炎症が起きなかった(図23(A))。用いる相補鎖に依存してRIG-Iによるトリリン酸認識が異なることが強く示唆されるが、poly Uの場合、5’末端がmRNA末端に露出され、トリリン酸が立体的にRIG-Iに認識されやすくなった可能性、トリリン酸周囲の配列にUを多く含むが、AU結合が弱いのでトリリン酸の運動性が高まり、認識されやすくなった可能性等が想定される。このように相補鎖の選択がRIG-Iを介した自然免疫応答に重要である可能性が強く示唆された。
 一般的に二本鎖RNAは細胞内に導入されると強い炎症反応が惹起されることは知られる。しかし、mRNAに対して全長の相補鎖を結合させると、mRNAからのタンパク質発現を阻害してしまうことが分かった。本発明の第2の態様では、poly A配列を中心に、相補鎖を部位特異的にハイブリダイズさせることで、mRNAからのタンパク質発現を保ったまま炎症反応を惹起することができる。
2.2.mRNAワクチン
 本発明の第2の態様は、抗原をコードするmRNAと、当該mRNAの少なくともpoly A配列にハイブリダイズした少なくとも1つのRNAオリゴマーからなる二本鎖RNAを含み、前記少なくとも1つのRNAオリゴマーは化学修飾されていない又は化学修飾されている、mRNAワクチンを提供する。
2.2.1.mRNA
 mRNAは、メッセンジャーRNAを意味し、通常、5’非翻訳領域(5’UTR)とコード領域と3’非翻訳領域(3’UTR)とを含む。mRNAは、さらに、通常、5’末端のキャップ構造(5’Cap)と3’末端のpoly A配列を含む。
 mRNAワクチンに用いるmRNAは、次のいずれかのものであってよい。
 
 (1)5’Cap、5’UTR、コード領域、3’UTR、及びpoly Aをこの順に含むmRNA。
 (2)5’Cap、5’UTR、コード領域、及びpoly Aをこの順に含むmRNA。
 (3)5’UTR、コード領域、3’UTR、及びpoly Aをこの順に含むmRNA。
 (4)5’UTR、コード領域、及びpoly Aをこの順に含むmRNA。
 
 mRNAワクチンに用いるmRNAは、公知の方法により、目的遺伝子をコードするテンプレートDNAをin vitro環境下で転写することで作製することができる。例えば、Blood 108(13)(2006)4009-17に記載の方法に従って、作製することができる。具体的には、タンパク質コード配列の下流にpoly A/T鎖が組み込まれた鋳型DNAをpoly A/T鎖のすぐ下流で切断し、翻訳酵素、ヌクレオシド、5’キャップアナログを含むバッファー溶液中にてin vitro転写を行い、その後、mRNAを精製することで作製する。mRNAのより具体的な調製方法は、後述の実施例に記載の通りである。
 mRNAのコード領域によってコードされる抗原としては、免疫応答を誘発するのに好適な公知の抗原から任意に選択することができる。抗原としては、より具体的には、腫瘍抗原、ウイルス由来抗原、細菌由来抗原、真菌由来抗原、原生生物由来抗原、動物由来抗原、植物由来抗原、自己免疫疾患の自己抗原などが挙げられる。mRNAにコードされる抗原は、1つの抗原であってもよいし、あるいは、2つ以上(例えば、2つ、3つ、4つ又は5つ以上)の同一又は異なる抗原であってもよい。本発明の第2の態様のいくつかの態様では、mRNAのコードされる抗原は、1つの抗原である。
 mRNAのpoly A配列の長さは、例えば、10~500塩基であり、好ましくは、30~300塩基であり、より好ましくは、60~250塩基である。
 mRNAの5’UTRと3’UTRの配列は、天然に生じる配列と100%の配列同一性を有するものとしてよく、あるいは、部分的又はその全体を他の5’UTR及び/又は3’UTRの配列と置換してもよい。他の5’UTR及び/又は3’UTRの配列としては、例えば、グロビン、hydroxysteroid(17-β)dehydrogenase 4、又はアルブミンをコードするmRNAの5’UTR及び/又は3’UTRの配列が挙げられる。
 いくつかの態様では、mRNAは修飾されていない。この場合、mRNA自体は天然のものであるため翻訳の過程はほとんど障害されないことが期待できる。
 別のいくつかの態様では、mRNAをさらに安定化させるためにmRNAは修飾されている。mRNAの修飾としては、mRNAの塩基の化学修飾、mRNAのコード領域のG/C含量の修飾、mRNAのCap構造の修飾などが挙げられる。
 mRNAの塩基の化学修飾は、例えば、mRNAの酵素耐性を向上させることが知られているものである。そのようなmRNA自体の化学修飾塩基は、例えば、メチル化塩基(例えば、5-メチルシトシン)、硫黄修飾塩基(例えば、2-チオウリジン)、シュードウリジン、N1メチルシュードウリジン及び5-メトキシウリジンが挙げられる。
 mRNAのコード領域のG/C含量の修飾は、G(グアニン)/C(シトシン)の含有量が多くなるように修飾することであり、これにより、より安定なmRNAとすることができる。
 mRNAのCap構造の修飾は、5’側の1番目もしくは2番目のリボースの2位をメトキシ基とすることであり、これにより、発現効率が向上することも知られている。
 mRNAの調製及び修飾は、公知の方法又はそれに準ずる方法により行うことができる。
2.2.2.RNAオリゴマー
 本発明の第2の態様では、mRNAの少なくともpoly A配列に少なくとも1つのRNAオリゴマーがハイブリダイズしている。また、当該RNAオリゴマーは、化学修飾を含まないものである。
 1つのRNAオリゴマーがハイブリダイズするmRNAの配列は、例えば、次のいずれかの配列である。
 (1)mRNAのpoly A配列中の連続する配列。
 (2)mRNAの3’UTRとpoly A配列中の連続する配列。
 (3)mRNAのコード領域とpoly A配列中の連続する配列。
 (1)mRNAのpoly A配列中の連続する配列の場合、poly A配列の全体(100%)又は一部には1つのRNAオリゴマーがハイブリダイズするが、その直前の配列(すなわち、3’UTR又はコード領域)には当該RNAオリゴマーはハイブリダイズしないように、RNAオリゴマーを設計する。ここで、poly A配列の一部は、poly A配列の全長の0%より大きく100%未満の塩基長、かつ、例えば10塩基長以上の塩基長(好ましくは17塩基長以上の塩基長)の配列である。mRNAのpoly A配列部分には、RNAオリゴマーがハイブリダイズする17塩基以上の相補配列があることが好ましい。
 mRNAを、poly A配列の直前に3’UTR配列を含む設計とする場合は、1つのRNAオリゴマーがハイブリダイズする配列が、(2)mRNAの3’UTRとpoly A配列中の連続する配列であってよい。この場合、poly A配列の全体(100%)又は一部とその直前の3’UTR配列の一部の連続する配列に1つのRNAオリゴマーがハイブリダイズするように、RNAオリゴマーを設計する。この場合、1つのRNAオリゴマーは、例えば、poly A配列の全長の0%より大きく100%未満の塩基長、かつ、例えば10塩基長以上の塩基長(例えば、10、11、12、13、14、15、16または17塩基長以上の塩基長、好ましくは17塩基長以上の塩基長)の配列とその直前の3’UTR配列の全長の0%より大きく100%未満の塩基長の配列にハイブリダイズするように設計される。mRNAのpoly A配列部分と3’UTR配列部分には、RNAオリゴマーがハイブリダイズする、合わせて17塩基以上の相補配列があることが好ましい。RNAオリゴマーがハイブリダイズするmRNAの3’UTR配列部分は短ければ短いほど好ましく、例えば、1~30塩基長であり、好ましくは、1~25塩基長であり、より好ましくは、1~2塩基長である。
 mRNAを、poly A配列の直前にコード配列を含む設計とする場合は、1つのRNAオリゴマーがハイブリダイズする配列が、(3)mRNAのコード配列とpoly A配列中の連続する配列であってよい。この場合、poly A配列の全体(100%)又は一部とその直前のコード配列の一部の連続する配列に1つのRNAオリゴマーがハイブリダイズするように、RNAオリゴマーを設計する。この場合、1つのRNAオリゴマーは、例えば、poly A配列の全長の0%より大きく100%未満の塩基長、かつ、例えば10塩基長以上の塩基長(例えば、10、11、12、13、14、15、16または17塩基長以上の塩基長、好ましくは17塩基長以上の塩基長)とその直前のコード配列の全長の0%より大きく100%未満の塩基長の配列にハイブリダイズするように設計される。mRNAのpoly A配列部分とコード配列部分には、RNAオリゴマーがハイブリダイズする、合わせて17塩基以上の相補配列があることが好ましい。RNAオリゴマーがハイブリダイズするmRNAのコード配列部分は短ければ短いほど好ましく、例えば、1~30塩基長であり、好ましくは、1~25塩基長であり、より好ましくは、1~2塩基長である。
 RNAオリゴマーは、具体的には、以下のものが挙げられる。
 (a)上記(1)~(3)のいずれかの連続する配列に相補的な配列を有するRNAオリゴマー、または、
 (b)上記(1)~(3)のいずれかの連続する配列に相補的な配列と90%以上の同一性を有するRNA配列を有し、かつ、mRNAにハイブリダイズするRNAオリゴマー。
 「90%以上の同一性を有するRNA配列」における「90%以上」の範囲は、例えば、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上、99.7%以上、99.8%以上、又は99.9%以上である。上記同一性の数値は、一般的に大きいほど好ましい。なお、RNA配列の同一性は、BLAST(例えば、Altzshul S.F.et al.,J.Mol.Biol.215,403(1990)参照)等の解析プログラムを用いて決定できる。BLASTを用いる場合は、各プログラムのデフォルトパラメーターを用いる。
 「mRNAにハイブリダイズする」とは、後述のハイブリダイズ条件で、RNAオリゴマーがmRNAにハイブリダイズすることを意味する。
 RNAオリゴマーは、さらに、他の配列を含むようにしてもよいし、あるいは、他の配列を含まないようにしてもよい。「他の配列」は、例えば、RNAオリゴマーを作製する際に残ったプロモーター配列、制限酵素配列、その他、RNAオリゴマー設計の際止むを得ず残る配列、またはその一部である。「他の配列」を含み場合、「他の配列」の塩基長は、例えば、1~30塩基であり、好ましくは、1~25塩基であり、より好ましくは、1~2塩基である。
 RNAオリゴマーは、好ましくは、少なくとも10塩基の配列からなり、より好ましくは、少なくとも17塩基の配列からなり、さらに好ましくは、少なくとも30塩基の配列からなり、特に好ましくは少なくとも60塩基の配列からなる。また、いくつかの態様では、RNAオリゴマーは、好ましくは、10~500塩基の配列からなり、より好ましくは、17塩基~500塩基の配列からなり、さらに好ましくは、30~300塩基の配列からなり、特に好ましくは、60~250塩基の配列からなる。RNAオリゴマーの塩基長は、mRNAのpoly A配列の長さ等を考慮して適宜設計することができる。
 いくつかの態様のRNAオリゴマーは、化学修飾を含まないものである。別のいくつかの態様のRNAオリゴマーは、又は化学修飾を含むものである。化学修飾は、例えば、疎水性基による修飾が挙げられる。疎水性基による修飾としては、コレステロール修飾、及びトコフェロール修飾が挙げられる。また、化学修飾としては、例えば、ポリエチレングリコール修飾も挙げられる。
 尚、「化学修飾」の定義には、5’末端のトリリン酸構造は含まれない。
 RNAオリゴマーの調製は、公知の方法又はそれに準ずる方法により行うことができる。RNAオリゴマーは、テンプレートDNAよりin vitro転写にて作製される。原理上、RNAオリゴマーの調製は、前述のmRNAの作製とほぼ同様にして行うことができるが、mRNAは転写の際に5’キャップアナログを添加しているのに対して、RNAオリゴマーの作製の際はキャップアナログを添加せずに作製する。このように生物学的にRNAオリゴマーを調製した場合、5’末端にトリリン酸構造を有するものとすることができる。トリリン酸の除去方法は、後述の通りである。
2.2.3.二本鎖RNA
 二本鎖RNAは、前述のmRNAに少なくとも1つの前述のRNAオリゴマーがハイブリダイズしたものである。
 二本鎖RNAは、mRNAとRNAオリゴマーのハイブリダイゼーションにより調製することができる。ハイブリダイゼーションは、より具体的には、後述の実施例に記載の条件又はそれに準ずる条件にて行うことができる。1つのmRNAにハイブリダイズさせるRNAオリゴマーの数は、少なくとも1つであり、好ましくは1~5個であり、より好ましくは1~3個であり、さらに好ましくは、1~2個であり、特に好ましくは、1個である。
 RNAオリゴマーのmRNAへのハイブリダイズは、公知の方法及び条件により行うことができる。より具体的には、ハイブリダイズでは、加温して、一定時間静置したのち、徐々に温度を低下させる。加温は、mRNAやオリゴマーの分子内、分子間にあらかじめ存在する相補的結合を解くことで、mRNAとオリゴマーをより効率的に結合させることを目的として行う。適切なハイブリダイズが保証されるならば、その温度時間は適宜調整可能である。とりわけpoly Aやpoly Uは予め他の配列と結合している可能性は低く、より穏やかな加温条件の設定が可能である。温度低下は緩やかな方がハイブリダイズの特異性が増す。また、オリゴマー鎖長は、ハイブリダイズの条件設定に大きく影響しない。ハイブリダイズ効率を評価しながら、適宜条件を設定するべきである。例えば、後述の実施例に記載の方法及び条件が挙げられる。
 いくつかの態様では、二本鎖RNAは、RNAオリゴマーの5’末端のトリリン酸構造を有する。RNAオリゴマーの5’末端のトリリン酸構造を有するものとすることで、より強い炎症反応を惹起することができる。
 別のいくつかの態様では、二本鎖RNAは、RNAオリゴマーの5’末端のトリリン酸構造を有さない。トリリン酸化を除く方法は、公知の方法又はそれに準ずる方法で行うことができる。トリリン酸化を除く方法としては、例えば、後述の実施例のように、Antarctic phosphatase(New England Biolabs,cat.no.M0289S)を用いる方法が挙げられる。
 いくつかの態様では、二本鎖RNAは、ネイキッドの形態である。すなわち、二本鎖RNAは、輸送担体を伴わない。
 別のいくつかの態様では、二本鎖RNAは、輸送担体に内包される形態である。輸送担体は、二本鎖mRNAを内包して、対象の体内の好適な箇所に送達することができるものであればよく、特に限定されない。輸送担体は脂質性mRNAキャリア、又はカチオン性ポリマー複合体であり、より好ましくは、高分子ミセル又は脂質性mRNAキャリアである。
 高分子ミセルは、凝縮した核酸とカチオン性ポリマーで形成される内核と親水性ポリマーで形成される外殻との二層構造を有している。カチオン性ポリマーは、例えば、ポリアミノ酸誘導体である。親水性ポリマーは、例えば、ポリエチレングリコール(「PEG」)である。内核は、mRNAを物理的又は化学的に封入する。外殻は、その物理化学的な性質によって、内殻に封入されたmRNAを所定の組織に送達する。高分子ミセルは、エンドサイトーシスによって細胞内に入り込むことができる。高分子ミセルは、例えば、ブロックポリマー上のポリカチオンと核酸の総合作用(ポリイオンコンプレックス(「PIC」))を利用することもできるほか、それと無機分子とのハイブリットミセルを利用することもできる。PIC型高分子ミセルとしては、例えば、PEG-PAsp(DET)-Chol、PEG-PAsp(DET)、PEG-PLysとmRNAの多分子会合により形成されるPICミセルや、PAsp(TET), PAsp(TEP)といった別のポリカチオンをブロック共重合体に用いたもの(Uchida, S., et al.,Biomaterials (2016)82,p.221-228)及びトリブロック共重合体を用いたもの(Osawa, S., et al. Biomacromolecules 17, p354-361 (2016))が挙げられる。無機粒子とのハイブリッド型高分子ミセルとしては、例えば、PEG化リン酸カルシウム(CaP)粒子(Pittela,et al.,Biomaterials(2011)32,p.3106-3114)、PEG化シリカ粒子(Miyata, K., et al. Biomaterials (2010)31, p4764-4770 )が挙げられる。
 脂質性mRNAキャリアは、リピッドまたはカチオニックリピッドをキャリアとして形成され、そしてmRNAが内包もしくは結合された形態にある。例えば、N-[1-(2,3-ジオレイルオキシ)プロピル]-N,N,N-トリメチルアンモニウムクロリド(DOTMA)、2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキシアミド)エチル]-N,N-ジメチル-1-プロパナミニウムトリフルオロ酢酸(DOSPA)、1、2-ジオレオイルオキシ-3-(トリメチルアンモニウム)プロパン(DOTAP)、N-[1-(2、3-ジミリスチルオキシ)プロピル]-N、N-ジメチル-N-(2-ヒドロキシエチル)アンモニウムブロミド(DMRIE)又はDC-cholesterolといったカチオン性脂質;ジステアロイルホスファチジルコリン(DSPC)又はジオレオイルホスファチジルエタノールアミン(DOPE)といった中性リン脂質;PEG化脂質;及びコレステロールからなる群より選択される一つまたは複数からなり、それとmRNAを混合して得られるものである。
 カチオン性ポリマー複合体は、例えば、直鎖状もしくは分枝状ポリエチレンイミン、ポリリジン、ポリアルギニン、キトサン誘導体、ポリメタクリル酸誘導体とmRNAの混合物である。
 これらの輸送担体は、公知の方法又はそれに準ずる方法にて調製することができる。
2.2.4.アジュバント
 いくつかの好ましい態様では、RNAワクチンは、アジュバントと共には用いない。
 別のいくつかの態様では、RNAワクチンは、アジュバントと共に用いる。アジュバントと共に用いる場合、RNAワクチンは、アジュバントと共に製剤化されてもよい。アジュバントは、免疫反応を増強するのに好適な任意の化合物である。そのようなアジュバントは公知であり、当業者であれば、任意のアジュバントの中から適切なものを選択することができる。
2.3.疾患の予防又は治療
 mRNAワクチンは、疾患の予防又は治療を必要とする対象において当該疾患の予防又は治療に用いることができる。
 予防又は治療する疾患は、例えば、がん、ウイルス性感染症、細菌性感染症、真菌感染症、原生生物感染症、及び自己免疫疾患を挙げることができる。前述のmRNAのコード領域がコードする抗原を、予防又は治療する疾患に応じて適切に選択することで、当該疾患を予防又は治療することができる。
 「対象」は、ヒト、又はヒト以外の生物、例えば、トリ及び非ヒト哺乳動物(例えば、ウシ、サル、ネコ、マウス、ラット、モルモット、ハムスター、ブタ、イヌ、ウサギ、ヒツジ、及びウマ)である。
 mRNAワクチンは、常法に従って製剤化することができる。いくつかの態様では、mRNAワクチンは、医薬的に許容される添加剤を含む。医薬的に許容される添加剤としては、水、医薬的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース、医薬的に許容される界面活性剤等が挙げられる。
 上記添加剤は、mRNAワクチンの剤形に応じて上記の中から単独で又は適宜組み合わせて選ばれる。例えば、注射用製剤として使用する場合、精製された二本鎖RNAを溶剤(例えば生理食塩水、緩衝液、ブドウ糖溶液等)に溶解し、これにTween80、Tween20、ゼラチン、ヒト血清アルブミン等を加えたものを使用することができる。あるいは、使用前に溶解する剤形とするために凍結乾燥したものであってもよい。凍結乾燥用賦形剤としては、例えばマンニトール、ブドウ糖、ラクトース、スクロース、マンニトール、ソルビトール等の糖類、トウモロコシ、コムギ、イネ、ジャガイモまたは他の植物由来のデンプン等のデンプン、メチルセルロース、ヒドロキシプロピルメチルセルロース又はカルボキシメチルセルロースナトリウム等のセルロース、アラビアゴム、トラガカントゴム等のゴム、ゼラチン、コラーゲン等などが挙げられる。
 mRNAワクチンの投与量は、対象の年齢、性別、症状、投与経路、投与回数、剤形などによって適宜選択することができる。mRNAワクチンの有効投与量は、疾患の兆候又は状態を軽減するワクチンの量である。このようなmRNAワクチンの治療効果及び毒性は、細胞培養又は実験動物における標準的な薬学的手順、例えば、ED50(集団の50%において治療的に有効な用量)、及びLD50(集団の50%に対して致死的である用量)によって決定することができる。いくつかの態様では、mRNAワクチンの投与量は、成人に対して、1日当たり10ng~1g、100ng~100mg、1μg~10μg、又は30μg~300μgのmRNAの範囲とする。
 mRNAワクチンの投与経路は適切に選択することができ、例えば、経皮、鼻腔内、経気管支、筋内、腹腔内、静脈内、皮下、直腸内、及び膣内の経路を含むが、これらの経路に限定されるものではない。
 mRNAワクチンの投与回数は、1回、又は副作用が臨床上許容される範囲内である限り複数回とすることができる。
 いくつかの態様では、mRNAワクチン投与における抗体価又は細胞性免疫活性を測定する。例えば、抗体価は、生体より血液を採取し、血清中のIgGを定量することにより評価できる。細胞性免疫活性は、生体よりリンパ球を分離及び培養し、H-チミジンの取り込みを測定することにより評価できる。
2.4.キット
 本発明の第2の態様のキットは、前記mRNAワクチンを含むことを特徴とするものである。当該キットは、例えば、前記RNAワクチンを用いた前記各種疾患の治療方法に好ましく用いることができる。
 キットにおいて、前記mRNAワクチンの保存状態は、限定はされず、その安定性(保存性)及び使用容易性等を考慮して溶液状又は粉末状等の状態を選択できる。
 キットは、前記mRNAワクチン以外に、他の構成要素を含んでいてもよい。他の構成要素としては、例えば、各種バッファー及び使用説明書(使用マニュアル)を挙げることができる。キットには、アジュバントを含めてもよいし、含めなくてもよい。好ましくは、キットは、アジュバントを含めない。
3.本発明の第3の態様
3.1.本発明の第3の態様の概要
 二本鎖RNA認識において細胞内受容体であるRIG-Iが重要な役割を担うことが知られている。そして、RIG-Iと二本鎖RNAの結合において、片方のRNA鎖の5’末端がトリリン酸化されていることが重要であるとの報告もある。5’末端がトリリン酸化された第2のRNAオリゴマーを第1のRNAオリゴマーにハイブリダイズし、これをmRNAにハイブリダイズした二本鎖mRNAを作製した。図37の二本鎖mRNAは、1つのmRNAにつき、5つのRNAオリゴマーをハイブリダイズさせたものを例示している。一方、後述の実施例では、1つのmRNAにつき、1~3個のRNAオリゴマーをハイブリダイズさせたものを用いた。これらの二本鎖mRNAを用いた場合、ハイブリダイズさせていないmRNAと比べ、免疫賦活化作用が向上し(図38及び39)、また、mRNAの発現効率は維持された(図40)。このとき、免疫賦活化作用は、mRNAにハイブリダイズする二本鎖RNAオリゴマーの個数が増えるにしたがって向上した(図38及び39)。従って、RIG-IがRNAオリゴマーをハイブリダイズさせたmRNAに対する炎症反応に強く関わっていることが示唆された。
 本発明の第2の態様の特定のmRNAワクチンはタンパク質発現効率がやや低下したが(図40の「mRNA:pU」)、上記の二本鎖mRNAを用いた場合、翻訳活性が十分に維持された(図40の「1個」、「2個」及び「3個」)。さらに、ハイブリダイズするRNAオリゴマー数を調整することで、免疫応答の強度を調整することができた(図38及び39の「1個」、「2個」及び「3個」)。過度の炎症は副作用の原因ともなるほか、ワクチン効果を得る上でも好ましくない可能性がある。RNAオリゴマーの数を変えることで、今回の免疫応答の強度を調整できた点は、ワクチン効果を得るのに適当な強度の炎症反応を得る上で極めて重要となる。
 また、本発明の第3の態様のmRNAワクチンは、第2の態様のmRNAワクチンと比べ、RIG-I認識に必要な平滑5’末端トリリン酸化構造を構築するのが容易である。
 さらに、本発明の第3の態様のmRNAワクチンは、in vitro転写で第2のRNA鎖を調製する際に副産物として目的RNAの相補鎖RNAが転写されるが、第2の態様の特定のmRNAワクチンと比べ、その副産物の産生を容易に回避できる。
3.2.mRNAワクチン
 本発明の第3の態様は、抗原をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つの第1のRNAオリゴマーと、当該第1のRNAオリゴマーにハイブリダイズした第2のRNAオリゴマーからなる二本鎖RNAを含み、
 第1のRNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなる第1のRNA配列と、第2のRNAオリゴマーの配列に相補的な10~200塩基の配列からなる第2のRNA配列を、5’末端よりこの順に含むRNA配列、
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズする第1のRNA配列と、第2のRNAオリゴマーの配列に相補的な10~200塩基の配列と90%以上の同一性を有し、かつ第2のRNAオリゴマーにハイブリダイズする第2のRNA配列を、5’末端よりこの順に含むRNA配列、
(c)第2のRNAオリゴマーの配列に相補的な10~200塩基の配列からなる第2のRNA配列と、mRNAの配列に相補的な12~40塩基の配列からなる第1のRNA配列を、5’末端よりこの順に含むRNA配列、又は
(d)第2のRNAオリゴマーの配列に相補的な10~200塩基の配列と90%以上の同一性を有し、かつ第2のRNAオリゴマーにハイブリダイズする第2のRNA配列と、mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズする第1のRNA配列と、5’末端よりこの順に含むRNA配列
 を含む、mRNAワクチンを提供する。
3.2.1.mRNA
 mRNAは、メッセンジャーRNAを意味し、通常、5’非翻訳領域(5’UTR)とコード領域と3’非翻訳領域(3’UTR)とを含む。mRNAは、さらに、通常、5’末端のキャップ構造(5’Cap)と3’末端のpoly A配列を含む。
 mRNAワクチンに用いるmRNAは、次のいずれかのものであってよい。
 (1)5’Cap、5’UTR、コード領域、3’UTR、及びpoly Aをこの順に含むmRNA。
 (2)5’Cap、5’UTR、コード領域、及びpoly Aをこの順に含むmRNA。
 (3)5’UTR、コード領域、3’UTR、及びpoly Aをこの順に含むmRNA。
 (4)5’UTR、コード領域、及びpoly Aをこの順に含むmRNA。
 mRNAワクチンに用いるmRNAは、公知の方法により、目的遺伝子をコードするテンプレートDNAをin vitro環境下で転写することで作製することができる。例えば、Blood 108(13)(2006)4009-17に記載の方法に従って、作製することができる。具体的には、タンパク質コード配列の下流にpoly A/T鎖が組み込まれた鋳型DNAをpoly A/T鎖のすぐ下流で切断し、翻訳酵素、ヌクレオシド、5’キャップアナログを含むバッファー溶液中にてin vitro転写を行い、その後、mRNAを精製することで作製する。mRNAのより具体的な調製方法は、後述の実施例に記載の通りである。
 mRNAのコード領域によってコードされる抗原としては、免疫応答を誘発するのに好適な公知の抗原から任意に選択することができる。抗原としては、より具体的には、腫瘍抗原、ウイルス由来抗原、細菌由来抗原、真菌由来抗原、原生生物由来抗原、動物由来抗原、植物由来抗原、自己免疫疾患の自己抗原などが挙げられる。mRNAにコードされる抗原は、1つの抗原であってもよいし、あるいは、2つ以上(例えば、2つ、3つ、4つ又は5つ以上)の同一又は異なる抗原であってもよい。本発明の第3の態様のいくつかの態様では、mRNAのコードされる抗原は、1つの抗原である。
 mRNAのpoly A配列の長さは、例えば、10~500塩基であり、好ましくは、30~300塩基であり、より好ましくは、60~250塩基である。
 mRNAの5’UTRと3’UTRの配列は、天然に生じる配列と100%の配列同一性を有するものとしてよく、あるいは、部分的又はその全体を他の5’UTR及び/又は3’UTRの配列と置換してもよい。他の5’UTR及び/又は3’UTRの配列としては、例えば、グロビン、hydroxysteroid(17-β)dehydrogenase 4、又はアルブミンをコードするmRNAの5’UTR及び/又は3’UTRの配列が挙げられる。
 いくつかの態様では、mRNAは修飾されていない。この場合、mRNA自体は天然のものであるため翻訳の過程はほとんど障害されないことが期待できる。
 別のいくつかの態様では、mRNAをさらに安定化させるためにmRNAは修飾されている。mRNAの修飾としては、mRNAの塩基の化学修飾、mRNAのコード領域のG/C含量の修飾、mRNAのCap構造の修飾などが挙げられる。
 mRNAの塩基の化学修飾は、例えば、mRNAの酵素耐性を向上させることが知られているものである。そのようなmRNA自体の化学修飾塩基は、例えば、メチル化塩基(例えば、5-メチルシトシン)、硫黄修飾塩基(例えば、2-チオウリジン)、シュードウリジン、N1メチルシュードウリジン及び5-メトキシウリジンが挙げられる。
 mRNAのコード領域のG/C含量の修飾は、G(グアニン)/C(シトシン)の含有量が多くなるように修飾することであり、これにより、より安定なmRNAとすることができる。
 mRNAのCap構造の修飾は、5’側の1番目もしくは2番目のリボースの2位をメトキシ基とすることであり、これにより、発現効率が向上することも知られている。
 mRNAの調製及び修飾は、公知の方法又はそれに準ずる方法により行うことができる。
3.2.2.RNAオリゴマー
 本発明の第3の態様では、少なくとも1つの第1のRNAオリゴマーがmRNAにハイブリダイズする。また、さらに第2のRNAオリゴマーが第1のRNAオリゴマーにハイブリダイズしている。
 第1のRNAオリゴマーは、
 (a)mRNAの配列に相補的な12~40塩基の配列からなる第1のRNA配列と、第2のRNAオリゴマーの配列に相補的な10~200塩基の配列からなる第2のRNA配列を、5’末端よりこの順に含むRNA配列、
 (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズする第1のRNA配列と、第2のRNAオリゴマーの配列に相補的な10~200塩基の配列と90%以上の同一性を有し、かつ第2のRNAオリゴマーにハイブリダイズする第2のRNA配列を、5’末端よりこの順に含むRNA配列、
(c)第2のRNAオリゴマーの配列に相補的な10~200塩基の配列からなる第2のRNA配列と、mRNAの配列に相補的な12~40塩基の配列からなる第1のRNA配列を、5’末端よりこの順に含むRNA配列、又は
(d)第2のRNAオリゴマーの配列に相補的な10~200塩基の配列と90%以上の同一性を有し、かつ第2のRNAオリゴマーにハイブリダイズする第2のRNA配列と、mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズする第1のRNA配列と、5’末端よりこの順に含むRNA配列
 を含むRNA鎖である。
 「90%以上の同一性を有するRNA配列」における「90%以上」の範囲は、例えば、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上、99.7%以上、99.8%以上、又は99.9%以上である。上記同一性の数値は、一般的に大きいほど好ましい。なお、RNA配列の同一性は、BLAST(例えば、Altzshul S.F.et al.,J.Mol.Biol.215,403(1990)参照)等の解析プログラムを用いて決定できる。BLASTを用いる場合は、各プログラムのデフォルトパラメーターを用いる。
 「mRNAにハイブリダイズする」とは、後述のハイブリダイズ条件で、RNAオリゴマーがmRNAにハイブリダイズすることを意味する。「第1のRNAにハイブリダイズする」とは、後述のハイブリダイズ条件で、第2のRNAオリゴマーが第1のRNAにハイブリダイズすることを意味する。
 第1のRNAオリゴマーの第1のRNA配列は、mRNAの連続する12~40塩基の配列にハイブリダイズするように設計されている。いくつかの態様では、第1のRNAオリゴマーの第1のRNA配列は、mRNAの配列に相補的な12~30塩基の配列からなる。より好ましくは、第1のRNAオリゴマーの第1のRNA配列は、mRNAの配列に相補的な15~23塩基の配列からなるものである。さらに好ましくは、第1のRNAオリゴマーの配列の第1のRNA配列は、mRNAの配列に相補的な17塩基の配列からなるものである。
 RNAオリゴマーをハイブリダイズさせるmRNA中の位置は、5’UTR、コード領域、3’UTR、及びpoly A配列のいずれの位置でもよい。RNAオリゴマーは、mRNAの2次構造を予測し、mRNA鎖が2次構造を持たない部分に対してハイブリダイズするようにRNAオリゴマーを設計するのが望ましい。すなわち、RNAオリゴマーは、mRNA全配列のうち2次構造を持たない部分に対してハイブリダイズするように設計するのが好ましい。mRNAの2次構造を予測するソフトウエアとしては、例えば、後述の実施例に記載のものが挙げられる。いくつかの態様では、RNAオリゴマーは、mRNAの5’UTR、コード領域および3’UTRの少なくとも1つの配列にハイブリダイズするように設計する。
 第1のRNAオリゴマーの第2のRNA配列は、第1のRNA配列が前記各塩基長であることに加えて、第2のRNAオリゴマーの連続する10~200塩基の配列にハイブリダイズするように設計されている。いくつかの態様では、第1のRNAオリゴマーの第2のRNA配列は、第1のRNA配列が前記各塩基長であることに加えて、第2のRNAオリゴマーの配列に相補的な15~150塩基の配列からなる。より好ましくは、第1のRNAオリゴマーの第2のRNA配列は、第1のRNA配列が前記各塩基長であることに加えて、第2のRNAオリゴマーの配列に相補的な20~100塩基の配列からなるものである。さらに好ましくは、第1のRNAオリゴマーの配列の第2のRNA配列は、第1のRNA配列が前記各塩基長であることに加えて、第2のRNAオリゴマーの配列に相補的な20~80塩基の配列からなるものである。
 第1のRNAオリゴマーの第2のRNA配列は、例えば、次のように設計する。すなわち、以下の(i)~(iv)の少なくとも1つを満たすように、より好ましくは、2つ、3つ、または4つを満たすように設計する。いくつかの好ましい態様では、第1のRNAオリゴマーの第2のRNA配列は、少なくとも以下の(i)及び(ii)を満たすように、より好ましくは、さらに以下の(iii)及び(iv)の少なくとも1つを満たすように設計する。
(i)テンプレートDNAをin vitro環境下で転写することにより5’末端トリリン酸化を含む第2のRNAオリゴマーを調製する際に、目的RNAオリゴマーに対する相補鎖RNA(副産物)が形成されないようにすること、
(ii)第2のRNAオリゴマーが第1のRNAオリゴマーにハイブリダイズしている側の二本鎖RNAの末端が、5’末端トリリン酸化構造、好ましくは平滑5’末端トリリン酸化構造を取るようにすること、
(iii)第2のRNA配列及び第2のRNAオリゴマーがmRNA上の配列にハイブリダイズしないこと、及び
(iv)第1及び第2のRNAオリゴマーが2次構造を作らないこと。
 ここで、「(i)テンプレートDNAをin vitro環境下で転写することにより5’末端トリリン酸化を含む第2のRNAオリゴマーを調製する際に、目的RNAオリゴマーに対する相補鎖RNA(副産物)が形成されないようにする」ためには、例えば、次のように設計する。すなわち、相補鎖RNAの転写に必要な塩基を除いて第2のRNAオリゴマーを調製する。そこで、その塩基を除いても、目的とする第2のRNAオリゴマーが転写されるように、テンプレートDNAを設計する。例えば、配列GUGUGUGUGU(配列番号67)を、in vitro転写する際、配列ACACACACAC(配列番号68)が副産物として生じうるが、Aを除いてin vitro転写することでこの副産物の生成は回避される。そして、このような第2のRNAオリゴマーが調製できるように、第1のRNAオリゴマーの第2のRNA配列を設計する。
 また、「(ii)第2のRNAオリゴマーが第1のRNAオリゴマーにハイブリダイズしている側の二本鎖RNAの末端が、5’末端トリリン酸化構造、好ましくは平滑5’末端トリリン酸化構造を取るようにする」ためには次のように設計する。
 すなわち、第1のRNAオリゴマーが前記(a)のRNA配列又は前記(b)のRNA配列であるときは、5’末端にトリリン酸化構造を有する第2のRNAオリゴマーをin vitro転写させることで第2のオリゴマーを調製する。好ましくは、このとき、第2のオリゴマーの5’末端と、第1オリゴマーの3’末端がハイブリダイズしたときに平滑末端になるように第1のオリゴマーを調製する。そして、このような第1及び第2のRNAオリゴマーが調製できるように、第1のRNAオリゴマーの第2のRNA配列を設計する。
 一方、第1のRNAオリゴマーが前記(c)のRNA配列又は前記(d)のRNA配列であるときは、第1のRNAオリゴマーをin vitro転写させることで第1のRNAオリゴマーを調製する。好ましくは、このとき、第1のRNAオリゴマーの5’末端と、第2のRNAオリゴマーの3’末端がハイブリダイズしたときに平滑末端になるよう第2オリゴマーを調製する。そして、このような第1及び第2のRNAオリゴマーが調製できるように、第1のRNAオリゴマーの第2のRNA配列を設計する。
 「(iii)第2のRNA配列及び第2のRNAオリゴマーがmRNA上の配列にハイブリダイズしない」ようにするためには、設計後の2次構造を、複数のRNA鎖の2次構造を予測できるソフト(NUPACK,http://www.nupack.org)等で検証する。
 「(iv)第1及び第2のRNAオリゴマーが2次構造を作らない」ようにするためには、設計後の2次構造を、複数のRNA鎖の2次構造を予測できるソフト(NUPACK,http://www.nupack.org)等で検証する。
 第1のRNAオリゴマーの第1のRNA配列と第2のRNA配列の間には、リンカー配列が含まれていてもよいし、含まれていなくてもよい。いくつかの態様では、リンカー配列が含まれる。リンカー配列の塩基長は、第1のRNA配列と第2のRNA配列が前記各塩基長であることに加えて、好ましくは1~100塩基であり、より好ましくは2~30塩基であり、さらに好ましくは2~20塩基である。リンカー配列は、具体的には、mRNAやRNAオリゴマーの他の部位とハイブリダイズしないように、又はハイブリダイズしづらいように設計する。いくつかの態様では、リンカー配列は、mRNAにハイブリダイズしづらいように、アデニン(A)やウラシル(U)を用いたリンカーを設計する。このとき、Uを用いたリンカーは一定以上長くなるとpoly Aと結合する可能性があるので、原則として、Aを使うのが好ましい。例えば、リンカー配列は、前記塩基長のオリゴアデニン配列である。ただし、リンカー配列のその位置に対応するmRNAがウラシル(U)であると、その位置の塩基をアデニン(A)にするとmRNAにハイブリダイズされてしまう。この場合、その位置の塩基をウラシル(U)に変えるのが好ましい。
 第1のRNAオリゴマーは、さらに、他の配列を含むようにしてもよいし、あるいは、他の配列を含まないようにしてもよい。いくつかの態様では、他の配列が含まれる。「他の配列」は、例えば、RNAオリゴマーを作製する際に残ったプロモーター配列、制限酵素配列、その他RNAオリゴマー設計の際止むを得ず残る配列、またはその一部である。「他の配列」を含み場合、「他の配列」の塩基長は、例えば、1~30塩基であり、好ましくは、1~25塩基であり、より好ましくは、1~2塩基である。
 第2のRNAオリゴマーは、第1のRNAオリゴマーの第2のRNA配列にハイブリダイズする例えば10~200塩基の配列を含み、好ましくは15~150塩基の配列を含み、より好ましくは20~100塩基の配列を含み、さらに好ましくは24塩基の配列を含む。第2のRNAオリゴマーの設計方法は、上記第1のRNAオリゴマーの第2のRNA配列で説明した通りである。
 第2のRNAオリゴマーは、さらに、他の配列を含むようにしてもよいし、あるいは、他の配列を含まないようにしてもよい。「他の配列」は、例えば、RNAオリゴマーを作製する際に残ったプロモーター配列、制限酵素配列、その他RNAオリゴマー設計の際止むを得ず残る配列、またはその一部である。「他の配列」を含み場合、「他の配列」の塩基長は、例えば、1~30塩基であり、好ましくは、1~25塩基であり、より好ましくは、1~2塩基である。
 いくつかの態様では、第1及び第2のRNAオリゴマーは、化学修飾を含まないものである。別のいくつかの態様の第1及び第2のRNAオリゴマーは、化学修飾を含むものである。化学修飾は、例えば、疎水性基による修飾が挙げられる。疎水性基による修飾としては、コレステロール修飾、及びトコフェロール修飾が挙げられる。また、化学修飾としては、例えば、ポリエチレングリコール修飾も挙げられる。
 尚、「化学修飾」の定義には、5’末端のトリリン酸構造は含まれない。
 第1および第2のRNAオリゴマーの調製は、公知の方法又はそれに準ずる方法により行うことができる。具体的には、第1及び第2のRNAオリゴマーは、例えば、テンプレートDNAよりin vitro転写にて作製される。原理上、第1及び第2のRNAオリゴマーの調製は、前述のmRNAの作製とほぼ同様にして行うことができるが、mRNAは転写の際に5’キャップアナログを添加しているのに対して、第1及び第2のRNAオリゴマーの作製の際はキャップアナログを添加せずに作製する。このように生物学的に第1及び第2のRNAオリゴマーを調製した場合、5’末端にトリリン酸構造を有するものとすることができる。トリリン酸の除去方法は、後述の通りである。5’末端にトリリン酸構造を有さない方のRNAオリゴマーに関しては、化学合成することができる。
3.2.3.二本鎖RNA
 ここで、「二本鎖RNA」は、前述のmRNAに少なくとも1つの前述の第1のRNAオリゴマーがハイブリダイズし、かつ第1のRNAオリゴマーに第2のRNAオリゴマーがハイブリダイズしたものである。また、第1のRNAオリゴマーと、第1のRNAオリゴマーにハイブリダイズした第2のRNAオリゴマーからなるものを、「二本鎖RNAオリゴマー」という場合がある。
 二本鎖RNAは、mRNAと第1のRNAオリゴマーのハイブリダイゼーションおよび第1のRNAオリゴマーと第2のRNAオリゴマーのハイブリダイゼーションにより調製することができる。ハイブリダイゼーションは、より具体的には、後述の実施例に記載の条件又はそれに準ずる条件にて行うことができる。
 1つのmRNAにハイブリダイズさせる第1のRNAオリゴマーの数は、少なくとも1つであり、好ましくは1~50個であり、より好ましくは1~15個であり、さらに好ましくは、1~5個である。第1のRNAオリゴマーの数が1~50個の範囲であれば、mRNAの翻訳効率を比較的高いレベルに維持することができる。また、1つのmRNAにハイブリダイズさせる第1のRNAオリゴマーと第2のRNAオリゴマーからなる二本鎖RNAオリゴマーの個数が増えると、免疫賦活作用が向上する。このため、1つのmRNAにハイブリダイズさせる第1のRNAオリゴマーと第2のRNAオリゴマーからなる二本鎖RNAオリゴマーの個数を調節することで、免疫反応を調節することができる。
 そこで、ここでは、1つのmRNAにハイブリダイズさせる二本鎖RNAオリゴマーの個数を調節することを含む、免疫反応を調節する方法が提供される。
 また、1つの第1のRNAオリゴマーにハイブリダイズさせる第2のRNAオリゴマーの数は1つである。
 RNAオリゴマーのmRNAへのハイブリダイズは、公知の方法及び条件により行うことができる。より具体的には、ハイブリダイズでは、加温して、一定時間静置したのち、徐々に温度を低下させる。加温は、mRNAやオリゴマーの分子内、分子間にあらかじめ存在する相補的結合を解くことで、mRNAとオリゴマーをより効率的に結合させることを目的として行う。適切なハイブリダイズが保証されるならば、その温度時間は適宜調整可能である。とりわけpoly Aやpoly Uは予め他の配列と結合している可能性は低く、より穏やかな加温条件の設定が可能である。温度低下は緩やかな方がハイブリダイズの特異性が増す。また、オリゴマー鎖長は、ハイブリダイズの条件設定に大きく影響しない。ハイブリダイズ効率を評価しながら、適宜条件を設定するべきである。例えば、後述の実施例に記載の方法及び条件が挙げられる。
 いくつかの態様では、二本鎖RNAは、RNAオリゴマーの5’末端のトリリン酸構造を有する。RNAオリゴマーの5’末端のトリリン酸構造を有するものとすることで、より強い炎症反応を惹起することができる。
 別のいくつかの態様では、二本鎖RNAは、RNAオリゴマーの5’末端のトリリン酸構造を有さない。トリリン酸化を除く方法は、公知の方法又はそれに準ずる方法で行うことができる。トリリン酸化を除く方法としては、例えば、後述の実施例のように、Antarctic phosphatase(New England Biolabs,cat.no.M0289S)を用いる方法が挙げられる。
 いくつかの態様では、二本鎖RNAは、第2のRNAオリゴマーが第1のRNAオリゴマーにハイブリダイズしている側の末端が、平滑末端である。平滑末端の5’にトリリン酸化構造がある際にRIG-Iを介した、免疫誘導が向上されることが知られている。in vitro転写により5’末端トリリン酸化を含むRNAを転写する際、目的RNAに対する相補鎖RNAが形成されないよう設計する。ここでは、相補鎖RNAの転写に必要な塩基を除いてRNAを調製する。そこで、その塩基を除いても、目的とするRNAが転写されるよう設計する。例えば、配列GUGUGUGUGU(配列番号67)を、in vitro転写する際、配列ACACACACAC(配列番号68)が副産物として生じうるが、Aを除いてin vitro転写することでこの副産物の生成は回避される。
 いくつかの態様では、二本鎖RNAは、ネイキッドの形態である。すなわち、二本鎖RNAは、輸送担体を伴わない。
 別のいくつかの態様では、二本鎖RNAは、輸送担体に内包される形態である。輸送担体は、二本鎖mRNAを内包して、対象の体内の好適な箇所に送達することができるものであればよく、特に限定されない。輸送担体は脂質性mRNAキャリア、又はカチオン性ポリマー複合体であり、より好ましくは、高分子ミセル又は脂質性mRNAキャリアである。
 高分子ミセルは、凝縮した核酸とカチオン性ポリマーで形成される内核と親水性ポリマーで形成される外殻との二層構造を有している。カチオン性ポリマーは、例えば、ポリアミノ酸誘導体である。親水性ポリマーは、例えば、ポリエチレングリコール(「PEG」)である。内核は、mRNAを物理的又は化学的に封入する。外殻は、その物理化学的な性質によって、内殻に封入されたmRNAを所定の組織に送達する。高分子ミセルは、エンドサイトーシスによって細胞内に入り込むことができる。高分子ミセルは、例えば、ブロックポリマー上のポリカチオンと核酸の総合作用(ポリイオンコンプレックス(「PIC」))を利用することもできるほか、それと無機分子とのハイブリットミセルを利用することもできる。PIC型高分子ミセルとしては、例えば、PEG-PAsp(DET)-Chol、PEG-PAsp(DET)、PEG-PLysとmRNAの多分子会合により形成されるPICミセルや、PAsp(TET), PAsp(TEP)といった別のポリカチオンをブロック共重合体に用いたもの(Uchida,S.,et al.,Biomaterials(2016)82,p.221-228)及びトリブロック共重合体を用いたもの(Osawa,S.,et al.,Biomacromolecules 17,p354-361(2016))が挙げられる。無機粒子とのハイブリッド型高分子ミセルとしては、例えば、PEG化リン酸カルシウム(CaP)粒子(Pittela,et al.,Biomaterials(2011)32,p.3106-3114)、PEG化シリカ粒子(Miyata,K.,et al.,Biomaterials(2010)31,p4764-4770)が挙げられる。
 脂質性mRNAキャリアは、リピッドまたはカチオニックリピッドをキャリアとして形成され、そしてmRNAが内包もしくは結合された形態にある。例えば、N-[1-(2,3-ジオレイルオキシ)プロピル]-N,N,N-トリメチルアンモニウムクロリド(DOTMA)、2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキシアミド)エチル]-N,N-ジメチル-1-プロパナミニウムトリフルオロ酢酸(DOSPA)、1、2-ジオレオイルオキシ-3-(トリメチルアンモニウム)プロパン(DOTAP)、N-[1-(2、3-ジミリスチルオキシ)プロピル]-N、N-ジメチル-N-(2-ヒドロキシエチル)アンモニウムブロミド(DMRIE)又はDC-cholesterolといったカチオン性脂質;ジステアロイルホスファチジルコリン(DSPC)又はジオレオイルホスファチジルエタノールアミン(DOPE)といった中性リン脂質;PEG化脂質;及びコレステロールからなる群より選択される一つまたは複数からなり、それとmRNAを混合して得られるものである。
 カチオン性ポリマー複合体は、例えば、直鎖状もしくは分枝状ポリエチレンイミン、ポリリジン、ポリアルギニン、キトサン誘導体、ポリメタクリル酸誘導体とmRNAの混合物である。
 これらの輸送担体は、公知の方法又はそれに準ずる方法にて調製することができる。
3.2.4.アジュバント
 いくつかの好ましい態様では、RNAワクチンは、アジュバントと共には用いない。
 別のいくつかの態様では、RNAワクチンは、アジュバントと共に用いる。アジュバントと共に用いる場合、RNAワクチンは、アジュバントと共に製剤化されてもよい。アジュバントは、免疫反応を増強するのに好適な任意の化合物である。そのようなアジュバントは公知であり、当業者であれば、任意のアジュバントの中から適切なものを選択することができる。
3.3.疾患の予防又は治療
 mRNAワクチンは、疾患の予防又は治療を必要とする対象において当該疾患の予防又は治療に用いることができる。
 予防又は治療する疾患は、例えば、がん、ウイルス性感染症、細菌性感染症、真菌感染症、原生生物感染症、及び自己免疫疾患を挙げることができる。前述のmRNAのコード領域がコードする抗原を、予防又は治療する疾患に応じて適切に選択することで、当該疾患を予防又は治療することができる。
 「対象」は、ヒト、又はヒト以外の生物、例えば、トリ及び非ヒト哺乳動物(例えば、ウシ、サル、ネコ、マウス、ラット、モルモット、ハムスター、ブタ、イヌ、ウサギ、ヒツジ、及びウマ)である。
 mRNAワクチンは、常法に従って製剤化することができる。いくつかの態様では、mRNAワクチンは、医薬的に許容される添加剤を含む。医薬的に許容される添加剤としては、水、医薬的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース、医薬的に許容される界面活性剤等が挙げられる。
 上記添加剤は、mRNAワクチンの剤形に応じて上記の中から単独で又は適宜組み合わせて選ばれる。例えば、注射用製剤として使用する場合、精製された二本鎖RNAを溶剤(例えば生理食塩水、緩衝液、ブドウ糖溶液等)に溶解し、これにTween80、Tween20、ゼラチン、ヒト血清アルブミン等を加えたものを使用することができる。あるいは、使用前に溶解する剤形とするために凍結乾燥したものであってもよい。凍結乾燥用賦形剤としては、例えばマンニトール、ブドウ糖、ラクトース、スクロース、マンニトール、ソルビトール等の糖類、トウモロコシ、コムギ、イネ、ジャガイモまたは他の植物由来のデンプン等のデンプン、メチルセルロース、ヒドロキシプロピルメチルセルロース又はカルボキシメチルセルロースナトリウム等のセルロース、アラビアゴム、トラガカントゴム等のゴム、ゼラチン、コラーゲン等などが挙げられる。
 mRNAワクチンの投与量は、対象の年齢、性別、症状、投与経路、投与回数、剤形などによって適宜選択することができる。mRNAワクチンの有効投与量は、疾患の兆候又は状態を軽減するワクチンの量である。このようなmRNAワクチンの治療効果及び毒性は、細胞培養又は実験動物における標準的な薬学的手順、例えば、ED50(集団の50%において治療的に有効な用量)、及びLD50(集団の50%に対して致死的である用量)によって決定することができる。いくつかの態様では、mRNAワクチンの投与量は、成人に対して、1日当たり10ng~1g、100ng~100mg、1μg~10μg、又は30μg~300μgのmRNAの範囲とする。
 mRNAワクチンの投与経路は適切に選択することができ、例えば、経皮、鼻腔内、経気管支、筋内、腹腔内、静脈内、皮下、直腸内、及び膣内の経路を含むが、これらの経路に限定されるものではない。
 mRNAワクチンの投与回数は、1回、又は副作用が臨床上許容される範囲内である限り複数回とすることができる。
 いくつかの態様では、mRNAワクチン投与における抗体価又は細胞性免疫活性を測定する。例えば、抗体価は、生体より血液を採取し、血清中のIgGを定量することにより評価できる。細胞性免疫活性は、生体よりリンパ球を分離及び培養し、H-チミジンの取り込みを測定することにより評価できる。
3.4.キット
 本発明の第3の態様のキットは、前記mRNAワクチンを含むことを特徴とするものである。当該キットは、例えば、前記RNAワクチンを用いた前記各種疾患の治療方法に好ましく用いることができる。
 キットにおいて、前記mRNAワクチンの保存状態は、限定はされず、その安定性(保存性)及び使用容易性等を考慮して溶液状又は粉末状等の状態を選択できる。
 キットは、前記mRNAワクチン以外に、他の構成要素を含んでいてもよい。他の構成要素としては、例えば、各種バッファー及び使用説明書(使用マニュアル)を挙げることができる。キットには、アジュバントを含めてもよいし、含めなくてもよい。好ましくは、キットは、アジュバントを含めない。
 以下の実施例により本発明を更に詳述するが、本発明はこれら実施例に限定して理解されるべきものではない。
実施例1-1:各種ブロック共重合体の合成
1.1.PEG-PAsp(DET)-Cholの合成
 PEG-PAsp(DET)-Cholは既報に従い合成した(Oba,M.,et al.,Biomaterials(2011)32,p.652-663)(Scheme1)。合成スキームは以下のとおりである。
Scheme1
Figure JPOXMLDOC01-appb-C000001
 まず、α-メトキシ-ω-アミノ-ポリエチレングリコール(MeO-PEG-NH,PEGのM:12kDa)を開始剤としたβ-ベンジル-L-アスパルテート-N-カルボン酸無水物(NCA-BLA)の開環重合によって、PEG-poly(β-benzyl L-aspartate)(PEG-PBLA)を合成した。MeO-PEG-NHを505mgとり、ベンゼンに溶解させて一晩凍結乾燥させた。凍結乾燥後、Ar雰囲気下においてジメチルホルムアミド(DMF):ジクロロメタン(DCM)=1:10混合溶媒にMeO-PEG-NH及びNCA-BLAを完全に溶解させた。NCA-BLA溶液をMeO-PEG-NH溶液に添加し、25℃で3日間撹拌した。反応溶液をn-ヘキサン/酢酸エチル(3:2)混合溶液に再沈殿させ、PEG-PBLAを回収した。その後、PEG-PBLAを真空乾燥させ、白色粉末を得た。PBLAの重合度は68(n=68)であった。尚、上記式中、m=293であった。
 次に、合成したPEG-PBLAのω末端にコレステロール基を導入した。DCM(4mL)に溶解させたPEG-PBLA(200mg)に、11v/v% トリエチルアミン(TEA)/DCM混合溶液(200μL)に溶解させたCholesterol chloroformate(328mg)をゆっくり添加し、室温で24時間撹拌した。反応溶液をジエチルエーテルに再沈殿させ、PEG-PBLA-Cholesterol(Chol)を回収した。
 回収したPEG-PBLA-Cholのアミノリシス反応によりPEG-PAsp(DET)-Cholを合成した。PEG-PBLA-Chol(100mg)をベンゼンに溶解させて凍結乾燥し、乾燥したPEG-PBLA-Chol及びDryジエチレントリアミン(DET)(PBLAに対して50当量)を0.5MチオウレアとしたN-メチル-2-ピロリドン(NMP)に溶解させた。これら溶液を10℃に冷却し、PEG-PBLA-Chol溶液をゆっくりDET溶液に滴下し、1時間撹拌した。反応後、溶液温度を10度以下に保ったまま反応溶液を5N HCl水溶液で中和し、0.01N HCl水溶液で4℃にて1日透析を行った。その後、イオン交換水で4℃にてもう1日透析を行った。透析後、溶液を凍結乾燥することでPEG-PAsp(DET)-Chol白色粉末を得た。
1.2.PEG-PAsp(DET)の合成
 また、同様のPEG-PBLAのアミノリシス反応によりPEG-PAsp(DET)を合成した(Scheme2)。
Scheme2
Figure JPOXMLDOC01-appb-C000002
 PEG-PBLA(200mg)をベンゼンに溶解させて凍結乾燥し、乾燥したPEG-PBLA及びDryジエチレントリアミン(DET)(PBLAに対して50当量)を0.5MチオウレアとしたNMPに溶解させた。これら溶液を10℃に冷却し、PEG-PBLA溶液をゆっくりDET溶液に滴下し、1時間撹拌した。反応後、溶液温度を10度以下に保ったまま反応溶液を5N HCl水溶液で中和し、0.01N HCl水溶液で4℃にて1日透析を行った。その後、イオン交換水で4℃にてもう1日透析を行った。透析後、溶液を凍結乾燥することでPEG-PAsp(DET)白色粉末を得た。尚、上記式中、n=68であり、m=293であった。
実施例1-2:mRNAの調製
 mRNAは鋳型DNAよりin vitro転写により調製するが、ここで鋳型DNAは以下のように作製した。まず、T7-Gluc plasmidは、pCMV-Gluc control plasmid(New England BioLabs,Ipswich,MA,USA)からGlucコード配列(図15および配列番号32)をpSP73ベクター(Promega)のHindIII,Xba1サイトに挿入することで作製した。その後、T7-Gluc poly A120 plasmidを、T7-Gluc plasmidのEcoR1-Bgl2サイトにA120-(BsmBI切断部位)を挿入することで作製した。その後、BsmBIで切断したのち、T4 DNA Polymerase(タカラバイオ)で末端の平滑化を用い、以下のin vitro転写に用いた。
 mRNAは、mMESSAGE mMACHINE(商品名) T7(Thermo Fisher Scientific)を用いてガウシアルシフェラーゼ(Gluc)をコードした上述の制限酵素処理を行い、平滑化したテンプレートDNA(T7-Gluc poly A120 plasmid)をin vitro環境下で転写することで作製した。転写されたmRNAはRNeasy Mini Kit(QIAGEN)を用いて精製、回収した。回収したmRNA濃度はNanoDrop(Thermo Fisher Scientific)により測定した。また、Agilent 2100バイオアナライザ(Agilent technologies)を用いた電気泳動法により目的のmRNAが作成されていることを確認した。
 NanoDropにより、500~1,000ng/μLという高い濃度で、260nmと280nmの吸光度比が2.0~2.2という高純度のmRNAの作製が確認された。また、バイオアナライザの解析で、意図した大きさのmRNAの作製が確認された。
 作製したmRNAの配列を、図14および配列番号1に示す。図14の配列において、下線部分がopen reading frame(ORF)であり、ORFの上流が5’UTR(54塩基)であり、ORFの下流に3’UTR(52塩基)があり、さらにその下流の120Aがpoly A配列である。
 ここで、Poly Aの数について、理論上は鋳型DNAに120bpに組み込まれ、mRNAでは119塩基である。しかし、DNA増幅や、mRNA調製の段階でその数は増減しうる。
実施例1-3:RNAオリゴマーのハイブリダイゼーション
 RNAオリゴマーを次のようにして設計し、調製した。RNA2次構造予測ソフトウェア(http://rtips.dna.bio.keio.ac.jp/ipknot/)にて、Gluc mRNAの2次構造を予測し、RNA鎖が2次構造を持たない部分に対してRNAオリゴマーを設計した。RNAオリゴマーは、5’末端又は3’末端のコレステロール修飾を含めて、北海道システムサイエンス社にて、依頼合成した。尚、下記RNAオリゴマーの配列中の下線部はオーバーハング配列を示す。また、ミスマッチChol-RNAオリゴは、mRNAとハイブリダイズしない19merのChol修飾ポリAである。「Chol-overhang」は、RNAオリゴマーの5’末端がコレステロール修飾されていることを示し、「Chol―overhang 3’」はRNAオリゴマーの3’末端がコレステロール修飾されていることを示す。
 RNAオリゴマー
  17mer(1)(配列番号2):UCUUUGAGCACCUCCAG
  17mer(2)(配列番号3):CUCUAGAUGCAUGCUCG
  17mer(3)(配列番号4):CUCGGCCACAGCGAUGC
  17mer(4)(配列番号5):GCGGCAGCCACUUCUUG
  17mer(5)(配列番号6):AUCUCAGGAAUGUCGAC
  23mer(配列番号7):UCCAUCUCUUUGAGCACCUCCAG
  40mer(配列番号8):CUUUCCGGGCAUUGGCUUCCAUCUCUUUGAGCACCUCCAG
  60mer(配列番号9):ACAGCCCCUGGUGCAGCCAGCUUUCCGGGCAUUGGCUUCCAUCUCUUUGAGCACCUCCAG
  overhang 2base(1)(配列番号10):AAUCUUUGAGCACCUCCAG
  Chol-overhang 0(1)(17mer(1);配列番号2):UCUUUGAGCACCUCCAG
  Chol-overhang 2base(1)(配列番号10):AAUCUUUGAGCACCUCCAG
  Chol-overhang 5base(1)(配列番号11):AAUAAUCUUUGAGCACCUCCAG
  Chol-overhang 0(2)(17mer(2);配列番号3):CUCUAGAUGCAUGCUCG
  Chol-overhang 2base(2)(配列番号12):AACUCUAGAUGCAUGCUCG
  Chol-overhang 5base(2)(配列番号13):AAUAACUCUAGAUGCAUGCUCG
  Chol―overhang 2base(3)(配列番号14):AACUCGGCCACAGCGAUGC
  Chol―overhang 2base(4)(配列番号15):AAGCGGCAGCCACUUCUUG
  Chol―overhang 2base(5)(配列番号16):AUAUCUCAGGAAUGUCGAC
  Chol―overhang 2base(6)(配列番号17):AAGCAGCCAGCUUUCCCGG
  Chol―overhang 2base(7)(配列番号18):AAACUCUUUGUCGCCUUCG
  Chol―overhang 2base(8)(配列番号19):AAUUGAGGCAGCCAGUUGU
  Chol―overhang 2base(9)(配列番号20):UAGUGGGACAGGCAGAUCA
  Chol―overhang 2base(10)(配列番号21):AAUUGAAGUCUUCGUUGUU
  Chol―overhang 2base(11)(配列番号22):AAUUUUUUUUUUUUUUUUU
  Chol―overhang 3’ 2base(1)(配列番号23):UCUUUGAGCACCUCCAGAU
  ミスマッチChol-RNAオリゴ(配列番号24):AAAAAAAAAAAAAAAAAAA
 mRNAに対して1当量のRNAオリゴマー(overhang 2base(1))を、65℃で5分加熱し、10分かけて30℃まで冷却することで、ハイブリダイゼーションを行った。調製したRNAオリゴマー修飾mRNAの評価はポリアクリルアミドゲル電気泳動により行った。mRNA溶液(1×TBE buffer)に最終濃度が5wt%となるようにグリセロール溶液を添加し、100V,800mA,200W,30minの条件で電気泳動を行った。
 その結果を図1に示す。図1(2)及び(3)ではそれぞれChol修飾していないRNAオリゴマー(overhang 2base(1))、ハイブリダイズしていないmRNAの電気泳動を行った。図1(1)では、図1(2)でハイブリダイズした量の1/16量のRNAオリゴマー(overhang 2base(1))だけを電気泳動した。図1(2)でハイブリダイズが起きていなければ、図1(1)と同じ位置にRNAオリゴマー由来のバンドが見られるはずであるが、実際ほとんど見られなかった。すなわち大多数のRNAオリゴマーがハイブリダイズしていることが確認された。
 このように、本実施例では、RNAオリゴマーがハイブリダイズしていることが確認できた。
実施例1-4:培養細胞およびCell-free系におけるmRNA発現能評価
 培養細胞を用いた評価では、RAW264.7細胞を12wellプレートに300,000cells/wellとなるように播種し、10v/v%ウシ胎児血清(FBS)を含むDulbecco’s Modified Eagle Medium(DMEM)中で24hインキュベーションした。インキュベーション後、DMEMをOpti-MEM(商品名)(Thermo Fisher Scientific)に置き換え、実施例1-2で調製したGluc mRNA又は実施例1-3で調製したRNAオリゴマー(17mer(1),23mer,40mer又は60mer)をハイブリダイズしたGluc mRNAが1μg/wellとなるようにLipofectamine(商品名) LTX(Thermo Fisher Scientific)とmRNAからなるコンプレックスを添加した。トランスフェクションから4h後、培地を回収し、そこに含まれるGlucの量をルミノメータにて評価した。
 Cell-free系での評価では、Rabbit Reticulocyte Lysate System(Promega)を用いて、実施例1-2で調製したmRNA又は実施例1-3で調製したRNAオリゴマー(17mer(1),23mer,40mer又は60mer)をハイブリダイズしたGluc mRNAの発現能を評価した。プロトコルに従い、mRNAを含む混合溶液を調製した後、30℃で90minインキュベートした。発現したGlucはルミノメータを用いて発光強度を測定することで評価した。
 その結果を図2に示す。図2(A)に示すように、培養細胞へのmRNA導入効率を検討したところ、23mer以上の鎖長のオリゴマーをハイブリダイズした場合(23mer,40mer,60mer)、ハイブリダイズしていないmRNAを用いた場合(オリゴ(-))と比べて有意にGluc発現量が低下していた。一方で、17merのオリゴマーを修飾した場合の発現量はハイブリダイズしていないmRNAを用いた場合とほぼ同等であった。一方で、図2(B)に示すように、無細胞系でのタンパク質翻訳効率は、RNAオリゴマーの鎖長によらず一定で、ハイブリダイズしていないmRNAとほぼ同程度であった。すなわち、無細胞系ではハイブリダイズによる翻訳効率の低下は見られなかった。以上の実験より、細胞内の何らかの機構により長鎖長をハイブリダイズした場合に発現がやや低下することが分かった。これらのことから、RNAオリゴマーの鎖長は12~40merとするのが望ましいことが明らかとなった。
 ここで図2中、「**」及び「***」はオリゴ修飾していない場合と比べた場合、p<0.01、p<0.001という統計学的有意差があることを示す。統計処理はANOVA検定ののち、オリゴ修飾していない場合をコントロールとしたDunnett検定を行った。
 このように、本実施例では、培養細胞へのmRNAの導入効率を確認した結果、長鎖長RNAオリゴマーは発現がやや低下するものの、17merのRNAオリゴマーでは発現がほぼ維持できることが確認できた(図2(A))。一方、無細胞系でのタンパク質翻訳効率は、RNAオリゴマーの鎖長によらず一定であることが確認できた(図2(B))。
実施例1-5:mRNA内包PMsの調製
 ここでは実施例1-2で調製したGluc mRNA又は実施例1-3で調製したRNAオリゴマー(overhang 2base(1)又はChol-overhang 2base(1))をハイブリダイズしたGluc mRNAを用いた。
 PEG-PAsp(DET)-CholとGluc mRNAはそれぞれ独立して10mM HEPES buffer(pH7.4)に溶解させた。PEG-PAsp(DET)-Cholの濃度は、pH7.4において((PAsp(DET)の正電荷数)/(mRNAの負電荷数))(N/P比)が1.5となるように調整した。mRNA最終濃度が33.3μg/mLとなるようにPEG-PAsp(DET)-Chol溶液をmRNA溶液に添加し、高分子ミセル(PMs)を調製した。PMsの粒径及び多分散度はZetasizerNano(Malvern Instruments)によって評価した。また、透過型電子顕微鏡(TEM)を用いて調製したPMsを観察した。PEG-PAsp(DET)からなるPMsに関しても同様の方法で調製した。
 その結果を、表1及び2、図3に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
実施例1-6:血清中での酵素耐性試験
 ここでは実施例1-2で調製したGluc mRNA又は実施例1-3で調製した以下のRNAオリゴマーをハイブリダイズしたGluc mRNAを用いた。
 図4(A)及び(B)の実験で用いたRNAオリゴマー
  Chol-overhang 0(1)
  Chol-overhang 2base(1)
  Chol-overhang 5base(1)
  ミスマッチChol-RNAオリゴ
 図4(C)及び(D)の実験で用いたRNAオリゴマー
  Chol-overhang 0(2)
  Chol-overhang 2base(2)
  Chol-overhang 5base(2)
  ミスマッチChol-RNAオリゴ
 図4(E)で用いたRNAオリゴマー
  Chol―overhang 2base(11)
 各PMsは実地例5と同様の条件で調製した。尚、図4(A)(C)(E)の実験ではPEG-PAsp(DET)-Cholを用い、図4(B)及び(D)の実験ではPEG-PAsp(DET)を用いた。
 ウシ胎児血清(FBS)を10mM HEPES buffer(pH7.4)で所定の濃度となるよう希釈し、そこにPM溶液を添加したのち、37℃で15分静置した。その後、RNeasy Mini Kit(QIAGEN)を用いて溶液よりRNAを抽出した。抽出したRNAをコンプリメンタリーDNA(cDNA)に逆転写した後、qRT-PCRにより残存しているcDNAを定量評価した。FBS存在下で37℃静置を行わなかった場合のmRNA量を100%として、相対値を示した。
 その結果を、図4に示す。図4(A)に示すように、PEG-PAsp(DET)-Cholを用いた場合、2baseのオーバーハングを持つオリゴマーをハイブリダイズした群で、ハイブリダイズを行わなかった群と比べ、有意な血清中での安定性の向上を認めた。なお、オーバーハングがない場合は安定性が向上する傾向が見られたものの有意差うは得られなかった。5baseの場合では安定化効果は認めなかった。一方で、PEG-PAsp(DET)を用いた場合、オーバーハングがない場合、および2baseのオーバーハングがある場合に、安定性の向上を認めた(図4(B))。以上のデータは、ハイブリダイズする場所が異なる別のオリゴを用いた場合も再現された(図4(C):PEG-PAsp(DET)-Chol,図4(D):PEG-PAsp(DET))。なお、ミスマッチChol-RNAオリゴは、mRNAとハイブリダイズしない19merのChol修飾ポリAをmRNAと混ぜて、PMを形成したものであるが、この場合血清中での酵素耐性は向上しておらず、効果を得るにはハイブリダイズする必要があることが示された。
 また、ポリA配列に対して2baseのオーバーハングを持つChol修飾オリゴをハイブリダイズさせたmRNAとPEG-PAsp(DET)-CholからなるPMに関しても、ハイブリダイズによる安定化作用を認めた(図4(E))。
 このように、PEG-PAsp(DET)-Cholを用いた場合、2baseのオーバーハングがあり、かつコレステロール修飾したオリゴマーで特に高い安定性を示すことが分かった(図4(A)及び(C))。一方で、PEG-PAsp(DET)を用いた場合、オーバーハングがない場合および2baseのオーバーハングがある場合の両方で安定性の向上を認めた(図4(B)及び(D))。また、ハイブリダイズの位置に関して、タンパク質コード配列だけではなく、ポリA部分にハイブリダイズした場合も安定性が向上することが明らかとなった(図4(E))。
実施例1-7:アガロースゲル電気泳動
 ここでは実施例1-2で調製したGluc mRNA又は実施例1-3で調製したRNAオリゴマー(Chol―overhang 2base(1))をハイブリダイズしたGluc mRNAを用いた。
 各PMsは実地例5と同様の条件で調製した。
 Tris 40mM,酢酸20mM,エチレンジアミン四酢酸(EDTA)・2Na 1mMとなるように1×TAEバッファー(トリス-酢酸-EDTAバッファー)を調製し、水酸化ナトリウム水溶液を用いてpH7.4に調整したものを電気泳動用バッファーとした。0.9重量%アガロースゲルを作成し、PM溶液15μLにA/P比(ポリアニオンの負電荷数/mRNAのリン酸基数)に応じたデキストラン硫酸5μLと750mM NaCl溶液5μLを加えた後、37℃で1時間インキュベーションした。インキュベーション後、ローディングバッファーを2.5μL加えて100Vで60分間電気泳動を行い、mRNAの放出の有無を確認した。
 その結果を、図5に示す。
 図5(A)~(D)ではいずれも最も左の列にnaked mRNAを置いたが、ミセルからmRNAが放出されると、naked mRNAと同じ位置にバンドが見られる。Chol修飾オリゴマーをハイブリダイズしていない場合、すなわち、図5(A)のPEG-PAsp(DET)-Cholを用いた場合と、図5(C)のPEG-PAsp(DET)を用いた場合には、A/P比1.5から2でミセルからの多量のmRNAの放出が観られた。一方でChol修飾オリゴマーをハイブリダイズした場合、いずれのポリマーを用いた場合も、A/P比2でもあまりmRNAの放出は観られなかった(図5(B)及び(D))。
 このように、CholオリゴによりmRNAの放出が抑制されることが分かった(図5(B)及び(D))。
実施例1-8:ハイブリダイズするオリゴの数を増やした際の血清中での酵素耐性試験
 ここでは、ここでは実施例1-2で調製したGluc mRNA又は実施例1-3で調製した以下のRNAオリゴマーをハイブリダイズしたGluc mRNAを用いた。
  Chol―overhang 2base(1)
  Chol―overhang 2base(2)
  Chol―overhang 2base(3)
  Chol―overhang 2base(4)
  Chol―overhang 2base(5)
 各PMsは実施例1-5と同様の条件でPEG-PAsp(DET)-Cholを用いて調製した。
 1箇所又は5箇所にChol修飾オリゴマーをハイブリダイズしたmRNAを用い、実施例1-6と同様の方法で実験をおこなった。尚、Unmodified Oligoでは、overhang 2base(1)を用いた。Chol修飾オリゴマー1個の実験(Chol oligo X1)では、Chol―overhang 2base(1)を用いた。また、Chol修飾オリゴマー5個の実験(Chol oligo X5)では、Chol―overhang 2base(1)~(5)を用いた。
 その結果を図6示す。ハイブリダイズしていないものと比べて、1箇所に修飾した場合(Chol oligo X1)安定性が向上し、また、5箇所に修飾した場合(Chol oligo X5)1箇所に修飾した場合(Chol oligo X1)と比べて、更に高い安定性を示した。
実施例1-9:PMsのルシフェラーゼ発現試験
 ここでは実施例1-2で調製したGluc mRNA又は実施例1-3で調製した以下のRNAオリゴマーをハイブリダイズしたGluc mRNAを用いた。
  Chol―overhang 2base(1)
  Chol―overhang 2base(2)
  Chol―overhang 2base(3)
  Chol―overhang 2base(4)
  Chol―overhang 2base(5)
  17mer(1)
 各PMsは実地例5と同様の条件でPEG-PAsp(DET)-Cholを用いて調製した。
 Huh-7細胞(5,000cells-well)を96-wellプレートに播種し、10v/v%FBSを含むDMEM(100μL)中で24時間インキュベーションした。培地を10v/v%FBSを含む新しいものに取り替えた後、250ngのmRNAを含むPMs溶液を7.5μL加えた。24時間のインキュベーション後、DMEMの上澄みを10μL回収し、ルミノメータを用いてGlucの発光強度を測定した。
 1箇所又は5箇所にChol修飾オリゴマーをハイブリダイズしたmRNAを用いた。尚、Chol修飾オリゴマー1個の実験(Chol oligo X1)では、Chol―overhang 2base(1)を用いた。また、Chol修飾オリゴマー5個の実験(Chol oligo X5)では、Chol―overhang 2base(1)~(5)を用いた。さらに、非修飾オリゴマーの実験(Unmodified Oligo)では、overhang 2base(1)17mer(1)を用いた。
 その結果を、図7に示す。Cholオリゴマーで1個もしくは5個修飾したmRNAを導入した群(Chol oligo X1もしくはChol oligo X5)で、オリゴマーをハイブリダイズしていないmRNAを導入した群(ハイブリ(-))もしくはChol修飾のないオリゴマーで修飾したmRNAを導入した群(Unmodified Oligo)と比べて、高いmRNAからのルシフェラーゼ発現効率を示した。
 このように、Cholオリゴ修飾により、発現が上昇することがわかった。また、オリゴの個数で差は見られなかった。
実施例1-10:Cholを5’側に修飾した場合と3’側に修飾した場合の比較
 ここでは実施例1-2で調製したGluc mRNA、実施例1-3で調製した以下のRNAオリゴマーをハイブリダイズしたGluc mRNA、またはそれと同じ場所に設計し3’側に2baseのoverhang配列をもつ以下の配列のオリゴマーをハイブリダイズしたGluc mRNAを用いた。
  Chol―overhang 2base(1)
  Chol―overhang 3’ 2base(1)
 各PMsは実地例5と同様の条件で、PEG-PAsp(DET)-Cholを用いて調製した。実施例1-8と同様の方法で血清耐性試験を行い、実施例1-9と同様の方法でPMをHuH-7細胞に導入し、Gluc発現量を評価した。
 血清耐性試験の結果を図8(A)に、Gluc発現量の結果を図8(B)に示す。いずれの評価においても、Cholの修飾位置が3’の場合と5’の場合で大きな違いは観察されなかった。
実施例1-11:無細胞系でのChol修飾mRNAからの翻訳効率の評価
 ここでは実施例1-2で調製したGluc mRNA又は実施例1-3で調製した以下のRNAオリゴマーをハイブリダイズしたGluc mRNAを用いた。
  Chol―overhang 2base(1)
  Chol―overhang 2base(2)
  Chol―overhang 2base(3)
  Chol―overhang 2base(4)
  Chol―overhang 2base(5)
 この評価では、mRNAはPMに内包せず、単体で用いた。
 Cell-free系での評価では、Rabbit Reticulocyte Lysate System(Promega)を用いて、Chol―RNAオリゴマーを修飾したmRNAの発現能を評価した。プロトコルに従い、mRNAを含む混合溶液を調製した後、30℃で90minインキュベートした。発現したGlucはルミノメータを用いて発光強度を測定することで評価した。
 その結果を図9に示す。Chol―RNAオリゴマーをハイブリダイズしたmRNAの無細胞系でのタンパク質翻訳効率は、Chol―RNAオリゴマー数の増加に伴い減少していくことが確認された。すなわち、複数のChol基はmRNAの翻訳効率を低下させることが明らかとなった。
 ここで、Chol―RNAオリゴマー数が1個の実験ではChol―overhang 2base(1)を用いた。Chol―RNAオリゴマー数が2個の実験ではChol―overhang 2base(1)と(3)を用いた。Chol―RNAオリゴマー数が3個の実験ではChol―overhang 2base(1)~(3)を用いた。Chol―RNAオリゴマー数が4個の実験ではChol―overhang 2base(1)~(4)を用いた。Chol―RNAオリゴマー数が5個の実験ではChol―overhang 2base(1)~(5)を用いた。
実施例1-12:内因性遺伝子発現への影響
 ここでは実施例1-3と同様に設計し、調製した以下のRNAオリゴ、又は後述のように調製した以下のsiRNAを用いた。「Chol―」は、RNAオリゴマーの5’末端がコレステロール修飾されていることを示す。
 ここで、RNAオリゴマーの設計に用いたLuc mRNAの配列を図16及び配列番号33に示す。
  luc oligo(配列番号25):UCGAAGUACUCAGCGUA
  Chol―oligo luc(配列番号26):AAUCGAAGUACUCAGCGUA
  oligo Scr(配列番号27):UCUUUGAGCACCUCCAG
  Chol―oligo Scr(配列番号27):UCUUUGAGCACCUCCAG
  siLuc(sense strand)(配列番号28):CUUACGCUGAGUACUUCGAdTdT
  siLuc(antisense strand)(配列番号29):UCGAAGUACUCAGCGUAAGdTdT
  siScramble(siScr)(sense strand)(配列番号30):UUCUCCGAACGUGUCACGUdTdT
  siScr(antisense strand)(配列番号31):ACGUGACACGUUCGGAGAAdTdT
 ここで、siRNAは北海道システムサイエンス社に依頼合成し、そのまま使用した。
 Lucを恒常発現しているHela-luc細胞(Caliper LifeScience 社)(5,000cells/well)を96-wellプレートに播種し、10v/v%FBSを含むDMEM(100μL)中で24時間インキュベーションした。その後、培地を無血清培地(Opti-MEM(商品名)(Thermo Fisher Scientific))(100μL)に取り換え、Lipofectamine RNAiMax(Thermo Fisher Scientific)とRNAオリゴ又はsiRNAからなるコンプレックスを細胞に添加した。4時間インキュベーションした後、添加した各コンプレックスを除去した。トランスフェクションから24時間後、Cell lysate bufferを用いて細胞を溶解し、ルミノメータを用いて10μL細胞溶解液中のルシフェラーゼ発現量を評価した。
 その結果を図10に示す。ここで、siLuc、Luc Oligo及びChol Oligo LucはそれぞれLuc配列をターゲットとしたsiRNA、未修飾RNA Oligo及びChol修飾RNA Oligoを示し、siScr、Oligo Scr、Chol Oligo ScrはGluc配列と相同性のない配列のsiRNA、未修飾RNA Oligo及びChol修飾RNA Oligoを示している。図2及び7に示すような培養細胞へのtransfection実験では、8nMの濃度のoligoを用いているが、その濃度では内因性遺伝子発現は減少しなかった。siRNAと比較して1,000倍という高濃度でないと、内因性遺伝子発現の減少は観られなかったことから、内因性遺伝子に対する影響は非常に軽微なものと想定される。図10に示すように、siRNAのアンチセンス鎖と同配列のRNAオリゴマー及び他配列RNAオリゴマー群はsiRNAと比較して、内因性遺伝子をノックダウンしないことが確認された。以上の結果から、RNAオリゴマーは内因性遺伝子を阻害することなくmRNAを機能化することが確認された。
実施例1-13:PEG-Plysによる検討
 PEG-PLysは既報に従い合成した(K.Osada et al.,Biomaterials 33,325-332,(2012))(Scheme3)。合成スキームは以下のとおりである。
Scheme3
Figure JPOXMLDOC01-appb-C000005
 MeO-PEG-NHを400mgとり、ベンゼンに溶解させて一晩凍結乾燥させた。凍結乾燥後、Ar雰囲気下において0.5Mジメチルホルムアミド(DMF)溶媒にMeO-PEG-NH及びNCA-Lys(TFA)を完全に溶解させた。NCA-Lys(TFA)溶液をMeO-PEG-NH溶液に添加し、25℃で3日間撹拌した。反応溶液をn-ヘキサン/酢酸エチル(3:2)混合溶液に再沈殿させ、PEG-PLys(TFA)を回収した。その後、PEG-PLys(TFA)を真空乾燥させ、白色粉末を得た。その後、0.1N NaOHを含むメタノール混合溶媒中において35℃で6時間反応させ、TFA基を脱保護した。透析による精製後、PEG-PLys白色粉末を得た。1H-NMR分析より、回収したPEG-PLysのPLys重合度は69であった。
 ここでは、ここでは実施例1-2で調製したGluc mRNA又は実施例1-3で調製した以下のRNAオリゴマーをハイブリダイズしたGluc mRNAを用いた。
  Chol―overhang 2base(1)
  Chol―overhang 2base(2)
  Chol―overhang 2base(3)
  Chol―overhang 2base(4)
  Chol―overhang 2base(5)
 PMの作製では、PEG-PLysとmRNAはそれぞれ独立して10mM HEPES buffer(pH7.4)に溶解させた。PEG-PLysの濃度は、pH7.4において((PLysの正電荷数)/(mRNAの負電荷数))(N/P-比)が2となるように調整した。mRNA最終濃度が33.3μg/mLとなるように、PEG-PLys溶液をmRNA溶液に添加し、PMsを調製した。
 合成したPEG-PLysを用いて、実施例1-7におけるPEG-PAsp(DET)-Cholと同様にゲル電気泳動を行った。また、実施例1-9におけるPEG-PAsp(DET)-Cholと同様にルシフェラーゼ発現試験を行った。
 ゲル電気泳動の実験では、1箇所にChol修飾オリゴマーをハイブリダイズしたmRNAを用い、ルシフェラーゼ発現実験では1箇所又は5箇所にChol修飾オリゴマーをハイブリダイズしたmRNAを用いた。この際、Chol修飾オリゴマー1個の実験(Chol oligo X1)では、Chol―overhang 2base(1)を用いた。また、Chol修飾オリゴマー5個の実験(Chol oligo X5)では、Chol―overhang 2base(1)~(5)を用いた。
 その結果を図11に示す。PEG-PAsp(DET)やPEG-PAsp(DET)-CholからなるPMsと同様(図5)にPEG-PLysからなるPMsにおいても、Chol-RNAオリゴマー(Chol―overhang 2base(1)
)を用いることで、ポリアニオンを加えた際のmRNAの放出が抑制されたほか(図11(B))、細胞に導入した際のmRNAからのタンパク質発現効率が向上した(図11(C))。一方、Chol-RNAオリゴマーを用いない場合には、A/P比1.5から2でミセルからの多量のmRNAの放出が観られた(図11(A))。従って、様々な組成のポリカチオンにおいて、Chol修飾オリゴのハイブリダイズがその安定化に有効であることが明らかとなった。
実施例1-14:マウスを用いた血中安定性試験
 ここでは実施例1-2で調製したGluc mRNA又は実施例1-3で調製した以下のRNAオリゴマーをハイブリダイズしたGluc mRNAを用いた。
  Chol―overhang 2base(1)
  Chol―overhang 2base(2)
  Chol―overhang 2base(3)
  Chol―overhang 2base(4)
  Chol―overhang 2base(5)
  Chol―overhang 2base(6)
  Chol―overhang 2base(7)
  Chol―overhang 2base(8)
  Chol―overhang 2base(9)
  Chol―overhang 2base(10)
 PEG-PAsp(DET)-CholとmRNAはそれぞれ独立して10mM HEPES buffer(pH7.4)に溶解させた。PEG-PAsp(DET)-Cholの濃度は、pH7.4において((PAsp(DET)の正電荷数)/(mRNAの負電荷数))(N/P比)が1.5となるように調整した。mRNA最終濃度が200μg/mLとなるようにPEG-PAsp(DET)-Chol溶液をmRNA溶液に添加し、PMsを調製した。
 Balb/Cマウス(メス、6週齡)の尾静脈より、40μgのmRNAを含むPMs溶液を200μL投与した。2.5、5、10分後に尾静脈より2μLの血液を採取した。採取した血液から、RNeasy Mini Kit(QIAGEN)を用いてmRNAを抽出し、抽出したmRNAをcDNAに逆転写した後、qRT-PCRにより残存しているcDNAを定量評価した。統計学的処理は、Studentのt検定により行った。
 その結果を、図12に示す。図12に示すように、Chol修飾オリゴを10個ハイブリダイズすることで、血中滞留性が向上する傾向が見られた。
実施例1-15:マウスを用いたPMsの肺への局所投与
 ここでは実施例1-2で調製したGluc mRNA又は実施例1-3で調製した以下のRNAオリゴマーをハイブリダイズしたGluc mRNAを用いた。
  Chol―overhang 2base(1)
  Chol―overhang 2base(2)
  Chol―overhang 2base(3)
  Chol―overhang 2base(4)
  Chol―overhang 2base(5)
 各PMsは実地例5と同様の方法でPEG-PAsp(DET)-Cholを用いて調製した。
 Balb/Cマウス(メス、6週齡)の気管を切開し、1.67μgのmRNAを含むPMs溶液50μLを噴霧器により直接肺へ投与した。24時間後、マウスの肺を摘出し、ホモジェナイズした後に、そこに含まれるGlucタンパク質量をルミノメータにて定量した。また、投与4時間後の肺を用いて、肺において残存しているGluc mRNA量を定量する目的で、RNeasy Mini Kit(QIAGEN)を用いてmRNAを抽出し、抽出したRNAをcDNAに逆転写した後、qRT-PCRにより残存しているcDNAを定量評価した。この際、組織に含まれるアクチンの量を下にmRNA発現量を規格化した。
 その結果を、図13に示す。図13(A)に示すように、Chol修飾オリゴマーを5個ハイブリダイズしたmRNAで、ハイブリダイズしていないmRNAと比べて、有意に高いmRNAからのタンパク質発現効率が得られた。また、図13(B)に示すように、肺組織に分解されずに残存したmRNA量も、Chol修飾オリゴマーを5個ハイブリダイズすることで、有意に増加することから、生体内での安定性が向上したことが明らかとなった。また安全性に関して、投与後の肺組織での(c)インターフェロンβ、(d)インターロイキン6の発現量は、ハイブリダイズしていないmRNAとChol修飾オリゴマーを5個ハイブリダイズしたもので有意な変化はなく、低い値にとどまったことから、安全性は担保されたものと考えられた。
 このように、安定性が向上した結果(図13(B))、発現が向上することが分かった(図13(A))。このことから、in vivoでも有効であることが分かる。
実施例1-15:ポリエチレングリコール(PEG)化mRNAの作製
 PEG化mRNAを、以下のように作製した。RNA2次構造予測ソフトウェア(http://rtips.dna.bio.keio.ac.jp/ipknot/)にて、Gluc mRNAの2次構造を予測し、RNA鎖が2次構造を持たない部分に対してRNAオリゴマーを設計した。RNAオリゴマーは、5’末端のPEG修飾を含めて、ジーンデザイン社にて、依頼合成した。ここで、重量平均分子量12,000の直鎖PEGを用いた。そして、以下の5’末端PEG修飾RNAオリゴマーをジーンデザイン社より購入した。
配列p1(配列番号34):5’―PEG-ACUCUUUGUCGCCUUCG―3’
配列p2(配列番号35):5’―PEG-CUCGGCCACAGCGAUGC―3’
配列p3(配列番号36):5’―PEG-UCUUUGAGCACCUCCAG―3’
配列p4(配列番号37):5’―PEG-CUCUAGAUGCAUGCUCG―3’
配列p5(配列番号38):5’―PEG-GCGGCAGCCACUUCUUG―3’
配列p6(配列番号39):5’―PEG-AUCUCAGGAAUGUCGAC―3’
配列p7(配列番号40):5’―PEG-GCAGCCAGCUUUCCGGG―3’
配列p8(配列番号41):5’―PEG-UUGAGGCAGCCAGUUGU―3’
配列p9(配列番号42):5’―PEG-UGAUCUUGUCCACCUGG―3’
配列p10(配列番号43):5’―PEG-GAUGAACUUCUUCAUCU―3’
配列p11(配列番号44):5’―PEG-GUGGGACAGGCAGAUCA―3’
配列p12(配列番号45):5’―PEG-UUGAAGUCUUCGUUGUU―3’
配列p13(配列番号46):5’―PEG-GGGCAACUUCCCGCGGU―3’
配列p14(配列番号47):5’―PEG-CUGCUCCAUGGGCUCCA―3’
配列p15(配列番号48):5’―PEG-CUUGCUGGCAAAGGUCG―3’
 以下の実施例1-16~18では、mRNAとして実施例1-3で調製したものを用いた。mRNAに対して1当量のRNAオリゴマーを加え、65℃で5分加熱し、10分かけて30℃まで冷却することで、ハイブリダイゼーションを行った。これにより、PEG化mRNAを作製した。
実施例1-16:PEG修飾RNAオリゴマーのmRNAへのハイブリダイズによる翻訳効率の変化
 1箇所、5箇所、10箇所、又は15箇所にPEG修飾RNAオリゴマーをハイブリダイズしたmRNAを用いた。尚、PEGRNA修飾オリゴマー1個、5個、10個、及び15個の各実験では、実施例1-15で作製した以下のPEG修飾RNAオリゴマーを用いた。
PEG修飾RNAオリゴマー1個の実験:配列p1
PEG修飾RNAオリゴマー5個の実験:配列p1~p5
PEG修飾RNAオリゴマー10個の実験:配列p1~p10
PEG修飾RNAオリゴマー15個の実験:配列p1~p15
 さらに、PEG修飾RNAオリゴマー0個の実験では、mRNAだけを65℃で5分加熱し、10分かけて30℃まで冷却したものを用いた。
 実験は、それぞれ3回行った。
 調製したmRNAサンプルの無細胞系でのタンパク質翻訳効率は、Rabbit Reticulocyte Lysate System, Nuclease treated(Promega Co.,Madison,WI)を用いて評価した。300ngのGLuc mRNAを含むサンプル溶液をRabbit reticulocyte lysateに添加し、30℃で90分インキュベートした後、反応溶液10μLの発光強度をRenilla Luciferase assay kit(Promega)を用いて定量した。測定にはMithras LB 940(Berthold technologies Co.)を用いた。
 その結果を、図18に示す。PEG量の増加に伴う、若干の翻訳活性の低下を認めたが、15個のPEG修飾RNAオリゴマーを用いてmRNAを修飾しても、未修飾のものと比べ64%程度の翻訳活性は得られた。
 ここで、図18中、「*」はオリゴ修飾していない場合と比べた場合、p<0.05という統計学的有意差があることを示す。統計処理はANOVA検定ののち、オリゴ修飾していない場合をコントロールとしたDunnett検定を行った。
実施例1-17:PEG修飾RNAオリゴマーのmRNAへのハイブリダイズによる安定化効果
 1箇所、5箇所、10箇所、又は15箇所にPEG修飾RNAオリゴマーをハイブリダイズしたmRNAを用いた。尚、PEG修飾オリゴマー1個、5個、10個、及び15個の各実験では、実施例1-15で作製した以下のPEG修飾オリゴマーを用いた。
PEG修飾オリゴマー1個の実験:配列p1
PEG修飾オリゴマー5個の実験:配列p1~p5
PEG修飾オリゴマー10個の実験:配列p1~p10
PEG修飾オリゴマー15個の実験:配列p1~p15
 さらに、PEG修飾オリゴマー0個の実験では、mRNAだけを65℃で5分加熱し、10分かけて30℃まで冷却したものを用いた。
 実験は、それぞれ3回行った。
 FBSに対する安定性を確認する試験の手順は図19(A)に示す通りである。100ngのGLuc mRNAを含むサンプルを0.5%Fetal Bovine Serum(FBS,Dainippon Sumitomo Pharma Co.,Ltd.,Osaka,Japan)溶液中で37℃、15分インキュベートした。その後、1v/v%2-メルカプトエタノールを含むRLT buffer(Quiage,Hilden,Germany)350μLを添加し、65℃で5分間インキュベートした後、氷上で急冷することで、PEG-RNAオリゴマーをdenatureした。mRNAをRNeasy Mini Kit(Quiagen)を用いて精製した後、ReverTra Ace(商品名)qPCR RT Master Mix with gDNA Remover(TOYOBO CO.,Ltd.,Osaka,Japan)を用いてコンプリメンタリーDNA(cDNA)に逆転写した。逆転写したcDNAを定量RT-PCR(qRT-PCR)により定量評価した。ここで、qRT-PCR測定には下記配列のプライマーを用いた。
Forward(配列番号49):TGAGATTCCTGGGTTCAAGG
Reverse(配列番号50):GTCAGAACACTGCACGTTGG
 その結果を図19(B)に示す。PEG修飾オリゴマーによって分解酵素耐性が向上することが示唆された。また、分解酵素耐性は修飾されるPEGオリゴの数が多いほど向上する傾向があった。
実施例1-18:PEG化mRNAの発現試験
 15箇所にPEG修飾RNAオリゴマーをハイブリダイズしたmRNAを用いた。尚、PEG修飾オリゴマー15個の実験では、実施例1-15で作製した以下のPEG修飾オリゴマーを用いた。
PEG修飾オリゴマー15個の実験:配列p1~p15
 さらに、PEG修飾オリゴマー0個の実験では、mRNAだけを65℃で5分加熱し、10分かけて30℃まで冷却したものを用いた。
 実験は、それぞれ3回行った。
 培養細胞(HuH-7細胞)に対するmRNA発現試験を次のように行った。ヒト肝がん細胞(HuH-7細胞)を96-wellプレートに5,000 cells/wellで播種し、a humidified atmosphere with 5%CO at 37°Cで24時間インキュベートした。血清培地を取り除いた後、無血清培地(Opti-MEM, Thermo Fisher Scientific Inc.,Waltham,MA)100μLに置換し、250ngのGluc mRNAを含むサンプル溶液を添加した。4時間後、Renilla Luciferase assay kit(Promega)を用いて10μLの上澄中の発光強度を定量した。測定にはMithras LB 940(Berthold technologies Co.)を用いた。
 その結果を、図20に示す。培養細胞においてPEG修飾mRNAは未修飾のものと比較して有意に高い発現を示した。これはPEG修飾mRNAの安定化効果によるものと考えられる。
 実施例2-1:様々な二本鎖RNAの作製
 T7-Gluc plasmidは、pCMV-Gluc control plasmid(New England BioLabs,Ipswich,MA,USA)からGlucコード配列(配列番号57及び図33)をpSP73ベクター(Promega)のHindIII,Xba1サイトに挿入することで作製した。
 T7-Gluc poly A120 plasmidは、T7-Gluc plasmidのEcoR1-Bgl2サイトにA120-(BsmB1切断部位)を挿入することで作製した。
 図21(A)に示した通り、Gluc sense鎖は、T7-Gluc poly A120 plasmidをBsmBIで切断し、mMESSAGE mMACHINE T7 Ultra Kit(Thermo Fisher Scientific)にてT7プロモーターより転写することで作製した。このキットでRNAを作成した場合、5’末端はCap修飾される。
 図21(B)に示した通り、Gluc antisense鎖(poly U込み)はT7-Gluc poly A120 plasmidをHindIIIで切断し、MEGAscript(登録商標) SP6 Transcription Kit(Thermo Fisher Scientific)にてSp6プロモーターより転写することで作製した。ここではCapアナログを加えずにRNAを作製しているため、5’末端はCap修飾されず、トリリン酸基が結合した状態となる。
 図21(C)に示した通り、Gluc antisense鎖(poly Uなし)はT7-Gluc plasmidをHindIIIで切断し、MEGAscript(登録商標) SP6 Transcription Kit(Thermo Fisher Scientific)にてSp6プロモーターより転写することで作製した。
 図21(D)に示した通り、poly UはT7-Gluc poly A120 plasmidをSmaIで切断し、MEGAscript(登録商標) SP6 Transcription Kit(Thermo Fisher Scientific)にてSp6プロモーターより転写することで作製した。poly Uは、poly A全体の配列に相補的な配列(120塩基)と、その下流に、mRNAの3’UTRの一部(すなわち、3’UTRの約37%の塩基長の配列)に相補的な配列(19塩基)を含む。尚、poly Uは、上流に、SP6プロモーター内の配列、及び、クローニングに用いた制限酵素配列を他の配列(17塩基)としてさらに含む。すなわち、ここで用いたpoly Uは、156塩基長の配列を有する。また、5’末端にトリリン酸構造を有する。
 以下に、作製したセンス鎖、アンチセンス酸、及びpoly Uの塩基配列を示す。
 
  Gluc sense鎖(配列番号51及び図27)
  Gluc antisense鎖(poly U込み)(配列番号52及び図28)
  Gluc antisense鎖(poly Uなし)(配列番号53及び図29)
  poly U(配列番号54及び図30)
 
 ここで、図27の配列において、下線部分がopen reading frame(ORF)であり、ORFの上流が5’UTR(54塩基長)であり、ORFの下流に3’UTR(52塩基長)があり、さらにその下流の119Aがpoly A配列である。
 ここで、Poly Aの数について、理論上は鋳型DNAに120bpに組み込まれ、T7プロモーターから転写したmRNAは119塩基のAを、Sp6プロモーターから転写したRNAは120塩基のUをそれぞれ有する。しかし、DNA増幅や、mRNA調製の段階でその数は増減しうる。
 作製したセンス鎖、アンチセンス鎖、及びpoly Uを用いて、次のように、二本鎖RNAを作製した。先ず、10mM Hepesバッファー中にセンス鎖、アンチセンス鎖又はpoly Uが等モル量含まれ、RNA濃度が300μg/mlとなる溶液を調製した。その溶液を65℃で5分維持した後、10分かけて30℃に下げることでハイブリダイズを行った。
 トリリン酸化を除く際は、Antarctic phosphatase(New England Biolabs,cat.no.M0289S)を用いた。
 ここで、図22に、作製した二本鎖RNAの模式図を示す。図22(A)がmRNA:RNAであり、図22(B)がmRNA:RNA poly U(-)であり、図22(C)がmRNA:poly Uであり、図22(D)がmRNA:poly U ppp(-)である。
 尚、図22中、mRNAのタンパク質コード配列の上流には5’UTRがあり、下流には3’ UTRが存在する。
 実施例2-2:樹状細胞株を用いた二本鎖RNAワクチンの最適化
 DC2.4細胞を6well plateに1,000,000/well蒔き、24h後に培地を交換し、無血清培地Opti-MEM(商品名)(Thermo Fisher Scientific)に置換したのち、Lipofectamine(商品名) LTX(Thermo Fisher Scientific)を用いてmRNAを2.5μg/well投与した。4時間後、細胞からRNeasy mini kit(QIAGEN)にてRNAを精製し、ReverTra Ace qPCR RT Master Mix(TOYOBO)にてcomplementary DNA(cDNA)にした後、taqman gene expression assay(Applied Biosystems)を用いて、インターフェロンβの発現量を調べた。この際、actin bの発現量にて標準化した。また培地に含まれるGlucタンパク質量をRenilla Luciferase Assay System (Promega)にて定量した。
 その結果を図23に示す。全長にハイブリダイズしたmRNA:RNAでは強い炎症反応を惹起できたものの(図23(A))、mRNAからのGlucタンパク質発現量は、1本鎖mRNAと比べて100倍程度低下した(図23(B))。一方で、mRNA:RNA poly U(-)では、mRNA:RNAと比べ炎症反応が著明に低下したのに加え(図23(A))、Gluc発現量もmRNA:RNAと同程度であった(図23(B))。それに対して、主にpoly U部分だけハイブリダイズしたものでは、mRNA:RNAと同等に強い炎症反応が見られたのに加え(図23(A))、mRNAからのタンパク質発現量も、1本鎖mRNAとほぼ同程度のレベルに保たれた(図23(B))。なお、ここでアンチセンス鎖RNAの5’末端はトリリン酸化された状態であるが、これは細胞内核酸受容体であるRIG-Iに認識され、強い炎症反応を惹起することが知られている。そこで、トリリン酸と炎症反応の関係を調べるために、トリリン酸を除いたpoly UをハイブリダイズさせたmRNAを導入したところ、炎症反応はトリリン酸化poly Uの場合と比べやや低下した。従って、RNAオリゴマーが5’末端トリリン酸を有することで、より強い炎症反応が惹起されることが明らかになった。
 mRNA:RNA poly U(-)ではあまり炎症が起きなかったことから、用いる相補鎖に依存してRIG-Iによるトリリン酸認識が異なることが強く示唆される。poly Uの場合、5’末端がmRNA末端に露出され、トリリン酸が立体的にRIG-Iに認識されやすくなった可能性、トリリン酸周囲の配列にUを多く含むが、AU結合が弱いのでトリリン酸の運動性が高まり、認識されやすくなった可能性等が想定される。このように相補鎖の選択がRIG-Iを介した自然免疫応答に重要である可能性が強く示唆された。
 このように、mRNAの3’末端に付加されるpoly A鎖の部分に相補鎖(poly U)を主にハイブリダイズさせた場合、タンパク質発現効率がほとんど低下させることなく、強い炎症反応を惹起することが分かった。
 実施例2-3:poly UハイブリダイズmRNAのリンパ節内投与
 mRNA:poly Uは実施例2-2と同様に作製した。Gluc mRNA 3μgを含む10μLの10 mM Hepes溶液をC57BL6Nマウスの鼠径リンパ節に投与した。4時間後、鼠径リンパ節を回収し、Passive lysis buffer(Promega)にて溶解し、Luc発現量をRenilla Luciferase Assay System(Promega)にて定量した。また、RNAをRNeasy mini kit(QIAGEN)にて抽出し、ReverTra Ace qPCR RT Master Mix(TOYOBO)にてcomplementary DNA (cDNA)にした後、taqman gene expression assay(Thermo Fisher Scientific)を用いて、インターフェロンβ及びインターロイキン6の発現量を調べた。この際、actin bの発現量にて標準化した。
 その結果を図24に示す。すると、図23の培養細胞を用いた解析と同様に、poly Uをハイブリダイズさせただけで、炎症反応は1本鎖mRNAと比べ著明に向上し(図24(B)及び(C))、さらにmRNAからのGluc発現効率は、ほぼ1本鎖mRNAと同程度であった(図24(A))。
 このように、in vivoにおいてもpoly UハイブリダイズmRNAは、翻訳効率を大きく損なうことなく、強い炎症反応を惹起することが分かった。
実施例2-4:poly UハイブリダイズmRNAによる細胞性免疫の誘導
 T7-OVA poly A120 plasmidは、Genscript社にてコドン最適化を行ったOVAコード配列(配列番号58及び図34)をpSP73ベクター(Promega)のXhoI、EcoR1サイトに挿入することで作成した。OVA sense鎖は、T7-OVA poly A120 plasmidをBsmBIで切断し、mMESSAGE mMACHINE T7 Ultra Kit(Thermo Fisher Scientific)にてT7プロモーターより転写することで作製した。poly UはT7-Gluc poly A120 plasmidをEcoRIで切断し、MEGAscript(登録商標) SP6 Transcription Kit(Thermo Fisher Scientific)にてSp6プロモーターより転写することで作製した。
 ここで、poly Uは、poly A全体の配列に相補的な配列(120塩基)と、その下流に、mRNAの3’UTRの一部(すなわち、3’UTRの約83%の塩基長の配列)に相補的な配列(5塩基)を含む。尚、ここで用いたpoly Uは、SP6プロモーター内の配列、及び、クローニングに用いた制限酵素配列を他の配列(17塩基)としてさらに含む。すなわち、ここで用いたpoly Uは、142塩基長の配列を有する。また、5’末端にトリリン酸構造を有する。
 以下に、作製したセンス鎖、及びpoly Uの塩基配列を示す。
 
 OVA sense鎖(配列番号55及び図31)
 poly U(配列番号56及び図32)
 
 尚、図31の配列において、下線部分がopen reading frame(ORF)であり、ORFの上流が5’UTR(16塩基)であり、ORFの下流に3’UTR(6塩基)があり、さらにその下流の119Aがpoly A配列である。
 AやUの数に関しては、実施例2-1の場合と同様であり、T7プロモーターから転写したmRNAは119塩基のAを、Sp6プロモーターから転写したRNAは120塩基のUをそれぞれ有する。しかし、DNA増幅や、mRNA調製の段階でその数は増減しうる。
 poly UをハイブリダイズさせたOVA発現mRNA(mRNA:poly U)は、実施例2-2と同様に作製した。具体的には、10mM Hepesバッファー中にセンス鎖、アンチセンス鎖、又はpoly Uが等モル量含まれ、RNA濃度が300μg/mlとなる溶液を調製した。その溶液を65℃で5分維持した後、10分かけて30℃に下げることハイブリダイズを行った。
 図25(A)に以下の実験の手順を示す。先ず、OVA mRNA 3μgを含む10μLの10 mM Hepes溶液をC57BL6Nマウスの鼠径リンパ節に投与した。7日後、脾臓細胞を回収し、IFN-γ ELISpot PLUS、Mouse(-)HRPキット(MABTECH 社)にてEnzyme-Linked ImmunoSpot(ELISPOT)アッセイを行った。ここでは、96well plateに250,000cells/well蒔いた。最終OVA濃度10μg/mLで24時間培養したのち、IFN-γ産生細胞数を計測した。
 その結果を図25(B)に示す。図25(B)の縦軸は、OVAに反応してIFN-γを産生した脾細胞の数を示し、細胞性免疫の指標となる。図25(B)に示されているように、1本鎖のOVA mRNAでは、細胞性免疫をほとんど誘導できなかったのに対して、poly UをハイブリダイズさせたOVA mRNA(mRNA:poly U)では、有意な細胞性免疫反応が観察された。
 このように、poly Uハイブリダイズにより、より強い細胞性免疫を誘導することができることが分かった。
実施例2-5:poly UハイブリダイズmRNAによる液性免疫の誘導
 実施例2-4と同様の方法でOVA mRNAをC57BL6Nマウスに投与し、7日後に血液を採取した(図26(A))。血清中の抗OVA IgGをMouse Anti-OVA IgG Antibody Assay Kit(コンドレックス社)にて定量した。
 その結果を図26(B)に示す。1本鎖mRNAではOVA反応性IgG値はコントロール群に比べ上昇しなかったのに対して、poly UをハイブリダイズさせたOVA mRNA(mRNA:poly U)では、IgG値の有意な上昇が観察された。
 このように、poly Uハイブリダイズにより、より強い液性免疫を誘導することができることが分かった。
 実施例2-6:樹状細胞を用いた二本鎖RNAワクチンの最適化
 実施例2-2と同様の方法で、樹状細胞(D.C.2.4細胞)におけるmRNAからのタンパク質発現量(すなわちルシフェラーゼ発現量)を定量した。
 ただし、D.C.2.4細胞を96well plateに40,000/well蒔いて実験を行った。また、RNAオリゴマーとして、以下の3つを用いた。
 
 poly U(3’UTRと相補的な配列の鎖長:5塩基)(配列番号56、図36(B))
 poly U(3’UTRと相補的な配列の鎖長:19塩基)(配列番号54、図36(B))
 poly U(3’UTRと相補的な配列の鎖長:50塩基)(配列番号59、図36(B))
 「poly U(3’UTRと相補的な配列の鎖長:5塩基)(配列番号56)」T7-Gluc poly A120 plasmidをEcoRIで切断し、MEGAscript(登録商標) SP6 Transcription Kit(Thermo Fisher Scientific)にてSp6プロモーターより転写することで作製した(図36(A))。
「poly U(3’UTRと相補的な配列の鎖長:19塩基)(配列番号54)」T7-Gluc poly A120 plasmidをSmaIで切断し、MEGAscript(登録商標) SP6 Transcription Kit(Thermo Fisher Scientific)にてSp6プロモーターより転写することで作製した(図36(A))。
 尚、「poly U(3’UTRと相補的な配列の鎖長:5塩基)(配列番号56)」は、mRNAの3’UTRの一部(すなわち、3’UTR(52塩基長)の約10%の塩基長の配列)に相補的な配列(5塩基)を含む。
 また、poly U(3’UTRと相補的な配列の鎖長:19塩基)は、mRNAの3’UTRの一部(すなわち、3’UTR(52塩基長)の約36%の塩基長の配列)に相補的な配列(19塩基)を含む。
 「poly U(3’UTRと相補的な配列の鎖長:50塩基)」は、T7-Gluc poly A120 plasmidをNotIで切断し、MEGAscript(登録商標) SP6 Transcription Kit(Thermo Fisher Scientific)にてSp6プロモーターより転写することで作製した(図36(A))。
 ここで、poly Uは、poly A全体の配列に相補的な配列(120塩基)と、その下流に、mRNAの3’UTRの一部(すなわち、3’UTR(52塩基長)の約96%の塩基長の配列)に相補的な配列(50塩基)を含む。尚、ここで用いたpoly Uは、SP6プロモーター内の配列、及び、クローニングに用いた制限酵素配列を他の配列(17塩基)としてさらに含む。すなわち、ここで用いたpoly Uは、187塩基長の配列を有する。また、5’末端にトリリン酸構造を有する。
 その結果を、図35に示す。図35に示されるように、各poly Uの3’UTRと相補的な配列の鎖長は、短ければ短いほど、mRNAからのタンパク質発現を維持する上で好ましいことが分かる。
 実施例3-1:RNAオリゴマーのハイブリダイゼーション
 合成RNAオリゴマーを以下のように作製した。先ず、Gluc mRNAに相補的な第1の配列については、RNA2次構造予測ソフトウェア(http://rtips.dna.bio.keio.ac.jp/ipknot/)にて、Gluc mRNAの2次構造を予測し、RNA鎖が2次構造を持たない部分に対してRNAオリゴマーを設計した。overhang配列については、可能な限りmRNA鎖とハイブリダイズしないようAまたはUを用いて設計した。5’ppp-RNAオリゴマーと相補的な第2の配列については、先ず、5’ppp-RNAオリゴマーの配列を設計し、その配列に相補的な第2の配列を得た。5’ppp-RNAオリゴマーではGUの繰り返し配列を用いたが、これは、ATPを含まない系でin vitro転写をすることにより、相補鎖の副産物の生成が抑制されるほか、GU繰り返し配列はそのRNA自体で2次構造を形成しないことが特徴である。この5’ppp-RNAオリゴマーに相補的な配列として第2の配列を得たが、この際、5’ppp-RNAオリゴマーのトリリン酸化された5’末端が平滑になるよう配列設計を行っている。。
 そのように設計した合成RNAオリゴマーの合成を依頼し、5’側より、Gluc mRNAに相補的な17塩基の配列、2塩基のoverhang配列、5’ppp-RNAオリゴマーと相補的な24塩基の配列からなる以下の合成RNAオリゴマーを購入した。
 合成RNAオリゴマーは北海道システムサイエンスより購入した。
合成RNAオリゴマー配列1(配列番号60):CAGCCAGCUUUCCGGGCUACACACACACACACACACACACACC
合成RNAオリゴマー配列2(配列番号61):ACUCUUUGUCGCCUUCGAUCACACACACACACACACACACACC
合成RNAオリゴマー配列3(配列番号62):GCGGCAGCCACUUCUUGUACACACACACACACACACACACACC
 5’ppp-RNAオリゴマーは次のように作製した。先ず、DR274ベクター(addgene)をBsaIで切断し、以下の2種類のオリゴマーをハイブリダイズさせたものをそこに挿入した。
DNAオリゴマー(配列番号63):TAGGTGTGTGTGTGTGTGTGTGTGTGGGCCC
DNAオリゴマー(配列番号64):AAACGGGCCCACACACACACACACACACACA
 これにより図41に示した塩基配列(配列番号65)のベクターを作製した。次に、5’ppp-RNAオリゴマーは、図41に示した塩基配列(配列番号65)のベクターをApaIとSnaBIで切断してin vitro転写により調製した。in vitro転写の際、ATPを含まない反応液を用いることで目的配列の相補鎖RNAの転写を抑制した。これにより5’がトリリン酸化された以下の5’ppp-RNAオリゴマーが調製された。
5’ppp-RNAオリゴマー(配列番号66):GGUGUGUGUGUGUGUGUGUGUGUG
 合成RNAオリゴマー配列1~3と5’ppp-RNAオリゴマーとのハイブリダイズにより、これらがハイブリダイズする側に平滑5’末端トリリン酸化構造が得られることが期待された。
24nt 1個:5’ppp-RNAオリゴマー、合成RNAオリゴマー配列1、Gluc mRNAをモル比1:1:1で混合し、ハイブリダイズさせたものである。
24nt 2個:5’ppp-RNAオリゴマー、合成RNAオリゴマー配列1及び2、Gluc mRNAをモル比1:1:1:1で混合し、ハイブリダイズさせたものである。
24nt 3個:5’ppp-RNAオリゴマー、合成RNAオリゴマー配列1、2及び3、Gluc mRNAをモル比1:1:1:1:1で混合し、以下の条件でハイブリダイズさせたものである。
 以下の実施例3-2及び3-3では、Gluc mRNAとして実施例1-3で調製したものを用いた。ハイブリダイゼーションは、65℃で5分加熱し、10分かけて30℃まで冷却することで行った。
 また、実施例3-3では、「mRNA:pU」として、実施例2-1で調製した「mRNA:polyU」を用いた。
 実施例3-2:免疫賦活化
 DC2.4細胞を12 well plateに400,000/well蒔き、24h後に培地を交換し、無血清培地Opti-MEM(商品名)(Thermo Fisher Scientific)に置換したのち、Lipofectamine(商品名) LTX(Thermo Fisher Scientific)を用いてmRNAを2.5μg/well投与した。4時間後、細胞からRNeasy mini kit(QIAGEN)にてRNAを精製し、ReverTra Ace qPCR RT Master Mix(TOYOBO)にてcomplementary DNA(cDNA)にした後、taqman gene expression assay(Applied Biosystems)を用いて、インターフェロンβおよびインターロイキン6の発現量を調べた。この際、actin bの発現量にて標準化した。
 その結果を図38及び図39に示す。5’ppp-RNAオリゴマーと合成RNAオリゴマーからなる2本鎖構造の増加に従って、インターフェロンβおよびインターロイキン6の発現量が増加していた。そこから、2本鎖構造の増加に従って、免疫賦活化効果が上昇したことが明らかとなった。
 実施例3-3:タンパク質翻訳
 DC2.4細胞を96 well plateに40,000/well蒔き、24h後に培地を交換し、無血清培地Opti-MEM(商品名)(Thermo Fisher Scientific)に置換したのち、Lipofectamine(商品名) LTX(Thermo Fisher Scientific)を用いてmRNAを0.25μg/well投与した。4時間後Glucタンパク質量をRenilla Luciferase Assay System (Promega)にて定量した。
 その結果を図40に示す。5’ppp-RNAオリゴマーと合成RNAオリゴマーからなる2本鎖構造の増加に従って、若干の翻訳活性の低下を認めたものの、3個結合した場合でも1本鎖RNAと比べ、70%程度の翻訳活性が保たれた。態様2のmRNA:pUと比較して、優れた翻訳活性が得られた。
 ここで図38~40のP値は、統計処理としてANOVA検定ののち、Tukey検定を行った際の統計学的有意差を示す。
 mRNA送達は、治療用タンパク質を安全かつ持続的に供給するための手法として、その医療への応用が期待されている。一方で、mRNAが生体内で速やかに酵素分解を受けてしまうことが大きな課題とされていた。これに対して、本発明の第1の態様では、mRNA分子自体を化学修飾することで、高分子ミセルに内包した際のmRNAの酵素分解を顕著に抑制し、mRNA導入効率を高めることに成功した。ここで用いたmRNA内包高分子ミセルは、中枢神経疾患、運動感覚器疾患、肝疾患、悪性腫瘍などの様々な疾患のモデル動物に対する治療実験において、優れた効果を示しており、将来の臨床応用を見据えた研究が進められている。高分子ミセルの組成は、標的臓器、投与法により異なるが、本発明の第1の態様の技術は様々な組成のミセルを安定化できることから、幅広く応用できる。
 mRNAワクチンは、従来のワクチンとは全く異なった仕組みによる医薬品として位置づけられる。特徴として、発現させる抗原タンパク質を自由に構築できること、細胞性免疫を誘導できることが挙げられる。また、同種の核酸ワクチンとしてDNAワクチンの研究例はあるが、DNAはホストゲノムへのランダムな挿入による変異誘発リスクがあり、実用化の障害となるのに対し、mRNAはその危険性がない。
 従来の一本鎖のmRNAを用いたワクチン開発はアメリカ、ドイツを中心に進んでいるが、効果的に炎症反応を惹起するためのアジュバント併用が避けられなかった。本発明の第2及び第3の態様のmRNAワクチンは、アジュバントが必ずしも必要ではなく、mRNAのみで効果的に炎症反応を惹起することが可能であり、また、抗原提示と同時かつ同所的に炎症反応を惹起できる。
 mRNAワクチンは、投与経路(皮下投与、筋肉内投与、経粘膜投与等)、輸送担体などを選ばず、用途や目的に応じた柔軟な適応を可能である。また、mRNAワクチンで用いるmRNAは化学反応をベースに精製され、塩基配列を変えるだけであらゆるタンパク質に対応可能であるため、スケールメリットによる大幅なコストダウンが見込まれる。これらのことは、従来のワクチンとは明白に異なったメリットである。本発明の第2及び第3の態様のワクチンは、新しいワクチンシステムとして、がんなどの個別化治療、ウイルス変異に迅速に対応可能な感染症ワクチンなど、広範なマーケットが期待される。
 配列番号1~27:合成RNA
 配列番号28~31:合成DNA/RNA
 配列番号32:合成DNA
 配列番号33:合成RNA
 配列番号34~48:合成RNA
 配列番号49及び50:合成DNA
 配列番号51~56:合成RNA
 配列番号57及び58:合成DNA
 配列番号59:合成RNA
 配列番号60~62:合成RNA
 配列番号63~65:合成DNA
 配列番号66~68:合成RNA

Claims (30)

  1.  mRNAと、mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを含む二本鎖RNAを含む、機能化mRNA。
  2.  目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを内包した前記mRNAの輸送担体であって、
     RNAオリゴマーは、
     (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
     (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
     を含み、かつ化学修飾されていない又は化学修飾されている、輸送担体。
  3.  前記RNA配列が15~23塩基の配列からなる、請求項2に記載の輸送担体。
  4.  前記RNA配列が17塩基の配列からなる、請求項3に記載の輸送担体。
  5.  前記化学修飾は、1~5塩基のオーバーハング配列を介してRNAオリゴマーの配列の5’末端又は3’末端になされたものである、請求項2~4のいずれか1項に記載の輸送担体。
  6.  前記オーバーハング配列が2塩基の配列である、請求項5に記載の輸送担体。
  7.  前記化学修飾が疎水性基による修飾である、請求項2~6のいずれか1項に記載の輸送担体。
  8.  前記疎水性基による修飾がコレステロール修飾である、請求項7に記載の輸送担体。
  9.  前記化学修飾がポリエレングリコール修飾である、請求項2~6のいずれか1項に記載の輸送担体。
  10.  前記輸送担体が、高分子ミセル又は脂質性mRNAキャリアである、請求項1~9のいずれか1項に記載の輸送担体。
  11.  請求項1~10のいずれか1項に記載の輸送担体を含有する、医薬組成物。
  12.  目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを輸送担体に内包させることを含み、
     RNAオリゴマーは、
     (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
     (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
    を含み、かつ化学修飾されている、輸送担体の安定化方法。
  13.  目的遺伝子をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つのRNAオリゴマーとを含む二本鎖RNAであって、
     RNAオリゴマーは、
     (a)mRNAの配列に相補的な12~40塩基の配列からなるRNA配列、又は
     (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズするRNA配列
     を含み、かつ化学修飾されていない又は化学修飾されている、二本鎖RNA。
  14.  抗原をコードするmRNAと、当該mRNAの少なくともpoly A配列にハイブリダイズした少なくとも1つのRNAオリゴマーからなる二本鎖RNAを含み、前記少なくとも1つのRNAオリゴマーは化学修飾されていない又は化学修飾されている、mRNAワクチン。
  15.  RNAオリゴマーは、10~500塩基配列からなる、請求項14に記載のmRNAワクチン。
  16.  RNAオリゴマーは、5’末端にトリリン酸構造を有する、請求項14又は15に記載のmRNAワクチン。
  17.  二本鎖RNAは、mRNAの少なくともpoly A配列に1つのRNAオリゴマーがハイブリダイズしたものである、請求項14~16のいずれか1項に記載のmRNAワクチン。
  18.  二本鎖RNAがネイキッドの形態である、請求項14~17のいずれか1項に記載のmRNAワクチン。
  19.  アジュバントと共に用いない、請求項14~18のいずれか1項に記載のmRNAワクチン。
  20.  疾患の予防又は治療を必要とする対象において当該疾患の予防又は治療に用いるための、請求項14~19のいずれか1項に記載のmRNAワクチン。
  21.  抗原をコードするmRNAと、当該mRNAにハイブリダイズした少なくとも1つの第1のRNAオリゴマーと、当該第1のRNAオリゴマーにハイブリダイズした第2のRNAオリゴマーからなる二本鎖RNAを含み、
     第1のRNAオリゴマーは、
     (a)mRNAの配列に相補的な12~40塩基の配列からなる第1のRNA配列と、第2のRNAオリゴマーの配列に相補的な10~200塩基の配列からなる第2のRNA配列を、5’末端よりこの順に含むRNA配列、
     (b)mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズする第1のRNA配列と、第2のRNAオリゴマーの配列に相補的な10~200塩基の配列と90%以上の同一性を有し、かつ第2のRNAオリゴマーにハイブリダイズする第2のRNA配列を、5’末端よりこの順に含むRNA配列、
    (c)第2のRNAオリゴマーの配列に相補的な10~200塩基の配列からなる第2のRNA配列と、mRNAの配列に相補的な12~40塩基の配列からなる第1のRNA配列を、5’末端よりこの順に含むRNA配列、又は
    (d)第2のRNAオリゴマーの配列に相補的な10~200塩基の配列と90%以上の同一性を有し、かつ第2のRNAオリゴマーにハイブリダイズする第2のRNA配列と、mRNAの配列に相補的な12~40塩基の配列と90%以上の同一性を有し、かつmRNAにハイブリダイズする第1のRNA配列と、5’末端よりこの順に含むRNA配列
     を含む、mRNAワクチン。
  22.  第1のRNAオリゴマーは、22~240塩基の配列からなる、請求項21に記載のmRNAワクチン。
  23.  1つのmRNAにハイブリダイズさせる第1のRNAオリゴマーの数が、1~50個である、請求項21または22に記載のmRNAワクチン。
  24.  第1のRNAオリゴマーは、前記(a)のRNA配列又は前記(b)のRNA配列を含み、第2のRNAオリゴマーは、5’末端にトリリン酸構造を有する、請求項21~23のいずれか1項に記載のmRNAワクチン。
  25.  第1のRNAオリゴマーは、前記(c)のRNA配列又は前記(d)のRNA配列を含み、第1のRNAオリゴマーは、5’末端にトリリン酸構造を有する、請求項21~23のいずれか1項に記載のmRNAワクチン。
  26.  第2のRNAオリゴマーが第1のRNAオリゴマーにハイブリダイズしている側の二本鎖RNAの末端が、平滑末端である、請求項21~25のいずれか1項に記載のmRNAワクチン。
  27.  第2のRNAオリゴマーは10~200塩基の配列を含む、請求項21~26のいずれか1項に記載のmRNAワクチン。
  28.  二本鎖RNAがネイキッドの形態である、請求項21~27のいずれか1項に記載のmRNAワクチン。
  29.  アジュバントと共に用いない、請求項21~28のいずれか1項に記載のmRNAワクチン。
  30.  疾患の予防又は治療を必要とする対象において当該疾患の予防又は治療に用いるための、請求項21~29のいずれか1項に記載のmRNAワクチン。
     
PCT/JP2017/046906 2016-12-27 2017-12-27 mRNAの機能化方法 WO2018124181A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202310810591.8A CN116949050A (zh) 2016-12-27 2017-12-27 mRNA的功能化方法
JP2018559579A JP6792847B2 (ja) 2016-12-27 2017-12-27 mRNAの機能化方法
KR1020197022206A KR102259447B1 (ko) 2016-12-27 2017-12-27 mRNA 의 기능화 방법
EP17889018.2A EP3564375A4 (en) 2016-12-27 2017-12-27 ARNM FUNCTIONALIZATION PROCESS
CN201780080567.6A CN110168090B (zh) 2016-12-27 2017-12-27 mRNA的功能化方法
US16/473,535 US11364259B2 (en) 2016-12-27 2017-12-27 MRNA functionalization method
US17/745,314 US20220296632A1 (en) 2016-12-27 2022-05-16 Mrna functionalization method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-252488 2016-12-27
JP2016252487 2016-12-27
JP2016-252487 2016-12-27
JP2016252488 2016-12-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/473,535 A-371-Of-International US11364259B2 (en) 2016-12-27 2017-12-27 MRNA functionalization method
US17/745,314 Division US20220296632A1 (en) 2016-12-27 2022-05-16 Mrna functionalization method

Publications (1)

Publication Number Publication Date
WO2018124181A1 true WO2018124181A1 (ja) 2018-07-05

Family

ID=62708134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046906 WO2018124181A1 (ja) 2016-12-27 2017-12-27 mRNAの機能化方法

Country Status (6)

Country Link
US (2) US11364259B2 (ja)
EP (1) EP3564375A4 (ja)
JP (2) JP6792847B2 (ja)
KR (1) KR102259447B1 (ja)
CN (2) CN110168090B (ja)
WO (1) WO2018124181A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093423A1 (ja) * 2017-11-09 2019-05-16 国立大学法人東京大学 mRNAの安定化方法
WO2022004765A1 (ja) * 2020-06-30 2022-01-06 公益財団法人川崎市産業振興財団 ゲノム編集用組成物
WO2023145755A1 (ja) 2022-01-25 2023-08-03 公益財団法人川崎市産業振興財団 経皮投与用のrnaを含む組成物および当該組成物の投与方法
WO2024128201A1 (ja) * 2022-12-12 2024-06-20 京都府公立大学法人 mRNAワクチン

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202112922WA (en) 2019-05-22 2021-12-30 Massachusetts Inst Technology Circular rna compositions and methods
EP3920976B1 (en) 2019-12-04 2023-07-19 Orna Therapeutics, Inc. Circular rna compositions and methods
JP2023527309A (ja) * 2020-05-19 2023-06-28 オルナ セラピューティクス インコーポレイテッド 環状rna組成物及び方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540500A (ja) * 2007-09-28 2010-12-24 ビオマイ アクチエンゲゼルシャフト Rnaワクチン
JP2012502074A (ja) 2008-09-30 2012-01-26 キュアバック ゲーエムベーハー 哺乳動物において免疫を賦活する応答を提供または増強するための複合化された(m)RNAと裸のmRNAとを含んでいる組成物、およびその使用
WO2015121924A1 (ja) 2014-02-12 2015-08-20 一般社団法人医療産業イノベーション機構 mRNA送達用組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096636B2 (en) * 1996-06-06 2015-08-04 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
NZ528644A (en) 2001-03-08 2005-05-27 Boehringer Ingelheim Ca Ltd A method for identifying a potential inhibitor of the binding between a HCV NS5B RNA-dependent RNA polymerase and an appropriate primer-template
US7803781B2 (en) * 2003-02-28 2010-09-28 Isis Pharmaceuticals, Inc. Modulation of growth hormone receptor expression and insulin-like growth factor expression
US8796436B2 (en) * 2003-04-17 2014-08-05 Alnylam Pharmaceuticals, Inc. Modified iRNA agents
EP1699924B1 (en) * 2003-12-03 2019-09-04 Ocunexus Therapeutics, Inc. Inhibitory compounds targeted to connexin 43 and methods of use thereof in the treatment of corneal eye trauma
EP1910528A2 (de) 2005-07-25 2008-04-16 Technische Universität Dresden Rna-abhängige rna-polymerase, verfahren und kits zur amplifikation und / oder markierung von rna
US8106173B2 (en) * 2006-04-07 2012-01-31 Idera Pharmaceuticals, Inc. Stabilized immune modulatory RNA (SIMRA) compounds for TLR7 and TLR8
WO2009154804A2 (en) * 2008-06-20 2009-12-23 Thomas Jefferson University Twin fluorophore peptide nucleic acid hybridization probes
EP2280081A1 (en) 2009-07-31 2011-02-02 Qiagen GmbH Method of normalized quantification of RNA
DK2591792T3 (en) * 2010-07-09 2017-04-03 Univ Tokyo COMPOSITION FOR NUCLEIC ACID RELEASE, CARRIER COMPOSITION, PHARMACEUTICAL COMPOSITION WITH COMPOSITION FOR NUCLEIC ACID RELEASE OR CARRIER COMPOSITION AND PROCEDURE FOR NUCLEAR PROCESS
WO2012109476A2 (en) * 2011-02-09 2012-08-16 The University Of Rochester Methods and compositions related to staufen 1 binding sites formed by duplexing alu elements
EP2859102A4 (en) 2012-06-08 2016-05-11 Shire Human Genetic Therapies NUCLEASE RESISTANT POLYNUCLEOTIDES AND USES THEREOF
WO2015051045A2 (en) * 2013-10-04 2015-04-09 Novartis Ag 3'END CAPS FOR RNAi AGENTS FOR USE IN RNA INTERFERENCE
CN110302394A (zh) * 2013-11-22 2019-10-08 国立大学法人东京大学 药物递送用载体、偶联物及含有这些成分的组合物以及它们的施予方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540500A (ja) * 2007-09-28 2010-12-24 ビオマイ アクチエンゲゼルシャフト Rnaワクチン
JP2012502074A (ja) 2008-09-30 2012-01-26 キュアバック ゲーエムベーハー 哺乳動物において免疫を賦活する応答を提供または増強するための複合化された(m)RNAと裸のmRNAとを含んでいる組成物、およびその使用
WO2015121924A1 (ja) 2014-02-12 2015-08-20 一般社団法人医療産業イノベーション機構 mRNA送達用組成物

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
ALTZSHUL S.F. ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403
BLOOD, vol. 108, no. 13, 2006, pages 4009 - 17
K. OSADA ET AL., BIOMATERIALS, vol. 33, 2012, pages 325 - 332
KARL-JOSEF KALLEN ET AL., HUMAN VACCINES & IMMUNOTHERAPEUTICS, vol. 9, no. 10, 2013, pages 2263 - 2276
M. OISHI ET AL., CHEM BIO CHEM, vol. 6, no. 4, 2005, pages 718 - 725
MEIS, J. E.CHEN, F., EPICENTRE FORUM, vol. 9, no. 1, 2002, pages 10
MIYATA, K. ET AL., BIOMATERIALS, vol. 31, 2010, pages 4764 - 4770
OBA, M. ET AL., BIOMATERIALS, vol. 32, 2011, pages 3106 - 3114
OSAWA, S. ET AL., BIOMACROMOLECULES, vol. 17, 2016, pages 354 - 361
S. L. BEAUCAGE ET AL., TETRAHEDRON LETTERS, vol. 22, 1981, pages 1859 - 1862
UCHIDA, S. ET AL., BIOMATERIALS, vol. 82, 2016, pages 221 - 228
UCHIDA, S. ET AL.: "Designing immunostimulatory double stranded messenger RNA with maintained translational activity through hybridization with poly A sequences for effective vaccination", BIOMATERIALS, vol. 150, 27 September 2017 (2017-09-27), pages 162 - 170, XP085246319, ISSN: 0142-9612 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093423A1 (ja) * 2017-11-09 2019-05-16 国立大学法人東京大学 mRNAの安定化方法
WO2022004765A1 (ja) * 2020-06-30 2022-01-06 公益財団法人川崎市産業振興財団 ゲノム編集用組成物
WO2023145755A1 (ja) 2022-01-25 2023-08-03 公益財団法人川崎市産業振興財団 経皮投与用のrnaを含む組成物および当該組成物の投与方法
WO2024128201A1 (ja) * 2022-12-12 2024-06-20 京都府公立大学法人 mRNAワクチン

Also Published As

Publication number Publication date
US11364259B2 (en) 2022-06-21
US20190328769A1 (en) 2019-10-31
EP3564375A4 (en) 2020-12-16
CN116949050A (zh) 2023-10-27
CN110168090A (zh) 2019-08-23
KR20190102041A (ko) 2019-09-02
US20220296632A1 (en) 2022-09-22
KR102259447B1 (ko) 2021-06-02
CN110168090B (zh) 2023-07-18
JPWO2018124181A1 (ja) 2019-10-31
JP6792847B2 (ja) 2020-12-02
JP7264378B2 (ja) 2023-04-25
EP3564375A1 (en) 2019-11-06
JP2021035377A (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
JP7264378B2 (ja) mRNAの機能化方法
KR102285326B1 (ko) Rna를 세포에 도입하기 위한 조성물
KR102142180B1 (ko) 세포에 핵산을 도입하기 위한 조성물
KR20210021943A (ko) 미립자 제형용 동결 방지제
AU2013242403B2 (en) Artificial nucleic acid molecules
JPH09508100A (ja) 核酸を含む組成物、調製および使用
US20230332154A1 (en) Amphiregulin gene-specific double-stranded oligonucleotide and composition for preventing and treating fibrosis-related diseases and respiratory diseases, comprising same
US20240122866A1 (en) Cationic polymer-formulated nanoparticles and methods of use
JP6960641B2 (ja) mRNAの安定化方法
Zhao et al. Recent Progress in Biomedical Applications of Chitosan Derivatives as Gene Carrier
WO2024128201A1 (ja) mRNAワクチン
JP7554850B2 (ja) アンフィレギュリン特異的な二本鎖オリゴヌクレオチド構造体を含む肥満関連疾患の予防及び治療用組成物
WO2022004765A1 (ja) ゲノム編集用組成物
Bogadi et al. Nucleic Acid-Based Micellar Therapy for the Treatment of Different Diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197022206

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017889018

Country of ref document: EP

Effective date: 20190729