WO2018124165A1 - 液晶配向剤、液晶配向膜、及び液晶表示素子 - Google Patents
液晶配向剤、液晶配向膜、及び液晶表示素子 Download PDFInfo
- Publication number
- WO2018124165A1 WO2018124165A1 PCT/JP2017/046852 JP2017046852W WO2018124165A1 WO 2018124165 A1 WO2018124165 A1 WO 2018124165A1 JP 2017046852 W JP2017046852 W JP 2017046852W WO 2018124165 A1 WO2018124165 A1 WO 2018124165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- group
- aligning agent
- crystal aligning
- crystal alignment
- Prior art date
Links
- 0 C*(C)c1ccc(C)cc1 Chemical compound C*(C)c1ccc(C)cc1 0.000 description 11
- GSHDFGSOOTUBPC-UHFFFAOYSA-N CC(C)(C)OC(N(CCc1ccc(C)cc1)Cc1ccc(C)cc1)=O Chemical compound CC(C)(C)OC(N(CCc1ccc(C)cc1)Cc1ccc(C)cc1)=O GSHDFGSOOTUBPC-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Cc1ccc(C)cc1 Chemical compound Cc1ccc(C)cc1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- LJTOGGNSNDIINV-UHFFFAOYSA-N CC(C)(C)OC(N(C)c1ccc(C)cc1)=O Chemical compound CC(C)(C)OC(N(C)c1ccc(C)cc1)=O LJTOGGNSNDIINV-UHFFFAOYSA-N 0.000 description 1
- QHPDXLWQXFCEAH-UHFFFAOYSA-N CC(C)(C)OC(N(CCc1ccc(C)cc1)C(NCCc1ccc(C)cc1)=O)=O Chemical compound CC(C)(C)OC(N(CCc1ccc(C)cc1)C(NCCc1ccc(C)cc1)=O)=O QHPDXLWQXFCEAH-UHFFFAOYSA-N 0.000 description 1
- KTICSUWCGUEFAE-UHFFFAOYSA-N CC(C)(C)OC(NCc1c(C)ccc(C)c1)=O Chemical compound CC(C)(C)OC(NCc1c(C)ccc(C)c1)=O KTICSUWCGUEFAE-UHFFFAOYSA-N 0.000 description 1
- JBUQYUXEWBZTEP-UHFFFAOYSA-N CC(C)(C)OC(Nc1c(CCCCC(C)=O)ccc(C)c1)=O Chemical compound CC(C)(C)OC(Nc1c(CCCCC(C)=O)ccc(C)c1)=O JBUQYUXEWBZTEP-UHFFFAOYSA-N 0.000 description 1
- FOVXANGOLMXKES-UHFFFAOYSA-N Cc(cc1)cc(F)c1OC Chemical compound Cc(cc1)cc(F)c1OC FOVXANGOLMXKES-UHFFFAOYSA-N 0.000 description 1
- DDGBVIRVTJIPGE-UHFFFAOYSA-N Cc(cc1)ccc1-c(cc1)ccc1OCCOc1ccc(C)cc1 Chemical compound Cc(cc1)ccc1-c(cc1)ccc1OCCOc1ccc(C)cc1 DDGBVIRVTJIPGE-UHFFFAOYSA-N 0.000 description 1
- SFKHUVSFQAQMLZ-UHFFFAOYSA-N Cc(cc1)ccc1-c1ccc(-c2ccc(C)cc2)[nH]1 Chemical compound Cc(cc1)ccc1-c1ccc(-c2ccc(C)cc2)[nH]1 SFKHUVSFQAQMLZ-UHFFFAOYSA-N 0.000 description 1
- WNVWWDKUMKBZQV-FOCLMDBBSA-N Cc(cc1)ccc1/N=N/c1ccc(C)cc1 Chemical compound Cc(cc1)ccc1/N=N/c1ccc(C)cc1 WNVWWDKUMKBZQV-FOCLMDBBSA-N 0.000 description 1
- ZWTDQRPAWMXQTF-UHFFFAOYSA-N Cc(cc1)ccc1NN(C)c1c(C)cc(C)c(OC)c1 Chemical compound Cc(cc1)ccc1NN(C)c1c(C)cc(C)c(OC)c1 ZWTDQRPAWMXQTF-UHFFFAOYSA-N 0.000 description 1
- JSHPAMZIYMYIJU-UHFFFAOYSA-N Cc1ccc(CCc(cc2)ccc2OCCOCCOc2ccc(CCc3ccc(C)cc3)cc2)cc1 Chemical compound Cc1ccc(CCc(cc2)ccc2OCCOCCOc2ccc(CCc3ccc(C)cc3)cc2)cc1 JSHPAMZIYMYIJU-UHFFFAOYSA-N 0.000 description 1
- SJJMMMALTYPIOU-UHFFFAOYSA-N Cc1ccc(CSc2ccc(C)cc2)cc1 Chemical compound Cc1ccc(CSc2ccc(C)cc2)cc1 SJJMMMALTYPIOU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/56—Aligning agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Definitions
- the present invention relates to a liquid crystal aligning agent that exhibits good adhesion even when subjected to low-temperature firing, and a liquid crystal aligning film obtained from the liquid crystal aligning agent.
- a flexible liquid crystal display element using a flexible resin film as a substrate has various advantages such as being thin and lightweight, or being foldable for storage and movement. Suitable for viewing content.
- the resin film has poor heat resistance, a low-temperature process for producing individual elements constituting the liquid crystal display element, for example, a liquid crystal alignment film has been proposed, and accordingly, a liquid crystal alignment film material capable of low-temperature baking is required. (International Publication WO2012 / 121259 (Patent Document 1)).
- Patent Document 1 International Publication WO2012 / 121259
- the resin film is generally weaker to external impacts than the glass substrate, it is required that the adhesion between the alignment film and the resin film substrate is high.
- Patent Document 2 A composition suitable for the formation of a cured film having liquid crystal orientation is reported in, for example, International Publication No. WO2015 / 129890 (Patent Document 2).
- Patent Document 3 A liquid crystal alignment film containing polycarbonate as an essential component is disclosed, for example, in JP-A-11-119225 (Patent Document 3).
- Patent Document 3 JP-A-11-119225
- an object of this invention is to provide the liquid crystal aligning agent and liquid crystal aligning film which become favorable adhesiveness even if low temperature baking is performed.
- ⁇ 1> At least one polymer selected from the group consisting of polyimide, polyamic acid, polyamic acid ester, polyorganosiloxane, polyester, polyamide, and a polymer of monomers having a polymerizable unsaturated bond;
- B At least one compound selected from the group consisting of polyether polyol, polyester polyol, polycarbonate polyol, and polycaprolactone polyol; and
- C a liquid crystal aligning agent containing an organic solvent.
- liquid crystal aligning agent and a liquid crystal alignment film that have good adhesion even when subjected to low-temperature firing.
- the liquid crystal display element using the liquid crystal aligning film obtained from the liquid crystal aligning agent of this invention can be used suitably for the display element of various liquid crystal modes. These elements are also useful in liquid crystal displays for display purposes, and in light control windows and optical shutters for controlling transmission and blocking of light.
- the liquid crystal aligning agent of this invention is a liquid crystal aligning agent characterized by containing above-described (A) component, (B) component, and (C) component.
- A liquid crystal aligning agent
- B component
- C component
- the specific polymer of the component (A) in the present invention is a group consisting of a polymer of polyimide, polyamic acid, polyamic acid ester, polyorganosiloxane, polyester, polyamide, and a monomer having a polymerizable unsaturated bond. It is at least one polymer selected from the above.
- the polyamic acid used in the present invention can be obtained by reacting a diamine compound with tetracarboxylic dianhydride.
- the diamine used for the polymerization of the polyamic acid of the present invention can be generalized by the following formula (1).
- A1 and A2 in the above formula (1) are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms; 1 is a divalent organic group. From the viewpoint of liquid crystal alignment, A1 and A2 are preferably a hydrogen atom or a methyl group.
- a diamine of the following formula (DA-1) is used as the diamine.
- Y d is a divalent organic group represented by the following formulas (Y-1) to (Y-171).
- X 1 is a sulfur atom, an oxygen atom or —NH—
- R 8 and R 9 are each independently a divalent organic group, and at least one of R 8 and R 9 is One has an aromatic ring, and at least one bond in “—CO—X 1 —” is bonded to the aromatic ring, preferably described in paragraphs [0047] to [0048] of JP-A-2015-135464.
- R 1 and R 2 are each an ethylene group, —COO—, —OCO—, —NHCO—, —N (CH 3 ) CO—.
- n is an integer of 1-6.
- One preferred embodiment of the diamine that can be used in the present invention is a diamine having an alkyl group or fluorine-containing alkyl group in the side chain represented by the following formulas [Sd-1] to [Sd-4]. .
- each A 1 independently represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group having 1 to 22 carbon atoms.
- the diamine is preferable in terms of accelerating the curing rate of the liquid crystal alignment film, and more preferably used in combination with a diamine that imparts vertical alignment described later. These diamines are preferably at least 10 mol%, more preferably at least 20 mol%, based on the total diamine component used in the liquid crystal aligning agent.
- Another preferred embodiment of the diamine that can be used in the present invention includes a diamine having a heterocyclic ring represented by the following formula (bs).
- X 1 is at least one divalent organic group selected from the group consisting of —O—, —NQ 1 —, —CONQ 1 —, —NQ 1 CO—, —CH 2 O—, and —OCO—
- Q 1 is A hydrogen atom or an alkyl group having 1 to 3 carbon atoms
- X 2 represents a single bond or at least one divalent organic group selected from the group consisting of an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and an aromatic hydrocarbon group.
- X 3 is a single bond, or —O—, —NQ 2 —, —CONQ 2 —, —NQ 2 CO—, —COO—, —OCO—, and —O (CH 2 ) m— (m is an integer of 1 to 5)
- Q2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
- X 4 is a nitrogen-containing aromatic heterocycle
- n is an integer of 1 to 4, preferably a combination described in Tables 1 to 3 in paragraphs [0036] to [0038] of International Publication No. WO2009 / 093707 It is.
- Another preferred embodiment of the diamine that can be used in the present invention includes a diamine having a photoreactive group represented by the following formula (PV-0).
- X 2 represents a substituent, and is a group having a structure represented by the following formula (2A) or the following formula (2B).
- R is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms (however, any hydrogen atom may be substituted with a fluorine atom), or Represents an alkoxy group having 1 to 18 carbon atoms (wherein any hydrogen atom may be substituted with a fluorine atom).
- a and B each independently represent a single bond or any one of the ring structures represented by the following formulae. However, any hydrogen atom in the ring structure may be substituted with an alkoxy group having 1 to 10 carbon atoms.
- T 1 to T 4 each independently represents a single bond, an ether, an ester, an amide or a ketone bond.
- S represents a single bond or an alkylene group having 1 to 10 carbon atoms.
- diamines that can be used in the present invention are represented by the formulas [2-1] to [2-31] described in paragraphs [0033] to [0042] of International Publication WO2013 / 125595.
- the diamines shown can be exemplified, and these diamines are preferably 5 mol% or more, more preferably 10 mol% or more, and more preferably 20 mol% or more with respect to the entire diamine component. preferable. From the viewpoint of increasing the curing rate, 90 mol% or less is preferable, and 80 mol% or less is more preferable. More preferred diamines are at least one selected from the following formulas [2a-24] to [2a-33].
- each R 1 independently represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 And represents at least one linking group selected from — and —CH 2 OCO—, and when it is in the meta position with respect to two amino groups, R 1 represents —CONH—, — Represents at least one linking group selected from NHCO— and —CH 2 —, wherein each R 2 independently represents a linear or branched alkyl group having 1 to 22 carbon atoms, or 1 to 22 carbon atoms.
- Cy is a group selected from a 4,4′-biphenyldiyl group, a 4,4′-phenylcyclohexyl group, and a 4,4′-dicyclohexyl group.
- R 3 represents —O— or —CH 2 O—
- Cy2 has the same meaning as Cy
- each R 7 independently represents a linear or branched group having 3 to 12 carbon atoms.
- the cis-trans isomerism of 1,4-cyclohexylene indicates the trans isomer.
- the following compounds are preferable from the viewpoint of photoreactivity and the like.
- n represents an integer of 0 to 18.
- tetracarboxylic dianhydrides include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aromatic tetracarboxylic dianhydrides. Specific examples of these include the following groups [1] to [5].
- aliphatic tetracarboxylic dianhydride for example, 1,2,3,4-butanetetracarboxylic dianhydride;
- Examples of alicyclic tetracarboxylic dianhydrides include acid dianhydrides such as the following formulas (X1-1) to (X1-13),
- R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, which may be the same or different;
- R M represents a hydrogen atom or a methyl group
- Xa is a tetravalent organic group represented by the following formulas (Xa-1) to (Xa-7));
- aromatic tetracarboxylic dianhydrides for example, pyromellitic anhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic Acid dianhydrides, acid dianhydrides represented by the following formulas (Xb-1) to (Xb-10), and the like, and
- the said tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
- the polyamic acid used in the present invention can be synthesized by a known method (for example, see International Publication WO2014 / 034792).
- the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. It may be used.
- the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
- polyamic acid ester The polyamic acid ester used in the present invention can be obtained as follows.
- the polyamic acid ester used in the present invention is (1) synthesized from a polyamic acid, (2) synthesized a polyamic acid ester from a tetracarboxylic acid diester and a diamine, or (3) a tetracarboxylic acid diester dichloride and a diamine.
- synthesis by reaction it can be synthesized by any known method (for example, see International Publication WO2014 / 034792).
- Examples of the tetracarboxylic acid diester include the following reaction formula (wherein R 1 is an alkyl group having 1 to 5 carbon atoms, and A is a tetravalent organic group derived from the tetracarboxylic dianhydride).
- R 1 is an alkyl group having 1 to 5 carbon atoms
- A is a tetravalent organic group derived from the tetracarboxylic dianhydride.
- the compound represented by [5-p-1] is preferable from the viewpoint of obtaining a high molecular weight and low-dispersion polyamic acid ester.
- the tetracarboxylic acid diester dichloride can be produced, for example, by a known method of chlorinating the tetracarboxylic acid dialkyl ester (see, for example, International Publication WO2010 / 092989).
- tetracarboxylic acid diester dichloride is represented by the formula [5-Cl] (in the above formula (5-Cl), A is the same as A in the above formula (5). Is preferred).
- the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone from the viewpoint of solubility of the polyamic acid ester, and these may be used alone or in combination.
- the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
- the polyimide used in the present invention can be obtained by a known method (for example, see International Publication WO2013 / 125595).
- the polyimide may be a complete imidized product obtained by dehydrating and ring-closing all of the amic acid structure that the polyamic acid had or the amic acid ester structure that the polyamic acid ester had, and it may have an amic acid or amic acid ester structure. It may be a partially imidized product in which only a part is dehydrated and closed and an amic acid structure or an amic acid ester structure and an imide ring structure coexist.
- the polyimide to be used preferably has an imidization ratio of 20% or more, and is preferably 90% or less, and more preferably 60% or less, from the viewpoint of ensuring solubility in a solvent.
- This imidation ratio represents the ratio of the number of imide ring structures to the total of the number of amic acid structures or amic acid ester structures of polyimide and the number of imide ring structures, expressed as a percentage.
- a part of the imide ring may be an isoimide ring.
- the polyorganosiloxane according to the present invention can be obtained, for example, by a known method (for example, see International Publication No. WO2009 / 025386) in which a hydrolyzable silane compound is hydrolyzed and condensed.
- silane compounds used in the synthesis of polyorganosiloxane include alkoxysilane compounds such as tetramethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and dimethyldiethoxysilane; 3-mercaptopropyltriethoxy Nitrogen / sulfur-containing alkoxysilane compounds such as silane, mercaptomethyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (3-cyclohexylamino) propyltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3- Epoxy group-containing silanization such as glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane Uns
- silane compounds examples thereof include silane compounds; trimethoxysilylpropyl succinic anhydride.
- hydrolyzable silane compounds can be used alone or in combination of two or more. Note that “(meth) acryloxy” means “acryloxy” and “methacryloxy”.
- the polystyrene-reduced weight average molecular weight (Mw) measured by GPC is preferably in the range of 100 to 50,000, more preferably in the range of 200 to 10,000.
- a polyorganosiloxane having a repeating unit represented by the following formula (P-Si-Ep) is preferable.
- X 1 represents an epoxy having the following formula (X 1 -1) or (X 1 -2) (wherein "*" represents a bond))
- Y 1 is a hydroxyl group, an alkoxyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- the polyorganosiloxane of the present invention it is desirable that the following cinnamic acid derivative (Cn-1) or (Cn-2) is used as the carboxylic acid having a liquid crystal aligning group from the viewpoint of the effects of the present invention.
- the polyester used in the present invention can be obtained, for example, by reacting a dicarboxylic acid with a diepoxy compound.
- a diepoxy compound for example, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, Examples thereof include diepoxy compounds described in JP2013-113937A.
- the use ratio of the diepoxy compound and dicarboxylic acid compound used in the polyester synthesis reaction is preferably 0.2 to 2 equivalents of the epoxy group of the diepoxy compound with respect to 1 equivalent of the carboxy group contained in the dicarboxylic acid compound. More preferred is 3 equivalents to 1.2 equivalents.
- the reaction between the dicarboxylic acid and the diepoxy compound is preferably performed in the presence of an organic solvent.
- organic solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazolidinone, dimethyl sulfoxide, ⁇ -butyrolactone, tetramethylurea,
- aprotic polar solvents such as hexamethylphosphoric triamide
- phenolic solvents such as m-cresol, xylenol, phenol and halogenated phenol.
- a solution containing the polyester as the polymer (A) can be obtained.
- This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, may be used for the preparation of the liquid crystal aligning agent after isolating the polyester contained in the reaction solution, or after the isolated polyester is purified. It may be used for the preparation of a liquid crystal aligning agent. Isolation and purification of the polyester can be performed according to a known method.
- the polyester obtained as described above has a polystyrene-equivalent number average molecular weight (Mn) measured by GPC, which improves the liquid crystal alignment of the liquid crystal alignment film to be formed and the stability of the liquid crystal alignment over time. From the standpoint of securing, it is preferably 250 to 500,000, more preferably 500 to 100,000, and still more preferably 1,000 to 50,000.
- the polyamide used in the present invention can be obtained by, for example, a method of reacting dicarboxylic acid and diamine.
- the dicarboxylic acid is preferably subjected to a reaction with a diamine after acid chloride using an appropriate chlorinating agent such as thionyl chloride.
- dicarboxylic acid used for the synthesis
- dicarboxylic acids such as oxalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid; cyclobutane dicarboxylic acid, cyclohexane
- Dicarboxylic acids having an alicyclic structure such as dicarboxylic acids; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-diphenylether dicarboxylic acid, 4,4′-carbonyl And dicarboxylic acids having an aromatic ring such as dibenzoic acid, 4-carboxycinnamic acid, and p-phenylenediacrylic acid.
- dicarboxylic acid can be used individually by 1 type or in combination of
- a polyamide can be obtained by using at least a part of the diamine used for the polyimide precursor. In the synthesis, other diamines may be used in combination as necessary.
- a diamine can be used individually by 1 type or in combination of 2 or more types.
- the proportion of dicarboxylic acid and diamine used in the polyamide synthesis reaction is preferably such that the carboxyl group of the dicarboxylic acid is 0.2 to 2 equivalents relative to 1 equivalent of the amino group of the diamine.
- the reaction between a dicarboxylic acid (preferably an acid-chloride dicarboxylic acid) and a diamine is preferably carried out in an organic solvent in the presence of a base.
- the organic solvent for example, tetrahydrofuran, dioxane, toluene, chloroform, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and the like can be preferably used.
- the amount of the organic solvent used is preferably 400 to 900 parts by weight with respect to 100 parts by weight of the total amount of dicarboxylic acid and diamine.
- a base used in the above reaction for example, a tertiary amine such as pyridine, triethylamine, N-ethyl-N, N-diisopropylamine can be preferably used.
- the amount of base used is preferably 2 to 4 moles per mole of diamine.
- a reaction solution obtained by dissolving polyamide is obtained. This reaction solution may be used for the preparation of the liquid crystal aligning agent as it is, or may be used for the preparation of the liquid crystal aligning agent after isolating the polyamide contained in the reaction solution.
- the polystyrene-reduced weight average molecular weight (Mw) measured by GPC is preferably 1,000 to 500,000, more preferably 5,000 to 300,000.
- Polymer polymer having a polymerizable unsaturated bond In the polymer of a monomer having a polymerizable unsaturated bond (hereinafter also referred to as “polymer (PAc)”), examples of the polymerizable unsaturated bond possessed by the monomer include (meth) acryloyl group, vinyl group, and styryl group. And a maleimide group.
- PAc polymerizable unsaturated bond
- Such a monomer having a polymerizable unsaturated bond include, for example, (meth) acrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, vinyl benzoic acid and other unsaturated carboxylic acids: (meth) acrylic acid Alkyl (meth) acrylate cycloalkyl, benzyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, trimethoxysilylpropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylic Unsaturated carboxylic esters such as glycidyl acid, 3,4-epoxycyclohexylmethyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, 4-hydroxybutyl glycidyl ether: (Meth) acrylic compounds such as saturated polycarboxylic acid anhydrides; Aromatic vinyl compounds such as len,
- the polymer (PAc) is preferably a monomer polymer containing a (meth) acrylic compound from the viewpoints of transparency and material strength.
- the proportion of the (meth) acrylic compound used is preferably 50 mol% or more, preferably 60 mol% or more, based on the total amount of monomers used for the synthesis. More preferably, it is more preferably 70 mol or more.
- a photoreactive monomer represented by the structure of the following formula (3m) -1 may be used.
- Mc represents a polymerizable unsaturated bond such as (meth) acryloyl, vinyl group, styryl group, maleimide group
- Sb is a linear or branched alkylene group having 1 to 10 carbon atoms, a divalent aromatic group or a divalent alicyclic group
- Md is a single bond, divalent heterocycle, trivalent heterocycle, tetravalent heterocycle, substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, divalent aromatic group, trivalent Aromatic group, tetravalent aromatic ring, divalent alicyclic group, trivalent alicyclic group, tetravalent alicyclic group, divalent condensed cyclic group, trivalent condensed cyclic group Or a tetravalent fused cyclic group, each group is unsubstituted or one or more hydrogen atoms may be substituted by a fluorine atom, a chlorine atom, a
- Xa and Xb are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group or an alkyl group having 1 to 3 carbon atoms
- R 1 is a single bond, an oxygen atom, —COO— or —OCO—, preferably a single bond, —COO— or —OCO—
- R 2 is a divalent aromatic group, divalent alicyclic group, divalent heterocyclic group or divalent condensed cyclic group
- R 3 is a single bond, oxygen atom, —COO— or —OCO.
- R 4 is a monovalent organic group having 3 to 40 carbon atoms including a linear or branched alkyl group having 1 to 40 carbon atoms or an alicyclic group
- R 5 is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine atom or a cyano group, preferably a methyl group, a methoxy group or a fluorine atom
- a is an integer of 0 to 3
- b is an integer of 0 to 4.
- Examples of the monomer represented by the above formula (3m) -1 include, but are not limited to, the following.
- the proportion of the photoreactive monomer used is preferably 10 to 95 mol, more preferably 10 to 90 mol%, still more preferably 20 to 70 mol based on the total amount of monomers used in the synthesis. %.
- the polymer (PAc) can be obtained, for example, by polymerizing a monomer having a polymerizable group unsaturated bond in the presence of a polymerization initiator.
- a polymerization initiator examples include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), and 2,2′-azobis (4-methoxy-2). , 4-dimethylvaleronitrile) and the like are preferred.
- the use ratio of the polymerization initiator is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of all monomers used in the reaction.
- the polymerization reaction is preferably performed in an organic solvent.
- organic solvent used in the reaction examples include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds, and the like, and diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether acetate, and the like are preferable.
- the amount of organic solvent used (a) should be such that the total amount of monomers (b) used in the reaction is 0.1 to 60% by mass relative to the total amount of reaction solution (a + b). Is preferred.
- the component (A) is at least one polymer selected from the group consisting of polyimide, polyamic acid, polyamic acid ester, and a polymer of monomers having a polymerizable unsaturated bond.
- the component (A) comprises at least one tetracarboxylic acid derivative selected from the group consisting of tetracarboxylic dianhydride, tetracarboxylic diester and tetracarboxylic diester dichloride, and a diamine. It is a polymer obtained by making these react.
- the tetracarboxylic dianhydride, tetracarboxylic diester and tetracarboxylic diester dichloride are preferably the aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, aromatic tetracarboxylic It is preferable to include at least one structure selected from the group consisting of acid dianhydrides and their tetracarboxylic acid diesters and tetracarboxylic acid diester dichlorides.
- the amount of these preferred compounds (T) used (the total amount when two or more are used) is 10 mol% with respect to the total amount of tetracarboxylic dianhydride and its derivative used for the synthesis of polyamic acid.
- the content is 20 mol% or more, and more preferably 30 mol% or more.
- the molecular weight of the polyamic acid, polyamic acid ester and polyimide described in the present invention is preferably 2,000 to 500,000 in weight average molecular weight, more preferably 5,000 to 300,000, still more preferably 10, 000 to 100,000.
- the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
- the component (A) may be 1 to 15% by weight, preferably 1 to 8% by weight, more preferably 1.5 to 7% by weight when the total amount of the liquid crystal aligning agent is 100% by weight.
- the component (B) in the present invention is at least one compound selected from the group consisting of polyether polyols, polyester polyols, polycarbonate polyols, and polycaprolactone polyols.
- polyether polyol used as the component (B) of the present invention for example, ethylene oxide, propylene oxide, ethylene oxide and propylene oxide obtained by using ethylene glycol, propylene glycol, glycerin, pentaerythritol and the like as an initiator.
- examples thereof include a mixture and a ring-opening polymer such as tetrahydrofuran.
- the polyester polyol used as the component (B) of the present invention is an ester formation such as polyhydric alcohol and polycarboxylic acid having an amount less than the stoichiometric amount of the polyhydric alcohol or its ester, anhydride, halide, etc. Examples thereof include those obtained by direct esterification reaction and / or transesterification reaction with a functional derivative.
- polyhydric alcohol examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, and 2-butyl-2-ethyl-1,3-propane.
- polyvalent carboxylic acid or its ester-forming derivative examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, and 2-methylsuccinic acid.
- Acid 2-methyladipic acid, 3-methyladipic acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid, hydrogenated dimer acid
- Aliphatic dicarboxylic acids such as dimer acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid; 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2 -Cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicar Cycloaliphatic dicarboxylic acids such as acid, 1,4-dicarboxylic methylenecyclohexane, nadic acid, methyl nadic acid; polyvalent
- polycarbonate polyol used as the component (B) of the present invention examples include compounds obtained by polycondensation reaction between a normal polyol component and a carbonylating agent.
- polyol component examples include diols and polyhydric alcohols such as trivalent or higher alcohols.
- diol examples include 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, , 9-nonanediol, linear diol such as 1,10-decanediol; 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 2-ethyl-1 , 6-hexanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-methyl-1,8-octanediol, 2,2,4 -Branched diols such as trimethyl-1,3-pentanediol, 2-ethyl-1,
- diols can be used alone or in combination of two or more.
- trihydric or higher alcohols include glycerin, trimethylolethane, trimethylolpropane, trimethylolpropane dimer, pentaerythritol, and the like.
- carbonylating agent those known per se can be used, and specific examples thereof include alkylene carbonate, dialkyl carbonate, diallyl carbonate, phosgene and the like. It can be used in combination of more than one species.
- polycaprolactone polyol used as the component (B) of the present invention examples include ring-opening polymerization products of caprolactone such as polycaprolactone diol.
- the number average molecular weight of the component (B) compound is 300 to 10,000, preferably 300 to 6000, more preferably 300 to 4000, and still more preferably 300. ⁇ 3000, most preferably 300 ⁇ 2000.
- the component (B) is at least one compound selected from the group consisting of compounds represented by the following formula (CL).
- CL formula (CL)
- the liquid crystal aligning film excellent in adhesiveness and liquid crystal aligning property can be formed also at the time of low-temperature baking.
- Each R is independently a divalent aliphatic hydrocarbon group or a hydrocarbon group having a divalent alicyclic structure; k is a number determined so that the number average molecular weight of the compound of the formula (CL) is 300 to 10,000. ]
- a more preferable value of k is a number determined such that the number average molecular weight of the compound of the formula (CL) is 300 to 6000, more preferably a number determined so as to be 300 to 4000, 300 -3000 is more preferred. Most preferably, it is 300-2000.
- the number average molecular weight of (CL) is a polystyrene equivalent number average molecular weight measured by a gel permeation chromatography (GPC) method.
- R preferably has 1 to 12 carbon atoms.
- a divalent aliphatic hydrocarbon group such as —, —CH 2 C (CH 3 ) H (CH 2 ) 6 —, etc., and a hydrocarbon group having a divalent alicyclic structure represented by the following formula (a) Etc.
- m is 3 to 12, and preferably 5 to 9.
- R ' is a single bond or an alkanediyl group having 1 to 3 carbon atoms.
- alkanediyl group that is R ′ in the above formula (a) include —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, —CH 2 —CH (CH 3 ) —. .
- R Preferable specific examples of R include — (CH 2 ) 6 —, — (CH 2 ) 9 —, —CH 2 C (CH 3 ) H (CH 2 ) 6 — and the like. Two or more types of R may be contained in one molecule of the compound represented by the formula (CL).
- the blending amount of component (B) (the total amount when blending two or more) is 0.5 to 50 parts by weight, preferably 100 parts by weight of component (A), preferably The amount is 1 to 50 parts by weight, more preferably 1 to 40 parts by weight.
- the liquid crystal aligning agent of this application contains an organic solvent as (C) component.
- An organic solvent will not be specifically limited if it has the characteristic to melt
- the organic solvent is preferably a solvent that is suitable for a low-temperature baking process.
- organic solvent of the component (C) of the present application examples include, but are not limited to, solvents belonging to the following groups A and B. One or more of these may be used, or a combination thereof may be used.
- Solvents belonging to Group A are shown below when it is desired to increase the solubility of the above-mentioned polyimide, polyamic acid, polyamic acid ester, polyorganosiloxane, polyester, polyamide, and a polymer of a monomer having a polymerizable unsaturated bond. It is preferable to use such a solvent (also referred to as Group A).
- N-methyl-2-pyrrolidone a compound represented by the following formula (NP)
- NP a compound represented by the following (NAm)
- NAm a compound represented by the following (NAm)
- ⁇ -butyrolactone a compound represented by the following (NAm)
- ⁇ -valerolactone 1,3-dimethyl-2-imidazolid It is at least one solvent selected from the group consisting of non.
- R 1 is a monovalent hydrocarbon group having 2 to 5 carbon atoms or a monovalent group having “—O—” between carbon-carbon bonds in the hydrocarbon group.
- R 2 and R 3 each independently represents a hydrogen atom, a monovalent hydrocarbon group having 1 to 6 carbon atoms, or “—O—” between carbon-carbon bonds of the hydrocarbon group. R 2 and R 3 may be bonded to each other to form a ring structure.
- R 4 is an alkyl group having 1 to 6 carbon atoms.
- NP Specific examples of the compound represented by the formula (NP) include, for example, N-ethyl-2-pyrrolidone, N- (n-propyl) -2-pyrrolidone, N-isopropyl-2-pyrrolidone, N- (n- Butyl) -2-pyrrolidone, N- (t-butyl) -2-pyrrolidone, N- (n-pentyl) -2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N -Methoxybutyl-2-pyrrolidone and the like.
- NAm Specific examples of the compound represented by the above formula (NAm) include, for example, 3-butoxy-N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-hexyloxy-N, N— Examples thereof include dimethylpropanamide, isopropoxy-N-isopropyl-propionamide, n-butoxy-N-isopropyl-propionamide and the like.
- at least one compound selected from the group consisting of N-methyl-2-pyrrolidone, ⁇ -butyrolactone, and 1,3-dimethyl-2-imidazolidinone is more preferable.
- the liquid crystal aligning agent according to the present invention can improve the applicability of the liquid crystal aligning agent to the substrate even at low temperature firing, and increases the drying speed of the liquid crystal aligning agent.
- Formula (Sol-2) solvent represented by the following formula (a), methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, 1-butanol, tert-butyl alcohol, 1-pen Tanol, 2-methyl-1-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-ethyl-1-butanol, 1-heptanol, 1-octanol, 2-ethyl-1-hexanol , Cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexa , Dipropyl ether, dibutyl ether, dihexa
- Ys 7 and Ys 8 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably a monovalent chain hydrocarbon group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. And monovalent alicyclic hydrocarbon groups and monovalent aromatic hydrocarbon groups having 1 to 6 carbon atoms. More preferred is an alkyl group having 1 to 6 carbon atoms.
- Xs 1 is an oxygen atom or —COO—.
- Xs 2 is a single bond or a carbonyl group
- Rs 7 is an alkanediyl group having 2 to 4 carbon atoms
- the alkanediyl group of R S 7 may be linear or branched.
- ns 1 is an integer of 1 to 3
- ns 1 is 2 or 3
- a plurality of Rs 7 may be the same or different, and preferably 1 or 2.
- Zs 1 is a divalent hydrocarbon group having 1 to 6 carbon atoms, preferably an alkanediyl group, such as a methylene group, an ethylene group, a 1,3-propanediyl group, or a 1,4-butanediyl group.
- Etc. Ys 9 and Ys 10 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably a monovalent chain hydrocarbon group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
- monovalent alicyclic hydrocarbon groups and monovalent aromatic hydrocarbon groups having 1 to 6 carbon atoms More preferred is an alkyl group having 1 to 6 carbon atoms. ].
- R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 8 carbon atoms. However, R 1 + R 2 is an integer greater than 3. )
- the solvent represented by the formula (Sol-1) include, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether ( Butyl cellosolve), ethylene glycol monohexyl ether, ethylene glycol dimethyl ether, ethylene glycol monoacetate, ethylene glycol diacetate, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether Ether acetate, di Tylene glycol monoethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether
- Preferred examples of formulas (Sol-1) to (Sol-2) include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether (Butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monobutyl ether, dipropylene Recall dimethyl ether, dipropylene glycol monomethyl ether, propylene glycol diacetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate.
- diisobutyl carbinol can be mentioned.
- the B group is preferably 5 to 95% by mass or less based on the total amount of the solvent contained in the liquid crystal aligning agent.
- the following is more preferable, and further preferably 30 to 80% by mass or less.
- the A group is preferably 5 to 95% by mass or less, more preferably 20 to 95% by mass or more preferably 20 to 70% by mass or less of the total amount of the solvent contained in the liquid crystal aligning agent.
- liquid crystal aligning agent of the present application may optionally contain components other than the components (A) to (C) described above.
- ⁇ Crosslinkable compound Compounds having an epoxy group, an isocyanate group, an oxetane group, or a cyclocarbonate group described in paragraphs [0109] to [0113] of International Publication WO2016 / 047771 as components other than the components (A) to (C), Or a compound having a block isocyanate group in addition to a compound having at least one group selected from the group consisting of a hydroxy group, a hydroxyalkyl group and a lower alkoxyalkyl group (these are also collectively referred to as other crosslinkable compounds). .) Can be used.
- Examples of the compound having a blocked isocyanate group include the following formulas (bl-1) to (bl-3).
- the content of other crosslinkable compounds is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
- the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer component. More preferred is 1 to 50 parts by mass.
- the liquid crystal aligning agent of this invention can use the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply
- the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. Specific examples of these include surfactants described in paragraph [0117] of International Publication No. WO2016 / 047771.
- the amount of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent.
- the liquid crystal aligning agent is disclosed in International Publication No. WO2011 / 132751 (published 2011.10.27) on pages 69 to 73 as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device.
- Nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156] can also be added.
- the amine compound may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine compound after forming a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass.
- the solvent is not particularly limited as long as the specific polymer (A) is dissolved.
- the liquid crystal aligning agent of the present invention includes, in addition to the above-mentioned poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal aligning film, and a compound that promotes charge removal.
- An imidization accelerator or the like for the purpose may be added.
- the liquid crystal aligning agent of the present application has a form of a solution containing the above-mentioned components (A) to (C).
- the liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer having a specific structure is dissolved in an organic solvent.
- the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but it is 1% by weight or more from the viewpoint of forming a uniform and defect-free coating film. It is preferable to be 10% by weight or less from the viewpoint of storage stability of the solution.
- the liquid crystal aligning agent of this application changes suitably solid content concentration (ratio which the total weight of components other than (C) component of a liquid crystal aligning agent accounts to the total weight of a liquid crystal aligning agent) by the setting of the thickness of the coating film to form.
- solid content concentration ratio which the total weight of components other than (C) component of a liquid crystal aligning agent accounts to the total weight of a liquid crystal aligning agent
- it is preferably 1% by weight or more from the viewpoint of forming a uniform and defect-free coating film, and preferably 10% by weight or less from the viewpoint of storage stability of the solution.
- the particularly preferable solid content concentration range varies depending on the method of applying the liquid crystal aligning agent to the substrate.
- the polymer concentration is particularly preferably in the range of 1.5 to 4.5% by weight.
- the solid content concentration is in the range of 3 to 9% by weight, and thereby the solution viscosity is in the range of 12 to 50 mPa ⁇ s.
- the solid content concentration is particularly preferably in the range of 1 to 5% by weight, and thereby the solution viscosity is preferably in the range of 3 to 15 mPa ⁇ s.
- liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention.
- the step of applying the liquid crystal aligning agent of the present invention onto a substrate to form a coating film, and the coating film is not in contact with the liquid crystal layer or the liquid crystal layer there is provided a method for producing a liquid crystal alignment film, comprising a step of irradiating the coating film with light in contact.
- liquid crystal display device comprising the liquid crystal alignment film according to the present invention or the liquid crystal alignment film obtained by the production method of the present invention. Details are shown below.
- the liquid crystal display element which concerns on this invention comprises the liquid crystal aligning film formed using the said liquid crystal aligning agent.
- the operation mode of the liquid crystal display element according to the present invention is not particularly limited. For example, a TN (Twisted Nematic) type, STN type, vertical alignment type (including VA-MVA type, VA-PVA type, etc.), in-plane switching type. (IPS type), FFS (Fringe Field Switching) type, optical compensation bend type (OCB type) and the like can be applied.
- the liquid crystal display element according to the present invention can be manufactured, for example, by processes including the following processes (1-1) to (1-3).
- step (1-1) the substrate to be used varies depending on the desired operation mode.
- step (1-2) and step (1-3) are common to each operation mode.
- Step (1-1): Formation of coating film First, the liquid crystal aligning agent of this invention is apply
- liquid crystal aligning agent prepared in (1) is preferably applied by an offset printing method, a spin coating method, a roll coater method or an ink jet printing method.
- the substrate for example, glass such as float glass or soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, poly (cycloaliphatic olefin) can be used.
- a NESA film (registered trademark of US PPG) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ), etc. Can be used.
- a method of forming a pattern by photo-etching a method of using a mask having a desired pattern when forming a transparent conductive film; And so on.
- a functional silane compound or a functional titanium compound is formed on the surface of the substrate surface on which the coating film is formed. It is also possible to perform a pretreatment to apply the above in advance.
- preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal aligning agent.
- the prebake temperature is preferably 30 to 200 ° C., more preferably 40 to 150 ° C., and particularly preferably 40 to 100 ° C.
- the prebake time is preferably 0.25 to 10 minutes, more preferably 0.5 to 5 minutes.
- a baking (post-baking) process is implemented for the purpose of removing a solvent completely and heat imidating the amic acid structure which exists in a polymer as needed.
- the firing temperature (post-bake temperature) at this time is preferably 80 to 300 ° C., more preferably 120 to 250 ° C.
- the post-bake time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
- the thickness of the film thus formed is preferably 0.001 to 1 ⁇ m, more preferably 0.005 to 0.5 ⁇ m.
- an electrode forming surface of a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape, and a counter substrate provided with no electrode A liquid crystal aligning agent is apply
- the coating method, the heating conditions after coating, the patterning method for the transparent conductive film or the metal film, the pretreatment of the substrate, and the preferred film thickness of the coating film to be formed The same as (1-1A).
- the metal film for example, a film made of a metal such as chromium can be used.
- a treatment for imparting liquid crystal alignment ability to the coating film formed in the step (1-1) is performed.
- the orientation ability of a liquid crystal molecule is provided to a coating film, and it becomes a liquid crystal aligning film.
- the alignment ability imparting treatment include a rubbing treatment in which a coating film is rubbed in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon, and cotton, and photo-alignment in which the coating film is irradiated with polarized or non-polarized radiation. Processing.
- the coating film formed in the above step (1-1) can be used as it is as a liquid crystal alignment film. May be.
- ultraviolet rays and visible rays including light having a wavelength of 150 to 800 nm can be used as the radiation applied to the coating film.
- the radiation When the radiation is polarized light, it may be linearly polarized light or partially polarized light.
- irradiation may be performed from a direction perpendicular to the substrate surface, an oblique direction, or a combination thereof.
- the direction of irradiation is an oblique direction.
- a light source to be used for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
- Ultraviolet rays in a preferable wavelength region can be obtained by means of using a light source in combination with, for example, a filter or a diffraction grating.
- the radiation dose is preferably 10 to 5,000 mJ / cm 2 , more preferably 30 to 2,000 mJ / cm 2.
- the light irradiation on the coating film may be performed while heating the coating film in order to increase the reactivity.
- the temperature at the time of heating is usually 30 to 250 ° C, preferably 40 to 200 ° C, more preferably 50 to 150 ° C.
- the light irradiation film obtained in the above step can be used as a liquid crystal alignment film as it is. Also good.
- the firing temperature at this time is preferably 80 to 300 ° C, more preferably 120 to 250 ° C.
- the firing time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
- the photo-alignment process here corresponds to a light irradiation process in a state where it is not in contact with the liquid crystal layer.
- the liquid crystal alignment film after the rubbing treatment is further subjected to a process for changing the pretilt angle of a part of the liquid crystal alignment film by irradiating a part of the liquid crystal alignment film with ultraviolet rays or a surface of the liquid crystal alignment film.
- a resist film is formed on the part, and a rubbing process is performed in a direction different from the previous rubbing process, followed by a process of removing the resist film, so that the liquid crystal alignment film has different liquid crystal alignment capabilities for each region. .
- a liquid crystal alignment film suitable for a VA liquid crystal display element can also be suitably used for a PSA (Polymer Sustained Alignment) type liquid crystal display element.
- Step (1-3): Construction of liquid crystal cell (1-3A) Two substrates on which the liquid crystal alignment film is formed as described above are prepared, and a liquid crystal cell is manufactured by disposing a liquid crystal between the two substrates disposed to face each other.
- the first method is a conventionally known method. First, two substrates are arranged opposite to each other through a gap (cell gap) so that the respective liquid crystal alignment films are opposed to each other, and the peripheral portions of the two substrates are bonded together using a sealant, and the substrate surface and the sealant are bonded.
- a liquid crystal cell is manufactured by injecting and filling the liquid crystal into the cell gap partitioned by the step of sealing the injection hole.
- the second method is a method called an ODF (One Drop Fill) method.
- ODF One Drop Fill
- an ultraviolet light curable sealant is applied to a predetermined location on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystal is dropped at predetermined locations on the liquid crystal alignment film surface.
- the other substrate is bonded so that the liquid crystal alignment films face each other and the liquid crystal is spread over the entire surface of the substrate, and then the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant, thereby manufacturing a liquid crystal cell.
- the liquid crystal cell produced as described above is further heated to a temperature at which the liquid crystal used takes an isotropic phase and then gradually cooled to room temperature. It is desirable to remove.
- sealant for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
- liquid crystal examples include nematic liquid crystal and smectic liquid crystal.
- nematic liquid crystal is preferable.
- Cyclohexane liquid crystals, pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, cubane liquid crystals, and the like can be used.
- cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonate and cholesteryl carbonate; chiral agents such as those sold under the trade names “C-15” and “CB-15” (manufactured by Merck)
- a ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutylcinnamate may be added and used.
- the liquid crystal can also contain additional anisotropic dyes.
- the term “dye” can mean a substance capable of intensively absorbing or deforming light in the visible light region, for example, at least partly or entirely within the wavelength range of 400 nm to 700 nm.
- isotropic dye may mean a substance capable of anisotropic absorption of light in at least a part or the entire range of the visible light region.
- ⁇ ⁇ ⁇ ⁇ The color sensation of the liquid crystal cell can be adjusted through the use of the dye as described above. ⁇
- the type of anisotropic dye is not particularly limited, and for example, black dye or color dye can be used.
- the ratio of the anisotropic dye to the liquid crystal is appropriately selected within a range that does not impair the intended physical properties. However, the above ratio can be changed to an appropriate range if necessary.
- a liquid crystal cell is constructed in the same manner as in the above (1-3A) except that a photopolymerizable compound is injected or dropped together with liquid crystal. Thereafter, the liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates.
- the voltage applied here can be, for example, 5 to 50 V direct current or alternating current.
- the light to be irradiated for example, ultraviolet rays including visible light having a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet rays including light having a wavelength of 300 to 400 nm are preferable.
- a light source of irradiation light for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
- the ultraviolet rays in the above preferable wavelength region can be obtained by means of using a light source in combination with, for example, a filter diffraction grating.
- the irradiation dose of light preferably less than 100 mJ / cm 2 or more 20,000mJ / cm 2, more preferably 100 ⁇ 10,000mJ / cm 2.
- the light irradiation to the liquid crystal cell may be performed in a state where the liquid crystal is driven by applying a voltage, or may be performed in a state where a low voltage is applied so as not to drive the liquid crystal.
- the applied voltage can be, for example, 0.1 to 30 V direct current or alternating current.
- the description of (1-3B) above can be applied to the conditions of light to be irradiated.
- the light irradiation process here corresponds to a light irradiation process in a state of contact with the liquid crystal layer.
- the liquid crystal display element according to the present invention can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell.
- a polarizing plate to be bonded to the outer surface of the liquid crystal cell a polarizing film or an H film itself in which a polarizing film called an “H film” in which iodine is absorbed while stretching and aligning polyvinyl alcohol is sandwiched between cellulose acetate protective films
- the polarizing plate which consists of can be mentioned.
- the liquid crystal display device can be effectively applied to various devices, such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones. It can be used in various display devices such as various monitors, liquid crystal televisions, and information displays.
- liquid crystal aligning agent of the present invention As described above, by using the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having good adhesion can be obtained even when low-temperature baking is performed.
- B1 3,5-Diaminobenzoic acid
- B2 2,4-Diamino-N, N-diallylaniline
- C1 p-phenylenediamine
- C2 m-phenylenediamine
- C3 1,5-bis (4-aminophenoxy) pentane
- C4 1,3-bis (4-aminophenethyl) urea
- C5 4- (2- (methylamino ) Ethyl) aniline
- C6 Compound represented by the above formula [Y-159]
- C7 1,2-bis (4-aminophenoxy) ethane
- C8 4,4′-diaminodiphenylmethane
- DA-NA6 4,4 '-Diaminodiphenylamine
- DA-NA7 Bis (4-aminophenyl) -N-methylamine
- K1 TM-BIP-A (methylol compound, manufactured by Asahi Organic Materials Co., Ltd.)
- K2 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane (Mitsubishi Gas Chemical Co., Ltd.)
- NMP N-methyl-2-pyrrolidone
- NEP N-ethyl-2-pyrrolidone
- ⁇ -BL GBL
- DMI 1,3-dimethyl-2-imidazolidinone
- PGME propylene glycol monomethyl ether
- ECS ethylene Glycol monoethyl ether
- BCS Ethylene glycol monobutyl ether
- PB Propylene glycol monobutyl ether
- EC Diethylene glycol monoethyl ether EEP: Ethyl-3-ethoxypropionate
- DADE Diethylene glycol diethyl ether
- DME Dipropylene glycol dimethyl ether
- DME Diethylene glycol dimethyl ether
- DPM Di Propylene glycol monomethyl ether
- the molecular weights of the polyimide precursor and polyimide are as follows: normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK), column (Shodex R KD-803, Shodex R KD-805) (Showa Denko KK) And manufactured as follows.
- GPC normal temperature gel permeation chromatography
- the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
- Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
- x is a proton peak integrated value derived from NH group of amic acid
- y is a peak integrated value of reference proton
- ⁇ is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
- Table 1 shows the polyimide polymers obtained in Synthesis Examples 1 to 11 as described above.
- the number average molecular weight and the weight average molecular weight of the polyimide powders of Synthesis Examples 4 to 11 are shown in Table 2, respectively.
- This polyamic acid ester solution was put into 550 g of methanol, and the precipitated solid was recovered. The solid was washed several times with methanol and dried under reduced pressure at 100 ° C. to obtain a polyamic acid ester powder (14).
- the number average molecular weight of this polyamic acid ester was 16,478, and the weight average molecular weight was 39,754.
- Table 3 shows the polyimide polymers obtained in Synthesis Examples 12 to 17 as described above.
- NMP was added to 50 g of this polyamic acid solution to dilute to 5% by mass, pyridine (8.0 g) and acetic anhydride (17.2 g) were further added as an imidization catalyst, and the mixture was reacted at 40 ° C. for 3 hours.
- This solution was put into 600 ml of methanol, and the resulting precipitate was separated by filtration and dried to obtain white polyimide powder (18).
- the imidation ratio of this polyimide was 83%, the number average molecular weight was 9,834 and the weight average molecular weight was 21,659.
- Table 4 shows the polyimide polymers obtained in Synthesis Examples 18 and 19 as described above.
- liquid crystal aligning agent In the following Examples and Comparative Examples, a liquid crystal aligning agent is prepared, and the obtained liquid crystal aligning agent is used for each of the following “production of liquid crystal display element”, “evaluation of liquid crystal alignment”, “liquid crystal alignment”. Evaluation was performed according to each procedure of "Evaluation of film adhesion” or "Peel test”.
- ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm Two ITO substrates with the obtained liquid crystal alignment film were prepared, and a 6 ⁇ m spacer was applied to the liquid crystal alignment film surface of one of the substrates.
- the periphery was applied with a sealing agent (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.). Thereafter, the liquid crystal composition (LC-V1) is dropped onto the liquid crystal alignment film surface of the substrate by an ODF (One Drop Filling) method, and then bonded so that the liquid crystal alignment film interface of the other substrate faces. Then, the sealing agent was cured to obtain a vertical alignment type liquid crystal display element. The obtained liquid crystal display element was heated at 110 ° C. for 1 hour and allowed to stand at room temperature overnight before being used for each evaluation.
- a sealing agent XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.
- the pressure-filtered liquid crystal aligning agent is spin-coated on the substrate, and heat-treated on a hot plate at 80 ° C. for 2 minutes and in a heat-circulating clean oven at 230 ° C. for 30 minutes. A 100 nm coated substrate was obtained.
- the coated substrate is rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Chemical Industries) (roller diameter: 120 nm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then into pure water.
- the substrate was cleaned by ultrasonic treatment for 1 minute, water droplets were removed by air blow, and then dried at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
- a sealing agent is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, The sealant was cured.
- liquid crystal composition (LC-I1) was injected by a reduced pressure injection method, and the injection port was sealed to obtain an FFS type liquid crystal display element.
- the obtained liquid crystal display element was heated at 110 ° C. for 1 hour and allowed to stand at room temperature overnight before being used for each evaluation.
- the pressure-filtered liquid crystal aligning agent is spin-coated on the substrate, and heat-treated on a hot plate at 80 ° C. for 2 minutes and in a heat-circulating clean oven at 230 ° C. for 30 minutes.
- a 100 nm coated substrate was obtained.
- the coated film surface of this coated film substrate was irradiated with 800 mJ / cm 2 of 254 nm linearly polarized ultraviolet light having an extinction ratio of 26: 1 through a polarizing plate.
- This substrate was heat-treated at 230 ° C. for 30 minutes in a thermal circulation clean oven to obtain a substrate with a liquid crystal alignment film.
- liquid crystal (LC-I2) was injected by a reduced pressure injection method, and the injection port was sealed to obtain an FFS type liquid crystal display element. Thereafter, the obtained liquid crystal display element was heated at 110 ° C. for 1 hour and allowed to stand at room temperature overnight before being used for each evaluation.
- liquid crystal aligning agents (V-1) to (V-6), (V-14) to (V-17), (I-7) to (I-13) obtained in Examples and Comparative Examples.
- the liquid crystal aligning agents (R-V1) to (R-V2) and (R-I3) to (R-I5) were filtered under pressure through a membrane filter having a pore diameter of 1 ⁇ m.
- the liquid crystal aligning agent was applied on a 100 ⁇ 100 mm glass substrate with an ITO electrode (vertical: 100 mm, horizontal: 100 mm, thickness: 0.7 mm) washed with pure water and IPA (isopropyl alcohol), and then on a hot plate.
- this test sample board is fixed from the upper part of the center of the board after fixing the edge part of the upper and lower boards with the desktop precision universal testing machine (AGS-X 500N) (manufactured by Shimadzu Corporation).
- AGS-X 500N desktop precision universal testing machine
- the pressure (N) during peeling, that is, the peeling pressure (N) was measured.
- Evaluation shows that the larger the value of the peeling stress (N), the better the adhesion with the sealing agent and the base substrate.
- Tables 5 and 6 show the values of peel stress (N) as evaluation results of the adhesion of the liquid crystal alignment film.
- a 30-um bead spacer was applied to one of the substrates, and a sealing agent (723 K1 manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of the other substrate, and these substrates were bonded to overlap each other. At that time, the amount of the sealing agent was adjusted so that the area of the sealing agent after bonding was 50 ⁇ 10 mm. After the two bonded substrates were fixed with a clip, ultraviolet light was irradiated at 3 J / cm 2 , and then heat cured at 120 ° C. for 1 hour to prepare a test sample substrate for this evaluation.
- test sample substrate is fixed with the table top precision universal testing machine (AGS-X 500N) (manufactured by Shimadzu Corporation), and the stress (N / 25 mm), that is, peel strength (N / 25 mm) was measured.
- AGS-X 500N table top precision universal testing machine
- NEP (22.7 g) and BCS (20.8 g) are added to the polyamic acid solution (1) (7.43 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 1, and the mixture is added at 50 ° C. for 5 hours. Stir. Thereafter, C-M1 (0.56 g) was added to this solution and stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (V-1).
- This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
- production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of a liquid crystal alignment film were performed.
- Example 3 A peel test was performed using the liquid crystal aligning agent obtained by the method of Example 2.
- Example 4 NMP (35.4 g) and BCS (24.2 g) were added to the polyimide powder (3) (2.33 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. Thereafter, C-M1 (0.47 g) was added to this solution and stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (V-3).
- This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
- production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 5 A peel test was conducted using the liquid crystal aligning agent (V-3) obtained by the method of Example 4.
- NEP (32.8 g) and PB (18.2 g) were added to the polyimide powder (3) (1.86 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. Thereafter, C-M1 (0.09 g) was added to this solution, followed by stirring at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (V-4).
- This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
- production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 7 ⁇ -BL (6.40 g) and PGME (42.5 g) were added to the polyimide powder (3) (1.65 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. Thereafter, C-M1 (0.08 g) and K1 (0.08 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (V-5).
- This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation. Using the obtained liquid crystal aligning agent (V-5), production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- NEP (34.0 g), BCS (12.4 g) and PB (14.6 g) are added to the polyimide powder (4) (2.55 g) obtained in Synthesis Example 4, and the mixture is stirred at 70 ° C. for 24 hours. Dissolved. Thereafter, C-M1 (0.08 g) was added to this solution and stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (V-6).
- This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
- production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 9 Using the liquid crystal aligning agent (V-6) obtained by the method of Example 8, a peel test was conducted.
- Example 10 ⁇ Example 10> GBL (6.00 g), DMI (6.00 g), and EEP (8.00 g) were added to the polyamic acid solution (12) (20.0 g) having a resin solid content concentration of 10% by mass obtained in Synthesis Example 12. In addition, the mixture was stirred at 50 ° C. for 5 hours. Thereafter, C-M1 (0.60 g) was added to this solution and stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (I-7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation. Using the obtained liquid crystal aligning agent (I-7), production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 11 GBL (12.0 g) and DEDE (8.00 g) were added to the polyamic acid solution (13) (20.0 g) having a resin solid content concentration of 10% by mass obtained in Synthesis Example 13, and stirred at 50 ° C. for 5 hours. did. Thereafter, C-M1 (0.40 g) was added to this solution and stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (I-8).
- This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
- production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 12 ⁇ Example 12> GBL (30.0 g) and DME (8.00 g) were added to the polyamic acid ester powder (14) (2.0 g) obtained in Synthesis Example 14, and the mixture was stirred at 50 ° C. for 5 hours. Thereafter, C-M1 (0.20 g) was added to this solution, followed by stirring at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (I-9).
- This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
- production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 13 ⁇ Example 13> GBL (12.0 g) and DEME (8.00 g) were added to the polyamic acid solution (15) (20.0 g) having a resin solid content concentration of 10% by mass obtained in Synthesis Example 15, and stirred at 50 ° C. for 5 hours. did. Thereafter, C-M1 (0.20 g) was added to this solution and stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (I-10). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation. Using the obtained liquid crystal aligning agent (I-10), production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 14 GBL (12.0 g) and DEME (8.00 g) were added to the polyamic acid solution (16) (20.0 g) having a resin solid content concentration of 10% by mass obtained in Synthesis Example 16, and the mixture was stirred at 50 ° C. for 5 hours. did. Thereafter, C-M1 (0.10 g) was added to this solution, followed by stirring at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (I-11). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation. Using the obtained liquid crystal aligning agent (I-11), production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 15 GBL (16.0 g) and DPM (4.00 g) were added to the polyamic acid solution (17) (20.0 g) having a resin solid content concentration of 10% by mass obtained in Synthesis Example 17, and stirred at 50 ° C. for 5 hours. did. Thereafter, C-M1 (0.10 g) was added to this solution, followed by stirring at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (I-12).
- This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
- production of a liquid crystal display element evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 16 GBL (16.0 g) and DPM (4.00 g) were added to the polyamic acid solution (17) (20.0 g) having a resin solid content concentration of 10% by mass obtained in Synthesis Example 17, and stirred at 50 ° C. for 5 hours. did. Thereafter, C-M1 (0.10 g) and K1 (0.10 g) were added to this solution, followed by stirring at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (I-13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation. Using the obtained liquid crystal aligning agent (I-13), production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Liquid crystal aligning agents (V-14) to (V-17) were obtained in the same manner as in Example 4 except that the adhesive compounds were (C-M2) to (C-M5). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation. Using the obtained liquid crystal aligning agents (V-14) to (V-17), production of liquid crystal display elements, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 21 A liquid crystal aligning agent (V-18) was obtained in the same manner as in Example 7 except that the other adhesive compound was changed to K2. Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution. Using the obtained liquid crystal aligning agent (V-18), production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 22 A liquid crystal aligning agent (V-19) was obtained in the same manner as in Example 16 except that the other adhesive compound was changed to K2. Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution. Using the obtained liquid crystal aligning agent (V-19), production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- Example 23 3.00 g of the polyimide powder (18) obtained in Synthesis Example 18 was dissolved in GBL (34.50 g) by stirring at 50 ° C. for 20 hours at 50 ° C. Further, GBL (12.50 g) was added so that the polyimide concentration in the solution was 6% by mass, and the mixture was stirred at 50 ° C. for 20 hours. NMP, GBL, and BCS are added to the polyamic acid solution (19) (40.0 g) having a resin solid content concentration of 15% by mass obtained in Synthesis Example 19, polyamic acid is 6% by mass, NMP is 20% by mass, GBL was prepared at 59% by mass and BCS was prepared at 15% by mass.
- NEP (22.7 g) and BCS (20.8 g) are added to the polyamic acid solution (1) (7.43 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 1, and the mixture is added at 50 ° C. for 5 hours. Stir. Thereafter, K1 (0.18 g) was added to this solution and stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (R-V2).
- R-V2 liquid crystal aligning agent
- a liquid crystal aligning agent (R-T1) was prepared in the same manner as in Example 23 except that C-M1 was not added. Using the obtained liquid crystal aligning agent (R-T1), production of a liquid crystal display element, evaluation of liquid crystal alignment, and evaluation of adhesion of the liquid crystal alignment film were performed.
- the liquid crystal display element using the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has good liquid crystal alignment, and the liquid crystal alignment film also has the liquid crystal alignment of the comparative example. Compared to the liquid crystal alignment film obtained from the alignment agent, the results were high.
- the liquid crystal display element using the liquid crystal aligning film obtained from the liquid crystal aligning agent of this invention can be used suitably for the display element of various liquid crystal modes. These elements are also useful in liquid crystal displays for display purposes, and in light control windows and optical shutters for controlling transmission and blocking of light.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Liquid Crystal (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
しかしながら、樹脂フイルムは耐熱性に乏しいため、液晶表示素子を構成する個々の要素、例えば液晶配向膜を製造するための低温プロセスが提案され、それに伴い低温焼成が可能な液晶配向膜材料が求められている(国際公開公報WO2012/121259(特許文献1))。
また、樹脂フイルムはガラス基板に比べて一般的に外部からの衝撃に弱いため、配向膜と樹脂フイルム基板との密着性は高いことが要求されている。
<1> (A) ポリイミド、ポリアミック酸、ポリアミック酸エステル、ポリオルガノシロキサン、ポリエステル、ポリアミド、及び重合性不飽和結合を有するモノマーの重合体からなる群より選ばれる少なくとも一種の重合体;
(B) ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びポリカプロラクトンポリオールからなる群より選ばれる少なくとも1種の化合物;及び
(C) 有機溶媒
を含有する、液晶配向剤。
以下、本発明の各構成要件につき詳述する。
本発明における(A)成分の特定重合体は、前記したように、ポリイミド、ポリアミック酸、ポリアミック酸エステル、ポリオルガノシロキサン、ポリエステル、ポリアミド、及び重合性不飽和結合を有するモノマーの重合体からなる群より選ばれる少なくとも一種の重合体である。
本発明に用いられるポリアミック酸は、ジアミン化合物とテトラカルボン酸二無水物とを反応させることにより得ることができる。
本発明のポリアミック酸の重合に用いられるジアミンは以下の式(1)で一般式化することが出来る。
X1は、-O-、-NQ1-、-CONQ1-、-NQ1CO-、-CH2O-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基であり、Q1は水素原子又は炭素数1から3のアルキル基であり、
X2は、単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基であり、
X3は、単結合、又は-O-、-NQ2-、-CONQ2-、-NQ2CO-、-COO-、-OCO-、及び-O(CH2)m-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、
Q2は、水素原子又は炭素数1から3のアルキル基であり、
X4は窒素含有芳香族複素環であり、nは1から4の整数であり、好ましくは、国際公開公報WO2009/093707の段落[0036]~[0038]の表1~表3に記載の組合せである。
テトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。 これらの具体例としては、以下の[1]~[5]の群のものなどをそれぞれ挙げることができる。
前記式中、RMは水素原子、又はメチル基であり、
Xa、は下記式(Xa-1)~(Xa-7)で表される4価の有機基である);
本発明に用いられるポリアミック酸は、公知の方法(例えば、国際公開公報WO2014/034792参照)により合成することができる。
本発明に用いられるポリアミック酸エステルは、下記のようにして得ることができる。
本発明に用いられるポリアミック酸エステルは、(1)ポリアミック酸から合成する場合、(2)テトラカルボン酸ジエステルとジアミンからポリアミック酸エステルを合成する場合又は(3)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合の、いずれかの公知の方法(例えば、国際公開公報WO2014/034792参照)で合成することができる。
[ポリイミド]
本発明に用いられるポリイミドは、公知の方法(例えば国際公開公報WO2013/125595参照)で得ることができる。
本発明に係るポリオルガノシロキサンは、例えば加水分解性のシラン化合物を加水分解・縮合する、公知の方法(例えば国際公開公報WO2009/025386参照)により得ることができる。
本発明に用いられるポリエステルとしては、例えば、ジカルボン酸と、ジエポキシ化合物とを反応させることにより得ることができる。ここで、上記ジエポキシ化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテルのほか、特開2013-113937号公報に記載のジエポキシ化合物等が挙げられる。
本発明に用いられるポリアミドは、例えばジカルボン酸とジアミンとを反応させる方法などによって得ることができる。ここで、ジカルボン酸は、例えば塩化チオニル等の適当な塩素化剤を用いて酸クロリド化した後にジアミンとの反応に供することが好ましい。
以上のようにして、ポリアミドを溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミドを単離したうえで液晶配向剤の調製に供してもよい。
重合性不飽和結合を有するモノマーの重合体(以下、「重合体(PAc)」ともいう。)において、モノマーが有する重合性不飽和結合としては、例えば(メタ)アクリロイル基、ビニル基、スチリル基、マレイミド基などが挙げられる。こうした重合性不飽和結合を有するモノマーの具体例としては、例えば、(メタ)アクリル酸、α-エチルアクリル酸、マレイン酸、フマル酸、ビニル安息香酸等の不飽和カルボン酸:(メタ)アクリル酸アルキル(メタ)アクリル酸シクロアルキル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、(メタ)アクリル酸3,4-エポキシブチル、アクリル酸4-ヒドロキシブチルグリシジルエーテル等の不飽和カルボン酸エステル:無水マレイン酸等の不飽和多価カルボン酸無水物:などの(メタ)アクリル系化合物;スチレン、メチルスチレン、ジビニルベンゼン等の芳香族ビニル化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン等の共役ジエン化合物;N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のマレイミド基含有化合物;などが挙げられる。なお、重合性基不飽和結合を有するモノマーは、1種を単独で又は2種以上を組み合わせて使用することができる。
Sbは、炭素数1~10の直鎖又は分岐鎖のアルキレン基、2価の芳香族基又は2価の脂環式基、
Mdは、単結合、2価の複素環、3価の複素環、4価の複素環、置換又は非置換の分岐である炭素数1~10のアルキル基、2価の芳香族基、3価の芳香族基、4価の芳香族環、2価の脂環式基、3価の脂環式基、4価の脂環式基、2価の縮合環式基、3価縮合環式基または4価の縮合環式基であり、それぞれの基は無置換であるか又は一個以上の水素原子がフッ素原子、塩素原子、シアノ基、メチル基又はメトキシ基によって置換されていてもよく、
dは、1から3の整数であり、Zは酸素原子、または硫黄原子である。
Xa及びXbは、それぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基又は炭素数1~3のアルキル基であり、
R1は単結合、酸素原子、-COO-または-OCO-、好ましくは単結合、-COO-又は-OCO-であり、
R2は2価の芳香族基、2価の脂環式基、2価の複素環式基または2価の縮合環式基であり
R3は単結合、酸素原子、-COO-または-OCO-であり、
R4は炭素数1~40の直鎖又は分岐鎖のアルキル基または脂環式基を含む炭素数3~40の1価の有機基であり、
R5は炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、フッ素原子またはシアノ基、好ましくはメチル基、メトキシ基又はフッ素原子であり、
aは0~3の整数であり、bは0~4の整数である。
さらに好ましくは、シクロブタン環構造、シクロペンタン環構造、シクロヘキサン環構造、及びベンゼン環構造からなる群より選ばれる少なくとも一種を有する構造を含むことが好ましい。具体的には、ポリアミック酸、及びポリアミック酸エステルや、これらをイミド化して得られるポリイミドの溶媒に対する溶解性の観点から、前記式(X1-1)~(X1-3)、(X1-6)~(X1-12)、(Xa-1)~(Xa-2)、ピロメリット酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、(Xb-6)~(Xb-8)、(X1-44)、(X1-47)~(X1-52)が好ましく、より好ましくは(X1-1)~(X1-3)、(X1-6)~(X1-12)、(Xa-1)~(Xa-2)、(Xb-6)~(Xb-8)、(X1-44)、及び(X1-49)が挙げられる。
(A)成分は、液晶配向剤の総量を100重量%とした場合、1~15重量%、好ましくは1~8重量%、より好ましくは1.5~7重量%で有るのが良い。
本発明における(B)成分は、前記したように、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びポリカプロラクトンポリオールからなる群より選ばれる少なくとも1種の化合物である。
Rはそれぞれ独立に、2価の脂肪族炭化水素基又は2価の脂環族構造を有する炭化水素基であり、
kは、前記式(CL)の化合物の数平均分子量が300~10,000になるように決定される数である。]
式(CL)において、Rが-(CH2)6-であり、数平均分子量が2000の化合物、
式(CL)において、Rが-(CH2)5-と-(CH2)6-がモル比で1:1であり、数平均分子量が500の化合物、
式(CL)において、Rが-(CH2)5-と-(CH2)6-がモル比で1:1であり、数平均分子量が2000の化合物、
式(CL)において、Rが-(CH2)3-と-CH2CH(CH3)CH2-がモル比で1:1であり、数平均分子量が2000の化合物、
式(CL)において、Rが-(CH2)3-と-CH2CH(CH3)CH2-がモル比で1:1であり、数平均分子量が800の化合物、
式(CL)において、Rが-(CH2)6-であり、数平均分子量が500の化合物、
式(CL)において、Rが-(CH2)6-であり、数平均分子量が1000の化合物、
式(CL)において、Rが-(CH2)6-であり、数平均分子量が2000の化合物、
式(CL)において、Rが-(CH2)6-であり、数平均分子量が3000の化合物、
式(CL)において、Rが-(CH2)6-と-((CH2)5CO2)m(CH2)6-がモル比で1:1であり、数平均分子量が2000の化合物、
式(CL)において、Rが-(CH2)6-と-((CH2)5CO2)m(CH2)6-がモル比で1:1であり、数平均分子量が1000の化合物、
式(CL)において、Rが前記式(a)においてR’が-CH2-であり、数平均分子量が1000の化合物、
式(CL)において、Rが前記式(a)においてR’が-CH2-である構造と-(CH2)6-がモル比で1:1であり、数平均分子量が900の化合物、
式(CL)において、Rが-(CH2)9-と-CH2C(CH3)H(CH2)6-がモル比で65:35であり、数平均分子量が1000の化合物、
式(CL)において、Rが-(CH2)9-と-CH2C(CH3)H(CH2)6-がモル比で65:35であり、数平均分子量が2000の化合物)、
式(CL)において、Rが-(CH2)9-と-CH2C(CH3)H(CH2)6-がモル比で15:85であり、数平均分子量が1000の化合物、
式(CL)において、Rが-(CH2)9-と-CH2C(CH3)H(CH2)6-がモル比で15:85であり、数平均分子量が2000の化合物、
式(CL)において、Rが-CH2CH2C(CH3)HCH2CH2-と-(CH2)6-がモル比で9:1であり、数平均分子量が500の化合物、
式(CL)において、Rが-CH2CH2C(CH3)HCH2CH2-と-(CH2)6-がモル比で9:1であり、数平均分子量が1000の化合物、
式(CL)において、Rが-CH2CH2C(CH3)HCH2CH2-と-(CH2)6-がモル比で9:1であり、数平均分子量が2000の化合物、
式(CL)において、Rが-CH2CH2C(CH3)HCH2CH2-と-(CH2)6-がモル比で9:1であり、数平均分子量が3000の化合物、
式(CL)において、Rが-CH2CH2C(CH3)HCH2CH2-と-(CH2)6-がモル比で9:1であり、数平均分子量が4000の化合物、
式(CL)において、Rが-CH2CH2C(CH3)HCH2CH2-と-(CH2)6-がモル比で9:1であり、数平均分子量が5000の化合物、
式(CL)において、Rが-CH2CH2C(CH3)HCH2CH2-と-(CH2)6-がモル比で1:1であり、数平均分子量が1000の化合物、および
式(CL)において、Rが-CH2CH2C(CH3)HCH2CH2-と-(CH2)6-がモル比で1:1であり、数平均分子量が2000の化合物
が好ましい。
本願の液晶配向剤中、(B)成分の配合量(2種以上配合する場合にはその合計量)は、(A)成分100重量部に対して、0.5~50重量部、好ましくは1~50重量部、より好ましくは1~40重量部であるのがよい。
本願の液晶配向剤は、(C)成分として有機溶媒を含有する。
有機溶媒は、上述の(A)成分及び(B)成分を溶解する特性を有するものであれば、特に限定されない。
有機溶媒は、低温焼成プロセスに好適な溶媒であれば、好ましい。
Aグループに属する溶媒は、上記ポリイミド、ポリアミック酸、ポリアミック酸エステル、ポリオルガノシロキサン、ポリエステル、ポリアミド、及び重合性不飽和結合を有するモノマーの重合体などの溶解性を高めたい場合は、下記に示すような溶媒(Aグループともいう)を用いることが好ましい。
式(NAm)中、R2及びR3は、それぞれ独立に、水素原子、炭素数1~6の1価の炭化水素基、又は当該炭化水素基の炭素-炭素結合間に「-O-」を有する1価の基であり、R2とR3とが互いに結合して環構造を形成してもよい。R4は、炭素数1~6のアルキル基である。
これらの溶媒は、液晶配向剤中の重合体を溶解させるものである。
本発明に係る液晶配向剤は、低温焼成においても液晶配向剤の基板に対する塗布性を向上でき、液晶配向剤の乾燥速度を高める点で、下記式(Sol-1)で表される化合物、下記式(Sol-2)、下記式(a)で表される溶媒、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、1-ブタノール、tert-ブチルアルコール、1-ペンタノール、2-メチル-1-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、1-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、プロピレンカーボネート、エチレンカーボネート、フルフリルアルコール、酢酸メチル、酢酸エチル、酢酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ジイソブチルケトンで表される化合物よりなる群から選ばれる少なくとも一種の化合物(以下、Bグループ)を含むことが好ましい。下記式(Sol-1)で表される化合物及び下記式(Sol-2)で表される化合物よりなる群から選ばれる少なくとも一種の化合物を含むことが好ましい。
Ys7及びYs8はそれぞれ独立に、水素原子又は炭素数1~6の1価の炭化水素基であり、好ましくは炭素数1~6の1価の鎖状炭化水素基、炭素数1~6の1価の脂環式炭化水素基及び炭素数1~6の1価の芳香族炭化水素基などが挙げられる。より好ましくは炭素数1~6のアルキル基である。
Xs1は、酸素原子又は-COO-である。
Xs2は単結合又はカルボニル基であり、
Rs7は、炭素数2~4のアルカンジイル基であり、RS 7のアルカンジイル基は直鎖状でも分岐状でもよく、例えばメチレン基、エチレン基、1,3-プロパンジイル基、1,2-プロパンジイル基、1,4-ブタンジイル基、1,3-ブタンジイル基等が挙げられる。Rs 7は、好ましくはエチレン基、1,3-プロパンジイル基又は1,4-ブタンジイル基である。
ns1は、1~3の整数であり、ns1が2又は3の場合、複数のRs7は同じでも異なっていてもよく、好ましくは1又は2であることが好ましい。
式(Sol-2)中、
Zs1は炭素数1~6の2価の炭化水素基であり、好ましくはアルカンジイル基であることが好ましく、例えばメチレン基、エチレン基、1,3-プロパンジイル基、1,4-ブタンジイル基等が挙げられる。
Ys9及びYs10はそれぞれ独立に、水素原子又は炭素数1~6の1価の炭化水素基であり、好ましくは炭素数1~6の1価の鎖状炭化水素基、炭素数1~6の1価の脂環式炭化水素基及び炭素数1~6の1価の芳香族炭化水素基などが挙げられる。より好ましくは炭素数1~6のアルキル基である。]。
R1、R2はそれぞれ独立して、直鎖又は分岐の、炭素数1~8のアルキル基である。但し、R1+R2は3より大きい整数である。)
上記式(Sol-1)で表される化合物、上記式(Sol-2)、上記式(a)、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、プロピレンカーボネート、エチレンカーボネートジイソブチルケトンで表される化合物よりなる群から選ばれる少なくとも一種の化合物がより好ましい。最も好ましいのは、上記式(Sol-1)で表される化合物、上記式(Sol-2)で表される化合物よりなる群から選ばれる少なくとも一種の化合物である。
(Sol-2)で表される溶媒の具体例としては、例えばグリコール酸メチル、グリコール酸エチル、グリコール酸ブチル、乳酸エチル、乳酸ブチル、乳酸イソアミル、エチル-3-エトキシプロピオネート、メチル-3-メトキシプロピオネート、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチルなどを;
それぞれ挙げることができる。
本願の液晶配向剤は、上述の(A)成分~(C)成分以外の成分を、適宜、任意に含有してもよい。
(A)成分~(C)成分以外の成分として、国際公開公報WO2016/047771の段落[0109]~[0113]に記載の、エポキシ基、イソシアネート基、オキセタン基、若しくはシクロカーボネート基を有する化合物、又は、ヒドロキシ基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の基を有する化合物の他、ブロックイソシアネート基を有する化合物(これらを総称して、その他の架橋性化合物ともいう。)を使用することができる。
本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。
液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。これらの具体例は、国際公開公報WO2016/047771の段落[0117]に記載の界面活性剤が挙げられる。界面活性剤の使用量は、液晶配向剤に含有される全ての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
本発明に用いられる液晶配向剤は、特定構造の重合体が有機溶媒中に溶解された溶液の形態を有する。
例えばスピンナー法による場合には、重合体の濃度が1.5~4.5重量%の範囲であることが特に好ましい。印刷法による場合には、固形分濃度を3~9重量%の範囲とし、それにより溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5重量%の範囲とし、それにより、溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。
上記液晶配向剤を用いることにより、液晶配向膜を製造することができる。また、本発明に係る液晶表示素子は、上記液晶配向剤を用いて形成した液晶配向膜を具備する。本発明に係る液晶表示素子の動作モードは特に限定せず、例えばTN(Twisted Nematic)型、STN型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、面内スイッチング型(IPS型)、FFS(Fringe Field Switching)型、光学補償ベンド型(OCB型)など種々の動作モードに適用することができる。
先ず、基板上に本発明の液晶配向剤を塗布し、次いで塗布面を加熱することにより基板上に塗膜を形成する。
例えばTN型、STN型又はVA型の液晶表示素子を製造する場合、まず、パターニングされた透明導電膜が設けられている基板二枚を一対として、その各透明性導電膜形成面上に、上記で調製した液晶配向剤を、好ましくはオフセット印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法によりそれぞれ塗布する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO2)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In2O3-SnO2)からなるITO膜などを用いることができる。パターニングされた透明導電膜を得るには、例えばパターンなし透明導電膜を形成した後、フォト・エッチングによりパターンを形成する方法;透明導電膜を形成する際に所望のパターンを有するマスクを用いる方法;などによることができる。液晶配向剤の塗布に際しては、基板表面及び透明導電膜と塗膜との接着性をさらに良好にするために、基板表面のうち塗膜を形成する面に、官能性シラン化合物、官能性チタン化合物などを予め塗布する前処理を施しておいてもよい。
IPS型又はFFS型の液晶表示素子を製造する場合、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板の電極形成面と、電極が設けられていない対向基板の一面とに液晶配向剤をそれぞれ塗布し、次いで各塗布面を加熱することにより塗膜を形成する。このとき使用される基板及び透明導電膜の材質、塗布方法、塗布後の加熱条件、透明導電膜又は金属膜のパターニング方法、基板の前処理、並びに形成される塗膜の好ましい膜厚については上記(1-1A)と同様である。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。
TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程(1-1)で形成した塗膜に液晶配向能を付与する処理を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向能付与処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。一方、VA型液晶表示素子を製造する場合には、上記工程(1-1)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。
(1-3A)
上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止することにより液晶セルを製造する。第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げ、次いで基板の全面に紫外光を照射してシール剤を硬化することにより液晶セルを製造する。いずれの方法による場合でも、上記のようにして製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
PSA型液晶表示素子を製造する場合には、液晶と共に光重合性化合物を注入又は滴下する点以外は上記(1-3A)と同様にして液晶セルを構築する。その後、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。なお、上記の好ましい波長領域の紫外線は、光源を、例えばフィルター回折格子などと併用する手段などにより得ることができる。光の照射量としては、好ましくは100mJ/cm2以上20,000mJ/cm2未満であり、より好ましくは100~10,000mJ/cm2である。
光重合性基を有する化合物(重合体又は添加剤)を含む液晶配向剤を用いて基板上に塗膜を形成した場合、上記(1-3A)と同様にして液晶セルを構築し、その後、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する工程を経ることにより液晶表示素子を製造する方法を採用してもよい。この方法によれば、PSAモードのメリットを少なく光照射量で実現可能である。液晶セルに対する光照射は、電圧印加により液晶を駆動させた状態で行ってもよく、あるいは液晶を駆動させない程度に低い電圧を印加した状態で行ってもよい。印加する電圧は、例えば0.1~30Vの直流又は交流とすることができる。照射する光の条件については、上記(1-3B)の説明を適用することができる。ここでの光照射処理が、液晶層と接触した状態での光照射の処理に相当する。
(液晶)
LC-V1:MLC-6608(メルク社製)
LC-I1:MLC-2041(メルク社製)
LC-I2:MLC-7026-100(メルク社製)
A1: 1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
A2: 1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン
A3: 1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
A4: 上記式[2a-26]で表される化合物
A5: 1,3-ジアミノ-4-オクタデシルオキシベンゼン
A6: 1,3-ジアミノ-4-ヘキサデシルオキシベンゼン
A8: N-(2,4-ジアミノフェニル)-4-(トランス―4-ヘプチルシクロヘキシル)ベンズアミド
B2: 2,4-ジアミノ-N,N-ジアリルアニリン
C2: m-フェニレンジアミン
C3: 1,5-ビス(4-アミノフェノキシ)ペンタン
C4: 1,3-ビス(4-アミノフェネチル)ウレア
C5: 4-(2-(メチルアミノ)エチル)アニリン
C6: 上記式[Y-159]で表される化合物
C7: 1,2-ビス(4-アミノフェノキシ)エタン
C8: 4,4’-ジアミノジフェニルメタン
DA-N-A6: 4,4’-ジアミノジフェニルアミン
DA-N-A7: ビス(4-アミノフェニル)-N-メチルアミン
D1: 1,2,3,4-シクロブタンテトラカルボン酸二無水物
D2: ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
D3: 上記式[X1-6]で示されるテトラカルボン酸二無水物
D4: 上記式[X1-8]で、RMが水素原子であるテトラカルボン酸二無水物
D5: 上記式[X1-1-2]で示されるテトラカルボン酸二無水物
D6: 1,2,3,4-ブタンテトラカルボン酸二無水物
D7: ピロメリット酸無水物
D8: 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
D9: 2,4-ビス(メトキシカルボニル)シクロブタン-1,3-ジカルボン酸
D10: 2,5-ビス(メトキシカルボニル)ベンゼン-1,4-ジカルボン酸
DMT-MM: 4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリン-4-ニウム
C-M1: C-590(株式会社クラレ製ポリカーボネートジオール、数平均分子量=500)
C-M2: C-1090(株式会社クラレ製ポリカーボネートジオール 数平均分子量=1,000)
C-M3: CD220(株式会社ダイセル製ポリカーボネートジオール 数平均分子量=2,000)
C-M4: UH-3000(宇部興産株式会社製ポリカーボネートジオール 数平均分子量=3,000)
C-M5: C-5090(株式会社クラレ製ポリカーボネートジオール 数平均分子量=5,000)
K1: TM-BIP-A(メチロール化合物、旭有機材工業株式会社製)
K2: 1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン(三菱ガス化学株式会社製)
NMP: N-メチル-2-ピロリドン
NEP: N-エチル-2-ピロリドン
γ-BL(GBL): γ-ブチロラクトン
DMI: 1,3-ジメチル-2-イミダゾリジノン
PGME: プロピレングリコールモノメチルエーテル
ECS: エチレングリコールモノエチルエーテル
BCS: エチレングリコールモノブチルエーテル
PB: プロピレングリコールモノブチルエーテル
EC: ジエチレングリコールモノエチルエーテル
EEP: エチル-3-エトキシプロピオネート
DEDE: ジエチレングリコールジエチルエーテル
DME: ジプロピレングリコールジメチルエーテル
DEME: ジエチレングリコールジメチルエーテル
DPM: ジプロピレングリコールモノメチルエーテル
ポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工株式会社製)、カラム(ShodexR KD-803,ShodexR KD-805)(昭和電工株式会社製)を用いて、以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー株式会社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(株式会社草野科学製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム株式会社製)にて、500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<合成例1>
テトラカルボン酸成分としてD1(3.32g,16.9mmol)、ジアミン成分としてA1(3.26g,8.57mmol)、B1(1.04g,6.84mmol)及びC2(0.19g,1.76mmol)をNEP(23.4g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度25質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は、23,200であり、重量平均分子量は、70,100であった。
テトラカルボン酸成分としてD2(4.29g,17.1mmol)、ジアミン成分としてA2(6.76g,17.1mmol)及びB1(2.61g,17.1mmol)をNMP(33.9g)中で混合し、50℃で2時間反応させた後、テトラカルボン酸成分D1(3.29g,16.8mmol)とNMP(17.0g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(2)を得た。このポリアミド酸の数平均分子量は、23,800であり、重量平均分子量は、69,500であった。
合成例2の合成手法で得られたポリアミド酸溶液(2)(30.5g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.90g)及びピリジン(2.41g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は61%であり、数平均分子量は21,900であり、重量平均分子量は59,900であった。
表1に示す組成に変更した以外は、合成例2、合成例3と同様にしてポリイミド粉末(4)~(9)、(11)、及び樹脂固形分濃度が25質量%のポリアミド酸溶液(10)を得た。
テトラカルボン酸成分としてD1(19.61g,0.1mol)、ジアミン成分としてDA-N-A6(18.73g,0.094mol)をNMP(345.1g)中で混合し、室温で5時間反応させて、樹脂固形分濃度が10質量%のポリアミド酸溶液(12)を得た。このポリアミド酸の数平均分子量は14,100であり、重量平均分子量は29,500であった。
表3に示す組成になるように、合成例12と同様にして樹脂固形分濃度が10質量%のポリアミド酸溶液(13)を得た。このポリアミド酸の数平均分子量は13,300であり、重量平均分子量は27,800であった。
テトラカルボン酸として、D9(2.03g,7.80mmol)、D10(1.02g,3.60mmol)、ジアミン成分として、C4(1.07g,3.60mmol)、C1(0.79g,7.20mmol)、A8(0.49g,1.20mmol)、塩基としてトリエチルアミン(0.61g,0.0060mol)、縮合剤としてDMT-MM(9.96g,36.0mmol)を用い、NMP(84.4g)中、室温で3.5時間反応させポリアミド酸エステル溶液を得た。
回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリアミド酸エステルの粉末(14)を得た。このポリアミド酸エステルの数平均分子量は16,478、重量平均分子量は39,754であった。
表3に示す組成となるように、合成例12と同様にして、樹脂固形分濃度が10質量%のポリアミド酸溶液(15)を得た。このポリアミド酸の数平均分子量は15,600であり、重量平均分子量は38,400であった。
表3に示す組成となるように、合成例12と同様にして、樹脂固形分濃度が10質量%のポリアミド酸溶液(16)を得た。このポリアミド酸の数平均分子量は12629、重量平均分子量は29521であった。
ジアミン成分として、C7(79.4g,0.33mol)、DA-N-A6(64.8g,0.33mol)を、NMP(911g)、及びGBL(911g)中に加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、テトラカルボン酸成分D1(65.0g,0.33mol)を添加し、2時間室温で攪拌した後、D8(86.1g,0.29mol)を加えて、更に、NMP(390g)、及びGBL(390g)を加え、窒素雰囲気下、40℃で30時間撹拌して、樹脂固形分濃度が10質量%のポリアミド酸溶液(17)を得た。このポリアミド酸溶液の数平均分子量は15,773、重量平均分子量は31,242であった。
ジアミン成分として、テトラカルボン酸成分としてD4を(30.03g,0.100mol)、ジアミン成分として、C1を(9.19g,0.085mol)と、A6を(5.23g,0.015mol)とを、NMP(252g)中、50℃で24時間反応させ、樹脂固形分濃度が15質量%のポリアミド酸溶液を調製した。
テトラカルボン酸成分として、D1を(9.81g,0.05mol)と、D7を(9.60g,0.044mol)と、ジアミン成分として、C8を(19.83g,0.100mol)とを、NMP(222g)中、室温で5時間反応させ、樹脂固形分濃度が15質量%のポリアミド酸溶液(19)を調製した。このポリアミド酸は、数平均分子量が10,893、重量平均分子量が25,972であった。
以下の実施例及び比較例では、液晶配向剤を調製し、得られた液晶配向剤を用いて、それぞれについて、以下の「液晶表示素子の作製」、「液晶配向性の評価」、「液晶配向膜の密着性の評価」又は「ピール試験」の各手順に従って、評価を行った。
(垂直配向型液晶表示素子の作製)
実施例で得られた液晶配向剤(V-1)~(V-6)、(V-14)~(V-17)及び比較例で得られた液晶配向剤(R-V1)~(R-V2)を、細孔径1μmのメンブランフィルタで加圧濾過した。得られた溶液を純水及びIPA(イソプロピルアルコール)で洗浄した100×100mmのITO電極付きガラス基板(縦:100mm、横:100mm、厚さ:0.7mm)のITO面上にスピンコートし、ホットプレート上にて100℃で2分間、熱循環型クリーンオーブンにて210℃で10分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。得られた液晶配向膜付きのITO基板を2枚用意し、その一方の基板の液晶配向膜面に、6μmのスペーサーを塗布した。
<ラビング配向処理>
実施例で得られた液晶配向剤(I-7)~(I-10)、(I-12)~(I-13)及び比較例で得られた液晶配向剤(R-I3)~(R-I5)を、細孔径1μmのメンブランフィルタで加圧濾過した。
次に、国際公開公報(WO2014-084364)の段落0060~0062に記載の、電極付き基板及び裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板を準備し、純水及びIPA(イソプロピルアルコール)で洗浄した。
上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、且つ、配向方向が0°になるようにして張り合わせた後、シール剤を硬化させた。次に減圧注入法によって、前記液晶組成物(LC-I1)を注入し、注入口を封止して、FFS型液晶表示素子を得た。得られた液晶表示素子を110℃で1時間加熱して、一晩室温で放置してから各評価に使用した。
実施例で得られた液晶配向剤(I-11)を、細孔径1μmのメンブランフィルタで加圧濾過した。
次に、国際公開公報(WO2014-084364)の段落0060~0062に記載の、電極付き基板及び裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板を準備し、純水及びIPA(イソプロピルアルコール)で洗浄した。
この塗膜基板の塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を800mJ/cm2照射した。この基板を、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、且つ、配向方向が0°になるようにして張り合わせた後、シール剤を硬化させた。次に減圧注入法によって、液晶(LC-I2)を注入し、注入口を封止して、FFS型液晶表示素子を得た。その後、得られた液晶表示素子を110℃で1時間加熱して、一晩室温で放置してから各評価に使用した。
(液晶配向性)
液晶表示素子の液晶配向性は、偏光顕微鏡(ECLIPSE E600WPOL)(株式会社ニコン製)で観察し、液晶が水平又は垂直に配向しているかどうかを確認した。具体的には、液晶の流動による不良が見られていないものを、良好とした。
液晶表示素子の液晶配向性の評価の結果は、表5および6に示した。
実施例で得られた液晶配向剤(V-1)~(V-6)、(V-14)~(V-17)、(I-7)~(I-13)及び比較例で得られた液晶配向剤(R-V1)~(R-V2)及び(R-I3)~(R-I5)を、細孔径1μmのメンブランフィルタで加圧濾過した。前記液晶配向剤を純水及びIPA(イソプロピルアルコール)で洗浄した100×100mmのITO電極付きガラス基板(縦:100mm、横:100mm、厚さ:0.7mm)上に塗布し、ホットプレート上にて80℃で2分間、比較例3,7以外は、熱循環型クリーンオーブンにて120℃で10分間の加熱処理を、比較例3,7については210℃で10分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を2枚作製した。片方の基板に、6μmビーズスペーサーを塗布し、更に、もう一方の基板の液晶配向膜上にシール剤(協立化学製XN-1500T)を印刷し、これら基板を、基板の重なり幅が1cmになるように、貼り合わせを行った。その際、シール剤の量は、貼り合わせ後のシール剤の直径が3mmとなるように調整した。貼り合わせた2枚の基板をクリップにて固定した後、150℃1時間熱硬化させて、本評価用のテストサンプル基板を作製した。
液晶配向膜の密着性の評価結果として、剥離応力(N)の値を、表5および6に示した。
実施例及び比較例で得られた液晶配向剤を、細孔径1umのメンブランフィルタで加圧濾過した。
前記液晶配向剤を100×100mmのITO電極付きPETフィルム基板(縦:100mm、横:100mm、厚さ:50um)上に塗布し、ホットプレート上にて120℃で5分間の加熱処理をした後に100×20mmの大きさに切り取り、膜厚が100nmの液晶配向膜付きのITO基板を2枚作製した。
ピール試験の評価結果として、ピール強度(N/25mm)の値を、表5および6に示した。
合成例1で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(1)(7.43g)に、NEP(22.7g)、及びBCS(20.8g)を加え、50℃で5時間攪拌した。その後、この溶液に、C-M1(0.56g)を加え、25℃で2時間攪拌して、液晶配向剤(V-1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(V-1)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例2で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(9.80g)に、NMP(27.3g)、及びBCS(25.5g)を加え、50℃で5時間攪拌した。その後、この溶液に、C-M1(0.74g)を加え、25℃で2時間攪拌して、液晶配向剤(V-2)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(V-2)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
実施例2の手法で得られた液晶配向剤を用いて、ピール試験を行った。
合成例3で得られたポリイミド粉末(3)(2.33g)に、NMP(35.4g)及びBCS(24.2g)を加え、70℃で24時間攪拌して溶解させた。その後、この溶液に、C-M1(0.47g)を加え、25℃で2時間攪拌して、液晶配向剤(V-3)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(V-3)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
実施例4の手法で得られた液晶配向剤(V-3)を用いて、ピール試験を行った。
合成例3で得られたポリイミド粉末(3)(1.86g)に、NEP(32.8g)及びPB(18.2g)を加え、70℃で24時間攪拌して溶解させた。その後、この溶液に、C-M1(0.09g)を加え、25℃で2時間攪拌して、液晶配向剤(V-4)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(V-4)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例3で得られたポリイミド粉末(3)(1.65g)に、γ-BL(6.40g)及びPGME(42.5g)を加え、70℃で24時間攪拌して溶解させた。その後、この溶液に、C-M1(0.08g)及びK1(0.08g)を加え、25℃で2時間攪拌して、液晶配向剤(V-5)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(V-5)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例4で得られたポリイミド粉末(4)(2.55g)に、NEP(34.0g)、BCS(12.4g)及びPB(14.6g)を加え、70℃で24時間攪拌して溶解させた。その後、この溶液に、C-M1(0.08g)を加え、25℃で2時間攪拌して、液晶配向剤(V-6)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(V-6)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
実施例8の手法で得られた液晶配向剤(V-6)を用いて、ピール試験を行った。
合成例12で得られた樹脂固形分濃度10質量%のポリアミド酸溶液(12)(20.0g)に、GBL(6.00g)、DMI(6.00g)、及びEEP(8.00g)を加え、50℃で5時間攪拌した。その後、この溶液に、C-M1(0.60g)を加え、25℃で2時間攪拌して、液晶配向剤(I-7)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(I-7)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例13で得られた樹脂固形分濃度10質量%のポリアミド酸溶液(13)(20.0g)に、GBL(12.0g)及びDEDE(8.00g)を加え、50℃で5時間攪拌した。その後、この溶液に、C-M1(0.40g)を加え、25℃で2時間攪拌して、液晶配向剤(I-8)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(I-8)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例14で得られたポリアミド酸エステルの粉末(14)(2.0g)に、GBL(30.0g)及びDME(8.00g)を加え、50℃で5時間攪拌した。その後、この溶液に、C-M1(0.20g)を加え、25℃で2時間攪拌して、液晶配向剤(I-9)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(I-9)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例15で得られた樹脂固形分濃度10質量%のポリアミド酸溶液(15)(20.0g)に、GBL(12.0g)及びDEME(8.00g)を加え、50℃で5時間攪拌した。その後、この溶液に、C-M1(0.20g)を加え、25℃で2時間攪拌して、液晶配向剤(I-10)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(I-10)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例16で得られた樹脂固形分濃度10質量%のポリアミド酸溶液(16)(20.0g)に、GBL(12.0g)及びDEME(8.00g)を加え、50℃で5時間攪拌した。その後、この溶液に、C-M1(0.10g)を加え、25℃で2時間攪拌して、液晶配向剤(I-11)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(I-11)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例17で得られた樹脂固形分濃度10質量%のポリアミド酸溶液(17)(20.0g)に、GBL(16.0g)及びDPM(4.00g)を加え、50℃で5時間攪拌した。その後、この溶液に、C-M1(0.10g)を加え、25℃で2時間攪拌して、液晶配向剤(I-12)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(I-12)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例17で得られた樹脂固形分濃度10質量%のポリアミド酸溶液(17)(20.0g)に、GBL(16.0g)及びDPM(4.00g)を加え、50℃で5時間攪拌した。その後、この溶液に、C-M1(0.10g)及びK1(0.10g)を加え、25℃で2時間攪拌して、液晶配向剤(I-13)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(I-13)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
密着性化合物を(C-M2)~(C-M5)とした以外は、実施例4と同様にして、液晶配向剤(V-14)~(V-17)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(V-14)~(V-17)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
その他の密着性化合物をK2とした以外は、実施例7と同様にして、液晶配向剤(V-18)を得た。
液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(V-18)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
その他の密着性化合物をK2とした以外は、実施例16と同様にして、液晶配向剤(V-19)を得た。
液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(V-19)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例18で得られたポリイミド粉末(18)3.00gをGBL(34.50g)中、50℃にて、50℃にて20時間攪拌し溶解させた。
さらにこの溶液中のポリイミド濃度が6質量%になるようにGBL(12.50g)を加え、50℃にて20h攪拌した。
合成例19で得られた樹脂固形分濃度が15質量%のポリアミド酸溶液(19)(40.0g)に、NMP、GBL、BCSを加え、ポリアミック酸が6質量%、NMPが20質量%、GBLが59質量%、BCSが15質量%になるよう調製した。
得られた液晶配向剤(T-20)を用いて、配向方向が90°となるようにして張り合わせた以外は、実施例16と同様にして液晶表示素子、及び密着性評価用基板を得て、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例1で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(1)(7.43g)に、NEP(22.7g)、及びBCS(20.8g)を加え、50℃で5時間攪拌して、液晶配向剤(R-V1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(R-V1)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例1で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(1)(7.43g)に、NEP(22.7g)、及びBCS(20.8g)を加え、50℃で5時間攪拌した。その後、この溶液に、K1(0.18g)を加え、25℃で2時間攪拌して、液晶配向剤(R-V2)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(R-V2)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
熱循環型クリーンオーブンの温度を210℃にして10分間加熱処理をした以外は、比較例2と同様にして、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
比較例1の手法で得られた液晶配向剤を用いて、ピール試験を行った。
合成例12で得られた樹脂固形分濃度10質量%のポリアミド酸溶液(12)(20.0g)に、GBL(6.00g)、DMI(6.00g)、及びEEP(8.00g)を加え、50℃で5時間攪拌して、液晶配向剤(R-I3)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(R-I3)を用いて、ピール試験を行った。
合成例12で得られた樹脂固形分濃度10質量%のポリアミド酸溶液(12)(20.0g)に、GBL(6.00g)、DMI(6.00g)、及びEEP(8.00g)を加え、50℃で5時間攪拌した。その後、この溶液に、K1(0.20g)を加え、25℃で2時間攪拌して、液晶配向剤(R-I4)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(R-I4)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
熱循環型クリーンオーブンの温度を210℃にして10分間加熱処理をした以外は、比較例6と同様にして、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
合成例12で得られた樹脂固形分濃度10質量%のポリアミド酸溶液(12)(20.0g)に、GBL(6.00g)、DMI(6.00g)、及びEEP(8.00g)を加え、50℃で5時間攪拌した。その後、この溶液に、K1(0.60g)を加え、25℃で2時間攪拌して、液晶配向剤(R-I5)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向剤(R-I5)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
C-M1を加えなかった以外は、実施例23と同様にして液晶配向剤(R-T1)を調製した。得られた液晶配向剤(R-T1)を用いて、液晶表示素子の作製、液晶配向性の評価、液晶配向膜の密着性の評価を行った。
また、垂直配向性を有するジアミン(表中、側鎖型ジアミン)を用いた液晶配向剤から得られる液晶配向膜に比べて、水平配向性を有するジアミン(主鎖型ジアミン)を用いた液晶配向剤から得られる液晶配向膜の密着性が高い結果となった。具体的には、実施例1と実施例10との比較である。
加えて、本発明の液晶配向剤に、その他の密着性化合物を導入すると、液晶配向膜との密着性が、より優れた液晶表示素子となった。具体的には、実施例15と実施例16との比較である。
Claims (9)
- (A) ポリイミド、ポリアミック酸、ポリアミック酸エステル、ポリオルガノシロキサン、ポリエステル、ポリアミド、及び重合性不飽和結合を有するモノマーの重合体からなる群より選ばれる少なくとも一種の重合体;
(B) ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びポリカプロラクトンポリオールからなる群より選ばれる少なくとも1種の化合物;及び
(C) 有機溶媒
を含有する、液晶配向剤。 - 前記(B)成分の化合物の数平均分子量が、300~10,000である、請求項1に記載の液晶配向剤。
- 前記(A)成分が、ポリイミド、ポリアミック酸、ポリアミック酸エステル、及び重合性不飽和結合を有するモノマーの重合体からなる群より選ばれる少なくとも一種の重合体である、請求項1~3のいずれか一項に記載の液晶配向剤。
- 前記(A)成分が、テトラカルボン酸二無水物、テトラカルボン酸ジエステル及びテトラカルボン酸ジエステルジクロライドからなる群より選ばれる少なくとも一種であるテトラカルボン酸誘導体と、ジアミンとを反応させて得られる重合体であり、
前記テトラカルボン酸誘導体が、シクロブタン環構造、シクロペンタン環構造、シクロヘキサン環構造、及びベンゼン環構造からなる群より選ばれる少なくとも一種を有する構造を含む、請求項1~4のいずれか一項に記載の液晶配向剤。 - 前記(C)成分が、下記式(Sol-1)又は(Sol-2)で表される溶媒を含む有機溶媒である、請求項1~5のいずれか一項に記載の液晶配向剤。
[式(Sol-1)中、
Ys7及びYs8はそれぞれ独立に、水素原子又は炭素数1~6の1価の炭化水素基であり、
Xs1は、酸素原子又は-COO-であり、
Xs2は単結合又はカルボニル基であり、
Rs7は、炭素数2~4のアルカンジイル基であり、
ns1は、1~3の整数であり、ns1が2又は3の場合、複数のRs7は同じでも異なっていてもよく、
式(Sol-2)中、
Zs1は炭素数1~6の2価の炭化水素基であり、
Ys9及びYs10はそれぞれ独立に、水素原子又は炭素数1~6の1価の炭化水素基である]。 - 請求項1~6のいずれか一項に記載の液晶配向剤を用いて形成された、液晶配向膜。
- 請求項1~6のいずれか一項に記載の液晶配向剤を基板上に塗布して塗膜を形成する工程と、前記塗膜が液晶層と接触していない状態で又は液晶層と接触した状態で前記塗膜に光照射する工程とを含む、液晶配向膜の製造方法。
- 請求項7に記載の液晶配向膜、又は請求項8に記載の製造方法により得られた液晶配向膜を具備する、液晶表示素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780087534.4A CN110366698A (zh) | 2016-12-28 | 2017-12-27 | 液晶取向剂、液晶取向膜、以及液晶表示元件 |
KR1020197021826A KR102534902B1 (ko) | 2016-12-28 | 2017-12-27 | 액정 배향제, 액정 배향막, 및 액정 표시 소자 |
JP2018559567A JP7167715B2 (ja) | 2016-12-28 | 2017-12-27 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-255576 | 2016-12-28 | ||
JP2016255576 | 2016-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124165A1 true WO2018124165A1 (ja) | 2018-07-05 |
Family
ID=62710305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/046852 WO2018124165A1 (ja) | 2016-12-28 | 2017-12-27 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7167715B2 (ja) |
KR (1) | KR102534902B1 (ja) |
CN (1) | CN110366698A (ja) |
TW (1) | TWI832811B (ja) |
WO (1) | WO2018124165A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065324A1 (ja) * | 2012-10-24 | 2014-05-01 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材および位相差材 |
WO2016039337A1 (ja) * | 2014-09-08 | 2016-03-17 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材および位相差材 |
WO2016143865A1 (ja) * | 2015-03-11 | 2016-09-15 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材及び位相差材 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11119225A (ja) | 1997-10-20 | 1999-04-30 | Sumitomo Bakelite Co Ltd | 液晶配向膜 |
JP4985609B2 (ja) | 2007-12-26 | 2012-07-25 | Jnc株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JP5556482B2 (ja) * | 2009-09-15 | 2014-07-23 | Jnc株式会社 | 液晶配向剤、液晶配向膜および液晶表示素子 |
JP6075286B2 (ja) | 2011-03-07 | 2017-02-08 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子 |
KR102243800B1 (ko) * | 2013-03-08 | 2021-04-23 | 닛산 가가쿠 가부시키가이샤 | 경화막 형성 조성물, 배향재 및 위상차재 |
KR102159410B1 (ko) * | 2013-03-14 | 2020-09-23 | 제이엔씨 주식회사 | 액정 배향제 및 액정 표시 소자 |
KR102165703B1 (ko) * | 2013-04-16 | 2020-10-14 | 닛산 가가쿠 가부시키가이샤 | 경화막 형성 조성물, 배향재 및 위상차재 |
KR20210049950A (ko) * | 2013-10-17 | 2021-05-06 | 닛산 가가쿠 가부시키가이샤 | 경화막 형성 조성물, 배향재 및 위상차재 |
US10100201B2 (en) | 2014-02-28 | 2018-10-16 | Nissan Chemical Industries, Ltd. | Cured film formation composition, orientation material and retardation material |
-
2017
- 2017-12-27 CN CN201780087534.4A patent/CN110366698A/zh active Pending
- 2017-12-27 TW TW106145946A patent/TWI832811B/zh active
- 2017-12-27 JP JP2018559567A patent/JP7167715B2/ja active Active
- 2017-12-27 WO PCT/JP2017/046852 patent/WO2018124165A1/ja active Application Filing
- 2017-12-27 KR KR1020197021826A patent/KR102534902B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065324A1 (ja) * | 2012-10-24 | 2014-05-01 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材および位相差材 |
WO2016039337A1 (ja) * | 2014-09-08 | 2016-03-17 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材および位相差材 |
WO2016143865A1 (ja) * | 2015-03-11 | 2016-09-15 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材及び位相差材 |
Also Published As
Publication number | Publication date |
---|---|
TW201835161A (zh) | 2018-10-01 |
JPWO2018124165A1 (ja) | 2019-10-31 |
CN110366698A (zh) | 2019-10-22 |
KR20190094247A (ko) | 2019-08-12 |
JP7167715B2 (ja) | 2022-11-09 |
KR102534902B1 (ko) | 2023-05-19 |
TWI832811B (zh) | 2024-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6287577B2 (ja) | 液晶配向剤、液晶配向膜及びその製造方法、並びに液晶表示素子 | |
JP6686298B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
TWI718117B (zh) | 液晶配向劑、液晶配向膜、液晶配向膜的製造方法、液晶元件、聚合物、二胺及酸二酐 | |
JP6729740B2 (ja) | 液晶配向剤、液晶配向膜、液晶配向膜の製造方法及び液晶表示素子 | |
JP6701635B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
CN109971494B (zh) | 液晶取向剂、液晶取向膜以及液晶显示元件 | |
JP5672762B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP6492509B2 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法 | |
JP2017040721A (ja) | 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶表示素子、重合体及び化合物 | |
JP6492982B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP6424609B2 (ja) | 液晶配向剤、液晶表示素子の製造方法、液晶配向膜及び液晶表示素子 | |
JP7139950B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP2007139949A (ja) | 液晶配向剤 | |
WO2019230091A1 (ja) | 液晶配向剤、液晶配向膜及び液晶素子 | |
JP6870289B2 (ja) | 液晶配向剤、液晶素子の製造方法、液晶配向膜、液晶素子 | |
JP7517208B2 (ja) | 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法 | |
CN106398721B (zh) | 液晶取向剂、液晶取向膜、液晶元件、液晶取向膜的制造方法、聚合物以及二胺 | |
WO2018124167A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP7167715B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
TWI830451B (zh) | 液晶配向劑、液晶配向膜以及液晶顯示元件 | |
JP2017173454A (ja) | 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体並びに化合物 | |
JP2023131106A (ja) | 液晶配向剤、液晶配向膜及び液晶素子 | |
JP2024108829A (ja) | 液晶配向剤、液晶配向膜及びその製造方法、並びに液晶素子 | |
JP2023170991A (ja) | 液晶配向剤、液晶配向膜及び液晶素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17888616 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018559567 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197021826 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17888616 Country of ref document: EP Kind code of ref document: A1 |