WO2018123922A1 - ノズル - Google Patents

ノズル Download PDF

Info

Publication number
WO2018123922A1
WO2018123922A1 PCT/JP2017/046292 JP2017046292W WO2018123922A1 WO 2018123922 A1 WO2018123922 A1 WO 2018123922A1 JP 2017046292 W JP2017046292 W JP 2017046292W WO 2018123922 A1 WO2018123922 A1 WO 2018123922A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
pin
nozzle
hole
injection hole
Prior art date
Application number
PCT/JP2017/046292
Other languages
English (en)
French (fr)
Inventor
将孝 竹本
陽史 小谷
Original Assignee
株式会社いけうち
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社いけうち filed Critical 株式会社いけうち
Priority to CN201780069023.XA priority Critical patent/CN109952156B/zh
Publication of WO2018123922A1 publication Critical patent/WO2018123922A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid

Definitions

  • the present invention relates to a nozzle, and more particularly to a one-fluid nozzle capable of spraying ultrafine particles while having a simple structure capable of reducing the generation of coarse particles.
  • Fluid injection nozzles are used for various purposes such as cooling and cleaning.
  • a method of atomizing droplets in this type of nozzle a method of atomizing by generating a swirling flow with swirling means provided inside the nozzle, and a method of causing a straight flow from the nozzle to collide with a collision pin protruding from the outer surface of the nozzle.
  • the former swirl type nozzle has a smaller foreign substance passage diameter inside the nozzle and is more likely to be clogged than a collision type nozzle having the same pressure and the same spray amount.
  • the latter collision type nozzle can generate a mist having a fine particle diameter even if the injection hole is enlarged and the spray amount is increased. Moreover, the foreign substance passage diameter is larger than that of the revolving nozzle. In view of the above, the latter collision type nozzle is preferred in applications such as intake cooling of a gas turbine of a power plant where importance is attached to complete mist evaporation and the installation space of the nozzle is limited.
  • Patent Document 1 provides a collision pin type one-fluid nozzle shown in FIG. 6 as a nozzle that collides with this type of collision pin.
  • the nozzle 100 is accommodated by fixing the tip of the inner cylinder 120 to the injection side wall 110a of the outer cylinder 110 of the nozzle body 101, and has one end of the hollow portion of the inner cylinder 120 as the injection port 122 and the other end of the hollow portion.
  • a base portion 130a of a separate J-shaped collision pin 130 is embedded from the outer surface of the tip of the outer cylinder 110 of the nozzle body 101, and the collision surface 130b at the other end is arranged to face the injection hole 122. Is collided with the collision surface 130b and atomized to be sprayed.
  • Patent Document 2 provides a pin collision type nozzle shown in FIGS. 7 (A) to (C).
  • the shaft member 230 is bonded and fixed to a recess provided at the tip of a pin 220 projecting in a separate J shape from the outer peripheral portion of the ejection side end surface 211 of the central nozzle body 210.
  • the lower end is an inclined collision surface 232.
  • the throttle channel 241 at the center of the nozzle tip 240 is located at the center rear end of the conical injection hole 212 provided at the center of the injection side end surface 211 of the nozzle body 210.
  • the center line of the throttle channel 241 is aligned with the center of the opposing inclined collision surface 232.
  • the entire J-shaped pin 220 including the vertical frame portion (arm portion 220a) has a circular cross section as shown in FIG.
  • water droplets that are diffused and ejected from the throttle channel 241 of the nozzle body 210 to the injection hole 212 are collided with the opposing inclined collision surface 232 and atomized.
  • the collision type nozzles of Patent Documents 1 and 2 are separate from the nozzle body and the J-shaped collision frame, Since it is inserted and fixed to the nozzle body, there is a problem that the material cost and the manufacturing cost are increased, and the nozzle is expensive.
  • the present invention has been made in view of the problem of the collision type nozzle, in the collision type nozzle, It is an object of the present invention to provide a nozzle that makes it difficult for water droplets to adhere to the collision frame and the injection side end face of the nozzle body, prevents the generation of coarse particles, and promotes atomization of water droplets contained in the spray. .
  • the present invention is a one-fluid nozzle in which a J-shaped collision frame is integrally provided from the outer surface of the injection side wall of a cylindrical nozzle body.
  • the nozzle body includes the injection side wall including a flat plate-like closed wall at one end, the injection axis including a straight hole at the central axis of the injection side wall, and a cross section surrounded by the flat inner surface and the outer peripheral wall of the injection side wall.
  • a pin hole is provided in a horizontal frame portion that protrudes across the central axis from the protruding side end of the vertical frame portion of the J-shaped collision frame, and a collision pin is fitted into the pin hole and directed toward the injection hole.
  • the collision pin sharpens the protruding side into a trapezoidal shape, and has a collision surface formed of a circular flat surface with an outer peripheral edge at the tip of the collision pin on which the straight rod flow collides, and
  • the vertical frame portion of the collision frame has a triangular cross section in which the inner surface on the collision pin side is inclined at an acute angle.
  • the collision surface of the collision pin is different from the cited document 2 and is a circular flat surface orthogonal to the central axis of the straight rod flow, and the outer peripheral edge of the collision surface is an edge, preferably R0.01 or less. It has a sharp edge. In this way, if the outer peripheral edge of the collision surface is a sharp edge, the transparent rod flow that collided with the collision surface is immediately peeled off by the edge, the liquid film becomes thin, and the flow velocity does not decrease due to wall resistance. Can promote.
  • the collision pin is fixed by press-fitting, bonding, caulking or the like into a pin hole provided in a horizontal frame portion of the collision frame.
  • the inner surface of the vertical frame portion is a triangle that is inclined at an acute angle, so water droplets do not adhere. It flows outward along the inclined surfaces on both sides. Therefore, it is possible to suppress the generation of coarse particles due to the water droplets adhering to the inner surface of the vertical frame portion and the adhering water droplets flying together with the scattered water droplets.
  • the cross-sectional shape of the vertical frame portion of the collision frame is preferably a triangle whose inner surface is inclined at an acute angle, the outer surface is an arc shape, and the cross-sectional shape is a so-called teardrop shape.
  • the cross-sectional shape of the teardrop is 4 to 3 mm, preferably 3 mm in the inner and outer directions, and 2.5 to 2 mm in the front and rear direction perpendicular to the inner and outer directions. I try not to stick. Thus, even if the collision pin is made thin, it is integrated with the nozzle body, so that durability and pressure resistance can be improved as compared with a case where the collision pin is fixed separately to the nozzle body.
  • the amount of protrusion (height) of the vertical frame part from the nozzle body is increased to make it difficult for water droplets to adhere to the horizontal frame part of the collision frame, and the vertical frame It is preferable to make the inner peripheral surface bent from the portion to the horizontal frame portion as small as about R0.5.
  • the pin hole of the collision frame and the injection hole of the nozzle body are coaxial, the diameter of the collision surface of the collision pin is in the range of 100% to 115% with respect to the diameter of the injection hole, and the straight flow path It is preferable that an edge is provided on the periphery of the inlet of the injection hole that communicates.
  • the injection liquid collides nearly 100%. It collides with the circular flat surface at the tip of the pin, and the atomization of the droplet can be ensured.
  • the area of the collision surface of the collision pin is in the range of 100% to 115% with respect to the cross-sectional area of the injection hole. If it is 100% or less, the liquid film becomes thicker, and the particle size after film breakup This is because the spread of the spray becomes narrower and the cooling efficiency such as the intake air cooling decreases.
  • the dimension between the collision surface of the collision pin and the tip of the injection hole is in the range of 0.1 mm to 1.0 mm. If the dimension is less than 0.1 mm, the gap between the injection surface and the collision surface of the collision pin Becomes an orifice, the spray pattern changes greatly, and the foreign substance passage diameter also decreases. If it exceeds 1.0 mm, the centering of the injection hole and the collision surface becomes difficult as the distance increases. For example, when the diameter of the injection hole is 0.18 mm, the diameter of the circular flat surface is 0.18 mm to 0.2 mm. Moreover, it is preferable that the inclination angle of the base cone portion of the collision pin is 90 degrees or less.
  • the peripheral edge of the injection hole that communicates with the straight flow path is an edge without providing a radius
  • the diameter of the straight flow path is at least four times the diameter of the injection hole. Is preferred.
  • the peripheral edge of the inlet of the injection hole as an edge, the water flowing into the injection hole from the straight flow path flows into the injection hole while peeling from the inner peripheral surface of the injection hole, and the inner peripheral surface of the injection hole
  • the transparent rod flow is generated so that the outer surface of the water flow is not disturbed by eliminating the contact friction with the water flow.
  • the collision surface sharp edge after the transparent rod flow collides with the collision surface, it peels off immediately at the edge, the liquid film becomes thin, and there is no decrease in flow velocity due to wall resistance, thus promoting miniaturization it can.
  • the integral nozzle body and the collision frame are made of stainless steel and the collision pin is made of ceramic.
  • the nozzle body and the collision frame may be other metals or ceramics, and the collision pin may be a super hard material such as stainless steel, ruby or sapphire.
  • the nozzle of the present invention is made by precision casting stainless steel and continuously processing the cylindrical nozzle body and the collision frame to enhance the strength and pressure resistance of the nozzle as a nozzle for high pressure spraying.
  • the vertical frame portion of the J-shaped collision frame protrudes from the outer end surface of the injection side wall of the nozzle body, and the horizontal frame portion from which the collision pin protrudes is cantilevered.
  • the collision frame is made of stainless steel continuous with the nozzle body, and the collision pin itself is also made of strong ceramic, so the collision frame and the collision pin are stable even when a high-pressure straight rod flow collides. Has pressure resistance to maintain posture.
  • the spray pressure may be used at a high pressure of 10 MPa or more.
  • wear of the collision pin and the injection hole becomes a problem.
  • the impact pin is easier to wear than the injection hole, and a material with excellent wear resistance is preferred, but ruby and the like are difficult to process, but ceramic is excellent in wear resistance and easy to process, at low cost. Can be manufactured.
  • the surface of the collision frame made of stainless steel is polished to be a smooth surface
  • the inner surface of the injection side wall of the nozzle body is polished to make the closed surface of the straight flow path a smooth surface
  • the injection hole The periphery of the inlet is a sharp edge.
  • the liquid pressure to be supplied is preferably 5.0 to 13 MPa, and the average particle diameter of the liquid to be sprayed is preferably 20 ⁇ m or less.
  • the liquid pressure is preferably set to a high pressure of 6 to 13 MPa, and the collision pressure to the collision pin is increased to further reduce the average particle diameter to 17 ⁇ m or less.
  • the other end of the cylinder part of the nozzle body is an opening for inserting a strainer, the front part of a strainer made of a porous material is fitted into the cylinder part, and protrudes into a liquid supply pipe connecting the rear part of the strainer.
  • the outer peripheral surface of the rear part has a petal shape in which a plurality of circular arc parts are continuous, and a rectilinear liquid passage having a front end opening is provided along the central axis of the strainer, and liquid is supplied from the front end of the rectilinear liquid passage to the injection hole. It is preferable to adopt a configuration that introduces.
  • the strainer made of a porous material has three-dimensionally continuous pores, and the porosity is in the range of 40 to 80%. In this way, when the strainer is assembled on the inflow side of the nozzle and foreign matter in the liquid is captured and removed by the strainer before flowing into the injection hole of the nozzle body, the injection hole is reliably prevented from being clogged with foreign matter. it can.
  • the nozzle of the present invention can be suitably used for intake air cooling because the average particle diameter of droplets to be sprayed is 20 ⁇ m or less.
  • the outer peripheral edge of the collision pin that collides with the straight rod flow injected from the injection hole of the nozzle body has a sharp edge. Since the liquid film becomes thin and the liquid film becomes thin and the flow velocity does not decrease due to the wall resistance, miniaturization can be promoted. And even if water droplets that collide and collide with the collision surface and edge of the collision pin try to adhere to the inner surface of the vertical frame part of the opposing collision frame, the vertical frame part inner surface is a triangle inclined at an acute angle. It flows outward along the inclined surfaces on both sides without adhering.
  • the nozzle body and the J-shaped collision frame protruding from the nozzle body are integrally provided, the strength and pressure resistance are excellent, and high pressure It becomes a nozzle for spraying. And since it is a one fluid nozzle, a compressor is unnecessary and piping can be simplified. Furthermore, although it is a one-fluid nozzle, it can spray ultrafine particles having an average particle diameter of 20 ⁇ m or less, and can cool an object without wetting it with water droplets. For example, it is suitably used as a nozzle for intake air cooling.
  • the strainer-equipped nozzle of the embodiment of the present invention is shown, (A) is a front view, (B) is a sectional view of the nozzle, and (C) is a view taken along the line CC of (A).
  • (A) is principal part sectional drawing of the said nozzle
  • (B) is explanatory drawing which shows the state which a straight-advancing stick flow collides with a collision pin from the injection hole of a nozzle main body. It is drawing which shows the cross-sectional shape of the vertical frame part of the collision frame of the said nozzle.
  • (A) is sectional drawing of the said nozzle with a strainer
  • (B) is a side view of a strainer
  • (C) is a fragmentary sectional view of a strainer. It is sectional drawing which shows the state which attached the said nozzle with a strainer to the liquid supply pipe
  • (A) to (C) are drawings showing other conventional examples.
  • the strainer-equipped nozzle 1 is made of a single fluid nozzle made of stainless steel, and a strainer 30 made of a resin porous material is screwed into the nozzle 1 and assembled. In the state where 30 is assembled, the nozzle is a small and light nozzle having a total length L1 of 20 to 30 mm.
  • the eaves nozzle 1 has a J-shaped collision frame 3 protruding from the outer surface of the injection side wall 2a formed of a closed wall of one end of a nozzle body 2 having a simple cylindrical shape.
  • the nozzle body 2 and the collision frame 3 are one-fluid nozzles integrally formed by precision casting stainless steel.
  • a collision pin 4 made of ceramic is pushed in and fixed to the collision frame 3.
  • One end of the nozzle body 2 is provided with the injection side wall 2a made of a flat plate-like closed wall, and the injection hole 10 made of a straight hole is provided at the central axis Po of the injection side wall 2a, and the flat inner surface 2b of the injection side wall 2a and the outer periphery A straight passage 11 having a circular cross section and a constant inner diameter surrounded by the wall 2c is provided.
  • the peripheral edge 10e of the inlet 10a of the injection hole 10 opening in the flat inner surface 2b is a sharp edge.
  • the inflow port 10a of the injection hole 10 is communicated with the straight passage 11 and the liquid is jetted from the straight passage 11 through the injection hole 10 as a straight rod flow.
  • the diameter of the injection hole 10 is 0.1 to 1.0 mm (0.18 mm in the present embodiment), and the length of the injection hole 10 is 1 mm in the present embodiment. To be injected.
  • the diameter of the straight passage 11 is ⁇ 0.4 to 4.4 mm, which is four times that of the injection hole 10.
  • the J-shaped collision frame 3 has a shape including a vertical frame portion 3a protruding from the front end surface of the ejection side wall 2a and a horizontal frame portion 3b protruding from the front end of the vertical frame portion 3a across the central axis Po. is there.
  • a pin hole 3h is provided at the position of the central axis Po of the horizontal frame portion 3b, and the collision pin 4 is fitted and fixed in the pin hole 3h so as to protrude toward the injection hole 10.
  • the pin hole 3h is a tapered hole that is reduced in diameter toward the injection hole 10, while the collision pin 4 is reduced in diameter toward the collision side of the tip, and the tip portion 4a is formed in a trapezoidal shape with a steep inclination angle.
  • a collision surface 5 made of a circular flat surface is provided at the tip.
  • the radius R1 of the outer peripheral edge of the circular collision surface 5 is a sharp edge of 0.01 or less.
  • the diameter of the collision surface 5 at the tip of the collision pin 4 is in the range of 100% to 115% with respect to the diameter of the opposed injection hole 10, and the dimension L3 between the collision surface 5 and the tip of the injection hole 10 is 0.
  • the range is from 1 mm to 1.0 mm.
  • the dimension L4 between the central axis of the injection hole 10 and the inner surface of the vertical frame portion 3a is 3.5 mm, and the dimension L3 is 0.6 mm.
  • the vertical frame portion 3a of the collision frame 3 has a triangular shape in which the inner surface facing the collision pin 4 is inclined at an acute angle, and the outer surface on the opposite side has an arc shape.
  • the radius R2 at the acute vertex on the inner surface side is set to 0.2 or less, and the arc on the opposite side has radius R3 of about 1.
  • the left and right width S1 of the vertical frame portion 3a is about 3 mm, and the front and rear width S2 in the orthogonal direction is about 2 mm so that the colliding water droplets do not adhere as much as possible.
  • the protrusion amount (height L2) of this vertical frame part 3a is made into the height of 3 mm or more that the water droplet which collided with the collision surface 5 cannot adhere to the horizontal frame part 3b.
  • L3 is 0.6 mm
  • L4 is 3.5 mm
  • L2 is 4.2 mm.
  • the radius R4 of the inner peripheral portion bent from the vertical frame portion 3a to the horizontal frame portion 3b is reduced to 0.5 to make it difficult for water droplets to adhere to the inner peripheral surface of the bent portion.
  • the cylindrical nozzle body 2 has a front side 2f on the injection side having a large diameter, a rear part 2g having a small diameter, and an outer peripheral surface of the large diameter part of the front part 2f being 6 in diameter.
  • an arc portion is provided at the boundary of each side.
  • a screw 2d is provided on the outer peripheral surface of the small-diameter rear portion 2g.
  • the hollow part of the cylindrical nozzle body 2 is a linear flow path 11 having the same inner diameter, the rear end is an opening 2s, and the front part 30a of the strainer 30 is fitted therein.
  • the front end of the straight passage 11 having a circular cross section formed by a hollow portion of the nozzle body 2 is closed by a flat inner surface 2e of the ejection side wall 2a.
  • the inflow port 10a of the injection hole 10 is located at the center of the flat inner surface 2e serving as a closed surface.
  • the flat inner surface 2e serving as the closed surface is polished to improve the flow of water flowing from the straight flow path 11 into the injection hole 10, and the peripheral edge of the inlet 10a of the injection hole is a sharp edge 10e.
  • the supplied liquid pressure is 5.0 to 13 MPa, preferably 6 to 13 MPa
  • the spray flow rate is 6 to 16 L / hr when the liquid pressure is 6 MPa
  • the average particle diameter of the sprayed liquid is 20 ⁇ m or less. Preferably, it is 17 ⁇ m or less.
  • the front portion 30a of the cylindrical strainer 30 is assembled by being fitted through the opening 2s at the rear end of the straight passage 11 of the nozzle body 2.
  • the strainer 30 is made of a resin material provided with three-dimensionally continuous holes 35 and has a porosity of 40 to 80%.
  • the strainer 30 has a front portion 30a and a rear portion 30b continuous, and is provided with a liquid passage 33 comprising a central hole from the front end of the front portion 30a to the middle portion of the rear portion 30b.
  • the liquid passage 33 is configured to open to the straight passage 11 and to flow from the straight passage 11 to the injection hole 10.
  • the outer peripheral surface of the rear portion 30b of the strainer 30 protrudes from the four arc portions 32 into a petal shape, and the surface area is increased to increase the liquid absorption amount of the strainer 30.
  • the nozzle 1 to which the strainer 30 is attached is attached by screwing the screw 2 d of the nozzle body 2 into a screw hole 40 h provided in the liquid supply pipe 40, and the rear portion 30 b of the strainer 30 is placed in the liquid supply pipe 40. Protruding. Since the outer peripheral surface of the rear portion 30b of the strainer 30 protruding into the liquid supply pipe 40 has a petal shape, the area for absorbing the liquid Q flowing through the liquid supply pipe 40 is increased.
  • the liquid Q supplied from the liquid supply pipe 40 is introduced through the strainer 30, and foreign matter mixed in the liquid Q is captured by the strainer 30.
  • the liquid having passed through the strainer 30 flows into the injection hole 10 through the straight passage 11 in the nozzle body 2 of the nozzle 1, and from the injection hole 10 formed as a narrow hole, as shown in FIG. And is collided with the collision surface 5 at the tip of the collision pin 4 at the opposite position.
  • the pressure of the liquid passing through the injection hole 10 is increased and the injection pressure is increased.
  • a straight rod flow Qs is injected and collides with the collision surface 5. Since the collision surface 5 is arranged in the same straight line as the injection hole 10 and has the same area, the entire amount of the straight rod flow injected from the injection hole 10 collides with the collision surface 5 and all the droplets are miniaturized. To be scattered outside. As described above, it is possible to spray with an average particle diameter of 17 ⁇ m or less by colliding a straight rod flow at a high pressure with the collision pin.
  • the collision type single fluid nozzle 1 has a sharp edge at the periphery of the collision surface 5 of the collision pin 4, so that the water droplets that collide are better cut off and the generation of coarse particles can be suppressed.
  • the vertical frame portion 3a of the collision frame 3 has a cross-sectional tear shape and the collision pin side has an acute angle. Therefore, generation of coarse particles can be suppressed and atomization of the spray can be achieved.
  • the nozzle with the strainer is suitably used as an intake air cooling nozzle for a gas turbine of a power plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)

Abstract

粗大粒子の発生を抑制し、微細な粒子径の噴霧ができるノズルを提供する。円筒型のノズル本体の噴射側壁の外面からJ字状の衝突枠を一体に設けている一流体ノズルであり、該ノズル本体の一端に平板状閉鎖壁からなる前記噴射側壁を備え、該噴射側壁の中心軸線に直線穴からなる噴射穴を備えると共に、該噴射側壁の平坦状内面と外周壁に囲まれた断面円形で内径が一定な直進流路を備え、該直進流路から前記噴射穴を通って液体を直進棒流として噴霧する構成とし、かつ、前記J字状の衝突枠の縦枠部の突出側先端から前記中心軸線を横断して突出する横枠部にピン穴を設け、該ピン穴に衝突ピンを内嵌して前記噴射穴に向けて突出させ、該衝突ピンは突出側を台円錐形状に先鋭化すると共に、前記直進棒流が衝突する前記衝突ピンの先端に外周縁をエッジとする円形平坦面からなる衝突面を設け、かつ、前記衝突枠の縦枠部は前記衝突ピン側の内面を鋭角に傾斜させた断面三角形状としている。

Description

ノズル
 本発明はノズルに関し、詳しくは、粗大粒子の発生を低減できる簡単な構造でありながら、超微粒子を噴霧できる一流体ノズルに関する。
  流体噴射用のノズルは冷却用、洗浄用等の多用な用途で用いられている。この種のノズルにおいて液滴を微粒化する方法として、ノズル内部に設ける旋回手段で旋回流を発生させて微粒化する方法と、ノズルから直進流をノズル外面から突設する衝突ピンに衝突させて微粒化する方法がある。前者の旋回型のノズルは同圧力で同噴霧量の衝突型のノズルと比べると、ノズル内部の異物通過径が小さく目詰まりが発生しやすい。さらに、ノズル1個当たりの噴霧量を多くするために噴射孔を大きくすると、霧の粒子径も比例して大きくなってしまうため、噴射孔を大きくすることはできない。したがって、冷却に必要な総噴霧量が多い場合、ノズル個数が多くなってしまい、設備コストが上がると共に設置スペースも必要となる。一方、後者の衝突型のノズルでは、噴射孔を大きくし、噴霧量を多くしても、微細な粒子径の霧を発生させることができる。また、旋回型ノズルと比べて異物通過径も大きい。以上の点から、霧の完全蒸発が重要視されると共に、ノズルの設置スペースが限られる発電所のガスタービンの吸気冷却の用途等では後者の衝突型のノズルが好ましい。
 この種の衝突ピンと衝突させるノズルとして、例えば、米国特許7320443号公報(特許文献1)で、図6に示す衝突ピン型の一流体ノズルが提供されている。該ノズル100は、ノズル本体101の外筒110の噴射側壁110aに内筒120の先端を固定して収容し、該内筒120の中空部の一端を噴口122とすると共に該中空部の他端にテーパ状に拡がる流入口123を設けている。ノズル本体101の外筒110の先端の外面から別体のJ字状の衝突ピン130の基部130aを埋設して、他端の衝突面130bを噴口122と対向配置し、噴口122からの噴出液を衝突面130bに衝突させて微粒化して噴霧している。
 また、特開平9-94487号公報(特許文献2)で図7(A)~(C)で示すピン衝突型ノズルが提供されている。該ノズル200では中心のノズル本体210の噴射側端面211の外周部から別体のJ字状に突設したピン220の先端に設けた凹部に軸部材230を接着固定し、該軸部材230の下端は傾斜衝突面232としている。ノズル本体210の噴射側端面211の中央に設けた円錐状の噴射穴212の中央奥端に、ノズルチップ240の中央の絞り流路241を位置させている。該絞り流路241の中心線を対向する傾斜衝突面232の中心に合わせている。J字状のピン220は縦枠部(アーム部220a)を含めた全体が図7(B)に示されるように断面円形となっている。
 該特許文献2のノズル200は、ノズル本体210の絞り流路241から噴射穴212に拡散させて噴射した水滴を対向する傾斜衝突面232と衝突させて霧化させている。 
米国特許7320443号公報 特開平9-94487号公報
 特許文献1、2の衝突型ノズルでは、直進流を衝突ピンに衝突させて微粒化させるため、直進流の噴射孔と衝突ピンの衝突面の中心軸がずれると上手く微粒化されず、固体差が大きく出てしまうため製造が難しい。また、衝突させた霧が衝突ピンの縦枠部(アーム部)やノズル本体の噴射側端面に付着して粗大粒子が発生しやすい問題がある。特に、前記特許文献2の衝突面が傾斜している場合、中心軸がずれやすくなる。
 また、特許文献1、2の衝突型ノズルともノズル本体とJ字状の衝突枠は別体であり、
ノズル本体に挿入固定しているため、材料コストおよび製造コストがかかり、ノズルが高価になる問題がある。
 本発明は前記衝突型ノズルの問題に鑑みてなされたもので、衝突型のノズルにおいて、
衝突枠及びノズル本体の噴射側端面へ水滴が付着しにくくして、粗大粒子の発生を防止して、噴霧に含まれる水滴の微粒化を促進することができるノズルを提供することを課題としている。
 前記課題を解決するため、本発明は、円筒型のノズル本体の噴射側壁の外面からJ字状の衝突枠を一体に設けている一流体ノズルであり、
 前記ノズル本体の一端に平板状閉鎖壁からなる前記噴射側壁を備え、該噴射側壁の中心軸線に直線穴からなる噴射穴を備えると共に、該噴射側壁の平坦状内面と外周壁に囲まれた断面円形で内径が一定な直進流路を備え、該直進流路から前記噴射穴を通って液体を直進棒流として噴霧する構成とし、かつ、
 前記J字状の衝突枠の縦枠部の突出側先端から前記中心軸線を横断して突出する横枠部にピン穴を設け、該ピン穴に衝突ピンを内嵌して前記噴射穴に向けて突出させ、該衝突ピンは突出側を台円錐形状に先鋭化すると共に、前記直進棒流が衝突する前記衝突ピンの先端に外周縁をエッジとする円形平坦面からなる衝突面を設け、かつ、前記衝突枠の縦枠部は前記衝突ピン側の内面を鋭角に傾斜させた断面三角形状としていることを特徴とするノズルを提供している。
 前記のように、衝突ピンの衝突面は、引用文献2と相違し、直進棒流の中心軸線と直交する円形平坦面であり、該衝突面の外周縁はエッジ、好ましくはR0.01以下のシャープエッジとしている。このように、衝突面の外周縁をシャープエッジとすると、衝突面と衝突した透明棒流がエッジによりすぐに剥離し、液膜が薄くなり、壁面抵抗による流速の低下がないため、微細化を促進できる。
 前記衝突ピンは衝突枠の横枠部に設けたピン穴に圧入、接着、かしめ等で固定している。
 さらに、衝突面及びエッジに衝突し、飛散する水滴が対向する衝突枠の縦枠部内面に付着しようとしても、該縦枠部内面は鋭角に傾斜させた三角形としているため、水滴は付着せずに両側の傾斜面に沿って外方へと流れていく。よって、縦枠部内面に水滴が付着し、付着した水滴が飛散してくる水滴と一緒に飛ばされて粗大粒子が発生するのを抑えることができる。
 該衝突枠の縦枠部の断面形状は内面側を鋭角に傾斜させた三角形とし外面を円弧形状とし、断面形状を所謂涙型とすることが好ましい。この断面形状が涙型の内外方向の寸法は4~3mm、好ましくは3mm、該内外方向と直交する前後方向の寸法は2.5~2mmとし、前記衝突面と衝突して飛散する水滴ができるだけ付着しないようにしている。このように衝突ピンを細くしてもノズル本体と一体としているため、別体としてノズル本体に固定する場合と比較して、耐久性、耐圧性を高めることができる。
 衝突枠に飛散した水滴が付着しないようにするため、ノズル本体からの縦枠部の突出量(高さ)を大とし、衝突枠の横枠部に水滴が付着しにくくし、かつ、縦枠部から横枠部に屈曲する内周面をR0.5程度と小さくすることが好ましい。
 前記衝突枠のピン穴と前記ノズル本体の噴射穴は同軸と、前記衝突ピンの衝突面の直径を前記噴射穴の直径に対して100%~115%の範囲とし、かつ、前記直進流路と連通する前記噴射穴の流入口の周縁にエッジを設けていることが好ましい。
 前記のように、衝突ピンの先端の円形平坦面を噴射穴と近接させると共に、その面積を略同等とし、噴射穴から直進棒流を円形平坦面に衝突させると、噴射液は100%近く衝突ピンの先端の円形平坦面と衝突し、液滴の微粒化を確実に図ることができる。
 前記衝突ピンの衝突面の面積を噴射穴の断面積に対して100%~115%の範囲とするのは、100%以下であると、液膜が厚くなり、膜状分裂後の粒子径が大きくなる、さらに、噴霧の広がりが狭くなり、吸気冷却等の冷却効率が低下することによる。
 一方、115%を越えると、噴霧が180゜方向に広がり、直進性がなくなり、ノズル本体への水滴の付着が発生しやすくなる。
 また、衝突ピンの衝突面と噴射穴の先端との間の寸法を0.1mm~1.0mmの範囲とするのは、0.1mm未満であると、噴射穴と衝突ピンの衝突面の隙間がオリフィスになり、噴霧パターンが大きく変化すると共に、異物通過径も小さくなる。1.0mmを越えると、距離が離れるほど噴射穴と衝突面とのセンター合わせが困難になる。
 例えば、前記噴射穴の直径0.18mmとすると、円形平坦面の直径を0.18mm~0.2mmとしている。また、衝突用ピンの台円錐部の傾斜角度は90度以下にすることが好ましい。
 かつ、前記のように、直進流路と連通する前記噴射穴の周縁はアールを設けずにエッジとし、かつ、該噴射穴の直径に対して前記直進流路の直径は4倍以上とすることが好ましい。
 前記のように、噴射穴の流入口周縁をエッジとすることで、直進流路から噴射穴に流れ込む水流を噴射穴の内周面から剥離しながら噴射穴に流入し、噴射穴の内周面との接触摩擦をなくして水流の外面に乱れを発生させないようにして、透明棒流を生成している。さらに、衝突面をシャープエッジとすることで、透明棒流が衝突面に衝突した後、エッジですぐに剥離し、液膜が薄くなり、壁面抵抗による流速の低下がないため、微細化を促進できる。
 前記一体のノズル本体と衝突枠はステンレス、衝突ピンはセラミックとすることが好ましい。なお、ノズル本体および衝突枠は他の金属やセラミックでもよいし、衝突ピンはステンレス、ルビー、サファイア等の超硬材料でもよい。 
 本発明のノズルは、前記のように、ステンレスを精密鋳造して円筒状のノズル本体と衝突枠とを連続して加工し、ノズルの強度および耐圧性を増強して、高圧噴霧用のノズルとしている。則ち、本発明のノズルでは、ノズル本体の噴射側壁の外端面からJ字状の衝突枠の縦枠部を突出して、衝突ピンを突出させる横枠部を片持ち支持する形状としているが、該衝突枠はノズル本体と連続したステンレスで形成していると共に、衝突ピン自体も強度を有するセラミックで形成しているため、高圧の直進棒流が衝突しても、衝突枠および衝突ピンは安定姿勢を保持する耐圧性を備えている。
 微粒化性能の向上や噴霧量の増加を目的として、噴霧圧力を10MPa以上の高圧で使用することがある。この場合、衝突ピンと噴射穴の摩耗が問題になる。衝突ピンの方が噴射穴より摩耗しやすく、耐摩耗性に優れた材料が好ましいが、ルビー等は加工が難しい問題があるが、セラミックは耐摩耗性に優れると共に加工がしやすく、低コストで製造できる。
 また、前記ステンレス製の衝突枠の表面を研磨して平滑面とすると共に、前記ノズル本体の噴射側壁の内面を研磨して前記直進流路の閉鎖面を平滑面とし、かつ、前記噴射穴の流入口周縁をシャープエッジとしている。
 前記のように衝突枠の表面を平滑面とすると、衝突ピンに衝突して飛散する水滴が衝突枠に付着しにくくなると共に、ノズル本体内で直進流路の閉鎖面に衝突する水滴を付着しにくくすることができる。
 また、本発明のノズルは、供給する液体圧を5.0~13MPa、噴霧する液体の平均粒子径を20μm以下としていることが好ましい。
 前記液体圧は好ましくは6~13MPaの高圧とし、衝突ピンへの衝突圧を高くして、平均粒子径を17μm以下と更に微粒化することが好ましい。
 前記ノズル本体の筒部の他端はストレーナ挿入用の開口とし、多孔質材からなるストレーナーの前部を前記筒部に内嵌し、該ストレーナの後部を連結する液供給管内に突出させるものとし、該後部の外周面を複数の円弧部を連続させた花弁形状とすると共に、該ストレーナの中心軸線に沿って前端開口の直進液通路を設け、該直進液通路の前端から前記噴射穴に液体を導入する構成としていることが好ましい。
 多孔質材からなる前記ストレーナは三次元状に連続する空孔を備え、空孔率は40~80%の範囲としている。
 このように、ノズルの流入側にストレーナーを組みつけ、液体中の異物がノズル本体の噴射穴に流入する前にストレーナーで捕捉して除去すると、噴射穴が異物により目詰まりするのを確実に防止できる。
  本発明のノズルは、噴霧する液滴の平均粒子径を20μm以下であることより、吸気冷却用として好適に用いることができる。
  前述したように、本発明のノズルは、ノズル本体の噴射穴から噴射する直進棒流が衝突する衝突ピンの外周縁をシャープなエッジとしているため、衝突面に衝突した直進棒流がエッジによりすぐに剥離し、液膜が薄くなり、壁面抵抗による流速の低下がないため、微細化を促進できる。かつ、衝突ピンの衝突面及びエッジに衝突して飛散する水滴が対向する衝突枠の縦枠部内面に付着しようとしても、該縦枠部内面は鋭角に傾斜させた三角形としているため、水滴は付着せずに両側の傾斜面に沿って外方へと流れていく。よって、縦枠部内面に水滴が付着し、付着した水滴が飛散してくる水滴と一緒に飛ばされて粗大粒子が発生するのを抑えることができる。よって、噴霧の微粒化を促進できると共に粗大粒子の発生を抑制できる
 さらに、ノズル本体および該ノズル本体から突出するJ字状の衝突枠を一体で設けているため、強度および耐圧性が優れ、高圧噴霧用のノズルとなる。かつ、一流体ノズルであるため、コンプレッサーが不要であると共に配管を簡素化できる。さらに、一流体ノズルでありながら、平均粒径が20μm以下の超微粒子を噴霧することができ、対象物を水滴で濡らすことなく冷却を行え、例えば、吸気冷却用のノズルとして好適に用いられる。
本発明の実施形態のストレーナ付きノズルを示し、(A)は正面図、(B)はノズルの断面図、(C)は(A)のC-C線矢視図である。 (A)は前記ノズルの要部断面図、(B)はノズル本体の噴射穴から直進棒流が衝突ピンに衝突する状態を示す説明図である。 前記ノズルの衝突枠の縦枠部の断面形状を示す図面である。 (A)は前記ストレーナ付きノズルの断面図、(B)はストレーナの側面図、(C)はストレーナの部分断面図である。 前記ストレーナ付きノズルを液供給管に取り付けた状態を示す断面図である。 従来例を示す断面図である。 (A)~(C)は他の従来例を示す図面である。
  以下、本発明のノズルの実施形態を図面を参照して詳細に説明する。
  図1乃至図5に示す実施形態のストレーナ付きのノズル1は、ステンレス製の一流体ノズルからなり、該ノズル1に樹脂製の多孔質材からなるストレーナ30を螺合して組みつけ、該ストレーナ30を組みつけた状態で、全長L1を20~30mmとしている小型軽量なノズルとしている。
 ノズル1は、図1(B)に示すように、単純な筒状としたノズル本体2の一端閉鎖壁からなる噴射側壁2aの外面よりJ字状の衝突枠3を突設している。該ノズル本体2と衝突枠3はステンレスを精密鋳造して一体に形成した一流体ノズルである。衝突枠3にセラミック製の衝突ピン4を押し込み固定して突設している。
 ノズル本体2の一端に平板状閉鎖壁からなる前記噴射側壁2aを備え、該噴射側壁2aの中心軸線Poに直線穴からなる噴射穴10を備えると共に、該噴射側壁2aの平坦状内面2bと外周壁2cに囲まれた断面円形で内径が一定な直進流路11を備えている。前記平坦状内面2bに開口する噴射穴10の流入口10aの周縁10eはシャープエッジとしている。
 前記噴射穴10の流入口10aを直進流路11に連通し、該直進流路11から噴射穴10を通して液体を直進棒流として噴射するようにしている。該噴射穴10の直径は0.1~1.0mm(本実施形態では0.18mm)、噴射穴10の長さを本実施形態では1mmとし、噴射穴10より液体が確実に直線棒流となって噴射されるようにしている。直進流路11の直径はφ0.4~4.4mmとし、噴射穴10の4倍としている。
 前記J字状の衝突枠3は噴射側壁2aの先端面から突出する縦枠部3aと、該縦枠部3aの先端から中心軸線Poを横断して突出する横枠部3bを備えた形状である。横枠部3bの中心軸線Poの位置にピン穴3hを設け、該ピン穴3hに衝突ピン4を内嵌固定して噴射穴10に向けて突出させている。
 前記ピン穴3hは噴射穴10に向かって縮径するテーパ穴とする一方、衝突ピン4は先端の衝突側に向けて縮径すると共に、先端部4aを急傾斜角度の台円錐状とし、その先端に円形平坦面からなる衝突面5を設けている。円形の衝突面5の外周縁のアールR1を0.01以下のシャープなエッジとしている。
 衝突ピン4の先端の衝突面5の直径を対向する噴射穴10の直径に対して100%~115%の範囲とすると共に、衝突面5と噴射穴10の先端との間の寸法L3を0.1mm~1.0mmの範囲としている。本実施形態では噴射穴10の中心軸と縦枠部3aの内面との間の寸法L4を3.5mm、前記寸法L3を0.6mmとしている。
 衝突枠3の縦枠部3aは衝突ピン4と対向する内面を鋭角に傾斜させた断面三角形状、反対側の外面を円弧状とし、所謂、涙型の断面形状としている。内面側の鋭角の頂点のアールR2を0.2以下とし、反対側の円弧はアールR3を約1としている。また、図3に示すように、縦枠部3aの左右幅S1は約3mm、直交方向の前後幅S2は約2mmとし、衝突した水滴ができるだけ付着しない形状としている。
 かつ、該縦枠部3aの突出量(高さL2)は衝突面5と衝突した水滴が横枠部3bへ付着しにくい3mm以上の高さとしている。本実施形態では、前記L3を0.6mm、L4を3.5mm、前記L2を4.2mmとしている。また、縦枠部3aから横枠部3bに屈曲する内周部のアールR4を0.5として小さくし、この屈曲部の内周面に水滴が付着しにくくしている。
 図1(A)(B)に示すように、筒状のノズル本体2は、噴射側の前部2fを大径とし、後部2gを小径とし、前部2fの大径部の外周面を6角形とすると共に各辺の境界部に円弧部を設けている。小径の後部2gの外周面にネジ2dを設けている。筒状のノズル本体2の中空部は同一内径の直線流路11とし、後端は開口2sとし、ストレーナ30の前部30aを内嵌している。ノズル本体2の中空部からなる断面円形の直進流路11の前端を噴射側壁2aの平坦状内面2eで閉鎖している。閉鎖面となる平坦状内面2eの中心に前記噴射穴10の流入口10aが位置している。この閉鎖面となる平坦状内面2eを研磨して、直進流路11から噴射穴10に流れこむ水の切れを良くし、かつ、噴射穴の流入口10aの周縁をシャープエッジ10eとしている。これにより、直進流路11から噴射穴10に流れ込む水流を噴射穴10の内周面から剥離しながら噴射穴に流入し、噴射穴10の内周面との接触摩擦をなくして水流の外面に乱れを発生させないようにして、透明棒流を生成している。
 前記ノズル1では、供給する液体圧を5.0~13MPa、好ましくは6~13MPaとし、噴霧流量を液体圧が6MPaの時、6~16L/hr、噴霧する液体の平均粒子径を20μm以下、好ましくは17μm以下としている。
 図1および図4に示すように、ノズル本体2の直進流路11の後端の開口2sから円筒状のストレーナ30の前部30aを内嵌して組みつけている。
 ストレーナ30は図4(C)に示すように三次元状に連続する空孔35を備えた樹脂材からなり、空孔率は40~80%としている。該ストレーナ30は前部30aと後部30bとが連続し、前部30aの前端から後部30bの中間部まで中心穴からなる液通路33を設けている。該液通路33は直進流路11に開口し、該直進流路11から噴射穴10へと流通させる構成としている。
 かつ、ストレーナ30の後部30bの外周面は図4(B)に示すように4つの円弧部32を突出して花弁形状とし、表面積を増大させてストレーナ30の吸液量を多くしている。
 図5に示すように、ストレーナ30を取り付けたノズル1はノズル本体2のネジ2dを液供給管40に設けたネジ穴40hに螺合して取り付け、ストレーナ30の後部30bを液供給管40内に突出している。液供給管40内に突出するストレーナ30の後部30bの外周面を花弁形状としていることにより、液供給管40内を流通する液体Qを吸収する面積を増大している。
 前記実施形態のストレーナ30を付設したノズル1では、液供給管40から供給される液体Qがストレーナ30を通して導入され、該ストレーナ30で液体Qに混入する異物が捕捉される。ストレーナ30を通った液はノズル1のノズル本体2内の直進流路11を通って噴射穴10に流入し、細穴とした噴射穴10より図2(B)に示すように直進棒流Qsとなって噴射され、対向位置の衝突ピン4の先端の衝突面5に衝突する。
 其の際、噴射穴10は直径を0.1~1.0mm(本実施形態では0.18mm)と微小としているため、該噴射穴10を通る液体の圧力が増強し、噴射圧を高めて直進棒流Qsが噴射され、衝突面5に衝突する。該衝突面5を噴射穴10と同一直線上に近接配置すると共に同等な面積としているため、噴射穴10から噴射される直進棒流の全量が衝突面5に衝突し、全液滴が微小化されて、外方へ飛散する。
 前記のように、衝突ピンに高圧とした直進棒流を衝突させることで、平均粒子径17μm以下で噴霧することが出来る。
 前記衝突型の一流体のノズル1は、特に、衝突ピン4の衝突面5の周縁をシャープエッジとしているため、衝突する水滴の切れが良くなり、粗大粒子の発生を抑制できる。かつ、衝突面5に衝突した水滴が衝突枠3側に飛散しても、衝突枠3の縦枠部3aを断面涙型として衝突ピン側を鋭角としているため、水滴が付着しにくく、この点からも粗大粒子の発生を抑制でき、噴霧の微粒化を図ることができる。
 かつ、ストレーナを通してノズル1に水を流入するため、水中の異物を予め除去でき、ノズル1の噴射穴10が細孔であっても目詰まりの発生を予防できる。
 上記の点から、前記ストレーナ付きのノズルは、発電所のガスタービンの吸気冷却用ノズルとして好適に用いられる。
 1 ノズル
 2 ノズル本体
 3 衝突枠
  3a 縦枠部
  3b 横枠部
  3h ピン穴
 4 衝突ピン
 5 衝突面
 10 噴射穴
  10e エッジ
 11 直進流路
 30 ストレーナ
 Q 液体
 Qs 直進棒流

Claims (3)

  1.  円筒型のノズル本体の噴射側壁の外面からJ字状の衝突枠を一体に設けている一流体ノズルであり、
     前記ノズル本体の一端に平板状閉鎖壁からなる前記噴射側壁を備え、該噴射側壁の中心軸線に直線穴からなる噴射穴を備えると共に、該噴射側壁の平坦状内面と外周壁に囲まれた断面円形で内径が一定な直進流路を備え、該直進流路から前記噴射穴を通って液体を直進棒流として噴霧する構成とし、かつ、
     前記J字状の衝突枠の縦枠部の突出側先端から前記中心軸線を横断して突出する横枠部にピン穴を設け、該ピン穴に衝突ピンを内嵌して前記噴射穴に向けて突出させ、該衝突ピンは突出側を台円錐形状に先鋭化すると共に、前記直進棒流が衝突する前記衝突ピンの先端に外周縁をエッジとする円形平坦面からなる衝突面を設け、かつ、前記衝突枠の縦枠部は前記衝突ピン側の内面を鋭角に傾斜させた断面三角形状としていることを特徴とするノズル。
  2.  前記衝突枠のピン穴と前記ノズル本体の噴射穴は同軸と、前記衝突ピンの衝突面の直径を前記噴射穴の直径に対して100%~115%の範囲とし、かつ、前記直進流路と連通する前記噴射穴の流入口の周縁にエッジを設けている請求項1に記載のノズル。
  3.  前記一体に設けているノズル本体と衝突枠はステンレス製とし、前記衝突ピンはセラミック製としている請求項1または請求項2に記載のノズル。
PCT/JP2017/046292 2016-12-28 2017-12-25 ノズル WO2018123922A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780069023.XA CN109952156B (zh) 2016-12-28 2017-12-25 喷嘴

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-256933 2016-12-28
JP2016256933A JP6713686B2 (ja) 2016-12-28 2016-12-28 ノズル

Publications (1)

Publication Number Publication Date
WO2018123922A1 true WO2018123922A1 (ja) 2018-07-05

Family

ID=62707646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046292 WO2018123922A1 (ja) 2016-12-28 2017-12-25 ノズル

Country Status (3)

Country Link
JP (1) JP6713686B2 (ja)
CN (1) CN109952156B (ja)
WO (1) WO2018123922A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565160U (ja) * 1978-10-25 1980-05-06
JPS63104684A (ja) * 1986-10-23 1988-05-10 Kansai Paint Co Ltd 形鋼の内面を塗装する方法
JPH0283059U (ja) * 1988-12-12 1990-06-27
US5620142A (en) * 1992-07-23 1997-04-15 Elkas; Michael V. Jeweled orifice fog nozzle
WO2013136459A1 (ja) * 2012-03-14 2013-09-19 株式会社いけうち 植物栽培装置
JP2016117058A (ja) * 2014-12-17 2016-06-30 株式会社いけうち ノズル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632276Y2 (ja) * 1977-04-25 1981-07-31
JPS63160390A (ja) * 1986-12-24 1988-07-04 Toshiba Corp 軸流形ガスレ−ザ発振器
US5893520A (en) * 1995-06-07 1999-04-13 Elkas; Michael V. Ultra-dry fog box
US7320443B2 (en) * 2002-08-06 2008-01-22 Carel S.P.A. Airless atomizing nozzle
CN203886706U (zh) * 2014-06-03 2014-10-22 扬州宏诚冶金设备有限公司 空心全锥水气雾化喷嘴

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565160U (ja) * 1978-10-25 1980-05-06
JPS63104684A (ja) * 1986-10-23 1988-05-10 Kansai Paint Co Ltd 形鋼の内面を塗装する方法
JPH0283059U (ja) * 1988-12-12 1990-06-27
US5620142A (en) * 1992-07-23 1997-04-15 Elkas; Michael V. Jeweled orifice fog nozzle
WO2013136459A1 (ja) * 2012-03-14 2013-09-19 株式会社いけうち 植物栽培装置
JP2016117058A (ja) * 2014-12-17 2016-06-30 株式会社いけうち ノズル

Also Published As

Publication number Publication date
CN109952156B (zh) 2021-06-04
JP2018108554A (ja) 2018-07-12
JP6713686B2 (ja) 2020-06-24
CN109952156A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
CN103861753B (zh) 多级雾化气液两相大口径细雾喷嘴
JP3498988B2 (ja) 噴霧装置および噴霧方法
JP5662655B2 (ja) ノズル
JP5080789B2 (ja) ノズル装置とその微粒化機構形成方法
JP2008104929A (ja) ノズル
JP2015528745A (ja) ノズル組立体
JPH09220495A (ja) 流体噴出ノズル
RU2523816C1 (ru) Пневматическая форсунка (варианты)
JPWO2013146624A1 (ja) 液体噴射装置及び液体噴射方法
CA1238071A (en) Atomizer
JP5672613B2 (ja) 液体霧化装置
CN110944756A (zh) 双流体喷嘴
JP6865952B2 (ja) 1流体ノズル
WO2018123922A1 (ja) ノズル
JP5452448B2 (ja) アトマイズ装置
KR20060128289A (ko) 초미세 분무 분사 노즐
JPH11319636A (ja) スプレーノズル
JP2006167601A (ja) 二流体ノズル
JP5283068B2 (ja) 噴射釦
JP2019130485A (ja) 噴霧装置
JP4266239B1 (ja) 二流体微粒化ノズル
KR101470360B1 (ko) 미립화 촉진을 위한 2단 노즐
JP2004008877A (ja) 液体の微粒化方法および装置
JP2020082269A (ja) ノズル、及びドライアイス噴射装置
WO2015122793A1 (ru) Пневматическая форсунка (варианты)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886230

Country of ref document: EP

Kind code of ref document: A1