WO2018123150A1 - セルロース含有樹脂組成物及びセルロース製剤 - Google Patents

セルロース含有樹脂組成物及びセルロース製剤 Download PDF

Info

Publication number
WO2018123150A1
WO2018123150A1 PCT/JP2017/032561 JP2017032561W WO2018123150A1 WO 2018123150 A1 WO2018123150 A1 WO 2018123150A1 JP 2017032561 W JP2017032561 W JP 2017032561W WO 2018123150 A1 WO2018123150 A1 WO 2018123150A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
resin composition
mass
resin
less
Prior art date
Application number
PCT/JP2017/032561
Other languages
English (en)
French (fr)
Inventor
三好 貴章
山崎 有亮
功一 上野
崇史 三田
永田 員也
和昭 真田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017138439A external-priority patent/JP6479904B2/ja
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP17886453.4A priority Critical patent/EP3447085B1/en
Priority to KR1020197034695A priority patent/KR102158129B1/ko
Priority to KR1020187019801A priority patent/KR102070374B1/ko
Priority to CN201780018873.7A priority patent/CN108884272B/zh
Priority to US16/080,404 priority patent/US11390728B2/en
Publication of WO2018123150A1 publication Critical patent/WO2018123150A1/ja
Priority to US17/840,731 priority patent/US20220325077A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present disclosure relates to a resin composition containing cellulose and a cellulose preparation.
  • Thermoplastic resins are light and excellent in processing characteristics, so they are widely used in various fields such as automobile parts, electrical / electronic parts, office equipment housings, and precision parts. However, the resin alone often has insufficient mechanical properties, dimensional stability, etc., and composites of resin and various inorganic materials are generally used.
  • the resin composition obtained by reinforcing a thermoplastic resin with a reinforcing material that is an inorganic filler such as glass fiber, carbon fiber, talc, or clay has a high specific gravity. Therefore, the weight of the resin molding obtained using the resin composition is high. There is a problem of becoming larger.
  • Cellulose is widely used in addition to those made from trees, as well as those made from hemp, cotton, kenaf, cassava and the like. Furthermore, bacterial cellulose represented by Nata de Coco is also known. Natural resources, which are these raw materials, exist in large quantities on the earth, and for their effective use, a technology that utilizes cellulose as a filler in a resin is attracting attention. In particular, cellulose microfibrils such as cellulose nanofibers (hereinafter sometimes referred to as CNF) and cellulose nanocrystals (hereinafter sometimes referred to as CNC) have attracted attention.
  • CNF cellulose nanofibers
  • CNC cellulose nanocrystals
  • microfibrils composed of cellulose type I crystals are known to have excellent mechanical properties, a high modulus of elasticity comparable to aramid fibers, and a linear expansion coefficient below that of glass fibers.
  • glass density 2.4 to 2.6 g / cm 3
  • talc density 2.7 g / cm 3
  • thermoplastic resin reinforcements It is characterized by being light. Therefore, if these microfibrils are finely dispersed in a resin and a network can be formed, it is expected that excellent mechanical properties can be imparted to the resin, and various studies have been made.
  • Patent Documents 1 to 4 describe a technique for dispersing fine fibrous cellulose called cellulose nanofibers in a thermoplastic resin.
  • CNF is obtained by hydrolyzing the hemicellulose part using pulp or the like as a raw material, and then defibrating by a pulverization method such as a high-pressure homogenizer, a microfluidizer, a ball mill or a disk mill. It forms a highly dispersed state and network at a level called nano-dispersion.
  • Patent Document 5 describes a technique for dispersing fine powder of crystalline cellulose in a dispersant and a thermoplastic resin in order to improve the dispersibility of cellulose particles in the resin.
  • Patent Document 6 describes a technique for increasing the affinity between a thermoplastic resin and plant fibers using a rosin resin.
  • Patent Document 7 describes a technique for uniformly dispersing cellulose fibers in a polyolefin by blending an oil and fat component, a silane coupling agent, and the like.
  • Patent Document 8 describes a technique for improving the water resistance of a cellulose composite material by modifying a rosin compound to the cellulose surface.
  • Patent Documents 9 and 10 describe a technique for improving the dispersibility of CNF in a thermoplastic resin by blending a nonionic surfactant having a specific HLB value.
  • Patent Document 11 describes a technique for improving the dispersibility of cellulose in a resin by blending a copolymer dispersant having a resin affinity segment and a cellulose affinity segment.
  • the cellulosic material In order to mix these cellulosic materials with the resin, it is necessary to dry and pulverize the cellulosic material.
  • the cellulosic material has a problem that it becomes a strong aggregate from a finely dispersed state in the process of being separated from water and is difficult to redisperse.
  • the cohesive strength of this aggregate is expressed by hydrogen bonding due to the hydroxyl group of cellulose, and is said to be very strong. Therefore, in order to fully develop the performance of the cellulosic material, for example, when CNF is taken as an example, it is necessary to impart strong shearing to CNF and defibrate to a nanometer size (ie, less than 1 ⁇ m) fiber diameter. There is.
  • the resin composition causes a significant increase in melt viscosity with a smaller amount of filling than the strength of the resin composition.
  • a significant rise in melt viscosity directly leads to serious problems such as inability to mold materials, especially materials with a precise structure, and even if molded, the mechanical properties as intended cannot be expressed. Invite you.
  • the fact that the dispersion uniformity of the cellulose-based material in the resin composition is not sufficient leads to a difference in mechanical strength depending on the part of the molded body, and the obtained mechanical characteristics vary greatly. Will be big. In this case, the molded body partially has strength defects, and the reliability as an actual product is greatly impaired. Therefore, the fact is that the cellulosic material is not practically used in spite of having excellent characteristics.
  • Patent Document 5 since crystalline cellulose having large primary particles is used alone, it is difficult to disperse in a microfibril shape. In Patent Documents 6 and 7, wood powder or paper powder is used. Therefore, the particles are coarse and cannot be finely dispersed. Furthermore, the anhydrous rosin-modified cellulose of Patent Document 8 has a problem that mechanical properties are insufficient because it is dispersed in an aggregated form.
  • one aspect of the present disclosure has sufficient fluidity to perform actual molding without problems while giving sufficient mechanical properties to the resin molded body, and is sufficient to withstand practical use. It aims at providing the resin composition which has physical property stability. Another aspect of the present disclosure is a resin that has good dispersibility in the resin and has excellent fluidity at the time of melting, good elongation at the time of pulling, and excellent dimensional stability by being dispersed in the resin. It aims at providing the cellulose formulation from which a composition is obtained.
  • the present inventors have intensively studied and, as a result, in one aspect, in the resin composition containing a necessary amount of the cellulose component relative to the thermoplastic resin, the cellulose component has a length / diameter.
  • the resin composition can solve the problem described above.
  • a cellulose preparation obtained by previously combining an organic component having a specific surface tension and a boiling point higher than water is added to the resin in a dry powder state and melt-mixed, microfibrils are obtained. We have found that they are dispersed in levels and they form a network in the resin. That is, this indication includes the following aspects.
  • a resin composition comprising 100 parts by mass of a thermoplastic resin and 0.1 to 100 parts by mass of a cellulose component, wherein the cellulose component has a length / diameter ratio (L / D ratio) of less than 30
  • a resin composition comprising cellulose whiskers and cellulose fibers having an L / D ratio of 30 or more.
  • the resin composition according to aspect 1 wherein the ratio of the cellulose whiskers to the total mass of the cellulose component is 50% by mass or more.
  • the resin composition according to the above aspect 1 or 2 wherein the cellulose component has a diameter of 500 nm or less.
  • the resin composition according to any one of the above aspects 1 to 4 wherein the degree of polymerization of the cellulose whiskers is 100 or more and 300 or less.
  • the organic component is at least one selected from the group consisting of rosin derivatives, alkylphenyl derivatives, bisphenol A derivatives, ⁇ -naphthyl derivatives, styrenated phenyl derivatives, and hardened castor oil derivatives.
  • the resin composition in any one.
  • the cellulose component includes cellulose whiskers having a length / diameter ratio (L / D ratio) of less than 30 and cellulose fibers having an L / D ratio of 30 or more.
  • Composition [16] The above aspect, wherein the cellulose component contains cellulose whiskers having a length / diameter ratio (L / D ratio) of less than 30 in an amount of 50% by mass to 98% by mass with respect to 100% by mass of the cellulose component.
  • thermoplastic resin is selected from the group consisting of polyolefin resins, polyamide resins, polyester resins, polyacetal resins, polyphenylene ether resins, polyphenylene sulfide resins, and mixtures of any two or more thereof.
  • thermoplastic resin is polypropylene
  • melt mass flow rate (MFR) measured at 230 ° C. according to ISO 1133 of the polypropylene is 3 g / 10 min or more and 30 g / 10 min or less.
  • MFR melt mass flow rate measured at 230 ° C. according to ISO 1133 of the polypropylene
  • the thermoplastic resin is a polyamide-based resin, and a ratio of carboxyl terminal groups to a total terminal group of the polyamide-based resin ([COOH] / [total terminal groups]) is 0.30 to 0.95.
  • the thermoplastic resin is a polyester resin, and a ratio of carboxyl terminal groups to total terminal groups ([COOH] / [total terminal groups]) of the polyester resin is 0.30 to 0.95.
  • a cellulose preparation comprising cellulose particles and an organic component covering at least a part of the surface of the cellulose particles, wherein the organic component has a static surface tension of 20 mN / m or more and a boiling point higher than water.
  • the cellulose preparation according to any one of the above embodiments 24-31 wherein the ratio of crystalline cellulose to the total mass of cellulose present in the cellulose preparation is 50% by mass or more.
  • the cellulose preparation according to any one of the above embodiments 24-32 comprising 30 to 99% by mass of cellulose and 1 to 70% by mass of the organic component.
  • the organic component is selected from the group consisting of rosin derivatives, alkylphenyl derivatives, bisphenol A derivatives, ⁇ -naphthyl derivatives, styrenated phenyl derivatives, and hardened castor oil derivatives. Cellulose preparation.
  • a resin composition comprising 1% by mass or more of the cellulose preparation according to any one of the above aspects 24 to 35.
  • the resin composition according to the above aspect 36 further comprising an interface forming agent in an amount of 1 part by mass or more with respect to 100 parts by mass of cellulose present in the cellulose preparation.
  • a resin composition comprising a thermoplastic resin, cellulose particles, an organic component, and an interface forming agent, The organic component has a static surface tension of 20 mN / m or more and a boiling point higher than water; The resin composition whose quantity of the said interface formation agent is 1 mass part or more with respect to 100 mass parts of cellulose which exists in a resin composition.
  • the resin composition according to aspect 39 wherein the dynamic surface tension of the organic component is 60 mN / m or less.
  • a solubility parameter (SP value) of the organic component is 7.25 or more.
  • Composition [47] The resin composition according to any one of the above embodiments 39 to 46, wherein the ratio of crystalline cellulose to the total mass of cellulose present in the resin composition is 50% by mass or more. [48] The amount of the cellulose is 30 to 99% by mass and the amount of the organic component is 1 to 70% by mass with respect to the total of 100% by mass of the total amount of cellulose and the amount of the organic component in the resin composition. 48. The resin composition according to any one of the above embodiments 39 to 47, which is%.
  • the resin composition has sufficient mechanical properties for the resin molded article, has fluidity that does not cause a problem in actual molding, and has sufficient physical property stability that can withstand practical use.
  • the cellulose preparation has good dispersibility in the resin, and the resin composition obtained by dispersing the cellulose preparation in the resin has excellent flow characteristics when melted.
  • the injection moldability is good, and in addition, the resin composition has a low coefficient of linear expansion, and has an effect of excellent strength and elongation at the time of pulling and bending deformation.
  • FIG. 1 is a microscopic image showing an example of a cellulose whisker (acicular crystalline particulate cellulose).
  • FIG. 2 is a microscopic image showing an example of cellulose fiber (fibrous cellulose).
  • FIG. 3 is a schematic view showing the shape of a fender produced for evaluating the defect rate of the fender in Examples and Comparative Examples.
  • FIG. 4 is a view of a fender showing a position at which a test piece is taken out in order to measure a coefficient of variation of a linear expansion coefficient of an actual molded body in Examples and Comparative Examples.
  • One aspect of the present invention is a resin composition comprising 100 parts by mass of a thermoplastic resin and 0.1 to 100 parts by mass of a cellulose component, wherein the cellulose component has a length / diameter ratio (L / D ratio).
  • a resin composition comprising cellulose whiskers having an L / D ratio of 30 or more.
  • thermoplastic resin examples include a crystalline resin having a melting point in the range of 100 ° C. to 350 ° C., or an amorphous resin having a glass transition temperature in the range of 100 to 250 ° C.
  • the melting point of the crystalline resin here means the peak top of the endothermic peak that appears when the temperature is increased from 23 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter (DSC). Refers to temperature. When two or more endothermic peaks appear, the peak top temperature of the endothermic peak on the highest temperature side is indicated.
  • the enthalpy of the endothermic peak at this time is desirably 10 J / g or more, and more desirably 20 J / g or more. In the measurement, it is desirable to use a sample which is once heated to a temperature condition of melting point + 20 ° C. or higher, melted the resin, and then cooled to 23 ° C. at a temperature decreasing rate of 10 ° C./min.
  • the glass transition temperature of the amorphous resin as used herein means that when measured at an applied frequency of 10 Hz while increasing the temperature from 23 ° C. to 2 ° C./min using a dynamic viscoelasticity measuring device.
  • the measurement frequency at this time is desirably measured at least once every 20 seconds in order to improve measurement accuracy.
  • the method for preparing the measurement sample is not particularly limited, but from the viewpoint of eliminating the influence of molding distortion, it is desirable to use a cut piece of a hot press-molded product, and the size (width and thickness) of the cut piece is as much as possible. A smaller value is desirable from the viewpoint of heat conduction.
  • thermoplastic resin examples include, but are not limited to, polyolefin resins, polyamide resins, polyester resins, polyacetal resins, polyphenylene ether resins, polyphenylene sulfide resins, and mixtures of two or more thereof. Is not to be done.
  • polyolefin resins polyamide resins, polyester resins, polyacetal resins, and the like are more preferable resins from the viewpoint of handleability and cost.
  • a preferred polyolefin-based resin as the thermoplastic resin is a polymer obtained by polymerizing olefins (for example, ⁇ -olefins) or alkenes as monomer units.
  • the polyolefin resin include ethylene (co) polymers such as low density polyethylene (for example, linear low density polyethylene), high density polyethylene, ultra low density polyethylene, ultra high molecular weight polyethylene, polypropylene, ethylene, and the like.
  • Polypropylene-based (co) polymers exemplified by propylene copolymer, ethylene-propylene-diene copolymer, ethylene-acrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-glycidyl methacrylate copolymer
  • examples thereof include copolymers of ⁇ -olefins such as ethylene typified by coalescence.
  • the most preferable polyolefin resin is polypropylene.
  • polypropylene having a melt mass flow rate (MFR) measured at 230 ° C. and a load of 21.2 N in accordance with ISO 1133 is 3 g / 10 min or more and 30 g / 10 min or less is preferable.
  • MFR melt mass flow rate
  • the lower limit value of MFR is more preferably 5 g / 10 minutes, still more preferably 6 g / 10 minutes, and most preferably 8 g / 10 minutes.
  • the upper limit is more preferably 25 g / 10 minutes, still more preferably 20 g / 10 minutes, and most preferably 18 g / 10 minutes.
  • the MFR desirably does not exceed the upper limit from the viewpoint of improving the toughness of the composition, and desirably does not exceed the lower limit from the viewpoint of the fluidity of the composition.
  • an acid-modified polyolefin resin can be suitably used in order to increase the affinity with cellulose.
  • the acid at this time can be appropriately selected from maleic acid, fumaric acid, succinic acid, phthalic acid, and polycarboxylic acids such as anhydrides and citric acid thereof.
  • maleic acid or an anhydride thereof is preferable because it easily increases the modification rate.
  • a method of melting and kneading by heating above the melting point in the presence / absence of peroxide is common.
  • the polyolefin resin to be acid-modified all of the above-mentioned polyolefin resins can be used, but polypropylene can be preferably used.
  • the acid-modified polypropylene may be used alone, but is more preferably used by mixing with unmodified polypropylene in order to adjust the modification rate of the composition.
  • the ratio of the acid-modified polypropylene to all the polypropylene is 0.5% by mass to 50% by mass.
  • a more preferred lower limit is 1% by mass, still more preferably 2% by mass, still more preferably 3% by mass, particularly preferably 4% by mass, and most preferably 5% by mass.
  • a more preferred upper limit is 45% by mass, still more preferably 40% by mass, still more preferably 35% by mass, particularly preferably 30% by mass, and most preferably 20% by mass.
  • the lower limit is preferable, and in order to maintain the ductility as a resin, the upper limit is preferable.
  • the melt mass flow rate (MFR) measured at 230 ° C. under a load of 21.2 N in accordance with the preferred ISO 1133 of acid-modified polypropylene is 50 g / 10 min or more in order to increase the affinity with the cellulose interface. preferable.
  • a more preferred lower limit is 100 g / 10 minutes, even more preferred is 150 g / 10 minutes, and most preferred is 200 g / 10 minutes.
  • polyamide resins preferable as the thermoplastic resin include polyamide 6, polyamide 11, polyamide 12 obtained by polycondensation reaction of lactams, 1,6-hexanediamine, 2-methyl-1,5-pentanediamine, 1,7-heptanediamine, 2-methyl-1-6-hexanediamine, 1,8-octanediamine, 2-methyl-1,7-heptanediamine, 1,9-nonanediamine, 2-methyl-1,8- Diamines such as octanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, m-xylylenediamine, butanedioic acid salt, pentanedioic acid, hexanedioic acid, heptanedioic acid , Octanedioic acid, nonanedioic acid, decanedioic acid, benzene-1,2-dicarboxylic acid, benzene-1,
  • aliphatic polyamides such as polyamide 6, polyamide 11, polyamide 12, polyamide 6,6, polyamide 6,10, polyamide 6,11, polyamide 6,12, polyamide 6, C, polyamide 2M5, C
  • the alicyclic polyamide is more preferable.
  • a lower limit is preferable in it being 20 micromol / g, More preferably, it is 30 micromol / g.
  • the upper limit of the terminal carboxyl group concentration is preferably 150 ⁇ mol / g, more preferably 100 ⁇ mol / g, and still more preferably 80 ⁇ mol / g.
  • the carboxyl end group ratio ([COOH] / [total end groups]) to the preferable total end groups is 0.30 to 0.95.
  • the lower limit of the carboxyl end group ratio is more preferably 0.35, still more preferably 0.40, and most preferably 0.45.
  • the upper limit of the carboxyl end group ratio is more preferably 0.90, even more preferably 0.85, and most preferably 0.80.
  • the carboxyl end group ratio is desirably 0.30 or more from the viewpoint of dispersibility of the cellulose component in the composition, and desirably 0.95 or less from the viewpoint of the color tone of the resulting composition.
  • a known method can be used as a method for adjusting the end group concentration of the polyamide-based resin.
  • a known method can be used.
  • the method of adding the terminal regulator which reacts with a terminal group to a polymerization liquid is mentioned.
  • terminal regulators that react with terminal amino groups include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyric acid.
  • Aliphatic monocarboxylic acids such as cycloaliphatic carboxylic acids; cycloaliphatic carboxylic acids such as cycloaliphatic monocarboxylic acids; benzoic acids, toluic acid, ⁇ -naphthalene carboxylic acid, ⁇ -naphthalene carboxylic acid, methyl naphthalene carboxylic acid, phenylacetic acid Carboxylic acid; and a plurality of mixtures arbitrarily selected from these.
  • acetic acid propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, in terms of reactivity, stability of the sealing end, price, etc.
  • one or more terminal adjusting agents selected from the group consisting of benzoic acid and acetic acid is most preferable.
  • Examples of the terminal regulator that reacts with the terminal carboxyl group include aliphatic amines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine.
  • amino terminal group and carboxyl terminal group concentrations are preferably obtained from 1H-NMR from the integral value of the characteristic signal corresponding to each terminal group in terms of accuracy and simplicity.
  • the method described in Japanese Patent Application Laid-Open No. 7-228775 is recommended as a method for determining the concentration of these end groups.
  • deuterated trifluoroacetic acid is useful as a measurement solvent.
  • the number of integrations of 1H-NMR requires at least 300 scans even when measured with an instrument having sufficient resolution.
  • the concentration of the end group can be measured by a titration measurement method as described in JP-A-2003-055549.
  • quantification by 1H-NMR is more preferable.
  • the polyamide resin preferably has an intrinsic viscosity [ ⁇ ] measured in concentrated sulfuric acid at 30 ° C. of 0.6 to 2.0 dL / g, preferably 0.7 to 1.4 dL / g. Is more preferably 0.7 to 1.2 dL / g, and particularly preferably 0.7 to 1.0 dL / g.
  • Use of the above-mentioned polyamide having an intrinsic viscosity in a preferred range, particularly preferred range can greatly increase the fluidity in the mold at the time of injection molding of the resin composition and give the effect of improving the appearance of the molded piece. it can.
  • the “intrinsic viscosity” is synonymous with a viscosity generally called an intrinsic viscosity.
  • a specific method for determining the viscosity is to measure ⁇ sp / c of several measuring solvents having different concentrations in 96% concentrated sulfuric acid under a temperature condition of 30 ° C., and determine the respective ⁇ sp / c and concentration (c ) And extrapolating the concentration to zero. The value extrapolated to zero is the intrinsic viscosity.
  • the recommended concentration of the different viscosity measuring solution is preferably at least four points of 0.05 g / dL, 0.1 g / dL, 0.2 g / dL, and 0.4 g / dL.
  • Polyester resins preferred as thermoplastic resins include polyethylene terephthalate (hereinafter sometimes simply referred to as PET), polybutylene succinate (polyester resin comprising an aliphatic polycarboxylic acid and an aliphatic polyol (hereinafter referred to as unit PBS).
  • PET polyethylene terephthalate
  • PBS polybutylene succinate
  • Polybutylene succinate adipate hereinafter also simply referred to as PBSA
  • polybutylene adipate terephthalate hereinafter also simply referred to as PBAT
  • polyhydroxyalkanoic acid 3-hydroxyalkanoic acid
  • Polyester resin comprising: hereinafter, also simply referred to as PHA), polylactic acid (hereinafter also simply referred to as PLA), polybutylene terephthalate (hereinafter also simply referred to as PBT), polyethylene naphthalate (hereinafter referred to as PBT) , 1 or more selected from polyarylate (hereinafter sometimes simply referred to as PAR), polycarbonate (hereinafter also simply referred to as PC) and the like. .
  • PHA polylactic acid
  • PBT polybutylene terephthalate
  • PAR polyethylene naphthalate
  • PAR polyarylate
  • PC polycarbonate
  • polyester resins include PET, PBS, PBSA, PBT, and PEN, and more preferably, PBS, PBSA, and PBT.
  • the polyester resin can freely change the terminal group depending on the monomer ratio at the time of polymerization and the presence or absence and amount of the terminal stabilizer, but the carboxyl terminal group relative to all the terminal groups of the polyester resin.
  • the ratio ([COOH] / [all end groups]) is more preferably 0.30 to 0.95.
  • the lower limit of the carboxyl end group ratio is more preferably 0.35, even more preferably 0.40, and most preferably 0.45.
  • the upper limit of the carboxyl end group ratio is more preferably 0.90, still more preferably 0.85, and most preferably 0.80.
  • the carboxyl end group ratio is desirably 0.30 or more from the viewpoint of dispersibility of the cellulose component in the composition, and desirably 0.95 or less from the viewpoint of the color tone of the resulting composition.
  • thermoplastic resins preferred as thermoplastic resins are generally homopolyacetals made from formaldehyde and copolyacetals containing trioxane as the main monomer and 1,3-dioxolane as the comonomer component, both of which can be used.
  • copolyacetal can be preferably used.
  • the amount of comonomer component eg, 1,3-dioxolane
  • a preferred lower limit of the comonomer component amount is 0.05 mol%, more preferably 0.1 mol%, and even more preferably 0.2 mol%.
  • the preferable upper limit is 3.5 mol%, more preferably 3.0 mol%, still more preferably 2.5 mol%, and most preferably 2.3 mol%.
  • the lower limit is preferably within the above range, and from the viewpoint of mechanical strength, the upper limit is preferably within the above range.
  • the cellulose component is a combination of at least two kinds of cellulose.
  • the cellulose component includes cellulose whiskers and cellulose fibers. Since the mixture containing both suppresses the deterioration of the fluidity of the resin composition and ensures the stable dispersibility in the molded article, it is possible to eliminate strength defects.
  • Cellulose whisker refers to crystalline cellulose remaining after dissolving an amorphous part of cellulose in an acid such as hydrochloric acid or sulfuric acid after pulp or the like is cut as a raw material, and the length / diameter ratio (L / D ratio) is less than 30.
  • “length” (L) and “diameter” (D) correspond to the major and minor diameters of cellulose whiskers and the fiber length and fiber diameter of cellulose fibers, respectively.
  • FIG. 1 is a microscopic image showing an example of cellulose whisker (acicular crystalline particulate cellulose), and FIG. 1 (B) is a partially enlarged view of FIG. 1 (A). It can be seen that all the celluloses have a needle-like crystal particle structure, and the L / D is low L / D of less than 30.
  • FIG. 2 is a microscopic image showing an example of cellulose fiber (fibrous cellulose). It can be seen that any cellulose has a fibrous structure, and the L / D is a high L / D of 30 or more.
  • FIG. 1 and 2 respectively show 1% by mass (for FIG. 1) or 0.1% by mass (for FIG. 1) of cellulose (wet cake after hydrolysis) (for FIG. 1) or cellulose slurry (for FIG. 2).
  • Concentrated pure water suspension and dispersed with a high shear homogenizer manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”, treatment condition: 15,000 rpm ⁇ 5 minutes
  • SEM scanning electron microscope SEM (device name: JEOL Ltd. Model JSM-6700F, 5 kV, 10 mA, 30,000 times (for FIG. 1) or 3,500 times (for FIG. 2)) .
  • the aqueous dispersion obtained with the homogenizer is diluted with ion-exchanged water to 0.1% by mass (for FIG. 1) or 0.01% by mass (for FIG. 2), and placed on a brass stage. Cast on mica bonded with carbon tape, dry at room temperature for 12 hours, and deposit platinum under vacuum (apparatus name: JEOL Ltd., trade name: Auto Fine Coater JFC-1600, 30 mA, 30 seconds, assumed film thickness 8 nm) is observed.
  • the L / D upper limit of the cellulose whisker is preferably 25, more preferably 20, still more preferably 15, still more preferably 10, and most preferably 5. Although a minimum is not specifically limited, What is necessary is just to exceed one. In order to develop good fluidity of the resin composition, it is desirable that the L / D ratio of the cellulose whisker is within the above range.
  • the lower limit of L / D of the cellulose fiber is preferably 50, more preferably 80, more preferably 100, still more preferably 120, and most preferably 150.
  • the upper limit is not particularly limited, but is preferably 5000 or less from the viewpoint of handleability.
  • the L / D ratio of the cellulose fiber is preferably within the above-mentioned range in order to exhibit the good mechanical properties of the resin molded body obtained using the resin composition of the present disclosure in a small amount.
  • the length, diameter, and L / D ratio of each of the cellulose whisker and the cellulose fiber are determined based on the water dispersion of each of the cellulose whisker and the cellulose fiber by using a high shear homogenizer (for example, manufactured by Nippon Seiki Co., Ltd. (Name “Excel Auto Homogenizer ED-7”), treatment conditions: water dispersion dispersed at a rotational speed of 15,000 rpm ⁇ 5 minutes was diluted with pure water to 0.1 to 0.5% by mass, and mica It is obtained by measuring with a high-resolution scanning microscope (SEM) or an atomic force microscope (AFM) using the sample cast above and air-dried as a measurement sample.
  • SEM high-resolution scanning microscope
  • AFM atomic force microscope
  • the length (L) and diameter (D) of 100 randomly selected celluloses were measured in an observation field whose magnification was adjusted so that at least 100 celluloses were observed,
  • the ratio (L / D) is calculated.
  • Those having a ratio (L / D) of less than 30 are classified as cellulose whiskers, and those having a ratio of 30 or more are classified as cellulose fibers.
  • the number average value of the length (L), the number average value of the diameter (D), and the number average value of the ratio (L / D) are calculated, and the cellulose whisker of the present disclosure And the length, diameter, and L / D ratio of each of the cellulose nanofibers.
  • the length and diameter of the cellulose component of the present disclosure are the number average values of the 100 celluloses.
  • the length, diameter, and L / D ratio of each of the cellulose whiskers and cellulose fibers in the composition can be confirmed by measuring the above-described measurement method using a solid composition as a measurement sample.
  • the length, diameter, and L / D ratio of each of the cellulose whiskers and cellulose fibers in the composition are obtained by dissolving the resin component in the composition in an organic or inorganic solvent that can dissolve the resin component in the composition.
  • an aqueous dispersion was prepared in which the solvent was replaced with pure water, and the cellulose concentration was diluted with pure water to 0.1 to 0.5% by mass. It can confirm by measuring by the above-mentioned measuring method by using what was cast to air and dried by air as a measurement sample. At this time, the cellulose to be measured is measured with a total of 200 or more randomly selected 100 or more cellulose fibers having an L / D of 30 or more and 100 or more cellulose whiskers with an L / D of less than 30.
  • cellulose whisker and cellulose fiber each mean a nanometer size (ie, less than 1 ⁇ m).
  • Suitable cellulose components each have a diameter of 500 nm or less.
  • the upper limit of the preferable diameter of the cellulose component is 450 nm, more preferably 400 nm, still more preferably 350 nm, and most preferably 300 nm.
  • the diameter of the cellulose whisker is preferably 20 nm or more, more preferably 30 nm or more, preferably 500 nm or less, more preferably 450 nm or less, still more preferably 400 nm or less, even more preferably 350 nm or less, Most preferably, it is 300 nm or less.
  • the diameter of the cellulose fiber is preferably 1 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, particularly preferably 15 nm or more, and most preferably 20 nm or more. It is preferably 450 nm or less, more preferably 400 nm or less, still more preferably 350 nm or less, still more preferably 300 nm or less, and most preferably 250 nm or less.
  • the diameter of the cellulose component is within the above range.
  • Suitable cellulose whiskers are cellulose whiskers having a crystallinity of 55% or more. When the crystallinity is in this range, the mechanical properties (strength and dimensional stability) of the cellulose whisker itself increase, and therefore, when dispersed in the resin, the strength and dimensional stability of the resin composition tend to increase.
  • the crystallinity of the cellulose whisker is preferably 60% or more, and the more preferable lower limit of the crystallinity is 65%, even more preferably 70%, and most preferably 80%.
  • a cellulose fiber having a crystallinity of 55% or more can be suitably used as the cellulose fiber.
  • the crystallinity is within this range, the mechanical properties (strength and dimensional stability) of the cellulose fiber itself are increased, and therefore the strength and dimensional stability of the resin composition tend to increase when dispersed in the resin.
  • a more preferred lower limit of crystallinity is 60%, even more preferred is 70%, and most preferred is 80%.
  • the upper limit of the crystallinity of the cellulose fiber is not particularly limited and is preferably as high as possible. However, the preferable upper limit is 99% from the viewpoint of production.
  • Crystallization of cellulose whiskers and cellulose fibers from the viewpoint of suppressing discoloration of the resin composition at the time of extrusion and molding because there is a large amount of residual impurities such as lignin due to heat during processing.
  • the degree is preferably within the above-mentioned range.
  • Crystallinity (%) h1 / h0 ⁇ 100
  • type I, type II, type III, type IV, and the like are known. Among them, type I and type II are widely used, and type III and type IV are obtained on a laboratory scale.
  • the structural mobility is relatively high, and by dispersing the cellulose component in the resin, a resin composite having a lower coefficient of linear expansion and better strength and elongation during tensile and bending deformation can be obtained. Therefore, a cellulose component containing cellulose I type crystals or cellulose II type crystals is preferable, and a cellulose component containing cellulose I type crystals and having a crystallinity of 55% or more is more preferable.
  • the degree of polymerization of the cellulose whisker is preferably 100 or more, more preferably 120 or more, more preferably 130 or more, more preferably 140 or more, more preferably 150 or more, preferably 300 or less, more preferably 280 or less, more preferably 270 or less, more preferably 260 or less, more preferably 250 or less.
  • the polymerization degree of the cellulose fiber is preferably 400 or more, more preferably 420 or more, more preferably 430 or more, more preferably 440 or more, more preferably 450 or more, preferably 3500 or less, more preferably 3300. Hereinafter, it is more preferably 3200 or less, more preferably 3100 or less, and more preferably 3000 or less.
  • the degree of polymerization of cellulose whiskers and cellulose fibers be within the above range. From the viewpoint of workability, it is preferable that the degree of polymerization is not too high, and from the viewpoint of the development of mechanical properties, it is desired that the degree of polymerization is not too low.
  • the degree of polymerization of cellulose whiskers and cellulose fibers is the average degree of polymerization measured according to the reduced specific viscosity method using a copper ethylenediamine solution described in the confirmation test (3) of “15th revised Japanese Pharmacopoeia Manual (published by Yodogawa Shoten)” Means.
  • Examples of a method for controlling the degree of polymerization of the cellulose component include hydrolysis treatment.
  • the hydrolysis treatment By the hydrolysis treatment, the depolymerization of the amorphous cellulose inside the cellulose fiber proceeds, and the average degree of polymerization decreases.
  • the hydrolysis process removes impurities such as hemicellulose and lignin in addition to the above-described amorphous cellulose, so that the inside of the fiber becomes porous.
  • the cellulose component is easily subjected to mechanical treatment, and the cellulose component is easily refined.
  • the surface area of the cellulose component is increased, and control of complexing with an organic component (for example, a surfactant) is facilitated.
  • the method of hydrolysis is not particularly limited, and examples thereof include acid hydrolysis, alkaline hydrolysis, hydrothermal decomposition, steam explosion, and microwave decomposition. These methods may be used alone or in combination of two or more.
  • acid hydrolysis method for example, ⁇ -cellulose obtained as a pulp from a fibrous plant is used as a cellulose raw material and dispersed in an aqueous medium, and an appropriate amount of proton acid, carboxylic acid, Lewis acid, heteropolyacid, etc.
  • the average degree of polymerization can be easily controlled by heating while stirring.
  • the reaction conditions such as temperature, pressure, and time at this time vary depending on the cellulose species, cellulose concentration, acid species, and acid concentration, but are appropriately adjusted so as to achieve the desired average degree of polymerization.
  • the conditions of using 2 mass% or less mineral acid aqueous solution and processing a cellulose for 10 minutes or more under 100 degreeC or more and pressurization are mentioned. Under these conditions, a catalyst component such as an acid penetrates into the inside of the cellulose fiber, the hydrolysis is accelerated, the amount of the catalyst component to be used is reduced, and subsequent purification is facilitated.
  • the dispersion liquid of the cellulose raw material at the time of hydrolysis may contain a small amount of an organic solvent in a range not impairing the effects of the present invention, in addition to water.
  • the zeta potential of the cellulose component or the zeta potential of each of the cellulose whiskers and cellulose fibers is preferably ⁇ 40 mV or less.
  • the zeta potential is more preferably ⁇ 30 mV or less, further preferably ⁇ 25 mV or less, particularly preferably ⁇ 20 mV or less, and most preferably ⁇ 15 mV or less.
  • the lower the value, the better the physical properties of the compound, so the lower limit is not particularly limited, but is preferably ⁇ 5 mV or more from the viewpoint of ease of production.
  • the zeta potential here can be measured by the following method.
  • Each of the cellulose component, or cellulose whisker and cellulose fiber is made into a 1% by weight pure water suspension, and a high shear homogenizer (for example, trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.) is used.
  • Treatment conditions A water dispersion obtained by dispersing at a rotational speed of 15,000 rpm ⁇ 5 minutes was diluted with pure water to 0.1 to 0.5% by mass, and a zeta electrometer (for example, Otsuka Electronics, apparatus name) ELSZ-2000ZS type, standard cell unit) and measured at 25 ° C.
  • the amount of the cellulose component with respect to 100 parts by mass of the thermoplastic resin is in the range of 0.1 to 100 parts by mass.
  • the lower limit of the amount of the cellulose component is preferably 0.5 parts by mass, more preferably 1 part by mass, and most preferably 2 parts by mass.
  • the upper limit of the amount of the cellulose component is preferably 80 parts by mass, more preferably 70 parts by mass, and most preferably 60 parts by mass. From the viewpoint of balance between processability and mechanical properties, it is desirable that the amount of the cellulose component be within the above-mentioned range.
  • the ratio of the cellulose whisker to the total mass of the cellulose component is preferably 50% by mass or more.
  • the ratio is more preferably more than 50% by mass, still more preferably 60% by mass or more, still more preferably 70% by mass or more, and most preferably 80% by mass or more.
  • the upper limit of the ratio is preferably 98% by mass, more preferably 96% by mass, and most preferably 95% by mass. From the viewpoint of fluidity as a resin composition, the ratio of cellulose whiskers to the total mass of the cellulose component is preferably within the above-mentioned range.
  • the resin composition can contain an organic component as an additional component.
  • the organic component has a dynamic surface tension of 60 mN / m or less.
  • the organic component is a surfactant.
  • An organic component contributes to the improvement of the dispersibility of the cellulose component with respect to a thermoplastic resin.
  • the preferable amount is in the range of 50 parts by mass or less of the organic component with respect to 100 parts by mass of the cellulose component.
  • a more preferred upper limit is 45 parts by mass, still more preferably 40 parts by mass, still more preferably 35 parts by mass, and particularly preferably 30 parts by mass.
  • the lower limit is not particularly limited, but the handling property can be improved by adding 0.1 part by mass or more to 100 parts by mass of the cellulose component.
  • the lower limit amount is more preferably 0.5 parts by mass, and most preferably 1 part by mass.
  • Typical organic components include those having a functional group composed of an element selected from carbon, hydrogen, oxygen, nitrogen, chlorine, sulfur, and phosphorus with a carbon atom as a basic skeleton. As long as it has the above-described structure in the molecule, those in which the inorganic compound and the functional group are chemically bonded are also preferable.
  • the organic component may be a single component or a mixture of two or more organic components.
  • the characteristic value for example, static surface tension, dynamic surface tension, SP value
  • the organic component of the present disclosure means the value of the mixture.
  • the static surface tension of the organic component is preferably 20 mN / m or more. This static surface tension refers to the surface tension measured by the Wilhelmy method. When using a liquid organic component at room temperature, the value measured at 25 ° C. is used. When a solid or semi-solid organic component is used at room temperature, the organic component is heated to a melting point or higher and measured in a molten state, and a value corrected to 25 ° C. is used. In the present disclosure, room temperature means 25 ° C.
  • the organic component may be dissolved or diluted in an organic solvent or water.
  • the static surface tension in this case means the static surface tension of the organic component itself used.
  • the method for adding the organic component in preparing the resin composition is not particularly limited, but a method in which a thermoplastic resin, a cellulose component, and an organic component are previously mixed and melt-kneaded, and an organic component is added to the resin in advance.
  • the hydrophilic functional group in the organic component covers the surface of the cellulose component through a hydroxyl group and a hydrogen bond on the surface of the cellulose component, thereby inhibiting the formation of the interface with the resin. This is probably because of this. It is considered that the hydrophilic group is arranged on the cellulose component side, whereby a hydrophobic atmosphere is formed on the resin side, and the affinity with the resin side is also increased.
  • the lower limit of the static surface tension of the organic component is preferably 23 mN / m, more preferably 25 mN / m, still more preferably 30 mN / m, still more preferably 35 mN / m, and most preferably 39 mN / m.
  • the upper limit of the static surface tension of the organic component is preferably 72.8 mN / m, more preferably 60 mN / m, still more preferably 50 mN / m, and most preferably 45 mN / m.
  • the static surface tension of the organic component is preferably in a specific range.
  • the static surface tension of the organic component referred to in the present disclosure can be measured by using a commercially available surface tension measuring device. Specifically, it can be measured by an Wilhelmy method using an automatic surface tension measuring device (for example, Kyowa Interface Science Co., Ltd., trade name “CBVP-Z type”, using an attached glass cell).
  • an automatic surface tension measuring device for example, Kyowa Interface Science Co., Ltd., trade name “CBVP-Z type”, using an attached glass cell.
  • (P ⁇ mg + sh ⁇ g) / Lcos ⁇
  • Static surface tension
  • P Balance force
  • m Plate mass
  • g Gravitational constant
  • L Plate circumference
  • Plate-liquid contact angle
  • s Plate cross-sectional area
  • h ( Depth of sinking from the liquid surface
  • liquid density.
  • the surface tension measured at a temperature of the melting point + 5 ° C. is employed for convenience. If the substance has an unknown melting point, first measure the melting point by visual melting point measurement method (JIS K6220), heat it to the melting point or higher, adjust the temperature to the melting point + 5 ° C., and use the Wilhelmy method described above. This is possible by measuring the surface tension.
  • JIS K6220 visual melting point measurement method
  • the dynamic surface tension of the organic component is preferably 60 mN / m or less.
  • the upper limit of the dynamic surface tension is more preferably 55 mN / m, more preferably 50 mN / m, further preferably 45 mN / m, and particularly preferably 40 mN / m.
  • a preferable lower limit of the dynamic surface tension of the organic component is 10 mN / m.
  • a more preferable lower limit is 15 mN / m, and 20 mN / m is most preferable.
  • dynamic surface tension
  • ⁇ P pressure difference (maximum pressure-minimum pressure)
  • r capillary radius.
  • the dynamic surface tension measured by the maximum bubble pressure method means the dynamic surface tension of organic components in a fast-moving field.
  • Organic components usually form micelles in water.
  • a low dynamic surface tension indicates that the diffusion rate of molecules of organic components from the micelle state is high, and a high dynamic surface tension means that the diffusion rate of molecules is low.
  • the dynamic surface tension of the organic component is not more than a specific value in that the effect of remarkably improving the dispersion of the cellulose component in the resin composition is obtained.
  • the organic component having a low dynamic surface tension can be localized at the interface between the cellulose component and the resin by being excellent in diffusibility in the extruder. It can be considered that the fact that the component surface can be coated well contributes to the effect of improving dispersibility.
  • the effect of improving the dispersibility of the cellulose component obtained by setting the dynamic surface tension of the organic component to a specific value or less causes a remarkable effect of eliminating the strength defect of the molded body.
  • boiling point of organic components As an organic component, what has a boiling point higher than water is preferable.
  • the boiling point higher than water refers to a boiling point higher than the boiling point at each pressure in the water vapor pressure curve (for example, 100 ° C. under 1 atm).
  • an organic component having a boiling point higher than that of water for example, in the process of drying the cellulose component dispersed in water in the presence of the organic component to obtain a cellulose preparation, Since the organic component is substituted on the surface of the cellulose component and the organic component is present on the surface of the cellulose component, the effect of greatly suppressing the aggregation of cellulose can be exhibited.
  • the organic component is preferably liquid at room temperature (that is, 25 ° C.) from the viewpoint of handleability.
  • Organic components that are liquid at room temperature have the advantage that they are easily compatible with the cellulose component and easily penetrate into the resin.
  • solubility parameter (SP) value of organic component As the organic component, those having a solubility parameter (SP value) of 7.25 or more can be used more preferably. When the organic component has an SP value in this range, the dispersibility of the cellulose component in the resin is improved.
  • the SP value depends on both the cohesive energy density and the molar molecular weight of the substance, according to the Feders literature (R. F. Feders: Polymer Engineering & Science, vol. 12 (10), p. 2359-2370 (1974)). In addition, these are considered to depend on the type and number of substituents of the substance, and according to Ueda et al. (Paint Research, No. 152, Oct. 2010) The SP value (cal / cm 3 ) 1/2 for the main solvent is published.
  • the SP value of the organic component can be experimentally determined from the boundary between solubility and insolubility when the organic component is dissolved in various solvents with known SP values. For example, when 1 mL of an organic component is dissolved at room temperature under stirring with a stirrer for 1 hour in various solvents (10 mL) having different SP values in the tables shown in the examples, it can be determined whether or not the total amount is dissolved. For example, when the organic component is soluble in diethyl ether, the SP value of the organic component is 7.25 or more.
  • the organic component is a surfactant.
  • the surfactant include compounds having a chemical structure in which a hydrophilic substituent and a hydrophobic substituent are covalently bonded, and those used for various applications such as food and industrial use can be used. For example, the following are used alone or in combination of two or more.
  • the organic component is a surfactant having a specific dynamic surface tension as described above.
  • any of an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and a cationic surfactant can be used.
  • anionic surfactants and nonionic surfactants are preferred, and nonionic surfactants are more preferred.
  • anionic surfactant examples include fatty acid sodium (fatty acid) such as fatty acid sodium, fatty acid potassium, and sodium alphasulfo fatty acid ester, and linear alkylbenzene series such as sodium linear alkylbenzene sulfonate.
  • fatty acid sodium such as fatty acid sodium, fatty acid potassium, and sodium alphasulfo fatty acid ester
  • linear alkylbenzene series such as sodium linear alkylbenzene sulfonate.
  • alcohol-based (anionic) systems examples include sodium alkyl sulfates and sodium alkyl ether sulfates.
  • alpha olefins examples include sodium alpha olefin sulfonates.
  • normal paraffins include sodium alkyl sulfonates. It is also possible to use 1 type or in mixture of 2 or more types.
  • nonionic surfactants include fatty acids (nonionic), glycolipids such as sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, fatty acid alkanolamides, and the like.
  • examples of the ion) include polyoxyethylene alkyl ethers and the like, and examples of the alkylphenol type include polyoxyethylene alkyl phenyl ethers. These may be used alone or in combination.
  • Examples of the zwitterionic surfactant include alkylamino fatty acid sodium and the like as the amino acid type, alkyl betaine and the like as the betaine type, alkylamine oxide and the like as the amine oxide type, and one or two of them. It is also possible to mix and use seeds or more.
  • cationic surfactant examples include quaternary ammonium salts such as alkyltrimethylammonium salts and dialkyldimethylammonium salts, which can be used alone or in combination of two or more. .
  • the surfactant may be a fat or oil derivative.
  • fats and oils include esters of fatty acids and glycerin, which usually take the form of triglycerides (tri-O-acylglycerin). It is classified as dry oil, semi-dry oil, non-dry oil in the order that it is easily solidified by oxidation with fatty oil, and can be used for various uses such as edible and industrial, for example, One or more types are used in combination.
  • fats and oils for example, terpin oil, tall oil, rosin, white squeezed oil, corn oil, soybean oil, sesame oil, rapeseed oil (canola oil), rice oil, coconut oil, coconut oil, safflower oil (safflower oil) , Palm oil (palm kernel oil), cottonseed oil, sunflower oil, sesame oil (pepper oil), flaxseed oil, olive oil, peanut oil, almond oil, avocado oil, hazelnut oil, walnut oil, grape seed oil, mustard oil, Lettuce oil, fish oil, whale oil, cocoon oil, liver oil, cocoa butter, peanut butter, palm oil, lard (tallow), het (beef tallow), chicken oil, rosin, sheep fat, horse fat, smaltz, milk fat (butter, Ghee, etc.), hydrogenated oil (margarine, shortening, etc.), castor oil (vegetable oil) and the like.
  • terpine oil terpine oil, tall oil, and rosin are preferable from the viewpoints of affinity for the surface of the cellulose component and uniform coating properties.
  • Terpine oil (also known as terbin oil) is an essential oil obtained by steam distillation of pine tree chips or pine oil obtained from these trees.
  • terpin oil examples include gum turpentine oil (obtained by steam distillation of pine resin), wood terpin oil (obtained by steam distillation or dry distillation of pine tree chips), turpentine sulfate Oil (obtained by distilling chips when heat-treated when manufacturing sulfate pulp) and sulfite turpentine oil (obtained by distilling chips when heat-treating when manufacturing sulfite pulp), almost colorless To light yellow liquid, except ⁇ -pinene and ⁇ -pinene, except turpentine oil.
  • sulfite turpentine oil is mainly composed of p-cymene. If it contains the above-mentioned component, it will be contained in the said terpin oil, and the derivative
  • Tall oil is an oil composed mainly of resin and fatty acid, which is a by-product of making kraft pulp from pine wood.
  • tall oil tall fat mainly composed of oleic acid and linoleic acid may be used, or tall rosin mainly composed of a diterpenoid compound having 20 carbon atoms such as abietic acid may be used.
  • Rosin is a residue that remains after distilling turpentine essential oil by collecting balsams such as pine sap, which is the sap of pine family plants, and is a natural resin mainly composed of rosin acid (abietic acid, parastolic acid, isopimaric acid, etc.) It is. Also called colophony or colophony. Among these, tall rosin, wood rosin, and gum rosin can be preferably used. Rosin derivatives obtained by subjecting these rosins to various stabilization treatments, esterification treatments, purification treatments and the like can be used as surfactants.
  • the stabilization treatment refers to subjecting the rosins to hydrogenation, disproportionation, dehydrogenation, polymerization treatment or the like.
  • the esterification treatment refers to a treatment in which the rosins or the rosins subjected to the stabilization treatment are reacted with various alcohols to form rosin esters.
  • Various known alcohols or epoxy compounds can be used for the production of the rosin ester.
  • Examples of the alcohol include monohydric alcohols such as n-octyl alcohol, 2-ethylhexyl alcohol, decyl alcohol, and lauryl alcohol; dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and neopentyl glycol; Examples include trihydric alcohols such as glycerin, trimethylolethane, trimethylolpropane, and cyclohexanedimethanol; and tetrahydric alcohols such as pentaerythritol and diglycerin.
  • monohydric alcohols such as n-octyl alcohol, 2-ethylhexyl alcohol, decyl alcohol, and lauryl alcohol
  • dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and neopentyl glycol
  • Examples include trihydric alcohols such as glycerin, trimethylole
  • Alcohol may be used.
  • sugar alcohols such as inositol, erythritol, xylitol, sorbitol, maltitol, mannitol, lactitol and the like are also included in the polyhydric alcohol.
  • Alcoholic water-soluble polymers include polysaccharides / mucopolysaccharides, those classified as starches, those classified as polysaccharide derivatives, those classified as natural resins, those classified as cellulose and derivatives, proteins -Those classified as peptides, those classified as peptide derivatives, those classified as synthetic homopolymers, those classified as acrylic (methacrylic acid) acid copolymers, those classified as urethane polymers, Examples include those classified as laminates, those classified as cationic polymers, and those classified as other synthetic polymers. Water-soluble ones can be used at room temperature.
  • rosin and water-soluble polymer are preferably esterified.
  • An esterified product with polyethylene glycol also referred to as rosin ethylene oxide adduct, polyoxyethylene glycol resin acid ester, polyoxyethylene rosin acid ester is particularly preferable.
  • a hardened castor oil type surfactant for example, a hydrogenated one made from castor oil (castor oil, castor oil, coconut oil), which is a kind of vegetable oil collected from the seeds of pearl millet, etc.
  • castor oil castor oil, castor oil, coconut oil
  • a hydrophobic group a compound in which a hydroxyl group in the structure and a hydrophilic group such as a PEO chain are covalently bonded can be mentioned.
  • the components of castor oil are glycerides of unsaturated fatty acids (87% ricinoleic acid, 7% oleic acid, 3% linoleic acid) and a small amount of saturated fatty acids (3% palmitic acid, stearic acid, etc.).
  • typical POE group structures include those having ethylene oxide (EO) residues of 4 to 40, and typical structures include 15 to 30.
  • the EO residue of nonylphenol ethoxylate is preferably 15 to 30, more preferably 15 to 25, and particularly preferably 15 to 20.
  • mineral oil derivatives include greases such as calcium soap base grease, calcium composite soap base grease, sodium soap base grease, aluminum soap base grease, and lithium soap base grease.
  • the surfactant may be an alkylphenyl type compound, and examples thereof include alkylphenol ethoxylates, that is, compounds obtained by ethoxylation of alkylphenol with ethylene oxide.
  • Alkylphenol ethoxylates are nonionic surfactants. Since the hydrophilic polyoxyethylene (POE) chain and the hydrophobic alkylphenol group are linked by an ether bond, it is also called poly (oxyethylene) alkylphenyl ether. In general, a series of products having different average chain lengths is commercially available as a mixture of many compounds having different alkyl chain lengths and POE chain lengths.
  • Alkyl chain lengths of 6 to 12 carbon atoms are commercially available, but typical alkyl group structures include nonylphenol ethoxylate and octylphenol ethoxylate.
  • typical POE group structures include those having 5 to 40 ethylene oxide (EO) residues, and typical structures include 15 to 30 ones.
  • the EO residue of nonylphenol ethoxylate is preferably 15 to 30, more preferably 15 to 25, and particularly preferably 15 to 20.
  • the surfactant may be a ⁇ -naphthyl type compound, for example, ⁇ mono-substituted in which a part of the chemical structure contains naphthalene and the carbon at the 2 or 3 or 6 or 7 position of the aromatic ring is bonded to the hydroxyl group.
  • a compound in which a hydrophilic group such as a PEO chain is covalently bonded are covalently bonded.
  • typical POE group structures include those having ethylene oxide (EO) residues of 4 to 40, and typical structures include 15 to 30.
  • the EO residue is preferably 15 to 30, more preferably 15 to 25, and particularly preferably 15 to 20.
  • the surfactant may be a bisphenol A type compound, for example, containing bisphenol A (chemical formula: (CH 3 ) 2 C (C 6 H 4 OH) 2 ) as part of its chemical structure, Examples thereof include compounds in which two phenol groups in the middle and a hydrophilic group such as a PEO chain are covalently bonded.
  • typical POE group structures include those having ethylene oxide (EO) residues of 4 to 40, and typical structures include 15 to 30.
  • the EO residue of nonylphenol ethoxylate is preferably 15 to 30, more preferably 15 to 25, and particularly preferably 15 to 20. When there are two ether bonds in one molecule, the EO residue indicates an average value obtained by adding the two ether bonds.
  • the surfactant may be a styrenated phenyl type compound.
  • a part of its chemical structure contains a styrenated phenyl group, and a phenol group in the structure and a hydrophilic group such as a PEO chain are covalently bonded.
  • the styrenated phenyl group has a structure in which 1 to 3 molecules of styrene are added to the benzene ring of the phenol residue.
  • typical POE group structures include those having ethylene oxide (EO) residues of 4 to 40, and typical structures include 15 to 30.
  • the EO residue of nonylphenol ethoxylate is preferably 15 to 30, more preferably 15 to 25, and particularly preferably 15 to 20. When there are two ether bonds in one molecule, the EO residue indicates an average value obtained by adding the two ether bonds.
  • Specific preferred examples of the surfactant include acyl amino acid salts such as acyl glutamate, higher alkyl sulfates such as sodium laurate, sodium palmitate, sodium lauryl sulfate, potassium lauryl sulfate, and polyoxyethylene lauryl.
  • Anionic surfactants such as triethanolamine sulfate, alkyl ether sulfates such as sodium polyoxyethylene lauryl sulfate, N-acyl sarcosine salts such as sodium lauroyl sarcosine; alkyls such as stearyltrimethylammonium chloride and lauryltrimethylammonium chloride Trimethylammonium salt, distearyldimethylammonium dialkyldimethylammonium chloride, chloride (N, N'-dimethyl-3,5-methylenepiperidinium), cetyl chloride Cationic surfactants such as alkylpyridinium salts such as rupitidinium, alkyl quaternary ammonium salts, alkylamine salts such as polyoxyethylene alkylamine, polyamine fatty acid derivatives, amyl alcohol fatty acid derivatives; 2-undecyl-N, N, N- (Hydroxyethyl carboxymethyl) 2-
  • Sorbitan fatty acid esters such as sorbit monostearate, polyoxyethylene-glycerin monoisostearate, polyoxyethylene-glycerin
  • surfactants having a polyoxyethylene chain, a carboxylic acid, or a hydroxyl group as a hydrophilic group are preferable from the viewpoint of affinity with a cellulose component, and a polyoxyethylene-based surfactant having a polyoxyethylene chain as a hydrophilic group is preferred.
  • An agent (polyoxyethylene derivative) is more preferred, and a nonionic polyoxyethylene derivative is more preferred.
  • the polyoxyethylene chain length of the polyoxyethylene derivative is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, and particularly preferably 15 or more.
  • the upper limit is preferably 60 or less, and 50 or less. More preferably, it is more preferably 40 or less, particularly preferably 30 or less, and most preferably 20 or less.
  • a hydrophilic group having a polyoxypropylene chain instead of a polyoxyethylene chain.
  • the polyoxypropylene chain length is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, and particularly preferably 15 or more. The longer the chain length, the higher the affinity with the cellulose component.
  • the upper limit is preferably 60 or less, more preferably 50 or less, still more preferably 40 or less, and particularly preferably 30 or less. 20 or less is most preferable.
  • the alkyl ether type, alkyl phenyl ether type, rosin ester type, bisphenol A type, ⁇ naphthyl type, styrenated phenyl type, and hardened castor oil type are compatible with the resin. Therefore, it can be preferably used.
  • the preferred alkyl chain length (in the case of alkylphenyl, the number of carbon atoms excluding the phenyl group) is preferably 5 or more, more preferably 10 or more, still more preferably 12 or more, and particularly preferably 16 or more.
  • the resin is a polyolefin, the higher the number of carbons, the higher the affinity with the resin, so the upper limit is not set, but it is preferably 30, and more preferably 25.
  • hydrophobic groups those having a cyclic structure or those having a bulky polyfunctional structure are preferred, and those having a cyclic structure include alkylphenyl ether type, rosin ester type, bisphenol A type, ⁇ naphthyl type, A styrenated phenyl type is preferred, and a hardened castor oil type is particularly preferred as the one having a polyfunctional structure.
  • rosin ester type and hardened castor oil type are most preferable.
  • the surfactant is at least one selected from the group consisting of rosin derivatives, alkylphenyl derivatives, bisphenol A derivatives, ⁇ -naphthyl derivatives, styrenated phenyl derivatives, and hardened castor oil derivatives.
  • Examples of the organic component other than the surfactant include one or more compounds selected from the group consisting of fats and oils, fatty acids, and mineral oils, and compounds not included in the surfactant.
  • Examples of the oil and fat include those exemplified as the fat and oil in the section of the surfactant.
  • Fatty acid refers to a compound represented by the general formula CnHmCOOH (n and m are integers), and those used for various purposes such as food and industrial use can be used. For example, the following are used alone or in combination of two or more.
  • saturated fatty acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecyl acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid Acid, margaric acid, stearic acid, nonadecyl acid, arachidic acid, heicosyl acid, behenic acid, tricosyl acid, lignoceric acid and the like.
  • unsaturated fatty acids include ⁇ -linolenic acid, stearidonic acid, eicosapentaenoic acid, ⁇ -3 fatty acids such as docosapentaenoic acid and docosahexaenoic acid; ⁇ -6 fatty acids such as linoleic acid, ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid, docosapentaenoic acid; palmitoleic acid, vaccenic acid, paulin ⁇ -7 fatty acids such as acids; oleic acid, elaidic acid, e Ca acid, omega-9 fatty acids such as nervonic acid.
  • Mineral oils such as liquid paraffin, silicone oil, silicone grease; naphthenic and paraffinic mineral oils; parts obtained by mixing PAO and ester (or hydrocracked oil) with mineral oil or advanced hydrocracked oil
  • Synthetic oils Chemical synthetic oils such as PAO (polyalphaolefin), total synthetic oils, synthetic oils, and the like.
  • the amount of the organic component relative to 100 parts by mass of the cellulose component is preferably 50 parts by mass or less, more preferably 45 parts by mass or less, still more preferably 40 parts by mass or less, still more preferably 35 parts by mass or less, and particularly preferably 30 parts by mass or less. It is. Since it is an additional component, the lower limit is not particularly limited, but the handleability can be improved when the total amount is 0.1 parts by mass or more with respect to 100 parts by mass of the cellulose component. The total amount is more preferably 0.5 parts by mass or more, and particularly preferably 1 part by mass or more.
  • the coefficient of variation CV of the tensile strength at break is 10% or less from the viewpoint of eliminating the strength defect of the obtained molded body.
  • the coefficient of variation referred to here is expressed as a percentage obtained by dividing the standard deviation ( ⁇ ) by the arithmetic mean ( ⁇ ) and multiplying by 100, and is a unitless number representing a relative variation.
  • CV ( ⁇ / ⁇ ) ⁇ 100
  • ⁇ and ⁇ are given by the following equations.
  • xi is a single piece of data of tensile breaking strength among n pieces of data x1, x2, x3.
  • the number of samples (n) when calculating the coefficient of variation CV of the tensile strength at break is preferably at least 10 or more in order to easily find the defect. More desirably, it is 15 or more.
  • a more preferable upper limit of the coefficient of variation is 9%, further preferably 8%, more preferably 7%, still more preferably 6%, and most preferably 5%.
  • the lower limit is preferably zero, but is preferably 0.1% from the viewpoint of manufacturability.
  • the resin composition contains cellulose whiskers and cellulose fibers as cellulose components.
  • cellulose whiskers and cellulose fibers as cellulose components.
  • the above-mentioned partial strength defects of conventional resin molded products are considered to be caused by non-uniform dispersion of cellulose or formation of voids due to entanglement of cellulose fibers having a large L / D, for example.
  • As an index for evaluating the ease of forming the strength defect there is a method in which a tensile test of a plurality of test pieces is performed to check the presence / absence / number of fracture strength variations.
  • the molded body of structural parts such as automobile bodies, door panels, and bumpers
  • the molded body is instantaneously large.
  • stress is applied or a small stress such as vibration
  • stress is concentrated on the non-uniform portions and voids described above when stress is repeatedly applied.
  • these compacts are destroyed by concentrated stress. This is a decrease in reliability as a product.
  • the present inventors have found that there is a correlation between the coefficient of variation in tensile strength at break and the proportion of structural defects in the product during various studies.
  • the material has a uniform internal structure and no voids, even when a tensile fracture test is performed on a plurality of samples, the stress at the time of the fracture is between the samples. The values are almost the same, and the coefficient of variation is very small.
  • a material having a non-uniform portion or a void inside has a large difference in stress that causes breakage in one sample from stresses in other samples.
  • the degree of the number of samples exhibiting stresses different from those of other samples can be clarified by using a scale called a coefficient of variation.
  • the dispersion state of the cellulose component in the composition has a great influence on the coefficient of variation of the tensile strength at break.
  • various methods for improving the dispersion state include a method for optimizing the ratio of cellulose fibers and cellulose whiskers, a method for optimizing the diameter and L / D of cellulose components, and optimization of screw arrangement and temperature control during melt kneading in an extruder.
  • an optimal organic component for example, a surfactant
  • Any of these approaches may be employed to improve the dispersion of the cellulose component.
  • Setting the coefficient of variation CV of the tensile strength at break to 10% or less can greatly contribute to the elimination of the strength defect of the obtained molded product, and has the effect of greatly improving the reliability of the strength of the molded product.
  • the tensile yield strength tends to improve dramatically as compared to the thermoplastic resin alone.
  • the ratio of the tensile yield strength of the resin composition when the tensile yield strength of the thermoplastic resin alone containing no cellulose component is 1.0 is preferably 1.1 times or more, more preferably 1.15. Times or more, even more preferably 1.2 times or more, and most preferably 1.3 times or more.
  • the upper limit of the ratio is not particularly limited, but is preferably 5.0 times, and more preferably 4.0 times, from the viewpoint of ease of manufacture.
  • the resin composition contains two or more types of cellulose as a cellulose component, it becomes possible to exhibit a lower linear expansion than a conventional cellulose composition.
  • the linear expansion coefficient in the temperature range of 0 ° C. to 60 ° C. of the resin composition is preferably 50 ppm / K or less. More preferably, the linear expansion coefficient of the composition is 45 ppm / K or less, even more preferably 40 ppm / K or less, and most preferably 35 ppm / K or less.
  • the lower limit of the linear expansion coefficient is not particularly limited, but is preferably 5 ppm / K, and more preferably 10 ppm / K, from the viewpoint of ease of manufacture.
  • the resin composition since the resin composition is excellent in dispersion uniformity in the cellulose composition, the resin composition also has a feature that variation in linear expansion coefficient in a large-sized molded product is small. Specifically, the variation of the linear expansion coefficient measured using test pieces collected from different parts of the large molded article is very low.
  • the variation in the coefficient of linear expansion coefficient can be expressed using the coefficient of variation of the coefficient of linear expansion of the measurement sample obtained from different parts.
  • the coefficient of variation here is the same as the calculation method described in the section of the coefficient of variation of the tensile breaking strength.
  • the coefficient of variation of the linear expansion coefficient obtained from the resin composition is preferably 15% or less.
  • the upper limit of the variation coefficient is more preferably 13%, further preferably 11%, more preferably 10%, still more preferably 9%, and most preferably 8%.
  • the lower limit is preferably zero, but is preferably 0.1% from the viewpoint of manufacturability.
  • the number of samples (n) when calculating the coefficient of variation of the linear expansion coefficient is desirably at least 10 in order to reduce the influence of data errors and the like.
  • the resin composition can be provided in various shapes. Specific examples include a resin pellet shape, a sheet shape, a fiber shape, a plate shape, and a rod shape, and the resin pellet shape is more preferable from the viewpoint of ease of post-processing and ease of transportation. Preferable pellet shapes at this time include a round shape, an elliptical shape, a cylindrical shape, and the like, and these differ depending on a cutting method at the time of extrusion. Pellets cut by a cutting method called underwater cut are often round, and pellets cut by a cutting method called hot cut are often round or oval, and are called strand cuts. The pellets cut by the method are often cylindrical.
  • the preferred size is 1 mm or more and 3 mm or less as the pellet diameter.
  • the preferable diameter in the case of a cylindrical pellet is 1 mm or more and 3 mm or less, and a preferable length is 2 mm or more and 10 mm or less.
  • the above diameter and length are preferably set to the lower limit or more from the viewpoint of operational stability during extrusion, and are preferably set to the upper limit or less from the viewpoint of biting into the molding machine in post-processing.
  • the resin composition can be used as various resin moldings. There are no particular restrictions on the method for producing the resin molded body, and any production method may be used, but injection molding, extrusion molding, blow molding, inflation molding, foam molding, and the like can be used. Among these, the injection molding method is most preferable from the viewpoint of design and cost.
  • melt-kneading method of a mixture of a resin and a cellulose component a cellulose mixed powder mixed with a resin in a desired ratio is used in the presence / absence of an organic component (for example, a surfactant).
  • an organic component for example, a surfactant
  • a method of melt melting and kneading after mixing in a batch a method of melt melting and kneading a resin and, if necessary, an organic component, adding a cellulose mixed powder mixed in a desired ratio and an organic component if necessary, and further melt-kneading the resin , Mixed cellulose powder and water mixed in a desired ratio, and if necessary, mixing organic components, then melt-kneading all together, resin and if necessary organic components melt-kneaded, then mixed in the desired ratio
  • Examples thereof include a cellulose mixed powder and water, and a method of adding an organic component as necessary, followed by melt kneading.
  • the resin composition according to one aspect of the present invention has high mechanical properties and low linear expansion, and not only has high fluidity to accommodate large parts, but also substantially includes partial strength defects. In order to give a molded product that is not, it can be suitably used for various large component applications.
  • One embodiment of the present invention provides a resin composition containing a thermoplastic resin and a cellulose component, wherein a coefficient of linear expansion coefficient and a coefficient of tensile fracture strength fluctuation are not more than a specific value.
  • Resin composition exhibiting excellent properties (mechanical properties, high fluidity, etc.) and a molded body comprising the same are obtained by highly finely dispersing the cellulose component in the resin composition. More specifically, the cellulose components form a high-order network structure in the resin composition, and in particular, the dispersion of the linear expansion coefficient is highly suppressed, while the cellulose component present in the resin composition By using a relatively small amount, in particular, variation in tensile breaking strength can be highly suppressed.
  • the coefficient of variation of the linear expansion coefficient in the resin composition is 15 % Or less.
  • the coefficient of variation herein is expressed as a percentage obtained by dividing the standard deviation ( ⁇ ) by the arithmetic mean ( ⁇ ) and multiplying by 100, and is a unitless number representing a relative variation.
  • CV ( ⁇ / ⁇ ) ⁇ 100
  • ⁇ and ⁇ are given by the following equations.
  • xi is a single piece of data of the linear expansion coefficient among the n pieces of data x1, x2, x3... Xn. It is desirable that the number of samples (n) when calculating the coefficient of variation CV of the linear expansion coefficient is at least 10 or more in order to easily find the defect. More desirably, it is 15 or more.
  • a more preferable upper limit of the coefficient of variation is 14%, further preferably 13%, more preferably 12%, still more preferably 11%, and most preferably 10%.
  • the lower limit is preferably zero, but is preferably 0.1% from the viewpoint of manufacturability.
  • the number of samples (n) when calculating the coefficient of variation of the linear expansion coefficient is preferably 10 or more in order to reduce the influence of data errors and the like.
  • the coefficient of variation of the linear expansion coefficient is obtained by the following procedure. That is, 50 or more 60 mm ⁇ 60 mm ⁇ 2 mm small square plates conforming to ISO 294-3 were formed, and one test piece was taken out of every 10 pieces, and a precision cut-and-sew was obtained from the gate portion and the flow end portion of the test piece. A rectangular parallelepiped sample for measurement having a length of 4 mm, a width of 2 mm, and a length of 4 mm is cut out. The linear expansion coefficient between 0 ° C. and 60 ° C. of the measurement sample thus obtained is calculated in the measurement temperature range of ⁇ 10 to 80 ° C. according to ISO11359-2.
  • the coefficient of variation is calculated based on the above formula based on 10 or more pieces of data obtained.
  • the cellulose component exhibits a high degree of fine dispersibility, and a network can be formed in the composition.
  • part of a resin molding are homogenized.
  • shrinkage over time after molding and shrinkage when heated after molding occur with unintentional variation, and it is possible to suppress warping and deformation of the molded body caused by differences in shrinkage depending on the location. Become.
  • test pieces are taken out from various sites in one molded body, the linear expansion coefficient is measured for each, and the presence or absence of the variation is compared and evaluated.
  • This measurement method can be performed by taking out test pieces from a plurality of parts of the same molded body and evaluating the dimensional defects such as warpage of the molded body.
  • it is possible to evaluate at the same part of different test pieces for example, different molding dates, different production lots, different molding machines, etc.). At this time, it is more preferable to perform measurement at a site that is known to have a relatively large fluctuation in advance.
  • the inventors of the present invention have a certain correlation between the coefficient of variation of the linear expansion coefficient at various sites in the actual molded body and the coefficient of variation of the linear expansion coefficient measured for different test pieces at the test piece stage. Found that there is. That is, even at the test piece level, by measuring a plurality of linear expansion coefficients and evaluating the coefficient of variation, it is possible to grasp the susceptibility of dimensional defects in the actual molded piece.
  • the dispersion state of the cellulose component in the composition has a great influence on the coefficient of variation of the linear expansion coefficient.
  • various methods for improving the dispersion state include a method for optimizing the ratio of cellulose fibers and cellulose whiskers, a method for optimizing the diameter and L / D of the cellulose component, and an optimization method for adding the cellulose component during melt kneading in an extruder, A method of giving sufficient shear to the cellulose component by optimizing the screw arrangement of the extruder and optimizing the resin viscosity by controlling the temperature, and adding the optimal organic component (for example, surfactant) to the resin
  • a method of strengthening the interface of the cellulose component and a method of forming some chemical bond between the resin and cellulose.
  • any of these approaches may be employed to improve the dispersion of the cellulose component.
  • Setting the coefficient of variation of the linear expansion coefficient to 15% or less can greatly contribute to the elimination of strength defects and dimensional defects in the resulting molded body, and greatly improves the reliability of the molded body strength and product stability. The effect of improving.
  • the coefficient of variation CV of the tensile breaking strength is set to 10% or less from the viewpoint of eliminating the strength defect of the molded body obtained from the resin composition.
  • the variation coefficient here is the same as that described in the section of the linear expansion coefficient, and is a number representing a relative variation.
  • the number of samples (n) when calculating the coefficient of variation CV of the tensile strength at break is preferably at least 10 or more in order to easily find the defect. More desirably, it is 15 or more.
  • a more preferable upper limit of the coefficient of variation is 9%, further preferably 8%, more preferably 7%, still more preferably 6%, and most preferably 5%.
  • the lower limit is preferably zero, but is preferably 0.1% from the viewpoint of manufacturability.
  • the coefficient of variation of tensile breaking strength is calculated using the tensile breaking strength measured in accordance with ISO 527 using a multipurpose test piece in accordance with ISO 294-3.
  • the cellulose component exhibits a high degree of fine dispersibility, and a network can be formed in the composition. While the presence of the cellulose component contributes to the reduction of the coefficient of variation of the linear expansion coefficient, it tends to cause a decrease in the fluidity of the resin composition and an increase in the coefficient of variation of the tensile strength at break.
  • the relatively small amount of cellulose component relative to the thermoplastic resin in the resin composition is advantageous in terms of maintaining good fluidity of the resin composition and reducing the coefficient of variation in tensile breaking strength. . Therefore, according to the resin composition according to one aspect of the present invention, the occurrence of partial strength defects, which is seen in a resin molded product made of a conventional cellulose-containing resin composition, is eliminated, and reliability as an actual product is achieved. Can be significantly improved.
  • the above-mentioned partial strength defects of conventional resin molded products are considered to be caused by non-uniform dispersion of cellulose or formation of voids due to entanglement of cellulose fibers having a large L / D, for example.
  • As an index for evaluating the ease of forming the strength defect there is a method in which a tensile test of a plurality of test pieces is performed to check the presence / absence / number of fracture strength variations.
  • the molded body of structural parts such as automobile bodies, door panels, and bumpers
  • the molded body is instantaneously large.
  • stress is applied or a small stress such as vibration
  • stress is concentrated on the non-uniform portions and voids described above when stress is repeatedly applied.
  • these compacts are destroyed by concentrated stress. This has led to a decrease in product reliability.
  • the present inventors have found that there is a correlation between the coefficient of variation in tensile strength at break and the proportion of structural defects in the product during various studies.
  • the material has a uniform internal structure and no voids, even when a tensile fracture test is performed on a plurality of samples, the stress at the time of the fracture is between the samples. The values are almost the same, and the coefficient of variation is very small.
  • a material having a non-uniform portion or a void inside has a large difference in stress that causes breakage in one sample from stresses in other samples.
  • the degree of the number of samples exhibiting stresses different from those of other samples can be clarified by using a scale called a coefficient of variation.
  • the resin composition contains two or more types of cellulose as a cellulose component.
  • the linear expansion coefficient in the temperature range of 0 ° C. to 60 ° C. of the resin composition is preferably 50 ppm / K or less. More preferably, the linear expansion coefficient of the composition is 45 ppm / K or less, even more preferably 40 ppm / K or less, and most preferably 35 ppm / K or less.
  • the lower limit of the linear expansion coefficient is not particularly limited, but is preferably 5 ppm / K, and more preferably 10 ppm / K, from the viewpoint of ease of manufacture.
  • the linear expansion coefficient was determined by cutting a cube sample 4 mm long, 4 mm wide and 4 mm long from the center of a multipurpose test piece in accordance with ISO 294-1 and measuring it at a temperature range of -10 to 80 ° C. The coefficient of linear expansion measured according to 2. At this time, in order to eliminate distortion during molding in advance, it is desirable to perform an annealing process at a temperature exceeding the measurement temperature for 3 hours or more.
  • the ratio of the tensile yield strength of the resin composition when the tensile yield strength of the thermoplastic resin alone containing no cellulose component is 1.0 is preferably 1.1 times or more, more preferably 1.15. Times or more, even more preferably 1.2 times or more, and most preferably 1.3 times or more.
  • the upper limit of the ratio is not particularly limited, but is preferably 5.0 times, and more preferably 4.0 times, from the viewpoint of ease of manufacture.
  • the physical property stability exhibited by the resin composition according to one embodiment of the present invention is realized by finely dispersing cellulose in the resin composition and further by reducing the total amount of the cellulose component relative to the resin.
  • the cellulose component builds a network structure in the amorphous phase of the resin. Formation of this network makes it easy to achieve the result of effectively suppressing the thermal expansion of the resin composition even with a small amount of cellulose. Furthermore, since the formation of a stable network structure can suppress uneven distribution and aggregation of cellulose components depending on the location, it is possible to provide a reinforced resin in which variation in physical properties is suppressed.
  • As a cellulose component the combination of 2 or more types of cellulose is preferable.
  • the cellulose component includes cellulose whiskers and cellulose fibers.
  • the resin composition contains cellulose fibers and cellulose whiskers, both can be highly finely dispersed in the resin. Compared to the case where cellulose fibers or cellulose whiskers are used alone, the cellulose component It is possible to obtain a resin composition that gives the desired physical properties of the molded article even if the total amount of the resin is further reduced.
  • cellulose fibers and cellulose whiskers construct a higher-order cooperative network structure in the amorphous phase of the resin.
  • the thermal expansion of the resin composition can be effectively suppressed with a small amount of cellulose.
  • this stable network structure can suppress uneven distribution and aggregation of cellulose components depending on the location, it is possible to provide a reinforced resin in which variation between locations within the same molded body or within the same molded body is extremely suppressed. enable. This tendency is more remarkable in the embodiment containing more cellulose whiskers.
  • the cellulose component in the resin composition is small and a part thereof is a cellulose whisker having a small L / D, the fluidity at the time of resin molding becomes very good. Therefore, molded products having various shapes can be molded freely, and since the variation in physical properties of the resin molded products is small, it is possible to obtain a resin composition that can sufficiently cope with mass production.
  • the cellulose whisker and the cellulose fiber may be the same as those described in the aspect A.
  • the amount of the cellulose component with respect to 100 parts by mass of the thermoplastic resin is in the range of 0.1 to 100 parts by mass.
  • the lower limit of the amount of the cellulose component is preferably 0.5 parts by mass, more preferably 1 part by mass, and most preferably 2 parts by mass.
  • the upper limit of the amount of the cellulose component is preferably 50 parts by mass, more preferably 40 parts by mass, more preferably 30 parts by mass, more preferably 20 parts by mass, more preferably 10 parts by mass, more preferably 5 parts by mass. .
  • the amount of the cellulose component is preferably within the above range.
  • the preferable ratio of the cellulose whisker to the total mass of the cellulose component may be the same as that exemplified in the aspect A.
  • the ratio of cellulose whiskers to the total mass of the cellulose component is preferably within the above range.
  • thermoplastic resin examples include a crystalline resin having a melting point in the range of 100 ° C. to 350 ° C., or an amorphous resin having a glass transition temperature in the range of 100 to 250 ° C. Preferred specific examples and preferred reasons for the thermoplastic resin may be the same as those exemplified in the embodiment A unless otherwise specified.
  • the resin composition can contain an organic component as an additional component.
  • the organic component has a dynamic surface tension of 60 mN / m or less.
  • the organic component is a surfactant.
  • An organic component contributes to the improvement of the dispersibility of the cellulose component with respect to a thermoplastic resin.
  • the preferable amount is in the range of 50 parts by mass or less of the organic component with respect to 100 parts by mass of the cellulose component.
  • a more preferred upper limit is 45 parts by mass, still more preferably 40 parts by mass, still more preferably 35 parts by mass, and particularly preferably 30 parts by mass.
  • the lower limit is not particularly limited, but the handling property can be improved by adding 0.1 part by mass or more to 100 parts by mass of the cellulose component.
  • the lower limit amount is more preferably 0.5 parts by mass, and most preferably 1 part by mass.
  • Preferred specific examples and preferred reasons for the organic component may be the same as those exemplified in the embodiment A unless otherwise specified.
  • the amount of the organic component relative to 100 parts by mass of the cellulose component is preferably 50 parts by mass or less, more preferably 45 parts by mass or less, still more preferably 40 parts by mass or less, still more preferably 35 parts by mass or less, and particularly preferably 30 parts by mass or less. It is. Since it is an additional component, the lower limit is not particularly limited, but the handleability can be improved when the total amount is 0.1 parts by mass or more with respect to 100 parts by mass of the cellulose component. The total amount is more preferably 0.5 parts by mass or more, and particularly preferably 1 part by mass or more.
  • Resin composition can be provided in various shapes. Specific examples include a resin pellet shape, a sheet shape, a fiber shape, a plate shape, and a rod shape, and the resin pellet shape is more preferable from the viewpoint of ease of post-processing and ease of transportation. Preferred examples of the pellet may be the same as those exemplified in the embodiment A.
  • the resin composition can be used as various resin moldings.
  • the suitable example of the manufacturing method of a resin composition and a resin molding may be the same as having illustrated in aspect A. More specifically, for example, a cellulose dispersion containing water and a dispersion medium mainly composed of water is stirred while heating to remove the dispersion medium to obtain a cellulose aggregate, and then the cellulose aggregate and thermoplasticity A method of kneading a resin, preparing a resin cellulose dispersion containing a dispersion medium mainly composed of water, a thermoplastic resin and cellulose, and then heating the resin cellulose dispersion while stirring to remove the dispersion medium To obtain a resin composition by melting and kneading the resin cellulose mixture, and a cellulose dispersion containing water as a main component and a cellulose dispersion in a molten thermoplastic resin.
  • a method of obtaining a resin composition by removing a dispersion medium from a kneaded material after melt-kneading the resin and cellulose in a coexisting environment to obtain a kneaded material while the dispersion medium is vaporized A dispersion liquid containing water as a main component and a cellulose dispersion liquid containing cellulose are added into a thermoplastic resin in a molten state, and a dispersion medium containing water as a main component is maintained while maintaining a pressure at which the dispersion medium does not vaporize. Examples thereof include a method of obtaining a resin composition by melting and kneading a resin and cellulose in a liquid environment to obtain a kneaded product, and then removing the dispersion medium from the kneaded product.
  • One embodiment of the present invention provides, for the first time, a resin composition containing a cellulose component and giving sufficient physical property stability to withstand practical use, and a technique for mass-producing a cellulose nanocomposite having the above characteristics.
  • Various production methods and production conditions can be applied to the production of a resin composition having such a low coefficient of variation. For example, even if the manufacturing method is the same, the value of the coefficient of variation may change due to different manufacturing conditions. Accordingly, the production for obtaining the resin composition of the present disclosure is not limited to those listed in the present disclosure.
  • the resin composition according to one aspect of the present invention has high mechanical properties and low linear expansion, and not only has high fluidity to accommodate large parts, but also substantially includes partial strength defects. In order to give a molded product that is not, it can be suitably used for various large component applications.
  • One embodiment of the present invention provides a cellulose preparation containing cellulose particles and an organic component that covers at least part of the surface of the cellulose particles, and a resin composition containing the same.
  • the cellulose preparation includes cellulose particles in which at least a part of the surface is coated with an organic component.
  • the organic component has a static surface tension of 20 mN / m or more.
  • the organic component has a boiling point higher than that of water.
  • the cellulose preparation according to one embodiment of the present invention has a resin because at least a part of the surface of the cellulose particles contained (hereinafter sometimes referred to as “cellulose particles of the present disclosure”) is coated with a specific organic component.
  • the resin composition in which the cellulose preparation is dispersed is characterized by excellent fluidity at the time of melting and good elongation at the time of pulling.
  • the organic component covers the particles by binding to at least a part of the surface of the cellulose particles.
  • the bond between the cellulose particle surface and the organic component is due to non-covalent bonds such as hydrogen bonds and intermolecular forces.
  • the treatment for binding at least a part of the surface of the cellulose particle and the organic component may be referred to as “compositing treatment with organic component (compositing step)”.
  • a natural cellulosic material (a fibrous material derived from a natural product containing cellulose) is preferable.
  • the natural cellulosic material may be plant or animal and may be derived from microorganisms.
  • Examples of natural cellulosic materials include fiber materials derived from natural products containing cellulose such as wood, bamboo, wheat straw, rice straw, cotton, ramie, squirts, bagasse, kenaf, beet, and bacterial cellulose.
  • Examples of commonly available natural cellulosic materials include natural cellulosic materials (powdered cellulose) that are in powder form, such as cellulose floc and crystalline cellulose.
  • a cellulose raw material of cellulose particles one kind of natural cellulosic substance may be used, or two or more kinds of natural cellulosic substances may be used in combination.
  • the cellulose raw material is preferably used in the form of a refined pulp, but the method for purifying the pulp is not particularly limited, and any pulp such as dissolved pulp, kraft pulp, NBKP, LBKP, or fluff pulp may be used. Good.
  • the average degree of polymerization of cellulose can be measured according to the reduced specific viscosity method using a copper ethylenediamine solution described in the confirmation test (3) of “15th revised Japanese Pharmacopoeia Manual (published by Yodogawa Shoten)”.
  • the average degree of polymerization of cellulose constituting the cellulose particles is preferably 1000 or less. If the average degree of polymerization is 1000 or less, in the step of compounding with the organic component, the cellulose is easily subjected to physical treatment such as stirring, pulverization, and grinding, and the compounding is easily promoted. As a result, the dispersibility in the resin increases.
  • the average degree of polymerization of cellulose is more preferably 750 or less, further preferably 500 or less, still more preferably 350 or less, particularly preferably 300 or less, extremely preferably 250 or less, and most preferably 200 or less.
  • the lower the average degree of polymerization of cellulose the easier the control of complexing. Therefore, the lower limit is not particularly limited, but a preferred range is 10 or more.
  • Examples of a method for controlling the average degree of polymerization of cellulose include hydrolysis treatment.
  • the hydrolysis treatment By the hydrolysis treatment, the depolymerization of the amorphous cellulose inside the cellulose fiber proceeds, and the average degree of polymerization decreases.
  • the hydrolysis process removes impurities such as hemicellulose and lignin in addition to the above-described amorphous cellulose, so that the inside of the fiber becomes porous.
  • the cellulose is easily subjected to mechanical treatment, and the cellulose is easily refined.
  • the method of hydrolysis may be the same as in the aspect A.
  • the cellulose constituting the cellulose particles preferably contains crystalline cellulose, more preferably crystalline cellulose.
  • the crystallinity of the crystalline cellulose is preferably 10% or more.
  • the degree of crystallinity of cellulose constituting the cellulose particles is more preferably 30% or more, further preferably 50% or more, and still more preferably 70% or more.
  • the upper limit of the crystallinity is not particularly limited, but is preferably 90% or less.
  • the method for measuring the degree of crystallinity may be the same as in the aspect A.
  • type I, type II, type III, type IV, and the like are known. Among them, type I and type II are widely used, and type III and type IV are obtained on a laboratory scale. However, it is not widely used on an industrial scale.
  • Cellulose constituting the cellulose particles has relatively high structural mobility, and by dispersing the cellulose particles in the resin, the coefficient of linear expansion is lower, and the strength and elongation during tensile and bending deformation are more excellent.
  • crystalline cellulose containing cellulose I-type crystals is preferable, and crystalline cellulose containing cellulose I-type crystals and having a crystallinity of 10% or more is more preferable.
  • the length, diameter, and L / D ratio of cellulose are pure cellulose (preferably wet cake after hydrolysis) at a concentration of 1% by mass.
  • the aqueous dispersion was dispersed in an aqueous suspension and dispersed with a high shear homogenizer (for example, trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.) at a rotational speed of 15,000 rpm ⁇ 5 minutes.
  • a high shear homogenizer for example, trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.
  • the cellulose particles are crystalline cellulose having a ratio (L / D) of less than 30, and the crystalline cellulose and cellulose fiber coexist in the measurement sample, those having a ratio (L / D) of less than 30 are crystallized.
  • Cellulose, 30 or more can be classified as cellulose fiber.
  • the number average value of the length (L), the number average value of the diameter (D), and the number average value of the ratio (L / D) are calculated as a number average value of at least 100, for example, 100 to 150.
  • the length of a cellulose in a composition, a diameter, and L / D ratio can be confirmed by measuring with the above-mentioned measuring method by making the composition which is a solid into a measurement sample.
  • the length, diameter, and L / D ratio of cellulose in the composition are obtained by dissolving the resin component in the composition in an organic or inorganic solvent capable of dissolving the resin component of the composition, separating the cellulose, After thoroughly washing with a solvent, an aqueous dispersion in which the solvent was replaced with pure water was prepared, and the cellulose concentration was diluted with pure water to 0.1 to 0.5% by mass, cast on mica, and air-dried. It can be confirmed by measuring a sample as a measurement sample by the measurement method described above.
  • the cellulose preparation When confirming the length, diameter, and L / D ratio of the cellulose particles in the cellulose preparation, the cellulose preparation is dispersed in water or an organic solvent (the dispersion method is a high shear with a concentration of 1% by weight of the cellulose preparation).
  • the sample is treated with a homogenizer (for example, trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.), and measured by AFM according to the method described above.
  • the length (L) of the cellulose particles is preferably 200 nm or more, more preferably 500 nm or more, and still more preferably 1000 nm or more from the viewpoint of giving a resin composite having a low linear expansion coefficient. From the viewpoint of fluidity at the time of melting of the product and injection moldability, it is preferably 10,000 nm or less, more preferably 5000 nm or less, and still more preferably 3000 nm or less.
  • the diameter (D) of the cellulose particles is preferably 20 nm or more, more preferably 30 nm or more. Dispersibility in the resin and fluidity when the resin composition is melted From the viewpoint of injection moldability, it is preferably 500 nm or less, more preferably 450 nm or less, still more preferably 400 nm or less, still more preferably 350 nm or less, and most preferably 300 nm or less.
  • the L / D of the cellulose particles is preferably less than 30, more preferably 20 or less, from the viewpoints of dispersibility in the resin, fluidity at the time of melting the resin composition, and injection moldability. Is more preferably 10 or less, still more preferably 5 or less, particularly preferably less than 5, and most preferably 4 or less.
  • L / D may be 1 or more, but preferably 2 or more from the viewpoint of balancing the low linear expansion coefficient and good fluidity and injection moldability during melting while ensuring dispersibility in the resin. More preferably, it is 3 or more.
  • the cellulose preparation preferably contains colloidal cellulose particles as cellulose particles.
  • the content of colloidal cellulose particles with respect to 100% by mass of cellulose particles is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and 80% by mass. The above is particularly preferable.
  • the upper limit of the content of colloidal cellulose particles is not particularly limited, and the theoretical upper limit is 100% by mass.
  • the content of colloidal cellulose particles can be measured by the following method.
  • a planetary mixer for example, 5DM-03-R, manufactured by Shinagawa Kogyo Co., Ltd., stirring blade is hook type
  • a high shear homogenizer for example, trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.
  • treatment conditions rotational speed Disperse at 15,000 rpm ⁇ 5 minutes
  • a centrifuge for example, trade name “6800 type centrifuge” rotor type RA-400 type, manufactured by Kubota Corporation
  • processing condition centrifugal force 39200 m 2 / s in the centrifuged supernatant was collected for 10 minutes, further, the absolute dry this supernatant was centrifuged for 45 min at 116000m 2 / s
  • volume average particle diameter of cellulose is measured by a laser diffraction particle size distribution meter. Further, according to the present disclosure, “integrated 50% particle diameter in volume frequency particle size distribution obtained by laser diffraction particle size distribution meter (spherical equivalent diameter of particle when integrated volume is 50% with respect to volume of whole particle)” "May be referred to as” volume average particle diameter "or” cumulative volume 50% particle diameter ".
  • the volume average particle diameter of cellulose can be measured by the following method.
  • a planetary mixer for example, 5DM-03-R, manufactured by Shinagawa Kogyo Co., Ltd., stirring blade is hook type
  • a pure water suspension is prepared at a concentration of 0.5% by mass, and a high shear homogenizer (for example, trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.) is used.
  • centrifugal force of 39200 m 2 / s using a centrifuge for example, Kubota Corporation, trade name “6800 type centrifuge”, rotor type RA-400 type.
  • the supernatant obtained is collected, and the supernatant is further centrifuged at 116000 m 2 / s for 45 minutes, and the supernatant after centrifugation is collected.
  • a laser diffraction / scattering particle size distribution meter for example, product name “LA-910” or product name “LA-950” manufactured by HORIBA, Ltd.
  • ultrasonic treatment for 1 minute, refractive index of 1. 20 The integrated 50% particle diameter (volume average particle diameter) in the volume frequency particle size distribution obtained in 20) is measured.
  • the volume average particle diameter of the cellulose particles is preferably 10 ⁇ m or less, more preferably 8.0 ⁇ m, further preferably 5.0 ⁇ m or less, still more preferably 3.0 ⁇ m or less, It is particularly preferably 1.0 ⁇ m or less, particularly preferably 0.7 ⁇ m or less, extremely preferably 0.5 ⁇ m or less, and most preferably 0.3 ⁇ m or less.
  • the lower limit of the particle diameter is not particularly limited, but may actually be 0.05 ⁇ m or more.
  • the zeta potential of cellulose constituting the cellulose particles is preferably ⁇ 40 mV or less.
  • the zeta potential is more preferably ⁇ 30 mV or less, further preferably ⁇ 25 mV or less, particularly preferably ⁇ 20 mV or less, and most preferably ⁇ 15 mV or less.
  • the lower the value, the better the physical properties of the compound, so the lower limit is not particularly limited, but is preferably ⁇ 5 mV or more.
  • the zeta potential here can be measured by the following method. Using a high shear homogenizer (for example, trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.), the cellulose is made into a pure water suspension with a concentration of 1% by mass, and processing conditions: 15,000 rpm ⁇ The aqueous dispersion obtained by dispersing in 5 minutes is diluted with pure water to 0.1 to 0.5 mass%, and a zeta electrometer (for example, Otsuka Electronics, apparatus name ELSZ-2000ZS type, standard cell unit) is used. Use and measure at 25 ° C.
  • a zeta electrometer for example, Otsuka Electronics, apparatus name ELSZ-2000ZS type, standard cell unit
  • the cellulose particles preferably contain the aforementioned crystalline cellulose, and more preferably the aforementioned crystalline cellulose.
  • Crystalline cellulose can be obtained through the above hydrolysis using the above cellulose as a raw material.
  • the crystalline cellulose has an average degree of polymerization of less than 500 and / or an average L / D of less than 30.
  • the combination of cellulose particles and organic components is promoted.
  • the resin composition can have excellent flow properties and injection moldability when melted.
  • a resin composition in which the cellulose preparation is dispersed in a resin has a low coefficient of linear expansion, and can exhibit the effect of excellent elongation during tensile and bending deformation.
  • the average degree of polymerization of crystalline cellulose is preferably less than 500, more preferably 400 or less, further preferably 250 or less, particularly preferably 230 or less, particularly preferably 200 or less, and most preferably 180 or less.
  • the average L / D of crystalline cellulose is preferably less than 30, more preferably 20 or less, further preferably 15 or less, and particularly preferably 10 or less.
  • the cellulose preparation preferably further contains cellulose fibers.
  • Cellulose fiber is treated by crushing methods such as high-pressure homogenizer, microfluidizer, ball mill and disk mill after cellulose raw material such as pulp is treated with hot water at 100 ° C or higher to hydrolyze the hemicellulose part. It refers to fine cellulose.
  • the cellulose fiber has an average degree of polymerization of 300 or more.
  • the cellulose fiber has an average L / D controlled within a range of 30 or more.
  • the average polymerization degree of the cellulose fiber is more preferably 350 or more, further preferably 400 or more, particularly preferably 500 or more, and particularly preferably 700 or more. From the viewpoint of complexing with an organic component, the average degree of polymerization is preferably 1500 or less, and more preferably 1000 or less.
  • the fiber length (L) of the cellulose fiber is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 50 ⁇ m or more from the viewpoint of providing a resin composite having a low linear expansion coefficient. From the viewpoint of fluidity at the time of melting of the product and injection moldability, it is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and still more preferably 100 ⁇ m or less.
  • the fiber diameter (D) of the cellulose fiber is preferably nanometer size (that is, less than 1 ⁇ m), and the fiber diameter is more preferably 500 nm or less.
  • the fiber diameter of the cellulose fiber is preferably 450 nm or less, more preferably 400 nm or less, further preferably 350 nm or less, further preferably 300 nm or less, further preferably 200 nm or less, and further preferably 100 nm. Or less, more preferably 50 nm or less, and most preferably 30 nm or less.
  • the fiber diameter of the cellulose fiber is preferably 1 nm or more, more preferably 2 nm or more.
  • the fiber diameter of the cellulose fiber be within the above range.
  • the lower limit of L / D of the cellulose fiber is preferably 50, more preferably 80, more preferably 100, still more preferably 120, and most preferably 150.
  • the upper limit is not particularly limited, but is preferably 1000 or less from the viewpoint of handleability.
  • the cellulose preparation preferably contains cellulose particles (preferably, crystalline cellulose having an L / D of less than 30) and cellulose fibers having an L / D of 30 or more.
  • cellulose particles preferably, crystalline cellulose having an L / D of less than 30
  • cellulose fibers having an L / D of 30 or more the cellulose particles and the organic component are favorably combined. This improves the dispersibility of the cellulose preparation in the resin when the cellulose preparation is mixed with the resin to produce a resin composition, and the resin composition has excellent flow characteristics and injection moldability when melted. Have.
  • the resin composition in which the cellulose preparation is dispersed in the resin has a low linear expansion coefficient, and can exhibit an effect of excellent elongation and strength at the time of pulling and bending deformation.
  • the above effects in the resin composition can be expressed well even when the cellulose particles are added in a low amount.
  • the resin composite Can be reduced in weight.
  • the ratio of crystalline cellulose to the total mass of cellulose present in the cellulose preparation is preferably 50% by mass or more.
  • the ratio is more preferably more than 50% by mass, still more preferably 60% by mass or more, still more preferably 70% by mass or more, and most preferably 80% by mass or more.
  • the upper limit of the ratio is preferably 98% by mass, more preferably 96% by mass, and most preferably 95% by mass.
  • the organic component is preferably bonded to the surface of the cellulose particle with a weak force.
  • the weak force is, for example, a non-covalent bond (hydrogen bond, coordination bond, ionic bond, intermolecular force, etc.), physical adsorption, electrostatic attractive force, or the like.
  • the degree of covalent bond between cellulose and the organic component is represented by the following bond rate.
  • the cellulose preparation powder is pulverized through a 250 ⁇ m sieve, and 1 g of it is collected. This sample is placed in 10 mL of an organic solvent (for example, ethanol) or water (a medium capable of dissolving organic components), and stirred at room temperature for 60 minutes under stirring with a stirrer.
  • the organic solvent or water is filtered through a PTFE membrane filter having an opening of 0.4 ⁇ m, and the organic solvent or water is evaporated from the filtrate.
  • the mass of the residue collected from the filtrate is obtained, and the binding rate is calculated from the following equation.
  • the binding rate is preferably 90% or less, more preferably 50% or less, further preferably 20% or less, still more preferably 10% or less, even more preferably 5%. It is particularly preferred that The lower the binding rate, the higher the dispersibility of the cellulose preparation in the resin and the mechanical properties after dispersion. Therefore, the lower limit is not particularly limited, but theoretically it is 0% or more.
  • the “organic component” typically has a functional group composed of hydrogen, oxygen, carbon, nitrogen, chlorine, sulfur, phosphorus, etc. with a carbon atom as a skeleton. If the molecule has the above-described structure, the organic component includes those in which the inorganic compound and the functional group are chemically bonded.
  • the organic component (hereinafter, also referred to as “organic component of the present disclosure”) that covers the surface of the cellulose particle according to one embodiment of the present invention has a boiling point higher than that of water.
  • the boiling point higher than water refers to a boiling point higher than the boiling point at each pressure in the water vapor pressure curve (for example, 100 ° C. under 1 atm). Since the boiling point of the organic component is higher than that of water, when the cellulose preparation is mixed with the molten resin, the water contained in the cellulose preparation evaporates and the water and the organic component are replaced. Dispersion of cellulose in the glass is promoted.
  • the organic component is preferably liquid at room temperature (25 ° C.). Organic components that are liquid at room temperature are easily compounded with cellulose, and are easily mixed uniformly with the resin. Moreover, it is easy to prevent organic components from aggregating and recrystallizing in the resin composition.
  • the static surface tension of the organic component is 20 mN / m or more. This static surface tension is a surface tension measured by the Wilhelmy method described later. When using a liquid organic component at room temperature, it is measured at 25 ° C., but when using a solid or semi-solid organic component at room temperature, the organic component is heated above its melting point and melted. Use the value measured and temperature corrected to 25 ° C.
  • any organic component can be used as long as the static surface tension is satisfied in the cellulose preparation.
  • the organic component may be a single organic component, a mixture of two or more organic components, or may be used in the form of an organic component dissolved in an organic solvent or water. .
  • the organic component has a static surface tension within a specific range, so that the hydrophilic group can uniformly cover the surface by hydrogen bonding with the hydroxyl group on the cellulose surface. Moreover, since the hydrophobic group is exposed at the time of drying on the surface of the uniformly covered cellulose primary particles, the cellulose is easily dispersed in the resin at the time of preparing the resin composition. If the static surface tension of the organic component is too low, the hydrophobicity of the organic component is too strong, resulting in insufficient coating of the cellulose surface and insufficient dispersibility of the cellulose. On the other hand, if the static surface tension of the organic component is too high, the coating on the cellulose surface is sufficient, but the affinity between the cellulose and the resin is impaired, and as a result, the dispersibility of the cellulose decreases.
  • the static surface tension of the organic component is preferably 23 mN / m or more, more preferably 25 mN / m or more, further preferably 30 mN / m or more, still more preferably 35 mN / m or more, and particularly preferably 39 mN / m or more.
  • the static surface tension of the organic component is preferably less than 72.8 mN / m, more preferably 60 mN / m or less, further preferably 50 mN / m or less, and even more preferably 45 mN / m or less.
  • the method for measuring the static surface tension may be the same as in the aspect A.
  • the dynamic surface tension of the organic component is preferably 60 mN / m or less.
  • the method for measuring the dynamic surface tension may be the same as in the aspect A.
  • the dynamic surface tension measured by the maximum bubble pressure method means the dynamic surface tension of the organic component in a fast moving field.
  • Organic components usually form micelles in water. A low dynamic surface tension indicates that the diffusion rate of molecules of organic components from the micelle state is high, and a high dynamic surface tension means that the diffusion rate of molecules is low.
  • the dynamic surface tension of the organic component is more preferably 55 mN / m or less, more preferably 50 mN / m or less, further preferably 45 mN / m or less, and particularly preferably 40 mN / m or less.
  • the dynamic surface tension of the organic component is preferably 10 mN / m or more, more preferably 15 mN / m or more, further preferably 20 mN / m or more, particularly preferably 30 mN / m or more, and most preferably 35 mN / m or more.
  • the organic component preferably has a solubility parameter (SP value) of 7.25 or more.
  • SP value solubility parameter
  • the method for measuring the SP value may be the same as in the aspect A.
  • ⁇ Types of organic components It does not specifically limit as an organic component, For example, fats and oils, a fatty acid, surfactant, etc. can be used.
  • oils and oils examples include esters of fatty acids and glycerin.
  • Oils and fats usually take the form of triglycerides (tri-O-acylglycerols). Oils and fats are classified into dry oils, semi-dry oils and non-dry oils in the order in which they are easily oxidized and solidified by fatty oils, and those used in various applications such as edible and industrial can be used. These are used singly or in combination of two or more.
  • Examples of animal and vegetable oils include the same as those exemplified in Aspect A.
  • Examples of mineral oil include liquid paraffin, silicone oil, calcium soap base grease, calcium composite soap base grease, sodium soap base grease, aluminum soap base grease, lithium soap base grease, non-soap base grease, silicon grease, etc.
  • Greases; naphthenic and paraffinic mineral oils; partially synthetic oils obtained by mixing PAO and esters (or hydrocracked oils) with mineral oils and highly hydrocracked oils; chemically synthesized oils such as PAO (polyalphaolefin) -Total synthetic oil, synthetic oil, etc. are mentioned.
  • Fatty acid refers to a compound represented by the general formula CnHmCOOH (n and m are integers), and those used for various purposes such as food and industrial use can be used. For example, the following are used alone or in combination of two or more.
  • saturated fatty acid examples include those exemplified in the aspect A.
  • surfactant examples include compounds having a chemical structure in which a hydrophilic substituent and a hydrophobic substituent are covalently bonded, and those used for various purposes such as food and industrial use can be used. For example, the following are used alone or in combination of two or more.
  • any of an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and a cationic surfactant can be used, but in terms of affinity with cellulose.
  • Anionic surfactants and nonionic surfactants are preferred, and nonionic surfactants are more preferred.
  • an anionic surfactant the thing similar to what was illustrated in the aspect A is mentioned, for example, It is also possible to use 1 type or in mixture of 2 or more types.
  • a nonionic surfactant the thing similar to what was illustrated in aspect A is mentioned, for example, It is also possible to use them by mixing 1 type, or 2 or more types.
  • Examples of the zwitterionic surfactant include the same as those exemplified in the embodiment A, and it is also possible to use one or a mixture of two or more thereof.
  • the cationic surfactant include those similar to those exemplified in the embodiment A, and it is also possible to use one or a mixture of two or more thereof.
  • surfactant used as the organic component in addition to the above-described surfactants, for example, those similar to those exemplified as ⁇ Specific example of surfactant> in Aspect A can be suitably used. .
  • surfactants having a polyoxyethylene chain, a carboxylic acid, or a hydroxyl group as a hydrophilic group are preferred from the viewpoint of affinity with cellulose, and a polyoxyethylene surfactant having a polyoxyethylene chain as a hydrophilic group (Polyoxyethylene derivatives) are more preferable, and nonionic polyoxyethylene derivatives are more preferable.
  • the polyoxyethylene chain length of the polyoxyethylene derivative is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, and particularly preferably 15 or more. The longer the chain length, the higher the affinity with cellulose. However, in balance with the coating property, 60 or less is preferable, 50 or less is more preferable, 40 or less is more preferable, 30 or less is particularly preferable, and 20 or less is Most preferred.
  • cellulose When cellulose is blended with a hydrophobic resin (for example, polyolefin, polyphenylene ether, etc.), it is preferable to use a resin having a polyoxypropylene chain instead of a polyoxyethylene chain as a hydrophilic group.
  • the polyoxypropylene chain length is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, and particularly preferably 15 or more. The longer the chain length, the higher the affinity with cellulose. However, in balance with the coating property, 60 or less is preferable, 50 or less is more preferable, 40 or less is more preferable, 30 or less is particularly preferable, and 20 or less is Most preferred.
  • the alkyl ether type, alkyl phenyl ether type, rosin ester type, bisphenol A type, ⁇ naphthyl type, styrenated phenyl type, and hardened castor oil type are compatible with the resin. Therefore, it can be preferably used.
  • the preferred alkyl chain length (in the case of alkylphenyl, the number of carbon atoms excluding the phenyl group) is preferably 5 or more, more preferably 10 or more, still more preferably 12 or more, and particularly preferably 16 or more.
  • the resin is a polyolefin, the higher the number of carbons, the higher the affinity with the resin, so the upper limit is not set, but is preferably 30 or less, and more preferably 25 or less.
  • hydrophobic groups those having a cyclic structure or those having a bulky polyfunctional structure are preferred, and those having a cyclic structure include alkylphenyl ether type, rosin ester type, bisphenol A type, ⁇ naphthyl type, The styrenated phenyl type is preferable, and the one having a polyfunctional structure is preferably a hardened castor oil type.
  • rosin ester type and hardened castor oil type are particularly preferable.
  • terpine oil terpine oil, tall oil, rosin, and derivatives thereof are preferable as organic components for covering the surface of cellulose particles from the viewpoint of affinity to the cellulose surface and uniform coating properties.
  • terpin oil also referred to as terbin oil
  • tall oil also referred to as terbin oil
  • rosin also referred to as rosin ester
  • alcohol used at this time
  • terpin oil also referred to as tall oil
  • rosin also referred to as terbin oil
  • alcohol used at this time
  • the organic component may be an alkylphenyl type compound, and examples thereof include the same compounds as those exemplified in Aspect A.
  • the organic component may be a ⁇ -naphthyl type compound, and examples thereof include the same as those exemplified in the embodiment A.
  • the organic component may be a bisphenol A type compound, and examples thereof include the same as those exemplified in the embodiment A.
  • the organic component may be a styrenated phenyl type compound, and examples thereof include the same as those exemplified in the embodiment A.
  • the organic component may be a hardened castor oil type compound, and examples thereof include the same as those exemplified in the embodiment A.
  • the organic component is selected from the group consisting of rosin derivatives, alkylphenyl derivatives, bisphenol A derivatives, ⁇ -naphthyl derivatives, styrenated phenyl derivatives, and hardened castor oil derivatives.
  • the organic component is a polyoxyethylene derivative.
  • the cellulose preparation preferably contains 30 to 99% by mass of cellulose and 1 to 70% by mass of organic components.
  • the organic component covers the surface of the cellulose particle with non-covalent chemical bonds such as hydrogen bonds and intermolecular forces, and as a result, the dispersion of cellulose in the resin is promoted.
  • the composite is further promoted.
  • the cellulose preparation preferably contains 50 to 99% by weight of cellulose and 1 to 50% by weight of organic components, more preferably 70 to 99% by weight of cellulose, and more preferably 1 to 30% by weight of organic components. More preferably, it contains 80 to 99% by mass, 1 to 20% by mass of an organic component, particularly preferably 90 to 99% by mass of cellulose and 1 to 10% by mass of an organic component.
  • the method for producing the cellulose preparation is not particularly limited, and may be refined (particulate) after mixing the raw material cellulose and the organic component, and the organic component is adhered to the cellulose particles obtained by refining the raw material cellulose. By drying in such a state, at least a part of the surface of the cellulose particles can be coated with an organic component. Moreover, you may perform refinement
  • a cellulose preparation can be produced by kneading raw material cellulose and an organic component. Specifically, in the kneading step, it can be obtained by applying mechanical shearing force to cellulose and the organic component to make the cellulose fine (particulate) and to make the organic component complex on the cellulose surface. Moreover, in this kneading
  • a kneading method using a kneader or the like can be applied.
  • a kneading machine for example, a kneader, an extruder, a planetary mixer, a lycra machine, or the like can be used, which may be a continuous type or a batch type.
  • the temperature at the time of kneading may be a result, and when heat is generated due to a compounding reaction, friction, or the like at the time of kneading, the kneading may be performed while removing the heat.
  • the above models may be used alone or in combination of two or more types.
  • the kneading temperature is preferably lower from the viewpoint that the deterioration of the organic component is suppressed and the composite of cellulose and the organic component tends to be promoted.
  • the kneading temperature is preferably 0 to 100 ° C., more preferably 90 ° C. or less, further preferably 70 ° C. or less, still more preferably 60 ° C. or less, and 50 ° C. or less. It is particularly preferred.
  • slow heating such as jacket cooling and heat dissipation.
  • the solid content during kneading is preferably 20% by mass or more.
  • the solid content at the time of kneading is more preferably 30% by mass or more, further preferably 40% by mass or more, and further preferably 50% by mass or more.
  • the upper limit of the solid content is not particularly limited, but is preferably 90% by mass or less, more preferably 70% by mass or less, and 60% by mass from the viewpoint of obtaining a good kneading effect and a more uniform kneading state. More preferably, it is as follows. In order to make solid content into the said range, as a timing to add water, a required amount may be added before a kneading
  • the kneading energy is defined as the amount of electric power per unit mass (Wh / kg) of the kneaded product.
  • the kneading energy is preferably 50 Wh / kg or more.
  • the grindability imparted to the kneaded product is high, and the composite of cellulose and organic components tends to be further promoted.
  • the kneading energy is preferably 80 Wh / kg or more, more preferably 100 Wh / kg or more, further preferably 200 Wh / kg or more, still more preferably 300 Wh / kg or more, and particularly preferably 400 Wh / kg or more. It is considered that the higher the kneading energy is, the more the compounding is promoted. However, when the kneading energy is too high, the equipment becomes industrially excessive and an excessive load is applied to the equipment. Therefore, the upper limit of the kneading energy is preferably 1000 Wh / kg.
  • the degree of complexation is considered to be the proportion of bonds between cellulose and organic components due to hydrogen bonds and intermolecular forces. As the compounding progresses, when the resin and the cellulose preparation are kneaded, the dispersibility of cellulose in the resin composition tends to be improved in order to prevent aggregation between celluloses.
  • the compounding in the kneading step is preferably performed under reduced pressure.
  • a wet cake containing water is used as a raw material for cellulose, it is carried out under reduced pressure to utilize hydrogen bonding of water between cellulose particles in the initial kneading stage, thereby further promoting particle refinement.
  • the kneading is further carried out while discharging water out of the system under reduced pressure, it is efficient because the refinement of cellulose, dehydration, and coating of organic components proceed simultaneously.
  • a known drying method such as tray drying, spray drying, belt drying, fluidized bed drying, freeze drying, microwave drying or the like is used. Can be used.
  • a drying step it is preferable that water is not added to the kneaded product, and the solid content concentration in the kneading step is maintained and the dried step is used.
  • the water content of the cellulose preparation after drying is preferably 1 to 20% by mass.
  • problems such as adhesion to the container and rot, and cost problems in transportation and transportation are less likely to occur.
  • the moisture content is lower, voids resulting from water evaporation are less likely to enter when mixed into the molten resin, and the physical properties (strength and dimensional stability) of the resin composite tend to increase.
  • the moisture content is set to 1% by mass or more, there is less possibility that the dispersibility deteriorates due to excessive drying.
  • the water content of the cellulose preparation is more preferably 15% by mass or less, further preferably 10% by mass or less, still more preferably 5% by mass or less, and particularly preferably 3% by mass or less. Moreover, as a minimum of the moisture content of a cellulose formulation, 1.5 mass% or more is preferable.
  • the cellulose preparation When the cellulose preparation is distributed in the market, it is preferable to pulverize the cellulose preparation into a powder form because the shape of the cellulose preparation is easier to handle.
  • spray drying is used as the drying method, drying and pulverization are performed at the same time, and therefore, it is not necessary to pulverize.
  • a known method such as a cutter mill, a hammer mill, a pin mill, or a jet mill can be used.
  • the degree of pulverization is such that the pulverized product passes through a sieve having an opening of 1 mm.
  • the obtained dry powder is obtained by agglomerating fine particles of the cellulose preparation to form secondary aggregates. This secondary aggregate is disintegrated when stirred in water and dispersed in the cellulose particles described above.
  • the apparent mass average particle diameter of the secondary aggregate was determined by sieving 10 g of a sample for 10 minutes using a low-tap type sieve shaker (for example, Sieve Shaker A type, manufactured by Hira Kogyo Co., Ltd.) or JIS standard sieve (Z8801-1987). The cumulative mass 50% particle size in the particle size distribution obtained by doing.
  • a low-tap type sieve shaker for example, Sieve Shaker A type, manufactured by Hira Kogyo Co., Ltd.
  • JIS standard sieve Z8801-1987
  • the cellulose preparation may contain a polysaccharide as a dispersion aid in addition to the cellulose particles and the organic component.
  • a polysaccharide By containing a polysaccharide, the affinity of the organic component to the surface of the cellulose particles is increased, and the dispersion of the cellulose particles in the resin is promoted, which is preferable.
  • polysaccharides examples thereof include water-soluble natural polysaccharides such as psyllium seed gum, karaya gum, carrageenan, alginic acid, sodium alginate, HM pectin, LM pectin, azotobacter vinelanzie gum, xanthan gum, gellan gum, and sodium carboxymethylcellulose.
  • water-soluble natural polysaccharides such as psyllium seed gum, karaya gum, carrageenan, alginic acid, sodium alginate, HM pectin, LM pectin, azotobacter vinelanzie gum, xanthan gum, gellan gum, and sodium carboxymethylcellulose.
  • anionic polysaccharides sodium carboxymethylcellulose (hereinafter also referred to as “CMC-Na”) and xanthan gum are preferable.
  • these anionic polysaccharides may combine 2 or more types.
  • CMC-Na is particularly preferable because it is easily complexed with cellulose.
  • CMC-Na here is composed of an anionic polymer in which part or all of the hydrogen atoms of the hydroxyl group of cellulose are substituted with —CH 2 COO groups (carboxymethyl groups) and Na cations. It has a linear chemical structure with -1,4 bonds.
  • CMC-Na can be obtained, for example, by a production method in which pulp (cellulose) is dissolved in a sodium hydroxide solution and etherified with monochloroacetic acid (or a sodium salt thereof).
  • CMC-Na having a substitution degree and a viscosity prepared in the following specific ranges are included.
  • the degree of substitution is the degree to which a carboxymethyl group is ether-bonded to a hydroxyl group in CMC-Na (having three hydroxyl groups per glucose unit), and preferably 0.6 to 2.0 per glucose unit. If the degree of substitution is in the above range, CMC-Na having a higher degree of substitution is more likely to be complexed with cellulose, and the storage elastic modulus of the cellulose composite is increased, and in a high salt concentration aqueous solution (for example, a 10% by mass sodium chloride aqueous solution). However, it is preferable because high suspension stability can be exhibited. More preferably, the degree of substitution is 0.9 to 1.3.
  • the degree of substitution is measured by the following method.
  • a sample (anhydrous) 0.5 g is accurately weighed, wrapped in filter paper and incinerated in a magnetic crucible. After cooling, transfer this to a 500 mL beaker, add about 250 mL of water and 35 mL of 0.05 M sulfuric acid and boil for 30 minutes. This is cooled, phenolphthalein indicator is added, excess acid is back titrated with 0.1 M potassium hydroxide, and calculated by the following formula.
  • f2 is the titer of 0.1M potassium hydroxide. When the value of (B ⁇ S) xf2 is ( ⁇ ), the acidity is determined.
  • the viscosity of CMC-Na is preferably 500 mPa ⁇ s or less in a 1% by mass pure aqueous solution.
  • the viscosity here is measured by the following method. First, a CMC-Na powder was used at 1% by mass, and using a high shear homogenizer (for example, trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.), processing conditions: 15,000 rpm ⁇ 5 minutes Then, it is dispersed in pure water to prepare an aqueous solution.
  • a high shear homogenizer for example, trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.
  • the viscosity of CMC-Na contained in the cellulose preparation is more preferably 200 mPa ⁇ s or less, and further preferably 100 mPa ⁇ s or less.
  • the lower limit of the viscosity is not particularly set, but a preferable range is 1 mPa ⁇ s or more.
  • the cellulose preparation preferably contains 30 to 99% by mass of cellulose particles whose surface is at least partially coated with an organic component, and 1 to 70% by mass of a dispersion aid, and the cellulose particles are preferably 50 to 99% by mass, More preferably, the dispersion auxiliary agent is contained in an amount of 1 to 50% by mass, the cellulose particles are contained in an amount of 70 to 99% by mass, the dispersion auxiliary agent is further preferably contained in an amount of 1 to 30% by mass, and the cellulose particles are contained in an amount of 80 to 99% by mass. More preferably, the dispersion aid is contained in an amount of 1 to 20% by mass, particularly preferably 90 to 99% by mass of cellulose particles and 1 to 10% by mass of a dispersion aid.
  • the dispersion aid may be added when obtaining the cellulose preparation, or may be added before obtaining the composite by adding the cellulose preparation to the resin. It is preferable to add the cellulose preparation when the cellulose preparation is obtained, since the addition amount of the organic component is suppressed and a desired effect is exhibited with a small amount.
  • it may be added to the raw material cellulose or cellulose particles together with the organic component, may be added sequentially after adding the organic component, or the organic component is added sequentially after adding the dispersion aid. The addition method is free. In the case of sequential addition, drying may be performed after the addition of the first-stage organic component and the dispersion aid.
  • the resin composition according to one embodiment of the present invention can be a composition in which the cellulose preparation is dispersed in a resin.
  • the resin for dispersing the cellulose preparation is not particularly limited, and a wide variety of resins can be used.
  • a thermoplastic resin as a resin for dispersing a cellulose preparation, it becomes possible to obtain a thermoplastic resin composition using cellulose that does not inherently have thermoplasticity.
  • thermoplastic resin in which the cellulose preparation is dispersed is a temperature of 250 ° C. or lower from the viewpoint of preventing browning and aggregation due to decomposition of the cellulose particles during the production of the resin composition and the molded product using the resin composition. Those that can be melt kneaded / extruded are preferred.
  • thermoplastic resins include polyolefins such as polyethylene and polypropylene; elastomers such as ABS, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-propylene rubber; And modified resins.
  • polyolefin such as olefin resin and elastomer can be used. Further, a resin produced using a single site catalyst such as a metallocene catalyst can be used.
  • olefin resin excluding the following elastomer, low density polyethylene (LDPE), high density polyethylene (HDPE), ethylene- ⁇ -olefin copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl chloride copolymer, etc.
  • Polypropylenes such as polypropylene (PP) and polypropylene- ⁇ -olefin copolymers; polypentenes such as poly-1-butene and poly-4-methyl-1-pentene, and mixtures thereof may be used. it can.
  • Elastomers include natural rubber (NR), synthetic isoprene rubber (IR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene terpolymer (EPDM), chloroprene (CR), halo. Rubber components such as butyl rubber (XIIR), butyl rubber (IIR), thermoplastic elastomer (TPO), and mixtures thereof can be used.
  • NR natural rubber
  • IR synthetic isoprene rubber
  • SBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • EPDM ethylene-propylene-diene terpolymer
  • CR chloroprene
  • Rubber components such as butyl rubber (XIIR), butyl rubber (IIR), thermoplastic elastomer (TPO), and mixtures thereof can be used.
  • These resins may be used alone or in combination of two or more.
  • polypropylene is preferable from the viewpoint of the strength of the resin.
  • the resin content in the resin composition is preferably 70% by mass to 98% by mass with respect to the resin composition.
  • the resin content is 70% by mass or more, the obtained resin composition tends to have good moldability and thermoplasticity, and when it is 98% by mass or less, the dispersibility of the crystalline cellulose fine powder is high. It tends to be good.
  • the resin content is more preferably 75% by mass or more and 90% by mass or less.
  • the content of the cellulose preparation in the resin composition is preferably 1% by mass with respect to the resin composition, and more preferably 1% by mass or more and 50% by mass or less.
  • the content of the cellulose preparation is more preferably 30% by mass or less, further preferably 25% by mass or less, still more preferably 20% by mass or less, and particularly preferably 15% by mass or less.
  • the interface forming agent may be a substance having both an affinity group for hydrophilic crystalline cellulose and an affinity group for a hydrophobic resin component in one molecule, and is a polymer such as a resin. Or a so-called low molecular weight compound.
  • the resin composition can contain a resin having a polar functional group in a partial structure as an interface forming agent.
  • the resin having a polar functional group in a partial structure examples include modified polyolefin resin, polyamide, polyester, polyacetal, acrylic resin, and the like.
  • the interface forming agent is a resin
  • the interface forming agent constitutes a part of the resin component in the resin composition.
  • the modified polyolefin resin is preferably a polyolefin obtained by graft-modifying a carboxylic acid residue, a (meth) acrylic acid compound, or the like on a polyolefin.
  • the unsaturated carboxylic acid used for graft modification is an unsaturated hydrocarbon having a carboxyl group.
  • the derivatives include anhydrides.
  • fumaric acid, maleic acid, itaconic acid, citraconic acid, aconitic acid and anhydrides thereof methyl fumarate, ethyl fumarate, propyl fumarate, butyl fumarate, fumarate Dimethyl acid, diethyl fumarate, dipropyl fumarate, dibutyl fumarate, methyl maleate, ethyl maleate, propyl maleate, butyl maleate, dimethyl maleate, diethyl maleate, dipropyl maleate, dibutyl maleate, etc. More preferably, itaconic anhydride, maleic anhydride and the like are exemplified.
  • the (meth) acrylic acid compound is a compound containing at least one (meth) acryloyl group in the molecule.
  • the (meth) acrylic acid compound include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, cyclohexyl (meth) acrylate, hydroxyethyl (meth) acrylate, Examples include isobornyl (meth) acrylate, glycidyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, and acrylamide.
  • the olefin can be preferably used as polyethylene or polypropylene, and the structure and molecular weight can be freely selected according to the base polymer of the composite.
  • n-nylon synthesized by polycondensation reaction of ⁇ amino acids
  • n, m-nylon synthesized by co-condensation polymerization reaction of diamine and dicarboxylic acid
  • n-nylon polycondensation reaction product
  • n-nylon includes nylon 6, nylon 11, nylon 12 lauryl lactam (carbon number 12)
  • n, m-nylon copolycondensation reaction product
  • Nylon 66 Nylon 610, Nylon 6T, Nylon 6I, Nylon 9T, Nylon M5T, Nylon 612, Kevlar (p-phenylenediamine + terephthalic acid copolycondensate), Nomex (m-phenylenediamine + isophthalic acid copolycondensate) Condensate) can be preferably used.
  • polyester a polycondensate of polycarboxylic acid (dicarboxylic acid) and polyalcohol (diol) can be used.
  • polycarboxylic acid dicarboxylic acid
  • polyalcohol diol
  • the polyvalent carboxylic acid (dicarboxylic acid) component terephthalic acid, 2,6-naphthalenedicarboxylic acid, etc.
  • the polyhydric alcohol (diol) component ethylene glycol, 1,3-propanediol, 1,4 -Butanediol, 1,4-cyclohexanedimethanol and the like, and these polycondensates can be used.
  • polystyrene resin As the polyacetal, a homopolymer, a random copolymer (polyoxymethylene-oxymethylene random copolymer), or a block copolymer (polyoxymethylene-alkyl block copolymer) can be used.
  • acrylic resin an acrylic ester or methacrylic ester polymer can be used.
  • interface forming agents may be used singly or in combination of two or more, and the mixing ratio can be freely set.
  • the resin used as the base polymer is polyolefin
  • acid-modified polyolefin and / or polyamide can be suitably used as the interface forming agent.
  • the acid-modified polyolefin maleic acid-modified polyolefin, for example, maleic acid-modified polypropylene is preferable.
  • the base polymer is polypropylene
  • maleic acid-modified polypropylene can be preferably used. Since the maleic acid residue has a high affinity for the cellulose side interface and the polypropylene residue is compatible with the base polymer, the interface of the resin composition is brought into close contact, in addition to the dimensional stability and strength of the obtained resin composition, In particular, the elongation can be improved.
  • n-nylon can be suitably used as the polyamide.
  • the base polymer is polypropylene
  • nylon 6 can be preferably used.
  • Nylon has a strong polymer molecular chain, and peptide residues have high affinity with the cellulose surface, so that it can impart dimensional stability and strength to the resin composition.
  • the addition amount of the interface forming agent may be an amount that molecularly covers the surface of cellulose, for example, 1 mass part or more with respect to 100 mass parts of cellulose. Preferably, 5 parts by mass or more is more preferable, 10 parts by mass or more is more preferable, 15 parts by mass or more is particularly preferable, and 20 parts by mass or more is most preferable.
  • the upper limit of the addition amount of the interface forming agent is not necessarily set, but is preferably 50 parts by mass or less with respect to 100 parts by mass of cellulose in consideration of workability and durability of the resin composition.
  • the amount of the interface forming agent added is preferably 1 part by mass or more, and more preferably 5 parts by mass or more with respect to 100 parts by mass of cellulose present in the cellulose preparation or resin composition.
  • 10 parts by mass or more is more preferable, 15 parts by mass or more is more preferable, and 20 parts by mass or more is particularly preferable.
  • the upper limit of the addition amount of the interface forming agent is not necessarily set, but is preferably 50 parts by mass or less with respect to 100 parts by mass of cellulose in consideration of workability and durability of the resin composition.
  • the addition amount of the interface forming agent is preferably 10 parts by mass or more, more preferably 50 parts by mass or more, based on 100 parts by mass of cellulose present in the cellulose preparation or resin composition. More preferably, it is more preferably 150 parts by mass or more, and particularly preferably 200 parts by mass or more.
  • the upper limit of the addition amount of the interface forming agent is not necessarily set, but is preferably 500 parts by mass or less with respect to 100 parts by mass of cellulose in view of the workability and durability of the resin composition.
  • the interface forming agent may be added during the production process of the cellulose preparation, or may be added when the cellulose preparation is added to the resin to obtain a resin composition. It is preferable to add the cellulose preparation when the cellulose preparation is obtained because the amount of the interface-forming agent is suppressed and a desired effect is exhibited with a small amount.
  • the addition method is not particularly limited, and may be added together with other additives such as a dispersant, may be added sequentially after adding other additives, or an interface forming agent is added. Other additives may be added sequentially thereafter.
  • the resin composition may contain a dispersant such as a surfactant, a surface treatment agent, and an inorganic filler.
  • the dispersing agent has a function of improving the compatibility between the cellulose preparation and the resin. That is, it has the function to disperse
  • a known surfactant, surface treatment agent, inorganic filler, and the like that have affinity for at least both cellulose particles and resin can be appropriately used.
  • the surfactant and the surface treatment agent may be organic components having a static surface tension of 20 mN / m or more and a boiling point higher than that of water, respectively.
  • the content of the dispersant in the resin composition is preferably 1% by mass or more and 20% by mass or less.
  • the content of the dispersant is 1% by mass or more, the dispersibility of the cellulose particles in the resin composition tends to be good, and when it is 20% by mass or less, the strength of the molded product obtained from the resin composition. Tends to be maintained well.
  • content of the dispersing agent in a resin composition it is more preferable that they are 5 mass% or more and 15 mass% or less.
  • the organic component having a static surface tension of 20 mN / m or more and a boiling point higher than water also functions as a dispersant, the content of the dispersant includes an amount including the amount of the organic component. means.
  • the surfactant examples include stearic acid, higher fatty acids such as calcium, magnesium and zinc salts of stearic acid and salts thereof; higher alcohols and higher polyhydric alcohols such as stearyl alcohol, glyceride stearate and polyethylene glycol; polyoxyethylene Examples include various fatty acid esters such as sorbitan monostearate. Among the above, stearic acid glyceride is preferable.
  • the surface treatment agent examples include non-reactive silicone oils such as dimethyl silicone oil and higher fatty acid ester-modified silicone oils; reactive silicone oils such as epoxy-modified silicone oils, carbinol-modified silicone oils and carboxyl-modified silicone oils; N- And lauryl-D, L-aspartic acid- ⁇ -lauryl ester.
  • non-reactive silicone oils such as dimethyl silicone oil and higher fatty acid ester-modified silicone oils
  • reactive silicone oils such as epoxy-modified silicone oils, carbinol-modified silicone oils and carboxyl-modified silicone oils
  • N- And lauryl-D, L-aspartic acid- ⁇ -lauryl ester examples of the surface treatment agent.
  • Inorganic fillers include metal elements in Groups I to VIII of the Periodic Table, for example, simple elements or oxides of Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti or Si elements , Hydroxides, carbon salts, sulfates, silicates, sulfites, and various viscosity minerals composed of these compounds. More specifically, for example, barium sulfate, calcium sulfate, magnesium sulfate, sodium sulfate.
  • the dispersant contained in the resin composition one of these may be used alone, or two or more may be used in combination.
  • (heavy) calcium carbonate is preferable as the dispersant contained in the resin composition.
  • ⁇ Other additives In the resin composition, in addition to the cellulose preparation and the resin, and in addition to the interface forming agent and the dispersing agent, other components may be included as necessary within a range not impairing the effects of the present invention.
  • the other components include antioxidants, metal deactivators, flame retardants (organic phosphate ester compounds, inorganic phosphorus compounds, aromatic halogen flame retardants, silicone flame retardants, etc.), fluorine-based compounds, and the like.
  • plasticizers oil, low molecular weight polyethylene, epoxidized soybean oil, polyethylene glycol, fatty acid esters, etc.
  • flame retardant aids such as antimony trioxide, weather resistance (light) improvers, polyolefin nucleating agents, slips Agent, inorganic or organic filler or reinforcing material (glass fiber, carbon fiber, polyacrylonitrile fiber, whisker, mica, talc, carbon black, titanium oxide, calcium carbonate, potassium titanate, wollastonite, conductive metal fiber, Conductive carbon black), various colorants, release agents and the like.
  • the content of the other component is preferably 10% by mass or less, more preferably 8% by mass or less, and still more preferably 5% by mass or less with respect to the entire resin composition.
  • the resin composition according to one embodiment of the present invention can include a cellulose preparation as described above, but in another embodiment, the resin composition includes the thermoplastic resin described above, the cellulose particles described above, and a static surface.
  • the organic component described above having a tension of 20 mN / m or more and a boiling point higher than water can be included.
  • the resin composition includes the above-described thermoplastic resin, the above-described cellulose particles, the above-described organic component having a static surface tension of 20 mN / m or more and a boiling point higher than water, and the resin composition.
  • 1 part by mass or more of the above-described interface forming agent can be included with respect to 100 parts by mass of cellulose present.
  • the amount of cellulose is 30 to 99% by mass and the amount of organic component is 1 to 70% by mass with respect to 100% by mass of the total amount of cellulose and the amount of organic component in the resin composition. preferable.
  • the method for producing the resin composition is not particularly limited, and can be appropriately selected from various methods used for dispersing inorganic particles and the like in the resin.
  • a resin or a mixture of a resin and an interface forming agent is heated and melted, and a cellulose preparation (or a combination of cellulose particles and an organic component) and a dispersant are added thereto, and then melt-kneaded together.
  • a cellulose preparation or a combination of cellulose particles and an organic component
  • a dispersant are added thereto, and then melt-kneaded together.
  • the resin composition can also be produced by a method of mixing and dispersing in an extruder.
  • extruder examples include a single screw extruder, a twin screw extruder, a roll, a kneader, a Brabender plastograph, and a Banbury mixer.
  • a melt kneading method using a twin screw extruder is preferable from the viewpoint of sufficient kneading.
  • the melt-kneading temperature in the production of the resin composition is not particularly limited because it varies depending on the components to be used, but it can usually be arbitrarily selected from 50 to 250 ° C., and in many cases 200 to 250 ° C. Range. Other manufacturing conditions may be appropriately selected from those usually used.
  • the resin composition can have various shapes as exemplified in the aspect A (that is, resin pellets, sheets, fibers, plates, rods, etc.).
  • the resin composition can be molded as a molded body of various parts by using various methods such as injection molding, extrusion molding, and hollow molding.
  • a thermoplastic resin is used as the resin, the obtained molded product has thermoplasticity and has strength, elastic modulus, and impact resistance that cannot be obtained with a molded product obtained solely from the thermoplastic resin.
  • the surface properties such as roughness of the product and presence / absence of aggregation are also good.
  • the resin composition according to one embodiment of the present invention is characterized by exhibiting excellent fluidity (melt flow rate: MFR) when the resin is melted by blending cellulose particles.
  • MFR melt flow rate
  • the cellulose particles (and cellulose fibers, if present) are finely dispersed in the resin matrix, so that the network structure of the cellulose particles (and further cellulose fibers if present) includes the resin, and the network structure is It exhibits thixotropic properties when the resin is melted.
  • the cellulose plays a role of a roller (pulley), thereby improving fluidity.
  • the average degree of polymerization, average particle size (volume average particle size and mass average particle size), fiber length and fiber width, L / D, and / or zeta potential of cellulose dispersed in the resin are disclosed. When properly controlled within the range, the above characteristics are more easily exhibited.
  • CW Cellulose whisker
  • Commercially available DP pulp (average polymerization degree 1600) was cut and hydrolyzed in a 10% aqueous hydrochloric acid solution at 105 ° C. for 30 minutes. The resulting acid-insoluble residue was filtered, washed, and pH adjusted to prepare a crystalline cellulose dispersion having a solid content concentration of 14% by weight and pH 6.5. This crystalline cellulose dispersion was spray-dried to obtain a dried crystalline cellulose.
  • the supply amount was set to 10 kg / hr, and the dried product obtained above was supplied to an airflow type pulverizer (STJ-400 type, manufactured by Seishin Enterprise Co., Ltd.) and pulverized to obtain a cellulose whisker as crystalline cellulose fine powder. .
  • the characteristics of the obtained cellulose whiskers were evaluated by the method described later. The results are shown below.
  • Cellulose fiber A (hereinafter abbreviated as CF-A) After cutting the linter pulp, it is heated in hot water at 120 ° C. or higher for 3 hours using an autoclave, and the purified pulp from which the hemicellulose portion has been removed is pressed and the solid content becomes 1.5% by weight in pure water. As described above, the fibers were highly shortened and fibrillated by beating treatment, and then defibrated with a high-pressure homogenizer (operating pressure: 10 times at 85 MPa) at the same concentration to obtain defibrated cellulose.
  • a high-pressure homogenizer operating pressure: 10 times at 85 MPa
  • a disc refiner is used, and after a 4-hour treatment with a beating blade having a high cutting function (hereinafter referred to as a cutting blade), a beating blade having a high defibrating function (hereinafter referred to as a defibrating blade) is used. Further, beating was performed for 1.5 hours to obtain cellulose fiber A. The characteristics of the obtained cellulose fiber were evaluated by the method described later. The results are shown below.
  • Cellulose fiber B (hereinafter sometimes abbreviated as CF-B)
  • the beating treatment conditions were the same as CF-A except that the treatment time with the cutting blade was 2.5 hours and the treatment time with the subsequent defibrating blade was 2 hours. Obtained.
  • Cellulose fiber C (hereinafter sometimes abbreviated as CF-C)
  • CF-C Cellulose fiber C
  • the linter pulp was pulverized 8 times in total using a dry crusher manufactured by Ishikawa Research Institute, Ltd. and Atoms, to produce a fine powder of cellulose.
  • the refined pulp under the CF-A production conditions was replaced with the cellulose fine powder obtained in the above step.
  • the beating treatment, the treatment with the high-pressure homogenizer, and the hydrophobic treatment were performed in the same manner as the CF-A production method.
  • Cellulose fiber D (hereinafter abbreviated as CF-D) Acetic acid bacteria were cultured to obtain cellulose nanofibers. Cultivation is standard conditions, using the Hestin-Schramm medium (“Cellulose Dictionary” Cellulose Society, edited by Asakura Shoten, 2000, p44), with fructose as the carbon source at pH 6 at a temperature of 28 ° C for 8 days Static culture in a plastic vat 40 cm wide ⁇ 60 cm long ⁇ 15 cm high was performed several times.
  • Hestin-Schramm medium Cellulose Dictionary” Cellulose Society, edited by Asakura Shoten, 2000, p44
  • the obtained translucent gel-like material having a thickness of about 15 mm was cut into a dice and then poured into a pressure-resistant lysis tank (capacity: 2 m 3 ) and immersed in a 2% by weight sodium hydroxide aqueous solution. In this state, lysis treatment was performed at 120 ° C. for 1 hour.
  • the lysis treatment was again performed under the same conditions as above, and the washing tank (with a cellulose solid content of about 0.5% by weight) was obtained.
  • the volume was diluted with cold water at 4 ° C. in a volume of 2 m 3 ), dispersed with a disper type homomixer mounted in the tank for about 10 minutes, and then concentrated by pressure filtration.
  • the dispersion is diluted with cold water at 4 ° C. so that the solid content is about 0.5% by weight, dispersed with a homomixer for about 10 minutes, and then concentrated by pressure filtration.
  • Each step of concentration was repeated 3 times to obtain the following purified cellulose fiber D.
  • ⁇ Degree of polymerization of cellulose component> It was measured by a reduced specific viscosity method using a copper ethylenediamine solution specified in the crystalline cellulose confirmation test (3) of “14th revised Japanese pharmacopoeia” (published by Yodogawa Shoten).
  • ⁇ Crystal form and crystallinity of cellulose component> Using an X-ray diffractometer (manufactured by Rigaku Corporation, multipurpose X-ray diffractometer), a diffraction image was measured by a powder method (at room temperature), and a crystallinity was calculated by a Segal method. The crystal form was also measured from the obtained X-ray diffraction image.
  • ⁇ L / D of cellulose component The cellulose component was made into a pure water suspension at a concentration of 1% by mass, and a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”, treatment condition: 15,000 rpm ⁇ 5 minutes)
  • the water dispersion dispersed in step 1 is diluted with pure water to 0.1-0.5% by mass, cast on mica, and air-dried, which is obtained when measured with an atomic force microscope (AFM).
  • the ratio (L / D) when the major axis (L) and minor axis (D) of the resulting particle image were taken was determined and calculated as the average value of 100 to 150 particles.
  • ⁇ Average diameter of cellulose component> In a planetary mixer (trade name “5DM-03-R”, manufactured by Shinagawa Kogyo Co., Ltd., stirring blade is hook type) with a solid content of 40% by mass, the cellulose component is 126 rpm at room temperature and normal pressure for 30 minutes. Kneaded.
  • a pure water suspension having a solid content of 0.5% by mass was prepared, and a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”, treatment condition: 15,000 rpm ⁇ 5 minutes) and centrifuged (Kubota Shoji Co., Ltd., trade name “6800 type centrifuge”, rotor type RA-400 type, treatment condition: supernatant obtained by centrifugation for 10 minutes at a centrifugal force of 39200 m 2 / s.
  • a high shear homogenizer manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”, treatment condition: 15,000 rpm ⁇ 5 minutes
  • centrifuged Karla Shoji Co., Ltd., trade name “6800 type centrifuge”, rotor type RA-400 type, treatment condition: supernatant obtained by centrifugation for 10 minutes at a centrifugal force
  • the supernatant was further centrifuged at 116000 m 2 / s for 45 minutes.) Volume obtained by laser diffraction / scattering particle size distribution meter (manufactured by Horiba, Ltd., trade name “LA-910”, ultrasonic treatment for 1 minute, refractive index 1.20) using the supernatant after centrifugation. An integrated 50% particle diameter (volume average particle diameter) in the frequency particle size distribution was measured, and this value was defined as the average diameter.
  • ⁇ Zeta potential of cellulose component The cellulose component was made into a 1% by weight pure water suspension, and a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”, treatment condition: 15,000 rpm ⁇ 5 minutes)
  • the aqueous dispersion obtained by dispersing in 1 is diluted with pure water to 0.1 to 0.5% by mass, and using a zeta electrometer (manufactured by Otsuka Electronics, apparatus name ELSZ-2000ZS type, standard cell unit), Measured at 25 ° C.
  • Rosin ethylene oxide adduct Rosin-polyethylene glycol ester, manufactured by Harima Kasei Co., Ltd., trade name “REO-15”, static surface tension of 39.7 mN / m, SP value of 7.25 or more, boiling point under atmospheric pressure exceeding 100 ° C.
  • Rosin ester Rosin ester
  • Liquid paraffin (Wako Pure Chemicals, special grade, static surface tension 26.4 mN / m, boiling point> 100 ° C)
  • Tall oil fatty acid (trade name “Hartol SR-30” manufactured by Harima Kasei Co., Ltd., static surface tension of 30.2 mN / m, SP value of 7.25 or more, boiling point under atmospheric pressure of over 100 ° C.): hereinafter simply referred to as tall oil .
  • Terpine oil (trade name “Tarpineol”, manufactured by Yasuhara Chemical Co., Ltd., static surface tension of 33.2 mN / m, SP value of 7.25 or more, boiling point under atmospheric pressure exceeding 100 ° C.)
  • Glycerin static surface tension 63.4 mN / m, boiling point under normal pressure over 100 ° C.
  • Ethanol (made by Wako Pure Chemicals, special grade, static surface tension 22.3 mN / cm, SP value 12.58, boiling point 78.4 ° C.
  • Polyoxyethylene alkylphenyl ether (Brownon N-515, Aoki Yushi Kogyo Co., Ltd., static surface tension 34.8 mN / m, dynamic surface tension 40.9 mN / m, boiling point under normal pressure of over 100 ° C.): hereinafter simply alkylphenyl Called ether.
  • Polyoxyethylene styrenated phenyl ether (Buranon KTSP-16, Aoki Yushi Kogyo Co., Ltd., static surface tension 39.0 mN / m, dynamic surface tension 55.8 mN / m, boiling point under atmospheric pressure over 100 ° C.): hereinafter, simply styrene This is referred to as conjugated phenyl ether.
  • Polyoxyethylene ⁇ naphthyl ether (Buranon BN-10, Aoki Yushi Kogyo Co., Ltd., static surface tension 48.2 mN / m, dynamic surface tension 51.7 mN / m, boiling point over 100 ° C.
  • Polyoxyethylene straight chain alkyl ether (Brownon CH-315L, Aoki Yushi Kogyo Co., Ltd. Static surface tension 36.7 mN / m, dynamic surface tension 62.6 mN / m, boiling point over 100 ° C. under normal pressure): It is called a chain alkyl ether.
  • Polyoxyethylene phytosterol ether (NIKKOL BPS-20, manufactured by Nikko Chemicals Co., Ltd., static surface tension 51.3 mN / m, dynamic surface tension 65.7 mN / m, boiling point under normal pressure of more than 100 ° C.): hereinafter simply referred to as phytosterol.
  • the solid at room temperature was melted by heating above the melting point, and then the temperature was adjusted to the melting point + 5 ° C., and the surface tension was measured by the Wilhelmy method described above.
  • ⁇ P ⁇ r / 2
  • dynamic surface tension
  • ⁇ P pressure difference (maximum pressure-minimum pressure)
  • r capillary radius
  • the SP value was determined from the range of the SP value of the solvent dissolved without phase separation after 1 mL of each sample was added dropwise to 10 mL of the solvent shown in the table below at room temperature and stirred with a stirrer for 1 hour.
  • a multi-purpose test piece according to ISO294-3 was molded using an injection molding machine.
  • the polypropylene-based material it was carried out under conditions based on JIS K6921-2.
  • the polyamide-based material it was carried out under conditions based on JIS K6920-2.
  • the tensile yield strength is measured in accordance with ISO 527, and the tensile yield strength of the cellulose-containing resin composition is determined as the raw material resin.
  • the tensile yield strength increase ratio was calculated by dividing by the tensile yield strength. Since the polyamide-based material changes due to moisture absorption, it was stored in an aluminum moisture-proof bag immediately after molding to suppress moisture absorption.
  • the minimum filling pressure was measured as an index of fluidity close to actual molding. Specifically, a flat plate mold having a film gate in the width direction, having a length of 200 mm, a width of 150 mm, and a thickness changing from 3 mm to 1.5 mm at the center of the flat plate is placed on an injection molding machine having a clamping pressure of 200 tons. Mounting, cylinder temperature and mold temperature were set as follows, and the pressure at the end of the test piece was measured. At this time, the holding pressure was not switched, and the injection pressure and speed were set to only one stage.
  • Colorability was evaluated as an index of ease of coloring. In general, when a resin is colored, it is once whitened, and then a color and pigment necessary for a desired color are added and the color is adjusted. The ease of whitening greatly affects the colorability. Here, the colorability was evaluated by measuring the whiteness when a predetermined amount of titanium oxide was added.
  • a master batch containing 50% by mass of titanium oxide was dry blended at a rate of 3 parts by mass with respect to 100 parts by mass of pellets containing the cellulose component prepared in the examples, and an injection molding machine with a clamping pressure of 200 tons was used.
  • the same flat plate mold as that used for fluidity (minimum filling pressure) was used, the cylinder temperature and the mold temperature were set as follows, and molding was performed at a pressure sufficient to fill the test piece.
  • the masterbatch used at this time was a polypropylene-based masterbatch for polypropylene-based materials and a polyamide-based masterbatch for polyamide-based materials. Cylinder temperature / mold temperature Polypropylene material 210 °C / 40 °C Polyamide material 260 °C / 70 °C
  • the L * value was measured in a D65 light, 10 ° field of view using a color difference meter (CM-2002, manufactured by Konica Minolta Co., Ltd.). Evaluation was performed. L * value of flat plate Colorability 85 or more Excellent 80 or more but less than 85 Good 75 or more but less than 80 Inferior Less than 75 Bad
  • the mold temperature was set to 60 ° C., and 20 fenders were molded.
  • the obtained fender was placed on the floor, a bag containing 5 kg of sand was dropped from the height of about 50 cm onto the center of the fender, and the fender destruction status was confirmed. The number of sheets destroyed out of 20 was counted.
  • the horizontal part of the rectangular parallelepiped sample at this time is the thickness direction of the fender.
  • the sample Prior to the measurement, the sample was allowed to stand at 120 ° C. for 5 hours and annealed to obtain a measurement sample.
  • the obtained sample was measured in the measurement temperature range of ⁇ 10 ° C. to + 80 ° C. according to ISO11359-2, the expansion coefficient between 0 ° C. and 60 ° C. was calculated, and a total of 10 measurement results were obtained. It was.
  • represents a standard deviation
  • represents an arithmetic average of tensile rupture strength.
  • Examples A1-46 and Comparative Examples A1-10 Polyamide, polypropylene, acid-modified polypropylene, cellulose whisker, and cellulose fiber were mixed at the ratios shown in Tables A3 to A5, respectively, using a TEM48SS extruder manufactured by Toshiba Machine Co., Ltd., with a screw speed of 350 rpm and a discharge rate of 140 kg / hr. After melt-kneading and vacuum devolatilization, it was extruded into a strand form from a die, cooled in a water bath, and pelletized. The pellets had a cylindrical shape, a diameter of 2.3 mm, and a length of 5 mm. These were evaluated according to the evaluation method described above.
  • Example A5 Based on the polyamide-based resin, the ratio of cellulose fiber to cellulose whisker was changed.
  • Example A5 in which cellulose whisker is used in combination with Comparative Example A2 of cellulose fiber alone, the fender defect rate, fluidity (minimum filling pressure), molded piece appearance, colorability, and molded piece expansion rate are greatly improved.
  • the ratio of cellulose fiber to cellulose whisker was changed based on polypropylene resin. The same tendency as in the polyamide resin example was shown.
  • fender defect rate, fluidity (minimum filling pressure), molding It can be seen that the appearance of the piece, the colorability, and the expansion rate of the molded piece are greatly improved.
  • Examples A47 to 57 15 parts by mass of cellulose whisker, 5 parts by mass of cellulose fiber, and 5 parts by mass of organic components shown in Table A6 are mixed with 100 parts by mass of polyamide, and the screw rotation speed is measured with a TEM48SS extruder manufactured by Toshiba Machine Co., Ltd. After melt-kneading at 350 rpm and a discharge rate of 200 kg / hr and vacuum devolatilization, it was extruded from a die into a strand, cooled in a water bath, and pelletized. The pellets had a cylindrical shape, a diameter of 2.3 mm, and a length of 5 mm. These were evaluated according to the evaluation method described above.
  • Example B The same thermoplastic resin as in Example A was used.
  • CW Cellulose whisker
  • Commercially available DP pulp (average polymerization degree 1600) was cut and hydrolyzed in a 10% aqueous hydrochloric acid solution at 105 ° C. for 30 minutes. The resulting acid-insoluble residue was filtered, washed, and pH adjusted to prepare a crystalline cellulose dispersion having a solid content concentration of 14% by weight and pH 6.5. This crystalline cellulose dispersion was spray-dried to obtain a dried crystalline cellulose.
  • the supply amount was set to 10 kg / hr, and the dried product obtained above was supplied to an airflow type pulverizer (STJ-400 type, manufactured by Seishin Enterprise Co., Ltd.) and pulverized to obtain a cellulose whisker as crystalline cellulose fine powder. .
  • the characteristics of the obtained cellulose whiskers were evaluated by the method described later. The results are shown below.
  • Cellulose fiber A (hereinafter abbreviated as CF-A) After cutting the linter pulp, it is heated in hot water at 120 ° C. or higher for 3 hours using an autoclave, and the purified pulp from which the hemicellulose portion has been removed is pressed and the solid content becomes 1.5% by weight in pure water. In this way, the fiber was highly shortened and fibrillated by beating treatment, and then defibrated cellulose was obtained by defibration with a high-pressure homogenizer (operating pressure: treated 10 times at 85 MPa) at the same concentration.
  • CF-A Cellulose fiber A
  • Cellulose fiber B (hereinafter sometimes abbreviated as CF-B)
  • the beating treatment conditions were the same as CF-A except that the treatment time with the cutting blade was 2.5 hours and the treatment time with the subsequent defibrating blade was 2 hours. Obtained.
  • Cellulose fiber C (hereinafter sometimes abbreviated as CF-C) Acetic acid bacteria were cultured to obtain cellulose nanofibers. Cultivation is standard conditions, using the Hestin-Schramm medium (“Cellulose Dictionary” Cellulose Society, edited by Asakura Shoten, 2000, p44), with fructose as the carbon source at pH 6 at a temperature of 28 ° C for 8 days Static culture in a plastic vat 40 cm wide ⁇ 60 cm long ⁇ 15 cm high was performed several times.
  • Hestin-Schramm medium Cellulose Dictionary” Cellulose Society, edited by Asakura Shoten, 2000, p44
  • the obtained translucent gel-like material having a thickness of about 15 mm was cut into a dice and then poured into a pressure-resistant lysis tank (capacity: 2 m 3 ) and immersed in a 2% by weight sodium hydroxide aqueous solution. In this state, lysis treatment was performed at 120 ° C. for 1 hour.
  • the lysis treatment was again performed under the same conditions as above, and the washing tank (with a cellulose solid content of about 0.5% by weight) was obtained.
  • the volume was diluted with cold water at 4 ° C. in a volume of 2 m 3 ), dispersed with a disper type homomixer mounted in the tank for about 10 minutes, and then concentrated by pressure filtration.
  • the dispersion is diluted with cold water at 4 ° C. so that the solid content is about 0.5% by weight, dispersed with a homomixer for about 10 minutes, and then concentrated by pressure filtration.
  • Each step of concentration was repeated three times to obtain the following purified cellulose fiber C.
  • Example A ⁇ Degree of polymerization of cellulose component> Measurement was performed in the same manner as in Example A. ⁇ Crystal form and crystallinity of cellulose component> Measurement was performed in the same manner as in Example A. ⁇ L / D of cellulose component> Measurement was performed in the same manner as in Example A. ⁇ Average diameter of cellulose component> Measurement was performed in the same manner as in Example A.
  • Example A ⁇ Organic ingredients ⁇ The same organic component as in Example A was used. ⁇ Measurement of static surface tension> Measurement was performed in the same manner as in Example A. ⁇ Measurement of dynamic surface tension> Measurement was performed in the same manner as in Example A. ⁇ Measurement of SP value of organic component> Measurement was performed in the same manner as in Example A. ⁇ Tension yield strength increase ratio ⁇ Measurement was performed in the same manner as in Example A. ⁇ Coefficient of variation of tensile breaking strength ⁇ Measurement was performed in the same manner as in Example A. ⁇ Linear expansion coefficient ⁇ Measurement was performed in the same manner as in Example A.
  • Example A ⁇ Flowability (minimum filling pressure) ⁇ Measurement was performed in the same manner as in Example A. ⁇ Appearance of molded piece> Measurement was performed in the same manner as in Example A. ⁇ Molding piece expansion coefficient >> Measurement was performed in the same manner as in Example A. ⁇ Colorability ⁇ Measurement was performed in the same manner as in Example A. ⁇ Fender defect rate ⁇ Measurement was performed in the same manner as in Example A.
  • Cylinder 1 of a twin screw extruder (TEM48SS extruder manufactured by Toshiba Machine Co., Ltd.) with 13 cylinder blocks is water-cooled, cylinder 2 is set to 80 ° C, cylinder 3 is set to 150 ° C, and cylinders 4 to dies are set to 250 ° C. did.
  • the cylinders 1 to 3 are configured as a transport zone including only a transport screw, and two clockwise kneading disks (feed type kneading disks: hereinafter simply referred to as RKD) are provided on the cylinder 4 from the upstream side.
  • RKD feed type kneading disks
  • NKD neutral kneading discs
  • Cylinder 5 was used as a transfer zone, and one RKD and two subsequent NKDs were arranged in cylinder 6, cylinders 7 and 8 were used as a transfer zone, and two NKDs were arranged in cylinder 9.
  • the subsequent cylinder 10 was used as a transport zone, and two NKD and a subsequent counterclockwise screw were arranged in the cylinder 11, and the cylinders 12 and 13 were used as a transport zone.
  • the cylinder 12 was provided with a vent port at the top of the cylinder so that it could be sucked under reduced pressure, and vacuum suction was performed.
  • the discharge amount (production amount) from the extruder as the resin composition at this time was 140 kg / hr. Moreover, the screw rotation speed was changed suitably.
  • the cylinders 1 to 4 are configured as a transport zone including only a transport screw, and three RKDs are arranged on the cylinders 5 and 6 from the upstream side, respectively, and a vent port is installed at the upper part of the extruder.
  • the dispersion medium can be removed.
  • three RKDs, two NKDs, and one counterclockwise kneading disc (reverse feed type kneading disc: hereinafter may be simply referred to as LKD) are continuously applied to the cylinders 7 to 8.
  • LKD reverse feed type kneading disc
  • the cylinder 9 was used as a transport zone, and one RKD, two NKDs, and one LKD were sequentially arranged in this order in the cylinder 10 to form a melting zone, and then cylinders 11 to 13 were used as a transport zone.
  • vacuum suction was possible with the cylinder 12.
  • a resin component is supplied from the cylinder 1, and a necessary amount of a dispersion liquid in which a cellulose component and an appropriate component such as a surfactant are dispersed in a dispersion medium mainly composed of water is added from a cylinder 3 by a pump. Then, the dispersion medium was evaporated and removed by the cylinders 5 and 6.
  • the discharge amount (production amount) from the extruder as the resin composition at this time was 140 kg / hr. Moreover, the screw rotation speed was changed suitably.
  • Extruder design-3 ⁇ Using the same extruder as in Extruder Design-1, a pressure-controlled liquid injection nozzle was installed in cylinder 6, cylinder 1 was water-cooled, cylinder 2 was 150 ° C, cylinder 3 was 250 ° C, and cylinders 4-7 were 270. C., cylinders 8-13 and dice were set at 250.degree.
  • the screw design of the extruder is such that the cylinders 1 and 2 are made up of a conveying zone composed of only conveying screws, and two RKDs, NKD and LKD are arranged on the cylinder 3 from the upstream side to form a resin melting zone, and the cylinder 4 As the cylinder 2, and a screw part (hereinafter sometimes simply referred to as SR) that suddenly narrows the resin flow path called the seal ring in the cylinder 5 and a subsequent counterclockwise screw (reverse feed)
  • SR screw part
  • a type screw (which may be simply referred to as LS hereinafter) is provided as a molten resin sealing zone on the upstream side of the cylinder 6, and a plurality of NKDs are provided in the liquid addition portion of the cylinder 6 in order to increase the stirring efficiency.
  • SR and LS following the cylinder 7 were arranged in the cylinder 7 to obtain a molten resin seal on the downstream side of the liquid addition zone.
  • the cylinder 8 was a conveyance zone, the upper part of the subsequent cylinder 9 was an opening, and a devaporization zone for releasing water vapor released from the resin released beyond the seal part of the cylinder 7.
  • the cylinder 12 can perform vacuum suction. After that, it was designed to extrude in a strand shape from a die through the conveyance zone of the cylinder 13, and to be cooled with water and pelletized.
  • a resin component was supplied from the cylinder 1, and a dispersion liquid in which components such as a cellulose component and an appropriate surfactant were dispersed in a dispersion medium mainly composed of water was added from the cylinder 6.
  • the liquid pressure installed in the cylinder 6 is set so that the internal pressure between both SRs of the extruder cylinder 6 is equal to or higher than the water vapor pressure in the part (5.5 MPa which is the water vapor pressure at the cylinder set temperature 270 ° C.).
  • the opening pressure of the nozzle was set to 6.2 MPa, the dispersion liquid was fed with a pump to increase to a predetermined pressure, and liquid was added to the extruder in an amount that gave a predetermined composition.
  • the discharge amount (production amount) from the extruder as the resin composition at this time was 140 kg / hr.
  • the screw rotation speed was changed suitably.
  • Examples B1 to 27 and Comparative examples B1 to B4 Polyamide, cellulose whisker, and cellulose fiber were melt-kneaded by an extruder under the extrusion conditions and screw rotation speed described in the table so as to have the ratios shown in Table B3-6, and devolatilized by vacuum suction with a cylinder 12. Then, it extruded from the die
  • Examples B28 to 32 and Comparative examples B5 to 6 Polypropylene, acid-modified polypropylene, cellulose whisker, and cellulose fiber are melt-kneaded in an extruder under the extrusion conditions and screw rotation speed so as to have the ratios shown in Table B7, and devolatilized by vacuum suction with a cylinder 12, and then dies. Were extruded into strands, cooled in a water bath, and pelletized. The pellets had a cylindrical shape, a diameter of 2.6 mm, and a length of 5.1 mm.
  • the cylinder temperature was changed as follows.
  • the cylinders 1 to 6 were not changed, the cylinder 7 was set to 160 ° C., the cylinders 8 to 13 and the die were set to 180 ° C.
  • Examples B33 to 43 5 parts by mass of CW, 5 parts by mass of CF-B, and 5 parts by mass of organic components shown in Table B8 are mixed with 100 parts by mass of polyamide, and extruded with a TEM48SS extruder manufactured by Toshiba Machine Co., Ltd. The mixture was melt-kneaded at machine design-1, screw rotation speed 350 rpm, discharge rate 200 kg / hr, vacuum devolatilized, extruded into a strand from a die, cooled in a water bath, and pelletized. The pellets had a cylindrical shape, a diameter of 2.3 mm, and a length of 5 mm. These were evaluated according to the evaluation method described above.
  • ⁇ L / D of cellulose particles Cellulose (wet cake after hydrolysis) is made into a pure water suspension at a concentration of 1% by mass, and a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”, treatment condition: rotational speed 15,000 rpm ⁇ 5 minutes), an aqueous dispersion diluted to 0.1 to 0.5% by mass with pure water, cast on mica, and air-dried is an atomic force microscope (AFM). The ratio (L / D) when the length (L) and the diameter (D) of the particle image obtained at the time of measurement was obtained, and the average value of 100 to 150 particles was calculated.
  • AFM atomic force microscope
  • a pure water suspension having a solid content of 0.5% by mass was prepared, and a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”, treatment condition: 15,000 rpm ⁇ 5 minutes), centrifuged (Kubota Shoji Co., Ltd., trade name “6800 type centrifuge”, rotor type RA-400 type, processing conditions: supernatant centrifuged at 39200 m 2 / s for 10 minutes The supernatant was further centrifuged at 116000 m 2 / s for 45 minutes.) The solid content remaining in the supernatant after centrifugation was measured by the absolutely dry method, and the mass percentage was calculated.
  • a high shear homogenizer manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”, treatment condition: 15,000 rpm ⁇ 5 minutes
  • centrifuged Kubota Shoji Co., Ltd
  • a pure water suspension having a solid content of 0.5% by mass was prepared, and a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”, treatment condition: 15,000 rpm ⁇ 5 minutes), centrifuged (Kubota Shoji Co., Ltd., trade name “6800 type centrifuge”, rotor type RA-400 type, processing conditions: supernatant centrifuged at 39200 m 2 / s for 10 minutes The supernatant was further centrifuged at 116000 m 2 / s for 45 minutes.) Volume obtained by laser diffraction / scattering particle size distribution meter (manufactured by Horiba, Ltd., trade name “LA-910”, ultrasonic treatment for 1 minute, refractive index 1.20) using the supernatant after centrifugation. The 50% cumulative particle size (volume average particle size) in the frequency particle size distribution was measured.
  • Example A ⁇ Zeta potential of cellulose> Measurement was performed in the same manner as in Example A.
  • Bonding rate (%) [1-([residue mass (g)] / [organic component amount in cellulose preparation (g)])] ⁇ 100
  • ⁇ MFR Melt Flow Rate
  • the pellet obtained from the strand of the resin composition was measured at 230 ° C. under a load of 2.16 kgf according to the method of ISO 1133 A method.
  • the measured value of MFR of each resin composition was compared with the measured value of MFR of PP single pellet (manufactured by Sun Allomer Co., Ltd., product name “Sun Allomer PX600N”, hereinafter the same), and evaluated according to the following criteria.
  • the unit was g / 10 minutes.
  • MFR of the pellet of PP alone was 5.8 g / 10 min.
  • B 50% or more improvement over PP alone
  • C 20% improvement over PP alone
  • D + 10% or less over PP alone (no effect)
  • ⁇ Linear expansion coefficient> The pellets obtained from the strands of the resin composition were measured in the range of 0 to 60 ° C. according to the method of JIS K7197 (TMA method: thermomechanical analysis method), and evaluated based on the measured values based on the following criteria. (PP alone was 148 ppm / K).
  • Examples C1 to 28 and Comparative Example C A: Less than 120 ppm / K B: 120 ppm / K or more, less than 130 ppm / K C: 130 ppm / K or more, less than 140 ppm / K D: 140 to 150 ppm / K (About Examples C29 to 41) A: Less than 40 ppm / K B: 40 ppm / K or more, less than 50 ppm / K C: 50 ppm / K or more, less than 60 ppm / K D: 60 to 70 ppm / K
  • ⁇ Tensile strength> Tensile strength was measured using a universal material testing machine (Autograph AG-E type, manufactured by Shimadzu Corporation) using JIS K7127 standard dumbbell-shaped test pieces obtained in each Example and Comparative Example. The test temperature was room temperature, the crosshead speed was measured at 50 mm / min, and the yield value was determined as the tensile strength from the obtained stress-strain curve. The measured value of the tensile strength of each resin composition was compared with the measured value of the tensile strength of the PP pellet alone and evaluated according to the following criteria. The tensile strength of PP alone pellets was 33 MPa. A: 130% or more improvement over PP alone B: 120% or more improvement over PP alone C: 110% or more improvement over PP alone D: Less than 110% over PP alone
  • ⁇ Tension stretch> The breaking distance was determined as tensile elongation from the stress-strain curve obtained by the above-described measurement of tensile strength.
  • the measured value of the tensile strength of each resin composition was compared with the measured value of the tensile elongation of the pellet of PP alone, and evaluated according to the following criteria.
  • the tensile elongation of the pellet of PP alone was 20%.
  • C 130% or more improvement with respect to PP alone
  • D Less than 110% with respect to PP alone
  • Example C1 After shredding commercially available DP pulp (average polymerization degree 1600), it was hydrolyzed in 2.5 mol / L hydrochloric acid at 105 ° C. for 15 minutes, then washed with water and filtered to form a wet cake having a solid content of 50% by mass.
  • Cellulose was prepared (average polymerization degree 220, crystal form I, crystallinity 78%, particle L / D1.6, colloidal cellulose content 55 mass%, particle diameter (accumulated volume 50% particle diameter, the same applies hereinafter). ) 0.2 ⁇ m, zeta potential ⁇ 20 mV).
  • the wet cake-like cellulose is singly sealed in a closed planetary mixer (trade name “ACM-5LVT” manufactured by Kodaira Seisakusho Co., Ltd., stirring blade is hook type) at 70 rpm for 20 minutes at room temperature and normal pressure.
  • a closed planetary mixer trade name “ACM-5LVT” manufactured by Kodaira Seisakusho Co., Ltd., stirring blade is hook type
  • rosin ethylene oxide adduct (rosin-polyethylene glycol ester, manufactured by Harima Chemicals Co., Ltd., trade name “REO-15”, static surface tension 39.7 mN / m, dynamic surface tension 48.1 mN / M, SP value of 7.25 or more, boiling point under atmospheric pressure of more than 100 ° C.) is added so that the cellulose / rosin ethylene oxide adduct becomes 80/20 (mass ratio), and milled at room temperature and atmospheric pressure at 70 rpm for 60 minutes.
  • rosin ethylene oxide adduct Rosin-polyethylene glycol ester, manufactured by Harima Chemicals Co., Ltd., trade name “REO-15”, static surface tension 39.7 mN / m, dynamic surface tension 48.1 mN / M, SP value of 7.25 or more, boiling point under atmospheric pressure of more than 100 ° C.
  • the strand was cut to a length of 1 cm at room temperature, 1 g was weighed, and a thin film having a thickness of 100 ⁇ m was obtained by hot pressing (200 ° C.). Also, a JIS K7127 standard dumbbell-shaped test piece was prepared from a resin obtained by melting pellets obtained by cutting the strands (strands cut to a length of 1 cm) at 200 ° C. with an attached injection molding machine. Used for. Each evaluation was performed using the obtained thin film, pellet, and dumbbell-shaped test piece. The results are shown in Table C2.
  • Example C2 Cellulose preparation B was obtained by the same method as Example C1 except that the blending ratio of the cellulose / rosin ethylene oxide adduct was 95/5 (mass ratio) in the production method of the cellulose preparation of Example C1 (moisture content) 2% by mass, organic component binding rate of 5% or less). Using this cellulose preparation B, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C2.
  • Example C3 Cellulose preparation C was obtained by the same method as in Example C1 except that the blending ratio of cellulose / rosin ethylene oxide adduct was 50/50 (mass ratio) in the production method of the cellulose preparation of Example C1 (moisture content) 2% by mass, organic component binding rate of 5% or less). Using this cellulose preparation C, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C2.
  • Example C4 Cellulose preparation D was obtained by the same method as Example C1 except that the blending ratio of cellulose / rosin ethylene oxide adduct was 99/1 (mass ratio) in the production method of the cellulose preparation of Example C1 (moisture content) 2% by mass, organic component binding rate of 5% or less). Using this cellulose preparation D, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C2.
  • Example C5 In the production method of the cellulose preparation of Example C1, as an organic component, liquid paraffin (manufactured by Wako Pure Chemicals, special grade, static surface tension 26.4 mN / m (in addition, since liquid paraffin was phase-separated with water, dynamic surface tension
  • the cellulose preparation E was obtained by the same method as in Example C1 except that the boiling point under normal pressure was over 100 ° C.) (2% by mass of water, organic component binding rate) 5% or less). Using this cellulose preparation E, a resin composition was produced in the same manner as in Example C1, and evaluated. The results are shown in Table C2.
  • Example C6 In the production method of the cellulose preparation of Example C1, as an organic component, tall oil fatty acid (trade name “Hartol SR-30” manufactured by Harima Chemical Co., Ltd.), static surface tension of 30.2 mN / m (note that tall oil fatty acid is water and Since the phases were separated, the dynamic surface tension was the same as that of water.)) The cellulose preparation was prepared in the same manner as in Example C1, except that the SP value was 7.25 or more and the boiling point under atmospheric pressure was over 100 ° C. F was obtained (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation F, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C2.
  • Example C7 In the production method of the cellulose preparation of Example C1, as an organic component, terpine oil (trade name “Tarpineol” manufactured by Yashara Chemical Co., Ltd., static surface tension 33.2 mN / m (because terpin oil was phase-separated with water, Surface tension became the same value as water.), Cellulose preparation G was obtained by the same method as in Example C1 except that SP value of 7.25 or more and boiling point under atmospheric pressure was over 100 ° C.) 2% by mass, organic component binding rate of 5% or less). Using this cellulose preparation G, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C3.
  • terpine oil trade name “Tarpineol” manufactured by Yashara Chemical Co., Ltd., static surface tension 33.2 mN / m (because terpin oil was phase-separated with water, Surface tension became the same value as water.
  • Cellulose preparation G was obtained by the same method
  • Example C8 In the production method of the cellulose preparation of Example C1, rosin ethylene oxide adduct (rosin-polyethylene glycol ester, manufactured by Harima Kasei Co., Ltd., trade name “REO-15”, static surface tension of 39.7 mN / m as an organic component.
  • rosin ethylene oxide adduct rosin-polyethylene glycol ester, manufactured by Harima Kasei Co., Ltd., trade name “REO-15”
  • Example C9 The same procedure as in Example C1 was carried out except that glycerin (static surface tension 63.4 mN / m, dynamic surface tension 71.9 mN / m, boiling point under normal pressure, higher than 100 ° C.) was used as the organic component.
  • Cellulose preparation I was obtained in the same manner as in Example C1 (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation I, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C3.
  • Example C10 After shredding commercially available DP pulp (average polymerization degree 1600), it was hydrolyzed in 2.5 mol / L hydrochloric acid at 70 ° C. for 15 minutes, then washed with water and filtered to form a wet cake with a solid content of 50% by mass.
  • Cellulose (average polymerization degree 490, crystal form I, crystallinity 73%, particle L / D1.4, colloidal cellulose content 50 mass%, particle diameter 0.3 ⁇ m) was prepared.
  • a cellulose preparation J was obtained in the same manner as in Example C1 except that the obtained wet cake-like cellulose was used as cellulose (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation J, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C3.
  • Example C11 After shredding commercially available bagasse pulp (average degree of polymerization 1100), it was hydrolyzed in 1.5 mol / L hydrochloric acid at 70 ° C. for 15 minutes, filtered, and wet cake-like cellulose having a solid content of 50 mass% (average Polymerization degree 750, crystal form I type, crystallinity 69%, particle L / D1.3, colloidal cellulose content 40% by mass, particle diameter 0.5 ⁇ m) were prepared.
  • a cellulose preparation K was obtained in the same manner as in Example C1 except that the obtained wet cake-like cellulose was used as cellulose (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation K, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C3.
  • Example C12 After chopping commercially available KP pulp (average polymerization degree 1600), hydrolyzing in 2.5 mol / L hydrochloric acid at 120 ° C. for 50 minutes, followed by washing with water and filtration. Diluted, treated with a high shear homogenizer (manufactured by PRIMIX, trade name “TK homogenizer”, 8000 rpm, 15 minutes), further filtered, and wet cake-like cellulose having a solid content of 50 mass% (average polymerization degree 110, crystal form) Type I, 85% crystallinity, particle L / D 5.5, colloidal cellulose content 80% by mass, particle size 0.15 ⁇ m).
  • a high shear homogenizer manufactured by PRIMIX, trade name “TK homogenizer”, 8000 rpm, 15 minutes
  • a cellulose preparation L was obtained in the same manner as in Example C1 except that the obtained wet cake-like cellulose was used as cellulose (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation L, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C4.
  • Example C13 Commercially available DP pulp (average polymerization degree 1620) was dissolved at ⁇ 5 ° C. in a 60 mass% sulfuric acid aqueous solution so that the cellulose concentration was 4% by weight to obtain a cellulose dope.
  • the cellulose dope was poured into 2.5 times by weight of water (5 ° C.) with stirring, and the cellulose was aggregated in a floc form to obtain a suspension.
  • This suspension is hydrolyzed for 10 minutes after reaching a temperature of 80 ° C., and repeatedly washed with water and dehydrated until the pH of the supernatant reaches 4 or more, and a translucent white of paste-like cellulose particles having a cellulose concentration of 6% by weight. A paste was obtained.
  • a high shear homogenizer Excel Auto homogenizer
  • This gel was mixed with a blender at a rotational speed of 10,000 rpm for 5 minutes. This dispersion was concentrated under reduced pressure with stirring to give a cellulose floc having a solid content of 50% by mass (average polymerization degree 80, crystal form II, crystallinity 28%, particle L / D0.1, colloidal cellulose content). 80% by mass and a particle diameter of 0.1 ⁇ m) were obtained.
  • a cellulose preparation M was obtained by the same method as in Example C1 except that this cellulose was used (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation M, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C4.
  • Example C1 In the production method of the cellulose preparation of Example C1, a resin composition of PP was prepared in the same manner as in Example C1, using wet cake-like cellulose (cellulose preparation N) having a cellulose concentration of 50% by mass without adding an organic component. ,evaluated. The results are shown in Table C4.
  • Example C2 In the production method of the cellulose preparation of Example C1, as an organic component, ethanol (manufactured by Wako Pure Chemicals, special grade, static surface tension 22.3 mN / m, dynamic surface tension 54.9 mN / m, SP value 12.58, Cellulose preparation O was obtained using a normal pressure boiling point of 78.4 ° C. so that the cellulose / organic component blending ratio was 80/20. Using this cellulose preparation O, a PP resin composition was prepared and evaluated in the same manner as in Example C1. The results are shown in Table C4.
  • the obtained slurry was mixed with a bead mill (manufactured by Kotobuki Giken Kogyo Co., Ltd., trade name “Apex Mill AM-1”), and zirconia beads having a diameter of 1 mm (filling rate: 70% by volume) as a medium, with a stirring blade rotating speed of 2500 rpm,
  • the cellulose dispersion was obtained by pulverizing twice by passing the cellulose aqueous dispersion at a feed rate of 0.4 L / min.
  • This dispersion was concentrated under reduced pressure with stirring, and a cellulose floc having an average solid content of 50% by mass (average polymerization degree 1050, crystal form I, crystallinity 69%, particle L / D15000, colloidal cellulose content was measured. And a particle diameter of 550 ⁇ m) was obtained.
  • This cellulose floc and rosin ethylene oxide adduct (rosin-polyethylene glycol ester, manufactured by Harima Kasei Co., Ltd., trade name “REO-15”, static surface tension 39.7 mN / m, dynamic surface tension 48.1 mN / m , SP value of 7.25 or more, boiling point under atmospheric pressure of more than 100 ° C.) was added to water so that the cellulose / rosin ethylene oxide adduct was 80/20 (mass ratio), and the dispersion was adjusted (cellulose concentration of 0.2%). 5% by mass). This was designated as Cellulose Dispersion P. Using this cellulose dispersion P, a PP resin composition was prepared and evaluated in the same manner as in Example C1. The results are shown in Table C4.
  • Example C4 In the method of Example C1, when preparing the resin composition, cellulose was not added, and rosin ethylene oxide adduct (rosin-polyethylene glycol ester, manufactured by Harima Chemicals Co., Ltd., trade name “REO-15” was used as an organic component. 2.5 parts by mass of a static surface tension of 39.7 mN / m, a dynamic surface tension of 48.1 mN / m, an SP value of 7.25 or more, and a boiling point of over 100 ° C.
  • rosin ethylene oxide adduct Rosin-polyethylene glycol ester, manufactured by Harima Chemicals Co., Ltd., trade name “REO-15” was used as an organic component.
  • Comparative Example C4 was obtained by the same operation as Example C1 without blending cellulose and blending the organic component alone, but with respect to PP alone, the fluidity and dimensions. No significant blending effects of stability, strength and elongation were observed.
  • cellulose preparations A to C comprising cellulose particles kneaded with an organic component having a static surface tension of 20 mN / m or more and a boiling point higher than that of water and covering at least a part of the particle surface with the organic component.
  • the resin compositions of Examples C1 to 13 containing M the dispersibility of the cellulose particles in the resin is good, and both the MFR and tensile elongation of the obtained resin composition are improved compared to those of PP alone. It had been.
  • the resin compositions of Examples C1 to 12 in which cellulose preparations A to L in which type I crystalline cellulose particles were coated with an organic component were blended were also improved in linear expansion coefficient and tensile strength as compared with PP alone.
  • a hydrophobic group and a hydrophilic group are included.
  • Cellulose preparations A, F, G, and H (Example C1, 6-8) coated with organic components having both have better dispersibility in the resin, and in particular, linear expansion coefficient, tensile strength and tensile strength. The elongation was better.
  • Example C14 The cellulose preparation A of Example C1 was used, and the resin composition was changed to 12.5 parts by weight of the cellulose preparation, 0.1 parts by weight of the maleic acid-modified PP, and the remaining 100 parts by weight of polypropylene. Using a small kneader, resin compositions were similarly prepared and evaluated. The results are shown in Table C5.
  • Example C15 Using cellulose preparation A of Example C1, as the resin composition, 12.5 parts by weight of the cellulose preparation, 0.5 parts by weight of maleic acid-modified PP, and the remaining amount of PP in the total amount of 100 parts by weight of cellulose in the preparation The resin composition was similarly prepared and evaluated using a small kneader with the mass ratio of / maleic acid-modified PP changed to 95/5. The results are shown in Table C5.
  • Example C16 Using the cellulose preparation A of Example C1, and changing the resin composition to 12.5 parts by weight of the cellulose preparation, 1.1 parts by weight of the maleic acid-modified PP, and adding PP as the rest to 100 parts by weight in total, A resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C5.
  • Example C17 Using the cellulose preparation A of Example C1, and changing the resin composition to 12.5 parts by weight of the cellulose preparation, 1.8 parts by weight of maleic acid-modified PP, and adding PP as the rest to 100 parts by weight in total, A resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C5.
  • Example C18 Using the cellulose preparation A of Example C1, and changing the resin composition to 12.5 parts by weight of the cellulose preparation, 2.5 parts by weight of maleic acid-modified PP, and adding PP as the rest to 100 parts by weight in total, A resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C5.
  • Example C19 Using the cellulose preparation A of Example C1, and changing the resin composition to 12.5 parts by weight of the cellulose preparation, 8.5 parts by weight of maleic acid-modified PP, and PP as the rest, the total amount is changed to 100 parts by weight.
  • a resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C6.
  • Example C20 In the resin composition composition of Example C1, the blending amount of the cellulose preparation A was fixed to 12.5 parts by mass, the blending amount of the maleic acid-modified PP was fixed to 3 parts by mass, and a part of the PP was replaced. 0.1 parts by mass of Amilan CM1007) manufactured by Co., Ltd. was blended, and a resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C6.
  • Example C21 In the resin composition composition of Example C1, the blending amount of cellulose preparation A was fixed at 12.5 parts by mass, the blending amount of maleic acid-modified PP was fixed at 3.0 parts by mass, and a part of PP was replaced to obtain polyamide 6 In a similar manner, a resin composition was prepared and evaluated using a small kneader. The results are shown in Table C6.
  • Example C22 In the resin composition composition of Example C1, the blending amount of cellulose preparation A was fixed at 12.5 parts by mass, the blending amount of maleic acid-modified PP was fixed at 3.0 parts by mass, and a part of PP was replaced to obtain polyamide 6 The resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C6.
  • Example C23 In the resin composition composition of Example C1, the blending amount of cellulose preparation A was fixed at 12.5 parts by mass, the blending amount of maleic acid-modified PP was fixed at 3.0 parts by mass, and a part of PP was replaced to obtain polyamide 6 The resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C6.
  • Example C24 In the resin composition composition of Example C1, the blending amount of cellulose preparation A was fixed at 12.5 parts by mass, the blending amount of maleic acid-modified PP was fixed at 3.0 parts by mass, and a part of PP was replaced to obtain polyamide 6 The resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C7.
  • Example C25 In the resin composition composition of Example C1, the blending amount of cellulose preparation A was fixed at 12.5 parts by mass, the blending amount of maleic acid-modified PP was fixed at 3.0 parts by mass, and a part of PP was replaced to obtain polyamide 6 The resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C7.
  • Example C26 In the resin composition composition of Example C1, the blending amount of cellulose preparation A was fixed at 12.5 parts by mass, the blending amount of maleic acid-modified PP was fixed at 3.0 parts by mass, and a part of PP was replaced to obtain polyamide 6 20.0 parts by mass, and a resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C7.
  • Example C27 In the resin composition composition of Example C1, the blending amount of cellulose preparation A was fixed at 12.5 parts by mass, the blending amount of maleic acid-modified PP was fixed at 3.0 parts by mass, and a part of PP was replaced to obtain polyamide 6 30.0 parts by mass of this was blended, and a resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C7.
  • Example C28 In the resin composition composition of Example C1, the blending amount of cellulose preparation A was fixed at 12.5 parts by mass, the blending amount of maleic acid-modified PP was fixed at 3.0 parts by mass, and a part of PP was replaced to obtain polyamide 6 75.0 parts by mass of the resin composition was similarly prepared and evaluated using a small kneader. The results are shown in Table C7.
  • Example C29 In the production method of the cellulose preparation of Example C2, polyoxyethylene alkylphenyl ether (Brownon N-515, Aoki Yushi Kogyo Co., Ltd., static surface tension 34.8 mN / m, dynamic surface tension 40.9 mN / m as an organic component)
  • the cellulose preparation Q was obtained in the same manner as in Example C2 except that the boiling point was above 100 ° C. under normal pressure) (water content 2% by mass, organic component binding rate 5% or less).
  • a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C8.
  • Example C30 In the production method of the cellulose preparation of Example C2, as an organic component, polyoxyethylene styrenated phenyl ether (Brownon KTSP-16 manufactured by Aoki Yushi Kogyo Co., Ltd., static surface tension 39.0 mN / m, dynamic surface tension 55.8 mN / m) m, a cellulose preparation R was obtained by the same method as in Example C2 except that the boiling point was over 100 ° C. under normal pressure (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation R, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C8.
  • polyoxyethylene styrenated phenyl ether (Brownon KTSP-16 manufactured by Aoki Yushi Kogyo Co., Ltd., static surface tension 39.0 mN / m, dynamic surface tension 55.8 mN / m) m
  • Example C31 In the production method of the cellulose preparation of Example C2, polyoxyethylene ⁇ -naphthyl ether (Brownon BN-10, Aoki Yushi Kogyo Co., Ltd., static surface tension 48.2 mN / m, dynamic surface tension 51.7 mN / m as an organic component) A cellulose preparation S was obtained in the same manner as in Example C2 except that the boiling point under atmospheric pressure was over 100 ° C. (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation S, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C8.
  • Example C32 In the method for producing the cellulose preparation of Example C2, polyoxyethylene bisphenol A ether (Brownon BEO-17.5 manufactured by Aoki Yushi Kogyo Co., Ltd., static surface tension 49.5 mN / m, dynamic surface tension 53.1 mN was used as the organic component.
  • Cellulose preparation T was obtained by the same method as in Example C2 except that (/ m, boiling point under atmospheric pressure> 100 ° C.) was used (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation T, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C8.
  • Example C33 In the method for producing the cellulose preparation of Example C2, polyoxyethylene hydrogenated castor oil ether (Brownon RCW-20 manufactured by Aoki Oil & Fat Co., Ltd., static surface tension 42.4 mN / m, dynamic surface tension 52.9 mN / m as an organic component)
  • the cellulose preparation U was obtained in the same manner as in Example C2 except that the boiling point under atmospheric pressure was over 100 ° C. (water content 2% by mass, organic component binding rate 5% or less).
  • a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C8.
  • Example C34 In the method for producing the cellulose preparation of Example C2, polyoxyethylene linear alkyl ether (Brownon CH-315L manufactured by Aoki Yushi Kogyo Co., Ltd., static surface tension 36.7 mN / m, dynamic surface tension 62.6 mN / m, a boiling point of more than 100 ° C. under normal pressure) was used to obtain a cellulose preparation V in the same manner as in Example C2 (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation V, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C8.
  • Example C35 In the production method of the cellulose preparation of Example C2, as an organic component, polyoxyethylene phytosterol ether (Nikko Chemicals NIKKOL BPS-20, static surface tension 51.3 mN / m, dynamic surface tension 65.7 mN / m, ordinary A cellulose preparation Q was obtained in the same manner as in Example C2 except that the rolling boiling point was over 100 ° C. (water content 2% by mass, organic component binding rate 5% or less). Using this cellulose preparation W, a resin composition was prepared in the same manner as in Example C1, and evaluated. The results are shown in Table C8.
  • PA6 polyamide 6
  • Xplore product name “Xplore” manufactured by Xplore Instruments”.
  • dumbbell-shaped test pieces of JIS K7127 standard were prepared from a resin obtained by melting pellets obtained from the strands (strands cut into 1 cm length) at 260 ° C. with an attached injection molding machine, and evaluated each. Used for. Each evaluation was performed using the obtained thin film, pellet, and dumbbell-shaped test piece. The results are shown in Table C8.
  • Example C37 In the production method of the cellulose preparation of Example C1, polyoxyethylene alkylphenyl ether (Brownon N-515, Aoki Yushi Kogyo Co., Ltd., static surface tension 34.8 mN / m, dynamic surface tension 40.9 mN / m as an organic component) Cellulose preparation X was obtained in the same manner as in Example C1, except that the boiling point under atmospheric pressure was over 100 ° C.). Using the obtained cellulose preparation X, a resin composition was prepared and evaluated in the same manner as in Example C38. The results are shown in Table C8.
  • Example C38 In the production method of the cellulose preparation of Example C1, polyoxyethylene styrenated phenyl ether (Brownon KTSP-16 manufactured by Aoki Yushi Kogyo Co., Ltd., static surface tension 39.0 mN / m, dynamic surface tension 55.8 mN / m, a boiling point of more than 100 ° C. under normal pressure) was used to obtain a cellulose preparation Y in the same manner as in Example C1. Using the obtained cellulose preparation X, a resin composition was prepared and evaluated in the same manner as in Example C38. The results are shown in Table C8.
  • Example C39 In the production method of the cellulose preparation of Example C1, polyoxyethylene ⁇ naphthyl ether (Brownon BN-10, Aoki Yushi Kogyo Co., Ltd., static surface tension 48.2 mN / m, dynamic surface tension 51.7 mN / m as an organic component.
  • Cellulose preparation Z was obtained in the same manner as in Example C1, except that the boiling point under atmospheric pressure was over 100 ° C.).
  • a resin composition was prepared and evaluated in the same manner as in Example C38. The results are shown in Table C8.
  • Example C40 In the production method of the cellulose preparation of Example C1, polyoxyethylene bisphenol A ether (Brownon BEO-17.5 manufactured by Aoki Yushi Kogyo Co., Ltd., static surface tension 49.5 mN / m, dynamic surface tension 53.1 mN was used as the organic component.
  • Cellulose preparation ⁇ was obtained in the same manner as in Example C1, except that / m, the boiling point under atmospheric pressure was over 100 ° C).
  • a resin composition was prepared and evaluated in the same manner as in Example C38. The results are shown in Table C8.
  • Example C41 In the production method of the cellulose preparation of Example C1, as an organic component, polyoxyethylene hydrogenated castor oil ether (Brownon RCW-20 manufactured by Aoki Oil & Fat Co., Ltd., static surface tension 42.4 mN / m, dynamic surface tension 52.9 mN / m) Cellulose preparation ⁇ was obtained in the same manner as in Example C1, except that the boiling point under atmospheric pressure was over 100 ° C). Using the obtained cellulose preparation X, a resin composition was prepared and evaluated in the same manner as in Example C38. The results are shown in Table C8.
  • the resin composition according to one aspect (particularly aspects A and B) of the present disclosure is suitably used, for example, in the field of automotive exterior material applications that are large parts that require stable performance as well as high strength and low linear expansion. Available.
  • the cellulose preparation and the resin composition according to another aspect of the present disclosure (particularly aspect C) have a low coefficient of linear expansion, and are excellent in strength and elongation at the time of tensile and bending deformation. It can be suitably applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示は、良好な流動性及び機械特性を示す樹脂組成物、該樹脂組成物を与えるセルロース製剤、並びに該樹脂組成物より形成される樹脂ペレット及び樹脂成形体に関する。一態様において、樹脂組成物は熱可塑性樹脂とセルロース成分とを含み、該セルロース成分はセルロースウィスカーとセルロースファイバーとを含む。一態様において、樹脂組成物は熱可塑性樹脂とセルロース成分とを含み、該樹脂組成物の線膨張係数の変動係数が15%以下であり、該樹脂組成物の引張破断強度の変動係数が10%以下である。一態様において、セルロース製剤はセルロース粒子と有機成分とを含む。一態様において、樹脂組成物は熱可塑性樹脂、セルロース粒子、有機成分及び界面形成剤を含む。一態様においては該有機成分が静的表面張力20mN/m以上及び水よりも高い沸点を有する。

Description

セルロース含有樹脂組成物及びセルロース製剤
 本開示は、セルロースを含有する樹脂組成物及びセルロース製剤に関する。
 熱可塑性樹脂は、軽く、加工特性に優れるため、自動車部材、電気・電子部材、事務機器ハウジグ、精密部品等の多方面に広く使用されている。しかしながら、樹脂単体では、機械特性、寸法安定性等が不十分である場合が多く、樹脂と各種無機材料とのコンポジットが一般的に用いられている。
 熱可塑性樹脂をガラス繊維、炭素繊維、タルク、クレイなどの無機充填剤である強化材料で強化した樹脂組成物は、比重が高いため、当該樹脂組成物を用いて得られる樹脂成形体の重量が大きくなるという課題がある。
 近年、樹脂の新たな強化材料として、セルロースが用いられるようになってきている。
 セルロースは、樹木を原料とするもののほか、麻・綿花・ケナフ・キャッサバ等を原料とするものなど多岐にわたっている。さらには、ナタデココに代表されるようなバクテリアセルロースなども知られている。これら原料である天然資源は、地球上に大量に存在し、その有効利用のために、セルロースを樹脂中のフィラーとして活用する技術が注目を浴びている。特に、セルロースナノファイバー(以下、CNFと称することがある)や、セルロースナノクリスタル(以下、CNCと称することがある)といったセルロースミクロフィブリルが、注目されている。
 特に、セルロースI型結晶から構成されるミクロフィブリルは、機械的特性に優れ、アラミド繊維に匹敵する高い弾性率と、ガラスファイバー以下の線膨張係数とを有することが知られており、更に、真密度が1.56g/cm3であり、熱可塑性樹脂の補強材として汎用されるガラス(密度2.4~2.6g/cm3)やタルク(密度2.7g/cm3)と比べて圧倒的に軽いという特徴がある。そのため、これらミクロフィブリルを樹脂中に微分散し、ネットワークを形成できれば、優れた機械的特性を樹脂に付与できるものと期待されるため、種々の検討がなされている。
 例えば、特許文献1~4には、セルロースナノファイバーと呼ばれる微細な繊維状セルロースを熱可塑性樹脂中に分散させる技術が記載されている。
 CNFは、パルプ等を原料とし、ヘミセルロース部分を加水分解して脆弱化したのち、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミルやディスクミルといった粉砕法により解繊することにより得られるものであり、水中において微細なナノ分散と呼ばれるレベルの高度の分散状態やネットワークを形成している。
 また、例えば、特許文献5には、セルロース粒子の樹脂中での分散性を改善するために、結晶セルロースの微粉末を分散剤と熱可塑性樹脂に分散させる技術が記載されている。また、特許文献6には、ロジン系樹脂により熱可塑性樹脂と植物性繊維との親和性を高める技術が記載されている。特許文献7には、油脂成分、シランカップリング剤等を配合することで、ポリオレフィン中にセルロース繊維ば均一分散する技術が記載されている。特許文献8には、ロジン系化合物をセルロース表面へ修飾することで、セルロース複合材料の耐水性を改善する技術が記載されている。特許文献9及び10には、特定のHLB値のノニオン界面活性剤を配合することで、熱可塑性樹脂へのCNFの分散性を改善する技術が記載されている。また、特許文献11には、樹脂親和セグメントとセルロース親和セグメントとを有する共重合体の分散剤を配合することでセルロースの樹脂中での分散性を改善する技術が記載されている。
国際公開第2011/058678号 国際公開第2016/199923号 特表平9-505329号公報 特開2008-001728号公報 特開2006-282923号公報 特開2002-294080号公報 特開2000-264975号公報 特開2014-129518号公報 国際公開第2013/122171号 国際公開第2012/111408号 国際公開第2014/133019号
 樹脂にこれらセルロース系物質を配合するためには、セルロース系物質を乾燥し粉末化する必要がある。しかしながら、セルロース系物質は水と分離される過程で微分散状態から強固な凝集体となり、再分散しにくいといった課題がある。この凝集体の凝集力はセルロースが持つ水酸基による水素結合により発現されており、非常に強固であるといわれている。そのため、セルロース系物質の性能を充分に発現させるためには、例えば、CNFを例に挙げると、CNFに強いせん断等を与えて、ナノメートルサイズ(すなわち1μm未満)の繊維径まで解繊する必要がある。
 しかしながら、解繊自体を充分に実現できても、解繊された状態を樹脂中で維持することは困難である。そして、セルロースファイバーを樹脂組成物中に充填して微分散させた場合、樹脂組成物の強度を発現するに至るよりも少量の充填で、樹脂組成物が大幅な溶融粘度上昇を引き起こしてしまう。大幅な溶融粘度の上昇は、成形加工、特に精密な構造を有する材料の成形加工ができないといった深刻な課題に直結し、仮に成形できたとしても意図したほどの機械的特性を発現できないという問題を招来する。
 つまり、現時点において、樹脂成形体の所望の機械的特性を発現するために充分な量の微細なセルロースを樹脂組成物中で微分散させ、かつ実成形に耐えうるほどの充分な流動性を確保する技術は存在しない。
 また、更には、セルロース系物質の樹脂組成物中での分散均一性が充分ではないことは、成形体の部位による機械的強度の違いを招くこととなり、得られる機械的特性は、非常にバラツキが大きなものとなる。この場合、成形体が、部分的に強度欠陥を有するものとなり、実製品としての信頼性を大幅に毀損してしまう。そのため、セルロース系物質は、優れた特性を持ちつつも、実際には、実用に供されていないのが実情である。
 また、分散均一性を高める目的で実施されているこれまでの技術においても、その改善は充分とは言えない。例えば、特許文献5では、一次粒子が大きい結晶性セルロースが単独で用いられるため、ミクロフィブリル状に分散させることは困難であり、特許文献6や7では、木粉や紙粉を使用しているため、粒子が粗く微分散できない。さらに特許文献8の無水ロジン変性セルロースでは、凝集した形で分散するために機械的特性が不足するという問題がある。
 特許文献9及び10に記載されている技術では、CNF同士の絡み合いにより樹脂中での分散が不十分となり、期待した物性が得られないといった問題があった。また特許文献11に記載されている分散剤は、高分子量であるため、当該分散剤の配合によって樹脂の流動性が大幅に低下し、溶融混練時に過度の加熱を要し、樹脂の熱劣化や、ヘミセルロースの酸化による臭気、色調悪化を招くという課題がある。
 上記事情に鑑み、本開示の一態様は、樹脂成形体に充分な機械的特性を与えつつ、実成形を問題なく行うのに充分な流動性を有し、さらには、実用に耐えうる充分な物性安定性を有する樹脂組成物を提供することを目的とする。
 また、本開示の別の態様は、樹脂中への分散性が良好であり、樹脂に分散させることにより、溶融時の流動性に優れ、引っ張り時の伸びが良好で、寸法安定性に優れる樹脂組成物が得られるセルロース製剤を提供することを目的とする。
 本発明者らは、前記課題を解決するため、鋭意検討を進めた結果、一態様において、熱可塑性樹脂に対して、セルロース成分を必要量含む樹脂組成物において、セルロース成分が、長さ/径比率(L/D比)が30未満のセルロースウィスカーと、L/D比が30以上のセルロースファイバーを含むことにより、樹脂組成物が、表記の課題を解決できること、また別の態様において、セルロースと、特定の表面張力を有し、かつ、水よりも高い沸点を有する有機成分とを、予め複合化することにより得られるセルロース製剤が、乾燥粉末状態で樹脂に添加して溶融混合すると、ミクロフィブリルレベルに分散し、それらが樹脂中でネットワークを形成すること、を見出した。すなわち、本開示は、以下の態様を包含する。
[1] 熱可塑性樹脂100質量部と、セルロース成分0.1~100質量部とを含む樹脂組成物であって、前記セルロース成分は、長さ/径比率(L/D比)が30未満のセルロースウィスカーと、L/D比が30以上のセルロースファイバーを含む、樹脂組成物。
[2] 前記セルロース成分の総質量に対する前記セルロースウィスカーの比率が50質量%以上である、上記態様1に記載の樹脂組成物。
[3] 前記セルロース成分の径が500nm以下である、上記態様1又は2に記載の樹脂組成物。
[4] 前記セルロースウィスカーの結晶化度及び前記セルロースファイバーの結晶化度がそれぞれ55%以上である、上記態様1~3のいずれかに記載の樹脂組成物。
[5] 前記セルロースウィスカーの重合度が100以上300以下である、上記態様1~4のいずれかに記載の樹脂組成物。
[6] 前記セルロースファイバーの重合度が400以上3500以下である、上記態様1~5のいずれかに記載の樹脂組成物。
[7] 前記セルロース成分100質量部に対し、動的表面張力が60mN/m以下である有機成分を50質量部以下の量でさらに含む、上記態様1~6のいずれかに記載の樹脂組成物。
[8] 前記有機成分が界面活性剤である、上記態様7に記載の樹脂組成物。
[9] 前記有機成分の静的表面張力が20mN/m以上である、上記態様7又は8に記載の樹脂組成物。
[10] 前記有機成分がロジン誘導体、アルキルフェニル誘導体、ビスフェノールA誘導体、βナフチル誘導体、スチレン化フェニル誘導体、及び硬化ひまし油誘導体からなる群より選択される1種以上である、上記態様7~9のいずれかに記載の樹脂組成物。
[11] 前記有機成分がポリオキシエチレン誘導体である、上記態様7~10のいずれか記載の樹脂組成物。
[12] 前記樹脂組成物の引張破断強度の変動係数(標準偏差/算術平均値)が10%以下である、上記態様1~11のいずれかに記載の樹脂組成物。
[13] 熱可塑性樹脂100質量部と、セルロース成分0.1~100質量部とを含む樹脂組成物であって、前記樹脂組成物の0℃~60℃の範囲での線膨張係数の変動係数(標準偏差/算術平均値)が15%以下であり、前記樹脂組成物の引張破断強度の変動係数が10%以下である、樹脂組成物。
[14] 前記セルロース成分は、熱可塑性樹脂100質量部に対し、0.1~20質量部である、上記態様13に記載の樹脂組成物。
[15] 前記セルロース成分は、長さ/径比率(L/D比)が30未満のセルロースウィスカーと、L/D比が30以上のセルロースファイバーとを含む、上記態様13又は14に記載の樹脂組成物。
[16] 前記セルロース成分は、長さ/径比率(L/D比)が30未満のセルロースウィスカーを、前記セルロース成分100質量%に対して50質量%~98質量%の量で含む、上記態様13~15のいずれかに記載の樹脂組成物。
[17] 前記樹脂組成物の引張降伏強度が前記熱可塑性樹脂の引張降伏強度の1.1倍以上である、上記態様1~16のいずれかに記載の樹脂組成物。
[18] 前記樹脂組成物の0℃~60℃の範囲での線膨張係数が50ppm/K以下である、上記態様1~17のいずれかに記載の樹脂組成物。
[19] 前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂及びこれらのいずれか2種以上の混合物からなる群より選択される、上記態様1~18のいずれかに記載の樹脂組成物。
[20] 前記熱可塑性樹脂が、ポリプロピレンであり、該ポリプロピレンのISO1133に準拠して230℃で測定されたメルトマスフローレイト(MFR)が、3g/10分以上30g/10分以下である、上記態様19に記載の樹脂組成物。
[21] 前記熱可塑性樹脂が、ポリアミド系樹脂であり、該ポリアミド系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95である、上記態様19に記載の樹脂組成物。
[22] 前記熱可塑性樹脂が、ポリエステル系樹脂であり、該ポリエステル系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95である、上記態様19に記載の樹脂組成物。
[23] 前記熱可塑性樹脂が、ポリアセタール系樹脂であり、該ポリアセタール系樹脂が、0.01~4モル%のコモノマー成分を含有するコポリアセタールである、上記態様19に記載の樹脂組成物。
[24] セルロース粒子と、前記セルロース粒子の表面の少なくとも一部を被覆する有機成分とを含むセルロース製剤であって、前記有機成分が、静的表面張力20mN/m以上、及び水よりも高い沸点を有する、セルロース製剤。
[25] 前記有機成分の動的表面張力が60mN/m以下である、上記態様24に記載のセルロース製剤。
[26] 前記有機成分の溶解パラメータ(SP値)が7.25以上である、上記態様24又は25に記載のセルロース製剤。
[27] レーザー回折粒度分布計により測定される積算体積50%粒子径が10μm以下である、上記態様24~26のいずれかに記載のセルロース製剤。
[28] 前記セルロース粒子を構成するセルロースの平均重合度が1000以下である、上記態様24~27のいずれかに記載のセルロース製剤。
[29] 前記セルロース粒子を構成するセルロースが結晶セルロースを含む、上記態様24~28のいずれかに記載のセルロース製剤。
[30] 前記結晶セルロースの平均L/Dが30未満、及び/又は平均重合度が500未満である、上記態様29に記載のセルロース製剤。
[31] 前記セルロース製剤がセルロースファイバーを更に含み、前記セルロースファイバーの平均L/Dが30以上、及び/又は平均重合度が300以上である、上記態様24~30のいずれかに記載のセルロース製剤。
[32] 前記セルロース製剤中に存在するセルロースの総質量に対する結晶セルロースの比率が50質量%以上である、上記態様24~31のいずれかに記載のセルロース製剤。
[33] セルロースを30~99質量%、及び前記有機成分を1~70質量%含む、上記態様24~32のいずれかに記載のセルロース製剤。
[34] 前記有機成分がロジン誘導体、アルキルフェニル誘導体、ビスフェノールA誘導体、βナフチル誘導体、スチレン化フェニル誘導体、及び硬化ひまし油誘導体からなる群から選択される、上記態様24~33のいずれかに記載のセルロース製剤。
[35] 前記有機成分がポリオキシエチレン誘導体である、上記態様24~33のいずれかに記載のセルロース製剤。
[36] 上記態様24~35のいずれかに記載のセルロース製剤を1質量%以上含む、樹脂組成物。
[37] 前記セルロース製剤中に存在するセルロース100質量部に対し1質量部以上の量の界面形成剤を更に含む、上記態様36に記載の樹脂組成物。
[38] 熱可塑性樹脂を更に含む、上記態様36又は37に記載の樹脂組成物。
[39] 熱可塑性樹脂、セルロース粒子、有機成分、及び界面形成剤を含む樹脂組成物であって、
 前記有機成分が、静的表面張力20mN/m以上、及び水よりも高い沸点を有し、
 前記界面形成剤の量が、樹脂組成物中に存在するセルロース100質量部に対して1質量部以上である、樹脂組成物。
[40] 前記有機成分の動的表面張力が60mN/m以下である、上記態様39に記載の樹脂組成物。
[41] 前記有機成分の溶解パラメータ(SP値)が7.25以上である、上記態様39又は40に記載の樹脂組成物。
[42] レーザー回折粒度分布計により測定される、前記セルロース粒子の積算体積50%粒子径が10μm以下である、上記態様39~41のいずれかに記載の樹脂組成物。
[43] 前記セルロース粒子を構成するセルロースの平均重合度が1000以下である、上記態様39~42のいずれかに記載の樹脂組成物。
[44] 前記セルロース粒子を構成するセルロースが結晶セルロースを含む、上記態様39~43のいずれかに記載の樹脂組成物。
[45] 前記結晶セルロースの平均L/Dが30未満、及び/又は平均重合度が500未満である、上記態様44に記載の樹脂組成物。
[46] 前記樹脂組成物がセルロースファイバーを更に含み、前記セルロースファイバーの平均L/Dが30以上、及び/又は平均重合度が300以上である、上記態様39~45のいずれかに記載の樹脂組成物。
[47] 前記樹脂組成物中に存在するセルロースの総質量に対する結晶セルロースの比率が50質量%以上である、上記態様39~46のいずれかに記載の樹脂組成物。
[48] 前記樹脂組成物中のセルロースの総量と前記有機成分の量との合計100質量%に対して、前記セルロースの量が30~99質量%、及び前記有機成分の量が1~70質量%である、上記態様39~47のいずれかに記載の樹脂組成物。
[49] 前記有機成分がロジン誘導体、アルキルフェニル誘導体、ビスフェノールA誘導体、βナフチル誘導体、スチレン化フェニル誘導体、及び硬化ひまし油誘導体からなる群から選択される、上記態様39~48のいずれかに記載の樹脂組成物。
[50] 上記態様1~23及び36~49のいずれかに記載の樹脂組成物より形成される、樹脂ペレット。
[51] 上記態様1~23及び36~49のいずれかに記載の樹脂組成物より形成される、樹脂成形体。
 一態様において、樹脂組成物は、樹脂成形体に充分な機械的特性を与えつつ、実成形において問題のない流動性をも併せ持ち、更には実用に耐えうる充分な物性安定性を持つという効果を有する。
 また、別の態様において、セルロース製剤は、樹脂中への分散性が良好であり、さらに、当該セルロース製剤を樹脂に分散させて得られる樹脂組成物は、溶融時に優れた流動特性を有し、射出成型性が良好であり、加えて、当該樹脂組成物は、線膨張係数が低く、引っ張り、曲げ変形時に、強度及び伸びが優れるという効果を奏する。
図1は、セルロースウィスカー(針状結晶粒子状セルロース)の例を示す顕微鏡画像である。 図2は、セルロースファイバー(繊維状セルロース)の例を示す顕微鏡画像である。 図3は、実施例及び比較例においてフェンダーの欠陥率の評価のために作製したフェンダーの形状を示す概略図である。 図4は、実施例及び比較例において実成形体の線膨張係数の変動係数を測定するために試験片を取り出した位置を示すフェンダーの図である。
 以下、本発明について、具体的な実施形態(特に、下記の態様A~C)と共に詳細に説明する。以下の実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施することができる。
[[態様A]]
 本発明の一態様は、熱可塑性樹脂100質量部と、セルロース成分0.1~100質量部とを含む樹脂組成物であって、前記セルロース成分は、長さ/径比率(L/D比)が30未満のセルロースウィスカーと、L/D比が30以上のセルロースファイバーを含む、樹脂組成物を提供する。
≪熱可塑性樹脂≫
 熱可塑性樹脂としては、100℃~350℃の範囲内に融点を有する結晶性樹脂、又は、100~250℃の範囲内にガラス転移温度を有する非晶性樹脂が挙げられる。
 ここでいう結晶性樹脂の融点とは、示差走査熱量分析装置(DSC)を用いて、23℃から10℃/分の昇温速度で昇温していった際に、現れる吸熱ピークのピークトップ温度をいう。吸熱ピークが2つ以上現れる場合は、最も高温側の吸熱ピークのピークトップ温度を指す。この時の吸熱ピークのエンタルピーは、10J/g以上であることが望ましく、より望ましくは20J/g以上である。また測定に際しては、サンプルを一度融点+20℃以上の温度条件まで加温し、樹脂を溶融させたのち、10℃/分の降温速度で23℃まで冷却したサンプルを用いることが望ましい。
 ここでいう非晶性樹脂のガラス転移温度とは、動的粘弾性測定装置を用いて、23℃から2℃/分の昇温速度で昇温しながら、印加周波数10Hzで測定した際に、貯蔵弾性率が大きく低下し、損失弾性率が最大となるピークのピークトップの温度をいう。損失弾性率のピークが2つ以上現れる場合は、最も高温側のピークのピークトップ温度を指す。この際の測定頻度は、測定精度を高めるため、少なくとも20秒に1回以上の測定とすることが望ましい。また、測定用サンプルの調製方法については特に制限はないが、成形歪の影響をなくす観点から、熱プレス成型品の切り出し片を用いることが望ましく、切り出し片の大きさ(幅及び厚み)はできるだけ小さい方が熱伝導の観点より望ましい。
 熱可塑性樹脂の具体例としては、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂及びこれらの2種以上の混合物が挙げられるが、これらに限定されるものではない。
 これらの中でもポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂等が、取り扱い性・コストの観点からより好ましい樹脂である。
 熱可塑性樹脂として好ましいポリオレフィン系樹脂は、オレフィン類(例えばα-オレフィン類)やアルケン類をモノマー単位として重合して得られる高分子である。ポリオレフィン系樹脂の具体例としては、低密度ポリエチレン(例えば線状低密度ポリエチレン)、高密度ポリエチレン、超低密度ポリエチレン、超高分子量ポリエチレンなどに例示されるエチレン系(共)重合体、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体などに例示されるポリプロピレン系(共)重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-グリシジルメタクリレート共重合体などに代表されるエチレンなどα-オレフィンの共重合体等が挙げられる。
 ここで最も好ましいポリオレフィン系樹脂としては、ポリプロピレンが挙げられる。特に、ISO1133に準拠して230℃、荷重21.2Nで測定されたメルトマスフローレイト(MFR)が、3g/10分以上30g/10分以下であるポリプロピレンが好ましい。MFRの下限値は、より好ましくは5g/10分であり、さらにより好ましくは6g/10分であり、最も好ましくは8g/10分である。また、上限値は、より好ましくは25g/10分であり、さらにより好ましくは20g/10分であり、最も好ましくは18g/10分である。MFRは、組成物の靱性向上の観点から上記上限値を超えないことが望ましく、組成物の流動性の観点から上記下限値を超えないことが望ましい。
 また、セルロースとの親和性を高めるため、酸変性されたポリオレフィン系樹脂も好適に使用可能である。この際の酸としては、マレイン酸、フマル酸、コハク酸、フタル酸及び、これらの無水物、クエン酸等のポリカルボン酸から、適宜選択可能である。これらの中でも好ましいのは、変性率の高めやすさから、マレイン酸又はその無水物である。変性方法については特に制限はないが、過酸化物の存在下/非存在下で融点以上に加熱して溶融混練する方法が一般的である。酸変性するポリオレフィン樹脂としては前出のポリオレフィン系樹脂はすべて使用可能であるが、ポリプロピレンが中でも好適に使用可能である。酸変性されたポリプロピレンは、単独で用いても構わないが、組成物としての変性率を調整するため、変性されていないポリプロピレンと混合して使用することがより好ましい。この際のすべてのポリプロピレンに対する酸変性されたポリプロピレンの割合は、0.5質量%~50質量%である。より好ましい下限は、1質量%であり、更に好ましくは2質量%、更により好ましくは3質量%、特に好ましくは4質量%、最も好ましくは5質量%である。また、より好ましい上限は、45質量%であり、更に好ましくは40質量%、更により好ましくは35質量%、特に好ましくは30質量%、最も好ましくは20質量%である。セルロースとの界面強度を維持するためには、下限以上が好ましく、樹脂としての延性を維持するためには、上限以下が好ましい。
 酸変性されたポリプロピレンの好ましいISO1133に準拠して230℃、荷重21.2Nで測定されたメルトマスフローレイト(MFR)は、セルロース界面との親和性を高めるため、50g/10分以上であることが好ましい。より好ましい下限は100g/10分であり、更により好ましくは150g/10分、最も好ましくは200g/10分である。上限は特にないが、機械的強度の維持から500g/10分である。MFRをこの範囲内とすることにより、セルロースと樹脂との界面に存在しやすくなるという利点を享受できる。
 熱可塑性樹脂として好ましいポリアミド系樹脂の例示としては、ラクタム類の重縮合反応により得られるポリアミド6、ポリアミド11、ポリアミド12や、1,6-ヘキサンジアミン、2-メチル-1,5-ペンタンジアミン、1,7-ヘプタンジアミン、2-メチル-1-6-ヘキサンジアミン、1,8-オクタンジアミン、2-メチル-1,7-ヘプタンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、m-キシリレンジアミンなどのジアミン類と、ブタン二酸 、ペンタン二酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸、ノナン二酸、デカン二酸、ベンゼン-1,2-ジカルボン酸、ベンゼン-1,3-ジカルボン酸、ベンゼン-1,4ジカルボン酸等、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸などのジカルボン酸類との共重合体として得られるポリアミド6,6、ポリアミド6,10、ポリアミド6,11、ポリアミド6,12、ポリアミド6,T、ポリアミド6,I、ポリアミド9,T、ポリアミド10,T、ポリアミド2M5,T、ポリアミドMXD,6、ポリアミド6、C、ポリアミド2M5,C及び、これらがそれぞれ共重合された共重合体、一例としてポリアミド6,T/6,I等の共重合体が挙げられる。
 これらポリアミド系樹脂の中でも、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6,6、ポリアミド6,10、ポリアミド6,11、ポリアミド6,12といった脂肪族ポリアミドや、ポリアミド6,C、ポリアミド2M5,Cといった脂環式ポリアミドがより好ましい。
 ポリアミド系樹脂の末端カルボキシル基濃度には特に制限はないが、下限値は、20μモル/gであると好ましく、より好ましくは30μモル/gである。また、その末端カルボキシル基濃度の上限値は、150μモル/gであると好ましく、より好ましくは100μモル/gであり、更に好ましくは 80μモル/gである。 
 本実施形態のポリアミドにおいて、好ましい全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95であることがより好ましい。カルボキシル末端基比率下限は、より好ましくは0.35であり、さらにより好ましくは0.40であり、最も好ましくは0.45である。またカルボキシル末端基比率上限は、より好ましくは0.90であり、さらにより好ましくは0.85であり、最も好ましくは0.80である。上記カルボキシル末端基比率は、セルロース成分の組成物中への分散性の観点から0.30以上とすることが望ましく、得られる組成物の色調の観点から0.95以下とすることが望ましい。
 ポリアミド系樹脂の末端基濃度の調整方法としては、公知の方法を用いることができる。例えば、ポリアミドの重合時に所定の末端基濃度となるように、ジアミン化合物、モノアミン化合物、ジカルボン酸化合物、モノカルボン酸化合物、酸無水物、モノイソシアネート、モノ 酸ハロゲン化物、モノエステル、モノアルコールなどの末端基と反応する末端調整剤を重合液に添加する方法が挙げられる。
 末端アミノ基と反応する末端調整剤としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸 、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;及びこれらから任意に選ばれる複数の混合物が挙げられる。これらの中でも、反応性、封止末端の安定性、価格などの点から、酢酸、プロピオン酸、酪酸、吉草酸、 カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸及び安息香酸からなる群より選ばれる1種以上の末端調整剤が好ましく、酢酸が最も好ましい。
 末端カルボキシル基と反応する末端調整剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルア ミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン及びこれらの任意の混合物が挙げられる。これらの中でも、反応性、沸点、封止末端の安定性、価格などの点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシル アミン、ステアリルアミン、シクロヘキシルアミン及びアニリンからなる群より選ばれる1種以上の末端調整剤が好ましい。
 これら、アミノ末端基及びカルボキシル末端基の濃度は、 1H-NMRにより、各末端基に対応する特性シグナルの積分値から求めるのが精度、簡便さの点で好ましい。それらの末端基の濃度を求める方法として、具体的に、特開平7-228775号公報に記載された方法が推奨される。この方法を用いる場合、測定溶媒としては、重トリフルオロ酢酸が有用である。また、1H-NMRの積算回数は、十分な分解能を有する機器で測定した際においても、少なくとも300スキャンは必要である。そのほか、特開2003-055549号公報に記載されているような滴定による測定方法によっても末端基の濃度を測定できる。ただし、混在する添加剤、潤滑剤等の影響をなるべく少なくするためには、1H-NMRによる定量がより好ましい。 
 ポリアミド系樹脂は、濃硫酸中30℃の条件下で測定した固有粘度[η]が、0.6~2.0dL/gであることが好ましく、0.7~1.4dL/gであることがより好ましく、0.7~1.2dL/gであることが更に好ましく、0.7~1.0dL/gであることが特に好ましい。好ましい範囲、その中でも特に好ましい範囲の固有粘度を有する上記ポリアミドを使用すると、樹脂組成物の射出成形時の金型内流動性を大幅に高め、成形片の外観を向上させるという効用を与えることができる。
 本開示において、「固有粘度」とは、一般的に極限粘度と呼ばれている粘度と同義である。この粘度を求める具体的な方法は、96%濃硫酸中、30℃の温度条件下で、濃度の異なるいくつかの測定溶媒のηsp/cを測定し、そのそれぞれのηsp/cと濃度(c)との関係式を導き出し、濃度をゼロに外挿する方法である。このゼロに外挿した値が固有粘度である。 
 これらの詳細は、例えば、Polymer Process Engineering(Prentice-Hall,Inc 1994)の291ページ~294ページ等に記載されている。 
 このとき濃度の異なるいくつかの測定溶媒の点数は、少なくとも4点とすることが精度の観点より望ましい。このとき、推奨される異なる粘度測定溶液の濃度は、好ましくは、0.05g/dL、0.1g/dL、0.2g/dL、0.4g/dLの少なくとも4点である。
 熱可塑性樹脂として好ましいポリエステル系樹脂としては、ポリエチレンテレフタレート(以下、単にPETと称することもある)、ポリブチレンサクシネート(脂肪族多価カルボン酸と脂肪族ポリオールとからなるポリエステル樹脂(以下、単位PBSと称することもある)、ポリブチレンサクシネートアジペート(以下、単にPBSAと称することもある)、ポリブチレンアジペートテレフタレート(以下、単にPBATと称することもある)、ポリヒドロキシアルカン酸(3-ヒドロキシアルカン酸からなるポリエステル樹脂。以下、単にPHAと称することもある)、ポリ乳酸(以下、単にPLAと称することもある)、ポリブチレンテレフタレート(以下、単にPBTと称することもある)、ポリエチレンナフタレート(以下、単にPENと称することもある)、ポリアリレート(以下、単にPARと称することもある)、ポリカーボネート(以下、単にPCと称することもある)等から選ばれる1種又は2種以上を用いることができる。
 これらの中でより好ましいポリエステル系樹脂は、PET、PBS、PBSA、PBT、PENが挙げられ、更に好ましくは、PBS、PBSA、PBTが挙げられる。
 また、ポリエステル系樹脂は、重合時のモノマー比率や末端安定化剤の添加の有無や量によって、末端基を自由に変えることが可能であるが、該ポリエステル系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95であることがより好ましい。カルボキシル末端基比率下限は、より好ましくは0.35であり、さらにより好ましくは、0.40であり、最も好ましくは0.45である。また、カルボキシル末端基比率上限は、より好ましくは0.90であり、さらにより好ましくは、0.85であり、最も好ましくは0.80である。上記カルボキシル末端基比率は、セルロース成分の組成物中への分散性の観点から0.30以上とすることが望ましく、得られる組成物の色調の観点から0.95以下とすることが望ましい。
 熱可塑性樹脂として好ましいポリアセタール系樹脂には、ホルムアルデヒドを原料とするホモポリアセタールと、トリオキサンを主モノマーとし、1,3-ジオキソランをコモノマー成分として含むコポリアセタールが一般的であり、両者とも使用可能であるが、加工時の熱安定性の観点から、コポリアセタールが好ましく使用できる。特に、コモノマー成分(例えば1,3-ジオキソラン)量としては0.01~4モル%の範囲内がより好ましい。コモノマー成分量の好ましい下限量は、0.05モル%であり、より好ましくは0.1モル%であり、さらにより好ましくは0.2モル%である。また好ましい上限量は、3.5モル%であり、さらに好ましくは3.0モル%であり、さらにより好ましくは2.5モル%、最も好ましくは2.3モル%である。
 押出加工や成形加工時の熱安定性の観点から、下限は上述の範囲内とすることが望ましく、機械的強度の観点より、上限は上述の範囲内とすることが望ましい。
<<セルロース成分>>
 次にセルロース成分について詳述する。
 セルロース成分は、少なくとも2種以上のセルロースの組合せである。一態様において、セルロース成分は、セルロースウィスカーとセルロースファイバーとを含む。両者を含む混合物は、樹脂組成物の流動性の悪化を抑制し、かつ成形体中の安定分散性が確保されるため、強度欠陥をなくすことが可能となる。
 セルロースウィスカーとは、パルプ等を原料とし、これを裁断後、塩酸や硫酸といった酸中で、セルロースの非晶部分を溶解後に、残留した結晶質のセルロースを指し、長さ/径比率(L/D比)は30未満のものである。本開示で、「長さ」(L)及び「径」(D)は、セルロースウィスカーにおける長径及び短径、並びに、セルロースファイバーにおける繊維長及び繊維径に、それぞれ相当する。図1は、セルロースウィスカー(針状結晶粒子状セルロース)の例を示す顕微鏡画像であり、図1(B)は図1(A)の部分拡大図である。いずれのセルロースも針状結晶粒子状の構造をなし、L/Dが30未満の低L/Dであることが判る。
 また、セルロースファイバーとは、パルプ等を100℃以上の熱水等で処理し、ヘミセルロース部分を加水分解して脆弱化したのち、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミルやディスクミルといった粉砕法により解繊したセルロースを指し、L/D比は、30以上のものである。図2は、セルロースファイバー(繊維状セルロース)の例を示す顕微鏡画像である。いずれのセルロースも繊維状の構造をなし、L/Dが30以上の高L/Dであることが判る。
 図1及び図2は、それぞれ、セルロース(加水分解後のウェットケーク)(図1について)又はセルローススラリー(図2について)を、1質量%(図1について)又は0.1質量%(図2について)濃度で純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、処理条件:回転数15,000rpm×5分間)で分散させたものを走査型電子顕微鏡SEM(装置名:日本電子株式会社製 型式JSM-6700F、5kV、10mA、30,000倍(図1について)又は3,500倍(図2について))で観察したものである。より詳細には、前記ホモジナイザーで得られた水分散体を、0.1質量%(図1について)又は0.01質量%(図2について)にイオン交換水で希釈し、真鍮製ステージ上にカーボンテープで張り付けたマイカ上にキャストし、12時間常温で乾燥、これに真空下で白金蒸着(装置名:日本電子株式会社、商品名オートファインコーター JFC-1600、30mA、30秒間、想定膜厚8nm)した試料片を観察している。
 セルロースウィスカーのL/D上限は、好ましくは25であり、より好ましくは20であり、さらにより好ましくは15であり、さらにより好ましくは10であり、最も好ましくは5である。下限は特に限定されないが、1を超えていればよい。樹脂組成物の良好な流動性を発現させるために、セルロースウィスカーのL/D比は上述の範囲内にあることが望ましい。
 また、セルロースファイバーのL/D下限は、好ましくは50であり、より好ましくは80であり、より好ましくは100であり、さらにより好ましくは120であり、最も好ましくは150である。上限は特に限定されないが、取扱い性の観点から好ましくは5000以下である。本開示の樹脂組成物を用いて得られる樹脂成形体の良好な機械的特性を少量で発揮させるために、セルロースファイバーのL/D比は上述の範囲内であることが望ましい。
 本開示で、セルロースウィスカー及びセルロースファイバーの各々の長さ、径、及びL/D比は、セルロースウィスカー及びセルロースファイバーの各々の水分散液を、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で分散させた水分散体を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとし、高分解能走査型顕微鏡(SEM)又は原子間力顕微鏡(AFM)で計測して求める。具体的には、少なくとも100本のセルロースが観測されるように倍率が調整された観察視野にて、無作為に選んだ100本のセルロースの長さ(L)及び径(D)を計測し、比(L/D)を算出する。比(L/D)が30未満のものをセルロースウィスカー、30以上のものをセルロースファイバーと分類する。セルロースウィスカー及びセルロースファイバーの各々について、長さ(L)の数平均値、径(D)の数平均値、及び比(L/D)の数平均値を算出して、本開示の、セルロースウィスカー及びセルロースナノファイバーの各々の長さ、径、及びL/D比とする。また、本開示のセルロース成分の長さ及び径とは、上記100本のセルロースの数平均値である。
 又は、組成物中のセルロースウィスカー及びセルロースファイバーの各々の長さ、径、及びL/D比は、固体である組成物を測定サンプルとして、上述の測定方法により測定することで確認することができる。
 又は、組成物中のセルロースウィスカー及びセルロースファイバーの各々の長さ、径、及びL/D比は、組成物の樹脂成分を溶解できる有機または無機の溶媒に組成物中の樹脂成分を溶解させ、セルロースを分離し、前記溶媒で充分に洗浄した後、溶媒を純水に置換した水分散液を作製し、セルロース濃度を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとして上述の測定方法により測定することで確認することができる。この際、測定するセルロースは無作為に選んだL/Dが30以上のセルロースファイバー100本以上と、L/Dが30未満のセルロースウィスカー100本以上の、合計200本以上での測定を行う。
 本開示で、セルロースウィスカー及びセルロースファイバーとは、それぞれ、径がナノメートルサイズ(すなわち1μm未満)であるものを意味する。好適なセルロース成分(特に、セルロースウィスカー及びセルロースファイバーの各々)は、その径が500nm以下のものである。好ましいセルロース成分の径の上限は、450nmであり、より好ましくは400nmであり、さらにより好ましくは350nmであり、最も好ましくは300nmである。
 特に好ましい態様において、セルロースウィスカーの径は、好ましくは20nm以上、より好ましくは30nm以上であり、好ましくは500nm以下、より好ましくは450nm以下、更に好ましくは400nm以下、更により好ましくは350nm以下であり、最も好ましくは300nm以下である。
 また、特に好ましい態様において、セルロースファイバーの径は、好ましくは1nm以上であり、より好ましくは5nm以上であり、更により好ましくは10nm以上であり、特に好ましくは15nm以上であり、最も好ましくは20nm以上であり、好ましくは450nm以下であり、より好ましくは400nm以下であり、更に好ましくは350nm以下であり、更により好ましくは300nm以下であり、最も好ましくは250nm以下である。
 機械的特性を有効に発現させるためには、セルロース成分の径を上述の範囲内にすることが望ましい。
 好適なセルロースウィスカーは、結晶化度が55%以上のセルロースウィスカーである。結晶化度がこの範囲にあると、セルロースウィスカー自体の力学物性(強度、寸法安定性)が高まるため、樹脂に分散した際に、樹脂組成物の強度、寸法安定性が高くなる傾向にある。
 セルロースウィスカーの結晶化度は、好ましくは60%以上であり、より好ましい結晶化度の下限は65%であり、さらにより好ましくは70%であり、最も好ましくは80%である。セルロースウィスカーの結晶化度は高いほど好ましい傾向にあるので、上限は特に限定されないが、生産上の観点から99%が好ましい上限である。
 また、セルロースファイバーは、結晶化度が55%以上のセルロースファイバーが好適に使用可能である。結晶化度がこの範囲にあると、セルロースファイバー自体の力学物性(強度、寸法安定性)が高まるため、樹脂に分散した際に、樹脂組成物の強度、寸法安定性が高くなる傾向にある。より好ましい結晶化度の下限は、60%であり、さらにより好ましくは70%であり、最も好ましくは80%である。セルロースファイバーの結晶化度についても上限は特に限定されず、高い方が好ましいが、生産上の観点から好ましい上限は99%である。
 リグニン等の不純物残存量が多いと、加工時の熱により変色をきたすことがあるため、押出加工時及び成形加工時の樹脂組成物の変色を抑制する観点から、セルロースウィスカー及びセルロースファイバーの結晶化度は上述の範囲内にすることが望ましい。
 ここでいう結晶化度は、セルロース成分がセルロースI型結晶(天然セルロース由来)である場合には、サンプルを広角X線回折により測定した際の回折パターン(2θ/deg.が10~30)からSegal法により、以下の式で求められる。
結晶化度(%)=([2θ/deg.=22.5の(200)面に起因する回折強度]-[2θ/deg.=18の非晶質に起因する回折強度])/[2θ/deg.=22.5の(200)面に起因する回折強度]×100
 また結晶化度は、セルロース成分がセルロースII型結晶(再生セルロース由来)である場合には、広角X線回折において、セルロースII型結晶の(110)面ピークに帰属される2θ=12.6°における絶対ピーク強度h0 とこの面間隔におけるベースラインからのピーク強度h1 とから、下記式によって求められる。
結晶化度(%) =h1 /h0 ×100
 セルロースの結晶形としては、I型、II型、III型、IV型などが知られており、その中でも特にI型及びII型は汎用されており、III型、IV型は実験室スケールでは得られているものの工業スケールでは汎用されていない。セルロース成分としては、構造上の可動性が比較的高く、当該セルロース成分を樹脂に分散させることにより、線膨張係数がより低く、引っ張り、曲げ変形時の強度及び伸びがより優れた樹脂コンポジットが得られることから、セルロースI型結晶又はセルロースII型結晶を含有するセルロース成分が好ましく、セルロースI型結晶を含有し、かつ結晶化度が55%以上のセルロース成分がより好ましい。
 セルロースウィスカーの重合度は、好ましくは100以上、より好ましくは120以上であり、より好ましくは130以上であり、より好ましくは140以上であり、より好ましくは150以上、好ましくは300以下、より好ましくは280以下、より好ましくは270以下、より好ましくは260以下、より好ましくは250以下である。
 また、セルロースファイバーの重合度は、好ましくは400以上、より好ましくは420以上であり、より好ましくは430以上、より好ましくは440以上、より好ましくは450以上であり、好ましくは3500以下、より好ましく3300以下、より好ましくは3200以下、より好ましくは3100以下、より好ましくは3000以下である。
 加工性と機械的特性発現の観点から、セルロースウィスカー及びセルロースファイバーの重合度を上述の範囲内とすることが望ましい。加工性の観点から、重合度は高すぎない方が好ましく、機械的特性発現の観点からは低すぎないことが望まれる。
 セルロースウィスカー及びセルロースファイバーの重合度は、「第十五改正日本薬局方解説書(廣川書店発行)」の確認試験(3)に記載の銅エチレンジアミン溶液による還元比粘度法に従って測定される平均重合度を意味する。
 セルロース成分の重合度(すなわち平均重合度)を制御する方法としては、加水分解処理等が挙げられる。加水分解処理によって、セルロース繊維質内部の非晶質セルロースの解重合が進み、平均重合度が小さくなる。また同時に、加水分解処理により、上述の非晶質セルロースに加え、ヘミセルロースやリグニン等の不純物も取り除かれるため、繊維質内部が多孔質化する。それにより、後記の混練工程中等のセルロース成分と有機成分(例えば界面活性剤)に機械的せん断力を与える工程において、セルロース成分が機械処理を受けやすくなり、セルロース成分が微細化されやすくなる。その結果、セルロース成分の表面積が高くなり、有機成分(例えば界面活性剤)との複合化の制御が容易になる。
 加水分解の方法は、特に制限されないが、酸加水分解、アルカリ加水分解、熱水分解、スチームエクスプロージョン、マイクロ波分解等が挙げられる。これらの方法は、単独で使用してもよく、2種以上を併用してもよい。酸加水分解の方法では、例えば、繊維性植物からパルプとして得たα-セルロースをセルロース原料とし、これを水系媒体に分散させた状態で、プロトン酸、カルボン酸、ルイス酸、ヘテロポリ酸等を適量加え、攪拌させながら加温することにより、容易に平均重合度を制御できる。この際の温度、圧力、時間等の反応条件は、セルロース種、セルロース濃度、酸種、酸濃度により異なるが、目的とする平均重合度が達成されるよう適宜調製されるものである。例えば、2質量%以下の鉱酸水溶液を使用し、100℃以上、加圧下で、10分間以上セルロースを処理するという条件が挙げられる。この条件のとき、酸等の触媒成分がセルロース繊維内部まで浸透し、加水分解が促進され、使用する触媒成分量が少なくなり、その後の精製も容易になる。なお、加水分解時のセルロース原料の分散液には、水の他、本発明の効果を損なわない範囲において有機溶媒を少量含んでいてもよい。
 セルロース成分のゼータ電位、又は、セルロースウィスカー及びセルロースファイバーの各々のゼータ電位は、-40mV以下であることが好ましい。ゼータ電位がこの範囲にある場合、セルロース成分と樹脂とをコンパウンドした際に、セルロース成分と樹脂との過度の結合を生じることなく、良好な溶融流動性を保つことができる。ゼータ電位は、より好ましくは-30mV以下であり、さらに好ましくは-25mV以下であり、特に好ましくは-20mV以下であり、最も好ましくは-15mV以下である。この値が小さいほどコンパウンドの物性が優れるため下限は特に限定されるものではないが、製造容易性の観点から-5mV以上が好ましい。
 ここでいうゼータ電位は以下の方法で測定することができる。セルロース成分、又はセルロースウィスカー及びセルロースファイバーの各々を、1質量%濃度の純水懸濁液とし、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で分散させて得た水分散体を、0.1~0.5質量%まで純水で希釈し、ゼータ電位計(例えば大塚電子製、装置名ELSZ-2000ZS型、標準セルユニット)を使用し、25℃で測定する。
 熱可塑性樹脂100質量部に対するセルロース成分の量は、0.1~100質量部の範囲内である。セルロース成分の量の下限は、好ましくは0.5質量部、より好ましくは1質量部、最も好ましくは2質量部である。セルロース成分の量の上限は、好ましくは80質量部、より好ましくは70質量部、最も好ましくは60質量部である。
 加工性と機械的特性のバランスの観点から、セルロース成分の量を上述の範囲内とすることが望ましい。
 セルロース成分の総質量に対するセルロースウィスカーの比率は、50質量%以上であることが好ましい。上記比率は、より好ましくは50質量%超、更に好ましくは60質量%以上、更に好ましくは70質量%以上、最も好ましくは80質量%以上である。上記比率の上限は、好ましくは98質量%、より好ましくは96質量%、最も好ましくは95質量%である。
 樹脂組成物としての流動性の観点から、セルロース成分の総質量に占めるセルロースウィスカーの比率は上述の範囲内とすることが望ましい。
≪有機成分≫
 樹脂組成物は、付加的成分として有機成分を含むことが可能である。一態様において、有機成分は、動的表面張力60mN/m以下を有する。また、一態様において、有機成分は、界面活性剤である。有機成分は、熱可塑性樹脂に対するセルロース成分の分散性の向上に寄与する。その好ましい量は、セルロース成分100質量部に対し、有機成分が50質量部以下の量の範囲内である。より好ましい上限量は45質量部であり、さらにより好ましくは40質量部、さらにより好ましくは35質量部、特に好ましくは30質量部である。付加的成分であるため、下限は特に限定されないが、セルロース成分100質量部に対し、0.1質量部以上添加することで、取扱い性を高めることができる。下限量は、より好ましくは0.5質量部、最も好ましくは1質量部である。
 典型的な有機成分としては、炭素原子を基本骨格とし、炭素、水素、酸素、窒素、塩素、硫黄、リンから選ばれる元素から構成される官能基を有するものが挙げられる。分子中に上述の構造を有していれば、無機化合物と上記官能基が化学結合したものも好ましい。
 有機成分は、単独であってもよく、2種以上の有機成分の混合物であってもよい。混合物の場合、本開示の有機成分の特性値(例えば静的表面張力、動的表面張力、SP値)は、当該混合物の値を意味する。
<<有機成分の静的表面張力>>
 有機成分の静的表面張力は20mN/m以上であることが好ましい。この静的表面張力は、ウィルヘルミー法で測定される表面張力を指す。室温で液体状の有機成分を使用する場合は、25℃で測定した値を用いる。室温で固体又は半固形状の有機成分を使用する場合は、有機成分を融点以上に加熱し溶融した状態で測定し、25℃に温度補正した値を用いる。なお本開示で室温とは、25℃を意味する。また、添加を容易にするためなどの目的で、有機成分を有機溶剤や水等に溶解・希釈してもよい。この場合の上記静的表面張力は、使用する有機成分自体の静的表面張力を意味する。
 また、樹脂組成物を調製する際の、有機成分の添加方法としては、特に制限はないが、熱可塑性樹脂、セルロース成分及び有機成分とをあらかじめ混合し溶融混練する方法、樹脂にあらかじめ有機成分を添加し、必要により予備混練した後、セルロース成分を添加して溶融混練する方法、セルロース成分と有機成分を予め混合した後、熱可塑性樹脂と溶融混練する方法等が挙げられる。セルロース成分が水に分散している分散液中に有機成分を添加し、乾燥してセルロース製剤を作製したのち、当該製剤を熱可塑性樹脂に添加する方法も有効である。
 有機成分の静的表面張力が本開示の特定の範囲内であることは、セルロース成分の樹脂中での分散性が驚異的に向上するという、通常では予期しえない効果を奏する。理由は定かではないが、有機成分内にある親水性官能基が、セルロース成分表面の水酸基と水素結合等を介することによって、セルロース成分の表面を被覆し、樹脂との界面形成を阻害しているためであると考えられる。その親水性基がセルロース成分側に配されることにより、樹脂側には疎水雰囲気となるため、樹脂側との親和性も増すためと考えられる。
 有機成分の好ましい静的表面張力の下限は、23mN/mであり、より好ましくは25mN/m、さらに好ましくは30mN/m、更により好ましくは35mN/m、最も好ましくは39mN/mである。有機成分の静的表面張力の好ましい上限は、72.8mN/m、より好ましくは60mN/m、さらに好ましくは50mN/m、最も好ましくは45mN/mである。
 有機成分の熱可塑性樹脂に対する親和性とセルロース成分に対する親和性とを両立し、樹脂中へのセルロース成分の微分散性、樹脂組成物の流動性、樹脂成形体の強度及び伸びの向上といった特性を発現させる観点で、有機成分の静的表面張力を特定の範囲にすることが好ましい。
 本開示でいう有機成分の静的表面張力は、市販の表面張力測定装置を用いることで測定することが可能である。具体的に例示すると、自動表面張力測定装置(例えば協和界面科学株式会社製、商品名「CBVP-Z型」、付属のガラス製セルを使用。)を用い、ウィルヘルミー法により測定することができる。この時、有機成分が室温で液体の場合は、付属のステンレス製シャーレに底から液面までの高さを7mm~9mmとなるように仕込み、25℃±1℃に調温した後に測定し、以下の式により求められる。
  γ=(P-mg+shρg)/Lcosθ
 ここで、γ:静的表面張力、P:つりあう力、m:プレートの質量、g:重力定数、L:プレート周囲長、θ:プレートと液体の接触角、s:プレート断面積、h:(力が釣り合うところまで)液面から沈んだ深さ、ρ:液体の密度である。
 なお、室温で固体のものは上述の方法では表面張力は測定できないため、便宜上、融点+5℃の温度で測定した表面張力を採用する。融点が未知の物質である場合、まずは目視による融点測定法(JIS K6220)により融点を測定し、融点以上に加熱して溶融させた後、融点+5℃の温度に調節し、上述したウィルヘルミー法により表面張力を測定することで可能である。
<<有機成分の動的表面張力>>
 有機成分の動的表面張力は60mN/m以下であることが好ましい。より好ましい動的表面張力の上限は、55mN/mであり、50mN/mがより好ましく、45mN/mがさらに好ましく、40mN/mが特に好ましい。有機成分の動的表面張力の好ましい下限を挙げるとすると、10mN/mである。より好ましい下限は、15mN/mであり、20mN/mが最も好ましい。
 ここでいう動的表面張力は、最大泡圧法(液体中に挿した細管(以下、プローブ)に空気を流して、気泡を発生させたときの最大圧力(最大泡圧)を計測し、表面張力を算出する方法)で測定される表面張力のことである。具体的には、有機成分を5質量%としてイオン交換水に溶解又は分散し測定液を調製し、25℃に調温した後、動的表面張力計(例えば英弘精機株式会社製 製品名シータサイエンスt-60型、プローブ(キャピラリーTYPE I(ピーク樹脂製)、シングルモード)を使用し、気泡発生周期を10Hzで測定された表面張力の値を指す。各周期における動的表面張力は、以下の式により求められる。
  σ=ΔP・r/2
ここで、σ:動的表面張力、ΔP:圧力差(最大圧力-最小圧力)、r:キャピラリー半径である。
 最大泡圧法で測定される動的表面張力は、動きの速い場における有機成分の動的な表面張力を意味する。有機成分は水中では、通常ミセルを形成している。動的表面張力が低いということは、ミセル状態からの有機成分の分子の拡散速度が速いことを表し、動的表面張力が高いということは分子の拡散速度が遅いことを意味する。
 有機成分の動的表面張力が特定値以下であることは、セルロース成分の樹脂組成物中での分散を顕著に向上させるという効果を奏する点で有利である。この分散性向上の理由の詳細は不明であるが、動的表面張力が低い有機成分は、押出機内での拡散性に優れることで、セルロース成分と樹脂との界面に局在化できること、さらにセルロース成分表面を良好に被覆できることが、分散性向上の効果に寄与していると考えられる。この有機成分の動的表面張力を特定値以下とすることにより得られるセルロース成分の分散性の改良効果は、成形体の強度欠陥を消失させるという顕著な効果を発現させる。
<有機成分の沸点>
 有機成分としては、水より高い沸点を有するものが好ましい。なお、水よりも高い沸点とは、水の蒸気圧曲線における各圧力における沸点(例えば、1気圧下では100℃)よりも高い沸点を指す。
 有機成分として水より高い沸点を有するものを選択することにより、例えば、有機成分の存在下で、水に分散されたセルロース成分を乾燥させ、セルロース製剤を得る工程において、水が蒸発する過程で水と有機成分とが置換されてセルロース成分表面に有機成分が存在するようになるため、セルロース同士の凝集を大幅に抑制する効果を奏することができる。
 有機成分は、その取扱い性の観点より、室温(すなわち25℃)で液体のものが好ましく使用可能である。常温で液体の有機成分は、セルロース成分と親和しやすく、樹脂にも浸透しやすいという利点を有する。
<有機成分の溶解パラメーター(SP)値>
 有機成分としては、溶解パラメーター(SP値)が7.25以上であるものがより好ましく使用可能である。有機成分がこの範囲のSP値を有することで、セルロース成分の樹脂中での分散性が向上する。
 SP値は、Fodersの文献(R.F.Foders:Polymer Engineering & Science,vol.12(10),p.2359-2370(1974))によると、物質の凝集エネルギー密度とモル分子量の両方に依存し、またこれらは物質の置換基の種類及び数に依存していると考えられ、上田らの文献(塗料の研究、No.152、Oct.2010)によると、後述する実施例に示す既存の主要な溶剤についてのSP値(cal/cm31/2が公開されている。
 有機成分のSP値は、実験的には、SP値が既知の種々の溶剤に有機成分を溶解させたときの、可溶と不溶の境目から求めることができる。例えば、実施例に示す表中のSP値が異なる各種溶剤(10mL)に、有機成分1mLを室温においてスターラー撹拌下で1時間溶解させた場合に、全量が溶解するかどうかで判断可能である。例えば、有機成分がジエチルエーテルに可溶であった場合は、その有機成分のSP値は7.25以上となる。
<有機成分の種類>
 一態様において、有機成分は界面活性剤である。界面活性剤としては、親水性の置換基と疎水性の置換基が共有結合した化学構造を有する化合物が挙げられ、食用、工業用など様々な用途で利用されているものを用いることができる。例えば、以下のものを1種又は2種以上併用して用いる。特に好ましい態様において、有機成分は、前述のような特定の動的表面張力を有する界面活性剤である。
 界面活性剤は、陰イオン系界面活性剤、非イオン系界面活性剤、両性イオン系界面活性剤、陽イオン系界面活性剤のいずれも使用することができるが、セルロース成分との親和性の点で、陰イオン系界面活性剤及び非イオン系界面活性剤が好ましく、非イオン系界面活性剤がより好ましい。
 陰イオン系界面活性剤としては、脂肪酸系(陰イオン)として、脂肪酸ナトリウム、脂肪酸カリウム,アルファスルホ脂肪酸エステルナトリウム等が挙げられ、直鎖アルキルベンゼン系として直鎖アルキルベンゼンスルホン酸ナトリウム等が挙げられ、高級アルコール系(陰イオン)系として、アルキル硫酸エステルナトリウム、アルキルエーテル硫酸エステルナトリウム等が挙げられ、アルファオレフィン系としてアルファオレフィンスルホン酸ナトリウム等、ノルマルパラフィン系としてアルキルスルホン酸ナトリウム等が挙げられ、それらを1種又は2種以上を混合して使用することも可能である。
 非イオン系界面活性剤としては、脂肪酸系(非イオン)として、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等の糖脂質、脂肪酸アルカノールアミド等が挙げられ、高級アルコール系(非イオン)としてポリオキシエチレンアルキルエーテル等が挙げられ、アルキルフェノール系としてポリオキシエチレンアルキルフェニルエーテル等が挙げられ、それらを1種又は2種以上を混合して使用することも可能である。
 両性イオン系界面活性剤としては、アミノ酸系として、アルキルアミノ脂肪酸ナトリウム等が挙げられ、ベタイン系としてアルキルベタイン等が挙げられ、アミンオキシド系としてアルキルアミンオキシド等が挙げられ、それらを1種又は2種以上を混合して使用することも可能である。
 陽イオン系界面活性剤としては、第4級アンモニウム塩系として、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩等が挙げられ、それらを1種又は2種以上を混合して使用することも可能である。
 界面活性剤は、油脂の誘導体であってよい。油脂としては、脂肪酸とグリセリンとのエステルが挙げられ、通常は、トリグリセリド(トリ-O-アシルグリセリン)の形態を取るものをいう。脂肪油で酸化を受けて固まりやすい順に乾性油、半乾性油、不乾性油と分類され、食用、工業用など様々な用途で利用されているものを用いることができ、例えば以下のものを、1種又は2種以上併用して用いる。
 油脂としては、動植物油として、例えば、テルピン油、トール油、ロジン、白絞油、コーン油、大豆油、ゴマ油、菜種油(キャノーラ油)、こめ油、糠油、椿油、サフラワー油(ベニバナ油)、ヤシ油(パーム核油)、綿実油、ひまわり油、エゴマ油(荏油)、アマニ油、オリーブオイル、ピーナッツオイル、アーモンドオイル、アボカドオイル、ヘーゼルナッツオイル、ウォルナッツオイル、グレープシードオイル、マスタードオイル、レタス油、魚油、鯨油、鮫油、肝油、カカオバター、ピーナッツバター、パーム油、ラード(豚脂)、ヘット(牛脂)、鶏油、兎脂、羊脂、馬脂、シュマルツ、乳脂(バター、ギー等)、硬化油(マーガリン、ショートニングなど)、ひまし油(植物油)等が挙げられる。
 特に、上述の動植物油の中でも、セルロース成分表面への親和性、均一コーティング性の観点から、テルピン油、トール油、ロジンが好ましい。
 テルピン油(テルビン油ともいう)は、マツ科の樹木のチップ、或いはそれらの樹木から得られた松脂(まつやに)を水蒸気蒸留することによって得られる精油のことであり、松精油、ターペンタインともいう。テルピン油としては、例えば、ガム・テレピン油(松脂の水蒸気蒸留によって得られたもの)、ウッド・テレピン油(マツ科の樹木のチップを水蒸気蒸留或いは乾留することで得られたもの)、硫酸テレピン油(硫酸塩パルプ製造時にチップを加熱処理した時に留出して得られたもの)、亜硫酸テレピン油(亜硫酸パルプ製造時にチップを加熱処理した時に留出して得られたもの)が挙げられ、ほぼ無色から淡黄色の液体で、亜硫酸テレピン油以外は主にα-ピネンとβ-ピネンを成分とする。亜硫酸テレピン油は、他のテレピン油と異なりp-シメンを主成分とする。上述の成分を含んでいれば、前記テルピン油に含まれ、いずれも単独又は複数の混合物の誘導体を、界面活性剤として使用することができる。
 トール油は、松材を原料にクラフトパルプを作る際に副成する、樹脂と脂肪酸を主成分とする油である。トール油としては、オレイン酸とリノール酸を主成分とするトール脂肪を用いても、アビエチン酸などの炭素数20のジテルペノイド化合物を主成分とするトールロジンを用いてもよい。
 ロジンは、マツ科の植物の樹液である松脂等のバルサム類を集めてテレピン精油を蒸留した後に残る残留物で、ロジン酸(アビエチン酸、パラストリン酸、イソピマール酸等)を主成分とする天然樹脂である。コロホニー或いはコロホニウムとも呼ばれる。中でも、トールロジン、ウッドロジン、ガムロジンが好適に使用できる。これらロジン類に種々の安定化処理、エステル化処理、精製処理などを施したロジン誘導体を、界面活性剤として使用できる。安定化処理とは、上記ロジン類に水素化、不均化、脱水素化、重合処理等を施すことをいう。また、エステル化処理とは、上記ロジン類、又は安定化処理を施したロジン類を各種アルコールと反応させてロジンエステルとする処理のことをいう。このロジンエステルの製造には各種公知のアルコール又はエポキシ化合物等を使用することができる。アルコールとしては、例えば、n-オクチルアルコール、2-エチルヘキシルアルコール、デシルアルコール、ラウリルアルコールのような1価アルコール;エチレングリコール、ジエチレングリコール、トリエチレングリール、プロピレングリコール、ネオペンチルグリコール等の2価アルコール;グリセリン、トリメチロールエタン、トリメチロールプロパン、シクロヘキサンジメタノール等の3価アルコール;ペンタエリスリトール、ジグリセリン等の4価アルコールが挙げられる。また、イソペンチルジオール、エチルヘキサンジオール、エリトルロース、オゾン化グリセリン、カプリリルグリコール、グリコール、(C15-18)グリコール、(C20-30)グリコール、グリセリン、ジエチレングリコール、ジグリセリン、ジチアオクタンジオール、DPG、チオグリセリン、1,10-デカンジオール、デシレングリコール、トリエチレングリコール、トリメチルヒドロキシメチルシクロヘキサノール、フィタントリオール、フェノキシプロパンジオール、1,2-ブタンジオール、2,3-ブタンジオール、ブチルエチルプロパンジオール、BG、PG、1,2-ヘキサンジオール、ヘキシレングリコール、ペンチレングリコール、メチルプロパンジオール、メンタンジオール、ラウリルグリコール等の多価アルコールを用いてもよい。また、イノシトール、エリスリトール、キシリトール、ソルビトール、マルチトール、マンニトール、ラクチトール等の糖アルコールとして分類されるものも、多価アルコールに含まれる。
 さらに、上記アルコールとしては、アルコール性の水溶性高分子を用いることもできる。アルコール性の水溶性高分子としては、多糖類・ムコ多糖類、デンプンとして分類されるもの、多糖誘導体として分類されるもの、天然樹脂に分類されるもの、セルロース及び誘導体に分類されるもの、タンパク質・ペプチドに分類されるもの、ペプチド誘導体に分類されるもの、合成ホモポリマーに分類されるもの、アクリル(メタクリル酸)酸共重合体に分類されるもの、ウレタン系高分子に分類されるもの、ラミネートに分類されるもの、カチオン化高分子に分類されるもの、その他の合成高分子に分類されるもの等が挙げられ、常温で水溶性のものを用いることができる。より具体的には、ポリアクリル酸ナトリウム、セルロースエーテル、アルギン酸カルシウム、カルボキシビニルポリマー、エチレン/アクリル酸共重合体、ビニルピロリドン系ポリマー、ビニルアルコール/ビニルピロリドン共重合体、窒素置換アクリルアミド系ポリマー、ポリアクリルアミド、カチオン化ガーガムなどのカチオン系ポリマー、ジメチルアクリルアンモニウム系ポリマー、アクリル酸メタクリル酸アクリル共重合体、POE/POP共重合体、ポリビニルアルコール、プルラン、寒天、ゼラチン、タマリンド種子多糖類、キサンタンガム、カラギーナン、ハイメトキシルペクチン、ローメトキシルペクチン、ガーガム、アラビアゴム、セルロースウィスカー、アラビノガラクタン、カラヤガム、トラガカントガム、アルギン酸、アルブミン、カゼイン、カードラン、ジェランガム、デキストラン、セルロース(本開示のセルロースファイバー及びセルロースウィスカーではないもの)、ポリエチレンイミン、ポリエチレングリコール、カチオン化シリコーン重合体等が挙げられる。
 上述の各種ロジンエステルの中でも、セルロース成分表面のコーティング性、樹脂中でのセルロース製剤の分散性がさらに促進される傾向にあるため、ロジンと水溶性高分子がエステル化したものが好ましく、ロジンとポリエチレングリコールとのエステル化物(ロジンエチレンオキサイド付加物、ポリオキシエチレングリコール樹脂酸エステル、ポリオキシエチレンロジン酸エステルともいう。)が特に好ましい。
 硬化ひまし油型の界面活性剤としては、例えば、トウダイグサ科のトウゴマの種子等から採取する植物油の一種であるひまし油(ひましあぶら、ひましゆ、蓖麻子油)を原料として、水素化されたものを疎水基として、その構造中の水酸基と、PEO鎖等の親水基が共有結合した化合物が挙げられる。ひまし油の成分は、不飽和脂肪酸(リシノール酸が87%、オレイン酸が7%、リノール酸が3%)と少量の飽和脂肪酸(パルミチン酸、ステアリン酸などが3%)のグリセリドである。また、代表的なPOE基の構造としては、エチレンオキサイド(EO)残基が4~40までのものがあり、代表的なものとしては15~30のものが挙げられる。ノニルフェノールエトキシレートのEO残基は、15~30が好ましく、15~25がより好ましく、15~20が特に好ましい。
 鉱物油の誘導体としては、例えば、カルシウム石鹸基グリース、カルシウム複合石鹸基グリース、ナトリウム石鹸基グリース、アルミニウム石鹸基グリース、リチウム石鹸基グリース等のグリース類等が挙げられる。
 界面活性剤は、アルキルフェニル型化合物であってもよく、例えば、アルキルフェノールエトキシレート、すなわちアルキルフェノールをエチレンオキシドでエトキシル化して得られる化合物が挙げられる。アルキルフェノールエトキシレートは非イオン界面活性剤である。親水性のポリオキシエチレン(POE)鎖と、疎水性のアルキルフェノール基がエーテル結合で結びついていることから、ポリ(オキシエチレン)アルキルフェニルエーテルとも呼ばれる。一般にアルキル鎖長、POE鎖長の異なる多数の化合物の混合物として、平均鎖長の異なる一連の製品が市販されている。アルキル鎖長は炭素数6~12(フェニル基を除く)が市販されているが、代表的なアルキル基の構造は、ノニルフェノールエトキシレートやオクチルフェノールエトキシレートが挙げられる。また、代表的なPOE基の構造としては、エチレンオキサイド(EO)残基が5~40までのものがあり、代表的なものとしては15~30のものが挙げられる。ノニルフェノールエトキシレートのEO残基は、15~30が好ましく、15~25がより好ましく、15~20が特に好ましい。
 界面活性剤は、βナフチル型化合物であってもよく、例えば、その化学構造の一部に、ナフタレンを含み、芳香環の2又は3又は6又は7位の炭素が水酸基と結合したβモノ置換体と、PEO鎖等の親水基が共有結合した化合物が挙げられる。また、代表的なPOE基の構造としては、エチレンオキサイド(EO)残基が4~40までのものがあり、代表的なものとしては15~30のものが挙げられる。EO残基が15~30が好ましく、15~25がより好ましく、15~20が特に好ましい。
 界面活性剤は、ビスフェノールA型化合物であってもよく、例えば、その化学構造の一部に、ビスフェノールA(化学式 :(CH32C(C64OH)2)を含み、その構造中の二つのフェノール基と、PEO鎖等の親水基が共有結合した化合物が挙げられる。また、代表的なPOE基の構造としては、エチレンオキサイド(EO)残基が4~40までのものがあり、代表的なものとしては15~30のものが挙げられる。ノニルフェノールエトキシレートのEO残基は、15~30が好ましく、15~25がより好ましく、15~20が特に好ましい。このEO残基は、一つの分子中に、二つのエーテル結合がある場合は、それら二つを足し合わせた平均値を指す。
 界面活性剤は、スチレン化フェニル型化合物であってもよく、例えば、その化学構造の一部に、スチレン化フェニル基を含み、その構造中のフェノール基と、PEO鎖等の親水基が共有結合した化合物が挙げられる。スチレン化フェニル基は、フェノール残基のベンゼン環にスチレンが1~3分子付加した構造を有する。また、代表的なPOE基の構造としては、エチレンオキサイド(EO)残基が4~40までのものがあり、代表的なものとしては15~30のものが挙げられる。ノニルフェノールエトキシレートのEO残基は、15~30が好ましく、15~25がより好ましく、15~20が特に好ましい。このEO残基は、一つの分子中に、二つのエーテル結合がある場合は、それら二つを足し合わせた平均値を指す。
<界面活性剤の具体的な好適例>
 界面活性剤の具体的な好適例としては、例えば、アシルグルタミン酸塩等のアシルアミノ酸塩、ラウリン酸ナトリウム、パルミチン酸ナトリウム、ラウリル硫酸ナトリウム、ラウリル硫酸カリウム等の高級アルキル硫酸エステル塩、ポリオキシエチレンラウリル硫酸トリエタノールアミン、ポリオキシエチレンラウリル硫酸ナトリウム等のアルキルエーテル硫酸エステル塩、ラウロイルサルコシンナトリウム等のN-アシルサルコシン酸塩等のアニオン性界面活性剤;塩化ステアリルトリメチルアンモニウム、塩化ラウリルトリメチルアンモニウム等のアルキルトリメチルアンモニウム塩、塩化ジステアリルジメチルアンモニウムジアルキルジメチルアンモニウム塩、塩化(N,N’-ジメチル-3,5-メチレンピペリジニウム)、塩化セチルピチジニウム等のアルキルピリジニウム塩、アルキル4級アンモニウム塩、ポリオキシエチレンアルキルアミン等のアルキルアミン塩、ポリアミン脂肪酸誘導体、アミルアルコール脂肪酸誘導体等のカチオン性界面活性剤;2-ウンデシル-N,N,N-(ヒドロキシエチルカルボキシメチル)2-イミダゾリンナトリウム、2-ココイル-2-イミタゾリニウムヒドロキサイド-1-カルボキシエチロキシ2ナトリウム塩等のイミダゾリン系両性界面活性剤、2-ヘプタデシル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、アルキルベタイン、アミドベタイン、スルホバタイン等のベタイン系両性界面活性剤等の両性界面活性剤、ソルビタンノモオレエート、ソルビタンモノモイソステアレート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンセスキオレエート、ソルビタントリオレエート、ペンタ-2-エチルヘキシル酸ジグリセロールソルビタン、テトラ-2-エチルヘキシル酸ジグリセロールソルビタン等のソルビタン脂肪酸エステル類、モノステアリン酸グリセリン、α,α’-オレイン酸ピログルタミン酸グリセリン、モノステアリン酸グリセリンリンゴ酸等のグリセリンポリグリセリン脂肪酸類、モノステアリン酸プロピレングリコール等のプロピレングリコール脂肪酸エステル類、硬化ヒマシ油誘導体、グリセリンアルキルエーテル、ポリオキシエチレン-ソルビタンモノステアレート、ポリオキシエチレン-ソルビタンモノオレエート、ポリオキシエチレン-ソルビタンテトラオレエート等のポリオキシエチレン-ソルビタン脂肪酸エステル類、ポリオキシエチレン-ソルビットモノラウレート、ポリオキシエチレン-ソルビットモノオレエート、ポリオキシエチレン-ソルビットペンタオレエート、ポリオキシエチレン-ソルビットモノステアレート、ポリオキシエチレン-グリセリンモノイソステアレート、ポリオキシエチレン-グリセリントリイソステアレート等のポリオキシエチレン-グリセリン脂肪酸エステル類、ポリオキシエチレンモノオレエート、ポリオキシエチレンジステアレート、ポリオキシエチレンモノジオレエート、システアリン酸エチレングリコール等のポリオキシエチレン脂肪酸エステル類、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油モノイソステアレート、ポリオキシエチレン硬化ヒマシ油トリイソステアレート、ポリオキシエチレン硬化ヒマシ油モノピログルタミン酸モノイソステアリン酸ジエステル、ポリオキシエチレン硬化ヒマシ油マレイン酸等のポリオキシエチレンヒマシ油硬化ヒマシ油誘導体等の非イオン性界面活性剤等が挙げられる。
 上述の中でも、セルロース成分との親和性の点で、親水基としてポリオキシエチレン鎖、カルボン酸、又は水酸基を有する界面活性剤が好ましく、親水基としてポリオキシエチレン鎖を有するポリオキシエチレン系界面活性剤(ポリオキシエチレン誘導体)がより好ましく、非イオン系のポリオキシエチレン誘導体がさらに好ましい。ポリオキシエチレン誘導体のポリオキシエチレン鎖長としては、3以上が好ましく、5以上がより好ましく、10以上がさらに好ましく、15以上が特に好ましい。鎖長は長ければ長いほど、セルロース成分との親和性が高まるが、コーティング性(樹脂及びセルロース成分との界面への局在性)とのバランスにおいて、上限としては60以下が好ましく、50以下がより好ましく、40以下がさらに好ましく、30以下が特に好ましく、20以下が最も好ましい。
 疎水性の樹脂(例えばポリオレフィン、ポリフェニレンエーテル等)にセルロース成分を配合する場合には、親水基としてポリオキシエチレン鎖に代えて、ポリオキシプロピレン鎖を有するものを用いることが好ましい。ポリオキシプロピレン鎖長としては、3以上が好ましく、5以上がより好ましく、10以上がさらに好ましく、15以上が特に好ましい。鎖長は長ければ長いほど、セルロース成分との親和性が高まるが、コーティング性とのバランスにおいて、上限としては60以下が好ましく、50以下がより好ましく、40以下がさらに好ましく、30以下が特に好ましく、20以下が最も好ましい。
 上述の界面活性剤でも、特に、疎水基としては、アルキルエーテル型、アルキルフェニルエーテル型、ロジンエステル型、ビスフェノールA型、βナフチル型、スチレン化フェニル型、硬化ひまし油型が、樹脂との親和性が高いため、好適に使用できる。好ましいアルキル鎖長(アルキルフェニルの場合はフェニル基を除いた炭素数)としては、炭素鎖が5以上であるこことが好ましく、10以上がより好ましく、12以上がさらに好ましく、16以上が特に好ましい。樹脂がポリオレフィンの場合、炭素数が多いほど、樹脂との親和性が高まるため上限は設定されないが、好ましくは30、より好ましくは25である。
 これらの疎水基の中でも、環状構造を有するもの、又は嵩高く多官能構造を有するものが好ましく、環状構造を有するものとしては、アルキルフェニルエーテル型、ロジンエステル型、ビスフェノールA型、βナフチル型、スチレン化フェニル型が好ましく、多官能構造を有するものとしては、硬化ひまし油型が特に好ましい。これらの中でも、特にロジンエステル型、硬化ひまし油型が最も好ましい。
 したがって、特に好ましい態様において、界面活性剤は、ロジン誘導体、アルキルフェニル誘導体、ビスフェノールA誘導体、βナフチル誘導体、スチレン化フェニル誘導体、及び硬化ひまし油誘導体からなる群より選択される1種以上である。
 界面活性剤以外の有機成分としては、油脂、脂肪酸、及び鉱物油からなる群から選択される1種以上でかつ上記界面活性剤に包含されない化合物が挙げられる。油脂としては、界面活性剤の項で油脂として例示したものが挙げられる。
 脂肪酸とは、一般式CnHmCOOH(n、mは整数)で表せる化合物をいい、食用、工業用など様々な用途で利用されているものを用いることができる。例えば、以下のものを1種又は2種以上併用して用いる。
 例えば、飽和脂肪酸としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸 、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘンイコシル酸、ベヘン酸、トリコシル酸、リグノセリン酸等が挙げられ、不飽和脂肪酸としては、例えば、α-リノレン酸、ステアリドン酸、エイコサペンタエン酸、ドコサペンタエン酸、ドコサヘキサエン酸等のω-3脂肪酸;リノール酸、γ-リノレン酸、ジホモ-γ-リノレン酸、アラキドン酸、ドコサペンタエン酸等のω-6脂肪酸;パルミトレイン酸、バクセン酸、パウリン酸等のω-7脂肪酸;オレイン酸、エライジン酸、エルカ酸、ネルボン酸等のω-9脂肪酸が挙げられる。
 鉱物油としては、流動パラフィン、シリコンオイル、シリコングリース等のグリース類;ナフテン系及びパラフィン系鉱物油;鉱物油や高度水素分解油にPAOやエステル(或いは水素化分解油)を混合し得られる部分合成油;PAO(ポリアルファオレフィン)等の化学合成油・全合成油・合成油等が挙げられる。
 セルロース成分100質量部に対する有機成分の量は、好ましくは50質量部以下、より好ましくは45質量部以下、さらに好ましくは40質量部以下、さらに好ましくは35質量部以下、特に好ましくは30質量部以下である。付加的成分であるため、下限は特に限定されないが、セルロース成分100質量部に対し、合計量が0.1質量部以上であることで、取扱い性を高めることができる。合計量は、より好ましくは0.5質量部以上、特に好ましくは1質量部以上である。
<<樹脂組成物の特性>>
<引張破断強度の変動係数CV>
 樹脂組成物においては、得られる成形体の強度欠陥の解消の観点から、引張破断強度の変動係数CVを、10%以下とすることが好ましい。ここでいう変動係数とは、標準偏差(σ)を算術平均(μ)除して100を乗じた百分率であらわされるもので、相対的なばらつきを表す単位のない数である。
  CV=(σ/μ)×100
  ここで、μとσは、下式により与えられる。
Figure JPOXMLDOC01-appb-M000001
 ここで、xiは、n個のデータ x1、x2、x3・・・・Xnのうちの引張破断強度の単一の個データである。
 引張破断強度の変動係数CVを算出する際のサンプル数(n)は、その欠陥を見つけやすくするため、少なくとも10以上であることが望ましい。より望ましくは15以上である。
 より好ましい変動係数の上限は、9%であり、さらに好ましくは8%、より好ましくは7%、更により好ましくは6%、最も好ましくは5%である。下限はゼロが好ましいが、製造容易性の観点からは好ましくは0.1%である。
 樹脂組成物は、セルロース成分として、セルロースウィスカーとセルロースファイバーとを含む。このように特定の2種以上のセルロースの組合せとすることにより、従来よりも高分散性かつ高濃度で樹脂組成物中にセルロース成分を存在させることが可能となる。これにより、従来のセルロース組成物からなる樹脂成形品に見られた、部分的な強度欠陥の発生を解消し、実製品としての信頼性が大幅に向上するという、画期的な効果がもたらすことが可能となる。
 従来の樹脂成形品の上記のような部分的な強度欠陥は、セルロースの不均一分散や、例えばL/Dの大きいセルロースファイバーの絡まりによる空隙(ボイド)の形成が原因と考えられる。この強度欠陥の形成しやすさを評価する指標としては、複数の試験片の引張試験を実施し、破断強度のバラツキの有無・数を確認する方法が挙げられる。
 たとえば、自動車のボディや、ドアパネル、バンパーといった構造部品の成形体中に、セルロースが不均一分散した部分や、L/Dの大きいセルロースファイバーの絡まりによるボイドが存在すると、成形体に瞬間的に大きな応力がかかった際、若しくは振動の様に、小さい応力ではあるが、応力が繰り返しかかった際に、上述した均一ではない部分やボイドに応力が集中することとなる。そして最終的には、集中した応力によりこれら成形体が破壊される事態に至る。これが製品としての信頼性低下となっている。
 この実製品で起こる構造欠陥を試験段階で予見することは、従来まで困難であり、例えば、製品中のセルロースファイバーの分散性を顕微鏡等で確認するような手法が用いられていた。しかしながら顕微鏡での観察等は、極めて微視的な観察であり、試験片全体、製品全体を網羅的に評価できるものではなかった。
 本発明者らは、種々の検討を進める中で、引張破断強度の変動係数と、製品の構造欠陥の割合に相関関係があることを見出した。
 より詳細に説明すると、例えば内部構造が均質で、ボイド等もない材料であれば、複数のサンプルの引張破断試験を行った際にも、破断に至る際の応力は、当該複数のサンプル間でほぼ同値であり、その変動係数は非常に小さい。しかしながら内部に不均一部やボイドを有する材料は、あるサンプルにおいて破断に至る応力がその他のサンプルの応力と大きな差異を有する。このような、他のサンプルの応力と異なる応力を示すサンプルの多さの程度を、変動係数という尺度を用いることで明確にすることができる。
 例を挙げると、例えば、降伏強度を有さない材料の場合は、内部に欠陥を有するサンプルは、その他のサンプルに比して、より低い強度で破断に至る。また、降伏強度を有する材料の場合は、降伏に至ったのち、ネッキングに至る途中で破断に至ることが多く、内部に欠陥を有するサンプルは、その他のサンプルに比して、より高い強度で破断に至る傾向を示す。このように挙動の違いはあるが、引張破断強度の変動係数という尺度により、実製品の強度欠陥の発生可能性を予期しえる。
 引張破断強度の変動係数には、組成物中におけるセルロース成分の分散状態が大きく影響を与えていると考えられる。分散状態を良好にする手法は種々ある。例として、セルロースファイバーとセルロースウィスカーの比率を最適化する方法、セルロース成分の径やL/Dを最適化する方法、押出機での溶融混練の際に、スクリュー配置の最適化や、温度のコントロールによる樹脂粘度の最適化により、セルロース成分に充分なせん断を与える方法、最適な有機成分(例えば界面活性剤)を追加添加することにより樹脂とセルロース成分の界面を強化する方法、樹脂とセルースとの間に何らかの化学結合を形成させる方法等、様々なアプローチが挙げられる。セルロース成分の分散状態を改善するためにこれらのアプローチのいずれを採用してもよい。引張破断強度の変動係数CVを10%以下とすることは、得られる成形体の強度欠陥の解消に高く寄与することができ、成形体の強度に対する信頼性が大幅に向上するという効果を与える。
<引張降伏強度>
 本発明の一態様に係る樹脂組成物においては、引張降伏強度が、熱可塑性樹脂単独に比して飛躍的に改善する傾向がある。樹脂組成物の引張降伏強度の、セルロース成分を含まない熱可塑性樹脂単独の引張降伏強度を1.0としたときの比率は、1.1倍以上であることが好ましく、より好ましくは1.15倍以上、さらにより好ましくは1.2倍以上、最も好ましくは1.3倍以上である。上記比率の上限は特に制限されないが、製造容易性の観点から、例えば、5.0倍であることが好ましく、より好ましくは4.0倍である。
<線膨張性>
 本発明の一態様において、樹脂組成物は、セルロース成分として2種以上のセルロースを含むため、従来のセルロース系組成物よりも低い線膨張性を示すことが可能となる。具体的には、樹脂組成物の温度範囲0℃~60℃における線膨張係数は50ppm/K以下であることが好ましい。より好ましい組成物の線膨張係数は45ppm/K以下であり、さらにより好ましくは40ppm/K以下であり、最も好ましくは35ppm/K以下である。線膨張係数の下限は特に制限されないが、製造容易性の観点から、例えば、5ppm/Kであることが好ましく、より好ましくは10ppm/Kである。
 本発明の一態様において、樹脂組成物は、セルロースの組成物内での分散均一性に優れるため、大型成形体における線膨張係数のバラツキが小さいという特徴をも有する。具体的には、大型成形体の異なる部位から採取した試験片を用いて測定した線膨張係数のバラツキが非常に低いという特徴を示す。
 セルロースの組成物内での分散が不均一で、部位による線膨張係数の違いが大きい場合、温度変化により、成形体に歪みや、反りが生じるといった不具合を生じやすい。しかもこの不具合は熱膨張の違いにより生じ、温度の上下により可逆的に発生する故障モードである。そのため、室温状態でのチェックでは認識できないという潜在的危険性を有する故障モードとなりうるものである。
 線膨張係数のバラツキの大小は、部位の異なる部分より得た測定サンプルの線膨張係数の変動係数を用いて表すことが可能である。ここでいう変動係数とは、上述の引張破断強度の変動係数の項で説明したものと計算方法は同じである。
 樹脂組成物から得られる線膨張係数の変動係数は、15%以下であることが好ましい。より好ましい変動係数の上限は、13%であり、さらに好ましくは11%、より好ましくは10%、更により好ましくは9%、最も好ましくは8%である。下限はゼロが好ましいが、製造容易性の観点からは好ましくは0.1%である。
 線膨張係数の変動係数を算出する際のサンプル数(n)は、データの誤差等による影響を少なくするため、少なくとも10以上であることが望ましい。
<<樹脂組成物の形状>>
 樹脂組成物は、種々の形状での提供が可能である。具体的には、樹脂ペレット状、シート状、繊維状、板状、棒状等が挙げられるが、樹脂ペレット形状が、後加工の容易性や運搬の容易性からより好ましい。この際の好ましいペレット形状としては、丸型、楕円型、円柱型などが挙げられ、これらは押出加工時のカット方式により異なる。アンダーウォーターカットと呼ばれるカット方法で切断されたペレットは、丸型になることが多く、ホットカットと呼ばれるカット方法で切断されたペレットは丸型又は楕円型になることが多く、ストランドカットと呼ばれるカット方法で切断されたペレットは円柱状になることが多い。丸型ペレットの場合、その好ましい大きさは、ペレット直径として1mm以上、3mm以下である。また、円柱状ペレットの場合の好ましい直径は、1mm以上3mm以下であり、好ましい長さは、2mm以上10mm以下である。上記の直径及び長さは、押出時の運転安定性の観点から、下限以上とすることが望ましく、後加工での成形機への噛み込み性の観点から、上限以下とすることが望ましい。
 樹脂組成物は、種々の樹脂成形体として利用が可能である。樹脂成形体の製造方法に関しては特に制限はなく、いずれの製造方法でも構わないが、射出成形法、押出成形法、ブロー成形法、インフレーション成形法、発泡成形法などが使用可能である。これらの中では射出成形法がデザイン性とコストの観点より、最も好ましい。
<<樹脂組成物の製造方法>>
 樹脂組成物の製法として特に制限はないが、具体例としては以下の様な方法が挙げられる。
 単軸又は、二軸押出機を用いて、樹脂とセルロース成分との混合物を溶融混練し、ストランド状に押出し、水浴中で冷却固化させ、ペレット状成形体として得る方法、単軸又は、二軸押出機を用いて、樹脂とセルロース成分との混合物を溶融混練し、棒状又は筒状に押出し冷却して押出成形体として得る方法、単軸又は、二軸押出機を用いて、樹脂とセルロース成分との混合物を溶融混練し、Tダイより押出しシート、又はフィルム状の成形体を得る方法、単軸又は、二軸押出機を用いて、樹脂とセルロース成分との混合物を溶融混練し、ストランド状に押出し、水浴中で冷却固化させ、ペレット状成形体として得る方法等が挙げられる。
 また、樹脂とセルロース成分との混合物の溶融混練方法の具体例としては、樹脂と所望の比率で混合されたセルロース混合粉末とを、有機成分(例えば界面活性剤)の存在下/又は非存在下で混合した後、一括溶融混練する方法、樹脂及び必要により有機成分を溶融混練した後、所望の比率で混合されたセルロース混合粉末及び必要により有機成分を添加して、更に溶融混練する方法、樹脂、所望の比率で混合されたセルロース混合粉末及び水、並びに必要により有機成分を混合した後、一括で溶融混練する方法、樹脂及び必要により有機成分を溶融混練した後、所望の比率で混合されたセルロース混合粉末及び水、並びに必要により有機成分を添加して、更に溶融混練する方法等が挙げられる。
 本発明の一態様に係る樹脂組成物は、高機械的特性及び低線膨張性を有し、大型部品に対応可能な高い流動性を有するだけではなく、部分的な強度欠陥を実質的に含まない成形体を与えるため、種々の大型部品用途に好適に使用可能である。
[[態様B]]
 本発明の一態様は、熱可塑性樹脂と、セルロース成分とを含み、線膨張係数の変動係数と引張破断強度の変動係数とが特定値以下である、樹脂組成物を提供する。
 樹脂組成物中にセルロース成分が高度に微分散することで、優れた特性(機械的特性、高流動性等)を示す樹脂組成物、及びそれからなる成形体が与えられる。より具体的には、セルロース成分同士が樹脂組成物中で高次のネットワーク構造を形成することで、特に線膨張係数のバラツキが高度に抑制される一方、樹脂組成物中に存在するセルロース成分が比較的少量であることで、特に引張破断強度のバラツキが高度に抑制されることができる。
≪線膨張係数及び引張破断強度の変動係数≫
<線膨張係数の変動係数>
 本発明の一態様に係る樹脂組成物においては、当該樹脂組成物から得られる成形体の反りや変形といった寸法不安定欠陥の解消の観点から、樹脂組成物における線膨張係数の変動係数を、15%以下とする。ここでいう変動係数とは、標準偏差(σ)を算術平均(μ)で除して100を乗じた百分率であらわされるもので、相対的なばらつきを表す単位のない数である。
  CV=(σ/μ)×100
  ここで、μとσは、下式により与えられる。
Figure JPOXMLDOC01-appb-M000002
 ここで、xiは、n個のデータ x1、x2、x3・・・・Xnのうちの線膨張係数の単一の個データである。
 線膨張係数の変動係数CVを算出する際のサンプル数(n)は、その欠陥を見つけやすくするため、少なくとも10以上であることが望ましい。より望ましくは15以上である。
 より好ましい変動係数の上限は、14%であり、さらに好ましくは13%、より好ましくは12%、更により好ましくは11%、最も好ましくは10%である。下限はゼロが好ましいが、製造容易性の観点からは好ましくは0.1%である。線膨張係数の変動係数を算出する際のサンプル数(n)は、データの誤差等による影響を少なくするため、10以上であることが望ましい。
 線膨張係数の変動係数は下記手順で得られる。すなわち、ISO294-3に準拠した60mm×60mm×2mmの小型角板を50枚以上成形し、10枚ごとに1枚の試験片を取り出し、該試験片のゲート部と流動末端部より、精密カットソーにて縦4mm、横2mm、長さ4mmの測定用直方体サンプルを切り出す。このようにして得られた測定用サンプルを、測定温度範囲-10~80℃で、ISO11359-2に準拠して、0℃~60℃の間での線膨張係数を算出する。この時、得られる10個以上のデータを元に、上記式に基づいて変動係数を算出する。この際、成形時の歪を予め解消させるため、測定温度を超える温度で3時間以上アニーリング処理を施すことが望ましい。
 本発明の一態様に係る樹脂組成物では、上述したように、セルロース成分が、高度の微分散性を示し、組成物中でネットワークを形成させることが可能となる。これにより、樹脂成形体の部位による機械的特性が均質化されることとなる。これにより、成形後の経時的な収縮や、成形後に加熱された際の収縮が、意図しないバラツキをもって発生し、その場所による収縮の違いによって生じる成形体の反りや変形を抑制することが可能となる。
 セルロースの組成物内での分散が不均一で、部位による線膨張係数の違いが大きい場合、温度変化により、成形体に歪みや反りといった不具合が生じやすい。しかもこの不具合は熱膨張の違いにより生じ、温度の上下により可逆的に発生する故障モードである。そのため、室温状態でのチェックでは認識できないという潜在的危険性を有する故障モードとなりうるものである。この寸法欠陥は、初期段階で把握することが困難であった。
 この成形品の反り等の要因としては、部分的な収縮の違いが考えられ、上述したように、セルロースの不均一分散等がその要因と考えられる。本発明者らは、検討を進める中、温度変化による寸法変化である線膨張係数の変動係数と、製品の寸法欠陥の割合に相関関係があることを見出した。すなわち、実成形体の寸法欠陥と実成形体における種々の部位での線膨張係数の変動係数に相関関係があることを見出した。より具体的には、一つの成形体における種々の部位から試験片を取り出し、それぞれに対し線膨張係数を測定し、そのバラツキの有無を比較評価する方法が挙げられる。この測定方法は、成形体の反り等の寸法欠陥の評価に関しては、同一成形体の複数の部位より試験片を取り出して評価することで可能となる。更に大きいサイズでの変動を評価する場合には、異なる試験片(例えば、成形した日が異なる、生産のロットが異なる、成形機が異なる等)の同一部位で評価することで、可能となる。この際、予め比較的変動が激しいとわかっている部位での測定を実施した方がより好ましい。
 しかしながら、こういった実製品で成形後に起こる寸法欠陥を、試験段階・材料設計段階で予見することは、従来困難であった。本発明者らは、この実成形体における種々の部位での線膨張係数の変動係数と、試験片の段階において、異なる試験片に対して測定された線膨張係数の変動係数とに一定の相関があることを見出した。すなわち、試験片レベルであっても、複数の線膨張係数を測定しその変動係数を評価することで、実成形片での寸法欠陥の起きやすさを把握できるようになったのである。
 線膨張係数の変動係数には、組成物中におけるセルロース成分の分散状態が大きく影響を与えていると考えられる。分散状態を良好にする手法は種々ある。例として、セルロースファイバーとセルロースウィスカーの比率を最適化する方法、セルロース成分の径やL/Dを最適化する方法、押出機での溶融混練の際に、セルロース成分の添加方法の最適化や、押出機の化スクリュー配置の最適化や、温度のコントロールによる樹脂粘度の最適化により、セルロース成分に充分なせん断を与える方法、最適な有機成分(例えば界面活性剤)を追加添加することにより樹脂とセルロース成分の界面を強化する方法、樹脂とセルースとの間に何らかの化学結合を形成させる方法等、様々なアプローチが挙げられる。セルロース成分の分散状態を改善するためにこれらのアプローチのいずれを採用してもよい。線膨張係数の変動係数を15%以下とすることは、得られる成形体の強度欠陥や寸法欠陥の解消に高く寄与することができ、成形体の強度や製品としての安定性に対する信頼性が大幅に向上するという効果を与える。
<引張破断強度の変動係数>
 本発明の一態様に係る樹脂組成物においては、樹脂組成物から得られる成形体の強度欠陥の解消の観点から、引張破断強度の変動係数CVを、10%以下とする。ここでいう変動係数は、線膨張係数の項で述べたものと同じで、相対的なばらつきを表す数である。
 引張破断強度の変動係数CVを算出する際のサンプル数(n)は、その欠陥を見つけやすくするため、少なくとも10以上であることが望ましい。より望ましくは15以上である。
 より好ましい変動係数の上限は、9%であり、さらに好ましくは8%、より好ましくは7%、更により好ましくは6%、最も好ましくは5%である。下限はゼロが好ましいが、製造容易性の観点からは好ましくは0.1%である。
 引張破断強度の変動係数は、ISO294-3に準拠した多目的試験片を用いて、ISO527に準拠して測定された引張破断強度を用いて算出される。
 本発明の一態様に係る樹脂組成物においては、セルロース成分が高度の微分散性を示し、組成物中でネットワークを形成することが可能である。セルロース成分の存在は、線膨張係数の変動係数の低減に寄与する一方、樹脂組成物の流動性低下、更に引張破断強度の変動係数の増大を招来する傾向がある。樹脂組成物中の熱可塑性樹脂に対するセルロース成分の量が比較的少量とされていることは、樹脂組成物の良好な流動性の維持、更に引張破断強度の変動係数の低減の点で有利である。したがって、本発明の一態様に係る樹脂組成物によれば、従来のセルロース含有樹脂組成物からなる樹脂成形品に見られた、部分的な強度欠陥の発生が解消され、実製品としての信頼性が大幅に向上するという画期的な効果がもたらされることが可能となる。
 従来の樹脂成形品の上記のような部分的な強度欠陥は、セルロースの不均一分散や、例えばL/Dの大きいセルロースファイバーの絡まりによる空隙(ボイド)の形成が原因と考えられる。この強度欠陥の形成しやすさを評価する指標としては、複数の試験片の引張試験を実施し、破断強度のバラツキの有無・数を確認する方法が挙げられる。
 たとえば、自動車のボディや、ドアパネル、バンパーといった構造部品の成形体中に、セルロースが不均一分散した部分や、L/Dの大きいセルロースファイバーの絡まりによるボイドが存在すると、成形体に瞬間的に大きな応力がかかった際、若しくは振動の様に、小さい応力ではあるが、応力が繰り返しかかった際に、上述した均一ではない部分やボイドに応力が集中することとなる。そして最終的には、集中した応力によりこれら成形体が破壊される事態に至る。これが製品としての信頼性低下を招来している。
 実製品で起こるこの構造欠陥を試験段階で予見することは、従来困難であり、例えば、製品中のセルロースファイバーの分散性を顕微鏡等で確認するような手法が用いられていた。しかしながら顕微鏡での観察等は、極めて微視的な観察であり、試験片全体、製品全体を網羅的に評価できるものではなかった。
 本発明者らは、種々の検討を進める中で、引張破断強度の変動係数と、製品の構造欠陥の割合に相関関係があることを見出した。
 より詳細に説明すると、例えば内部構造が均質で、ボイド等もない材料であれば、複数のサンプルの引張破断試験を行った際にも、破断に至る際の応力は、当該複数のサンプル間でほぼ同値であり、その変動係数は非常に小さい。しかしながら内部に不均一部やボイドを有する材料は、あるサンプルにおいて破断に至る応力がその他のサンプルの応力と大きな差異を有する。このような、他のサンプルの応力と異なる応力を示すサンプルの多さの程度を、変動係数という尺度を用いることで明確にすることができる。
 例を挙げると、例えば、降伏強度を有さない材料の場合は、内部に欠陥を有するサンプルは、その他のサンプルに比して、より低い強度で破断に至る。また、降伏強度を有する材料の場合は、降伏に至ったのち、ネッキングに至る途中で破断に至ることが多く、内部に欠陥を有するサンプルは、その他のサンプルに比して、より高い強度で破断に至る傾向を示す。このように挙動の違いはあるが、引張破断強度の変動係数という尺度により、実製品の強度欠陥の発生可能性を予期しえる。
<<樹脂組成物の線膨張係数>>
 本発明の一態様において、樹脂組成物は、セルロース成分として2種以上のセルロースを含む。この場合、従来のセルロース系組成物よりも低い線膨張性を示すことが可能となる。具体的には、樹脂組成物の温度範囲0℃~60℃における線膨張係数は50ppm/K以下であることが好ましい。より好ましい組成物の線膨張係数は45ppm/K以下であり、さらにより好ましくは40ppm/K以下であり、最も好ましくは35ppm/K以下である。線膨張係数の下限は特に制限されないが、製造容易性の観点から、例えば、5ppm/Kであることが好ましく、より好ましくは10ppm/Kである。
 線膨張係数は、ISO294-1に準拠した多目的試験片の中央部から、精密カットソーにて縦4mm、横4mm、長さ4mmの立方体サンプルを切り出し、測定温度範囲-10~80℃で、ISO11359-2に準拠して測定した線膨張係数を指す。この際、成形時の歪を予め解消させるため、測定温度を超える温度で3時間以上アニーリング処理を施すことが望ましい。
<<樹脂組成物の引張降伏強度>>
 本発明の一態様に係る樹脂組成物においては、引張降伏強度が、熱可塑性樹脂単独に比して飛躍的に改善する傾向がある。樹脂組成物の引張降伏強度の、セルロース成分を含まない熱可塑性樹脂単独の引張降伏強度を1.0としたときの比率は、1.1倍以上であることが好ましく、より好ましくは1.15倍以上、さらにより好ましくは1.2倍以上、最も好ましくは1.3倍以上である。上記比率の上限は特に制限されないが、製造容易性の観点から、例えば、5.0倍であることが好ましく、より好ましくは4.0倍である。
<<セルロース成分>>
 次にセルロース成分について詳述する。
 本発明の一態様に係る樹脂組成物が発現する物性安定性は、セルロースが樹脂組成物中で微分散すること、更に、樹脂に対するセルロース成分の総量が少ないことで実現される。一態様においては、セルロース成分が樹脂の非結晶相において、ネットワーク構造を構築する。このネットワークの形成により、少ないセルロース量であっても樹脂組成物の熱的膨張を効果的に抑制するという成果を達成しやすくなる。さらには、安定したネットワーク構造の形成は、場所によるセルロース成分の偏在・凝集を抑制しうるため、物性のバラつきが抑制された強化樹脂を提供することを可能とする。
 セルロース成分としては、2種以上のセルロースの組合せが好ましい。
 一態様において、セルロース成分は、セルロースウィスカーとセルロースファイバーとを含む。樹脂組成物がセルロースファイバーとセルロースウィスカーとを含むことにより、両者が相互に樹脂中で高度に微分散することが可能となり、セルロースファイバー又はセルロースウィスカーを単独で使用する場合に比して、セルロース成分の対樹脂での総量を更に少なくしても、所望の成形体物性を与える樹脂組成物を得ることが可能である。
 また、併用の効果として、高度の微分散状態に加えて、セルロースファイバーとセルロースウィスカーとが、樹脂の非結晶相において、より高次の連携ネットワーク構造を構築する。このネットワークの形成により、少ないセルロース量で樹脂組成物の熱的膨張を効果的に抑制できる。さらには、この安定ネットワーク構造の形成は、場所によるセルロース成分の偏在・凝集を抑制しうるため、樹脂成形体間や、同一成形体内での場所によるバラつきが極度に抑制された強化樹脂の提供を可能にする。この傾向は、セルロースウィスカーをより多く含む態様においてより顕著である。
 また、樹脂組成物中のセルロース成分量が少なく、かつその一部がL/Dの小さいセルロースウィスカーである場合、樹脂成形時の流動性が極めて良好となる。よって、様々な形状の成形体を自在に成形することができ、かつ樹脂成形体における物性のバラつきが小さいため、大量生産に充分対応できる樹脂組成物を得ることが可能となる。
 セルロースウィスカー及びセルロースファイバーは、態様Aにおいて説明したのと同様のものであってよい。
 本発明の一態様において、熱可塑性樹脂100質量部に対するセルロース成分の量は、0.1~100質量部の範囲内である。セルロース成分の量の下限は、好ましくは0.5質量部、より好ましくは1質量部、最も好ましくは2質量部である。セルロース成分の量の上限は、好ましくは50質量部、より好ましくは40質量部、より好ましくは30質量部、より好ましくは20質量部、より好ましくは10質量部、より好ましくは5質量部である。
 加工性と機械的特性のバランスの観点から、セルロース成分の量を上述の範囲内とすることが望ましい。
 セルロース成分の総質量に対するセルロースウィスカーの好ましい比率は、態様Aにおいて例示したのと同様であってよい。
 樹脂組成物としての流動性の観点から、セルロース成分の総質量に占めるセルロースウィスカーの比率は上述の範囲内とすることが望ましい。
≪熱可塑性樹脂≫
 熱可塑性樹脂としては、100℃~350℃の範囲内に融点を有する結晶性樹脂、又は、100~250℃の範囲内にガラス転移温度を有する非晶性樹脂が挙げられる。熱可塑性樹脂の好ましい具体例及び好ましい理由は、特記がない限り態様Aにおいて例示したのと同様であってよい。
≪有機成分≫
 樹脂組成物は、付加的成分として有機成分を含むことが可能である。一態様において、有機成分は、動的表面張力60mN/m以下を有する。また、一態様において、有機成分は、界面活性剤である。有機成分は、熱可塑性樹脂に対するセルロース成分の分散性の向上に寄与する。その好ましい量は、セルロース成分100質量部に対し、有機成分が50質量部以下の量の範囲内である。より好ましい上限量は45質量部であり、さらにより好ましくは40質量部、さらにより好ましくは35質量部、特に好ましくは30質量部である。付加的成分であるため、下限は特に限定されないが、セルロース成分100質量部に対し、0.1質量部以上添加することで、取扱い性を高めることができる。下限量は、より好ましくは0.5質量部、最も好ましくは1質量部である。有機成分の好ましい具体例及び好ましい理由は、特記がない限り態様Aにおいて例示したのと同様であってよい。
 セルロース成分100質量部に対する有機成分の量は、好ましくは50質量部以下、より好ましくは45質量部以下、さらに好ましくは40質量部以下、さらに好ましくは35質量部以下、特に好ましくは30質量部以下である。付加的成分であるため、下限は特に限定されないが、セルロース成分100質量部に対し、合計量が0.1質量部以上であることで、取扱い性を高めることができる。合計量は、より好ましくは0.5質量部以上、特に好ましくは1質量部以上である。
 樹脂組成物は、種々の形状での提供が可能である。具体的には、樹脂ペレット状、シート状、繊維状、板状、棒状等が挙げられるが、樹脂ペレット形状が、後加工の容易性や運搬の容易性からより好ましい。ペレットの好適例は、態様Aにおいて例示したのと同様であってよい。
 樹脂組成物は、種々の樹脂成形体として利用が可能である。樹脂組成物及び樹脂成形体の製造方法の好適例は、態様Aにおいて例示したのと同様であってよい。
 より詳細には、例えば、水を主成分とする分散媒とセルロースとを含むセルロース分散液を加熱しながら撹拌し、分散媒を除去しセルロース凝集体を得たのち、該セルロース凝集体と熱可塑性樹脂とを混練する方法、水を主成分とする分散媒と熱可塑性樹脂及びセルロースとを含む樹脂セルロース分散液を調製した後、該樹脂セルロース分散液を撹拌しながら加熱し、分散媒を除去して樹脂セルロース混合物を得、次いで該樹脂セルロース混合物を溶融混練して樹脂組成物を得る方法、水を主成分とする分散媒とセルロースとを含むセルロース分散液を、溶融状態にある熱可塑性樹脂中に添加し、分散媒が気化しつつ、共存した環境下で樹脂とセルロースとを溶融混練して混練物を得た後、混練物から分散媒を除去して樹脂組成物を得る方法、水を主成分とする分散媒とセルロースとを含むセルロース分散液を、溶融状態にある熱可塑性樹脂中に添加し、分散媒が気化しない圧力を維持しつつ、水を主成分とする分散媒が液状状態の環境下で樹脂とセルロースとを溶融混練して混練物を得た後、混練物から分散媒を除去して樹脂組成物を得る方法等が挙げられる。
 上述したように、樹脂組成物を得るための製法は種々存在する。本発明の一態様は、セルロース成分を含有し、実用に耐えうる充分な物性安定性を与える樹脂組成物、及び、上記特性を有するセルロースナノコンポジットの量産化技術を初めて提供する。具体的には、0℃~60℃の範囲での線膨張係数の変動係数(標準偏差/算術平均値)が15%以下であり、かつ引張破断強度の変動係数が10%以下である樹脂組成物を提供する。このような低い変動係数を有する樹脂組成物の製造には、種々の製法及び製造条件が適用可能である。例えば同一製法であっても製造条件が異なることによって変動係数の値が変わる場合がある。したがって、本開示の樹脂組成物を得るための製造は本開示で列挙するものに限定されない。
 本発明の一態様に係る樹脂組成物は、高機械的特性及び低線膨張性を有し、大型部品に対応可能な高い流動性を有するだけではなく、部分的な強度欠陥を実質的に含まない成形体を与えるため、種々の大型部品用途に好適に使用可能である。
[[態様C]]
 本発明の一態様は、セルロース粒子と、該セルロース粒子の表面の少なくとも一部を被覆する有機成分とを含むセルロース製剤、及びこれを含む樹脂組成物を提供する。
[セルロース製剤]
 セルロース製剤は、表面の少なくとも一部が、有機成分により被覆されているセルロース粒子を含む。一実施形態において、有機成分の静的表面張力は20mN/m以上である。また一実施形態において、有機成分は水よりも高い沸点を有する。本発明の一態様に係るセルロース製剤は、含有するセルロース粒子(以下、「本開示のセルロース粒子」ということがある。)の表面の少なくとも一部が特定の有機成分により被覆されているために樹脂への分散性が良好であり、当該セルロース製剤を分散させた樹脂組成物は、溶融時の流動性に優れ、引っ張り時の伸びが良好である、という特徴を有する。
 好ましい態様において、有機成分は、セルロース粒子の表面の少なくとも一部と結合することによって、当該粒子を被覆している。セルロース粒子表面と当該有機成分との結合は、水素結合、分子間力等の非共有結合による。なお、以降において、セルロース粒子表面の少なくとも一部と有機成分とを結合させる処理を「有機成分との複合化処理(複合化工程)」ということがある。
≪セルロース≫
<セルロース原料>
 セルロース粒子を調製するためのセルロース原料としては、天然セルロース質物質(セルロースを含有する天然物由来の繊維質物質)が好ましい。天然セルロース質物質としては、植物性でも動物性でもよく、微生物由来であってもよい。天然セルロース質物質としては、例えば木材、竹、麦藁、稲藁、コットン、ラミー、ホヤ、バガス、ケナフ、ビート、バクテリアセルロース等のセルロースを含有する天然物由来の繊維質物質が挙げられる。一般に入手できる天然セルロース質物質としては、例えばセルロースフロックや結晶セルロース等の粉末形態である天然セルロース質物質(粉末セルロース)が挙げられる。セルロース粒子のセルロース原料としては、1種の天然セルロース質物質を使用してもよく、2種類以上の天然セルロース質物質を組み合わせて使用してもよい。また、セルロース原料は、精製パルプの形態で使用することが好ましいが、パルプの精製方法には特に制限はなく、溶解パルプ、クラフトパルプ、NBKP、LBKP、フラッフパルプ等いずれのパルプを使用してもよい。
<セルロースの平均重合度>
 セルロースの平均重合度は、「第十五改正日本薬局方解説書(廣川書店発行)」の確認試験(3)に記載の銅エチレンジアミン溶液による還元比粘度法に従って測定することができる。
 セルロース粒子を構成するセルロースの平均重合度は、1000以下であることが好ましい。平均重合度が1000以下であれば、有機成分との複合化の工程において、セルロースが攪拌、粉砕、摩砕等の物理処理を受けやすくなり、複合化が促進されやすくなる。その結果、樹脂への分散性が高まる。セルロースの平均重合度は、750以下がより好ましく、500以下がさらに好ましく、350以下がよりさらに好ましく、300以下が特に好ましく、250以下が極めて好ましく、200以下が最も好ましい。セルロースの平均重合度は、小さいほど複合化の制御が容易になるため、下限は特に制限されないが、好ましい範囲としては10以上である。
<セルロースの加水分解>
 セルロースの平均重合度を制御する方法としては、加水分解処理等が挙げられる。加水分解処理によって、セルロース繊維質内部の非晶質セルロースの解重合が進み、平均重合度が小さくなる。また同時に、加水分解処理により、上述の非晶質セルロースに加え、ヘミセルロースやリグニン等の不純物も取り除かれるため、繊維質内部が多孔質化する。それにより、後記の混練工程中等のセルロースと有機成分に機械的せん断力を与える工程において、セルロースが機械処理を受けやすくなり、セルロースが微細化されやすくなる。その結果、セルロースの表面積が高くなり、有機成分との複合化の制御が容易になる。
 加水分解の方法は、態様Aと同様であってよい。
<セルロースの結晶形、結晶化度>
 セルロース粒子を構成するセルロースは、結晶セルロースを含むことが好ましく、結晶セルロースであることがより好ましい。結晶セルロースの結晶化度は10%以上であることが好ましい。結晶化度が10%以上であると、セルロース粒子自体の力学物性(強度、寸法安定性)が高まるため、樹脂に分散した際に、樹脂組成物の強度、寸法安定性が高くなる傾向にある。セルロース粒子を構成するセルロースの結晶化度は、30%以上であることがより好ましく、50%以上であることがさらに好ましく、70%以上であることがよりさらに好ましい。当該結晶化度の上限は特に制限されないが、90%以下であることが好ましい。
 結晶化度の測定方法は、態様Aと同様であってよい。
 セルロースの結晶形としては、I型、II型、III型、IV型などが知られており、その中でも特にI型及びII型は汎用されており、III型、IV型は実験室スケールでは得られているものの工業スケールでは汎用されていない。セルロース粒子を構成するセルロースとしては、構造上の可動性が比較的高く、当該セルロース粒子を樹脂に分散させることにより、線膨張係数がより低く、引っ張り、曲げ変形時の強度及び伸びがより優れた樹脂コンポジットが得られることから、セルロースI型結晶を含有する結晶セルロースであることが好ましく、セルロースI型結晶を含有し、かつ結晶化度が10%以上の結晶セルロースであることがより好ましい。
<セルロースの形状(長さ(L)、径(D)、及びL/D比)>
 本開示で、セルロース(具体的には、セルロース粒子及びセルロースファイバー)の長さ、径、及びL/D比は、セルロース(加水分解後のウェットケークが好ましい。)を、1質量%濃度で純水懸濁液とし、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)で、処理条件:回転数15,000rpm×5分間で分散させた水分散体を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとし、高分解能走査型顕微鏡(SEM)又は原子間力顕微鏡(AFM)で計測して求める。具体的には、少なくとも100個、例えば100~150個のセルロースが観測されるように倍率が調整された観察視野にて、無作為に選んだセルロースの像の長さ(具体的には、セルロース粒子の長径又は存在する場合のセルロースファイバーの繊維長)(L)、径(具体的には、セルロース粒子の短径又は存在する場合のセルロースファイバーの繊維径)(D)、及びこれらの比(L/D)を求める。なお、例えばセルロース粒子が比(L/D)が30未満の結晶セルロースであって測定サンプル中に当該結晶セルロースとセルロースファイバーとが併存する場合、比(L/D)が30未満のものを結晶セルロース、30以上のものをセルロースファイバーと分類できる。長さ(L)の数平均値、径(D)の数平均値、及び比(L/D)の数平均値を、少なくとも100個、例えば100個~150個の数平均値として算出する。
 又は、組成物中のセルロースの長さ、径、及びL/D比は、固体である組成物を測定サンプルとして、上述の測定方法により測定することで確認することができる。
 又は、組成物中のセルロースの長さ、径、及びL/D比は、組成物の樹脂成分を溶解できる有機または無機の溶媒に組成物中の樹脂成分を溶解させ、セルロースを分離し、前記溶媒で充分に洗浄した後、溶媒を純水に置換した水分散液を作製し、セルロース濃度を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとして上述の測定方法により測定することで確認することができる。
 セルロース製剤中のセルロース粒子の長さ、径、及びL/D比を確認する場合は、セルロース製剤を、水、又は有機溶剤に分散(分散方法は、セルロース製剤を1質量%濃度で、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)で、処理条件:回転数15,000rpm×5分間)させた後、上述の方法でAFMにより測定される。
 セルロース粒子の長さ(L)は、線膨張係数が低い樹脂コンポジットを与える観点から、好ましくは200nm以上、より好ましくは500nm以上、さらに好ましくは1000nm以上であり、樹脂への分散性、並びに樹脂組成物の溶融時の流動性及び射出成型性の観点から、好ましくは10000nm以下、より好ましくは5000nm以下、さらに好ましくは3000nm以下である。
 セルロース粒子の径(D)は、線膨張係数が低い樹脂コンポジットを与える観点から、好ましくは20nm以上、より好ましくは30nm以上であり、樹脂への分散性、並びに樹脂組成物の溶融時の流動性及び射出成型性の観点から、好ましくは500nm以下、より好ましくは450nm以下、更に好ましくは400nm以下、更により好ましくは350nm以下であり、最も好ましくは300nm以下である。
 セルロース粒子のL/Dは、樹脂への分散性、並びに樹脂組成物の溶融時の流動性及び射出成型性の観点から、30未満であることが好ましく、20以下であることがより好ましく、15以下であることがさらに好ましく、10以下であることがさらに好ましく、5以下であることがよりさらに好ましく、5未満であることが特に好ましく、4以下であることが最も好ましい。L/Dは、1以上であればよいが、樹脂への分散性を担保しつつ、低線膨張係数と、溶融時に良好な流動性及び射出成型性のバランスをとる観点から、好ましくは2以上、より好ましくは3以上である。
<コロイド状セルロース粒子の含有率>
 セルロース製剤は、セルロース粒子としてコロイド状セルロース粒子を含むことが好ましい。セルロース粒子全体に占めるコロイド状セルロース粒子の比率が高いほど、該セルロース粒子を用いたセルロース製剤を樹脂中に分散させた際に、分散が進み、表面積が高いネットワークを形成できるため、樹脂の強度及び寸法安定性が向上する傾向にある。セルロース粒子100質量%に対するコロイド状セルロース粒子の含有率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。コロイド状セルロース粒子の含有率の上限は特に制限されず、理論上の上限は100質量%である。
 コロイド状セルロース粒子の含有率は以下の方法で測定することができる。セルロースを固形分40質量%として、プラネタリーミキサー(例えば(株)品川工業所製、5DM-03-R、撹拌羽根はフック型)中において、126rpmで、室温常圧下で30分間混練し、次いで、固形分が0.5質量%の濃度で純水懸濁液とし、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で分散させ、遠心分離機(例えば久保田商事(株)製、商品名「6800型遠心分離器」ロータータイプRA-400型)を用い、処理条件:遠心力39200m2/sで10分間遠心した上澄みを採取し、さらに、この上澄みについて、116000m2/sで45分間遠心処理し、遠心後の上澄みに残存する固形分を絶乾法で測定し、質量百分率を算出する。
<セルロースの体積平均粒子径>
 本開示において、セルロースの体積平均粒子径は、レーザー回折粒度分布計により測定される。また、本開示で、「レーザー回折粒度分布計により得られた体積頻度粒度分布における積算50%粒子径(粒子全体の体積に対して、積算体積が50%になるときの粒子の球形換算直径)」を、「体積平均粒子径」または「積算体積50%粒子径」ということがある。
 セルロースの体積平均粒子径は以下の方法で測定することができる。セルロースを固形分40質量%として、プラネタリーミキサー(例えば(株)品川工業所製、5DM-03-R、撹拌羽根はフック型)中において、126rpmで、室温常圧下で30分間混練し、次いで0.5質量%の濃度で純水懸濁液とし、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」処理条件)を用い、回転数15,000rpm×5分間で分散させ、遠心分離機(例えば久保田商事(株)製、商品名「6800型遠心分離器」、ロータータイプRA-400型)を用い、処理条件:遠心力39200m2/sで10分間遠心した上澄みを採取し、さらに、この上澄みについて、116000m2/sで45分間遠心処理し、遠心後の上澄みを採取する。この上澄み液を用いて、レーザー回折/散乱法粒度分布計(例えば堀場製作所(株)製、商品名「LA-910」または商品名「LA-950」、超音波処理1分、屈折率1.20)により得られた体積頻度粒度分布における積算50%粒子径(体積平均粒子径)を測定する。
 セルロース粒子は、粒子径が小さいほど好ましい。粒子径が小さいほど、当該セルロース粒子を含むセルロース製剤を樹脂中に分散させた際に、分散が進み、表面積が高いネットワークを形成できるため、得られた樹脂コンポジットの強度及び寸法安定性が向上する傾向にある。セルロース粒子の体積平均粒子径は、10μm以下であることが好ましく、8.0μmであることがより好ましく、5.0μm以下であることがさらに好ましく、3.0μm以下であることがよりさらに好ましく、1.0μm以下であることが特に好ましく、0.7μm以下であることが格段に好ましく、0.5μm以下であることが極めて好ましく、0.3μm以下であることが最も好ましい。粒子径の下限としては特に制限されないが、現実的には0.05μm以上であってよい。
<ゼータ電位>
 セルロース粒子を構成するセルロースのゼータ電位は、-40mV以下であることが好ましい。ゼータ電位がこの範囲にあることで、セルロース粒子と樹脂とをコンパウンドした際に、セルロース粒子と樹脂との過度の結合が生じることなく、良好な溶融流動性を保つことができる。ゼータ電位は、より好ましくは-30mV以下であり、さらに好ましくは-25mV以下であり、特に好ましくは-20mV以下であり、最も好ましくは-15mV以下である。この値が小さいほどコンパウンドの物性が優れるため下限は特に限定されるものではないが、-5mV以上が好ましい。
 ここでいうゼータ電位は以下の方法で測定することができる。セルロースを、1質量%濃度の純水懸濁液とし、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で分散させて得た水分散体を、0.1~0.5質量%まで純水で希釈し、ゼータ電位計(例えば大塚電子製、装置名ELSZ-2000ZS型、標準セルユニット)を使用し、25℃で測定する。
<結晶セルロース>
 セルロース粒子は、前述の結晶セルロースを含むことが好ましく、前述の結晶セルロースであることがより好ましい。結晶セルロースは、上述のセルロースを原料として用い、上述の加水分解を経て得ることができる。一実施形態において、結晶セルロースは、平均重合度が500未満、及び/又は平均L/Dが30未満に制御されたものである。結晶セルロースを用いることで、セルロース粒子と有機成分との複合化が促進され、セルロース製剤を樹脂に配合して樹脂組成物を調製する際に、セルロースの分散性が向上し、さらに、樹脂組成物は、溶融時に優れた流動特性及び射出成型性を有することができる。その結果、当該セルロース製剤を樹脂に分散させた樹脂組成物は、線膨張係数が低く、引っ張り、曲げ変形時に、伸びが優れるという効果を発現できる。
 結晶セルロースの平均重合度は、500未満が好ましく、400以下がより好ましく、250以下がさらに好ましく、230以下が特に好ましく、200以下が格段に好ましく、180以下が最も好ましい。重合度が小さいほど、結晶セルロースによる上述の効果が大きくなるため、下限は特に設定されないが、現実的には50以上であってよい。
 結晶セルロースの平均L/Dは、30未満が好ましく、20以下がより好ましく、15以下がさらに好ましく、10以下が特に好ましい。L/Dが小さいほど、上述の効果が大きくなるため、下限は特に設定されないが、現実的には2以上であってよい。
<セルロースファイバー>
 セルロース製剤は、セルロースファイバーを更に含むことが好ましい。セルロースファイバーとは、パルプ等のセルロース原料を100℃以上の熱水等で処理し、ヘミセルロース部分を加水分解して脆弱化したのち、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミルやディスクミルといった粉砕法により解繊したセルロースを指す。一実施形態において、セルロースファイバーは、平均重合度が300以上である。一実施形態において、セルロースファイバーは、平均L/Dが30以上の範囲に制御されたものである。セルロースファイバーを用いることで、セルロース製剤を樹脂に配合した際に、セルロースの分散性を一層良好に維持しつつ、さらに、樹脂組成物が溶融時に良好な流動特性及び射出成型性を有することができる。その結果、当該セルロース製剤を樹脂に分散させた樹脂組成物は、線膨張係数が一層低く、引っ張り、曲げ変形時に、強度が一層優れるという効果を発現できる。
 セルロースファイバーの平均重合度は、350以上がより好ましく、400以上がさらに好ましく、500以上が特に好ましく、700以上が格段に好ましい。有機成分との複合化の観点で、平均重合度は1500以下が好ましく、1000以下がより好ましい。
 セルロースファイバーの繊維長(L)は、線膨張係数が低い樹脂コンポジットを与える観点から、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは50μm以上であり、樹脂への分散性、並びに樹脂組成物の溶融時の流動性及び射出成型性の観点から、好ましくは1000μm以下、より好ましくは500μm以下、さらに好ましくは100μm以下である。
 セルロースファイバーの繊維径(D)は、ナノメートルサイズ(すなわち1μm未満)であることが好ましく、その繊維径は500nm以下がより好ましい。セルロースファイバーの繊維径は、好ましくは450nm以下であり、より好ましくは400nm以下であり、さらに好ましくは350nm以下であり、さらに好ましくは300nm以下であり、さらに好ましくは200nm以下であり、さらに好ましくは100nm以下であり、さらに好ましくは50nm以下であり、最も好ましくは30nm以下である。セルロースファイバーの繊維径は、好ましくは1nm以上、より好ましくは2nm以上である。
 樹脂コンポジットの機械的特性を有効に発現させる観点から、セルロースファイバーの繊維径を上述の範囲内にすることが望ましい。
 また、セルロースファイバーのL/D下限は、好ましくは50であり、より好ましくは80であり、より好ましくは100であり、さらにより好ましくは120であり、最も好ましくは150である。上限は特に限定されないが、取扱い性の観点から好ましくは1000以下である。
<結晶セルロースとセルロースファイバーとの組合せ>
 セルロース製剤は、セルロース粒子(好ましくは、上述のL/Dが30未満の結晶セルロース)とL/Dが30以上のセルロースファイバーとを含むことが好ましい。セルロース粒子(好ましくは、L/Dが30未満の結晶セルロース)とL/Dが30以上のセルロースファイバーとの組合せである場合、セルロース粒子と有機成分とが良好に複合化される。これにより、セルロース製剤を樹脂に配合して樹脂組成物を製造する際の当該セルロース製剤の樹脂中での分散性が向上し、さらに、樹脂組成物は溶融時に優れた流動特性及び射出成型性を有する。従って、当該セルロース製剤を樹脂に分散させた樹脂組成物は、線膨張係数が低く、引っ張り、曲げ変形時に、伸び及び強度が優れるという効果を発現できる。また上記のセルロース粒子(好ましくは結晶セルロース)とセルロースファイバーとの配合比率を適正化することで、セルロース粒子が低添加量でも樹脂組成物における上記の効果が良好に発現し、その結果、樹脂コンポジットの軽量化が図れる。
 セルロース製剤中に存在するセルロースの総質量に対する結晶セルロースの比率は、50質量%以上であることが好ましい。上記比率は、より好ましくは50質量%超、更に好ましくは60質量%以上、更に好ましくは70質量%以上、最も好ましくは80質量%以上である。上記比率の上限は、好ましくは98質量%、より好ましくは96質量%、最も好ましくは95質量%である。
<セルロースと有機成分の結合率>
 セルロース製剤において、有機成分はセルロース粒子の表面に弱い力で結合していることが好ましい。弱い力とは、例えば、非共有結合(水素結合、配位結合、イオン結合、分子間力など)、物理的吸着、静電的引力等である。有機成分とセルロースとが共有結合せず、弱い力で結合している場合、溶融状態の樹脂にセルロース製剤を混合、分散させる過程で、セルロース表面の有機成分が樹脂中に遊離・脱離し、セルロース本来の表面が露出する。この露出したセルロース粒子表面同士が相互作用することにより、セルロースのネットワークが強固になる傾向にある。セルロースのネットワークが強固になるほど、樹脂組成物の力学的特性は改善され、機械的強度の向上が望める。
 セルロースと有機成分の共有結合の程度は、以下に示す結合率で表される。
 セルロース製剤粉末を250μmの篩を通るように粉砕し、それを1g採取する。このサンプルを有機溶剤(例えばエタノール)又は水(有機成分を溶解できる媒体)10mLに入れ、スターラー撹拌下で60分間、室温で撹拌する。有機溶剤又は水を目開き0.4μmのPTFE製メンブレンフィルターでろ過し、ろ液から有機溶剤又は水を気化させる。ろ液から採取された残渣の質量を求め、以下の式から結合率を算出する。ここで、セルロース製剤中の有機成分量は、製造時の配合量から得られる理論値を用いても、NMR、IR、X線回折等の化学分析から求めたものを用いてもよい。
結合率(%)=〔1-([残渣の質量(g)]/[セルロース製剤中の有機成分量(g)
])〕×100
 セルロース製剤において、結合率は、90%以下であることが好ましく、50%以下であることがより好ましく、20%以下であることがさらに好ましく、10%以下であることがさらにより好ましく、5%以下であることが特に好ましい。結合率が低いほど、セルロース製剤の樹脂への分散性及び分散後の力学特性が高まるため、下限は特に制限されないが、理論上は0%以上である。
≪有機成分≫
 本開示において、「有機成分」とは、典型的には、炭素原子を骨格とし、水素、酸素、炭素、窒素、塩素、硫黄、リン等から構成される官能基を有するものである。分子中に上述の構造を有していれば、無機化合物と上記官能基が化学結合したものも、有機成分に含まれる。
<有機成分の沸点>
 本発明の一態様に係るセルロース粒子の表面を被覆する有機成分(以下、「本開示の有機成分」ということがある。)は、水よりも高い沸点を有する。なお、水よりも高い沸点とは、水の蒸気圧曲線における各圧力における沸点(例えば、1気圧下では100℃)よりも高い沸点を指す。有機成分の沸点が水よりも高いことにより、溶融状態の樹脂にセルロース製剤を混合する際に、当該セルロース製剤に含まれる水が蒸発し、その水と当該有機成分が置換されるため、樹脂中でのセルロースの分散が促進される。
 有機成分は、常温(25℃)で液体のものが好ましい。常温で液体の有機成分は、セルロースと複合化しやすく、樹脂とも均一に混ざりやすい。また、樹脂組成物中で有機成分が凝集して再結晶することも防ぎやすい。
<有機成分の静的表面張力>
 有機成分の静的表面張力は20mN/m以上である。この静的表面張力は、後述のウィルヘルミー法で測定される表面張力のことである。常温で液体状の有機成分を使用する場合は、25℃で測定されるが、常温で固体又は半固形状の有機成分を使用する場合は、有機成分を融点以上に加熱し、溶融した状態で測定し、25℃に温度補正された値を用いる。有機成分としては、セルロース製剤とする際に前記の静的表面張力を満たせば、どのような状態のものでも用いることができる。例えば、有機成分は、単独の有機成分であってもよく、2種以上の有機成分を混合したものであってもよく、有機溶剤や水等に溶解した有機成分の形態で使用されてもよい。
 一態様において、有機成分は、静的表面張力が特定の範囲であることにより、その親水性基がセルロース表面の水酸基と水素結合することによって、当該表面を均一に覆うことができる。また、均一に覆われたセルロース一次粒子の表面では乾燥時に疎水基が露出するため、セルロースが樹脂組成物調製時に樹脂に分散しやすい。有機成分の静的表面張力が低すぎると、有機成分の疎水性が強すぎてセルロース表面のコーティングが不十分となり、セルロースの分散性が不足する。また、有機成分の静的表面張力が高すぎると、セルロース表面のコーティングは充分であるが、セルロースと樹脂との親和性を損ない、結果としてセルロースの分散性が低下する。
 セルロース界面への親和性と、樹脂との親和性のバランスをとり、セルロース粒子と樹脂とを混練して樹脂組成物を製造する際に、良好な分散性、樹脂組成物の流動性、強度及び伸びの向上を発現するためには、有機成分の静的表面張力を特定の範囲に制御することが好ましい。有機成分の静的表面張力は、23mN/m以上が好ましく、25mN/m以上がより好ましく、30mN/m以上がさらに好ましく、35mN/m以上がよりさらに好ましく、39mN/m以上が特に好ましい。有機成分の静的表面張力としては、72.8mN/m未満が好ましく、60mN/m以下がより好ましく、50mN/m以下がさらに好ましく、45mN/m以下がよりさらに好ましい。
 静的表面張力の測定方法は、態様Aと同様であってよい。
<有機成分の動的表面張力>
 有機成分の動的表面張力は60mN/m以下であることが好ましい。動的表面張力の測定方法は、態様Aと同様であってよい。
 最大泡圧法で測定される動的表面張力は、動きの速い場における、有機成分の動的な表面張力を意味する。有機成分は水中では、通常ミセルを形成している。動的表面張力が低いということは、ミセル状態からの有機成分の分子の拡散速度が速いことを表し、動的表面張力が高いということは分子の拡散速度が遅いことを意味する。セルロース製剤又は樹脂組成物を得る際には、この動的表面張力が小さい(すなわち分子の拡散速度が大きい)ことで、セルロース表面から水が蒸発する際に、ミセルを形成している有機成分分子がセルロース表面に拡散し、セルロース表面を均一にコートできる。これにより、セルロース粒子が二次凝集する際に、セルロース粒子表面が適度に疎水化され、セルロース粒子同士の過度な水素結合、及びそれによる凝集が阻害される。その結果、セルロースと樹脂とがコンパウンドされる際に樹脂がセルロースの間隙(特にセルロース粒子間隙)に良好に入り込み、セルロースの分散性が向上する。
 一方、動的表面張力が大きいと、水の蒸発速度より分子の拡散速度が遅いため、有機成分の一部が塊状(拡散しない)のままセルロース表面に付着するため、セルロース同士が水素結合により互いに引き合い、凝集してしまう。その結果、樹脂とコンパウンドする際のセルロースの分散性が悪化する。
 有機成分の動的表面張力は、55mN/m以下がより好ましく、50mN/m以下がより好ましく、45mN/m以下がさらに好ましく、40mN/m以下が特に好ましい。有機成分の動的表面張力としては、10mN/m以上が好ましく、15mN/m以上がより好ましく、20mN/m以上がさらに好ましく、30mN/m以上が特に好ましく、35mN/m以上が最も好ましい。
<有機成分の溶解度パラメーター(SP値)>
 有機成分は、溶解パラメーター(SP値)が7.25以上であることが好ましい。有機成分がこの範囲のSP値を有することで、セルロースと有機成分との複合化が促進されることに加え、樹脂中でのセルロースの分散が促進される。SP値の測定方法は、態様Aと同様であってよい。
<有機成分の種類>
 有機成分としては、特に限定されず、例えば、油脂、脂肪酸又は界面活性剤等を用いることができる。
 油脂としては、脂肪酸とグリセリンとのエステルが挙げられる。油脂は、通常は、トリグリセリド(トリ-O-アシルグリセリン)の形態を取る。油脂は、脂肪油で酸化を受けて固まりやすい順に乾性油、半乾性油、不乾性油と分類され、食用、工業用など様々な用途で利用されているものを用いることができ、例えば以下のものを、1種又は2種以上併用して用いる。
 動植物油としては、例えば、態様Aにおいて例示したのと同様のものが挙げられる。また、鉱物油としては、例えば、流動パラフィン、シリコーンオイルや、カルシウム石鹸基グリース、カルシウム複合石鹸基グリース、ナトリウム石鹸基グリース、アルミニウム石鹸基グリース、リチウム石鹸基グリース、非石鹸基グリース、シリコングリース等のグリース類;ナフテン系及びパラフィン系鉱物油;鉱物油や高度水素分解油にPAOやエステル(あるいは水素化分解油)を混合し得られる部分合成油;PAO(ポリアルファオレフィン)等の化学合成油・全合成油・合成油等が挙げられる。
 脂肪酸とは、一般式CnHmCOOH(n、mは整数)で表せる化合物をいい、食用、工業用など様々な用途で利用されているものを用いることができる。例えば、以下のものを1種又は2種以上併用して用いる。
 飽和脂肪酸としては、例えば、態様Aにおいて例示したのと同様のものが挙げられる。
 界面活性剤としては、親水性の置換基と疎水性の置換基が共有結合した化学構造を有する化合物が挙げられ、食用、工業用など様々な用途で利用されているものを用いることができる。例えば、以下のものを1種又は2種以上併用して用いる。
 界面活性剤は、陰イオン系界面活性剤、非イオン系界面活性剤、両性イオン系界面活性剤、陽イオン系界面活性剤のいずれも使用することができるが、セルロースとの親和性の点で、陰イオン系界面活性剤、非イオン系界面活性剤が好ましく、非イオン系界面活性剤がより好ましい。
 陰イオン系界面活性剤としては、例えば、態様Aにおいて例示したのと同様のものが挙げられ、それらを1種又は2種以上を混合して使用することも可能である。
 非イオン系界面活性剤としては、例えば、態様Aにおいて例示したのと同様のものが挙げられ、それらを1種又は2種以上を混合して使用することも可能である。
 両性イオン系界面活性剤としては、例えば、態様Aにおいて例示したのと同様のものが挙げられ、それらを1種又は2種以上を混合して使用することも可能である。
 陽イオン系界面活性剤としては、例えば、態様Aにおいて例示したのと同様のものが挙げられ、それらを1種又は2種以上を混合して使用することも可能である。
 有機成分として使用される界面活性剤としては、上述のものに加え、例えば、態様Aにおいて<界面活性剤の具体的な好適例>として例示したのと同様のものを好適に使用することができる。
 上述の中でも、セルロースとの親和性の点で、親水基としてポリオキシエチレン鎖、カルボン酸、又は水酸基を有する界面活性剤が好ましく、親水基としてポリオキシエチレン鎖を有するポリオキシエチレン系界面活性剤(ポリオキシエチレン誘導体)がより好ましく、非イオン系のポリオキシエチレン誘導体がさらに好ましい。ポリオキシエチレン誘導体のポリオキシエチレン鎖長としては、3以上が好ましく、5以上がより好ましく、10以上がさらに好ましく、15以上が特に好ましい。鎖長は長ければ長いほど、セルロースとの親和性が高まるが、コーティング性とのバランスにおいて、60以下が好ましく、50以下がより好ましく、40以下がさらに好ましく、30以下が特に好ましく、20以下が最も好ましい。
 疎水性の樹脂(例えばポリオレフィン、ポリフェニレンエーテル等)にセルロースを配合する場合には、親水基としてポリオキシエチレン鎖に代えて、ポリオキシプロピレン鎖を有するものを用いることが好ましい。ポリオキシプロピレン鎖長としては、3以上が好ましく、5以上がより好ましく、10以上がさらに好ましく、15以上が特に好ましい。鎖長は長ければ長いほど、セルロースとの親和性が高まるが、コーティング性とのバランスにおいて、60以下が好ましく、50以下がより好ましく、40以下がさらに好ましく、30以下が特に好ましく、20以下が最も好ましい。
 上述の界面活性剤でも、特に、疎水基としては、アルキルエーテル型、アルキルフェニルエーテル型、ロジンエステル型、ビスフェノールA型、βナフチル型、スチレン化フェニル型、硬化ひまし油型が、樹脂との親和性が高いため、好適に使用できる。好ましいアルキル鎖長(アルキルフェニルの場合はフェニル基を除いた炭素数)としては、炭素鎖が5以上であることが好ましく、10以上がより好ましく、12以上がさらに好ましく、16以上が特に好ましい。樹脂がポリオレフィンの場合、炭素数が多いほど、樹脂との親和性が高まるため上限は設定されないが、30以下が好ましく、25以下がより好ましい。
 これらの疎水基の中でも、環状構造を有するもの、または嵩高く多官能構造を有するものが好ましく、環状構造を有するものとしては、アルキルフェニルエーテル型、ロジンエステル型、ビスフェノールA型、βナフチル型、スチレン化フェニル型が好ましく、多官能構造を有するものとしては、硬化ひまし油型が好ましい。
 これらの中でも、特にロジンエステル型、硬化ひまし油型がより好ましい。
 特に、上述の動植物油の中でも、セルロース表面への親和性、均一コーティング性の観点から、テルピン油、トール油、ロジン、及びそれらの誘導体が、セルロース粒子の表面を被覆する有機成分としては好ましい。
 上記のテルピン油(テルビン油ともいう)、トール油、ロジン、ロジンエステルの製造及びこのとき用いるアルコールの具体例は、例えば態様Aにおいて例示したのと同様であってよい。
 有機成分は、アルキルフェニル型化合物であってもよく、例えば、態様Aにおいて例示したのと同様のものが挙げられる。
 有機成分は、βナフチル型化合物であってもよく、例えば、態様Aにおいて例示したのと同様のものが挙げられる。
 有機成分は、ビスフェノールA型化合物であってもよく、例えば、態様Aにおいて例示したのと同様のものが挙げられる。
 有機成分は、スチレン化フェニル型化合物であってもよく、例えば、態様Aにおいて例示したのと同様のものが挙げられる。
 有機成分は硬化ひまし油型化合物であってもよく、例えば、態様Aにおいて例示したのと同様のものが挙げられる。
 好ましい態様においては、有機成分が、ロジン誘導体、アルキルフェニル誘導体、ビスフェノールA誘導体、βナフチル誘導体、スチレン化フェニル誘導体、及び硬化ひまし油誘導体からなる群から選択される。また、好ましい態様においては、有機成分がポリオキシエチレン誘導体である。
≪セルロースと有機成分の含有比率≫
 セルロース製剤は、セルロースを30~99質量%、及び有機成分を1~70質量%含むことが好ましい。セルロースと有機成分との複合化によって、有機成分がセルロース粒子の表面を水素結合、分子間力等の非共有の化学結合により被覆し、その結果、樹脂中へのセルロースの分散が促進される。セルロースと有機成分の含有量を上記範囲にすることで、複合化がより促進される。セルロース製剤は、セルロースを50~99質量%、有機成分を1~50質量%含むことがより好ましく、セルロースを70~99質量%、有機成分を1~30質量%含むことがさらに好ましく、セルロースを80~99質量%、有機成分を1~20質量%含むことがよりさらに好ましく、セルロースを90~99質量%、有機成分を1~10質量%含むことが特に好ましい。
≪セルロース製剤の製造方法≫
 次に、セルロース製剤の製造方法について説明する。
 セルロース製剤の製造方法は、特に限定されるものではなく、原料セルロースと有機成分を混合した後に微細化(粒子化)してもよく、原料セルロースを微細化して得たセルロース粒子に有機成分を接着させた状態で乾燥させることにより、セルロース粒子表面の少なくとも一部を有機成分で被覆させることもできる。また、原料セルロースの微細化と有機成分による被覆を同時に行ってもよい。
 例えば、セルロース製剤は、原料セルロースと有機成分とを混練することによって製造することができる。具体的には、混練工程において、セルロースと有機成分に機械的せん断力を与え、セルロースを微細化(粒子化)させると共にセルロース表面に有機成分を複合化させることによって得ることができる。また、この混練工程では、有機成分以外の親水性物質、及びその他の添加剤等を添加してもよい。混練工程後、必要に応じて、乾燥してもよい。セルロース製剤としては、混練工程後、未乾燥のものであってもよく、その後乾燥したものであってもよい。
 機械的せん断力を与えるには、例えば、混練機等を用いて混練する方法を適用することができる。混練機としては、例えば、ニーダー、エクストルーダー、プラネタリーミキサー、ライカイ機等を用いることができ、連続式でもバッチ式でもよい。混練時の温度は、成り行きでもよく、混練の際の複合化反応、摩擦等により発熱する場合にはこれを除熱しながら混練してもよい。上記機種は、単独で使用しても、2種以上の機種を組み合わせて用いてもよい。
 混練温度は、有機成分の劣化が抑制され、セルロースと有機成分の複合化が促進される傾向にあるという観点から、より低いことが好ましい。混練温度は、0~100℃であることが好ましく、90℃以下であることがより好ましく、70℃以下であることがさらに好ましく、60℃以下であることがよりさらに好ましく、50℃以下であることが特に好ましい。高エネルギー下で上記の混練温度を維持するために、ジャケット冷却、放熱等の徐熱を工夫することが好ましい。
 混練時の固形分は、20質量%以上とすることが好ましい。混練物の粘性が高い半固形状態で混練することで、混練物が緩い状態にならず、下記に述べる混練エネルギーが混練物に伝わりやすくなり、複合化が促進される傾向にある。混練時の固形分は、30質量%以上とすることがより好ましく、40質量%以上とすることがさらに好ましく、50質量%以上とすることがよりさらに好ましい。固形分の上限としては特に制限されないが、良好な混練効果とより均一な混練状態を得る観点から、90質量%以下とすることが好ましく、70質量%以下とすることがより好ましく、60質量%以下とすることがさらに好ましい。固形分を上記範囲とするために、加水するタイミングとしては、混練工程の前に必要量を加水してもよく、混練工程の途中で加水してもよく、両方実施してもよい。
 ここで、混練エネルギーについて説明する。混練エネルギーとは、混練物の単位質量当たりの電力量(Wh/kg)で定義される。セルロース製剤の製造においては、混練エネルギーは、50Wh/kg以上とすることが好ましい。混練エネルギーが50Wh/kg以上であれば、混練物に与える磨砕性が高く、セルロースと有機成分との複合化がより促進される傾向にある。より好ましくは、混練エネルギーは、80Wh/kg以上が好ましく、100Wh/kg以上がより好ましく、200Wh/kg以上がさらに好ましく、300Wh/kg以上がよりさらに好ましく、400Wh/kg以上が特に好ましい。混練エネルギーが高い方が、複合化がより促進されると考えられるが、混練エネルギーが高すぎると、工業的に過大な設備となり、設備に過大な負荷がかかることになる。従って、混練エネルギーの上限は1000Wh/kgとすることが好ましい。
 複合化の程度は、セルロースと有機成分との水素結合、分子間力等による結合の割合と考えられる。複合化が進むと、樹脂とセルロース製剤を混練する際、セルロース同士の凝集を防ぐため、樹脂組成物中でのセルロースの分散性が向上する傾向にある。
 混練工程における複合化は、減圧下で行うことが好ましい。セルロースの原料として、水を含んだウェットケークを使用する場合は、減圧下で行うことにより、混練初期段階でセルロース粒子間の水の水素結合を活用し、粒子微細化がより一層促進される。さらに、水を減圧で系外に排出しながらさらに混練を進めると、セルロースの微細化、脱水、有機成分のコーティングが同時に進行するため効率的である。
 セルロース製剤を得るにあたって、上述の混練工程より得られた混練物を乾燥する場合は、棚段式乾燥、噴霧乾燥、ベルト乾燥、流動床乾燥、凍結乾燥、マイクロウェーブ乾燥等の公知の乾燥方法を用いることができる。混練物を乾燥工程に供する場合には、混練物に水を添加せず、混練工程の固形分濃度を維持して、乾燥工程に供することが好ましい。
 乾燥後のセルロース製剤の含水率は1~20質量%であることが好ましい。含水率を20質量%以下とすることにより、容器への付着、腐敗等の問題や、運搬・輸送におけるコストの問題が生じにくくなる。また、含水率が少ないほど、溶融樹脂に混合する際に水の蒸発に起因するボイドが入りにくく、樹脂コンポジットの物性(強度、寸法安定性)が高くなる傾向にある。一方、含水率を1質量%以上とすることにより、過剰乾燥により分散性が悪化するおそれが少なくなる。セルロース製剤の含水率は、15質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下がよりさらに好ましく、3質量%以下が特に好ましい。また、セルロース製剤の含水率の下限としては、1.5質量%以上が好ましい。
 セルロース製剤を市場に流通させる場合、その形状は、粉体である方が取り扱い易いため、セルロース製剤を粉砕処理して粉体状にすることが好ましい。但し、乾燥方法として噴霧乾燥を用いた場合は、乾燥と粉末化が同時に行われるため、粉砕しなくともよい。セルロース製剤を粉砕する場合、カッターミル、ハンマーミル、ピンミル、ジェットミル等の公知の方法を用いることができる。粉砕する程度は、粉砕処理したものが目開き1mmの篩いを全通する程度に粉砕する。より好ましくは、目開き425μmの篩いを全通し、かつ、平均粒度(質量平均粒子径)が10~250μmとなるように粉砕することが好ましい。得られた乾燥粉末は、セルロース製剤の微粒子が凝集し、二次凝集体を形成したものである。この二次凝集体は、水中で攪拌すると崩壊し、上述のセルロース粒子に分散する。
 二次凝集体の見かけの質量平均粒子径は、ロータップ式篩振盪機(例えば平工作所製、シーブシェーカーA型)、JIS標準篩(Z8801-1987)を用いて、試料10gを10分間篩分することにより得られる粒度分布における累積質量50%粒径のことをいう。
≪分散補助剤≫
 セルロース製剤は、セルロース粒子及び有機成分に加えて、分散補助剤として多糖類を含有していてもよい。多糖類を含有することにより、セルロース粒子表面への有機成分の親和性が増し、樹脂中でのセルロース粒子の分散が促進されるため好ましい。
 多糖類としては、以下のものが好適である。例えば、サイリウムシードガム、カラヤガム、カラギーナン、アルギン酸、アルギン酸ナトリウム、HMペクチン、LMペクチン、アゾトバクター・ビネランジーガム、キサンタンガム、ジェランガム、カルボキシメチルセルロースナトリウムなどの水溶性の天然多糖類、が挙げられる。これらの陰イオン性多糖類の中でもカルボキシメチルセルロースナトリウム(以下、「CMC-Na」ともいう。)及びキサンタンガムが好ましい。また、これらの陰イオン性多糖類は2種以上を組み合わせてもよい。
<カルボキシメチルセルロースナトリウム>
 上述の陰イオン性多糖類の中でも、CMC-Naが、特にセルロースと複合化しやすいため好ましい。ここでいうCMC-Naとは、セルロースの水酸基の水素原子の一部又は全部が-CH2COO基(カルボキシメチル基)に置換されたアニオンポリマーとNaカチオンからなるもので、D-グルコースがβ-1,4結合した直鎖状の化学構造を持つものである。CMC-Naは、例えばパルプ(セルロース)を水酸化ナトリウム溶液で溶かし、モノクロロ酢酸(或いはそのナトリウム塩)でエーテル化する製法によって得られる。
 セルロース製剤においては、特に、置換度と粘度が下記の特定範囲に調製されたCMC-Naを含有させることが、セルロースとの複合化の観点から好ましい。置換度とは、CMC-Na中の水酸基(グルコース1単位あたり3つの水酸基を有する)にカルボキシメチル基がエーテル結合した度合いのことであり、グルコース1単位当たり0.6~2.0が好ましい。置換度が前記の範囲であれば、置換度が高いCMC-Naほどセルロースと複合化しやすく、セルロース複合体の貯蔵弾性率が高まり、高塩濃度の水溶液中(例えば10質量%の塩化ナトリウム水溶液)でも高い懸濁安定性を発揮できるため好ましい。より好ましくは、置換度は0.9~1.3である。
 置換度は、以下の方法で測定される。試料(無水物)0.5gを精密にはかり、ろ紙に包んで磁性ルツボ中で灰化する。冷却した後、これを500mLビーカーに移し、水約250mLと、0.05M硫酸35mLを加えて30分間煮沸する。これを冷却し、フェノールフタレイン指示薬を加えて、過剰の酸を0.1M水酸化カリウムで逆滴定して、次の式で算出する。
A=〔(af-bf1)/[試料無水物(g)]〕-[アルカリ度(又は+酸度)]
置換度=(162×A)/(10000-80A)
ここで、
A:試料1g中のアルカリに消費された0.05Mの硫酸の量(mL)
a:0.05M硫酸の使用量(mL)
f:0.05M硫酸の力価
b:0.1M水酸化カリウムの滴定量(mL)
f1:0.1M水酸化カリウムの力価
162:グルコースの分子量
80:CH2COONa-Hの分子量。
 アルカリ度(又は酸度)の測定法:試料(無水物)1gを300mLフラスコに精密に測りとり、水約200mLを加えて溶かす。これに0.05M硫酸5mLを加え、10分間煮沸した後、冷却し、フェノールフタレイン指示薬を加え、0.1M水酸化カリウムで滴定する(SmL)。同時に空試験を行い(BmL)、次の式で算出する。
アルカリ度=((B-S)xf2)/試料無水物(g)
ここで、f2:0.1M水酸化カリウムの力価である。(B-S)xf2の値が、(-)の時には、酸度とする。
 また、CMC-Naの粘度は、1質量%の純水溶液において、500mPa・s以下が好ましい。ここでいう粘度は、以下の方法で測定される。まず、CMC-Naの粉末を1質量%として、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で、純水中に分散し、水溶液を調製する。次に得られた水溶液について、分散3時間後(25℃保存)に、B型粘度計(ローター回転数60rpm)にセットして60秒間静置後に、30秒間回転させて測定する。但し、ローターは粘度に応じて適宜変更することができる。
 CMC-Naの粘度が低いほど、セルロースとの複合化が促進されやすい。そのため、セルロース製剤に含有させるCMC-Naの粘度としては、200mPa・s以下がより好ましく、100mPa・s以下がさらに好ましい。当該粘度の下限は特に設定されるものではないが、好ましい範囲としては1mPa・s以上である。
≪セルロースと分散補助剤の配合比率≫
 セルロース製剤は、有機成分によって少なくとも表面の一部が被覆されたセルロース粒子を30~99質量%、及び分散補助剤を1~70質量%含むことが好ましく、前記セルロース粒子を50~99質量%、分散補助剤を1~50質量%を含むことがより好ましく、セルロース粒子を70~99質量%、分散補助剤を1~30質量%を含むことがさらに好ましく、セルロース粒子を80~99質量%、分散補助剤を1~20質量%を含むことがよりさらに好ましく、セルロース粒子を90~99質量%、分散補助剤を1~10質量%を含むことが特に好ましい。
 分散補助剤は、セルロース製剤を得る際に添加してもよく、セルロース製剤を樹脂に添加してコンポジットを得る前に添加してもよい。セルロース製剤を得る際に添加する方が、有機成分の添加量を抑え、少量で所望の効果が発現するため好ましい。添加方法としては、原料セルロース又はセルロース粒子に、有機成分と一緒に添加してもよく、有機成分を添加した後に逐次で添加してもよく、分散補助剤を添加した後に有機成分を逐次で添加する方法でもよく、添加方法は自由である。逐次添加の場合は、一段目の有機成分、分散補助剤の添加の後に、乾燥を経てもよい。
[樹脂組成物]
 本発明の一態様に係る樹脂組成物は、上記セルロース製剤を、樹脂に分散させた組成物であることができる。
≪樹脂≫
<樹脂の種類>
 セルロース製剤を分散させる樹脂としては、特に限定されるものではなく、多種多様のものを用いることができる。例えば、セルロース製剤を分散させる樹脂として熱可塑性樹脂を用いることにより、本来、熱可塑性を有さないセルロースを用いて、熱可塑性の樹脂組成物を得ることが可能になる。
 セルロース製剤を分散させる熱可塑性樹脂としては、樹脂組成物の製造時や当該樹脂組成物を用いた成形品の製造時におけるセルロース粒子の分解による褐変化や凝集を防ぐ観点から、250℃以下の温度で溶融混練/押し出しできるものが好ましい。このような熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン類;ABS、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-プロピレンゴム等のエラストマー類;さらにはこれらの変性樹脂等が挙げられる。
 ポリオレフィンとしては、オレフィン樹脂、エラストマー等のポリオレフィンを用いることができる。また、メタロセン触媒等のシングルサイト触媒を用いて製造された樹脂を用いることができる。
 オレフィン樹脂としては、下記のエラストマーを除く、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、エチレン-α-オレフィン共重合体、エチレン-酢酸ビニル共重合体、エチレン-塩化ビニル共重合体等のポリエチレン類;ポリプロピレン(PP)、ポリプロピレン-α-オレフィン共重合体等のポリプロピレン類;ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン等のポリペンテン類、及びこれらの混合物を用いることができる。
 エラストマーとしては、天然ゴム(NR)、合成イソプレンゴム(IR)、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、エチレン-プロピレン-ジエンターポリマー(EPDM)、クロロプレン(CR)、ハロブチルゴム(XIIR)、ブチルゴム(IIR)、熱可塑性エラストマー(TPO)等のゴム成分、及びこれらの混合物を用いることができる。
 これらの樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。上記の中でも、樹脂の強度の観点から、ポリプロピレンが好ましい。
<樹脂の含有量>
 樹脂組成物における樹脂の含有量は、樹脂組成物に対して70質量%以上98質量%以下であることが好ましい。樹脂の含有量が70質量%以上である場合、得られた樹脂組成物が、良好な成形性と熱可塑性を有する傾向にあり、98質量%以下である場合、結晶セルロース微粉末の分散性が良好となる傾向にある。樹脂の含有量は、より好ましくは75質量%以上90質量%以下である。
≪セルロース製剤の含有量≫
 樹脂組成物におけるセルロース製剤の含有量は、樹脂組成物に対して1質量%であることが好ましく、1質量%以上50質量%以下であることがより好ましい。セルロース製剤の含有量が1質量%以上である場合、得られる成形品の強度と耐衝撃性が良好となる傾向にある。また、50質量%以下である場合、得られる成形品の強度と弾性率が良好となる傾向にある。セルロース製剤の含有量は、30質量%以下がより好ましく、25質量%以下がさらに好ましく、20質量%以下がよりさらに好ましく、15質量%以下が特に好ましい。
≪界面形成剤≫
 セルロース製剤を樹脂に添加する場合に、より優れた力学特性(低線膨張係数、強度、伸び)を達成するために、セルロースと樹脂との界面を密着させる界面形成剤を添加することが好ましい。界面形成剤としては、一分子中に、親水性の結晶セルロースに対する親和性基と、疎水性の樹脂成分に対する親和性基との両方を備える物質であればよく、樹脂等の高分子であってもよく、いわゆる低分子化合物であってもよい。例えば、樹脂組成物は、一部構造に極性官能基を有する樹脂を、界面形成剤として含有することができる。一部構造に極性官能基を有する樹脂としては、例えば、変性ポリオレフィン樹脂、ポリアミド、ポリエステル、ポリアセタール、アクリル樹脂等が挙げられる。なお、界面形成剤が樹脂の場合、樹脂組成物において、界面形成剤は、樹脂成分の一部を構成する。
 変性ポリオレフィン樹脂としては、ポリオレフィンにカルボン酸残基、(メタ)アクリル酸化合物等をグラフト変性させたものが好ましい。グラフト変性に用いる不飽和カルボン酸とは、カルボキシル基を有する不飽和炭化水素である。その誘導体には無水物が含まれる。不飽和カルボン酸及びその誘導体としては、好ましくは、フマル酸、マレイン酸、イタコン酸、シトラコン酸、アコニット酸及びこれらの無水物、フマル酸メチル、フマル酸エチル、フマル酸プロピル、フマル酸ブチル、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、フマル酸ジブチル、マレイン酸メチル、マレイン酸エチル、マレイン酸プロピル、マレイン酸ブチル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジブチル等が挙げられ、より好ましくは無水イタコン酸、無水マレイン酸などが例示される。(メタ)アクリル酸化合物とは、分子中に(メタ)アクリロイル基を少なくとも1個含む化合物である。(メタ)アクリル酸化合物としては、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、アクリルアミド等が挙げられる。ここでオレフィンは、ポリエチレンでも、ポリプロピレンでも好適に使用することができ、コンポジットのベースポリマーに併せて、構造と分子量を自由に選択できる。
 ポリアミドとしては、ωアミノ酸の重縮合反応で合成される「n-ナイロン」と、ジアミンとジカルボン酸の共縮重合反応で合成される「n,m-ナイロン」のいずれも用いることができる(n又はmは、モノマー成分の炭素数に由来する指数)。例えば、「n-ナイロン」(重縮合反応物)としては、ナイロン6、ナイロン11、ナイロン12ラウリルラクタム(炭素数12)等が挙げられ、「n,m-ナイロン」(共縮重合反応物)としては、ナイロン66、ナイロン610、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、ナイロン612、ケブラー(p-フェニレンジアミン+テレフタル酸共重縮合物)、ノーメックス(m-フェニレンジアミン+イソフタル酸共重縮合物)が好適に使用できる。
 ポリエステルとしては、多価カルボン酸(ジカルボン酸)とポリアルコール(ジオール)との重縮合体を使用することができる。例えば、多価カルボン酸(ジカルボン酸)成分としては、テレフタル酸、2,6-ナフタレンジカルボン酸等、多価アルコール(ジオール)成分)としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が挙げられ、これらの重縮合物を使用することができる。
 ポリアセタールは、ホモポリマー、ランダムコポリマー(ポリオキシメチレン-オキシメチレンランダムコポリマー)、ブロックコポリマー(ポリオキシメチレン-アルキルブロックコポリマー)を使用することができる。
 アクリル樹脂は、アクリル酸エステル又はメタクリル酸エステルの重合体を用いることができる。
 これらの界面形成剤は、単独で使用してもよく、2種以上を混合して使用してもよく、その混合割合は自由に設定することができる。
 例えば、ベースポリマーとなる樹脂がポリオレフィンの場合は、界面形成剤としては酸変性ポリオレフィン及び/又はポリアミドを好適に使用できる。ここで、酸変性ポリオレフィンとしては、マレイン酸変性ポリオレフィン、例えばマレイン酸変性ポリプロピレンが好ましく、ベースポリマーがポリプロピレンの場合は、マレイン酸変性ポリプロピレンが好適に使用できる。マレイン酸残基がセルロース側界面に親和性が高く、ポリプロピレン残基がベースポリマーと相溶するため、樹脂組成物の界面を密着させ、得られた樹脂組成物の寸法安定性、強度に加え、特に伸びを向上させることができる。
 ここで、ポリアミドとしては、n-ナイロンが好適に使用できる。ベースポリマーがポリプロピレンの場合は、ナイロン6が好適に使用できる。ナイロンは、それ自体のポリマー分子鎖が強直であり、ペプチド残基がセルロース表面と親和性が高いため、樹脂組成物に寸法安定性と強度を付与できる。
 界面形成剤の添加量としては、セルロースの表面を分子的に覆う量があればよく、例えば、セルロース100質量部に対して1質量部以上であればよい。好ましくは、5質量部以上がより好ましく、10質量部以上がさらに好ましく、15質量部以上が特に好ましく、20質量部以上が最も好ましい。界面形成剤の添加量の上限は、必ずしも設定されるものではないが、樹脂組成物の加工性、耐久性との兼ね合いから、セルロース100質量部に対して50質量部以下が好ましい。
 寸法安定性を向上させるためには、界面形成剤の添加量は、例えば、セルロース製剤又は樹脂組成物中に存在するセルロース100質量部に対して1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上がさらに好ましく、15質量部以上がよりさらに好ましく、20質量部以上が特に好ましい。界面形成剤の添加量の上限は、必ずしも設定されるものではないが、樹脂組成物の加工性、耐久性との兼ね合いから、セルロース100質量部に対して50質量部以下が好ましい。
 強度を高めるためには、界面形成剤の添加量は、例えば、セルロース製剤又は樹脂組成物中に存在するセルロース100質量部に対して10質量部以上が好ましく、50質量部以上がより好ましく、100質量部以上がさらに好ましく、150質量部以上がよりさらに好ましく、200質量部以上が特に好ましい。界面形成剤の添加量の上限は、必ずしも設定されるものではないが、樹脂組成物の加工性、耐久性との兼ね合いから、セルロース100質量部に対して500質量部以下が好ましい。
 界面形成剤は、セルロース製剤の製造過程で添加してもよく、セルロース製剤を樹脂に添加して樹脂組成物を得る際に添加してもよい。セルロース製剤を得る際に添加する方が、界面形成剤の添加量を抑え、少量で所望の効果が発現するため好ましい。添加方法は特に限定されるものではなく、分散剤等のその他の添加剤と一緒に添加してもよく、その他の添加剤を添加した後に逐次で添加してもよく、界面形成剤を添加した後にその他の添加剤を逐次で添加してもよい。
≪分散剤≫
 樹脂組成物は、界面活性剤、表面処理剤、無機充填剤等の分散剤を含んでいてもよい。分散剤は、セルロース製剤と樹脂との間を取り持って、両者の相溶性を向上させる機能を有する。つまり、セルロース粒子を樹脂組成物中で凝集させずに良好に分散させ、樹脂組成物全体を均一にする機能を有する。従って、樹脂組成物に含有させる分散剤としては、樹脂組成物中でセルロース粒子を均一に分散できるものであれば、特に制限なく使用することができる。このような分散剤としては、公知の界面活性剤、表面処理剤、無機充填剤等の中から、少なくともセルロース粒子と樹脂の両者に親和性を有しているものを適宜用いることができる。界面活性剤及び表面処理剤は、それぞれ、静的表面張力20mN/m以上及び水よりも高い沸点を有する有機成分であってもよい。
 樹脂組成物の分散剤の含有量は、1質量%以上20質量%以下であることが好ましい。分散剤の含有量が1質量%以上である場合、樹脂組成物中におけるセルロース粒子の分散性が良好となる傾向にあり、20質量%以下である場合、樹脂組成物から得られる成形品の強度を良好に維持することができる傾向にある。樹脂組成物における分散剤の含有量は、5質量%以上15質量%以下であることがより好ましい。なお、前述の、静的表面張力20mN/m以上及び水よりも高い沸点を有する有機成分も分散剤として機能することから、上記の分散剤の含有量は、当該有機成分の量も含む量を意味する。
 界面活性剤としては、例えば、ステアリン酸、ステアリン酸のカルシウム、マグネシウム、亜鉛塩等の高級脂肪酸及びその塩;ステアリルアルコール、ステアリン酸グリセリド、ポリエチレングリコール等の高級アルコールや高級多価アルコール;ポリオキシエチレンソルビタンモノステアレート等の各種脂肪酸エステル等が挙げられる。上記の中でも、ステアリン酸グリセリドが好ましい。
 表面処理剤としては、例えば、ジメチルシリコーンオイル、高級脂肪酸エステル変性シリコーンオイル等の非反応性シリコーンオイル;エポキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、カルボキシル変性シリコーンオイル等の反応性シリコーンオイル;N-ラウリル-D,L-アスパラギン酸-β-ラウリルエステル等が挙げられる。
 無機充填剤としては、周期律表第I族~第VIII族中の金属元素、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti又はSi元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘度鉱物等が挙げられ、より具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、シリカ、(重質)炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、炭酸マグネシウム、ケイ酸カルシウム、クレーワラストナイト、ガラスビーズ、ガラスパウダー、けい砂、けい石、石英粉、けいそう土、ホワイトカーボン等が挙げられる。
 樹脂組成物に含有させる分散剤としては、これらのうち1種を単独で用いてもよく、2種類以上を併用しても用いてもよい。樹脂組成物に含有させる分散剤としては、上記の中でも、(重質)炭酸カルシウムが好ましい。
≪その他の添加剤≫
 樹脂組成物中には、セルロース製剤や樹脂、さらには界面形成剤及び分散剤の他に、本発明の効果を損なわない範囲内で、必要に応じて他の成分を含有させてもよい。当該他の成分としては、例えば、酸化防止剤、金属不活性化剤、難燃剤(有機リン酸エステル系化合物、無機リン系化合物、芳香族ハロゲン系難燃剤、シリコーン系難燃剤等)、フッ素系ポリマー、可塑剤(オイル、低分子量ポリエチレン、エポキシ化大豆油、ポリエチレングリコール、脂肪酸エステル類等)、三酸化アンチモン等の難燃助剤、耐候(光)性改良剤、ポリオレフィン用造核剤、スリップ剤、無機又は有機の充填材や強化材(ガラス繊維、カーボン繊維、ポリアクリロニトリル繊維、ウィスカー、マイカ、タルク、カーボンブラック、酸化チタン、炭酸カルシウム、チタン酸カリウム、ワラストナイト、導電性金属繊維、導電性カーボンブラック等)、各種着色剤、離型剤等が挙げられる。当該他の成分の含有量は、樹脂組成物全体に対して10質量%以下であることが好ましく、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
 本発明の一態様に係る樹脂組成物は、前述のようにセルロース製剤を含むことができるが、別の態様において、樹脂組成物は、前述の熱可塑性樹脂、前述のセルロース粒子、及び静的表面張力20mN/m以上及び水よりも高い沸点を有する前述の有機成分を含むことができる。また、好ましい態様において、樹脂組成物は、前述の熱可塑性樹脂、前述のセルロース粒子、静的表面張力20mN/m以上及び水よりも高い沸点を有する前述の有機成分、並びに、樹脂組成物中に存在するセルロース100質量部に対して1質量部以上の前述の界面形成剤、を含むことができる。これらの態様においては、樹脂組成物中のセルロース総量と有機成分量との合計100質量%に対して、セルロース量が30~99質量%、及び有機成分量が1~70質量%であることが好ましい。
≪樹脂組成物の製造方法≫
 樹脂組成物の製造方法としては、特に限定されるものではなく、樹脂に無機粒子等を分散させる際に用いられる各種の方法の中から適宜選択して用いることができる。
 樹脂組成物は、例えば、樹脂又は樹脂と界面形成剤の混合物を加熱溶融し、そこにセルロース製剤(又は、セルロース粒子と有機成分との組合せ)と分散剤とを加えてから一緒に溶融混練する方法により製造できる。あるいは、押出機に樹脂の原料や樹脂と界面形成剤の原料を供給して溶融させ、他方、押出機の中間口よりセルロース製剤(又は、セルロース粒子と有機成分との組合せ)と分散剤を供給することにより、押出機中で混合分散する方法によっても樹脂組成物を製造できる。押出機としては、例えば、一軸押出機、二軸押出機、ロール、ニーダー、ブラベンダープラストグラフ、バンバリーミキサー等が挙げられる。中でも、二軸押出機を用いた溶融混練方法が、混練が十分となる観点から好ましい。
 樹脂組成物の製造における溶融混練温度は、用いる成分によって異なるため特に限定されるものではないが、通常、50~250℃の中から任意に選ぶことができ、多くの場合は200℃~250℃の範囲である。その他の製造条件は、通常用いられる条件を適宜用いればよい。
 樹脂組成物は、態様Aにおいて例示したような種々の形状(すなわち、樹脂ペレット状、シート状、繊維状、板状、棒状等)であることができる。樹脂組成物は、種々の方法、例えば、射出成形、押出成形、中空成形等の成型方法を用いることによって各種部品の成形体として成形できる。樹脂として熱可塑性樹脂を用いる場合、得られた成形品は、熱可塑性を有すると共に、熱可塑性樹脂のみから得られた成形品では到底得られない強度、弾性率、耐衝撃性を有する上、成形品のザラツキや凝集有無等の表面物性も良好である。
 特に、本発明の一態様に係る樹脂組成物は、セルロース粒子が配合されていることで、樹脂溶融時に優れた流動性(メルトフローレート:MFR)を示すという特徴がある。これにより、溶融樹脂を射出成型する際に、複雑な形状のものでも、通常の金型を使用し低圧で容易に成型することが可能となる。この特徴は、セルロース粒子が樹脂中に微分散することにより達成される。セルロース粒子(及び存在する場合には更にセルロースファイバー)が樹脂マトリクス中で微分散することで、セルロース粒子(及び存在する場合には更にセルロースファイバー)の網目構造が樹脂を包摂し、当該網目構造が樹脂溶融時にチキソトロピー性を発現する。樹脂組成物中で、セルロースがコロ(滑車)の役割を果たすことで、流動性が改善される。好ましい態様において、樹脂に分散されたセルロースの、平均重合度、平均粒子径(体積平均粒子径及び質量平均粒子径)、繊維長及び繊維幅、L/D、及び/又はゼータ電位が本開示の範囲で適正に制御される場合、上記の特性が一層発現しやすくなる。
 本発明を実施例に基づいて更に説明するが、本発明はこれら実施例に限定されない。
[[実施例A]]
[原料及び評価方法]
以下に、使用した原料及び、評価方法について説明する。
≪熱可塑性樹脂≫
 ポリアミド
  ポリアミド6(以下、単にPAと称す。)
  宇部興産株式会社より入手可能な「UBEナイロン 1013B」
  カルボキシル末端基比率が、([COOH]/[全末端基])=0.6
 ポリプロピレン
  ホモポリプロピレン(以下、単にPPと称す)
     プライムポリマーから入手可能な「プライムポリプロ J105B」
     ISO1133に準拠230℃測定MFR=9.0g/10分
  マレイン酸変性ポリプロピレン(以下、単にMPPと称す)
     三洋化成工業株式会社から入手可能な「ユーメックス1001」
     ISO1133に準拠して230℃で測定されたMFR=230g/10分
≪セルロース成分≫
セルロースウィスカー(以下、CWと略すことがある)
 市販DPパルプ)(平均重合度1600)を裁断し、10%塩酸水溶液中で、105℃で30分間加水分解した。得られた酸不溶解残さを濾過、洗浄、pH調整し、固形分濃度14重量%、pH6.5の結晶セルロース分散体を調製した。この結晶セルロース分散体を噴霧乾燥し、結晶セルロースの乾燥物を得た。次に、供給量を10kg/hrとして、気流型粉砕機(STJ-400型、セイシン企業社製)に上記で得た乾燥物を供給して粉砕し、結晶セルロース微粉末としてセルロースウィスカーを得た。得られたセルロースウィスカーの特性を後述の方法で評価した。結果を下記に示す。
         L/D=1.6
         平均径=200nm
         結晶化度=78%
         重合度=200
         ゼータ電位=-20mV
セルロースファイバーA(以下、CF-Aと略すことがある)
 リンターパルプを裁断後、オートクレーブを用いて、120℃以上の熱水中で3時間加熱し、ヘミセルロース部分を除去した精製パルプを、圧搾、純水中に固形分率が1.5重量%になるように叩解処理により高度に短繊維化およびフィブリル化させた後、そのままの濃度で高圧ホモジナイザー(操作圧:85MPaにて10回処理)により解繊することにより解繊セルロースを得た。ここで、叩解処理においては、ディスクリファイナーを用い、カット機能の高い叩解刃(以下カット刃と称す)で4時間処理した後に解繊機能の高い叩解刃(以下解繊刃と称す)を用いてさらに1.5時間叩解を実施し、セルロースファイバーAを得た。得られたセルロースファイバーの特性を後述の方法で評価した。結果を下記に示す。
         L/D=300
         平均繊維径=90nm
         結晶化度=80%
         重合度=600
         ゼータ電位=-30mV
セルロースファイバーB(以下、CF-Bと略すことがある)
 叩解処理の条件を、カット刃での処理時間を2.5時間とし、その後の解繊刃での処理時間を2時間とする以外は、CF-Aと同じ条件とし、以下のセルロースファイバーBを得た。
         L/D=450
         平均繊維径=100nm
         結晶化度=80%
         重合度=600
         ゼータ電位=-30mV
セルロースファイバーC(以下、CF-Cと略すことがある)
 リンターパルプを(株)石川総研製の乾式粉砕機、アトムズを用いて合計8回の微粉化処理を行いセルロースの微粉末を作製した。CF-Aの製造条件における精製パルプを前記工程にて得られたセルロース微粉末に置き換え、以降、CF-Aの製造方法と同様に叩解処理、高圧ホモジナイザーによる処理、および疎水化処理を行い、以下のセルロースファイバーCを得た。
         L/D=150
         平均繊維径=90nm
         結晶化度=65%
         重合度=450
         ゼータ電位=-30mV
セルロースファイバーD(以下、CF-Dと略すことがある)
 酢酸菌を培養しセルロースナノファイバーを得た。培養は標準的な条件である、Hestrin-Schramm培地(「セルロース辞典」セルロース学会編集、朝倉書店、2000年発行、p44)を用い、果糖を炭素源としてPH6、温度28℃で8日間、内寸40cm幅×60cm長×15cm高さのプラスチック製バット内での静置培養を複数回行った。得られた厚みが約15mmの半透明ゲル状物を、サイコロ状に裁断した後、耐圧溶菌用タンク(容量:2m3)中に投入し、2重量%の水酸化ナトリウム水溶液に浸液させた状態で、120℃で1時間の溶菌処理を行った。
 さらに得られたウェット状のゲルを水洗した後、再度、先と同じ条件で溶菌処理を行い、得られたウェット状ゲルをセルロース固形分として約0.5重量%となるように洗浄用タンク(容量:2m3)内で4℃の冷水で希釈、タンク内に装着されたディスパー型のホモミキサーで約10分間分散処理を行った後、加圧濾過により濃縮物を得た。同様に洗浄用タンク内で4℃の冷水にて固形分率が約0.5重量%となるように希釈しホモミキサーで約10分間分散処理を行った後、加圧濾過により濃縮する分散、濃縮の各工程を3度繰り返し、以下の精製されたセルロースファイバーDを得た。
         L/D=1400
         平均繊維径=90nm
         結晶化度=93%
         重合度=2700
         ゼータ電位=-30mV
Figure JPOXMLDOC01-appb-T000003
<セルロース成分の重合度>
 「第14改正日本薬局方」(廣川書店発行)の結晶セルロース確認試験(3)に規定される銅エチレンジアミン溶液による還元比粘度法により測定した。
<セルロース成分の結晶形、結晶化度>
 X線回折装置(株式会社リガク製、多目的X線回折装置)を用いて粉末法にて回折像を測定(常温)し、Segal法で結晶化度を算出した。また、得られたX線回折像から結晶形についても測定した。
<セルロース成分のL/D>
 セルロース成分を、1質量%濃度で純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、処理条件:回転数15,000rpm×5分間)で分散させた水分散体を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを、原子間力顕微鏡(AFM)で計測された際に得られる粒子像の長径(L)と短径(D)とした場合の比(L/D)を求め、100個~150個の粒子の平均値として算出した。
<セルロース成分の平均径>
 セルロース成分を固形分40質量%として、プラネタリーミキサー((株)品川工業所製、商品名「5DM-03-R」、撹拌羽根はフック型)中において、126rpmで、室温常圧下で30分間混練した。次いで、固形分が0.5質量%の濃度で純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、処理条件:回転数15,000rpm×5分間)で分散させ、遠心分離(久保田商事(株)製、商品名「6800型遠心分離器」、ロータータイプRA-400型、処理条件:遠心力39200m2/sで10分間遠心した上澄みを採取し、さらに、この上澄みについて、116000m2/sで45分間遠心処理する。)した。遠心後の上澄み液を用いて、レーザー回折/散乱法粒度分布計(堀場製作所(株)製、商品名「LA-910」、超音波処理1分間、屈折率1.20)により得られた体積頻度粒度分布における積算50%粒子径(体積平均粒子径)を測定し、この値を平均径とした。
<セルロース成分のゼータ電位>
 セルロース成分を、1質量%濃度の純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、処理条件:回転数15,000rpm×5分間)で分散させて得た水分散体を、0.1~0.5質量%まで純水で希釈し、ゼータ電位計(大塚電子製、装置名ELSZ-2000ZS型、標準セルユニット)を使用し、25℃で測定した。
≪有機成分≫
有機成分としては以下のものを用いた。
ロジンエチレンオキサイド付加物(ロジン-ポリエチレングリコールエステル、ハリマ化成株式会社社製、商品名「REO-15」、静的表面張力39.7mN/m、SP値7.25以上、常圧下沸点100℃超):以下、単にロジンエステルと称する。
流動パラフィン(和光純薬製、特級グレード、静的表面張力26.4mN/m、沸点100℃超)
トール油脂肪酸(ハリマ化成株式会社製 商品名「ハートールSR-30」、静的表面張力30.2mN/m、SP値7.25以上、常圧下沸点100℃超):以下、単にトール油と称する。
テルピン油(ヤスハラケミカル株式会社製 商品名「ターピネオール」、静的表面張力33.2mN/m、SP値7.25以上、常圧下沸点100℃超)
グリセリン(静的表面張力63.4mN/m、常圧下沸点100℃超)
エタノール(和光純薬製、特級グレード、静的表面張力22.3mN/cm、SP値12.58、常圧下沸点78.4℃)
ポリオキシエチレンアルキルフェニルエーテル(青木油脂工業株式会社製 ブラウノンN-515 静的表面張力34.8mN/m、動的表面張力40.9mN/m、常圧下沸点100℃超):以下、単にアルキルフェニルエーテルと称する。
ポリオキシエチレンスチレン化フェニルエーテル(青木油脂工業株式会社製 ブラウノンKTSP-16 静的表面張力39.0mN/m、動的表面張力55.8mN/m、常圧下沸点100℃超):以下、単にスチレン化フェニルエーテルと称する。
ポリオキシエチレンβナフチルエーテル(青木油脂工業株式会社製 ブラウノンBN-10 静的表面張力48.2mN/m、動的表面張力51.7mN/m、常圧下沸点100℃超):以下、単にβナフチルエーテルと称する。
ポリオキシエチレンビスフェノールAエーテル(青木油脂工業株式会社製 ブラウノンBEO-17.5 静的表面張力49.5mN/m、動的表面張力53.1mN/m、常圧下沸点100℃超)
ポリオキシエチレン硬化ひまし油エーテル(青木油脂工業株式会社製 ブラウノンRCW-20 静的表面張力42.4mN/m、動的表面張力52.9mN/m、常圧下沸点100℃超):以下、単に硬化ひまし油エーテルと称する。
ポリオキシエチレン直鎖アルキルエーテル(青木油脂工業株式会社製 ブラウノンCH-315L 静的表面張力36.7mN/m、動的表面張力62.6mN/m、常圧下沸点100℃超):以下、単に直鎖アルキルエーテルと称する。
ポリオキシエチレンフィトステロールエーテル(日光ケミカルズ株式会社製 NIKKOL BPS-20 静的表面張力51.3mN/m、動的表面張力65.7mN/m、常圧下沸点100℃超):以下、単にフィトステロールと称する。
Figure JPOXMLDOC01-appb-T000004
<静的表面張力の測定>
 各有機成分を用い、自動表面張力測定装置(協和界面科学株式会社製、商品名「CBVP-Z型」、付属のガラス製セル)を用い、ウィルヘルミー法により静的表面張力を測定した。実施例、比較例で用いた各有機成分は常温で液体であったので、装置に付属のステンレス製シャーレに底から液面までの高さを7mm~9mmとなるように仕込み、25℃±1℃に調温した後に測定し、以下の式により求めた。γ=(P-mg+shρg)/Lcosθ。ここで、P:つりあう力、m:プレートの質量、g:重力定数、L:プレート周囲長、θ:プレートと液体の接触角、s:プレート断面積、h:(力が釣り合うところまで)液面から沈んだ深さ、ρ:液体の密度(実施例、比較例で用いた有機成分は密度が1±0.4g/mLだったので、1を用いた。)、である。
 常温で固体のものは、融点以上に加熱して溶融させた後、融点+5℃の温度に調節し、上述したウィルヘルミー法により表面張力を測定した。
<動的表面張力の測定>
 各有機成分を用い、動的表面張力計(英弘精機株式会社製 製品名シータサイエンスt-60型、プローブ(キャピラリーTYPE I(ピーク樹脂製)、シングルモード)を使用し、最大泡圧法により気泡発生周期を10Hzで動的表面張力を測定した。実施例、比較例で用いた各有機成分を5質量%としてイオン交換水に溶解又は分散し測定液を調製し、その溶液又は分散液100mLを、100mL容量のガラス製ビーカーに仕込み、25℃±1℃に調温された後、測定された値を用いた。動的表面張力は、以下の式により求められた。σ=ΔP・r/2。ここで、σ:動的表面張力、ΔP:圧力差(最大圧力-最小圧力)、r:キャピラリー半径、である。
<有機成分のSP値の測定>
 SP値は、各サンプル1mLをSP値が既知の下表の溶剤10mLに室温で滴下し、スターラーで1時間撹拌した後、相分離なく溶解した溶剤のSP値の範囲から求めた。
≪引張降伏強度上昇比≫
 射出成形機を用いて、ISO294-3に準拠した多目的試験片を成形した。
 ポリプロピレン系材料に関しては、JIS K6921-2に準拠した条件で実施した。
 ポリアミド系材料に関しては、JIS K6920-2に準拠した条件で実施した。
 原料樹脂(すなわち熱可塑性樹脂単独)及び樹脂組成物(すなわちセルロース含有樹脂組成物)の各々について、ISO527に準拠して引張降伏強度を測定し、セルロース含有樹脂組成物の引張降伏強度を原料樹脂の引張降伏強度で除して、引張降伏強度上昇比を算出した。
 なお、ポリアミド系材料は、吸湿による変化が起きるため、成形直後にアルミ防湿袋に保管し、吸湿を抑制した。
≪引張破断強度の変動係数≫
 ISO294-3に準拠した多目的試験片を用いて、ISO527に準拠して引張破断強度をn数15でそれぞれ測定し、得られた各データをもとに下式に基づき変動係数(CV)を計算した。
  CV=(σ/μ)×100
ここで、σは標準偏差、μは引張破断強度の算術平均を表す。
≪線膨張係数≫
 多目的試験片の中央部から、精密カットソーにて縦4mm、横4mm、長さ4mmの立方体サンプルを切り出し、測定温度範囲-10~80℃で、ISO11359-2に準拠して測定し、0℃~60℃の間での膨張係数を算出した。この際、測定に先立ち、120℃環境下で5時間静置してアニーリングを実施した。
≪流動性(最小充填圧力)≫
 実成形に近い流動性の指標として、最小充填圧力を測定した。
 具体的には、型締圧力200トンの射出成形機に、フィルムゲートを幅方向に有する、長さ200mm、幅150mmで、厚みが平板中央部で3mmから1.5mmに変化する平板金型を取り付け、シリンダー温度と金型温度を以下のように設定し、試験片が充填するギリギリの圧力を測定した。この際、保圧切り替えは行わず、射出圧力、速度は1段のみとした。また、20ショット連続でフル充填で成形した後に、徐々に射出圧力を落としていき、未充填が生じる直前若しくは、ヒケが生じる直前の射出圧力を最小充填圧力とした。
  シリンダー温度
     ポリプロピレン系材料  210℃
     ポリアミド系材料    260℃
  金型温度
     ポリプロピレン系材料   40℃
     ポリアミド系材料     70℃
≪成形片外観≫
 流動性評価の際に成形したフル充填の成形片の外観を以下の指標で評価した。
  点数     状況
   5     成形片全面に光沢がある
   4     成形片の流動末端部に光沢がない
   3     成形片の薄肉部に光沢がない
   2     成形片全面に光沢がなく、若干の変色が確認できる。
   1     成形片全面に光沢がなく、かなりの変色が確認できる。
≪成形片膨張率≫
 実際の成形体の寸法変化に即した評価方法として、成形片膨張率を測定した。
 具体的には、流動性評価の際に成形したフル充填の成形片を用いて、23℃、50%RHの環境下で成形片長さ方向の寸法を測定したのち、試験片を60℃のオーブン中に入れ、30分後に取り出した直後の長さ方向の寸法を実測し、寸法変化率を計算した。測定はn=5で実施しその算術平均をもって、成形片膨張率とした。
≪着色性≫
 着色しやすさの指標として着色性を評価した。一般的に樹脂に着色する際は、一度白色にした後、所望の色に必要な染顔料を添加して調色する作業が行われる。白色へのしやすさは、着色性を大きく左右することとなる。ここでは所定量の酸化チタンを添加した際の白さを測定することにより着色性を評価した。
 実施例で作製したセルロース成分を配合したペレット100質量部に対して、酸化チタンを50質量%含むマスターバッチを3質量部の割合でドライブレンドし、型締圧力200トンの射出成形機を用いて、流動性(最小充填圧力)で用いたものと同じ平板金型を用い、シリンダー温度と金型温度を以下のように設定し、試験片が充分に充填する圧力で成形を行った。なお、この時使用したマスターバッチは、ポリプロピレン系材料に関してはポリプロピレンをベース樹脂とし、ポリアミド系材料に関してはポリアミドをベースとするマスターバッチを用いた。
  シリンダー温度/金型温度
     ポリプロピレン系材料  210℃/40℃
     ポリアミド系材料    260℃/70℃
 得られた試験片の平板部を用いて、色差計(コニカミノルタ社製 CM-2002)を用いて、D65光、10°視野にてL*値を測定し、以下の評価基準により着色性の評価を行った。
  平板のL*値      着色性
   85以上       優れる
   80以上85未満   良好
   75以上80未満   劣る
   75未満       不良
≪フェンダーの欠陥率≫
 実施例で得られたペレットを用いて、最大型締圧力4000トンの射出成形機のシリンダー温度を250℃に設定し、図3の概略図に示す形状を有するフェンダーを成形可能な所定の金型(キャビティー容積:約1400cm、平均厚み:2mm、投影面積:約7000cm、ゲート数:5点ゲート、ホットランナー:なお、図3中で、成形体のランナー位置を明確にするためにランナー(ホットランナー)の相対的な位置1を図示した。)を用い、金型温度を60℃に設定し、20枚のフェンダーを成形した。
 得られたフェンダーを床に置き、5kgの砂を入れた袋を、約50cmの高さより、フェンダー中心部に落下させ、フェンダーの破壊状況を確認した。20枚中破壊した枚数を数えた。
≪線膨張係数の変動係数≫
 フェンダーの欠陥率の測定で使用したフェンダーを用いて、図4の(1)から(10)の位置よりおおよそ約10mm角に切り出し、縦約10mm、横約10mm、厚さ2mmの10個の小平板試験片を採取した。なお、(1)~(3)は成形体ゲート付近、(4)~(7)は成形体の流動末端部、(8)~(10)は、成形体の中央部である。
 得られた小平板試験片を、さらに精密カットソーにて縦4mm、横2mm、長さ4mmの測定用直方体サンプルに切り出した。この時の直方体サンプルの横部分がフェンダーの厚さ方向となる。
 測定に先立ち、120℃環境下で5時間静置してアニーリングを実施して測定用サンプルを得た。得られたサンプルを、測定温度範囲-10℃~+80℃で、ISO11359-2に準拠して測定し、0℃~60℃の間での膨張係数を算出し、合計10個の測定結果を得た。この10個の測定データをもとに下式に基づき変動係数(CV)を計算した。
  CV=(σ/μ)×100
ここで、σは標準偏差、μは引張破断強度の算術平均を表す。
[実施例A1~46及び比較例A1~10]
 ポリアミド、ポリプロピレン、酸変性ポリプロピレン、セルロースウィスカー及びセルロースファイバーを、それぞれ表A3~5記載の割合で混合し、東芝機械(株)製のTEM48SS押出機で、スクリュー回転数350rpm、吐出量140kg/hrで溶融混練し、真空脱揮した後、ダイからストランド状に押出し、水浴で冷却し、ペレタイズした。ペレットは円柱状の形状で、直径が2.3mmで、長さが5mmであった。
 これらを上述した評価方法に準拠して、評価した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 ポリアミド系樹脂をベースとして、セルロースファイバーとセルロースウィスカーの比率を変更した。
 セルロースファイバー単独の比較例A2に対して、セルロースウィスカーを併用した実施例A5では、フェンダーの欠陥率、流動性(最小充填圧力)、成形片外観、着色性及び成形片の膨張率が大幅に改善していることが判る。
Figure JPOXMLDOC01-appb-T000009
 ポリプロピレン系樹脂をベースとして、セルロースファイバーとセルロースウィスカーの比率を変更した。ポリアミド系樹脂での例と同様の傾向を示し、セルロースファイバー単独の比較例A4に対して、セルロースウィスカーを併用した実施例A14~18では、フェンダーの欠陥率、流動性(最小充填圧力)、成形片外観、着色性及び成形片の膨張率が大幅に改善していることが判る。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 ポリプロピレン系樹脂をベースとして、セルロース成分との親和性を向上させるため、酸変性ポリプロピレンを併用した例を示す。
 表A4及び5の例と表A6及び7の例とを比較すると、酸変性ポリプロピレンを併用することで、セルロース成分の分散性が向上するためか、全体的に物性は良好になっている。
[実施例A47~57]
 ポリアミド100質量部に対して、セルロースウィスカー15質量部、セルロースファイバー5質量部、及び表A6に示した有機成分5質量部を混合し、東芝機械(株)製のTEM48SS押出機で、スクリュー回転数350rpm、吐出量200kg/hrで溶融混練し、真空脱揮した後、ダイからストランド状に押出し、水浴で冷却し、ペレタイズした。ペレットは円柱状の形状で、直径が2.3mmで、長さが5mmであった。
 これらを上述した評価方法に準拠して、評価した。
Figure JPOXMLDOC01-appb-T000012
 有機成分として種々のものを用いた結果、実施例A49~52及び54において、フェンダー欠陥率がゼロを示した。また、これらの例において、総じて引張降伏強度上昇率、成形片膨張率及び、線膨張係数の変動係数の改善が確認された。
[[実施例B]]
≪熱可塑性樹脂≫
 熱可塑性樹脂としては実施例Aと同じものを用いた。
≪セルロース成分≫
セルロースウィスカー(以下、CWと略すことがある)
 市販DPパルプ(平均重合度1600)を裁断し、10%塩酸水溶液中で、105℃で30分間加水分解した。得られた酸不溶解残さを濾過、洗浄、pH調整し、固形分濃度14重量%、pH6.5の結晶セルロース分散体を調製した。この結晶セルロース分散体を噴霧乾燥し、結晶セルロースの乾燥物を得た。次に、供給量を10kg/hrとして、気流型粉砕機(STJ-400型、セイシン企業社製)に上記で得た乾燥物を供給して粉砕し、結晶セルロース微粉末としてセルロースウィスカーを得た。得られたセルロースウィスカーの特性を後述の方法で評価した。結果を下記に示す。
         L/D=1.6
         平均径=200nm
         結晶化度=78%
         重合度=200
セルロースファイバーA(以下、CF-Aと略すことがある)
 リンターパルプを裁断後、オートクレーブを用いて、120℃以上の熱水中で3時間加熱し、ヘミセルロース部分を除去した精製パルプを、圧搾、純水中に固形分率が1.5重量%になるように叩解処理により高度に短繊維化及びフィブリル化させた後、そのままの濃度で高圧ホモジナイザー(操作圧:85MPaにて10回処理)により解繊することにより解繊セルロースを得た。ここで、叩解処理においては、ディスクリファイナーを用い、カット機能の高い叩解刃(以下カット刃と称す)で4時間処理した後に解繊機能の高い叩解刃(以下解繊刃と称す)を用いてさらに1.5時間叩解を実施し、セルロースファイバーAを得た。得られたセルロースファイバーの特性を後述の方法で評価した。結果を下記に示す。
         L/D=300
         平均繊維径=90nm
         結晶化度=80%
         重合度=600
セルロースファイバーB(以下、CF-Bと略すことがある)
 叩解処理の条件を、カット刃での処理時間を2.5時間とし、その後の解繊刃での処理時間を2時間とする以外は、CF-Aと同じ条件とし、以下のセルロースファイバーBを得た。
         L/D=450
         平均繊維径=100nm
         結晶化度=80%
         重合度=600
セルロースファイバーC(以下、CF-Cと略すことがある)
 酢酸菌を培養しセルロースナノファイバーを得た。培養は標準的な条件である、Hestrin-Schramm培地(「セルロース辞典」セルロース学会編集、朝倉書店、2000年発行、p44)を用い、果糖を炭素源としてPH6、温度28℃で8日間、内寸40cm幅×60cm長×15cm高さのプラスチック製バット内での静置培養を複数回行った。得られた厚みが約15mmの半透明ゲル状物を、サイコロ状に裁断した後、耐圧溶菌用タンク(容量:2m3)中に投入し、2重量%の水酸化ナトリウム水溶液に浸液させた状態で、120℃で1時間の溶菌処理を行った。
 さらに得られたウェット状のゲルを水洗した後、再度、先と同じ条件で溶菌処理を行い、得られたウェット状ゲルをセルロース固形分として約0.5重量%となるように洗浄用タンク(容量:2m3)内で4℃の冷水で希釈、タンク内に装着されたディスパー型のホモミキサーで約10分間分散処理を行った後、加圧濾過により濃縮物を得た。同様に洗浄用タンク内で4℃の冷水にて固形分率が約0.5重量%となるように希釈しホモミキサーで約10分間分散処理を行った後、加圧濾過により濃縮する分散、濃縮の各工程を3度繰り返し、以下の精製されたセルロースファイバーCを得た。
         L/D=1400
         平均繊維径=90nm
         結晶化度=93%
         重合度=2700
Figure JPOXMLDOC01-appb-T000013
<セルロース成分の重合度>
 実施例Aと同様に測定した。
<セルロース成分の結晶形、結晶化度>
 実施例Aと同様に測定した。
<セルロース成分のL/D>
 実施例Aと同様に測定した。
<セルロース成分の平均径>
 実施例Aと同様に測定した。
≪有機成分≫
有機成分としては実施例Aと同じものを用いた。
<静的表面張力の測定>
 実施例Aと同様に測定した。
<動的表面張力の測定>
 実施例Aと同様に測定した。
<有機成分のSP値の測定>
 実施例Aと同様に測定した。
≪引張降伏強度上昇比≫
 実施例Aと同様に測定した。
≪引張破断強度の変動係数≫
 実施例Aと同様に測定した。
≪線膨張係数≫
 実施例Aと同様に測定した。
≪試験片の線膨張係数の変動係数≫
 上述の線膨張係数の測定のために、ISO294-3に準拠した60mm×60mm×2mmの小型角板を50枚成形した。その中より、10枚ごとに1枚の試験片を取り出し、該試験片のゲート部と流動末端部より、精密カットソーにて縦4mm、横2mm、長さ4mmの測定用直方体サンプルを切り出した。
 得られた測定用サンプルを用いて、測定温度範囲-10~80℃で、ISO11359-2に準拠して測定し、0℃~60℃の間での線膨張係数を算出した。この際、測定に先立ち、120℃環境下で5時間静置してアニーリングを実施した。得られた10個のデータを元に、引張破断強度の変動係数と同様に実施して変動係数を測定した。
≪流動性(最小充填圧力)≫
 実施例Aと同様に測定した。
≪成形片外観≫
 実施例Aと同様に測定した。
≪成形片膨張率≫
 実施例Aと同様に測定した。
≪着色性≫
 実施例Aと同様に測定した。
≪フェンダーの欠陥率≫
 実施例Aと同様に測定した。
≪フェンダーの線膨張係数の変動係数≫
 実成形品の反りの大きさの指標として、実成形体であるフェンダーの線膨張係数の変動係数を測定した。
 フェンダーの欠陥率の測定用に成形したフェンダーを用いて、実施例Aにおける≪線膨張係数の変動係数≫と同様に測定した。
≪押出機デザイン-1≫
 シリンダーブロック数が13個ある二軸押出機(東芝機械(株)製のTEM48SS押出機)のシリンダー1を水冷、シリンダー2を80℃、シリンダー3を150℃、シリンダー4~ダイスを250℃に設定した。
 スクリュー構成としては、シリンダー1~3を搬送スクリューのみで構成される搬送ゾーンとし、シリンダー4に上流側より2個の時計回りニーディングディスク(送りタイプニーディングディスク:以下、単にRKDと呼ぶことがある。)、2個のニュートラルニーディングディスク(無搬送タイプニーディングディスク:以下、単にNKDと呼ぶことがある。)を順に配した。シリンダー5は搬送ゾーンとし、シリンダー6に1個のRKD及び引き続いての2個のNKDを配し、シリンダー7及び8は搬送ゾーンとし、シリンダー9に2個のNKDを配した。続くシリンダー10は搬送ゾーンとし、シリンダー11に2個のNKD、引き続いての1個の反時計回りスクリューを配し、シリンダー12及び13は搬送ゾーンとした。なお、シリンダー12にはシリンダー上部にベントポートを設置し減圧吸引できるようにし、真空吸引を実施した。
 シリンダー1より樹脂、セルロース成分並びに付加的成分のすべてを供給した。
 この際の樹脂組成物としての押出機からの吐出量(生産量)は140kg/hrであった。また、スクリュー回転数は、適宜変更した。
≪押出機デザイン-2≫
 押出機デザイン-1と同じ押出機を用いて、シリンダー3に液体注入ノズルを設置し、シリンダー1を水冷、シリンダー2~4を80℃、シリンダー5を100℃、シリンダー6を130℃、シリンダー7を230℃、シリンダー8~13及びダイスを250℃に設定した。
 スクリュー構成としては、シリンダー1~4を搬送スクリューのみで構成される搬送ゾーンとし、シリンダー5及び6に、それぞれ上流側より3個のRKDを配し、更に押出機上部にベントポートを設置し、分散媒を除去できるようにした。引き続いて、シリンダー7から8にかけて、3個のRKD、2個のNKD、1個の反時計回りニーディングディスク(逆送りタイプニーディングディスク:以下、単にLKDと呼ぶことがある。)を連続して配し溶融ゾーンとした。シリンダー9は搬送ゾーンとし、シリンダー10に1個のRKD、2個のNKD及び1個のLKDをこの順で連続して配し、溶融ゾーンとした後、シリンダー11~13を搬送ゾーンとした。ここでシリンダー12で減圧吸引が可能とした。
 シリンダー1からは、樹脂成分を供給し、シリンダー3から、水を主成分とする分散媒中にセルロース成分及び、適宜界面活性剤等の成分を分散させた分散液を必要量、ポンプにて添加し、シリンダー5及び6にて分散媒を蒸発させ、除去した。
 この際の樹脂組成物としての押出機からの吐出量(生産量)は140kg/hrであった。また、スクリュー回転数は、適宜変更した。
≪押出機デザイン-3≫
 押出機デザイン-1と同じ押出機を用いて、シリンダー6に圧力コントロール型の液体注入ノズルを設置し、シリンダー1を水冷、シリンダー2を150℃、シリンダー3を250℃、シリンダー4~7を270℃、シリンダー8~13及びダイスを250℃に設定した。
 押出機のスクリューデザインは、シリンダー1及び2を搬送スクリューのみで構成される搬送ゾーンとし、シリンダー3に上流側より2個のRKDと、NKD及びLKDを配して、樹脂溶融ゾーンとし、シリンダー4をシリンダー2と同様に搬送ゾーンとし、シリンダー5にシールリングと呼ばれる樹脂の流路を急激に狭めるスクリューパーツ(以下、単にSRと呼ぶことがある。)と引き続いての反時計回りスクリュー(逆送りタイプスクリュー:以下単にLSと呼ぶことがある。)を配して、シリンダー6の上流側の溶融樹脂シールゾーンとし、シリンダー6の液体添加部分に撹拌効率を高めるため複数のNKDを配した。次いで、シリンダー7において、SRと引き続いてのLSを配することで、液添ゾーン下流側の溶融樹脂シールとした。シリンダー8は、搬送ゾーンとし、続くシリンダー9の上部は開口部とし、シリンダー7のシール部を超えて解放された樹脂から出た水蒸気を放出する脱蒸気ゾーンとした。更に、シリンダー11にて、RKDとそれに引き続いての2個のNKDと1個のLSを配した後、シリンダー12で減圧吸引が可能とした。その後シリンダー13の搬送ゾーンを経由してダイスよりストランド形状で押出し、水冷してペレタイズするデザインとした。
 シリンダー1からは、樹脂成分を供給し、シリンダー6から、水を主成分とする分散媒中にセルロース成分及び、適宜界面活性剤等の成分を分散させた分散液を添加した。この時、押出機シリンダー6の両SR間における内圧が当該部における水の蒸気圧(シリンダー設定温度270℃における水の蒸気圧である5.5MPa)以上となるよう、シリンダー6に設置した液添ノズルの開放圧力を、6.2MPaに設定し、ポンプで分散液を送液し所定圧まで高め、所定の組成となる量で押出機に液添した。
 この際の樹脂組成物としての押出機からの吐出量(生産量)は140kg/hrであった。また、スクリュー回転数は、適宜変更した。
[実施例B1~27及び比較例B1~4]
 ポリアミド、セルロースウィスカー及びセルロースファイバーを、それぞれ表B3~6記載の割合になるよう、表中記載の押出条件及びスクリュー回転数で、押出機にて溶融混練し、シリンダー12で減圧吸引により脱揮した後、ダイからストランド状に押出し、水浴で冷却し、ペレタイズした。ペレットは円柱状の形状で、直径が2.3mmで、長さが5mmであった。
 これらを上述した評価方法に準拠して、評価した。
Figure JPOXMLDOC01-appb-T000014
 押出機デザイン-1のスクリュー回転数350rpm条件では、セルロースウィスカー、及びセルロースファイバーを単独で用いたものは、実成形品での性能(フェンダーの欠陥率、寸法欠陥に影響のあるフェンダーの線膨張係数の変動係数)低下が確認されたが、セルロースウィスカーとセルロースファイバーの併用の系においては、これらは解消し、良好な性能を示すことが判る。また、セルロースファイバーを単独で用いたものであっても、押出機のスクリュー回転数を高めるといった押出条件を適正化することで、良好な性能を与えることが判る。
Figure JPOXMLDOC01-appb-T000015
 押出機デザイン-2に変更することで、全体的に押出機デザイン-1の時よりも、良好な性能を示すようになることが判る。また、比較例B2と実施例B11の対比において、押出機デザインを1から2に変更することで、性能(特に欠陥率)が大幅に向上することが判る。また、押出機デザイン-2においても、スクリュー回転数を大幅に抑制した比較例B3では、性能が低下する傾向が確認できた。
Figure JPOXMLDOC01-appb-T000016
 押出機デザイン-3に変更することで、更に良好な性能を示すようになることが判る。押出機デザイン-2において、性能が低下する傾向が確認されたスクリュー回転数を低下させた条件においても、良好な性能を示すことが判る。
Figure JPOXMLDOC01-appb-T000017
[実施例B28~32及び比較例B5~6]
 ポリプロピレン、酸変性ポリプロピレン、セルロースウィスカー及びセルロースファイバーをそれぞれ表B7記載の割合になるよう、押出条件及びスクリュー回転数で、押出機にて溶融混練し、シリンダー12で減圧吸引により脱揮した後、ダイからストランド状に押出し、水浴で冷却し、ペレタイズした。ペレットは円柱状の形状で、直径が2.6mmで、長さが5.1mmであった。
 なお、この際、シリンダー温度は、以下の様に変更した。シリンダー1~6までは、変更せず、シリンダー7を160℃、シリンダー8~13及びダイスを180℃に設定した。
Figure JPOXMLDOC01-appb-T000018
 押出機デザイン-1のスクリュー回転数450rpm条件では、セルロースウィスカー、及びセルロースファイバーを単独で用いたものは、実成形品での性能低下が確認されたが、セルロースウィスカーとセルロースファイバーの併用の系においては、これらは解消し、良好な性能を示すことが判る。また、セルロースファイバーを単独で用いたものであっても、押出機デザインを2から3に変更することで、良好な性能を与えるようになることが判る。 
[実施例B33~43]
 ポリアミド100質量部に対して、CWを5質量部、CF-Bを5質量部、及び表B8に示した有機成分5質量部を混合し、東芝機械(株)製のTEM48SS押出機で、押出機デザイン-1、スクリュー回転数350rpm、吐出量200kg/hrで溶融混練し、真空脱揮した後、ダイからストランド状に押出し、水浴で冷却し、ペレタイズした。ペレットは円柱状の形状で、直径が2.3mmで、長さが5mmであった。
 これらを上述した評価方法に準拠して、評価した。
Figure JPOXMLDOC01-appb-T000019
 有機成分として種々のものを用いた結果、本条件においては、例えば硬化ひまし油エーテルやアルキルフェニルエーテルといった有機成分を添加すると、性能の向上が確認され、逆に、流動パラフィン等の有機成分においては、低下する傾向が見られた。ただし、この流動パラフィン等の有機成分においても、上述の実施例でも示されているとおり、押出機デザインや条件により、性能向上は充分に期待される。
[[実施例C]]
[原料及び評価方法]
以下に、使用した原料及び、評価方法について説明する。
<セルロースの平均重合度>
 「第14改正日本薬局方」(廣川書店発行)の結晶セルロース確認試験(3)に規定される銅エチレンジアミン溶液による還元比粘度法により測定した。
<セルロースの結晶形、結晶化度>
 X線回折装置(株式会社リガク製、多目的X線回折装置)を用いて粉末法にて回折像を測定(常温)し、Segal法で結晶化度を算出した。また、得られたX線回折像から結晶形についても測定した。
<セルロース粒子のL/D>
 セルロース(加水分解後のウェットケーク)を、1質量%濃度で純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、処理条件:回転数15,000rpm×5分間)で分散させた水分散体を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを、原子間力顕微鏡(AFM)で計測された際に得られる粒子像の長さ(L)と径(D)とした場合の比(L/D)を求め、100個~150個の粒子の平均値として算出した。
<コロイド状セルロース含有量>
 各セルロースを固形分40質量%として、プラネタリーミキサー((株)品川工業所製、商品名「5DM-03-R」、撹拌羽根はフック型)中において、126rpmで、室温常圧下で30分間混練した。次いで、固形分が0.5質量%の濃度で純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、処理条件:回転数15,000rpm×5分間)で分散させ、遠心分離(久保田商事(株)製、商品名「6800型遠心分離器」、ロータータイプRA-400型、処理条件:遠心力39200m2/sで10分間遠心した上澄みを採取し、さらに、この上澄みについて、116000m2/sで45分間遠心処理する。)した。遠心後の上澄みに残存する固形分を絶乾法で測定し、質量百分率を算出した。
<セルロースの体積平均粒子径>
 セルロースを固形分40質量%として、プラネタリーミキサー((株)品川工業所製、商品名「5DM-03-R」、撹拌羽根はフック型)中において、126rpmで、室温常圧下で30分間混練した。次いで、固形分が0.5質量%の濃度で純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、処理条件:回転数15,000rpm×5分間)で分散させ、遠心分離(久保田商事(株)製、商品名「6800型遠心分離器」、ロータータイプRA-400型、処理条件:遠心力39200m2/sで10分間遠心した上澄みを採取し、さらに、この上澄みについて、116000m2/sで45分間遠心処理する。)した。遠心後の上澄み液を用いて、レーザー回折/散乱法粒度分布計(堀場製作所(株)製、商品名「LA-910」、超音波処理1分間、屈折率1.20)により得られた体積頻度粒度分布における積算50%粒子径(体積平均粒子径)を測定した。
<セルロースのゼータ電位>
 実施例Aと同様に測定した。
<有機成分の静的表面張力>
 実施例Aと同様に測定した。
<有機成分の動的表面張力>
 実施例Aと同様に測定した。
<有機成分のSP値>
 実施例Aと同様に測定した。
Figure JPOXMLDOC01-appb-T000020
<有機成分の結合率>
 セルロース製剤を固形分で1g、エタノール10mLに入れ、スターラー撹拌下で60分間、室温で撹拌した後、溶媒を目開き0.4μmのPTFE製メンブレンフィルターでろ過し、ろ液からエタノール、その他溶剤を気化させた。ろ液から採取された残渣の質量を求め、以下の式から結合率を算出した。
 結合率(%)=〔1-([残渣の質量(g)]/[セルロース製剤中の有機成分量(g)])〕×100
<分散性>
 樹脂組成物のストランドから得られた薄膜を、透過光にてマイクロスコープ(KEYENCE製、商品名「VHX-1000」、倍率200倍)で観察し、短径100μm以上の粗大粒子の個数を計測した。2000μm×2000μmの視野に確認された、短径100μm以上の粒子の数に基づき、以下の基準で評価した。
A:10個以下
B:10個を超え20個以下
C:20個を超えて50個以下
D:50個を超える
<着色性>
 樹脂組成物のストランドから得られた薄膜を、目視で観察した。評価は以下の基準で行った。
A:無色透明
B:薄い橙色
C:濃い橙色
D:濃い橙色から茶褐色
<MFR(Melt Flow Rate)>
 樹脂組成物のストランドから得られたペレットを、ISO1133 A法の方法に従い、230℃で荷重2.16kgfの条件で測定した。各樹脂組成物のMFRの測定値をPP単独のペレット(サンアロマー株式会社製、製品名「サンアロマーPX600N」、以下同じ。)のMFRの測定値と比較し、以下の基準で評価した。単位はg/10分とした。なお、PP単独のペレットのMFRは5.8g/10分であった。
A:PP単独に対し80%以上向上
B:PP単独に対し50%以上向上
C:PP単独に対し20%以上向上
D:PP単独に対し+10%以下(効果なし)
<線膨張係数>
 樹脂組成物のストランドから得られたペレットを、JIS K7197の方法(TMA法:熱機械分析法)に従い、0~60℃の範囲で測定し、得られた測定値に基づき、以下の基準で評価した(なお、PP単独は148ppm/Kであった。)。
(実施例C1~28及び比較例Cについて)
A:120ppm/K未満
B:120ppm/K以上、130ppm/K未満
C:130ppm/K以上、140ppm/K未満
D:140~150ppm/K
(実施例C29~41について)
A:40ppm/K未満
B:40ppm/K以上、50ppm/K未満
C:50ppm/K以上、60ppm/K未満
D:60~70ppm/K
<引っ張り強度>
 各実施例、比較例で得られたJIS K7127規格のダンベル状試験片を用いて、万能材料試験機(オートグラフAG-E型、島津製作所株式会社製)を用いて、引っ張り強度を測定した。試験温度は室温とし、クロスヘッド速度は50mm/分で測定し、得られた応力-歪み曲線から降伏値を、引っ張り強度として求めた。各樹脂組成物の引っ張り強度の測定値をPP単独のペレットの引っ張り強度の測定値と比較し、以下の基準で評価した。なお、PP単独のペレットの引っ張り強度は33MPaであった。
A:PP単独に対し130%以上向上
B:PP単独に対し120%以上向上
C:PP単独に対し110%以上向上
D:PP単独に対し110%未満
<引っ張り伸び>
 上述の引っ張り強度の測定で得られた応力-歪み曲線から破断距離を、引っ張り伸びとして求めた。各樹脂組成物の引張強度の測定値をPP単独のペレットの引っ張り伸びの測定値と比較し、以下の基準で評価した。なお、PP単独のペレットの引っ張り伸びは20%であった。
A:PP単独に対し200%以上向上
B:PP単独に対し150%以上向上
C:PP単独に対し130%以上向上
D:PP単独に対し110%未満
(実施例C1)
 市販のDPパルプ(平均重合度1600)を細断後、2.5mol/L塩酸中、105℃で15分間加水分解した後、水洗及び濾過を行い、固形分が50質量%のウェットケーク状のセルロースを作製した(平均重合度220、結晶形I型、結晶化度78%、粒子L/D1.6、コロイド状セルロース含有量55質量%、粒子径(積算体積50%粒子径、以下同様。)0.2μm、ゼータ電位-20mV)。次に、このウェットケーク状のセルロースを単独で密閉式プラネタリーミキサー(株式会社小平製作所製、商品名「ACM-5LVT」、撹拌羽根はフック型)中、70rpmで20分間、常温常圧で摩砕処理し、その後、ロジンエチレンオキサイド付加物(ロジン-ポリエチレングリコールエステル、ハリマ化成株式会社社製、商品名「REO-15」、静的表面張力39.7mN/m、動的表面張力48.1mN/m、SP値7.25以上、常圧下沸点100℃超)を、セルロース/ロジンエチレンオキサイド付加物が80/20(質量比)となるように投入し、常温常圧下70rpmで60分間摩砕処理し、最後に減圧(-0.1MPa)し、40℃の温浴をセットし、307rpmで2時間、コーティング及び減圧乾燥処理を行い、セルロース製剤Aを得た(水分2質量%、有機成分の結合率5%以下)。
 得られたセルロース製剤を12.5質量部、マレイン酸変性PP(三洋化成工業株式会社製、製品名「ユーメックス1001」)を3質量部、PP(サンアロマー株式会社製、製品名「サンアロマーPX600N」)を84.5質量部加え、小型混練機(Xplore instruments社製、製品名「Xplore」)を用いて、200℃、100rpm(シアレート1570(1/s))で5分間循環混練後に、ダイスを経てφ1mmの複合PP(樹脂組成物)のストランドを得た。当該ストランドを常温で、1cm長さにカットして1gを量りとり、ホットプレス(200℃)にて厚み100μmの薄膜を得た。また、当該ストランドから得られたペレット(ストランドを1cm長さにカットしたもの)を、付属の射出成型機にて200℃で溶融した樹脂をJIS K7127規格のダンベル状試験片を作製し、各評価に用いた。得られた薄膜、ペレット、ダンベル状試験片を用いて各評価を行った。結果を表C2に示した。
(実施例C2)
 実施例C1のセルロース製剤の製法において、セルロース/ロジンエチレンオキサイド付加物の配合割合を95/5(質量比)としたこと以外は、実施例C1と同様の方法によりセルロース製剤Bを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Bを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C2に示した。
(実施例C3)
 実施例C1のセルロース製剤の製法において、セルロース/ロジンエチレンオキサイド付加物の配合割合を50/50(質量比)としたこと以外は、実施例C1と同様の方法によりセルロース製剤Cを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Cを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C2に示した。
(実施例C4)
 実施例C1のセルロース製剤の製法において、セルロース/ロジンエチレンオキサイド付加物の配合割合を99/1(質量比)としたこと以外は、実施例C1と同様の方法によりセルロース製剤Dを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Dを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C2に示した。
(実施例C5)
 実施例C1のセルロース製剤の製法において、有機成分として、流動パラフィン(和光純薬製、特級グレード、静的表面張力26.4mN/m(なお、流動パラフィンは水と分相したため、動的表面張力は、水と同じ値となった。)、常圧下沸点100℃超)を用いた以外は、実施例C1と同様の方法によりセルロース製剤Eを得た(水分2質量%、有機成分の結合率5%以下)。
このセルロース製剤Eを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C2に示した。
(実施例C6)
 実施例C1のセルロース製剤の製法において、有機成分として、トール油脂肪酸(ハリマ化成株式会社製 商品名「ハートールSR-30」、静的表面張力30.2mN/m(なお、トール油脂肪酸は水と分相したため、動的表面張力は、水と同じ値となった。)、SP値7.25以上、常圧下沸点100℃超)を用いた以外は、実施例C1と同様の方法によりセルロース製剤Fを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Fを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C2に示した。
(実施例C7)
 実施例C1のセルロース製剤の製法において、有機成分として、テルピン油(ヤスハラケミカル株式会社製 商品名「ターピネオール」、静的表面張力33.2mN/m(なお、テルピン油は水と分相したため、動的表面張力は、水と同じ値となった。)、SP値7.25以上、常圧下沸点100℃超)を用いた以外は、実施例C1と同様の方法によりセルロース製剤Gを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Gを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C3に示した。
(実施例C8)
 実施例C1のセルロース製剤の製法において、有機成分として、ロジンエチレンオキサイド付加物(ロジン-ポリエチレングリコールエステル、ハリマ化成株式会社社製、商品名「REO-15」、静的表面張力39.7mN/m、動的表面張力48.1mN/m、SP値7.25以上、常圧下沸点100℃超)と、トール油脂肪酸(ハリマ化成株式会社製、商品名「ハートールSR-30」、静的表面張力30.2mN/m、SP値7.25以上、常圧下沸点100℃超)を質量比で等量混合したもの(静的表面張力35mN/m、動的表面張力39mN/m)を20質量部として用いた以外は、実施例C1と同様の方法によりセルロース製剤Hを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Hを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C3に示した。
(実施例C9)
 実施例C1のセルロース製剤の製法において、有機成分として、グリセリン(静的表面張力63.4mN/m、動的表面張力71.9mN/m、常圧下沸点100℃超)を用いた以外は、実施例C1と同様の方法によりセルロース製剤Iを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Iを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C3に示した。
(実施例C10)
 市販のDPパルプ(平均重合度1600)を細断後、2.5mol/L塩酸中、70℃で15分間加水分解した後、水洗・濾過を行い、固形分が50質量%のウェットケーク状のセルロース(平均重合度490、結晶形I型、結晶化度73%、粒子L/D1.4、コロイド状セルロース含有量50質量%、粒子径0.3μm)を作製した。得られたウェットケーク状のセルロースをセルロースとして用いた以外は、実施例C1と同様の方法によりセルロース製剤Jを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Jを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C3に示した。
(実施例C11)
 市販のバガスパルプ(平均重合度1100)を細断後、1.5mol/L塩酸中、70℃で15分間加水分解した後、ろ過して、固形分が50質量%のウェットケーク状のセルロース(平均重合度750、結晶形I型、結晶化度69%、粒子L/D1.3、コロイド状セルロース含有量40質量%、粒子径0.5μm)を作製した。得られたウェットケーク状のセルロースをセルロースとして用いた以外は、実施例C1と同様の方法によりセルロース製剤Kを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Kを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C3に示した。
(実施例C12)
 市販のKPパルプ(平均重合度1600)を細断後、2.5mol/L塩酸中、120℃で50分間加水分解した後、水洗・濾過を行い、これをイオン交換水で10質量%濃度に希釈し、高せん断ホモジナイザー(プライミクス製、商品名「TKホモジナイザー」、8000rpm、15分間)処理し、さらにろ過して、固形分が50質量%のウェットケーク状のセルロース(平均重合度110、結晶形I型、結晶化度85%、粒子L/D5.5、コロイド状セルロース含有量80質量%、粒子径0.15μm)を作製した。得られたウェットケーク状のセルロースをセルロースとして用いた以外は、実施例C1と同様の方法によりセルロース製剤Lを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Lを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C4に示した。
(実施例C13)
 市販のDPパルプ(平均重合度1620)を、-5℃で60質量%硫酸水溶液にセルロース濃度が4重量%になるように溶解し、セルロースドープを得た。このセルロースドープを重量で2.5倍量の水中(5℃)に撹拌しながら注ぎ、セルロースをフロック状に凝集させて懸濁液を得た。この懸濁液を、80℃の温度に達してから10分間加水分解し、上澄みのpHが4以上になるまで水洗と脱水を繰り返し、セルロース濃度6重量%のペースト状のセルロース粒子の半透明白色ペースト状物を得た。更に、当該ペーストを水でセルロース濃度5重量%に希釈し、高せん断ホモジナイザー(エクセルオートホモジナイザー)で15000rpm以上の回転速度で5分間混合した。次いで、当該ペーストを超高圧ホモジナイザー(マイクロフルイダイザーM-110EH型、みづほ工業(株)製、操作圧力1750kg/cm2)で4回処理して、透明なゲル状物(透明ペースト)を得た。この透明ペーストを、イオン交換水/エタノール=50/50(重量比)で3回洗浄/脱溶媒し、セルロース濃度5.2重量%のゲル状物を得た。このゲル状物を、ブレンダーで10000rpmの回転速度で5分間混合した。この分散体を、撹拌下で減圧濃縮して、固形分50質量%のセルロースフロック(平均重合度80、結晶形II型、結晶化度28%、粒子L/D0.1、コロイド状セルロース含有量80質量%、粒子径0.1μm)を得た。このセルロースを用いた以外は、実施例C1と同様の方法によりセルロース製剤Mを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Mを用いて、実施例C1と同様の方法により樹脂組成物を作製し、評価を行った。結果を表C4に示した。
(比較例C1)
 実施例C1のセルロース製剤の製法において、有機成分を加えず、セルロース濃度が50質量%のウェットケーキ状セルロース(セルロース製剤N)を用いて、実施例C1と同様にPPの樹脂組成物を作製し、評価した。結果を表C4に示した。
(比較例C2)
 実施例C1のセルロース製剤の製法において、有機成分として、エタノール(和光純薬製、特級グレード、静的表面張力22.3mN/m、動的表面張力54.9mN/m、SP値12.58、常圧下沸点78.4℃)を用いて、セルロース/有機成分の配合比が80/20になるように調製し、セルロース製剤Oを得た。このセルロース製剤Oを用いて、実施例C1と同様にPPの樹脂組成物を作製し、評価した。結果を表C4に示した。
(比較例C3)
 市販の針葉樹漂白クラフトパルプ(リファイナー処理済み、重合度1050、固形分25質量%)を600gに対し、イオン交換水を19.94kg加え、水懸濁液を調製した(セルロース濃度0.75質量%)。得られたスラリーをビーズミル(コトブキ技研工業株式会社製、商品名「アペックスミルAM-1型」)で、媒体としてφ1mmのジルコニアビーズ(充填率70体積%)を用いて、攪拌翼回転数2500rpm、セルロース水分散体の供給量0.4L/分の条件にて2回通過で粉砕処理を行い、セルロース分散体を得た。この分散体を、撹拌下で減圧濃縮して、固形分50質量%のセルロースフロック(平均重合度1050、結晶形I型、結晶化度69%、粒子L/D15000、コロイド状セルロース含有量は測定できず、粒子径550μm)を得た。
 このセルロースフロックとロジンエチレンオキサイド付加物(ロジン-ポリエチレングリコールエステル、ハリマ化成株式会社社製、商品名「REO-15」、静的表面張力39.7mN/m、動的表面張力48.1mN/m、SP値7.25以上、常圧下沸点100℃超)を、セルロース/ロジンエチレンオキサイド付加物が80/20(質量比)となるように水に投入し、分散液を調整(セルロース濃度0.5質量%)した。これをセルロース分散液Pとした。このセルロース分散液Pを用いて、実施例C1と同様にPPの樹脂組成物を作製し、評価した。結果を表C4に示した。
(比較例C4)
 実施例C1の方法において、樹脂組成物を作製する際に、セルロースを添加せず、有機成分としてロジンエチレンオキサイド付加物(ロジン-ポリエチレングリコールエステル、ハリマ化成株式会社社製、商品名「REO-15」、静的表面張力39.7mN/m、動的表面張力48.1mN/m、SP値7.25以上、常圧下沸点100℃超)を、2.5質量部添加し、マレイン酸変性PP(三洋化成工業株式会社製、製品名「ユーメックス1001」)を3質量部、PP(サンアロマー株式会社製、製品名「サンアロマーPX600N」)を84.5質量部加え、小型混練機(Xplore instruments社製、製品名「Xplore」)を用いて、実施例C1と同様の操作で樹脂組成物を作製し、得られた薄膜、ペレット、ダンベル状試験片を用いて各評価を行った。結果を表C4に示した。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 有機成分で被覆していないセルロース粒子からなるセルロース製剤Nを配合した比較例C1の樹脂組成物や、水よりも沸点が低いエタノールで被覆したセルロース粒子からなるセルロース製剤Oを配合した比較例C2の樹脂組成物では、セルロース粒子のPP中での分散が悪く、MFRは小さく、PP単独のものと同程度の流動性しかなかった。これらの樹脂組成物から形成された薄膜等の成形体の先膨張係数、引っ張り強度、引っ張り伸びはいずれも小さく、PP単独のものからの改善はみられなかった。また、静的表面張力が20mN/m以上、かつ水よりも高い沸点を有するロジンエチレンオキサイド付加物とセルロース粒子の水分散液を配合した比較例C3の樹脂組成物では、流動性や引っ張り伸びは、PP単独のものよりも悪化していた。
 また、比較例C4の樹脂組成物は、セルロースを配合せず、有機成分を単独で配合し、実施例C1と同様の操作で得られたものであるが、PP単独に対し、流動性、寸法安定性、強度、伸びの顕著な配合効果はみられなかった。
 これに対して、静的表面張力が20mN/m以上、かつ水よりも高い沸点を有する有機成分と混練して粒子表面の少なくとも一部を当該有機成分で被覆したセルロース粒子からなるセルロース製剤A~Mを配合した実施例C1~13の樹脂組成物では、樹脂中のセルロース粒子の分散性が良好であり、得られた樹脂組成物のMFRと引っ張り伸びは、いずれもPP単独のものよりも改善されていた。特に、I型結晶セルロース粒子を有機成分で被覆したセルロース製剤A~Lを配合した実施例C1~12の樹脂組成物は、線膨張係数及び引っ張り強度もPP単独のものよりも改善されていた。
 また、ロジンエチレンオキサイド付加物で被覆したセルロース粒子からなるセルロース製剤A、J、K、及びLを配合した実施例C1、10、11、及び12の樹脂組成物の結果から、セルロース粒子の平均重合度が500未満であるセルロース製剤A、J、及びLを配合した樹脂組成物のほうが、セルロース粒子の平均重合度が750であるセルロース製剤Kを配合した樹脂組成物よりも、MFR、線膨張係数、引っ張り強度及び引っ張り伸びがいずれも良好であった。また、親水基を有さない流動パラフィンで被覆したセルロース製剤E(実施例C5)と疎水基を有さないグリセリンで被覆したセルロース製剤I(実施例C9)に比べて、疎水基と親水基の両方を備える有機成分で被覆したセルロース製剤A、F、G、及びH(実施例C1、6~8)のほうが、樹脂中の分散性が良好であり、特に、線膨張係数、引っ張り強度及び引っ張り伸びがより良好であった。
(実施例C14)
 実施例C1のセルロース製剤Aを使用し、樹脂組成物組成として、セルロース製剤を12.5質量部、マレイン酸変性PPを0.1質量部、残りとしてポリプロピレンを加えて全量100質量部に変更し、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C5に示した。
 実施例Cの樹脂組成物の評価において、実施例C14~28の評価基準を以下とした。
<線膨張係数>
AAA:80ppm/K未満
AA:80ppm/K以上、100ppm/K未満
A:100ppm/K以上、120ppm/K未満
B:120ppm/K以上、130ppm/K未満
C:130ppm/K以上、140ppm/K未満
<引っ張り強度>
AA:PP単独に対し140%以上向上
A:PP単独に対し130%以上向上
B:PP単独に対し120%以上向上
C:PP単独に対し110%以上向上
<引っ張り伸び>
A:PP単独に対し200%以上向上
B:PP単独に対し150%以上向上
C:PP単独に対し130%以上向上
(実施例C15)
 実施例C1のセルロース製剤Aを使用し、樹脂組成物組成として、セルロース製剤を12.5質量部、マレイン酸変性PPを0.5質量部、残りとしてPPを加え全量100質量部製剤中のセルロース/マレイン酸変性PPの質量比を95/5に変更し、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C5に示した。
(実施例C16)
 実施例C1のセルロース製剤Aを使用し、樹脂組成物組成として、セルロース製剤を12.5質量部、マレイン酸変性PPを1.1質量部、残りとしてPPを加え全量100質量部に変更し、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C5に示した。
(実施例C17)
 実施例C1のセルロース製剤Aを使用し、樹脂組成物組成として、セルロース製剤を12.5質量部、マレイン酸変性PPを1.8質量部、残りとしてPPを加え全量100質量部に変更し、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C5に示した。
(実施例C18)
 実施例C1のセルロース製剤Aを使用し、樹脂組成物組成として、セルロース製剤を12.5質量部、マレイン酸変性PPを2.5質量部、残りとしてPPを加え全量100質量部に変更し、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C5に示した。
(実施例C19)
 実施例C1のセルロース製剤Aを使用し、樹脂組成物組成として、セルロース製剤を12.5質量部、マレイン酸変性PPを8.5質量部、残りとしてPPを加え全量100質量部に変更し、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C6に示した。
(実施例C20)
 実施例C1の樹脂組成物組成において、セルロース製剤Aの配合量を12.5質量部、マレイン酸変性PPの配合量を3質量部に固定し、PPの一部を置き換えて、ポリアミド6(東レ株式会社製 アミランCM1007)を0.1質量部配合して、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C6に示した。
(実施例C21)
 実施例C1の樹脂組成物組成において、セルロース製剤Aの配合量を12.5質量部、マレイン酸変性PPの配合量を3.0質量部に固定し、PPの一部を置き換えて、ポリアミド6を0.5質量部配合して、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C6に示した。
(実施例C22)
 実施例C1の樹脂組成物組成において、セルロース製剤Aの配合量を12.5質量部、マレイン酸変性PPの配合量を3.0質量部に固定し、PPの一部を置き換えて、ポリアミド6を1.0質量部配合して、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C6に示した。
(実施例C23)
 実施例C1の樹脂組成物組成において、セルロース製剤Aの配合量を12.5質量部、マレイン酸変性PPの配合量を3.0質量部に固定し、PPの一部を置き換えて、ポリアミド6を2.0質量部配合して、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C6に示した。
(実施例C24)
 実施例C1の樹脂組成物組成において、セルロース製剤Aの配合量を12.5質量部、マレイン酸変性PPの配合量を3.0質量部に固定し、PPの一部を置き換えて、ポリアミド6を5.0質量部配合して、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C7に示した。
(実施例C25)
 実施例C1の樹脂組成物組成において、セルロース製剤Aの配合量を12.5質量部、マレイン酸変性PPの配合量を3.0質量部に固定し、PPの一部を置き換えて、ポリアミド6を10.0質量部配合して、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C7に示した。
(実施例C26)
 実施例C1の樹脂組成物組成において、セルロース製剤Aの配合量を12.5質量部、マレイン酸変性PPの配合量を3.0質量部に固定し、PPの一部を置き換えて、ポリアミド6を20.0質量部配合して、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C7に示した。
(実施例C27)
 実施例C1の樹脂組成物組成において、セルロース製剤Aの配合量を12.5質量部、マレイン酸変性PPの配合量を3.0質量部に固定し、PPの一部を置き換えて、ポリアミド6を30.0質量部配合して、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C7に示した。
(実施例C28)
 実施例C1の樹脂組成物組成において、セルロース製剤Aの配合量を12.5質量部、マレイン酸変性PPの配合量を3.0質量部に固定し、PPの一部を置き換えて、ポリアミド6を75.0質量部配合して、小型混練機を用いて、同様に樹脂組成物を作製し、評価した。結果を表C7に示した。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 この結果、界面形成剤であるマレイン酸変性PPを、対セルロースの質量比で1質量%以上配合した実施例C14~28の樹脂組成物は、線膨張係数、引っ張り強度及び引っ張り伸びがいずれもPP単独よりも改善していた。
(実施例C29)
 実施例C2のセルロース製剤の製法において、有機成分として、ポリオキシエチレンアルキルフェニルエーテル(青木油脂工業株式会社製 ブラウノンN-515 静的表面張力34.8mN/m、動的表面張力40.9mN/m、常圧下沸点100℃超)を用いた以外は、実施例C2と同様の方法によりセルロース製剤Qを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Qを用いて、実施例C1と同様の方法により樹脂組成物を作成し、評価を行った。結果を表C8に示した。
(実施例C30)
 実施例C2のセルロース製剤の製法において、有機成分として、ポリオキシエチレンスチレン化フェニルエーテル(青木油脂工業株式会社製 ブラウノンKTSP-16 静的表面張力39.0mN/m、動的表面張力55.8mN/m、常圧下沸点100℃超)を用いた以外は、実施例C2と同様の方法によりセルロース製剤Rを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Rを用いて、実施例C1と同様の方法により樹脂組成物を作成し、評価を行った。結果を表C8に示した。
(実施例C31)
 実施例C2のセルロース製剤の製法において、有機成分として、ポリオキシエチレンβナフチルエーテル(青木油脂工業株式会社製 ブラウノンBN-10 静的表面張力48.2mN/m、動的表面張力51.7mN/m、常圧下沸点100℃超)を用いた以外は、実施例C2と同様の方法によりセルロース製剤Sを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Sを用いて、実施例C1と同様の方法により樹脂組成物を作成し、評価を行った。結果を表C8に示した。
(実施例C32)
 実施例C2のセルロース製剤の製法において、有機成分として、ポリオキシエチレンビスフェノールAエーテル(青木油脂工業株式会社製 ブラウノンBEO-17.5 静的表面張力49.5mN/m、動的表面張力53.1mN/m、常圧下沸点100℃超)を用いた以外は、実施例C2と同様の方法によりセルロース製剤Tを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Tを用いて、実施例C1と同様の方法により樹脂組成物を作成し、評価を行った。結果を表C8に示した。
(実施例C33)
 実施例C2のセルロース製剤の製法において、有機成分として、ポリオキシエチレン硬化ひまし油エーテル(青木油脂工業株式会社製 ブラウノンRCW-20 静的表面張力42.4mN/m、動的表面張力52.9mN/m、常圧下沸点100℃超)を用いた以外は、実施例C2と同様の方法によりセルロース製剤Uを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Uを用いて、実施例C1と同様の方法により樹脂組成物を作成し、評価を行った。結果を表C8に示した。
(実施例C34)
 実施例C2のセルロース製剤の製法において、有機成分として、ポリオキシエチレン直鎖アルキルエーテル(青木油脂工業株式会社製 ブラウノンCH-315L 静的表面張力36.7mN/m、動的表面張力62.6mN/m、常圧下沸点100℃超)を用いた以外は、実施例C2と同様の方法によりセルロース製剤Vを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Vを用いて、実施例C1と同様の方法により樹脂組成物を作成し、評価を行った。結果を表C8に示した。
(実施例C35)
 実施例C2のセルロース製剤の製法において、有機成分として、ポリオキシエチレンフィトステロールエーテル(日光ケミカルズ株式会社製 NIKKOL BPS-20 静的表面張力51.3mN/m、動的表面張力65.7mN/m、常圧下沸点100℃超)を用いた以外は、実施例C2と同様の方法によりセルロース製剤Qを得た(水分2質量%、有機成分の結合率5%以下)。このセルロース製剤Wを用いて、実施例C1と同様の方法により樹脂組成物を作成し、評価を行った。結果を表C8に示した。
(実施例C36)
 実施例C1の方法でセルロース製剤Aを得た後、得られたセルロース製剤を12.5質量部、ポリアミド6(PA6)(宇部興産株式会社製 商品名UBEナイロン 1013B、カルボキシル末端基比率が([COOH]/[全末端基])=0.6)を87.5質量部加え、小型混練機(Xplore instruments社製、製品名「Xplore」)を用いて、240℃、100rpm(シアレート1570(1/s))で5分間循環混練後に、ダイスを経てφ1mmの樹脂組成物のストランドを得た。当該ストランドを常温で、1cm長さにカットして1gを量りとり、ホットプレス(240℃)にて厚み100μmの薄膜を得た。また、当該ストランドから得られたペレット(ストランドを1cm長さにカットしたもの)を、付属の射出成型機にて260℃で溶融した樹脂をJIS K7127規格のダンベル状試験片を作成し、各評価に用いた。得られた薄膜、ペレット、ダンベル状試験片を用いて各評価を行った。結果を表C8に示した。
(実施例C37)
 実施例C1のセルロース製剤の製法において、有機成分として、ポリオキシエチレンアルキルフェニルエーテル(青木油脂工業株式会社製 ブラウノンN-515 静的表面張力34.8mN/m、動的表面張力40.9mN/m、常圧下沸点100℃超)を用いた以外は、実施例C1と同様の方法でセルロース製剤Xを得た。得られたセルロース製剤Xを用いて、実施例C38と同様の方法で樹脂組成物を調整し、評価を行った。結果を表C8に示した。
(実施例C38)
 実施例C1のセルロース製剤の製法において、有機成分として、ポリオキシエチレンスチレン化フェニルエーテル(青木油脂工業株式会社製 ブラウノンKTSP-16 静的表面張力39.0mN/m、動的表面張力55.8mN/m、常圧下沸点100℃超)を用いた以外は、実施例C1と同様の方法でセルロース製剤Yを得た。得られたセルロース製剤Xを用いて、実施例C38と同様の方法で樹脂組成物を調整し、評価を行った。結果を表C8に示した。
(実施例C39)
 実施例C1のセルロース製剤の製法において、有機成分として、ポリオキシエチレンβナフチルエーテル(青木油脂工業株式会社製 ブラウノンBN-10 静的表面張力48.2mN/m、動的表面張力51.7mN/m、常圧下沸点100℃超)を用いた以外は、実施例C1と同様の方法でセルロース製剤Zを得た。得られたセルロース製剤Xを用いて、実施例C38と同様の方法で樹脂組成物を調整し、評価を行った。結果を表C8に示した。
(実施例C40)
 実施例C1のセルロース製剤の製法において、有機成分として、ポリオキシエチレンビスフェノールAエーテル(青木油脂工業株式会社製 ブラウノンBEO-17.5 静的表面張力49.5mN/m、動的表面張力53.1mN/m、常圧下沸点100℃超)を用いた以外は、実施例C1と同様の方法でセルロース製剤αを得た。得られたセルロース製剤Xを用いて、実施例C38と同様の方法で樹脂組成物を調整し、評価を行った。結果を表C8に示した。
(実施例C41)
 実施例C1のセルロース製剤の製法において、有機成分として、ポリオキシエチレン硬化ひまし油エーテル(青木油脂工業株式会社製 ブラウノンRCW-20 静的表面張力42.4mN/m、動的表面張力52.9mN/m、常圧下沸点100℃超)を用いた以外は、実施例C1と同様の方法でセルロース製剤βを得た。得られたセルロース製剤Xを用いて、実施例C38と同様の方法で樹脂組成物を調整し、評価を行った。結果を表C8に示した。
Figure JPOXMLDOC01-appb-T000027
 本開示の一態様(特に態様A及びB)に係る樹脂組成物は、例えば、高い強度と低い線膨張性とともに、安定した性能が求められる大型部品である自動車の外装材料用途の分野で好適に利用できる。また本開示の別の態様(特に態様C)に係るセルロース製剤及び樹脂組成物は、線膨張係数が低く、引っ張り、曲げ変形時に、強度及び伸びが優れるという性能が有利な各種用途の樹脂コンポジットに好適に適用され得る。
 1  ランナー(ホットランナー)の相対的な位置
 (1)~(10)  線膨張係数の変動係数を測定するための試験片を採取した位置

Claims (51)

  1.  熱可塑性樹脂100質量部と、セルロース成分0.1~100質量部とを含む樹脂組成物であって、前記セルロース成分は、長さ/径比率(L/D比)が30未満のセルロースウィスカーと、L/D比が30以上のセルロースファイバーを含む、樹脂組成物。
  2.  前記セルロース成分の総質量に対する前記セルロースウィスカーの比率が50質量%以上である、請求項1に記載の樹脂組成物。
  3.  前記セルロース成分の径が500nm以下である、請求項1又は2に記載の樹脂組成物。
  4.  前記セルロースウィスカーの結晶化度及び前記セルロースファイバーの結晶化度がそれぞれ55%以上である、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記セルロースウィスカーの重合度が100以上300以下である、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記セルロースファイバーの重合度が400以上3500以下である、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記セルロース成分100質量部に対し、動的表面張力が60mN/m以下である有機成分を50質量部以下の量でさらに含む、請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記有機成分が界面活性剤である、請求項7に記載の樹脂組成物。
  9.  前記有機成分の静的表面張力が20mN/m以上である、請求項7又は8に記載の樹脂組成物。
  10.  前記有機成分がロジン誘導体、アルキルフェニル誘導体、ビスフェノールA誘導体、βナフチル誘導体、スチレン化フェニル誘導体、及び硬化ひまし油誘導体からなる群より選択される1種以上である、請求項7~9のいずれか一項に記載の樹脂組成物。
  11.  前記有機成分がポリオキシエチレン誘導体である、請求項7~10のいずれか一項記載の樹脂組成物。
  12.  前記樹脂組成物の引張破断強度の変動係数(標準偏差/算術平均値)が10%以下である、請求項1~11のいずれか一項に記載の樹脂組成物。
  13.  熱可塑性樹脂100質量部と、セルロース成分0.1~100質量部とを含む樹脂組成物であって、前記樹脂組成物の0℃~60℃の範囲での線膨張係数の変動係数(標準偏差/算術平均値)が15%以下であり、前記樹脂組成物の引張破断強度の変動係数が10%以下である、樹脂組成物。
  14.  前記セルロース成分は、熱可塑性樹脂100質量部に対し、0.1~20質量部である、請求項13に記載の樹脂組成物。
  15.  前記セルロース成分は、長さ/径比率(L/D比)が30未満のセルロースウィスカーと、L/D比が30以上のセルロースファイバーとを含む、請求項13又は14に記載の樹脂組成物。
  16.  前記セルロース成分は、長さ/径比率(L/D比)が30未満のセルロースウィスカーを、前記セルロース成分100質量%に対して50質量%~98質量%の量で含む、請求項13~15のいずれか一項に記載の樹脂組成物。
  17.  前記樹脂組成物の引張降伏強度が前記熱可塑性樹脂の引張降伏強度の1.1倍以上である、請求項1~16のいずれか一項に記載の樹脂組成物。
  18.  前記樹脂組成物の0℃~60℃の範囲での線膨張係数が50ppm/K以下である、請求項1~17のいずれか一項に記載の樹脂組成物。
  19.  前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂及びこれらのいずれか2種以上の混合物からなる群より選択される、請求項1~18のいずれか一項に記載の樹脂組成物。
  20.  前記熱可塑性樹脂が、ポリプロピレンであり、該ポリプロピレンのISO1133に準拠して230℃で測定されたメルトマスフローレイト(MFR)が、3g/10分以上30g/10分以下である、請求項19に記載の樹脂組成物。
  21.  前記熱可塑性樹脂が、ポリアミド系樹脂であり、該ポリアミド系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95である、請求項19に記載の樹脂組成物。
  22.  前記熱可塑性樹脂が、ポリエステル系樹脂であり、該ポリエステル系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95である、請求項19に記載の樹脂組成物。
  23.  前記熱可塑性樹脂が、ポリアセタール系樹脂であり、該ポリアセタール系樹脂が、0.01~4モル%のコモノマー成分を含有するコポリアセタールである、請求項19に記載の樹脂組成物。
  24.  セルロース粒子と、前記セルロース粒子の表面の少なくとも一部を被覆する有機成分とを含むセルロース製剤であって、前記有機成分が、静的表面張力20mN/m以上、及び水よりも高い沸点を有する、セルロース製剤。
  25.  前記有機成分の動的表面張力が60mN/m以下である、請求項24に記載のセルロース製剤。
  26.  前記有機成分の溶解パラメータ(SP値)が7.25以上である、請求項24又は25に記載のセルロース製剤。
  27.  レーザー回折粒度分布計により測定される積算体積50%粒子径が10μm以下である、請求項24~26のいずれか一項に記載のセルロース製剤。
  28.  前記セルロース粒子を構成するセルロースの平均重合度が1000以下である、請求項24~27のいずれか一項に記載のセルロース製剤。
  29.  前記セルロース粒子を構成するセルロースが結晶セルロースを含む、請求項24~28のいずれか一項に記載のセルロース製剤。
  30.  前記結晶セルロースの平均L/Dが30未満、及び/又は平均重合度が500未満である、請求項29に記載のセルロース製剤。
  31.  前記セルロース製剤がセルロースファイバーを更に含み、前記セルロースファイバーの平均L/Dが30以上、及び/又は平均重合度が300以上である、請求項24~30のいずれか一項に記載のセルロース製剤。
  32.  前記セルロース製剤中に存在するセルロースの総質量に対する結晶セルロースの比率が50質量%以上である、請求項24~31のいずれか一項に記載のセルロース製剤。
  33.  セルロースを30~99質量%、及び前記有機成分を1~70質量%含む、請求項24~32のいずれか一項に記載のセルロース製剤。
  34.  前記有機成分がロジン誘導体、アルキルフェニル誘導体、ビスフェノールA誘導体、βナフチル誘導体、スチレン化フェニル誘導体、及び硬化ひまし油誘導体からなる群から選択される、請求項24~33のいずれか一項に記載のセルロース製剤。
  35.  前記有機成分がポリオキシエチレン誘導体である、請求項24~33のいずれか一項に記載のセルロース製剤。
  36.  請求項24~35のいずれか一項に記載のセルロース製剤を1質量%以上含む、樹脂組成物。
  37.  前記セルロース製剤中に存在するセルロース100質量部に対し1質量部以上の量の界面形成剤を更に含む、請求項36に記載の樹脂組成物。
  38.  熱可塑性樹脂を更に含む、請求項36又は37に記載の樹脂組成物。
  39.  熱可塑性樹脂、セルロース粒子、有機成分、及び界面形成剤を含む樹脂組成物であって、
     前記有機成分が、静的表面張力20mN/m以上、及び水よりも高い沸点を有し、
     前記界面形成剤の量が、樹脂組成物中に存在するセルロース100質量部に対して1質量部以上である、樹脂組成物。
  40.  前記有機成分の動的表面張力が60mN/m以下である、請求項39に記載の樹脂組成物。
  41.  前記有機成分の溶解パラメータ(SP値)が7.25以上である、請求項39又は40に記載の樹脂組成物。
  42.  レーザー回折粒度分布計により測定される、前記セルロース粒子の積算体積50%粒子径が10μm以下である、請求項39~41のいずれか一項に記載の樹脂組成物。
  43.  前記セルロース粒子を構成するセルロースの平均重合度が1000以下である、請求項39~42のいずれか一項に記載の樹脂組成物。
  44.  前記セルロース粒子を構成するセルロースが結晶セルロースを含む、請求項39~43のいずれか一項に記載の樹脂組成物。
  45.  前記結晶セルロースの平均L/Dが30未満、及び/又は平均重合度が500未満である、請求項44に記載の樹脂組成物。
  46.  前記樹脂組成物がセルロースファイバーを更に含み、前記セルロースファイバーの平均L/Dが30以上、及び/又は平均重合度が300以上である、請求項39~45のいずれか一項に記載の樹脂組成物。
  47.  前記樹脂組成物中に存在するセルロースの総質量に対する結晶セルロースの比率が50質量%以上である、請求項39~46のいずれか一項に記載の樹脂組成物。
  48.  前記樹脂組成物中のセルロースの総量と前記有機成分の量との合計100質量%に対して、前記セルロースの量が30~99質量%、及び前記有機成分の量が1~70質量%である、請求項39~47のいずれか一項に記載の樹脂組成物。
  49.  前記有機成分がロジン誘導体、アルキルフェニル誘導体、ビスフェノールA誘導体、βナフチル誘導体、スチレン化フェニル誘導体、及び硬化ひまし油誘導体からなる群から選択される、請求項39~48のいずれか一項に記載の樹脂組成物。
  50.  請求項1~23及び36~49のいずれか一項に記載の樹脂組成物より形成される、樹脂ペレット。
  51.  請求項1~23及び36~49のいずれか一項に記載の樹脂組成物より形成される、樹脂成形体。
PCT/JP2017/032561 2016-12-28 2017-09-08 セルロース含有樹脂組成物及びセルロース製剤 WO2018123150A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17886453.4A EP3447085B1 (en) 2016-12-28 2017-09-08 Cellulose-containing resin composition and cellulosic ingredient
KR1020197034695A KR102158129B1 (ko) 2016-12-28 2017-09-08 셀룰로오스 함유 수지 조성물 및 셀룰로오스 제제
KR1020187019801A KR102070374B1 (ko) 2016-12-28 2017-09-08 셀룰로오스 함유 수지 조성물 및 셀룰로오스 제제
CN201780018873.7A CN108884272B (zh) 2016-12-28 2017-09-08 含纤维素的树脂组合物和纤维素制剂
US16/080,404 US11390728B2 (en) 2016-12-28 2017-09-08 Cellulose-containing resin composition and cellulosic ingredient
US17/840,731 US20220325077A1 (en) 2016-12-28 2022-06-15 Cellulose-Containing Resin Composition and Cellulosic Ingredient

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-256445 2016-12-28
JP2016256445 2016-12-28
JP2017-061190 2017-03-27
JP2017061190 2017-03-27
JP2017-136947 2017-07-13
JP2017136947 2017-07-13
JP2017-138439 2017-07-14
JP2017138439A JP6479904B2 (ja) 2016-12-28 2017-07-14 セルロース製剤

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/080,404 A-371-Of-International US11390728B2 (en) 2016-12-28 2017-09-08 Cellulose-containing resin composition and cellulosic ingredient
US17/840,731 Division US20220325077A1 (en) 2016-12-28 2022-06-15 Cellulose-Containing Resin Composition and Cellulosic Ingredient

Publications (1)

Publication Number Publication Date
WO2018123150A1 true WO2018123150A1 (ja) 2018-07-05

Family

ID=62707237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032561 WO2018123150A1 (ja) 2016-12-28 2017-09-08 セルロース含有樹脂組成物及びセルロース製剤

Country Status (2)

Country Link
US (1) US20220325077A1 (ja)
WO (1) WO2018123150A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208313A1 (ja) 2018-04-23 2019-10-31 旭化成株式会社 セルロースナノファイバー含水分散液
WO2019220895A1 (ja) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 樹脂組成物
JP2019199563A (ja) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 樹脂組成物
JP2020007495A (ja) * 2018-07-11 2020-01-16 旭化成株式会社 セルロース含有樹脂組成物
EP3613797A1 (en) * 2018-08-24 2020-02-26 Panasonic Corporation Composite resin molded article
JP2020029488A (ja) * 2018-08-21 2020-02-27 旭化成株式会社 高靭性ポリアミド−セルロース樹脂組成物
JP2020063347A (ja) * 2018-10-16 2020-04-23 旭化成株式会社 セルロース配合ポリオレフィン系樹脂組成物の製造方法
JP2020063350A (ja) * 2018-10-16 2020-04-23 旭化成株式会社 セルロース強化ポリオレフィン系樹脂組成物の製造方法
WO2020095845A1 (ja) * 2018-11-05 2020-05-14 国立大学法人京都大学 繊維強化樹脂組成物及びその製造方法、並びに成形体
JP2020152925A (ja) * 2020-06-26 2020-09-24 旭化成株式会社 セルロース含有樹脂組成物
US10790072B2 (en) 2018-08-01 2020-09-29 Industrial Technology Research Institute Conductive polymer composite material and capacitor
WO2021080010A1 (ja) * 2019-10-24 2021-04-29 旭化成株式会社 ポリアミド-セルロース樹脂組成物
CN113527868A (zh) * 2021-08-18 2021-10-22 漳平市国联玩具礼品有限公司 一种环保塑料玩具制品制备方法
US11242913B2 (en) 2018-04-23 2022-02-08 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
WO2022270167A1 (ja) * 2021-06-25 2022-12-29 パナソニックIpマネジメント株式会社 抗菌性及び抗ウイルス性複合樹脂成形体
TWI807317B (zh) * 2021-05-07 2023-07-01 旭積科技股份有限公司 電容器組件封裝結構以及電容器素子及其製作方法
US12007001B2 (en) 2018-04-23 2024-06-11 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318619B2 (ja) * 2020-09-25 2023-08-01 トヨタ自動車株式会社 情報処理装置、情報処理方法、及び情報処理プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236906A (ja) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd 樹脂組成物
WO2013031444A1 (ja) * 2011-08-26 2013-03-07 オリンパス株式会社 セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803600B (zh) * 2009-06-12 2015-01-14 三菱化学株式会社 修饰纤维素纤维及其纤维素复合体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236906A (ja) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd 樹脂組成物
WO2013031444A1 (ja) * 2011-08-26 2013-03-07 オリンパス株式会社 セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572931B2 (en) 2018-04-23 2023-02-07 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
US12007001B2 (en) 2018-04-23 2024-06-11 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
WO2019208313A1 (ja) 2018-04-23 2019-10-31 旭化成株式会社 セルロースナノファイバー含水分散液
US11242913B2 (en) 2018-04-23 2022-02-08 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
JP2019199563A (ja) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 樹脂組成物
JP7213459B2 (ja) 2018-05-17 2023-01-27 パナソニックIpマネジメント株式会社 樹脂組成物
WO2019220895A1 (ja) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 樹脂組成物
JP2020007495A (ja) * 2018-07-11 2020-01-16 旭化成株式会社 セルロース含有樹脂組成物
US10790072B2 (en) 2018-08-01 2020-09-29 Industrial Technology Research Institute Conductive polymer composite material and capacitor
TWI717793B (zh) * 2018-08-01 2021-02-01 財團法人工業技術研究院 導電高分子複合材料及電容器
JP2021138971A (ja) * 2018-08-21 2021-09-16 旭化成株式会社 高靭性ポリアミド−セルロース樹脂組成物
JP2020029488A (ja) * 2018-08-21 2020-02-27 旭化成株式会社 高靭性ポリアミド−セルロース樹脂組成物
CN110857350A (zh) * 2018-08-24 2020-03-03 松下电器产业株式会社 复合树脂成形体
CN110857350B (zh) * 2018-08-24 2023-12-08 松下控股株式会社 复合树脂成形体
JP2020029546A (ja) * 2018-08-24 2020-02-27 パナソニック株式会社 複合樹脂成形体
EP3613797A1 (en) * 2018-08-24 2020-02-26 Panasonic Corporation Composite resin molded article
JP7132794B2 (ja) 2018-08-24 2022-09-07 パナソニックホールディングス株式会社 複合樹脂成形体
US11891500B2 (en) 2018-08-24 2024-02-06 Panasonic Holdings Corporation Composite resin molded article
JP2020063347A (ja) * 2018-10-16 2020-04-23 旭化成株式会社 セルロース配合ポリオレフィン系樹脂組成物の製造方法
JP2020063350A (ja) * 2018-10-16 2020-04-23 旭化成株式会社 セルロース強化ポリオレフィン系樹脂組成物の製造方法
JP7333510B2 (ja) 2018-11-05 2023-08-25 国立大学法人京都大学 繊維強化樹脂組成物及びその製造方法、並びに成形体
WO2020095845A1 (ja) * 2018-11-05 2020-05-14 国立大学法人京都大学 繊維強化樹脂組成物及びその製造方法、並びに成形体
JP2020075950A (ja) * 2018-11-05 2020-05-21 国立大学法人京都大学 繊維強化樹脂組成物及びその製造方法、並びに成形体
JPWO2021080010A1 (ja) * 2019-10-24 2021-04-29
JP7169460B2 (ja) 2019-10-24 2022-11-10 旭化成株式会社 ポリアミド-セルロース樹脂組成物
WO2021080010A1 (ja) * 2019-10-24 2021-04-29 旭化成株式会社 ポリアミド-セルロース樹脂組成物
JP2020152925A (ja) * 2020-06-26 2020-09-24 旭化成株式会社 セルロース含有樹脂組成物
JP7203791B2 (ja) 2020-06-26 2023-01-13 旭化成株式会社 セルロース含有樹脂組成物
JP7447235B2 (ja) 2020-06-26 2024-03-11 旭化成株式会社 セルロース含有樹脂組成物
TWI807317B (zh) * 2021-05-07 2023-07-01 旭積科技股份有限公司 電容器組件封裝結構以及電容器素子及其製作方法
WO2022270167A1 (ja) * 2021-06-25 2022-12-29 パナソニックIpマネジメント株式会社 抗菌性及び抗ウイルス性複合樹脂成形体
CN113527868A (zh) * 2021-08-18 2021-10-22 漳平市国联玩具礼品有限公司 一种环保塑料玩具制品制备方法

Also Published As

Publication number Publication date
US20220325077A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
KR102158129B1 (ko) 셀룰로오스 함유 수지 조성물 및 셀룰로오스 제제
WO2018123150A1 (ja) セルロース含有樹脂組成物及びセルロース製剤
El Achaby et al. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse
Pracella et al. Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc
WO2019208514A1 (ja) セルロース含有ギヤ
JP6479904B2 (ja) セルロース製剤
JP6486428B2 (ja) セルロースで強化された樹脂組成物の製造方法
JP7203162B2 (ja) セルロース含有樹脂組成物
JP6422540B1 (ja) セルロース強化樹脂組成物の製造方法
JP6621956B2 (ja) セルロース含有樹脂製ギア
JP6422539B1 (ja) セルロース配合樹脂組成物の製造方法
JP6486429B2 (ja) セルロース充填樹脂組成物の製造方法
Paglicawan et al. Influence of nanoclay on the properties of thermoplastic starch/poly (lactic acid) blends
JP6726235B2 (ja) セルロース含有樹脂組成物
JP6979933B2 (ja) セルロース充填樹脂組成物の製造方法
JP7203791B2 (ja) セルロース含有樹脂組成物
JP2019044163A (ja) セルロース配合樹脂組成物の製造方法
JP6440149B2 (ja) セルロース製剤
JP2019044162A (ja) セルロースで強化された樹脂組成物の製造方法
JP2019019341A (ja) セルロース製剤
Yánez et al. Polycaprolactone composites and nanocomposites containing chitin or chitosan
Çelebi et al. Thermal and mechanical properties of pla/peg blend and its nanocomposites

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187019801

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019801

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017886453

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017886453

Country of ref document: EP

Effective date: 20181121

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE