WO2018122918A1 - Elevator control device - Google Patents

Elevator control device Download PDF

Info

Publication number
WO2018122918A1
WO2018122918A1 PCT/JP2016/088703 JP2016088703W WO2018122918A1 WO 2018122918 A1 WO2018122918 A1 WO 2018122918A1 JP 2016088703 W JP2016088703 W JP 2016088703W WO 2018122918 A1 WO2018122918 A1 WO 2018122918A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure
elevator
control device
unit
code
Prior art date
Application number
PCT/JP2016/088703
Other languages
French (fr)
Japanese (ja)
Inventor
恒次 阪田
奈々穂 大澤
賢一 小泉
広泰 田畠
智史 山▲崎▼
Original Assignee
三菱電機株式会社
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機株式会社
Priority to CN201680091840.0A priority Critical patent/CN110114295B/en
Priority to KR1020197021431A priority patent/KR102174105B1/en
Priority to JP2018558533A priority patent/JP6536755B2/en
Priority to PCT/JP2016/088703 priority patent/WO2018122918A1/en
Publication of WO2018122918A1 publication Critical patent/WO2018122918A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/021Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/08Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using communication transmission lines

Definitions

  • the present invention relates to an elevator control device.
  • the present invention has been made to solve the above problems.
  • the purpose is to provide an elevator control device that allows the elevator itself to recognize that it has been restored normally.
  • the elevator control device detects a failure that has occurred in an elevator device, outputs a failure code corresponding to the detected failure, and indicates the date and time when the measure for the failure was performed for each failure code. And a failure code corresponding to the failure by the failure detection unit until a time equal to or greater than a preset threshold value has elapsed after the action for the failure is performed based on the storage content stored in the storage unit. And a recovery determination unit that determines that the device in which the failure has occurred has been normally recovered when it is not output.
  • the recovery determination unit does not output a failure code corresponding to the failure by the failure detection unit until a time equal to or greater than a preset threshold has elapsed since the measure for the failure was performed. If the device has failed, it is determined that the device has been successfully restored. For this reason, according to this invention, the elevator itself can recognize having recovered normally.
  • FIG. 3 is a functional block diagram of a control device in Embodiment 1.
  • FIG. 6 is a diagram illustrating an example of a data distribution representing a failure occurrence interval in the first embodiment.
  • FIG. 3 is a flowchart illustrating an operation example of the control device according to the first embodiment. It is a hardware block diagram of a control apparatus.
  • Embodiment 1 It is a schematic diagram which shows an example of the structure of an elevator.
  • the elevator 1 includes a hoistway 2, a hoisting machine 3, a rope 4, a car 5, a counterweight 6, and a control device 7.
  • the hoistway 2 is formed, for example, so as to penetrate each floor of a building (not shown).
  • the hoisting machine 3 is provided, for example, in a machine room (not shown).
  • the rope 4 is wound around the hoisting machine 3.
  • the car 5 and the counterweight 6 are suspended in the hoistway 2 by the rope 4.
  • the car 5 and the counterweight 6 move up and down when the hoisting machine 3 is driven.
  • the hoisting machine 3 is controlled by the control device 7.
  • the control device 7 is electrically connected to the hoisting machine 3 and the maintenance device 8.
  • the maintenance device 8 has a function of communicating with the monitoring center 9.
  • the control device 7 and the maintenance device 8 are provided, for example, in a building where the elevator 1 is installed.
  • the monitoring center 9 is provided in a building different from the building where the elevator 1 is installed, for example.
  • the monitoring center 9 is, for example, a server provided in a management company for the elevator 1.
  • FIG. 2 is a functional block diagram of the control device according to the first embodiment.
  • the control device 7 includes an operation control unit 10, a failure detection unit 11, a notification unit 12, a storage unit 13, and a recovery determination unit 14.
  • the operation control unit 10 controls the operation of the elevator 1.
  • the operation control unit 10 controls the movement of the car 5 by controlling the driving of the hoisting machine 3, for example.
  • the operation control unit 10 controls the opening and closing of the door of the elevator 1 via a door opening and closing device (not shown).
  • the failure detection unit 11 detects a failure that has occurred in the elevator 1 device.
  • the failure detection unit 11 outputs a failure code corresponding to the detected failure.
  • the failure code is, for example, preset information for specifying the type of failure and the location where the failure has occurred.
  • the reporting unit 12 reports to the monitoring center 9 via the maintenance device 8. For example, when the failure detection unit 11 detects a failure, the notification unit 12 issues a failure code corresponding to the failure to the monitoring center 9.
  • the monitoring center 9 stores, for example, the failure code issued from the control device 7 and the date and time when the failure code was issued. That is, the monitoring center 9 stores, for example, the occurrence date and time of the failure for each failure code.
  • the management company for the elevator 1 takes measures against the failure.
  • the measure for the failure may be, for example, restarting the control device 7 by remote operation from the monitoring center 9.
  • the measure against the failure may be, for example, that a maintenance worker visits a place where the elevator 1 is installed to perform maintenance work.
  • the maintenance worker who performed the maintenance work sets a recovery flag in the control device 7, for example.
  • the recovery flag is set, for example, via a maintenance terminal carried by the maintenance worker.
  • the storage unit 13 stores, for example, the date and time when a failure is detected by the failure detection unit 11 for each failure code. That is, the storage unit 13 stores, for example, the failure occurrence date and time for each failure code.
  • the storage unit 13 stores, for example, the control sequence of the elevator 1 immediately before the occurrence of the failure for each failure code.
  • the control sequence includes, for example, information indicating the stop position of the car 5, the moving range of the car 5, the moving distance of the car 5, the moving speed of the car 5, the door opening / closing of the door, and the like. That is, for example, the storage unit 13 stores, for each failure code, the operation of the elevator 1 performed immediately before the occurrence of the failure or the operation of the elevator 1 that was scheduled to be performed immediately before the occurrence of the failure.
  • the storage unit 13 stores, for example, the date and time when the measure for the failure was performed for each failure code.
  • the date and time when the measure for the failure was performed is, for example, the date and time when the control device 7 was restarted and the date and time when the recovery flag was set.
  • the restoration determination unit 14 determines whether or not the elevator 1 has been normally restored based on the storage contents of the storage unit 13. For example, when the failure detection unit 11 outputs a failure code corresponding to the failure before the time equal to or greater than the threshold has elapsed since the action for the previous failure was performed, the recovery determination unit 14 recurs the failure. It is determined that For example, when the failure detection unit 11 does not output a failure code corresponding to the failure until a time equal to or greater than a preset threshold has elapsed since the treatment for the previous failure was performed, the recovery determination unit 14 It is determined that the device in which the failure has occurred has been restored normally.
  • the threshold value is stored in the storage unit 13, for example.
  • the operation control unit 10 may execute a control sequence immediately before the occurrence of the failure, for example, during a period from when the measures for the previous failure are performed until a time equal to or greater than the threshold value elapses. For example, when the previous failure was “door opening failure on the 9th floor”, the operation control unit 10 may move the car 5 to the 9th floor and repeat the door opening and closing during the above period.
  • the execution of the control sequence immediately before the occurrence of the failure may be repeated at regular intervals, for example.
  • the execution of the control sequence immediately before the occurrence of the failure is performed when, for example, a hall call and a car call are not generated.
  • the execution of the control sequence immediately before the occurrence of the failure may be performed, for example, during a time period when there is no user of the elevator 1.
  • the notification unit 12 issues a failure code corresponding to the failure to the monitoring center. For example, when the recovery determination unit 14 determines that the device in which the failure has occurred has been normally recovered, the notification unit 12 notifies the monitoring center 9 that the recovery of the device has been confirmed.
  • the threshold value used for determination by the recovery determination unit 14 is set for each failure code, for example.
  • the threshold is set based on the largest value among the data occupying a specific ratio in the lower order in the distribution of data representing the occurrence intervals of failures corresponding to the same failure code.
  • the failure occurrence interval is derived, for example, from the failure occurrence date and time for each failure code stored in the monitoring center 9.
  • FIG. 3 is a diagram showing an example of a data distribution representing a failure occurrence interval in the first embodiment.
  • an example of a method for setting the threshold will be described with reference to FIG.
  • the horizontal axis in Fig. 3 represents the value of the reporting interval.
  • the vertical axis in FIG. 3 represents the frequency at which each reporting interval appears.
  • the notification interval is an elapsed time from when a certain failure code is issued until the same failure code is issued next. That is, the notification interval is data representing the occurrence interval of failures corresponding to the same failure code.
  • the threshold is set based on the largest value in the reporting interval occupying the lower X%.
  • the threshold for example, the largest value may be set as it is.
  • a value obtained by adjusting the largest value by a preset method may be set.
  • the threshold setting may be automatically performed by the function of the monitoring center 9, for example.
  • the threshold setting may be performed, for example, by a maintenance worker operating a maintenance terminal connected to the control device 7.
  • FIG. 4 is a flowchart showing an operation example of the control device according to the first embodiment.
  • the control device 7 determines, for example, whether or not a time equal to or greater than a threshold has elapsed since the restart or the recovery flag was set (step S101). If it is determined in step S101 that the time equal to or greater than the threshold has not elapsed, the control device 7 reads the control sequence immediately before the failure (step S102). Subsequent to step S102, the control device 7 determines whether or not a call is currently being generated (step S103). If it is determined in step S103 that a call has occurred, the control device 7 performs the process of step S101.
  • step S104 the control device 7 executes the read control sequence (step S104). Following step S105, the control device 7 determines whether or not the failure has recurred (step S105). If it is determined in step S105 that the failure has not recurred, the control device 7 performs the process of step S101.
  • step S105 When it is determined in step S105 that the failure has recurred, the control device 7 issues a failure code to the monitoring center 9 (step S106). If it is determined in step S101 that the time equal to or greater than the threshold has elapsed, the control device 7 notifies the monitoring center 9 that the recovery has been confirmed (step S107).
  • the recovery determination unit 14 is based on the contents stored in the storage unit 13 until the time equal to or longer than a preset threshold elapses after the action for the previous failure is performed.
  • a preset threshold elapses after the action for the previous failure is performed.
  • the operation control unit 10 determines the elevator 1 based on the control sequence immediately before the occurrence of the failure during a period from when the treatment for the previous failure is performed until the time equal to or greater than the threshold value elapses.
  • the failure detection unit 11 outputs a failure code corresponding to the failure before the time equal to or greater than the threshold has elapsed since the action for the previous failure was performed
  • the recovery determination unit 14 recurs the failure. It is determined that For this reason, according to Embodiment 1, it is possible to more reliably confirm whether or not the elevator has been normally restored by reproducing the operation of the elevator immediately before the occurrence of the failure.
  • the threshold value used for the determination by the recovery determination unit 14 is, for example, a lower specification in the distribution of data representing the occurrence intervals of failures corresponding to the same failure code detected by the failure detection unit 11 in the past. It is set based on the largest value among the data occupying the ratio of. For this reason, according to Embodiment 1, it can be confirmed more reliably whether or not the elevator has been normally restored based on the standard derived from the statistical data of the same failure.
  • the reporting unit 12 confirms that the recovery of the device has been confirmed. To report. For this reason, according to Embodiment 1, even if it is a case where the countermeasure with respect to a failure is performed by remote control, it is not necessary for a maintenance worker to confirm that the elevator restored.
  • the first embodiment it is possible to evaluate whether or not a failure handling manual used by a maintenance worker when performing a failure countermeasure is appropriate.
  • Information indicating the used failure handling manual is input to the monitoring center 9 or the like by a maintenance worker, for example.
  • Table 1 below shows, as an example, the reporting interval of the fault code A classified for each fault handling manual used when performing a measure for the fault corresponding to the fault code A.
  • the management company of the elevator 1 can determine the failure handling manual to be used with priority for each failure code. Moreover, the management company of the elevator 1 can review the content of the failure handling manual. Further, the management company of the elevator 1 can review the condition of the failure code A. That is, for example, the condition of the failure code A is further classified into cases, and the failure corresponding to the failure code A is divided into a failure corresponding to the failure code A1 and a failure corresponding to the failure code A2. In this case, for example, the manual 2 can be associated with the failure code A1, and another manual can be associated with the failure code A2.
  • FIG. 5 is a hardware configuration diagram of the control device.
  • the processing circuit may be dedicated hardware 50.
  • the processing circuit may include a processor 51 and a memory 52.
  • a part of the processing circuit is formed as dedicated hardware 50, and may further include a processor 51 and a memory 52.
  • FIG. 5 shows an example in which the processing circuit is partly formed as dedicated hardware 50 and includes a processor 51 and a memory 52.
  • the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or the like. The combination is applicable.
  • each function of the operation control unit 10, the failure detection unit 11, the reporting unit 12, the storage unit 13, and the recovery determination unit 14 includes software, firmware, Alternatively, it is realized by a combination of software and firmware.
  • Software and firmware are described as programs and stored in the memory 52.
  • the processor 51 reads out and executes the program stored in the memory 52, thereby realizing the function of each unit.
  • the processor 51 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • the memory 52 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
  • a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
  • the processing circuit can realize each function of the control device 7 by hardware, software, firmware, or a combination thereof.
  • Each function of the monitoring center 9 is also realized by a processing circuit similar to the processing circuit shown in FIG.
  • the present invention can be applied to an elevator.

Abstract

Provided is an elevator control device that makes it possible for an elevator to recognize its own restoration to normal. This elevator control device (7) comprises: a malfunction detection unit (11) that detects malfunctions that have occurred at the apparatuses of an elevator (1) and outputs malfunction codes that correspond to detected malfunctions; a storage unit (13) that, for each malfunction code, stores a date and time for when the malfunction was dealt with; and a restoration determination unit (14) that, on the basis of the content stored in the storage unit (13), determines that an apparatus that had malfunctioned has been restored to normal when the malfunction code that corresponds to the malfunction has not been outputted by the malfunction detection unit (11) between when the malfunction was dealt with and when an amount of time that is equal to or greater than a preset threshold value has passed.

Description

エレベーターの制御装置Elevator control device
 本発明は、エレベーターの制御装置に関する。 The present invention relates to an elevator control device.
 従来、エレベーターに故障が発生した場合、当該エレベーターは、当該故障を検出する。この場合、例えば、保守作業者によって故障に対する処置が実施される。エレベーターの故障に関する技術として、例えば、下記特許文献1に記載されたものがある。 Conventionally, when a failure occurs in an elevator, the elevator detects the failure. In this case, for example, a maintenance worker takes measures against the failure. As a technique related to the failure of an elevator, for example, there is one described in Patent Document 1 below.
日本特開2011-020758号公報Japanese Unexamined Patent Publication No. 2011-020758
 エレベーターの故障に対する処置が実施された後に同様の故障が再発した場合、当該エレベーターは、当該故障を検出する。一方、エレベーターが正常に復旧した場合、当該エレベーターは、復旧したことを認識できない。 If a similar failure recurs after an action is taken for an elevator failure, the elevator detects the failure. On the other hand, when the elevator recovers normally, the elevator cannot recognize that it has recovered.
 本発明は、上記の課題を解決するためになされた。その目的は、正常に復旧したことをエレベーター自身が認識できるエレベーターの制御装置を提供することである。 The present invention has been made to solve the above problems. The purpose is to provide an elevator control device that allows the elevator itself to recognize that it has been restored normally.
 本発明に係るエレベーターの制御装置は、エレベーターの機器に発生した故障を検出し、検出された故障に対応する故障コードを出力する故障検出部と、故障に対する処置が実施された日時を故障コードごとに記憶している記憶部と、記憶部の記憶内容に基づいて、故障に対する処置が実施されてから予め設定された閾値以上の時間が経過するまで故障検出部により当該故障に対応する故障コードが出力されなかった場合に当該故障が発生していた機器が正常に復旧したと判定する復旧判定部と、を備えたものである。 The elevator control device according to the present invention detects a failure that has occurred in an elevator device, outputs a failure code corresponding to the detected failure, and indicates the date and time when the measure for the failure was performed for each failure code. And a failure code corresponding to the failure by the failure detection unit until a time equal to or greater than a preset threshold value has elapsed after the action for the failure is performed based on the storage content stored in the storage unit. And a recovery determination unit that determines that the device in which the failure has occurred has been normally recovered when it is not output.
 本発明に係るエレベーターの制御装置において、復旧判定部は、故障に対する処置が実施されてから予め設定された閾値以上の時間が経過するまで故障検出部により当該故障に対応する故障コードが出力されなかった場合に当該故障が発生していた機器が正常に復旧したと判定する。このため、本発明によれば、正常に復旧したことをエレベーター自身が認識することができる。 In the elevator control device according to the present invention, the recovery determination unit does not output a failure code corresponding to the failure by the failure detection unit until a time equal to or greater than a preset threshold has elapsed since the measure for the failure was performed. If the device has failed, it is determined that the device has been successfully restored. For this reason, according to this invention, the elevator itself can recognize having recovered normally.
エレベーターの構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of an elevator. 実施の形態1における制御装置の機能ブロック図である。3 is a functional block diagram of a control device in Embodiment 1. FIG. 実施の形態1における故障の発生間隔を表すデータの分布の一例を示す図である。6 is a diagram illustrating an example of a data distribution representing a failure occurrence interval in the first embodiment. FIG. 実施の形態1における制御装置の動作例を示すフローチャートである。3 is a flowchart illustrating an operation example of the control device according to the first embodiment. 制御装置のハードウェア構成図である。It is a hardware block diagram of a control apparatus.
 添付の図面を参照して、本発明を詳細に説明する。各図では、同一又は相当する部分に同一の符号を付している。重複する説明は、適宜簡略化あるいは省略する。 The present invention will be described in detail with reference to the accompanying drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals. The overlapping description will be simplified or omitted as appropriate.
実施の形態1.
 エレベーターの構造の一例を示す模式図である。
Embodiment 1 FIG.
It is a schematic diagram which shows an example of the structure of an elevator.
 図1に示すように、エレベーター1は、昇降路2、巻上機3、ロープ4、かご5、釣合おもり6及び制御装置7を備えている。昇降路2は、例えば、図示しない建物の各階を貫くように形成されている。巻上機3は、例えば、図示しない機械室等に設けられている。ロープ4は、巻上機3に巻き掛けられている。かご5及び釣合おもり6は、ロープ4によって昇降路2内に吊り下げられている。かご5及び釣合おもり6は、巻上機3が駆動することにより昇降する。巻上機3は、制御装置7によって制御される。 As shown in FIG. 1, the elevator 1 includes a hoistway 2, a hoisting machine 3, a rope 4, a car 5, a counterweight 6, and a control device 7. The hoistway 2 is formed, for example, so as to penetrate each floor of a building (not shown). The hoisting machine 3 is provided, for example, in a machine room (not shown). The rope 4 is wound around the hoisting machine 3. The car 5 and the counterweight 6 are suspended in the hoistway 2 by the rope 4. The car 5 and the counterweight 6 move up and down when the hoisting machine 3 is driven. The hoisting machine 3 is controlled by the control device 7.
 制御装置7は、巻上機3及び保守装置8と電気的に接続されている。保守装置8は、監視センター9と通信する機能を有する。 The control device 7 is electrically connected to the hoisting machine 3 and the maintenance device 8. The maintenance device 8 has a function of communicating with the monitoring center 9.
 制御装置7及び保守装置8は、例えば、エレベーター1が設置された建物に設けられている。監視センター9は、例えば、エレベーター1が設置された建物とは別の建物に設けられている。監視センター9は、例えば、エレベーター1の管理会社に設けられたサーバー等である。 The control device 7 and the maintenance device 8 are provided, for example, in a building where the elevator 1 is installed. The monitoring center 9 is provided in a building different from the building where the elevator 1 is installed, for example. The monitoring center 9 is, for example, a server provided in a management company for the elevator 1.
 図2は、実施の形態1における制御装置の機能ブロック図である。 FIG. 2 is a functional block diagram of the control device according to the first embodiment.
 図2に示すように、制御装置7は、運転制御部10、故障検出部11、発報部12、記憶部13及び復旧判定部14を有する。 As shown in FIG. 2, the control device 7 includes an operation control unit 10, a failure detection unit 11, a notification unit 12, a storage unit 13, and a recovery determination unit 14.
 運転制御部10は、エレベーター1の動作を制御する。運転制御部10は、例えば、巻上機3の駆動を制御することで、かご5の移動を制御する。運転制御部10は、例えば、図示しない戸開閉装置を介して、エレベーター1のドアの開閉を制御する。 The operation control unit 10 controls the operation of the elevator 1. The operation control unit 10 controls the movement of the car 5 by controlling the driving of the hoisting machine 3, for example. For example, the operation control unit 10 controls the opening and closing of the door of the elevator 1 via a door opening and closing device (not shown).
 故障検出部11は、エレベーター1の機器に発生した故障を検出する。故障検出部11は、検出された故障に対応する故障コードを出力する。故障コードは、例えば、故障の種類及び発生箇所等を特定する予め設定された情報である。 The failure detection unit 11 detects a failure that has occurred in the elevator 1 device. The failure detection unit 11 outputs a failure code corresponding to the detected failure. The failure code is, for example, preset information for specifying the type of failure and the location where the failure has occurred.
 発報部12は、保守装置8を介して、監視センター9に発報を行う。発報部12は、例えば、故障検出部11により故障が検出された際に、当該故障に対応する故障コードを監視センター9に発報する。 The reporting unit 12 reports to the monitoring center 9 via the maintenance device 8. For example, when the failure detection unit 11 detects a failure, the notification unit 12 issues a failure code corresponding to the failure to the monitoring center 9.
 監視センター9は、例えば、制御装置7から発報された故障コード及び当該故障コードの発報が行われた日時を記憶する。つまり、監視センター9は、例えば、故障の発生日時を故障コードごとに記憶する。 The monitoring center 9 stores, for example, the failure code issued from the control device 7 and the date and time when the failure code was issued. That is, the monitoring center 9 stores, for example, the occurrence date and time of the failure for each failure code.
 エレベーター1に故障が発生した場合、例えば、エレベーター1の管理会社によって故障に対する処置が実施される。故障に対する処置とは、例えば、監視センター9からの遠隔操作で制御装置7を再起動することでもよい。故障に対する処置とは、例えば、保守作業者がエレベーター1の設置場所を訪問して保守作業を行うことでもよい。保守作業を行った保守作業者は、例えば、制御装置7に復旧フラグをセットする。復旧フラグのセットは、例えば、保守作業者が携帯する保守用端末を介して行われる。 When a failure occurs in the elevator 1, for example, the management company for the elevator 1 takes measures against the failure. The measure for the failure may be, for example, restarting the control device 7 by remote operation from the monitoring center 9. The measure against the failure may be, for example, that a maintenance worker visits a place where the elevator 1 is installed to perform maintenance work. The maintenance worker who performed the maintenance work sets a recovery flag in the control device 7, for example. The recovery flag is set, for example, via a maintenance terminal carried by the maintenance worker.
 記憶部13は、例えば、故障検出部11によって故障が検出された日時を故障コードごとに記憶する。つまり、記憶部13は、例えば、故障の発生日時を故障コードごとに記憶する。 The storage unit 13 stores, for example, the date and time when a failure is detected by the failure detection unit 11 for each failure code. That is, the storage unit 13 stores, for example, the failure occurrence date and time for each failure code.
 記憶部13は、例えば、故障の発生直前におけるエレベーター1の制御シーケンスを故障コードごとに記憶する。制御シーケンスには、例えば、かご5の停止位置、かご5の移動範囲、かご5の移動距離、かご5の移動速度及びドアの戸開閉等を示す情報が含まれる。つまり、記憶部13は、例えば、故障の発生直前に行われたエレベーター1の動作又は故障の発生直前に行われる予定であったエレベーター1の動作を故障コードごとに記憶する。 The storage unit 13 stores, for example, the control sequence of the elevator 1 immediately before the occurrence of the failure for each failure code. The control sequence includes, for example, information indicating the stop position of the car 5, the moving range of the car 5, the moving distance of the car 5, the moving speed of the car 5, the door opening / closing of the door, and the like. That is, for example, the storage unit 13 stores, for each failure code, the operation of the elevator 1 performed immediately before the occurrence of the failure or the operation of the elevator 1 that was scheduled to be performed immediately before the occurrence of the failure.
 記憶部13は、例えば、故障に対する処置が実施された日時を故障コードごとに記憶する。故障に対する処置が実施された日時とは、例えば、制御装置7が再起動された日時及び復旧フラグがセットされた日時等である。 The storage unit 13 stores, for example, the date and time when the measure for the failure was performed for each failure code. The date and time when the measure for the failure was performed is, for example, the date and time when the control device 7 was restarted and the date and time when the recovery flag was set.
 復旧判定部14は、記憶部13の記憶内容に基づいて、エレベーター1が正常に復旧したか否かを判定する。復旧判定部14は、例えば、前回の故障に対する処置が実施されてから閾値以上の時間が経過する前に故障検出部11により当該故障に対応する故障コードが出力された場合に、当該故障が再発したと判定する。復旧判定部14は、例えば、前回の故障に対する処置が実施されてから予め設定された閾値以上の時間が経過するまで故障検出部11により当該故障に対応する故障コードが出力されなかった場合に、当該故障が発生していた機器が正常に復旧したと判定する。閾値は、例えば、記憶部13に記憶されている。 The restoration determination unit 14 determines whether or not the elevator 1 has been normally restored based on the storage contents of the storage unit 13. For example, when the failure detection unit 11 outputs a failure code corresponding to the failure before the time equal to or greater than the threshold has elapsed since the action for the previous failure was performed, the recovery determination unit 14 recurs the failure. It is determined that For example, when the failure detection unit 11 does not output a failure code corresponding to the failure until a time equal to or greater than a preset threshold has elapsed since the treatment for the previous failure was performed, the recovery determination unit 14 It is determined that the device in which the failure has occurred has been restored normally. The threshold value is stored in the storage unit 13, for example.
 運転制御部10は、前回の故障に対する処置が実施されてから閾値以上の時間が経過するまでの期間中に、例えば、当該故障の発生直前における制御シーケンスを実行してもよい。例えば、前回の故障が「9階での戸開不良」であった場合、運転制御部10は、上記の期間中に、かご5を9階に移動させて戸開閉を繰り返させてもよい。故障の発生直前における制御シーケンスの実行は、例えば、一定時間ごとに繰り返されてもよい。 The operation control unit 10 may execute a control sequence immediately before the occurrence of the failure, for example, during a period from when the measures for the previous failure are performed until a time equal to or greater than the threshold value elapses. For example, when the previous failure was “door opening failure on the 9th floor”, the operation control unit 10 may move the car 5 to the 9th floor and repeat the door opening and closing during the above period. The execution of the control sequence immediately before the occurrence of the failure may be repeated at regular intervals, for example.
 故障の発生直前における制御シーケンスの実行は、例えば、乗場呼び及びかご呼びが発生していない時に行われる。故障の発生直前における制御シーケンスの実行は、例えば、エレベーター1の利用者が居ない時間帯に行われてもよい。 The execution of the control sequence immediately before the occurrence of the failure is performed when, for example, a hall call and a car call are not generated. The execution of the control sequence immediately before the occurrence of the failure may be performed, for example, during a time period when there is no user of the elevator 1.
 発報部12は、例えば、復旧判定部14により故障が再発したと判定された場合、当該故障に対応する故障コードを監視センターに発報する。発報部12は、例えば、復旧判定部14により故障が発生していた機器が正常に復旧したと判定された場合、当該機器の復旧を確認した旨を監視センター9に発報する。 For example, when the recovery determination unit 14 determines that the failure has recurred, the notification unit 12 issues a failure code corresponding to the failure to the monitoring center. For example, when the recovery determination unit 14 determines that the device in which the failure has occurred has been normally recovered, the notification unit 12 notifies the monitoring center 9 that the recovery of the device has been confirmed.
 復旧判定部14による判定に用いられる閾値は、例えば、故障コードごとに設定されている。閾値は、例えば、同一の故障コードに対応する故障の発生間隔を表すデータの分布において下位の特定の割合を占めるデータの中で最も大きい値に基づいて設定される。故障の発生間隔は、例えば、監視センター9に蓄積された故障コードごとの故障の発生日時から導出されたものである。 The threshold value used for determination by the recovery determination unit 14 is set for each failure code, for example. For example, the threshold is set based on the largest value among the data occupying a specific ratio in the lower order in the distribution of data representing the occurrence intervals of failures corresponding to the same failure code. The failure occurrence interval is derived, for example, from the failure occurrence date and time for each failure code stored in the monitoring center 9.
 図3は、実施の形態1における故障の発生間隔を表すデータの分布の一例を示す図である。以下、図3を参照して、閾値を設定する方法の一例を説明する。 FIG. 3 is a diagram showing an example of a data distribution representing a failure occurrence interval in the first embodiment. Hereinafter, an example of a method for setting the threshold will be described with reference to FIG.
 図3における横軸は、発報間隔の値を表す。図3における縦軸は、それぞれの発報間隔が出現する頻度を表す。発報間隔とは、ある故障コードが発報されてから同一の故障コードが次に発報されるまでの経過時間である。つまり、発報間隔は、同一の故障コードに対応する故障の発生間隔を表すデータである。 The horizontal axis in Fig. 3 represents the value of the reporting interval. The vertical axis in FIG. 3 represents the frequency at which each reporting interval appears. The notification interval is an elapsed time from when a certain failure code is issued until the same failure code is issued next. That is, the notification interval is data representing the occurrence interval of failures corresponding to the same failure code.
 図3に示す分布において、例えば、下位X%を占める発報間隔は、短すぎるので故障の再発に起因すると推定できる。この場合、閾値は、例えば、下位X%を占める発報間隔の中で最も大きい値に基づいて設定される。閾値としては、例えば、当該最も大きい値をそのまま設定してもよい。閾値としては、例えば、当該最も大きい値を予め設定された方法で調整した値を設定してもよい。 In the distribution shown in FIG. 3, for example, the reporting interval occupying the lower X% is too short and can be estimated to be due to the recurrence of the failure. In this case, for example, the threshold is set based on the largest value in the reporting interval occupying the lower X%. As the threshold, for example, the largest value may be set as it is. As the threshold value, for example, a value obtained by adjusting the largest value by a preset method may be set.
 閾値の設定は、例えば、監視センター9の機能によって自動的に行われてもよい。閾値の設定は、例えば、制御装置7に接続された保守用端末を保守作業者が操作することで行われてもよい。 The threshold setting may be automatically performed by the function of the monitoring center 9, for example. The threshold setting may be performed, for example, by a maintenance worker operating a maintenance terminal connected to the control device 7.
 図4は、実施の形態1における制御装置の動作例を示すフローチャートである。 FIG. 4 is a flowchart showing an operation example of the control device according to the first embodiment.
 制御装置7は、例えば、再起動又は復旧フラグのセットが行われてから閾値以上の時間が経過したか否かを判定する(ステップS101)。ステップS101で、閾値以上の時間が経過していないと判定された場合、制御装置7は、故障直前の制御シーケンスを読み出す(ステップS102)。ステップS102に続いて、制御装置7は、現在呼びが発生しているか否かを判定する(ステップS103)。ステップS103で、呼びが発生していると判定された場合、制御装置7は、ステップS101の処理を行う。 The control device 7 determines, for example, whether or not a time equal to or greater than a threshold has elapsed since the restart or the recovery flag was set (step S101). If it is determined in step S101 that the time equal to or greater than the threshold has not elapsed, the control device 7 reads the control sequence immediately before the failure (step S102). Subsequent to step S102, the control device 7 determines whether or not a call is currently being generated (step S103). If it is determined in step S103 that a call has occurred, the control device 7 performs the process of step S101.
 ステップS103で、呼びが発生していないと判定された場合、制御装置7は、読み出した制御シーケンスを実行する(ステップS104)。ステップS105に続いて、制御装置7は、故障が再発したか否かを判定する(ステップS105)。ステップS105で、故障が再発していないと判定された場合、制御装置7は、ステップS101の処理を行う。 When it is determined in step S103 that no call has occurred, the control device 7 executes the read control sequence (step S104). Following step S105, the control device 7 determines whether or not the failure has recurred (step S105). If it is determined in step S105 that the failure has not recurred, the control device 7 performs the process of step S101.
 ステップS105で、故障が再発したと判定された場合、制御装置7は、監視センター9に故障コードを発報する(ステップS106)。ステップS101で、閾値以上の時間が経過したと判定された場合、制御装置7は、監視センター9に復旧確認した旨を発報する(ステップS107)。 When it is determined in step S105 that the failure has recurred, the control device 7 issues a failure code to the monitoring center 9 (step S106). If it is determined in step S101 that the time equal to or greater than the threshold has elapsed, the control device 7 notifies the monitoring center 9 that the recovery has been confirmed (step S107).
 実施の形態1において、復旧判定部14は、例えば、記憶部13の記憶内容に基づいて、前回の故障に対する処置が実施されてから予め設定された閾値以上の時間が経過するまで故障検出部11により当該故障に対応する故障コードが出力されなかった場合に、当該故障が発生していた機器が正常に復旧したと判定する。このため、実施の形態1によれば、正常に復旧したことをエレベーター自身が認識することができる。 In the first embodiment, for example, the recovery determination unit 14 is based on the contents stored in the storage unit 13 until the time equal to or longer than a preset threshold elapses after the action for the previous failure is performed. When the failure code corresponding to the failure is not output by the above, it is determined that the device in which the failure has occurred has been restored normally. For this reason, according to Embodiment 1, the elevator itself can recognize that it recovered normally.
 実施の形態1において、運転制御部10は、例えば、前回の故障に対する処置が実施されてから閾値以上の時間が経過するまでの期間中に、当該故障の発生直前における制御シーケンスに基づいてエレベーター1を動作させる。復旧判定部14は、例えば、前回の故障に対する処置が実施されてから閾値以上の時間が経過する前に故障検出部11により当該故障に対応する故障コードが出力された場合に、当該故障が再発したと判定する。このため、実施の形態1によれば、故障の発生直前におけるエレベーターの動作を再現することで、エレベーターが正常に復旧したか否かをより確実に確認することができる。 In the first embodiment, for example, the operation control unit 10 determines the elevator 1 based on the control sequence immediately before the occurrence of the failure during a period from when the treatment for the previous failure is performed until the time equal to or greater than the threshold value elapses. To work. For example, when the failure detection unit 11 outputs a failure code corresponding to the failure before the time equal to or greater than the threshold has elapsed since the action for the previous failure was performed, the recovery determination unit 14 recurs the failure. It is determined that For this reason, according to Embodiment 1, it is possible to more reliably confirm whether or not the elevator has been normally restored by reproducing the operation of the elevator immediately before the occurrence of the failure.
 実施の形態1において、復旧判定部14による判定に用いられる閾値は、例えば、過去に故障検出部11により検出された同一の故障コードに対応する故障の発生間隔を表すデータの分布において下位の特定の割合を占めるデータの中で最も大きい値に基づいて設定される。このため、実施の形態1によれば、同一の故障の統計データから導き出された基準に基づいて、エレベーターが正常に復旧したか否かをより確実に確認することができる。 In the first embodiment, the threshold value used for the determination by the recovery determination unit 14 is, for example, a lower specification in the distribution of data representing the occurrence intervals of failures corresponding to the same failure code detected by the failure detection unit 11 in the past. It is set based on the largest value among the data occupying the ratio of. For this reason, according to Embodiment 1, it can be confirmed more reliably whether or not the elevator has been normally restored based on the standard derived from the statistical data of the same failure.
 実施の形態1において、発報部12は、例えば、復旧判定部14により故障が発生していた機器が正常に復旧したと判定された場合に、当該機器の復旧を確認した旨を監視センター9に発報する。このため、実施の形態1によれば、故障に対する処置を遠隔操作で行った場合であっても、エレベーターが復旧したことを保守作業者が確認しに行く必要がない。 In the first embodiment, for example, when the recovery determining unit 14 determines that the device in which the failure has occurred has been normally recovered, the reporting unit 12 confirms that the recovery of the device has been confirmed. To report. For this reason, according to Embodiment 1, even if it is a case where the countermeasure with respect to a failure is performed by remote control, it is not necessary for a maintenance worker to confirm that the elevator restored.
 実施の形態1によれば、例えば、故障に対する処置を行う際に保守作業者が使用した故障対応マニュアルが適切であったか否かを評価することもできる。使用された故障対応マニュアルを示す情報は、例えば、保守作業者によって監視センター9等に入力される。下記表1は、一例として、故障コードAに対応する故障に対する処置を行う際に使用された故障対応マニュアルごとに分類された故障コードAの発報間隔を示している。 According to the first embodiment, for example, it is possible to evaluate whether or not a failure handling manual used by a maintenance worker when performing a failure countermeasure is appropriate. Information indicating the used failure handling manual is input to the monitoring center 9 or the like by a maintenance worker, for example. Table 1 below shows, as an example, the reporting interval of the fault code A classified for each fault handling manual used when performing a measure for the fault corresponding to the fault code A.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1によれば、マニュアル1を使用して処置を行った場合、発報間隔の大部分が閾値未満である。つまり、マニュアル1に従って処置を行った場合、故障の再発率が高い。このため、マニュアル1は、故障コードAに対応する故障への対応策として不適切であると評価される。 According to Table 1, when the procedure is performed using the manual 1, most of the reporting intervals are less than the threshold value. That is, when the treatment is performed according to the manual 1, the recurrence rate of failure is high. For this reason, the manual 1 is evaluated as inappropriate as a countermeasure against the failure corresponding to the failure code A.
 表1によれば、マニュアル2を使用して処置を行った場合、発報間隔の半数程度が閾値未満である。つまり、マニュアル2に従って処置を行った場合、故障の再発率は中程度である。このため、マニュアル2は、故障コードAに対応する故障への対応策として不十分であると評価される。 According to Table 1, when the procedure is performed using Manual 2, about half of the reporting intervals are less than the threshold. That is, when the treatment is performed according to the manual 2, the failure recurrence rate is moderate. For this reason, the manual 2 is evaluated as insufficient as a countermeasure for the failure corresponding to the failure code A.
 表1によれば、マニュアル3を使用して処置を行った場合、発報間隔の大部分が閾値以上である。つまり、マニュアル3に従って処置を行った場合、故障の再発率が低い。このため、マニュアル3は、故障コードAに対応する故障への対応策として適切であると評価される。 According to Table 1, when the procedure is performed using the manual 3, most of the notification intervals are equal to or greater than the threshold value. That is, when the treatment is performed according to the manual 3, the failure recurrence rate is low. Therefore, the manual 3 is evaluated as being appropriate as a countermeasure against the failure corresponding to the failure code A.
 このような評価を行うことで、エレベーター1の管理会社は、優先して使用すべき故障対応マニュアルを故障コードごとに決定することができる。また、エレベーター1の管理会社は、故障対応マニュアルの内容を見直すことができる。また、エレベーター1の管理会社は、故障コードAの条件を見直すこともできる。つまり、例えば、故障コードAの条件を更に場合分けし、故障コードAに対応する故障を故障コードA1に対応する故障と故障コードA2に対応する故障とに分ける。この場合、例えば、故障コードA1にはマニュアル2を対応させ、故障コードA2には別のマニュアルを対応させる、といった改善につなげることができる。 行 う By performing such an evaluation, the management company of the elevator 1 can determine the failure handling manual to be used with priority for each failure code. Moreover, the management company of the elevator 1 can review the content of the failure handling manual. Further, the management company of the elevator 1 can review the condition of the failure code A. That is, for example, the condition of the failure code A is further classified into cases, and the failure corresponding to the failure code A is divided into a failure corresponding to the failure code A1 and a failure corresponding to the failure code A2. In this case, for example, the manual 2 can be associated with the failure code A1, and another manual can be associated with the failure code A2.
 図5は、制御装置のハードウェア構成図である。 FIG. 5 is a hardware configuration diagram of the control device.
 制御装置7における運転制御部10、故障検出部11、発報部12、記憶部13及び復旧判定部14の各機能は、処理回路により実現される。処理回路は、専用ハードウェア50であってもよい。処理回路は、プロセッサ51及びメモリ52を備えていてもよい。処理回路は、一部が専用ハードウェア50として形成され、更にプロセッサ51及びメモリ52を備えていてもよい。図5は、処理回路が、その一部が専用ハードウェア50として形成され、プロセッサ51及びメモリ52を備えている場合の例を示している。 Each function of the operation control unit 10, the failure detection unit 11, the reporting unit 12, the storage unit 13, and the recovery determination unit 14 in the control device 7 is realized by a processing circuit. The processing circuit may be dedicated hardware 50. The processing circuit may include a processor 51 and a memory 52. A part of the processing circuit is formed as dedicated hardware 50, and may further include a processor 51 and a memory 52. FIG. 5 shows an example in which the processing circuit is partly formed as dedicated hardware 50 and includes a processor 51 and a memory 52.
 処理回路の少なくとも一部が、少なくとも1つの専用ハードウェア50である場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。 When at least a part of the processing circuit is at least one dedicated hardware 50, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or the like. The combination is applicable.
 処理回路が少なくとも1つのプロセッサ51及び少なくとも1つのメモリ52を備える場合、運転制御部10、故障検出部11、発報部12、記憶部13及び復旧判定部14の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリ52に格納される。プロセッサ51は、メモリ52に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。プロセッサ51は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ52は、例えば、RAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等が該当する。 When the processing circuit includes at least one processor 51 and at least one memory 52, each function of the operation control unit 10, the failure detection unit 11, the reporting unit 12, the storage unit 13, and the recovery determination unit 14 includes software, firmware, Alternatively, it is realized by a combination of software and firmware. Software and firmware are described as programs and stored in the memory 52. The processor 51 reads out and executes the program stored in the memory 52, thereby realizing the function of each unit. The processor 51 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP. The memory 52 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、制御装置7の各機能を実現することができる。なお、監視センター9の各機能も、図5に示す処理回路と同様の処理回路により実現される。 As described above, the processing circuit can realize each function of the control device 7 by hardware, software, firmware, or a combination thereof. Each function of the monitoring center 9 is also realized by a processing circuit similar to the processing circuit shown in FIG.
 以上のように、本発明は、エレベーターに適用できる。 As described above, the present invention can be applied to an elevator.
1 エレベーター
2 昇降路
3 巻上機
4 ロープ
5 かご
6 釣合おもり
7 制御装置
8 保守装置
9 監視センター
10 運転制御部
11 故障検出部
12 発報部
13 記憶部
14 復旧判定部
50 専用ハードウェア
51 プロセッサ
52 メモリ
DESCRIPTION OF SYMBOLS 1 Elevator 2 Hoistway 3 Hoisting machine 4 Rope 5 Car 6 Counterweight 7 Control device 8 Maintenance device 9 Monitoring center 10 Operation control part 11 Failure detection part 12 Alerting part 13 Storage part 14 Restoration judgment part 50 Dedicated hardware 51 Processor 52 memory

Claims (4)

  1.  エレベーターの機器に発生した故障を検出し、検出された故障に対応する故障コードを出力する故障検出部と、
     故障に対する処置が実施された日時を故障コードごとに記憶している記憶部と、
     前記記憶部の記憶内容に基づいて、故障に対する処置が実施されてから予め設定された閾値以上の時間が経過するまで前記故障検出部により当該故障に対応する故障コードが出力されなかった場合に当該故障が発生していた機器が正常に復旧したと判定する復旧判定部と、
    を備えたエレベーターの制御装置。
    A fault detection unit that detects a fault that has occurred in the elevator equipment and outputs a fault code corresponding to the detected fault;
    A storage unit that stores the date and time when the failure was taken for each failure code;
    Based on the storage content of the storage unit, when a failure code corresponding to the failure is not output by the failure detection unit until a time equal to or greater than a preset threshold has elapsed since the action for the failure was performed A recovery determination unit that determines that the device in which the failure occurred has recovered normally;
    Elevator control device with.
  2.  故障に対する処置が実施されてから前記閾値以上の時間が経過するまでの期間中に、当該故障の発生直前における制御シーケンスに基づいてエレベーターを動作させる運転制御部を備え、
     前記復旧判定部は、故障に対する処置が実施されてから前記閾値以上の時間が経過する前に前記故障検出部により当該故障に対応する故障コードが出力された場合に当該故障が再発したと判定する請求項1に記載のエレベーターの制御装置。
    An operation control unit that operates the elevator based on a control sequence immediately before the occurrence of the failure during a period from when the measure for the failure is performed until a time equal to or greater than the threshold value elapses;
    The recovery determination unit determines that the failure has recurred when a failure code corresponding to the failure is output by the failure detection unit before the time equal to or greater than the threshold has elapsed since the failure was treated. The elevator control device according to claim 1.
  3.  前記閾値は、過去に前記故障検出部により検出された同一の故障コードに対応する故障の発生間隔を表すデータの分布において下位の特定の割合を占めるデータの中で最も大きい値に基づいて設定された請求項1又は2に記載のエレベーターの制御装置。 The threshold is set based on the largest value among the data occupying a specific ratio in the lower order in the distribution of data representing the occurrence intervals of failures corresponding to the same failure code detected by the failure detection unit in the past. The elevator control device according to claim 1 or 2.
  4.  前記復旧判定部により故障が発生していた機器が正常に復旧したと判定された場合に、当該機器の復旧を確認した旨を監視センターに発報する発報部を備えた請求項1から3のいずれか1項に記載のエレベーターの制御装置。 4. The apparatus according to claim 1, further comprising a notification unit that notifies the monitoring center that the recovery of the device has been confirmed when the recovery determination unit determines that the device in which the failure has occurred has been normally recovered. The elevator control device according to any one of the above.
PCT/JP2016/088703 2016-12-26 2016-12-26 Elevator control device WO2018122918A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680091840.0A CN110114295B (en) 2016-12-26 2016-12-26 Control device for elevator
KR1020197021431A KR102174105B1 (en) 2016-12-26 2016-12-26 Elevator control unit
JP2018558533A JP6536755B2 (en) 2016-12-26 2016-12-26 Elevator control device
PCT/JP2016/088703 WO2018122918A1 (en) 2016-12-26 2016-12-26 Elevator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088703 WO2018122918A1 (en) 2016-12-26 2016-12-26 Elevator control device

Publications (1)

Publication Number Publication Date
WO2018122918A1 true WO2018122918A1 (en) 2018-07-05

Family

ID=62707029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088703 WO2018122918A1 (en) 2016-12-26 2016-12-26 Elevator control device

Country Status (4)

Country Link
JP (1) JP6536755B2 (en)
KR (1) KR102174105B1 (en)
CN (1) CN110114295B (en)
WO (1) WO2018122918A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043636A (en) * 2019-09-10 2021-03-18 東芝テック株式会社 Maintenance support device, maintenance support method, and computer program
CN115196456A (en) * 2022-07-14 2022-10-18 慧川电梯科技有限公司 Fault judgment method and device suitable for elevators of different brands
CN115380000A (en) * 2020-03-06 2022-11-22 三菱电机大楼技术服务株式会社 Elevator device
KR102492910B1 (en) * 2022-07-29 2023-01-27 이형근 Remote management system for hoist

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05128395A (en) * 1991-11-05 1993-05-25 Hitachi Building Syst Eng & Service Co Ltd Elevator abnormality monitoring device
JPH06206674A (en) * 1993-01-08 1994-07-26 Mitsubishi Denki Bill Techno Service Kk Elevator trouble restoring device
JPH0733350A (en) * 1993-07-26 1995-02-03 Hitachi Building Syst Eng & Service Co Ltd Remote monitoring device for elevator
JP2693580B2 (en) * 1989-06-13 1997-12-24 株式会社東芝 Elevator remote maintenance equipment
JP3960983B2 (en) * 2004-03-23 2007-08-15 三菱電機インフォメーションシステムズ株式会社 Monitoring center server

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388060B2 (en) 2009-07-13 2014-01-15 東芝エレベータ株式会社 Elevator parts improvement planning system and parts improvement planning method thereof
JP2012218854A (en) * 2011-04-06 2012-11-12 Hitachi Building Systems Co Ltd Elevator remote monitoring system
JP5714655B2 (en) * 2013-06-21 2015-05-07 東芝エレベータ株式会社 Elevator control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693580B2 (en) * 1989-06-13 1997-12-24 株式会社東芝 Elevator remote maintenance equipment
JPH05128395A (en) * 1991-11-05 1993-05-25 Hitachi Building Syst Eng & Service Co Ltd Elevator abnormality monitoring device
JPH06206674A (en) * 1993-01-08 1994-07-26 Mitsubishi Denki Bill Techno Service Kk Elevator trouble restoring device
JPH0733350A (en) * 1993-07-26 1995-02-03 Hitachi Building Syst Eng & Service Co Ltd Remote monitoring device for elevator
JP3960983B2 (en) * 2004-03-23 2007-08-15 三菱電機インフォメーションシステムズ株式会社 Monitoring center server

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043636A (en) * 2019-09-10 2021-03-18 東芝テック株式会社 Maintenance support device, maintenance support method, and computer program
CN115380000A (en) * 2020-03-06 2022-11-22 三菱电机大楼技术服务株式会社 Elevator device
CN115196456A (en) * 2022-07-14 2022-10-18 慧川电梯科技有限公司 Fault judgment method and device suitable for elevators of different brands
CN115196456B (en) * 2022-07-14 2023-08-18 慧川电梯科技有限公司 Fault judging method and device suitable for elevators of different brands
KR102492910B1 (en) * 2022-07-29 2023-01-27 이형근 Remote management system for hoist

Also Published As

Publication number Publication date
JPWO2018122918A1 (en) 2019-03-22
KR102174105B1 (en) 2020-11-04
JP6536755B2 (en) 2019-07-03
CN110114295A (en) 2019-08-09
KR20190100288A (en) 2019-08-28
CN110114295B (en) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2018122918A1 (en) Elevator control device
US8190396B2 (en) Failure diagnosis system for cooling fans, a failure diagnosis device for cooling fans, a failure diagnosis method for cooling fans, a computer readable medium therefor and a cooling device
JP6565781B2 (en) Elevator door open / close diagnosis system
JP6398879B2 (en) Elevator work status monitoring device and work status monitoring method
JP6717390B2 (en) Elevator automatic recovery system
CN108762118B (en) Fault processing method and device between communication devices
JP6249063B1 (en) Elevator control panel and maintenance terminal with automatic recovery function
JPWO2018122915A1 (en) Elevator control device
CN110088025B (en) Elevator repair support system
JP6403646B2 (en) Elevator remote monitoring system and elevator remote monitoring method
JP5137030B2 (en) Elevator control device
CN110088023B (en) Elevator control system
CN114502495B (en) Diagnostic operation adjustment device for adjusting diagnostic operation setting of elevator, monitoring device, and elevator system
CN110382389B (en) Recovery support system
KR102208337B1 (en) Elevator control system
JP6537745B2 (en) Elevator remote monitoring system
JP7279836B1 (en) CONTROL DEVICE, CONTROL METHOD, AND PASSENGER TRANSPORT CONTROL DEVICE
JP6658470B2 (en) Maintenance work support system for lifting equipment
WO2018134894A1 (en) Earthquake sensor for elevators
JP6553006B2 (en) Elevator maintenance system
CN115380000A (en) Elevator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197021431

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16925993

Country of ref document: EP

Kind code of ref document: A1