WO2018134894A1 - Earthquake sensor for elevators - Google Patents

Earthquake sensor for elevators Download PDF

Info

Publication number
WO2018134894A1
WO2018134894A1 PCT/JP2017/001415 JP2017001415W WO2018134894A1 WO 2018134894 A1 WO2018134894 A1 WO 2018134894A1 JP 2017001415 W JP2017001415 W JP 2017001415W WO 2018134894 A1 WO2018134894 A1 WO 2018134894A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
acceleration
earthquake
unit
control panel
Prior art date
Application number
PCT/JP2017/001415
Other languages
French (fr)
Japanese (ja)
Inventor
塩崎 秀樹
志賀 諭
匡史 小澤
Original Assignee
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to PCT/JP2017/001415 priority Critical patent/WO2018134894A1/en
Priority to JP2018562766A priority patent/JP6521195B2/en
Publication of WO2018134894A1 publication Critical patent/WO2018134894A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an earthquake detector for an elevator.
  • the output of a conventional seismic detector is, for example, a simple contact signal indicating that the acceleration due to shaking has exceeded a reference value. For this reason, the conventional earthquake detector is difficult to use when trying to expand the service of the elevator in the event of an earthquake.
  • the present invention has been made to solve the above problems.
  • the object is to provide an elevator earthquake sensor that can expand the service of the elevator in the event of an earthquake.
  • the earthquake detector for an elevator has a function of performing bidirectional communication between an acceleration detection unit that detects a swing as an acceleration and an elevator control panel, and indicates the maximum acceleration detected by the acceleration detection unit. And a communication unit that transmits numerical values to the control panel.
  • the communication unit has a function of performing bidirectional communication with the control panel of the elevator, and transmits a numerical value indicating the maximum acceleration detected by the acceleration detection unit to the control panel. For this reason, according to this invention, the service of the elevator at the time of the occurrence of an earthquake can be expanded.
  • FIG. 1 is a functional block diagram of an elevator automatic recovery system according to Embodiment 1.
  • FIG. It is a figure for demonstrating restoration of the elevator after the occurrence of an earthquake.
  • 3 is a flowchart illustrating an operation example of the elevator automatic recovery system according to the first embodiment. It is a hardware block diagram of a maintenance apparatus.
  • FIG. Drawing 1 is a mimetic diagram showing an example of the structure of an elevator.
  • the elevator 1 includes a hoistway 2, a hoisting machine 3, a rope 4, a car 5, a counterweight 6, a control panel 7, and an earthquake detector 8.
  • the hoistway 2 is formed, for example, so as to penetrate each floor of a building (not shown).
  • the hoisting machine 3 is provided, for example, in a machine room (not shown).
  • the rope 4 is wound around the hoisting machine 3.
  • the car 5 and the counterweight 6 are suspended in the hoistway 2 by the rope 4.
  • the car 5 and the counterweight 6 move up and down when the hoisting machine 3 is driven.
  • the hoisting machine 3 is controlled by the control panel 7.
  • control panel 7 and the earthquake detector 8 are provided in the hoistway 2, for example.
  • the control panel 7 and the earthquake detector 8 are provided in a pit, for example.
  • the control panel 7 and the earthquake detector 8 may be provided in a machine room, for example.
  • the earthquake sensor 8 is electrically connected to the control panel 7.
  • the control panel 7 is electrically connected to the hoisting machine 3 and the maintenance device 9.
  • the maintenance device 9 has a function of communicating with the monitoring center 10. That is, the control panel 7 can communicate with the monitoring center 10 via the maintenance device 9.
  • the control panel 7 and the maintenance device 9 are provided, for example, in a building where the elevator 1 is installed.
  • the monitoring center 10 is provided in a building different from the building where the elevator 1 is installed, for example.
  • the monitoring center 10 is, for example, a server provided in a management company for the elevator 1.
  • the monitoring center 10 may be able to communicate with the control panels 7 of the plurality of elevators 1, for example.
  • the monitoring center 10 may be able to communicate with a plurality of maintenance apparatuses 9 provided in different buildings.
  • FIG. 2 is a functional block diagram of the elevator automatic recovery system according to the first embodiment.
  • the control panel 7 has an operation control unit 11.
  • the earthquake detector 8 includes a communication unit 12, an acceleration detection unit 13, a shaking direction detection unit 14, a shaking time detection unit 15, and a self-diagnosis unit 16.
  • the maintenance device 9 includes a sensor control unit 17, an automatic diagnosis control unit 18, a storage unit 19, and a notification unit 20.
  • the monitoring center 10 includes a storage unit 21 and an update unit 22.
  • the operation control unit 11 controls the operation of the elevator 1.
  • the operation control unit 11 controls the movement of the car 5 by controlling the driving of the hoisting machine 3.
  • the operation control unit 11 controls the opening / closing of the door of the elevator 1 via, for example, a door opening / closing device (not shown).
  • the communication unit 12 communicates with the control panel 7.
  • the signal transmitted and received between the communication unit 12 and the control panel 7 is not a contact signal, for example.
  • a transmission method between the communication unit 12 and the control panel 7 is, for example, serial transmission.
  • the communication unit 12 transmits information to the control panel 7.
  • the communication unit 12 receives information from the control panel 7. That is, the earthquake detector 8 has a function of performing bidirectional communication with the control panel 7. Further, the earthquake detector 8 has a function of performing bidirectional communication with the maintenance device 9 via the control panel 7.
  • the acceleration detection unit 13 detects a shake due to an earthquake or the like as an acceleration.
  • the acceleration detector 13 constantly detects acceleration.
  • the acceleration is expressed by, for example, a Gal value.
  • the shaking direction detector 14 detects the acceleration for each shaking direction.
  • the shaking direction includes, for example, a horizontal direction and a vertical direction.
  • directions corresponding to the X axis, the Y axis, and the Z axis that are orthogonal to each other may be set as the shaking direction.
  • directions corresponding to four directions or eight directions may be set.
  • the horizontal direction among the shaking directions may be set according to the planar shape of the building, for example.
  • the shaking direction detection unit 14 always detects acceleration in each shaking direction.
  • the acceleration for each shaking direction is represented by, for example, a Gal value associated with the direction.
  • the shaking direction detection unit 14 may calculate the acceleration for each shaking direction by, for example, decomposing the acceleration detected by the acceleration detection unit 13. For example, the shaking direction detection unit 14 may detect the acceleration for each shaking direction using a plurality of sensors corresponding to each of the shaking directions.
  • the shaking time detector 15 detects the shaking time.
  • the shaking time is, for example, a time during which shaking at an acceleration exceeding a preset threshold value continues.
  • the shaking time is, for example, the time when acceleration exceeding the threshold is continuously detected by the acceleration detector 13.
  • the shake time detection unit 15 performs the second change from the start time of the first shake time to the second time.
  • the time until the end of the shaking time may be detected as one continuous shaking time.
  • the shaking time is expressed in seconds or minutes, for example.
  • the communication unit 12 transmits, for example, various numerical values detected by the acceleration detection unit 13, the shaking direction detection unit 14, and the shaking time detection unit 15 to the control panel 7.
  • the communication unit 12 transmits various numerical values when, for example, an acceleration exceeding a threshold is detected by the acceleration detection unit 13.
  • the control panel 7 transmits various numerical values to the maintenance device 9.
  • the communication unit 12 transmits a numerical value indicating the maximum acceleration detected by the acceleration detection unit 13, for example.
  • the communication part 12 transmits the numerical value which shows the maximum acceleration for every shaking direction detected by the shaking direction detection part 14, for example.
  • the communication unit 12 transmits a numerical value indicating the maximum shaking time detected by the shaking time detection unit 15. In this way, the earthquake detector 8 detects shaking as acceleration, and outputs a numerical value based on the detected acceleration.
  • the maximum acceleration is, for example, the maximum value of the acceleration detected by the acceleration detection unit 13 during the period from when the acceleration detected by the acceleration detection unit 13 exceeds the threshold value to below the threshold value.
  • the maximum acceleration for each shaking direction is, for example, the maximum value of acceleration detected by the shaking direction detection unit 14 during the period.
  • the sensor control unit 17 transmits a reset signal to the earthquake sensor 8, for example. For example, when the earthquake sensor 8 receives a reset signal, the earthquake sensor 8 stops outputting numerical values based on the acceleration.
  • the detector control unit 17 periodically checks the life and death of the earthquake detector 8. For example, the sensor control unit 17 transmits a request signal to the earthquake sensor 8. The communication unit 12 returns a response signal to the request signal, for example. For example, when the response signal is received within a predetermined time after transmitting the request signal, the sensor control unit 17 determines that the earthquake sensor 8 is operating. For example, when the sensor control unit 17 does not receive a response signal within a predetermined time after transmitting a request signal, the seismic sensor 8 is not operating or the connection between the control panel 7 and the seismic sensor 8 is disconnected. It is determined that
  • the sensor control unit 17 transmits a function diagnosis command to the earthquake sensor 8, for example.
  • the self-diagnosis unit 16 performs a diagnosis operation based on a function diagnosis command.
  • the diagnostic operation is, for example, checking whether or not the acceleration detection or the earthquake detector 8 is normally performed.
  • the communication unit 12 returns a diagnosis result from the self-diagnosis unit 16 to the maintenance device 9.
  • the automatic diagnosis control unit 18 has a function of executing automatic diagnosis operation via the control panel 7.
  • the automatic diagnosis operation is an operation performed after an actual earthquake occurs in order to determine whether or not the elevator 1 may be automatically restored.
  • the automatic diagnosis operation for example, it is determined whether or not the equipment of the elevator 1 is damaged.
  • the automatic diagnosis control unit 18 executes the automatic diagnosis operation when, for example, the maximum acceleration output by the earthquake detector 8 is included in a certain range that is equal to or less than the general reference value.
  • the general reference value is set in advance based on, for example, an earthquake resistance standard determined by law.
  • the general reference value is represented by a Gal value, for example.
  • the automatic diagnosis control unit 18 has a numerical value based on the acceleration output by the earthquake detector 8 that satisfies the individual criterion.
  • the automatic diagnosis operation is executed.
  • the individual standard is, for example, set for each building where the elevator 1 is installed or for each elevator 1. That is, the content of the individual standard may vary depending on the building or the elevator 1.
  • the storage unit 19 of the maintenance device 9 stores individual reference data 23.
  • the individual reference data 23 is, for example, data indicating an individual reference set for the elevator 1 controlled by the control panel 7 connected to the maintenance device 9 or the building where the elevator 1 is installed.
  • the individual standard for a certain elevator 1 or a building in which the elevator 1 is installed is set based on, for example, acceleration due to past shaking that has caused no damage to the elevator 1.
  • the individual reference is set based on, for example, acceleration output in the past by the earthquake detector 8 provided in the elevator 1 or the building.
  • the individual criterion is set as an upper limit value of a numerical value based on the acceleration output from the earthquake detector 8, for example.
  • the individual standard includes, for example, a numerical value indicating the maximum acceleration due to the past shaking that caused no damage to the elevator 1.
  • the numerical value may be a value larger than the general reference value, for example. For example, even if the maximum acceleration due to an earthquake exceeds the general reference value, the automatic diagnosis control unit 18 executes the automatic diagnosis operation when the maximum acceleration is equal to or less than the value included in the individual reference. For example, when the maximum acceleration due to an earthquake exceeds the numerical value included in the individual reference, the automatic diagnosis control unit 18 does not execute the automatic diagnosis operation.
  • the individual standard includes, for example, a numerical value indicating the maximum acceleration in each shaking direction due to past shaking that did not cause any damage to the elevator 1.
  • the numerical value may be a value larger than the general reference value, for example. For example, even if the maximum acceleration due to the earthquake exceeds the general reference value, the automatic diagnosis control unit 18 performs the automatic diagnosis operation when the maximum acceleration for each shaking direction due to the earthquake is equal to or less than the value included in the individual reference. Execute. For example, when the maximum acceleration for each shaking direction due to an earthquake exceeds the numerical value included in the individual reference, the automatic diagnosis control unit 18 does not execute the automatic diagnosis operation.
  • the individual standard includes, for example, a numerical value indicating the maximum shaking time due to the past shaking that caused no damage to the elevator 1. For example, even if the maximum acceleration due to an earthquake exceeds the general reference value, the automatic diagnosis control unit 18 performs an automatic diagnosis operation when the maximum shaking time due to the earthquake is equal to or less than the value included in the individual reference. For example, when the maximum shaking time due to an earthquake exceeds the numerical value included in the individual reference, the automatic diagnosis control unit 18 does not execute the automatic diagnosis operation.
  • the individual standard includes, for example, two or more kinds of values indicating the maximum acceleration due to the past shaking that did not cause any damage to the elevator 1, the value indicating the maximum acceleration for each shaking direction, and the value indicating the maximum shaking time. May be.
  • the automatic diagnosis control unit 18 performs automatic diagnosis operation based on a comparison result between two or more types among the maximum acceleration output from the earthquake detector 8, the maximum acceleration for each swing direction, and the maximum swing time and the individual criteria. It may be determined whether or not to execute.
  • the reporting unit 20 reports to the monitoring center 10.
  • the reporting unit 20 reports information related to the operation of the maintenance device 9 to the monitoring center 10.
  • the reporting unit 20 reports information indicating the state of the elevator 1 obtained from the control panel 7 to the monitoring center 10.
  • the reporting unit 20 reports information obtained from the earthquake detector 8 to the monitoring center 10.
  • the reporting unit 20 reports to the monitoring center 10 the maximum acceleration output by the earthquake detector 8 when the earthquake occurs, the maximum acceleration for each shaking direction, the maximum shaking time, and the like.
  • the reporting unit 20 when it is determined from the result of the automatic diagnosis operation that no damage has occurred in the elevator 1, the reporting unit 20 notifies the monitoring center 10 to that effect.
  • the reporting unit 20 requests the monitoring center 10 to dispatch a maintenance worker.
  • the reporting unit 20 requests the monitoring center 10 to dispatch a maintenance worker.
  • the maintenance worker performs the inspection work of the elevator 1 in response to the request for dispatch.
  • the maintenance worker reports completion to the monitoring center 10 after the work is completed.
  • the completion report may be performed, for example, via the control panel 7 or the maintenance device 9.
  • the completion report may be made directly to the monitoring center 10, for example.
  • the content of the completion report includes, for example, information indicating whether or not physical damage has actually occurred in the elevator 1.
  • the storage unit 21 of the monitoring center 10 stores accumulated data 24 and individual reference data 25.
  • the accumulated data 24 is, for example, data indicating numerical values based on accelerations output in the past by the earthquake detector 8 corresponding to the elevator 1 to be monitored by the monitoring center 10.
  • the accumulated data 24 may include output data of a plurality of earthquake detectors 8 corresponding to different elevators 1 or different buildings.
  • the accumulated data 24 includes, for example, maximum acceleration, maximum acceleration for each swing direction, maximum swing time, and the like.
  • the individual reference data 25 is, for example, data indicating an individual reference set for the elevator 1 to be monitored by the monitoring center 10 or the building where the elevator 1 is installed.
  • the individual reference data 25 may include a plurality of individual standards corresponding to different elevators 1 or different buildings.
  • the individual reference data 25 is set based on the accumulated data 24, for example.
  • the update unit 22 changes the individual reference for the building or the elevator 1 corresponding to the earthquake detector 8 in the individual reference data 25 based on the latest output data of the earthquake detector 8, for example.
  • the update unit 22 changes the individual reference data 23 corresponding to the changed individual reference in the individual reference data 25. That is, the update unit 22 updates the individual reference stored in the maintenance device 9. Note that the individual reference data 23 stored in the storage unit 19 is not changed by an operation on the control panel 7 and the maintenance device 9, for example.
  • the updating unit 22 when the maximum acceleration due to an earthquake exceeds the general reference value, the updating unit 22 does not satisfy the individual standard for the numerical value based on the acceleration output by the earthquake detector 8 and causes damage to the elevator 1. If there is a completion report indicating that it was not, the numerical value is set as a new individual standard. In other words, for example, the update unit 22 has, for example, the case in which no physical loss has occurred in the elevator 1 even though the current swing is greater than the previous swing in which the physical loss has not occurred in the elevator 1, The individual standard is revised upward.
  • the updating unit 22 when the maximum acceleration due to an earthquake exceeds the general reference value, the updating unit 22 satisfies the individual criterion for the numerical value based on the acceleration output by the earthquake detector 8 and the property damage has occurred in the elevator 1. If there is a completion report indicating this, the numerical value is set as a new individual standard.
  • the updating unit 22 may be configured to perform an individual case when a physical loss has occurred in the elevator 1 even though the current swing is smaller than a previous swing that has not caused the physical loss in the elevator 1. The standard is revised downward.
  • FIG. 3 is a diagram for explaining the restoration of the elevator after the earthquake.
  • FIG. 3 shows an example of countermeasures according to the maximum acceleration value output by the earthquake detector 8.
  • Gal values corresponding to “extra low”, “low”, “high”, and “diagnosis” are set as the reference of the maximum acceleration output by the earthquake detector 8.
  • “High” corresponds to, for example, a general reference value set for the earthquake-resistant class A elevator 1.
  • “Diagnosis” corresponds to, for example, a general reference value set for the elevator 1 of the earthquake resistance class S.
  • the elevator 1 when the maximum acceleration output by the earthquake detector 8 is greater than “extra low” and less than or equal to “low”, the elevator 1 is automatically reset after a certain period of time after stopping temporarily. The elevator 1 resumes operation after the automatic reset.
  • the earthquake-resistant class A elevator 1 has to be restored by a maintenance worker.
  • the maximum acceleration output by the earthquake detector 8 is larger than “diagnosis”
  • the earthquake-resistant class S elevator 1 has to be restored by a maintenance worker.
  • the automatic diagnosis operation of the elevator 1 is performed based on the individual criteria. Done.
  • FIG. 4 is a flowchart showing an operation example of the elevator automatic recovery system according to the first embodiment.
  • the automatic diagnosis control unit 18 determines whether or not the maximum acceleration output by the earthquake detector 8 is equal to or less than “extra low” (step S101). If it is determined in step S101 that the maximum acceleration is equal to or less than “extra low”, the service of the elevator 1 is continued.
  • step S101 If it is determined in step S101 that the maximum acceleration is greater than “extra low”, the elevator 1 stops (step S102).
  • the automatic diagnosis control unit 18 determines whether or not the maximum acceleration output by the earthquake detector 8 is “low” or less (step S103). If it is determined in step S103 that the maximum acceleration is “low” or less, the elevator 1 is automatically reset, for example, after one minute (step S104). After step S104, the service of the elevator 1 is continued.
  • step S103 If it is determined in step S103 that the maximum acceleration is greater than “low”, the automatic diagnosis control unit 18 determines whether or not the maximum acceleration output by the earthquake detector 8 is “high” or less ( Step S105). If it is determined in step S105 that the maximum acceleration is equal to or less than “high”, the process of step S108 is performed.
  • step S106 determines whether or not the earthquake resistance class of the elevator 1 is the earthquake resistance class S. If it is determined in step S106 that the earthquake resistance class S, the automatic diagnosis control unit 18 determines whether or not the maximum acceleration output by the earthquake detector 8 is equal to or less than “diagnosis” (step S107). If it is determined in step S107 that the maximum acceleration is equal to or less than “diagnosis”, the process of step S108 is performed.
  • step S108 the reporting unit 20 reports to the monitoring center 10.
  • the content notified in step S108 indicates that, for example, automatic diagnosis operation is executed.
  • the automatic diagnosis control unit 18 executes an automatic diagnosis operation of the elevator 1 (step S109).
  • the automatic diagnosis control unit 18 determines whether there is a physical loss in the elevator 1 based on the result of the automatic diagnosis operation (step S110).
  • the reporting unit 20 reports to the monitoring center 10 (step S111).
  • the content notified in step S111 indicates, for example, that the elevator 1 has no physical damage. In this case, the service of the elevator 1 is continued.
  • step S110 When it is determined in step S110 that the elevator 1 is damaged, the reporting unit 20 reports to the monitoring center 10 (step S112).
  • the content notified in step S112 is, for example, a maintenance worker dispatch request.
  • the maintenance worker inspects and repairs the elevator 1 in response to the dispatch request (step S113).
  • the maintenance worker reports completion to the monitoring center 10 after completion of the work (step S114).
  • step S106 If it is determined in step S106 that it is not the earthquake resistant class S, the process of step S115 is performed. If it is determined in step S107 that the maximum acceleration is greater than “diagnosis”, the process of step S115 is performed.
  • step S115 the automatic diagnosis control unit 18 determines whether or not the automatic diagnosis operation using the individual criteria can be executed. The determination in step S115 is based on, for example, whether or not there is a maintenance contract for the elevator 1 regarding automatic diagnosis operation using an individual criterion. If it is determined in step S115 that the automatic diagnosis operation using the individual reference is not possible, the process of step S112 is performed.
  • the automatic diagnosis control unit 18 acquires output data based on the acceleration due to the current earthquake from the earthquake detector 8 (step S116). ).
  • the reporting unit 20 reports the output data to the monitoring center 10 (step S117).
  • the automatic diagnosis control unit 18 determines whether or not the acquired output data satisfies the individual criteria (step S118).
  • step S118 If it is determined in step S118 that the output data satisfies the individual criteria, the process of step S108 is performed. If it is determined in step S118 that the output data does not satisfy the individual criteria, the process of step S112 is performed.
  • the communication unit 12 of the earthquake detector 8 has a function of performing bidirectional communication with the control panel 7 of the elevator 1.
  • the communication unit 12 transmits, for example, a numerical value indicating the maximum acceleration, a numerical value indicating the maximum acceleration for each shaking direction, and a numerical value indicating the maximum shaking time to the control panel 7. That is, the output data of the earthquake detector 8 is not a simple contact signal corresponding to the magnitude of the shaking, but is a detailed numerical value representing the characteristics of the shaking. Therefore, according to the first embodiment, it is possible to extend services such as elevator control operation and automatic diagnosis operation when an earthquake occurs, using the output data of the earthquake detector. Further, according to the first embodiment, it is possible to easily check the connection state between the earthquake detector and the control panel.
  • the earthquake detector 8 may have, for example, a vibration generating unit.
  • the vibration generating unit has a function of generating vibration by a servo motor or the like, for example.
  • the self-diagnosis unit 16 operates the vibration generation unit based on the function diagnosis command transmitted from the sensor control unit 17.
  • the self-diagnosis unit 16 determines whether or not various numerical values detected by the acceleration detection unit 13, the swing direction detection unit 14, and the swing time detection unit 15 after the start of the operation of the vibration generation unit are normal.
  • the communication unit 12 returns, for example, various numerical values and the determination result by the self-diagnosis unit 16 to the maintenance device 9. Thereby, it can be easily confirmed that the seismic detector operates normally when an actual earthquake occurs.
  • the vibration generation unit may be provided as a separate device from the earthquake detector 8 as long as vibration can be transmitted to the earthquake detector 8.
  • the automatic diagnosis control unit 18 has a function of executing an automatic diagnosis operation of the elevator 1 after the occurrence of an earthquake, and the maximum acceleration output by the earthquake detector 8 is equal to or less than a preset general reference value. Automatic diagnosis operation is executed when it falls within a certain range.
  • the storage unit 19 stores individual standards set for each building or for each elevator 1.
  • the automatic diagnosis control unit 18 stores a numerical value based on the acceleration output by the earthquake detector 8 in the storage unit 19 even when the maximum acceleration output by the earthquake detector 8 exceeds the general reference value. If the individual criteria are met, automatic diagnostic operation is executed. For this reason, according to Embodiment 1, an automatic diagnostic driving
  • the individual standard includes, for example, the maximum acceleration due to the past shaking that caused no physical damage to the elevator 1.
  • the automatic diagnosis control unit 18 determines whether or not to execute the automatic diagnosis operation based on the comparison result between the maximum acceleration output by the earthquake detector 8 and the individual reference. For this reason, an automatic diagnostic driving
  • the individual standard includes, for example, the maximum acceleration for each shaking direction due to the past shaking that did not cause any damage to the elevator 1.
  • the automatic diagnosis control unit 18 determines whether or not to execute the automatic diagnosis operation based on the comparison result between the maximum acceleration for each shaking direction output by the earthquake detector 8 and the individual reference. In this case, it is possible to determine whether or not to execute the automatic diagnosis operation in consideration of the fact that the seismic capacity of the building or the elevator varies depending on the shaking direction. For this reason, an automatic diagnostic driving
  • the individual standard includes, for example, the maximum shaking time due to the past shaking that did not cause any damage to the elevator 1.
  • the automatic diagnosis control unit 18 determines whether or not to execute the automatic diagnosis operation based on the comparison result between the maximum shaking time output by the earthquake detector 8 and the individual reference. In this case, it is possible to determine whether or not to execute the automatic diagnosis operation in consideration of the fact that the seismic capacity of the building or the elevator varies depending on the shaking time. For this reason, an automatic diagnostic driving
  • the automatic diagnosis control unit 18 is based on, for example, a comparison result between at least two types among the maximum acceleration output by the earthquake detector 8, the maximum acceleration for each swing direction, and the maximum swing time and the individual reference. To determine whether or not to execute the automatic diagnosis operation. For this reason, automatic diagnosis operation can be performed according to the more detailed seismic capacity of each building or each elevator.
  • the individual standard is set based on, for example, the acceleration due to the past shaking that caused no physical damage to the elevator 1. For this reason, an automatic diagnostic driving
  • the update unit 22 updates the individual standard stored in the storage unit 19, for example.
  • the automatic diagnosis control unit 18 and the storage unit 19 are provided, for example, in the maintenance device 9 installed in the same building as the elevator 1.
  • the update unit 22 is provided in the monitoring center 10 that can communicate with the maintenance device 9, for example. For this reason, it can prevent that a maintenance worker changes an individual standard accidentally at the time of inspection of an elevator.
  • the updating unit 22 satisfies the individual criterion with the numerical value based on the acceleration output by the earthquake detector 8.
  • the numerical value is set as an individual standard. That is, the update unit 22 upwardly corrects the individual standard for the building or the elevator 1 having high earthquake resistance. For this reason, an automatic diagnostic driving
  • the update unit 22 when the maximum acceleration output by the earthquake detector 8 exceeds the general reference value, the update unit 22 satisfies the individual criterion with the numerical value based on the acceleration output by the earthquake detector 8. And when it is confirmed by the maintenance worker that the physical loss has occurred in the elevator 1, the numerical value is set as an individual standard. That is, the update unit 22 corrects the individual standard for the building or the elevator 1 having a low earthquake resistance. For this reason, an automatic diagnostic driving
  • an individual standard for an elevator 1 or a building in which the elevator 1 is installed is output in the past by, for example, the earthquake detector 8 provided at a location different from the elevator 1 or the building. It may be set based on the acceleration.
  • the individual reference for a certain elevator 1 may be set based on, for example, an acceleration output in the past by an earthquake detector 8 provided in another elevator 1 having the same or similar model and hoistway dimensions.
  • Individual standards for a building are set based on, for example, accelerations output in the past by seismic detectors 8 provided in other buildings with the same or similar floor number, building age, planar shape, structural material, and ground. May be. In this case, for example, an appropriate individual standard can be set for a newly installed elevator or a newly completed building.
  • the sensor control unit 17, the automatic diagnosis control unit 18, the storage unit 19, and the notification unit 20 may be provided as functions of the control panel 7. Even in this case, the automatic diagnosis operation can be executed according to the seismic capacity of each building or each elevator.
  • FIG. 5 is a hardware configuration diagram of the maintenance device.
  • the functions of the sensor control unit 17, the automatic diagnosis control unit 18, the storage unit 19, and the notification unit 20 in the maintenance device 9 are realized by a processing circuit.
  • the processing circuit may be dedicated hardware 50.
  • the processing circuit may include a processor 51 and a memory 52.
  • a part of the processing circuit is formed as dedicated hardware 50, and may further include a processor 51 and a memory 52.
  • FIG. 5 shows an example in which the processing circuit is partly formed as dedicated hardware 50 and includes a processor 51 and a memory 52.
  • the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or the like. The combination is applicable.
  • the processing circuit includes at least one processor 51 and at least one memory 52
  • the functions of the sensor control unit 17, the automatic diagnosis control unit 18, the storage unit 19, and the notification unit 20 are software, firmware, or software and firmware. It is realized by the combination.
  • Software and firmware are described as programs and stored in the memory 52.
  • the processor 51 reads out and executes the program stored in the memory 52, thereby realizing the function of each unit.
  • the processor 51 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • the memory 52 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
  • a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
  • the processing circuit can realize each function of the maintenance device 9 by hardware, software, firmware, or a combination thereof.
  • the functions of the control panel 7, the earthquake detector 8, and the monitoring center 10 are also realized by a processing circuit similar to the processing circuit shown in FIG.
  • the present invention can be applied to an elevator.

Abstract

Provided is an earthquake sensor for elevators which is capable when an earthquake occurs of expanding elevator services such as emergency operation and automated diagnosis operation. This earthquake sensor 8 for elevators is equipped with: a communication unit 12 having a function for performing bidirectional communication with a control panel 7 of an elevator 1; an acceleration detection unit 13 for detecting vibrations as acceleration; a vibration direction detection unit 14 for detecting the acceleration in each vibration direction; and a vibration time detection unit 15 for detecting vibration time. For example, the communication unit 12 transmits a numerical value indicating the maximum acceleration detected by the acceleration detection unit 13 to the control panel 7.

Description

エレベーター用の地震感知器Earthquake detector for elevator
 本発明は、エレベーター用の地震感知器に関する。 The present invention relates to an earthquake detector for an elevator.
 従来、地震発生時に、地震感知器の出力に応じてエレベーターの地震時管制運転及び自動診断運転等を行うシステムが知られている。エレベーターの地震時管制運転に関する技術として、例えば、下記特許文献1に記載されたものがある。 Conventionally, when an earthquake occurs, a system that performs an emergency operation control of an elevator and an automatic diagnosis operation according to the output of an earthquake detector is known. As a technique related to the control operation of an elevator during an earthquake, for example, there is one described in Patent Document 1 below.
日本特開2006-160449号公報Japanese Unexamined Patent Publication No. 2006-160449
 従来の地震感知器の出力は、例えば、揺れによる加速度が基準値を超えたことを示すだけの単純な接点信号である。このため、従来の地震感知器は、地震発生時におけるエレベーターのサービスを拡張しようとする場合に利用し難い。 The output of a conventional seismic detector is, for example, a simple contact signal indicating that the acceleration due to shaking has exceeded a reference value. For this reason, the conventional earthquake detector is difficult to use when trying to expand the service of the elevator in the event of an earthquake.
 本発明は、上記の課題を解決するためになされた。その目的は、地震発生時におけるエレベーターのサービスを拡張することができるエレベーター用の地震感知器を提供することである。 The present invention has been made to solve the above problems. The object is to provide an elevator earthquake sensor that can expand the service of the elevator in the event of an earthquake.
 本発明に係るエレベーター用の地震感知器は、揺れを加速度として検出する加速度検出部と、エレベーターの制御盤との双方向通信を行う機能を有し、加速度検出部により検出された最大加速度を示す数値を制御盤に送信する通信部と、を備える。 The earthquake detector for an elevator according to the present invention has a function of performing bidirectional communication between an acceleration detection unit that detects a swing as an acceleration and an elevator control panel, and indicates the maximum acceleration detected by the acceleration detection unit. And a communication unit that transmits numerical values to the control panel.
 本発明において、通信部は、エレベーターの制御盤との双方向通信を行う機能を有し、加速度検出部により検出された最大加速度を示す数値を制御盤に送信する。このため、本発明によれば、地震発生時におけるエレベーターのサービスを拡張することができる。 In the present invention, the communication unit has a function of performing bidirectional communication with the control panel of the elevator, and transmits a numerical value indicating the maximum acceleration detected by the acceleration detection unit to the control panel. For this reason, according to this invention, the service of the elevator at the time of the occurrence of an earthquake can be expanded.
エレベーターの構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of an elevator. 実施の形態1におけるエレベーターの自動復旧システムの機能ブロック図である。1 is a functional block diagram of an elevator automatic recovery system according to Embodiment 1. FIG. 地震発生後のエレベーターの復旧について説明するための図である。It is a figure for demonstrating restoration of the elevator after the occurrence of an earthquake. 実施の形態1におけるエレベーターの自動復旧システムの動作例を示すフローチャートである。3 is a flowchart illustrating an operation example of the elevator automatic recovery system according to the first embodiment. 保守装置のハードウェア構成図である。It is a hardware block diagram of a maintenance apparatus.
 添付の図面を参照して、エレベーター用の地震感知器及びエレベーターの自動復旧システムを詳細に説明する。各図では、同一又は相当する部分に同一の符号を付している。重複する説明は、適宜簡略化あるいは省略する。 Referring to the attached drawings, the earthquake detector for elevators and the elevator automatic recovery system will be explained in detail. In each figure, the same or corresponding parts are denoted by the same reference numerals. The overlapping description will be simplified or omitted as appropriate.
実施の形態1.
 図1は、エレベーターの構造の一例を示す模式図である。
Embodiment 1 FIG.
Drawing 1 is a mimetic diagram showing an example of the structure of an elevator.
 図1に示すように、エレベーター1は、昇降路2、巻上機3、ロープ4、かご5、釣合おもり6、制御盤7及び地震感知器8を備える。昇降路2は、例えば、図示しない建物の各階を貫くように形成されている。巻上機3は、例えば、図示しない機械室等に設けられている。ロープ4は、巻上機3に巻き掛けられている。かご5及び釣合おもり6は、ロープ4によって昇降路2内に吊り下げられている。かご5及び釣合おもり6は、巻上機3が駆動することにより昇降する。巻上機3は、制御盤7によって制御される。 As shown in FIG. 1, the elevator 1 includes a hoistway 2, a hoisting machine 3, a rope 4, a car 5, a counterweight 6, a control panel 7, and an earthquake detector 8. The hoistway 2 is formed, for example, so as to penetrate each floor of a building (not shown). The hoisting machine 3 is provided, for example, in a machine room (not shown). The rope 4 is wound around the hoisting machine 3. The car 5 and the counterweight 6 are suspended in the hoistway 2 by the rope 4. The car 5 and the counterweight 6 move up and down when the hoisting machine 3 is driven. The hoisting machine 3 is controlled by the control panel 7.
 図1に示すように、制御盤7及び地震感知器8は、例えば、昇降路2内に設けられる。制御盤7及び地震感知器8は、例えば、ピットに設けられる。制御盤7及び地震感知器8は、例えば、機械室等に設けられてもよい。地震感知器8は、制御盤7と電気的に接続される。 As shown in FIG. 1, the control panel 7 and the earthquake detector 8 are provided in the hoistway 2, for example. The control panel 7 and the earthquake detector 8 are provided in a pit, for example. The control panel 7 and the earthquake detector 8 may be provided in a machine room, for example. The earthquake sensor 8 is electrically connected to the control panel 7.
 制御盤7は、巻上機3及び保守装置9と電気的に接続されている。保守装置9は、監視センター10と通信する機能を有する。つまり、制御盤7は、保守装置9を介して監視センター10と通信可能である。 The control panel 7 is electrically connected to the hoisting machine 3 and the maintenance device 9. The maintenance device 9 has a function of communicating with the monitoring center 10. That is, the control panel 7 can communicate with the monitoring center 10 via the maintenance device 9.
 制御盤7及び保守装置9は、例えば、エレベーター1が設置された建物に設けられている。監視センター10は、例えば、エレベーター1が設置された建物とは別の建物に設けられている。監視センター10は、例えば、エレベーター1の管理会社に設けられたサーバー等である。 The control panel 7 and the maintenance device 9 are provided, for example, in a building where the elevator 1 is installed. The monitoring center 10 is provided in a building different from the building where the elevator 1 is installed, for example. The monitoring center 10 is, for example, a server provided in a management company for the elevator 1.
 監視センター10は、例えば、複数のエレベーター1の制御盤7と通信可能であってもよい。監視センター10は、例えば、異なる建物に設けられた複数の保守装置9と通信可能であってもよい。 The monitoring center 10 may be able to communicate with the control panels 7 of the plurality of elevators 1, for example. For example, the monitoring center 10 may be able to communicate with a plurality of maintenance apparatuses 9 provided in different buildings.
 図2は、実施の形態1におけるエレベーターの自動復旧システムの機能ブロック図である。 FIG. 2 is a functional block diagram of the elevator automatic recovery system according to the first embodiment.
 図2に示すように、制御盤7は、運転制御部11を有する。地震感知器8は、通信部12、加速度検出部13、揺れ方向検出部14、揺れ時間検出部15及び自己診断部16を有する。保守装置9は、感知器制御部17、自動診断制御部18、記憶部19及び通報部20を有する。監視センター10は、記憶部21及び更新部22を有する。 As shown in FIG. 2, the control panel 7 has an operation control unit 11. The earthquake detector 8 includes a communication unit 12, an acceleration detection unit 13, a shaking direction detection unit 14, a shaking time detection unit 15, and a self-diagnosis unit 16. The maintenance device 9 includes a sensor control unit 17, an automatic diagnosis control unit 18, a storage unit 19, and a notification unit 20. The monitoring center 10 includes a storage unit 21 and an update unit 22.
 運転制御部11は、エレベーター1の動作を制御する。運転制御部11は、例えば、巻上機3の駆動を制御することで、かご5の移動を制御する。運転制御部11は、例えば、図示しない戸開閉装置を介して、エレベーター1のドアの開閉を制御する。 The operation control unit 11 controls the operation of the elevator 1. For example, the operation control unit 11 controls the movement of the car 5 by controlling the driving of the hoisting machine 3. The operation control unit 11 controls the opening / closing of the door of the elevator 1 via, for example, a door opening / closing device (not shown).
 通信部12は、制御盤7と通信を行う。通信部12と制御盤7との間で送受信される信号は、例えば、接点信号ではない。通信部12と制御盤7との間の伝送方式は、例えば、シリアル伝送等である。通信部12は、制御盤7に対して情報を送信する。通信部12は、制御盤7から情報を受信する。つまり、地震感知器8は、制御盤7との双方向通信を行う機能を有する。また、地震感知器8は、制御盤7を介して、保守装置9との双方向通信を行う機能を有する。 The communication unit 12 communicates with the control panel 7. The signal transmitted and received between the communication unit 12 and the control panel 7 is not a contact signal, for example. A transmission method between the communication unit 12 and the control panel 7 is, for example, serial transmission. The communication unit 12 transmits information to the control panel 7. The communication unit 12 receives information from the control panel 7. That is, the earthquake detector 8 has a function of performing bidirectional communication with the control panel 7. Further, the earthquake detector 8 has a function of performing bidirectional communication with the maintenance device 9 via the control panel 7.
 加速度検出部13は、地震等による揺れを加速度として検出する。加速度検出部13は、例えば、加速度の検出を常時行う。加速度は、例えば、Gal値で表される。 The acceleration detection unit 13 detects a shake due to an earthquake or the like as an acceleration. For example, the acceleration detector 13 constantly detects acceleration. The acceleration is expressed by, for example, a Gal value.
 揺れ方向検出部14は、揺れ方向ごとの加速度を検出する。揺れ方向は、例えば、水平方向及び垂直方向を含む。揺れ方向としては、例えば、互いに直交するX軸、Y軸及びZ軸に対応する方向が設定されてもよい。揺れ方向のうち水平方向としては、例えば、四方位又は八方位に対応する方向が設定されてもよい。揺れ方向のうち水平方向は、例えば、建物の平面形状に応じて設定されてもよい。揺れ方向検出部14は、例えば、揺れ方向ごとの加速度の検出を常時行う。揺れ方向ごとの加速度は、例えば、方向と関連付けられたGal値で表される。 The shaking direction detector 14 detects the acceleration for each shaking direction. The shaking direction includes, for example, a horizontal direction and a vertical direction. For example, directions corresponding to the X axis, the Y axis, and the Z axis that are orthogonal to each other may be set as the shaking direction. As the horizontal direction among the shaking directions, for example, directions corresponding to four directions or eight directions may be set. The horizontal direction among the shaking directions may be set according to the planar shape of the building, for example. For example, the shaking direction detection unit 14 always detects acceleration in each shaking direction. The acceleration for each shaking direction is represented by, for example, a Gal value associated with the direction.
 揺れ方向検出部14は、例えば、加速度検出部13により検出された加速度を分解することで揺れ方向ごとの加速度を算出してもよい。揺れ方向検出部14は、例えば、揺れ方向のそれぞれに対応する複数のセンサによって揺れ方向ごとの加速度を検出してもよい。  The shaking direction detection unit 14 may calculate the acceleration for each shaking direction by, for example, decomposing the acceleration detected by the acceleration detection unit 13. For example, the shaking direction detection unit 14 may detect the acceleration for each shaking direction using a plurality of sensors corresponding to each of the shaking directions. *
 揺れ時間検出部15は、揺れ時間を検出する。揺れ時間は、例えば、予め設定された閾値を超える加速度での揺れが継続した時間である。揺れ時間は、例えば、閾値を超える加速度が加速度検出部13により連続して検出された時間である。揺れ時間検出部15は、例えば、第1の揺れ時間の終了時点から第2の揺れ時間の開始時点までの間隔が一定時間未満である場合に、第1の揺れ時間の開始時点から第2の揺れ時間の終了時点までを1つの連続した揺れ時間として検出してもよい。揺れ時間は、例えば、秒又は分で表される。 The shaking time detector 15 detects the shaking time. The shaking time is, for example, a time during which shaking at an acceleration exceeding a preset threshold value continues. The shaking time is, for example, the time when acceleration exceeding the threshold is continuously detected by the acceleration detector 13. For example, when the interval from the end time of the first shake time to the start time of the second shake time is less than a certain time, the shake time detection unit 15 performs the second change from the start time of the first shake time to the second time. The time until the end of the shaking time may be detected as one continuous shaking time. The shaking time is expressed in seconds or minutes, for example.
 通信部12は、例えば、加速度検出部13、揺れ方向検出部14及び揺れ時間検出部15により検出された各種数値を制御盤7に送信する。通信部12は、例えば、閾値を超える加速度が加速度検出部13により検出された場合に、各種数値の送信を行う。制御盤7は、例えば、各種数値を保守装置9に送信する。 The communication unit 12 transmits, for example, various numerical values detected by the acceleration detection unit 13, the shaking direction detection unit 14, and the shaking time detection unit 15 to the control panel 7. The communication unit 12 transmits various numerical values when, for example, an acceleration exceeding a threshold is detected by the acceleration detection unit 13. For example, the control panel 7 transmits various numerical values to the maintenance device 9.
 通信部12は、例えば、加速度検出部13により検出された最大加速度を示す数値を送信する。通信部12は、例えば、揺れ方向検出部14により検出された揺れ方向ごとの最大加速度を示す数値を送信する。通信部12は、例えば、揺れ時間検出部15により検出された最大揺れ時間を示す数値を送信する。このように、地震感知器8は、揺れを加速度として検出し、検出した加速度に基づく数値を出力する。 The communication unit 12 transmits a numerical value indicating the maximum acceleration detected by the acceleration detection unit 13, for example. The communication part 12 transmits the numerical value which shows the maximum acceleration for every shaking direction detected by the shaking direction detection part 14, for example. For example, the communication unit 12 transmits a numerical value indicating the maximum shaking time detected by the shaking time detection unit 15. In this way, the earthquake detector 8 detects shaking as acceleration, and outputs a numerical value based on the detected acceleration.
 最大加速度とは、例えば、加速度検出部13により検出される加速度が閾値を超えてから閾値以下になるまでの期間において、加速度検出部13により検出された加速度の最大値である。揺れ方向ごとの最大加速度とは、例えば、当該期間において、揺れ方向検出部14により検出された加速度の最大値である。 The maximum acceleration is, for example, the maximum value of the acceleration detected by the acceleration detection unit 13 during the period from when the acceleration detected by the acceleration detection unit 13 exceeds the threshold value to below the threshold value. The maximum acceleration for each shaking direction is, for example, the maximum value of acceleration detected by the shaking direction detection unit 14 during the period.
 感知器制御部17は、例えば、地震感知器8に対してリセット信号を送信する。地震感知器8は、例えば、リセット信号を受信すると、加速度に基づく数値の出力を停止する。 The sensor control unit 17 transmits a reset signal to the earthquake sensor 8, for example. For example, when the earthquake sensor 8 receives a reset signal, the earthquake sensor 8 stops outputting numerical values based on the acceleration.
 感知器制御部17は、例えば、定期的に地震感知器8の死活チェックを行う。感知器制御部17は、例えば、地震感知器8に対して要求信号を送信する。通信部12は、例えば、要求信号に対する応答信号を返信する。感知器制御部17は、例えば、要求信号を送信してから一定時間以内に応答信号を受信した場合、地震感知器8が動作していると判定する。感知器制御部17は、例えば、要求信号を送信してから一定時間以内に応答信号を受信しない場合、地震感知器8が動作していない或いは制御盤7と地震感知器8との接続が切断されていると判定する。 For example, the detector control unit 17 periodically checks the life and death of the earthquake detector 8. For example, the sensor control unit 17 transmits a request signal to the earthquake sensor 8. The communication unit 12 returns a response signal to the request signal, for example. For example, when the response signal is received within a predetermined time after transmitting the request signal, the sensor control unit 17 determines that the earthquake sensor 8 is operating. For example, when the sensor control unit 17 does not receive a response signal within a predetermined time after transmitting a request signal, the seismic sensor 8 is not operating or the connection between the control panel 7 and the seismic sensor 8 is disconnected. It is determined that
 感知器制御部17は、例えば、地震感知器8に対して機能診断指令を送信する。自己診断部16は、例えば、機能診断指令に基づく診断動作を行う。診断動作は、例えば、加速度の検出又は地震感知器8のリセット等が正常に行われるか否かを点検することである。通信部12は、例えば、自己診断部16による診断結果を保守装置9に返信する。 The sensor control unit 17 transmits a function diagnosis command to the earthquake sensor 8, for example. For example, the self-diagnosis unit 16 performs a diagnosis operation based on a function diagnosis command. The diagnostic operation is, for example, checking whether or not the acceleration detection or the earthquake detector 8 is normally performed. For example, the communication unit 12 returns a diagnosis result from the self-diagnosis unit 16 to the maintenance device 9.
 自動診断制御部18は、制御盤7を介して自動診断運転を実行する機能を有する。自動診断運転は、エレベーター1を自動復旧してもよいか否かを判定するために実際の地震発生後に行われる運転である。自動診断運転により、例えば、エレベーター1の機器に物損が有るか否かが判定される。 The automatic diagnosis control unit 18 has a function of executing automatic diagnosis operation via the control panel 7. The automatic diagnosis operation is an operation performed after an actual earthquake occurs in order to determine whether or not the elevator 1 may be automatically restored. By the automatic diagnosis operation, for example, it is determined whether or not the equipment of the elevator 1 is damaged.
 自動診断制御部18は、例えば、地震感知器8により出力された最大加速度が一般基準値以下の一定範囲に含まれる場合に自動診断運転を実行する。一般基準値は、例えば、法令により定められた耐震基準等に基づいて予め設定されたものである。一般基準値は、例えば、Gal値で表される。 The automatic diagnosis control unit 18 executes the automatic diagnosis operation when, for example, the maximum acceleration output by the earthquake detector 8 is included in a certain range that is equal to or less than the general reference value. The general reference value is set in advance based on, for example, an earthquake resistance standard determined by law. The general reference value is represented by a Gal value, for example.
 自動診断制御部18は、例えば、地震感知器8により出力された最大加速度が一般基準値を超えた場合であっても、地震感知器8により出力された加速度に基づく数値が個別基準を満たす場合には、自動診断運転を実行する。個別基準とは、例えば、エレベーター1の設置されている建物ごと又はエレベーター1ごとに設定されたものである。つまり、個別基準の内容は、建物又はエレベーター1によって異なり得る。 For example, even when the maximum acceleration output by the earthquake detector 8 exceeds the general reference value, the automatic diagnosis control unit 18 has a numerical value based on the acceleration output by the earthquake detector 8 that satisfies the individual criterion. The automatic diagnosis operation is executed. The individual standard is, for example, set for each building where the elevator 1 is installed or for each elevator 1. That is, the content of the individual standard may vary depending on the building or the elevator 1.
 保守装置9の記憶部19は、個別基準データ23を記憶している。個別基準データ23は、例えば、当該保守装置9と接続された制御盤7によって制御されるエレベーター1又は当該エレベーター1が設置されている建物について設定された個別基準を示すデータである。 The storage unit 19 of the maintenance device 9 stores individual reference data 23. The individual reference data 23 is, for example, data indicating an individual reference set for the elevator 1 controlled by the control panel 7 connected to the maintenance device 9 or the building where the elevator 1 is installed.
 あるエレベーター1又は当該エレベーター1が設置されている建物についての個別基準は、例えば、当該エレベーター1に物損を発生させなかった過去の揺れによる加速度に基づいて設定される。個別基準は、例えば、当該エレベーター1又は当該建物に設けられた地震感知器8により過去に出力された加速度に基づいて設定される。個別基準は、例えば、地震感知器8により出力される加速度に基づく数値の上限値として設定される。 The individual standard for a certain elevator 1 or a building in which the elevator 1 is installed is set based on, for example, acceleration due to past shaking that has caused no damage to the elevator 1. The individual reference is set based on, for example, acceleration output in the past by the earthquake detector 8 provided in the elevator 1 or the building. The individual criterion is set as an upper limit value of a numerical value based on the acceleration output from the earthquake detector 8, for example.
 個別基準は、例えば、エレベーター1に物損を発生させなかった過去の揺れによる最大加速度を示す数値を含む。当該数値は、例えば、一般基準値よりも大きい値でもよい。自動診断制御部18は、例えば、地震による最大加速度が一般基準値を超えたとしても、当該最大加速度が個別基準に含まれる当該数値以下である場合には、自動診断運転を実行する。自動診断制御部18は、例えば、地震による最大加速度が個別基準に含まれる当該数値を超えた場合には、自動診断運転を実行しない。 The individual standard includes, for example, a numerical value indicating the maximum acceleration due to the past shaking that caused no damage to the elevator 1. The numerical value may be a value larger than the general reference value, for example. For example, even if the maximum acceleration due to an earthquake exceeds the general reference value, the automatic diagnosis control unit 18 executes the automatic diagnosis operation when the maximum acceleration is equal to or less than the value included in the individual reference. For example, when the maximum acceleration due to an earthquake exceeds the numerical value included in the individual reference, the automatic diagnosis control unit 18 does not execute the automatic diagnosis operation.
 個別基準は、例えば、エレベーター1に物損を発生させなかった過去の揺れによる揺れ方向ごとの最大加速度を示す数値を含む。当該数値は、例えば、一般基準値よりも大きい値でもよい。自動診断制御部18は、例えば、地震による最大加速度が一般基準値を超えたとしても、地震による揺れ方向ごとの最大加速度が個別基準に含まれる当該数値以下である場合には、自動診断運転を実行する。自動診断制御部18は、例えば、地震による揺れ方向ごとの最大加速度が個別基準に含まれる当該数値を超えた場合には、自動診断運転を実行しない。 The individual standard includes, for example, a numerical value indicating the maximum acceleration in each shaking direction due to past shaking that did not cause any damage to the elevator 1. The numerical value may be a value larger than the general reference value, for example. For example, even if the maximum acceleration due to the earthquake exceeds the general reference value, the automatic diagnosis control unit 18 performs the automatic diagnosis operation when the maximum acceleration for each shaking direction due to the earthquake is equal to or less than the value included in the individual reference. Execute. For example, when the maximum acceleration for each shaking direction due to an earthquake exceeds the numerical value included in the individual reference, the automatic diagnosis control unit 18 does not execute the automatic diagnosis operation.
 個別基準は、例えば、エレベーター1に物損を発生させなかった過去の揺れによる最大揺れ時間を示す数値を含む。自動診断制御部18は、例えば、地震による最大加速度が一般基準値を超えたとしても、地震による最大揺れ時間が個別基準に含まれる当該数値以下である場合には、自動診断運転を実行する。自動診断制御部18は、例えば、地震による最大揺れ時間が個別基準に含まれる当該数値を超えた場合には、自動診断運転を実行しない。 The individual standard includes, for example, a numerical value indicating the maximum shaking time due to the past shaking that caused no damage to the elevator 1. For example, even if the maximum acceleration due to an earthquake exceeds the general reference value, the automatic diagnosis control unit 18 performs an automatic diagnosis operation when the maximum shaking time due to the earthquake is equal to or less than the value included in the individual reference. For example, when the maximum shaking time due to an earthquake exceeds the numerical value included in the individual reference, the automatic diagnosis control unit 18 does not execute the automatic diagnosis operation.
 個別基準は、例えば、エレベーター1に物損を発生させなかった過去の揺れによる最大加速度を示す数値、揺れ方向ごとの最大加速度を示す数値及び最大揺れ時間を示す数値のうち2種類以上を含んでいてもよい。自動診断制御部18は、例えば、地震感知器8により出力された最大加速度、揺れ方向ごとの最大加速度及び最大揺れ時間のうち2種類以上と個別基準との比較結果に基づいて、自動診断運転を実行するか否かを決定してもよい。 The individual standard includes, for example, two or more kinds of values indicating the maximum acceleration due to the past shaking that did not cause any damage to the elevator 1, the value indicating the maximum acceleration for each shaking direction, and the value indicating the maximum shaking time. May be. For example, the automatic diagnosis control unit 18 performs automatic diagnosis operation based on a comparison result between two or more types among the maximum acceleration output from the earthquake detector 8, the maximum acceleration for each swing direction, and the maximum swing time and the individual criteria. It may be determined whether or not to execute.
 通報部20は、監視センター10に対する通報を行う。通報部20は、例えば、保守装置9の動作に関する情報を監視センター10に通報する。通報部20は、例えば、制御盤7から得られるエレベーター1の状態を示す情報を監視センター10に通報する。通報部20は、例えば、地震感知器8から得られる情報を監視センター10に通報する。通報部20は、例えば、地震発生時に地震感知器8により出力された最大加速度、揺れ方向ごとの最大加速度及び最大揺れ時間等を監視センター10に通報する。 The reporting unit 20 reports to the monitoring center 10. For example, the reporting unit 20 reports information related to the operation of the maintenance device 9 to the monitoring center 10. For example, the reporting unit 20 reports information indicating the state of the elevator 1 obtained from the control panel 7 to the monitoring center 10. For example, the reporting unit 20 reports information obtained from the earthquake detector 8 to the monitoring center 10. For example, the reporting unit 20 reports to the monitoring center 10 the maximum acceleration output by the earthquake detector 8 when the earthquake occurs, the maximum acceleration for each shaking direction, the maximum shaking time, and the like.
 通報部20は、例えば、自動診断運転の結果からエレベーター1に物損が発生していないと判定された場合、その旨を監視センター10に通報する。 For example, when it is determined from the result of the automatic diagnosis operation that no damage has occurred in the elevator 1, the reporting unit 20 notifies the monitoring center 10 to that effect.
 通報部20は、例えば、自動診断運転の結果からエレベーター1に物損が発生していると判定された場合、監視センター10に対して保守作業者の出動要請を行う。 For example, when it is determined from the result of the automatic diagnosis operation that the elevator 1 is damaged, the reporting unit 20 requests the monitoring center 10 to dispatch a maintenance worker.
 通報部20は、例えば、地震感知器8により出力された加速度に基づく数値が個別基準を満たさない場合、監視センター10に対して保守作業者の出動要請を行う。 For example, when the numerical value based on the acceleration output by the earthquake detector 8 does not satisfy the individual standard, the reporting unit 20 requests the monitoring center 10 to dispatch a maintenance worker.
 保守作業者は、出動要請に応じて、エレベーター1の点検作業を実施する。保守作業者は、作業終了後、監視センター10に完了報告を行う。完了報告は、例えば、制御盤7又は保守装置9等を介して行われてもよい。完了報告は、例えば、監視センター10に直接行われてもよい。完了報告の内容には、例えば、実際にエレベーター1に物損が発生していたか否かを示す情報が含まれる。 The maintenance worker performs the inspection work of the elevator 1 in response to the request for dispatch. The maintenance worker reports completion to the monitoring center 10 after the work is completed. The completion report may be performed, for example, via the control panel 7 or the maintenance device 9. The completion report may be made directly to the monitoring center 10, for example. The content of the completion report includes, for example, information indicating whether or not physical damage has actually occurred in the elevator 1.
 監視センター10の記憶部21は、蓄積データ24及び個別基準データ25を記憶している。 The storage unit 21 of the monitoring center 10 stores accumulated data 24 and individual reference data 25.
 蓄積データ24は、例えば、監視センター10による監視対象であるエレベーター1に対応する地震感知器8により過去に出力された加速度に基づく数値を示すデータである。蓄積データ24には、異なるエレベーター1又は異なる建物に対応する複数の地震感知器8の出力データが含まれ得る。蓄積データ24には、例えば、最大加速度、揺れ方向ごとの最大加速度及び最大揺れ時間等が含まれる。 The accumulated data 24 is, for example, data indicating numerical values based on accelerations output in the past by the earthquake detector 8 corresponding to the elevator 1 to be monitored by the monitoring center 10. The accumulated data 24 may include output data of a plurality of earthquake detectors 8 corresponding to different elevators 1 or different buildings. The accumulated data 24 includes, for example, maximum acceleration, maximum acceleration for each swing direction, maximum swing time, and the like.
 個別基準データ25は、例えば、監視センター10による監視対象であるエレベーター1又は当該エレベーター1が設置されている建物について設定された個別基準を示すデータである。個別基準データ25には、異なるエレベーター1又は異なる建物に対応する複数の個別基準が含まれ得る。個別基準データ25は、例えば、蓄積データ24に基づいて設定される。 The individual reference data 25 is, for example, data indicating an individual reference set for the elevator 1 to be monitored by the monitoring center 10 or the building where the elevator 1 is installed. The individual reference data 25 may include a plurality of individual standards corresponding to different elevators 1 or different buildings. The individual reference data 25 is set based on the accumulated data 24, for example.
 更新部22は、例えば、地震感知器8の最新の出力データに基づいて、個別基準データ25のうち当該地震感知器8に対応する建物又はエレベーター1についての個別基準を変更する。更新部22は、例えば、個別基準データ25のうち変更された個別基準に対応する個別基準データ23を変更する。つまり、更新部22は、保守装置9に記憶されている個別基準を更新する。なお、記憶部19に記憶されている個別基準データ23は、例えば、制御盤7及び保守装置9に対する操作によっては変更されない。 The update unit 22 changes the individual reference for the building or the elevator 1 corresponding to the earthquake detector 8 in the individual reference data 25 based on the latest output data of the earthquake detector 8, for example. For example, the update unit 22 changes the individual reference data 23 corresponding to the changed individual reference in the individual reference data 25. That is, the update unit 22 updates the individual reference stored in the maintenance device 9. Note that the individual reference data 23 stored in the storage unit 19 is not changed by an operation on the control panel 7 and the maintenance device 9, for example.
 更新部22は、例えば、地震による最大加速度が一般基準値を超えた場合において、地震感知器8により出力された加速度に基づく数値が個別基準を満たさず、且つ、エレベーター1に物損が発生していなかったことを示す完了報告があった場合に、当該数値を新たな個別基準として設定する。つまり、更新部22は、例えば、エレベーター1に物損を発生させなかった過去の揺れよりも今回の揺れの方が大きかったにもかかわらず当該エレベーター1に物損が発生していなかった場合、個別基準を上方修正する。 For example, when the maximum acceleration due to an earthquake exceeds the general reference value, the updating unit 22 does not satisfy the individual standard for the numerical value based on the acceleration output by the earthquake detector 8 and causes damage to the elevator 1. If there is a completion report indicating that it was not, the numerical value is set as a new individual standard. In other words, for example, the update unit 22 has, for example, the case in which no physical loss has occurred in the elevator 1 even though the current swing is greater than the previous swing in which the physical loss has not occurred in the elevator 1, The individual standard is revised upward.
 更新部22は、例えば、地震による最大加速度が一般基準値を超えた場合において、地震感知器8により出力された加速度に基づく数値が個別基準を満たし、且つ、エレベーター1に物損が発生していたことを示す完了報告があった場合に、当該数値を新たな個別基準として設定する。つまり、更新部22は、例えば、エレベーター1に物損を発生させなかった過去の揺れよりも今回の揺れの方が小さかったにもかかわらず当該エレベーター1に物損が発生していた場合、個別基準を下方修正する。 For example, when the maximum acceleration due to an earthquake exceeds the general reference value, the updating unit 22 satisfies the individual criterion for the numerical value based on the acceleration output by the earthquake detector 8 and the property damage has occurred in the elevator 1. If there is a completion report indicating this, the numerical value is set as a new individual standard. In other words, for example, the updating unit 22 may be configured to perform an individual case when a physical loss has occurred in the elevator 1 even though the current swing is smaller than a previous swing that has not caused the physical loss in the elevator 1. The standard is revised downward.
 図3は、地震発生後のエレベーターの復旧について説明するための図である。 FIG. 3 is a diagram for explaining the restoration of the elevator after the earthquake.
 図3は、地震感知器8により出力される最大加速度の値に応じた対処の一例を示している。図3に示すように、地震感知器8により出力される最大加速度の基準として、例えば、“特低”、“低”、“高”及び“診断”に対応するGal値が設定されている。“高”は、例えば、耐震クラスAのエレベーター1について設定された一般基準値に相当する。“診断”は、例えば、耐震クラスSのエレベーター1について設定された一般基準値に相当する。 FIG. 3 shows an example of countermeasures according to the maximum acceleration value output by the earthquake detector 8. As shown in FIG. 3, for example, Gal values corresponding to “extra low”, “low”, “high”, and “diagnosis” are set as the reference of the maximum acceleration output by the earthquake detector 8. “High” corresponds to, for example, a general reference value set for the earthquake-resistant class A elevator 1. “Diagnosis” corresponds to, for example, a general reference value set for the elevator 1 of the earthquake resistance class S.
 例えば、地震感知器8により出力された最大加速度が“特低”以下である場合、エレベーター1の通常走行が継続される。 For example, when the maximum acceleration output by the earthquake detector 8 is equal to or less than “extra low”, the normal traveling of the elevator 1 is continued.
 例えば、地震感知器8により出力された最大加速度が“特低”より大きく“低”以下である場合、エレベーター1は一旦停止してから一定時間後に自動リセットされる。エレベーター1は、自動リセット後に運転を再開する。 For example, when the maximum acceleration output by the earthquake detector 8 is greater than “extra low” and less than or equal to “low”, the elevator 1 is automatically reset after a certain period of time after stopping temporarily. The elevator 1 resumes operation after the automatic reset.
 例えば、地震感知器8により出力された最大加速度が“低”より大きく“高”以下である場合、耐震クラスA及び耐震クラスSのエレベーター1の自動診断運転が行われる。 For example, when the maximum acceleration output by the earthquake detector 8 is greater than “low” and less than “high”, automatic diagnosis operation of the earthquake-resistant class A and earthquake-resistant class S elevators 1 is performed.
 例えば、地震感知器8により出力された最大加速度が“高”より大きく“診断”以下である場合、耐震クラスSのエレベーター1の自動診断運転が行われる。 For example, when the maximum acceleration output by the earthquake detector 8 is greater than “high” and less than or equal to “diagnosis”, automatic diagnosis operation of the earthquake-resistant class S elevator 1 is performed.
 例えば、従来、地震感知器8により出力された最大加速度が“高”より大きい場合、耐震クラスAのエレベーター1は、保守作業者によって復旧される必要があった。また、例えば、従来、地震感知器8により出力された最大加速度が“診断”より大きい場合、耐震クラスSのエレベーター1は、保守作業者によって復旧される必要があった。これに対し、実施の形態1によれば、地震感知器8により出力された最大加速度が“高”又は“診断”より大きい場合であっても、個別基準に基づいてエレベーター1の自動診断運転が行われる。 For example, conventionally, when the maximum acceleration output by the earthquake detector 8 is greater than “high”, the earthquake-resistant class A elevator 1 has to be restored by a maintenance worker. For example, conventionally, when the maximum acceleration output by the earthquake detector 8 is larger than “diagnosis”, the earthquake-resistant class S elevator 1 has to be restored by a maintenance worker. On the other hand, according to the first embodiment, even if the maximum acceleration output by the earthquake detector 8 is greater than “high” or “diagnosis”, the automatic diagnosis operation of the elevator 1 is performed based on the individual criteria. Done.
 図4は、実施の形態1におけるエレベーターの自動復旧システムの動作例を示すフローチャートである。 FIG. 4 is a flowchart showing an operation example of the elevator automatic recovery system according to the first embodiment.
 地震が発生すると、自動診断制御部18は、地震感知器8により出力された最大加速度が“特低”以下であるか否かを判定する(ステップS101)。ステップS101で、最大加速度が“特低”以下であると判定された場合、エレベーター1のサービスが継続される。 When an earthquake occurs, the automatic diagnosis control unit 18 determines whether or not the maximum acceleration output by the earthquake detector 8 is equal to or less than “extra low” (step S101). If it is determined in step S101 that the maximum acceleration is equal to or less than “extra low”, the service of the elevator 1 is continued.
 ステップS101で、最大加速度が“特低”よりも大きいと判定された場合、エレベーター1が停止する(ステップS102)。自動診断制御部18は、地震感知器8により出力された最大加速度が“低”以下であるか否かを判定する(ステップS103)。ステップS103で、最大加速度が“低”以下であると判定された場合、エレベーター1は、例えば1分後に自動リセットされる(ステップS104)。ステップS104の後は、エレベーター1のサービスが継続される。 If it is determined in step S101 that the maximum acceleration is greater than “extra low”, the elevator 1 stops (step S102). The automatic diagnosis control unit 18 determines whether or not the maximum acceleration output by the earthquake detector 8 is “low” or less (step S103). If it is determined in step S103 that the maximum acceleration is “low” or less, the elevator 1 is automatically reset, for example, after one minute (step S104). After step S104, the service of the elevator 1 is continued.
 ステップS103で、最大加速度が“低”よりも大きいと判定された場合、自動診断制御部18は、地震感知器8により出力された最大加速度が“高”以下であるか否かを判定する(ステップS105)。ステップS105で、最大加速度が“高”以下であると判定された場合、ステップS108の処理が行われる。 If it is determined in step S103 that the maximum acceleration is greater than “low”, the automatic diagnosis control unit 18 determines whether or not the maximum acceleration output by the earthquake detector 8 is “high” or less ( Step S105). If it is determined in step S105 that the maximum acceleration is equal to or less than “high”, the process of step S108 is performed.
 ステップS105で、最大加速度が“高”よりも大きいと判定された場合、自動診断制御部18は、エレベーター1の耐震クラスが耐震クラスSであるか否かを判定する(ステップS106)。ステップS106で、耐震クラスSであると判定された場合、自動診断制御部18は、地震感知器8により出力された最大加速度が“診断”以下であるか否かを判定する(ステップS107)。ステップS107で、最大加速度が“診断”以下であると判定された場合、ステップS108の処理が行われる。 When it is determined in step S105 that the maximum acceleration is greater than “high”, the automatic diagnosis control unit 18 determines whether or not the earthquake resistance class of the elevator 1 is the earthquake resistance class S (step S106). If it is determined in step S106 that the earthquake resistance class S, the automatic diagnosis control unit 18 determines whether or not the maximum acceleration output by the earthquake detector 8 is equal to or less than “diagnosis” (step S107). If it is determined in step S107 that the maximum acceleration is equal to or less than “diagnosis”, the process of step S108 is performed.
 ステップS108において、通報部20は、監視センター10に通報を行う。ステップS108で通報される内容は、例えば、自動診断運転を実行することを示すものである。ステップS108に続いて、自動診断制御部18は、エレベーター1の自動診断運転を実行する(ステップS109)。自動診断制御部18は、自動診断運転の結果に基づいて、エレベーター1に物損があるか否かを判定する(ステップS110)。ステップS110で、エレベーター1に物損が無いと判定された場合、通報部20は、監視センター10に通報を行う(ステップS111)。ステップS111で通報される内容は、例えば、エレベーター1に物損が無いことを示すものである。この場合、エレベーター1のサービスが継続される。 In step S108, the reporting unit 20 reports to the monitoring center 10. The content notified in step S108 indicates that, for example, automatic diagnosis operation is executed. Subsequent to step S108, the automatic diagnosis control unit 18 executes an automatic diagnosis operation of the elevator 1 (step S109). The automatic diagnosis control unit 18 determines whether there is a physical loss in the elevator 1 based on the result of the automatic diagnosis operation (step S110). When it is determined in step S110 that the elevator 1 has no physical damage, the reporting unit 20 reports to the monitoring center 10 (step S111). The content notified in step S111 indicates, for example, that the elevator 1 has no physical damage. In this case, the service of the elevator 1 is continued.
 ステップS110で、エレベーター1に物損があると判定された場合、通報部20は、監視センター10に通報を行う(ステップS112)。ステップS112で通報される内容は、例えば、保守作業者の出動要請である。保守作業者は、出動要請に応じて、エレベーター1の点検及び修復を行う(ステップS113)。保守作業者は、作業終了後、監視センター10へ完了報告を行う(ステップS114)。 When it is determined in step S110 that the elevator 1 is damaged, the reporting unit 20 reports to the monitoring center 10 (step S112). The content notified in step S112 is, for example, a maintenance worker dispatch request. The maintenance worker inspects and repairs the elevator 1 in response to the dispatch request (step S113). The maintenance worker reports completion to the monitoring center 10 after completion of the work (step S114).
 ステップS106で、耐震クラスSでないと判定された場合、ステップS115の処理が行われる。また、ステップS107で、最大加速度が“診断”よりも大きいと判定された場合、ステップS115の処理が行われる。 If it is determined in step S106 that it is not the earthquake resistant class S, the process of step S115 is performed. If it is determined in step S107 that the maximum acceleration is greater than “diagnosis”, the process of step S115 is performed.
 ステップS115において、自動診断制御部18は、個別基準を用いた自動診断運転が実行可能であるか否かを判定する。ステップS115での判定は、例えば、個別基準を用いた自動診断運転に関するエレベーター1の保守契約が存在するかどうかに基づく。ステップS115で、個別基準を用いた自動診断運転が実行不可能であると判定された場合、ステップS112の処理が行われる。 In step S115, the automatic diagnosis control unit 18 determines whether or not the automatic diagnosis operation using the individual criteria can be executed. The determination in step S115 is based on, for example, whether or not there is a maintenance contract for the elevator 1 regarding automatic diagnosis operation using an individual criterion. If it is determined in step S115 that the automatic diagnosis operation using the individual reference is not possible, the process of step S112 is performed.
 ステップS115で、個別基準を用いた自動診断運転が実行可能であると判定された場合、自動診断制御部18は、地震感知器8から今回の地震による加速度に基づく出力データを取得する(ステップS116)。通報部20は、出力データを監視センター10に通報する(ステップS117)。自動診断制御部18は、取得した出力データが個別基準を満たすか否かを判定する(ステップS118)。 When it is determined in step S115 that the automatic diagnosis operation using the individual reference can be performed, the automatic diagnosis control unit 18 acquires output data based on the acceleration due to the current earthquake from the earthquake detector 8 (step S116). ). The reporting unit 20 reports the output data to the monitoring center 10 (step S117). The automatic diagnosis control unit 18 determines whether or not the acquired output data satisfies the individual criteria (step S118).
 ステップS118で、出力データが個別基準を満たすと判定された場合、ステップS108の処理が行われる。ステップS118で、出力データが個別基準を満たさないと判定された場合、ステップS112の処理が行われる。 If it is determined in step S118 that the output data satisfies the individual criteria, the process of step S108 is performed. If it is determined in step S118 that the output data does not satisfy the individual criteria, the process of step S112 is performed.
 実施の形態1において、地震感知器8の通信部12は、エレベーター1の制御盤7との双方向通信を行う機能を有する。通信部12は、例えば、最大加速度を示す数値、揺れ方向ごとの最大加速度を示す数値及び最大揺れ時間を示す数値を制御盤7に送信する。つまり、地震感知器8の出力データは、揺れの大きさに応じた単純な接点信号ではなく、揺れの特徴を表す詳細な数値である。このため、実施の形態1によれば、地震感知器の出力データを用いて、地震発生時におけるエレベーターの管制運転及び自動診断運転等のサービスを拡張することができる。また、実施の形態1によれば、地震感知器と制御盤との接続状態を容易に点検することができる。 In the first embodiment, the communication unit 12 of the earthquake detector 8 has a function of performing bidirectional communication with the control panel 7 of the elevator 1. The communication unit 12 transmits, for example, a numerical value indicating the maximum acceleration, a numerical value indicating the maximum acceleration for each shaking direction, and a numerical value indicating the maximum shaking time to the control panel 7. That is, the output data of the earthquake detector 8 is not a simple contact signal corresponding to the magnitude of the shaking, but is a detailed numerical value representing the characteristics of the shaking. Therefore, according to the first embodiment, it is possible to extend services such as elevator control operation and automatic diagnosis operation when an earthquake occurs, using the output data of the earthquake detector. Further, according to the first embodiment, it is possible to easily check the connection state between the earthquake detector and the control panel.
 実施の形態1において、地震感知器8は、例えば、振動発生部を有してもよい。振動発生部は、例えば、サーボモータ等によって振動を発生させる機能を有する。自己診断部16は、例えば、感知器制御部17から送信された機能診断指令に基づいて振動発生部を動作させる。自己診断部16は、例えば、振動発生部の動作開始後に加速度検出部13、揺れ方向検出部14及び揺れ時間検出部15により検出された各種数値が正常であるか否かを判定する。通信部12は、例えば、各種数値及び自己診断部16による判定結果を保守装置9に返信する。これにより、実際の地震発生時に地震感知器が正常に動作することを容易に確認できる。なお、振動発生部は、地震感知器8に振動を伝えることが可能であれば、地震感知器8とは別個の機器として設けられてもよい。 In Embodiment 1, the earthquake detector 8 may have, for example, a vibration generating unit. The vibration generating unit has a function of generating vibration by a servo motor or the like, for example. For example, the self-diagnosis unit 16 operates the vibration generation unit based on the function diagnosis command transmitted from the sensor control unit 17. For example, the self-diagnosis unit 16 determines whether or not various numerical values detected by the acceleration detection unit 13, the swing direction detection unit 14, and the swing time detection unit 15 after the start of the operation of the vibration generation unit are normal. The communication unit 12 returns, for example, various numerical values and the determination result by the self-diagnosis unit 16 to the maintenance device 9. Thereby, it can be easily confirmed that the seismic detector operates normally when an actual earthquake occurs. Note that the vibration generation unit may be provided as a separate device from the earthquake detector 8 as long as vibration can be transmitted to the earthquake detector 8.
 実施の形態1において、自動診断制御部18は、地震発生後にエレベーター1の自動診断運転を実行する機能を有し、地震感知器8により出力された最大加速度が予め設定された一般基準値以下の一定範囲に含まれる場合に自動診断運転を実行する。記憶部19は、建物ごと又はエレベーター1ごとに設定された個別基準を記憶する。自動診断制御部18は、地震感知器8により出力された最大加速度が一般基準値を超えた場合であっても、地震感知器8により出力された加速度に基づく数値が記憶部19に記憶されている個別基準を満たす場合には、自動診断運転を実行する。このため、実施の形態1によれば、個々の建物又は個々のエレベーターの耐震能力に応じて自動診断運転を実行することができる。その結果、地震発生後に自動復旧するエレベーターの割合を高めることができる。また、地震発生後における保守作業者の負荷を軽減することができる。 In the first embodiment, the automatic diagnosis control unit 18 has a function of executing an automatic diagnosis operation of the elevator 1 after the occurrence of an earthquake, and the maximum acceleration output by the earthquake detector 8 is equal to or less than a preset general reference value. Automatic diagnosis operation is executed when it falls within a certain range. The storage unit 19 stores individual standards set for each building or for each elevator 1. The automatic diagnosis control unit 18 stores a numerical value based on the acceleration output by the earthquake detector 8 in the storage unit 19 even when the maximum acceleration output by the earthquake detector 8 exceeds the general reference value. If the individual criteria are met, automatic diagnostic operation is executed. For this reason, according to Embodiment 1, an automatic diagnostic driving | operation can be performed according to the earthquake resistance capability of each building or each elevator. As a result, the percentage of elevators that automatically recover after an earthquake can be increased. In addition, it is possible to reduce the load on maintenance workers after the earthquake.
 実施の形態1において、個別基準は、例えば、エレベーター1に物損を発生させなかった過去の揺れによる最大加速度を含む。自動診断制御部18は、例えば、地震感知器8により出力された最大加速度と個別基準との比較結果に基づいて、自動診断運転を実行するか否かを決定する。このため、個々の建物又は個々のエレベーターの耐震能力に応じて自動診断運転を実行することができる。 In the first embodiment, the individual standard includes, for example, the maximum acceleration due to the past shaking that caused no physical damage to the elevator 1. For example, the automatic diagnosis control unit 18 determines whether or not to execute the automatic diagnosis operation based on the comparison result between the maximum acceleration output by the earthquake detector 8 and the individual reference. For this reason, an automatic diagnostic driving | operation can be performed according to the earthquake resistance capability of each building or each elevator.
 実施の形態1において、個別基準は、例えば、エレベーター1に物損を発生させなかった過去の揺れによる揺れ方向ごとの最大加速度を含む。自動診断制御部18は、例えば、地震感知器8により出力された揺れ方向ごとの最大加速度と個別基準との比較結果に基づいて、自動診断運転を実行するか否かを決定する。この場合、建物又はエレベーターの耐震能力が揺れ方向によって異なることを考慮して、自動診断運転を実行するか否かを決定できる。このため、個々の建物又は個々のエレベーターの詳細な耐震能力に応じて自動診断運転を実行することができる。 In the first embodiment, the individual standard includes, for example, the maximum acceleration for each shaking direction due to the past shaking that did not cause any damage to the elevator 1. For example, the automatic diagnosis control unit 18 determines whether or not to execute the automatic diagnosis operation based on the comparison result between the maximum acceleration for each shaking direction output by the earthquake detector 8 and the individual reference. In this case, it is possible to determine whether or not to execute the automatic diagnosis operation in consideration of the fact that the seismic capacity of the building or the elevator varies depending on the shaking direction. For this reason, an automatic diagnostic driving | operation can be performed according to the detailed earthquake-proof capability of each building or each elevator.
 実施の形態1において、個別基準は、例えば、エレベーター1に物損を発生させなかった過去の揺れによる最大揺れ時間を含む。自動診断制御部18は、例えば、地震感知器8により出力された最大揺れ時間と個別基準との比較結果に基づいて、自動診断運転を実行するか否かを決定する。この場合、建物又はエレベーターの耐震能力が揺れ時間によって異なることを考慮して、自動診断運転を実行するか否かを決定できる。このため、個々の建物又は個々のエレベーターの詳細な耐震能力に応じて自動診断運転を実行することができる。 In the first embodiment, the individual standard includes, for example, the maximum shaking time due to the past shaking that did not cause any damage to the elevator 1. For example, the automatic diagnosis control unit 18 determines whether or not to execute the automatic diagnosis operation based on the comparison result between the maximum shaking time output by the earthquake detector 8 and the individual reference. In this case, it is possible to determine whether or not to execute the automatic diagnosis operation in consideration of the fact that the seismic capacity of the building or the elevator varies depending on the shaking time. For this reason, an automatic diagnostic driving | operation can be performed according to the detailed earthquake-proof capability of each building or each elevator.
 実施の形態1において、自動診断制御部18は、例えば、地震感知器8により出力された最大加速度、揺れ方向ごとの最大加速度及び最大揺れ時間のうち少なくとも2種類と個別基準との比較結果に基づいて、自動診断運転を実行するか否かを決定する。このため、個々の建物又は個々のエレベーターのより詳細な耐震能力に応じて自動診断運転を実行することができる。 In the first embodiment, the automatic diagnosis control unit 18 is based on, for example, a comparison result between at least two types among the maximum acceleration output by the earthquake detector 8, the maximum acceleration for each swing direction, and the maximum swing time and the individual reference. To determine whether or not to execute the automatic diagnosis operation. For this reason, automatic diagnosis operation can be performed according to the more detailed seismic capacity of each building or each elevator.
 実施の形態1において、個別基準は、例えば、エレベーター1に物損を発生させなかった過去の揺れによる加速度に基づいて設定されたものである。このため、個々の建物又は個々のエレベーターの実際の耐震能力に応じて自動診断運転を実行することができる。 In the first embodiment, the individual standard is set based on, for example, the acceleration due to the past shaking that caused no physical damage to the elevator 1. For this reason, an automatic diagnostic driving | operation can be performed according to the actual earthquake-proof capability of each building or each elevator.
 実施の形態1において、更新部22は、例えば、記憶部19に記憶されている個別基準を更新する。自動診断制御部18及び記憶部19は、例えば、エレベーター1と同じ建物に設置された保守装置9に設けられている。更新部22は、例えば、保守装置9と通信可能な監視センター10に設けられている。このため、エレベーターの点検時に保守作業者が誤って個別基準を変更することを防止できる。 In Embodiment 1, the update unit 22 updates the individual standard stored in the storage unit 19, for example. The automatic diagnosis control unit 18 and the storage unit 19 are provided, for example, in the maintenance device 9 installed in the same building as the elevator 1. The update unit 22 is provided in the monitoring center 10 that can communicate with the maintenance device 9, for example. For this reason, it can prevent that a maintenance worker changes an individual standard accidentally at the time of inspection of an elevator.
 実施の形態1において、更新部22は、例えば、地震感知器8により出力された最大加速度が一般基準値を超えた場合において、地震感知器8により出力された加速度に基づく数値が個別基準を満たさず、且つ、エレベーター1に物損が発生していなかったことが保守作業者によって確認された場合に、当該数値を個別基準として設定する。つまり、更新部22は、耐震能力が高い建物又はエレベーター1についての個別基準を上方修正する。このため、個々の建物又は個々のエレベーターの実際の耐震能力に応じて自動診断運転を実行することができる。 In the first embodiment, for example, when the maximum acceleration output by the earthquake detector 8 exceeds the general reference value, the updating unit 22 satisfies the individual criterion with the numerical value based on the acceleration output by the earthquake detector 8. In addition, when it is confirmed by a maintenance worker that no physical damage has occurred in the elevator 1, the numerical value is set as an individual standard. That is, the update unit 22 upwardly corrects the individual standard for the building or the elevator 1 having high earthquake resistance. For this reason, an automatic diagnostic driving | operation can be performed according to the actual earthquake-proof capability of each building or each elevator.
 実施の形態1において、更新部22は、例えば、地震感知器8により出力された最大加速度が一般基準値を超えた場合において、地震感知器8により出力された加速度に基づく数値が個別基準を満たし、且つ、エレベーター1に物損が発生していたことが保守作業者によって確認された場合に、当該数値を個別基準として設定する。つまり、更新部22は、耐震能力が低い建物又はエレベーター1についての個別基準を下方修正する。このため、個々の建物又は個々のエレベーターの実際の耐震能力に応じて自動診断運転を実行することができる。 In the first embodiment, for example, when the maximum acceleration output by the earthquake detector 8 exceeds the general reference value, the update unit 22 satisfies the individual criterion with the numerical value based on the acceleration output by the earthquake detector 8. And when it is confirmed by the maintenance worker that the physical loss has occurred in the elevator 1, the numerical value is set as an individual standard. That is, the update unit 22 corrects the individual standard for the building or the elevator 1 having a low earthquake resistance. For this reason, an automatic diagnostic driving | operation can be performed according to the actual earthquake-proof capability of each building or each elevator.
 実施の形態1において、あるエレベーター1又は当該エレベーター1が設置されている建物についての個別基準は、例えば、当該エレベーター1又は当該建物とは異なる場所に設けられた地震感知器8により過去に出力された加速度に基づいて設定されてもよい。あるエレベーター1についての個別基準は、例えば、機種及び昇降路寸法等が同一又は類似する他のエレベーター1に設けられた地震感知器8により過去に出力された加速度に基づいて設定されてもよい。ある建物についての個別基準は、例えば、階数、築年数、平面形状、構造材及び地盤等が同一又は類似する他の建物に設けられた地震感知器8により過去に出力された加速度に基づいて設定されてもよい。この場合、例えば、新規に据え付けられたエレベーター又は新規に竣工した建物についても、適切な個別基準を設定することができる。 In the first embodiment, an individual standard for an elevator 1 or a building in which the elevator 1 is installed is output in the past by, for example, the earthquake detector 8 provided at a location different from the elevator 1 or the building. It may be set based on the acceleration. The individual reference for a certain elevator 1 may be set based on, for example, an acceleration output in the past by an earthquake detector 8 provided in another elevator 1 having the same or similar model and hoistway dimensions. Individual standards for a building are set based on, for example, accelerations output in the past by seismic detectors 8 provided in other buildings with the same or similar floor number, building age, planar shape, structural material, and ground. May be. In this case, for example, an appropriate individual standard can be set for a newly installed elevator or a newly completed building.
 実施の形態1において、感知器制御部17、自動診断制御部18、記憶部19及び通報部20は、制御盤7の機能として設けられてもよい。この場合であっても、個々の建物又は個々のエレベーターの耐震能力に応じて自動診断運転を実行することができる。 In Embodiment 1, the sensor control unit 17, the automatic diagnosis control unit 18, the storage unit 19, and the notification unit 20 may be provided as functions of the control panel 7. Even in this case, the automatic diagnosis operation can be executed according to the seismic capacity of each building or each elevator.
 図5は、保守装置のハードウェア構成図である。 FIG. 5 is a hardware configuration diagram of the maintenance device.
 保守装置9における感知器制御部17、自動診断制御部18、記憶部19及び通報部20の各機能は、処理回路により実現される。処理回路は、専用ハードウェア50であってもよい。処理回路は、プロセッサ51及びメモリ52を備えていてもよい。処理回路は、一部が専用ハードウェア50として形成され、更にプロセッサ51及びメモリ52を備えていてもよい。図5は、処理回路が、その一部が専用ハードウェア50として形成され、プロセッサ51及びメモリ52を備えている場合の例を示している。 The functions of the sensor control unit 17, the automatic diagnosis control unit 18, the storage unit 19, and the notification unit 20 in the maintenance device 9 are realized by a processing circuit. The processing circuit may be dedicated hardware 50. The processing circuit may include a processor 51 and a memory 52. A part of the processing circuit is formed as dedicated hardware 50, and may further include a processor 51 and a memory 52. FIG. 5 shows an example in which the processing circuit is partly formed as dedicated hardware 50 and includes a processor 51 and a memory 52.
 処理回路の少なくとも一部が、少なくとも1つの専用ハードウェア50である場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。 When at least a part of the processing circuit is at least one dedicated hardware 50, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or the like. The combination is applicable.
 処理回路が少なくとも1つのプロセッサ51及び少なくとも1つのメモリ52を備える場合、感知器制御部17、自動診断制御部18、記憶部19及び通報部20の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリ52に格納される。プロセッサ51は、メモリ52に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。プロセッサ51は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPとも呼ぶ。メモリ52は、例えば、RAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等が該当する。 When the processing circuit includes at least one processor 51 and at least one memory 52, the functions of the sensor control unit 17, the automatic diagnosis control unit 18, the storage unit 19, and the notification unit 20 are software, firmware, or software and firmware. It is realized by the combination. Software and firmware are described as programs and stored in the memory 52. The processor 51 reads out and executes the program stored in the memory 52, thereby realizing the function of each unit. The processor 51 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP. The memory 52 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、保守装置9の各機能を実現することができる。なお、制御盤7、地震感知器8及び監視センター10の各機能も、図5に示す処理回路と同様の処理回路により実現される。 Thus, the processing circuit can realize each function of the maintenance device 9 by hardware, software, firmware, or a combination thereof. The functions of the control panel 7, the earthquake detector 8, and the monitoring center 10 are also realized by a processing circuit similar to the processing circuit shown in FIG.
 以上のように、本発明は、エレベーターに適用できる。 As described above, the present invention can be applied to an elevator.
1 エレベーター
2 昇降路
3 巻上機
4 ロープ
5 かご
6 釣合おもり
7 制御盤
8 地震感知器
9 保守装置
10 監視センター
11 運転制御部
12 通信部
13 加速度検出部
14 揺れ方向検出部
15 揺れ時間検出部
16 自己診断部
17 感知器制御部
18 自動診断制御部
19 記憶部
20 通報部
21 記憶部
22 更新部
23 個別基準データ
24 蓄積データ
25 個別基準データ
50 専用ハードウェア
51 プロセッサ
52 メモリ
DESCRIPTION OF SYMBOLS 1 Elevator 2 Hoistway 3 Hoisting machine 4 Rope 5 Car 6 Counterweight 7 Control panel 8 Seismic detector 9 Maintenance device 10 Monitoring center 11 Operation control part 12 Communication part 13 Acceleration detection part 14 Swing direction detection part 15 Swing time detection Unit 16 Self-diagnosis unit 17 Sensor control unit 18 Automatic diagnosis control unit 19 Storage unit 20 Notification unit 21 Storage unit 22 Update unit 23 Individual reference data 24 Accumulated data 25 Individual reference data 50 Dedicated hardware 51 Processor 52 Memory

Claims (5)

  1.  揺れを加速度として検出する加速度検出部と、
     エレベーターの制御盤との双方向通信を行う機能を有し、前記加速度検出部により検出された最大加速度を示す数値を前記制御盤に送信する通信部と、
    を備えたエレベーター用の地震感知器。
    An acceleration detector that detects shaking as acceleration;
    A communication unit having a function of performing bidirectional communication with an elevator control panel, and transmitting a numerical value indicating the maximum acceleration detected by the acceleration detection unit to the control panel;
    Earthquake detector for elevators equipped with.
  2.  揺れ方向ごとの加速度を検出する揺れ方向検出部を備え、
     前記通信部は、前記揺れ方向検出部により検出された揺れ方向ごとの最大加速度を示す数値を前記制御盤に送信する請求項1に記載のエレベーター用の地震感知器。
    It has a swing direction detector that detects the acceleration for each swing direction,
    The earthquake sensor for an elevator according to claim 1, wherein the communication unit transmits a numerical value indicating a maximum acceleration in each swing direction detected by the swing direction detection unit to the control panel.
  3.  揺れ時間を検出する揺れ時間検出部を備え、
     前記通信部は、前記揺れ時間検出部により検出された最大揺れ時間を示す数値を前記制御盤に送信する請求項1又は2に記載のエレベーター用の地震感知器。
    It has a shaking time detector that detects the shaking time,
    3. The elevator earthquake sensor according to claim 1, wherein the communication unit transmits a numerical value indicating the maximum shaking time detected by the shaking time detecting unit to the control panel. 4.
  4.  前記通信部は、前記制御盤から死活チェックのための要求信号を受信した場合に、応答信号を前記制御盤に返信する請求項1から3のいずれか1項に記載のエレベーター用の地震感知器。 4. The elevator earthquake sensor according to claim 1, wherein the communication unit returns a response signal to the control panel when a request signal for alive check is received from the control panel. 5. .
  5.  振動を発生させる機能を有する振動発生部と、
     前記振動発生部の動作開始後に前記加速度検出部により検出された加速度を示す数値が正常であるか否かを判定する自己診断部と、
    を備えた請求項1から4のいずれか1項に記載のエレベーター用の地震感知器。
    A vibration generator having a function of generating vibration;
    A self-diagnosis unit that determines whether or not the numerical value indicating the acceleration detected by the acceleration detection unit after the operation of the vibration generation unit is normal;
    The earthquake detector for elevators of any one of Claim 1 to 4 provided with these.
PCT/JP2017/001415 2017-01-17 2017-01-17 Earthquake sensor for elevators WO2018134894A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/001415 WO2018134894A1 (en) 2017-01-17 2017-01-17 Earthquake sensor for elevators
JP2018562766A JP6521195B2 (en) 2017-01-17 2017-01-17 Seismic detector for elevators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001415 WO2018134894A1 (en) 2017-01-17 2017-01-17 Earthquake sensor for elevators

Publications (1)

Publication Number Publication Date
WO2018134894A1 true WO2018134894A1 (en) 2018-07-26

Family

ID=62907967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001415 WO2018134894A1 (en) 2017-01-17 2017-01-17 Earthquake sensor for elevators

Country Status (2)

Country Link
JP (1) JP6521195B2 (en)
WO (1) WO2018134894A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082847A (en) * 1994-06-22 1996-01-09 Hitachi Building Syst Eng & Service Co Ltd Operation control device for elevator
JPH09222484A (en) * 1996-02-16 1997-08-26 Toshiba Corp Earthquake observation apparatus
JPH1149450A (en) * 1997-07-30 1999-02-23 Hitachi Building Syst Co Ltd Operating device for earthquake sensing device for elevator
JP2006306577A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp In-earthquake operation device of elevator
JP2008230771A (en) * 2007-03-20 2008-10-02 Hitachi Ltd Elevator device
JP2010222139A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Elevator operating device
JP2012171763A (en) * 2011-02-23 2012-09-10 Toshiba Elevator Co Ltd Elevator control device and sensor
JP2013082511A (en) * 2011-10-06 2013-05-09 Mitsubishi Electric Corp Device and method for automatically restoring elevator
EP2818441A1 (en) * 2013-06-28 2014-12-31 Kone Corporation An earthquake sensor device of an elevator system
JP2015229562A (en) * 2014-06-05 2015-12-21 三菱電機株式会社 Controlling device for elevator and controlling method for elevator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037565A (en) * 2006-08-04 2008-02-21 Toshiba Elevator Co Ltd Control operating device for elevator in earthquake
JP5951666B2 (en) * 2014-03-10 2016-07-13 東芝エレベータ株式会社 elevator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082847A (en) * 1994-06-22 1996-01-09 Hitachi Building Syst Eng & Service Co Ltd Operation control device for elevator
JPH09222484A (en) * 1996-02-16 1997-08-26 Toshiba Corp Earthquake observation apparatus
JPH1149450A (en) * 1997-07-30 1999-02-23 Hitachi Building Syst Co Ltd Operating device for earthquake sensing device for elevator
JP2006306577A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp In-earthquake operation device of elevator
JP2008230771A (en) * 2007-03-20 2008-10-02 Hitachi Ltd Elevator device
JP2010222139A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Elevator operating device
JP2012171763A (en) * 2011-02-23 2012-09-10 Toshiba Elevator Co Ltd Elevator control device and sensor
JP2013082511A (en) * 2011-10-06 2013-05-09 Mitsubishi Electric Corp Device and method for automatically restoring elevator
EP2818441A1 (en) * 2013-06-28 2014-12-31 Kone Corporation An earthquake sensor device of an elevator system
JP2015229562A (en) * 2014-06-05 2015-12-21 三菱電機株式会社 Controlling device for elevator and controlling method for elevator

Also Published As

Publication number Publication date
JPWO2018134894A1 (en) 2019-03-22
JP6521195B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2018134891A1 (en) Elevator automatic recovery system
JP7374642B2 (en) elevator safety system
JP4675390B2 (en) Elevator earthquake recovery equipment
JP5246636B2 (en) Elevator seismic control system
JP2010006496A (en) Method and device for restoring operation of elevator
JP2007276889A (en) Elevator device
WO2016199620A1 (en) Work status monitoring device and work status monitoring method for elevators
US11040854B2 (en) Resetting governor sub-systems
JP2017043462A (en) Opening/closing abnormality determination device of elevator
EP2474495A1 (en) Elevator control device
JP2009298546A (en) Control system for elevator
JP6510600B2 (en) Remote diagnostic operation method of elevator, elevator control device, and remote diagnostic operation program of elevator
JP6737254B2 (en) Information processing equipment
WO2018134894A1 (en) Earthquake sensor for elevators
JP6780614B2 (en) Elevator operation control system
JP5896888B2 (en) Elevator control system and elevator control method
JP2012188257A (en) Elevator system
WO2011161790A1 (en) Elevator control system
KR102348615B1 (en) elevator system
JP6607324B2 (en) Elevator control operation inspection system
JP2013082511A (en) Device and method for automatically restoring elevator
JP2013237547A (en) Controller for elevator
JP6537745B2 (en) Elevator remote monitoring system
KR102124994B1 (en) Recovery support system
JP2009173388A (en) Elevator operation control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892512

Country of ref document: EP

Kind code of ref document: A1