WO2018121765A1 - 磁力计校准的数据处理方法和装置 - Google Patents

磁力计校准的数据处理方法和装置 Download PDF

Info

Publication number
WO2018121765A1
WO2018121765A1 PCT/CN2017/120071 CN2017120071W WO2018121765A1 WO 2018121765 A1 WO2018121765 A1 WO 2018121765A1 CN 2017120071 W CN2017120071 W CN 2017120071W WO 2018121765 A1 WO2018121765 A1 WO 2018121765A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic vector
angle
magnetometer
currently measured
stored
Prior art date
Application number
PCT/CN2017/120071
Other languages
English (en)
French (fr)
Inventor
黄祥斌
聂鹏
熊友军
Original Assignee
深圳市优必选科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市优必选科技有限公司 filed Critical 深圳市优必选科技有限公司
Publication of WO2018121765A1 publication Critical patent/WO2018121765A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to the field of measurement control technologies, and in particular, to a data processing method and apparatus for magnetometer calibration.
  • the magnetometer can measure the component of the geomagnetic field vector on the sensor axis, usually used for navigation, such as robot navigation, mobile navigation.
  • navigation such as robot navigation, mobile navigation.
  • the magnetometer When the magnetometer is in use, it will be subject to electromagnetic interference in the surrounding environment, resulting in errors in the measurement data. Therefore, it is generally necessary to calibrate the magnetometer before use.
  • the calibration method of the magnetometer usually includes plane calibration, stereo 8-shaped calibration, ten-sided calibration, and the like. During the calibration process, the magnetometer needs to be rotated to collect data from multiple points and calibrated based on the collected data. In the conventional technology, data of a plurality of points is usually collected and directly calibrated according to the collected data, which is likely to result in low reliability due to low reliability of the collected data.
  • a data processing method for magnetometer calibration comprising:
  • Finding the stored magnetic vector obtaining an angle between the currently measured magnetic vector and the stored magnetic vector, and obtaining a detected angle
  • a data processing device for magnetometer calibration comprising:
  • a point acquisition module configured to acquire a sampling point number and an angle threshold corresponding to the number of sampling points
  • a magnetic vector acquisition module for collecting data measured by the magnetometer during the calibration process to obtain a current measured magnetic vector
  • An angle calculation module is configured to search for the stored magnetic vector, obtain an angle between the currently measured magnetic vector and the stored magnetic vector, and obtain a detected angle;
  • condition analysis module configured to determine, according to the detection angle and the angle threshold, whether the currently measured magnetic vector meets a preset condition
  • a magnetic vector storage module configured to store a current measured magnetic vector when the currently measured magnetic vector satisfies the preset condition, and determine whether the stored magnetic vector quantity is equal to the sampling point number
  • a cyclic operation module configured to control the magnetometer measurement during the re-acquisition and calibration process of the magnetic vector acquisition module when the currently measured magnetic vector does not satisfy the preset condition, or the number of stored magnetic vectors is less than the sampling point number The data gets the current measured magnetic vector.
  • the data processing method and device for the above magnetometer calibration obtains the current measured magnetic vector by acquiring the sampling point and the angle threshold corresponding to the number of sampling points, and collecting the data measured by the magnetometer during the calibration process; and then searching for the stored magnetic vector to obtain The angle between the currently measured magnetic vector and the stored magnetic vector is detected; the current measured magnetic vector is determined according to the detected angle and the angle threshold to satisfy the preset condition, and the current measured magnetic vector satisfies the preset In the condition, the current measured magnetic vector is stored, and the number of stored magnetic vectors and the number of sampling points are compared; when the currently measured magnetic vector does not satisfy the preset condition, or the number of stored magnetic vectors does not reach the number of sampling points, return Continue to collect the data measured by the magnetometer during the calibration process to obtain the current measured magnetic vector, and cycle until the number of stored magnetic vectors is equal to the number of sampling points.
  • the magnetic vector measured by the magnetometer during the calibration process it is necessary to first determine and analyze the angle based on the angle threshold, the measured magnetic vector and the stored magnetic vector, and store the measured magnetic when the preset condition is met.
  • the vector can be used to redundantly process the data collected by the magnetometer to improve the accuracy of the data to be used, thereby improving the accuracy of the calibration.
  • 1 is a flow chart of a data processing method for magnetometer calibration in an embodiment
  • FIG. 2 is a schematic view showing a relationship between a uniform number of points on the spherical surface and an included angle in an embodiment
  • Figure 3 is a schematic view of a sphere
  • FIG. 4 is a flow chart of a data processing method for magnetometer calibration in another embodiment
  • Figure 5 is a structural diagram of a data processing apparatus for magnetometer calibration in an embodiment
  • FIG. 6 is a structural diagram of a data processing device for magnetometer calibration in another embodiment
  • FIG. 7 is a schematic diagram showing the actual turret angle in the application example, the heading angle calculated after the calibration of the conventional method, and the heading angle calculated by the data processing method calibrated by the magnetometer;
  • Figure 8 is a square of the residual between the heading angle and the actual angle calculated by the conventional method in an application example, and the square of the residual between the heading angle and the actual angle calculated after calibration by the data processing method of the magnetometer calibration. schematic diagram.
  • a data processing method for magnetometer calibration in an embodiment includes the following steps.
  • the number of sampling points refers to the number of data to be collected. It can be manually input by the user, or multiple sampling points can be set in advance. The user selects the corresponding sampling points according to the accuracy of the calibration required. The higher the required precision, the larger the corresponding sampling points. .
  • the angle threshold is a preset angle value corresponding to the number of sampling points.
  • the number of sampling points is different, and the corresponding angle threshold is different. Specifically, after the number of sampling points is obtained, the corresponding angle threshold may be searched according to the number of sampling points and the preset correspondence relationship.
  • S120 Collecting the data measured by the magnetometer during the calibration process to obtain the currently measured magnetic vector.
  • the user needs to rotate the magnetometer in a manner corresponding to the calibration method.
  • the data measured by the magnetometer is the component of the ground magnetic field vector in the coordinate axis during the rotation.
  • the magnetic vector is obtained from the data measured by the magnetometer. For example, if the data measured by the magnetometer of the sth acquisition is (x s , y s , z s ), the corresponding magnetic vector is The magnetic vector can be acquired in real time or at a preset interval.
  • S140 Find the stored magnetic vector, obtain an angle between the currently measured magnetic vector and the stored magnetic vector, and obtain a detected angle.
  • the stored magnetic vector is a magnetic vector that has been stored before the current measured magnetic vector is acquired, and can be searched from a preset database. If there are multiple magnetic vectors stored, it is necessary to separately obtain the angle between the currently measured magnetic vector and each stored magnetic vector. That is, the number of detected angles is equal to the number of stored magnetic vectors.
  • step S160 Determine whether the currently measured magnetic vector satisfies a preset condition according to the detected angle and the angle threshold. If yes, go to step S180; otherwise, go back to step S120.
  • the preset condition is a preset condition for screening the detection angle, specifically, the relationship between the detection angle and the angle threshold, which can be specifically set according to actual needs.
  • the current measured magnetic vector satisfies the preset condition, indicating that the currently measured magnetic vector is filtered, and can be used as data for subsequent calibration; at this time, the current measured magnetic vector is stored, for example, can be stored in a preset database, so that Use it next time.
  • the process returns to step S120, and the data measured by the magnetometer at the next moment can be collected again to obtain a new current measured magnetic vector.
  • S190 Determine whether the number of stored magnetic vectors is equal to the number of sampling points. If no, the process returns to step S120.
  • the stored magnetic vector is the data to be used for subsequent calibration and needs to be equal to the number of sampling points.
  • the number of stored magnetic vectors does not reach the number of sampling points, indicating that the number of stored magnetic vectors is less than the number of sampling points.
  • the data measured by the magnetometer at the next moment can be continuously collected to obtain a new current measured magnetic vector. After the judgment of the preset conditions. This loops until the stored magnetic vector is equal to the number of samples.
  • the data processing method of the above magnetometer calibration obtains the current measured magnetic vector by acquiring the sampling point and the angle threshold corresponding to the number of sampling points, and collecting the data measured by the magnetometer during the calibration process; and then searching for the stored magnetic vector to obtain the current measurement.
  • Detecting the angle between the magnetic vector and the stored magnetic vector detecting whether the currently measured magnetic vector satisfies the preset condition according to the detected angle and the angle threshold, when the currently measured magnetic vector satisfies the preset condition , storing the currently measured magnetic vector, and comparing the number of stored magnetic vectors with the number of sampling points; when the currently measured magnetic vector does not satisfy the preset condition, or the number of stored magnetic vectors does not reach the sampling point, return to continue collecting
  • the data measured by the magnetometer during calibration obtains the current measured magnetic vector, looping until the number of stored magnetic vectors equals the number of samples.
  • the magnetic vector measured by the magnetometer during the calibration process it is necessary to first determine and analyze the angle based on the angle threshold, the measured magnetic vector and the stored magnetic vector, and store the measured magnetic when the preset condition is met.
  • the vector can be used to redundantly process the data collected by the magnetometer to improve the accuracy of the data to be used, thereby improving the accuracy of the calibration.
  • step S100 when the data processing method of the magnetometer calibration is applied to the stereo calibration method for fitting a curved surface based on the least squares method, before step S100, the method further includes the step of: storing a relationship table between the uniform number of points on the spherical surface and the included angle.
  • step S100 is: obtaining the number of sampling points, and finding an angle between the corresponding sampling points from the relation table to obtain an angle threshold.
  • the relationship between the number of uniform points on the spherical surface and the included angle is the correspondence between the number of uniform points that may be distributed on the spherical surface and the angle between the two points. Therefore, the angle threshold corresponding to the number of sampling points obtained according to the relationship table is an angle between two points when the corresponding number of sampling points is evenly distributed on the spherical surface, and the current measured magnetic vector is pre-predicted according to the angle threshold.
  • the uniformity of the points corresponding to the magnetic vector can be filtered to improve the uniformity of the corresponding points of the stored magnetic vector, thereby improving the accuracy of the calibration.
  • the relationship table is a relationship table between the average number of points on the spherical surface and the angle formed by American mathematician Neil Sloane. As shown in FIG. 2, in the two columns of data in FIG. 2, the left column indicates uniform points, and the right column indicates Corresponding angle.
  • the size of ⁇ 0 can be set as the size of the distance between the two points, where a is a preset parameter.
  • the points to be sampled are points that are evenly distributed on the spherical surface, and the number of sampling points is first determined to determine the magnitude of ⁇ 0 .
  • the relationship between the number of uniformly distributed points on the spherical surface and ⁇ 0 cannot be determined, and the type of regular polyhedron is limited and difficult to simulate. Therefore, in this embodiment, the relationship between the number of points on the spherical surface and the angle of the angle obtained by the American mathematician Neil Sloane can be used to determine the correspondence between the number of sampling points and the angle of the angle.
  • step S110 is further included.
  • the preset angle error is a preset error value that can be received, and can be specifically set according to the actual situation.
  • step S160 is: determining whether the currently measured magnetic vector satisfies a preset condition according to the detected angle and the new angle threshold.
  • the measured data may be inaccurate due to electromagnetic interference.
  • the preset angle error to adjust the angle threshold, the accuracy of the judgment result in step S160 can be improved.
  • step S110 is specifically: calculating a difference between the angle of the angle and the preset angle error, and using the difference as a new angle threshold. For example, if the angle of the angle corresponding to the number of sampling points is 30° and the preset angle error is 5°, the new angle threshold obtained after adjusting the angle threshold is 25° (30°-5°). It will be appreciated that other adjustment methods may be employed in other embodiments.
  • step S120 after step S120, before step S140, step S131 and step S132 are further included.
  • step S131 Determine whether the currently measured magnetic vector is the first magnetic vector acquired during the calibration process. If yes, go to step S132; otherwise, go to step S140.
  • the acquisition of the magnetic vector is performed in chronological order. If the current measured magnetic vector corresponds to the first magnetic vector acquired during the calibration process, it is represented as the magnetic vector obtained by the first acquisition in the calibration process.
  • step S132 Store the first magnetic vector, and return to step S120.
  • the stored magnetic vector is zero. At this time, the currently measured magnetic vector is directly stored, and the calculation of the included angle is not required, and the processing method is simple. For the current measured magnetic vector obtained after each acquisition, it is necessary to calculate the angle with the stored magnetic vector to obtain the detected angle.
  • the angle between the currently measured magnetic vector and the stored magnetic vector is obtained in step S140, and the detected angle is obtained, including:
  • a is a preset parameter and ⁇ is the detected angle.
  • step S160 includes: determining whether the detected angle is greater than or equal to an included angle threshold. If so, it is determined that the currently measured magnetic vector satisfies the preset condition.
  • the detection angle is set. If the angle is greater than or equal to the threshold value as a preset condition, the uniformity of the distance between the points corresponding to the obtained stored magnetic vector can be improved, thereby improving the accuracy of the calibration.
  • the method further comprises: if the number of stored magnetic vectors is equal to the number of sampling points, obtaining a parameter value of the preset fitting equation according to the stored magnetic vector.
  • the preset fitting equation is a calculation equation for the calibration of the magnetometer.
  • the preset fitting equation is provided with a plurality of unknown parameters, and the parameter values of the unknown parameters can be obtained according to the stored magnetic vector combined operation derivation, so that the equation can be obtained.
  • a known fitting equation for magnetometer calibration is a known fitting equation for magnetometer calibration.
  • the preset fitting equation is:
  • x 2 [2x, -y 2 , 2y, -z 2 , 2z, 1] [k 1 , k 2 , k 3 , k 4 , k 5 , k 6 ] T ;
  • the least squares method fits the ellipsoid and calculates k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , then:
  • the parameter values corresponding to the unknown parameters x a , y b , z c , a, b, and c can be calculated.
  • Substituting the parameter values of unknown parameters into the preset fitting equation to obtain a known fitting equation can be used in subsequent calibration operations.
  • the magnetometer data x t , y t , z t of the three axes are acquired, the calibrated data is x c , y c , z c , and the normalized data is x e , y e , z e , then The following relationships exist:
  • the data processing apparatus for magnetometer calibration in an embodiment includes a point acquisition module 110, a magnetic vector acquisition module 120, an angle calculation module 130, a condition analysis module 140, a magnetic vector storage module 150, and a cyclic operation module 160. .
  • the point acquisition module 110 is configured to acquire the number of sampling points and the angle threshold corresponding to the number of sampling points.
  • the magnetic vector acquisition module 120 is configured to collect the data measured by the magnetometer during the calibration process to obtain the currently measured magnetic vector.
  • the angle calculation module 130 is configured to find the stored magnetic vector, obtain an angle between the currently measured magnetic vector and the stored magnetic vector, and obtain a detected angle.
  • the condition analysis module 140 is configured to determine whether the currently measured magnetic vector satisfies a preset condition according to the detected angle and the angle threshold.
  • the magnetic vector storage module 150 is configured to store the currently measured magnetic vector when the currently measured magnetic vector satisfies a preset condition, and determine whether the number of stored magnetic vectors is equal to the number of sampling points.
  • the loop operation module 160 is configured to control the magnetic vector acquisition module 120 to collect the data measured by the magnetometer during the calibration process to obtain the current measurement when the currently measured magnetic vector does not satisfy the preset condition, or the number of stored magnetic vectors is less than the sampling point number. Magnetic vector.
  • the data processing device of the above-mentioned magnetometer calibration obtains the sampling point number and the angle threshold corresponding to the number of sampling points by the point obtaining module 110, and the magnetic vector collecting module 120 collects the data measured by the magnetometer during the calibration process to obtain the current measured magnetic vector;
  • the module 130 searches for the stored magnetic vector, obtains an angle between the currently measured magnetic vector and the stored magnetic vector, and obtains a detected angle.
  • the condition analysis module 140 detects whether the currently measured magnetic vector is based on the detected angle and the angle threshold.
  • the magnetic vector storage module 150 stores the currently measured magnetic vector when the currently measured magnetic vector satisfies the preset condition, and determines whether the stored magnetic vector quantity is equal to the sampling point number; the cyclic operation module 160 is currently measuring When the magnetic vector does not satisfy the preset condition, or the number of stored magnetic vectors does not reach the sampling point, the control magnetic vector acquisition module 120 continues to collect the data measured by the magnetometer during the calibration process to obtain the currently measured magnetic vector, and the loop is stored until it is stored. The number of magnetic vectors is equal to the number of sampling points.
  • the magnetic vector measured by the magnetometer during the calibration process it is necessary to first determine and analyze the angle based on the angle threshold, the measured magnetic vector and the stored magnetic vector, and store the measured magnetic when the preset condition is met.
  • the vector can be used to redundantly process the data collected by the magnetometer to improve the accuracy of the data to be used, thereby improving the accuracy of the calibration.
  • the magnetometer calibrated data processing device is applied to a stereo calibration method based on a least squares fitting surface, and further includes a relation table storage module (not shown) for storing uniform points and clips on the spherical surface.
  • a relation table storage module (not shown) for storing uniform points and clips on the spherical surface.
  • the point obtaining module 110 is configured to: obtain the number of sampling points, and find an angle between the corresponding sampling points from the relationship table to obtain an angle threshold.
  • the angle threshold corresponding to the number of sampling points obtained by the relationship table when the number of points corresponding to the number of sampling points is evenly distributed on the spherical surface, the angle between the two points is preset according to the angle threshold of the currently measured magnetic vector.
  • the judgment can uniformly filter the points corresponding to the magnetic vector, improve the uniformity of the corresponding points of the stored magnetic vectors, thereby improving the accuracy of the calibration.
  • the data processing apparatus of the magnetometer calibration further includes a threshold update module 170, configured to adjust the angle according to the preset angle error after the point acquisition module 110 acquires the number of sampling points and the angle threshold. Threshold, resulting in a new angle threshold.
  • condition analysis module 140 is configured to determine whether the currently measured magnetic vector satisfies a preset condition according to the detected angle and the new angle threshold.
  • the measured data may be inaccurate due to electromagnetic interference.
  • the preset angle error to adjust the angle threshold, it is possible to improve the accuracy of the judgment of the preset condition.
  • the data processing apparatus of the magnetometer calibration further includes a magnetic vector analysis module 180, configured to determine whether the currently measured magnetic vector is after the magnetic vector acquisition module 120 acquires the currently measured magnetic vector.
  • the first magnetic vector acquired during the calibration process if so, storing the first magnetic vector, and controlling the magnetic vector acquisition module 120 to again collect the data measured by the magnetometer during the calibration process to obtain the currently measured magnetic vector; if not, then controlling The angle calculation module 130 searches for the stored magnetic vector, and obtains an angle between the currently measured magnetic vector and the stored magnetic vector to obtain a detected angle.
  • condition analysis module 140 is configured to: determine whether the detected angle is greater than or equal to the angle threshold; if yes, determine that the currently measured magnetic vector satisfies the preset condition.
  • the data processing apparatus of the magnetometer calibration further includes a parameter acquisition module (not shown), configured to acquire a preset according to the stored magnetic vector when the number of stored magnetic vectors is equal to the number of sampling points.
  • the parameter value of the equation is not shown.
  • the main purpose of the magnetometer is to calculate the heading angle. By comparing the accuracy of the heading angle, it can be very obvious that the calibration effect is good or bad.
  • the magnetometer is placed on a horizontal turntable for rotation, and the turntable is rotated at 10 degrees per second for two weeks to collect data measured by the magnetometer.
  • the data collected by the magnetometer is calculated by the conventional calibration method and the data processing method of the magnetometer calibration of the present invention. As shown in Fig.
  • the three curves S1, S2, and S3 are the actual turret angle, the heading angle calculated after the calibration of the conventional method, and the heading angle calculated after the data processing method of the magnetometer calibration of the present invention, which can be clearly seen.
  • the method of calculating the heading angle calculated after calibration is closer to the actual turret angle.
  • S4 is the residual square between the heading angle and the actual angle calculated by the conventional method to calibrate the magnetometer
  • S5 is the residual between the heading angle and the actual angle calculated by calibrating the magnetometer using the method of the present invention. square. It can be seen from Fig.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种磁力计校准的数据处理方法和装置,数据处理方法包括:获取采样点数以及采样点数对应的夹角阈值(S100);采集校准过程中磁力计测量的数据得到当前测量的磁向量(S120);查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角得到检测夹角(S140);根据检测夹角和夹角阈值检测当前测量的磁向量是否满足预设条件(S160);若是则存储当前测量的磁向量(S180),并判断已存储的磁向量的数量是否等于采样点数(S190);在当前测量的磁向量不满足预设条件,或已存储的磁向量的数量没有达到采样点数时,返回继续采集校准过程中磁力计测量的数据得到当前测量的磁向量(S120)。如此,可对磁力计采集的数据进行冗余处理,提高待使用数据的准确性,从而提高校准的精确度。

Description

磁力计校准的数据处理方法和装置 技术领域
本发明涉及测量控制技术领域,特别是涉及一种磁力计校准的数据处理方法和装置。
背景技术
磁力计可以测量地磁场矢量在传感器坐标轴的分量,通常用于导航,例如机器人导航、手机导航。磁力计使用中,会受到周围环境中的电磁干扰,导致测量数据存在误差,因此使用前一般需要先对磁力计进行校准。
磁力计的校准方法通常包括平面校准、立体8字校准、十面校准等。校准过程中,需要转动磁力计采集多个点的数据,根据采集的数据进行校准。传统技术中,通常是采集多个点的数据后直接根据采集的数据进行校准,易出现因采集的数据的可靠性低,导致校准精度低的情况。
发明内容
基于此,有必要针对上述问题,提供一种校准精度高的磁力计校准的数据处理方法和装置。
一种磁力计校准的数据处理方法,包括:
获取采样点数以及所述采样点数对应的夹角阈值;
采集校准过程中磁力计测量的数据得到当前测量的磁向量;
查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角;
根据所述检测夹角和所述夹角阈值判断当前测量的磁向量是否满足预设条件;
在当前测量的磁向量满足所述预设条件时,存储当前测量的磁向量,判断已存储的磁向量的数量是否等于所述采样点数;
在当前测量的磁向量不满足所述预设条件,或已存储的磁向量的数量小于 所述采样点数时,返回所述采集校准过程中磁力计测量的数据得到当前测量的磁向量的步骤。
一种磁力计校准的数据处理装置,包括:
点数获取模块,用于获取采样点数以及所述采样点数对应的夹角阈值;
磁向量采集模块,用于采集校准过程中磁力计测量的数据得到当前测量的磁向量;
夹角计算模块,用于查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角;
条件分析模块,用于根据所述检测夹角和所述夹角阈值判断当前测量的磁向量是否满足预设条件;
磁向量存储模块,用于在当前测量的磁向量满足所述预设条件时,存储当前测量的磁向量,判断已存储的磁向量的数量是否等于所述采样点数;
循环操作模块,用于在当前测量的磁向量不满足所述预设条件,或已存储的磁向量的数量小于所述采样点数时,控制所述磁向量采集模块再次采集校准过程中磁力计测量的数据得到当前测量的磁向量。
上述磁力计校准的数据处理方法和装置,通过获取采样点数以及采样点数对应的夹角阈值,并采集校准过程中磁力计测量的数据得到当前测量的磁向量;然后查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角得到检测夹角;根据检测夹角和夹角阈值检测当前测量的磁向量是否满足预设条件,在当前测量的磁向量满足预设条件时,存储当前测量的磁向量,并比较已存储的磁向量的数量与采样点数;在当前测量的磁向量不满足预设条件,或已存储的磁向量的数量没有达到采样点数时,返回继续采集校准过程中磁力计测量的数据得到当前测量的磁向量,循环直到已存储的磁向量的数量等于采样点数。如此,对于校准过程中磁力计测量得到的磁向量,需要先根据夹角阈值、测量的磁向量与已存储的磁向量得到的检测夹角分析判断,在满足预设条件时才存储测量的磁向量,可对磁力计采集的数据进行冗余处理,提高待使用数据的准确性,从而提高校准的精确度。
附图说明
图1为一实施例中磁力计校准的数据处理方法的流程图;
图2为一实施例中球面上均匀点数与夹角的关系表的示意图;
图3为球体示意图;
图4为另一实施例中磁力计校准的数据处理方法的流程图;
图5为一实施例中磁力计校准的数据处理装置的结构图;
图6为另一实施例中磁力计校准的数据处理装置的结构图;
图7为一应用例中实际的转台角度、传统方法校准后计算的航向角和采用磁力计校准的数据处理方法后计算的航向角的曲线示意图;
图8为一应用例中采用传统方法校准后计算的航向角和实际角度之间的残差平方以及采用磁力计校准的数据处理方法校准后计算的航向角和实际角度之间的残差平方的示意图。
具体实施方式
参考图1,一实施例中的磁力计校准的数据处理方法,包括如下步骤。
S100:获取采样点数以及采样点数对应的夹角阈值。
磁力计校准过程中,需要获取多个点的数据,根据获取的数据完成校准。采样点数指需要采集的数据的数量,可以由用户人工输入,也可以是预先设置多个采样点数,用户根据需要校准的精度选择对应的采样点数,所需精度越高,对应的采样点数越大。
夹角阈值为预设的与采样点数对应的一个夹角值。采样点数不同,对应的夹角阈值不同。具体地,获取到采样点数后,可根据采样点数和预设的对应关系查找对应的夹角阈值。
S120:采集校准过程中磁力计测量的数据得到当前测量的磁向量。
对磁力计进行校准过程中,用户需要采用校准方法对应的方式转动磁力计,比如按8字转动,磁力计测量的数据为转动过程中地磁场矢量在坐标轴的分量。根据磁力计测量的数据可得到磁向量。例如,第s次采集的磁力计测量的数据为(x s,y s,z s),则对应的磁向量为
Figure PCTCN2017120071-appb-000001
磁向量可以是实时采集, 也可以是按照预设间隔进行采集。
S140:查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角。
已存储的磁向量为采集当前测量的磁向量之前已经存储好的磁向量,可以是从预设的数据库查找。若已存储的磁向量有多个,则需要分别获取当前测量的磁向量与各已存储的磁向量之间的夹角。即,检测夹角的数量等于已存储的磁向量的数量。
S160:根据检测夹角和夹角阈值判断当前测量的磁向量是否满足预设条件。若是,则执行步骤S180;否则返回执行步骤S120。
预设条件为预先设置的用于对检测夹角进行筛选的条件,具体为检测夹角与夹角阈值之间的关系条件,可以根据实际需要具体设置。
S180:存储当前测量的磁向量。
当前测量的磁向量满足预设条件,表示当前测量的磁向量通过筛选,可作为后续校准需使用的数据;此时,存储当前测量的磁向量,例如,可以存储于预设的数据库内,以便下次使用。在当前测量的磁向量不满足预设条件时,返回步骤S120,可再次采集下一个时刻磁力计测量的数据得到新的当前测量的磁向量。
S190:判断已存储的磁向量的数量是否等于采样点数。若否,则返回步骤S120。
已存储的磁向量为后续校准需使用的数据,需要等于采样点数。已存储的磁向量的数量没有达到采样点数,表示已存储的磁向量的数量小于采样点数,此时返回步骤S120,可以继续采集下一个时刻磁力计测量的数据,得到新的当前测量的磁向量后进行预设条件的判断。如此循环,直到已存储的磁向量等于采样点数。
上述磁力计校准的数据处理方法,通过获取采样点数以及采样点数对应的夹角阈值,并采集校准过程中磁力计测量的数据得到当前测量的磁向量;然后查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角得到检测夹角;根据检测夹角和夹角阈值检测当前测量的磁向量是否满足预设条 件,在当前测量的磁向量满足预设条件时,存储当前测量的磁向量,并比较已存储的磁向量的数量与采样点数;在当前测量的磁向量不满足预设条件,或已存储的磁向量的数量没有达到采样点数时,返回继续采集校准过程中磁力计测量的数据得到当前测量的磁向量,循环直到已存储的磁向量的数量等于采样点数。如此,对于校准过程中磁力计测量得到的磁向量,需要先根据夹角阈值、测量的磁向量与已存储的磁向量得到的检测夹角分析判断,在满足预设条件时才存储测量的磁向量,可对磁力计采集的数据进行冗余处理,提高待使用数据的准确性,从而提高校准的精确度。
在一实施例中,上述磁力计校准的数据处理方法应用于基于最小二乘法拟合曲面的立体校准方法时,步骤S100之前,还包括步骤:存储球面上均匀点数与夹角的关系表。对应地,步骤S100为:获取采样点数,从关系表中查找对应采样点数的夹角得到夹角阈值。
球面上均匀点数与夹角的关系表,为球面上可能分布的多个均匀点的数量与两点之间夹角的对应关系。因此,根据关系表获取的采样点数对应的夹角阈值,为在球面上均匀分布采样点数对应数量的点时,两点之间的夹角,根据该夹角阈值对当前测量的磁向量进行预设条件的判断,可以对磁向量对应的点进行均匀度筛选,提高已存储的磁向量对应点的均匀度,从而提高校准的精确度。
本实施例中,关系表为美国数学家Neil Sloane总结得到的球面上均匀点数与夹角的关系表,如图2所示,图2的两列数据中,左边一列表示均匀点数,右边一列表示对应的夹角。
基于最小二乘法拟合曲面的立体校准过程中,由于拟合方程未知,椭球面上两点之间的距离难以计算,所以采用圆球面去近似。参考图3,AB两个点之间的距离与椭球中心点O到两个球面点的向量夹角θ 0成正比。根据向量夹角计算公式:
Figure PCTCN2017120071-appb-000002
Figure PCTCN2017120071-appb-000003
那么可以设置θ 0的大小作为判断两点之间距离的大小,其中a为预设参数。在实际校准中,设置采样的点为球面上均匀分布的点,首先确定采样点数,从而确定θ 0的大小。但是球面上均匀分布点的个数与θ 0的关系无法确定,正多面体类型有限,难以模拟。因此,本实施例中,采用美国数学家Neil Sloane总结得到的球面上均匀点数与夹角的关系表,可以确定采样点数与夹角阈值的对应关系。
在一实施例中,参考图4,步骤S100之后,步骤S160之前,还包括步骤S110。
S110:根据预设夹角误差调整夹角阈值,得到新的夹角阈值。
预设夹角误差为预先设置的允许接收的误差值,可根据实际情况具体设置。
对应地,本实施例中,步骤S160为:根据检测夹角和新的夹角阈值判断当前测量的磁向量是否满足预设条件。
磁力计在实际使用过程中,可能会因电磁干扰而导致测量的数据不准确。通过设置预设夹角误差对夹角阈值进行调整,可以提高步骤S160判断结果的准确性。
本实施例中,步骤S110具体为:计算夹角阈值与预设夹角误差的差值,将差值作为新的夹角阈值。例如,与采样点数对应的夹角阈值为30°,预设夹角误差为5°,则调整夹角阈值后,得到的新的夹角阈值为25°(30°-5°)。可以理解,在其他实施例中,也可以采用其他调整方法。
在一实施例中,继续参考图4,步骤S120之后,步骤S140之前,还包括步骤S131和步骤S132。
S131:判断当前测量的磁向量是否为校准过程中采集的第一个磁向量。若是,则执行步骤S132;否则执行步骤S140。
磁向量的采集为按时间顺序先后进行,若当前测量的磁向量对应为校准过程中采集的第一个磁向量,表示为此次校准过程中的第一次采集得到的磁向量。
S132:存储第一个磁向量,并返回步骤S120。
当前测量的磁向量为采集的第一个磁向量时,已存储的磁向量为零,此时,直接将当前测量的磁向量进行存储,不需要进行夹角的计算,处理方式简单。 对于之后每次采集得到的当前测量的磁向量,都需要与已存储的磁向量计算夹角得到检测夹角。
在一实施例中,步骤S140中获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角,包括:
Figure PCTCN2017120071-appb-000004
Figure PCTCN2017120071-appb-000005
Figure PCTCN2017120071-appb-000006
其中,
Figure PCTCN2017120071-appb-000007
为第l个已存储的磁向量,
Figure PCTCN2017120071-appb-000008
为第m次采集得到的当前测量的磁向量,a为预设参数,θ为检测夹角。
在一实施例中,步骤S160包括:判断检测夹角是否大于或等于夹角阈值。若是,则判定当前测量的磁向量满足预设条件。
通过将检测夹角大于或等于夹角阈值作为预设条件,可以确保得到的已存储的磁向量对应的点之间的距离过短。应用于基于最小二乘法拟合曲面的立体校准方法时,由于球面上两点之间的夹角大小与两点之间的距离成正比,夹角越大,距离越远,因此设置检测夹角大于或等于夹角阈值作为预设条件,可以提高得到的已存储的磁向量对应的点之间距离的均匀度,从而提高校准的精确度。
在一实施例中,步骤S190之后,还包括:若已存储的磁向量的数量等于采样点数,则根据已存储的磁向量获取预设拟合方程的参数值。
预设拟合方程为用于磁力计校准的计算方程,预设拟合方程中设有多个未知参数,根据已存储的磁向量结合运算推导,可得到未知参数的参数值,从而可得到用于磁力计校准的已知拟合方程。
本实施例中,预设拟合方程为:
Figure PCTCN2017120071-appb-000009
其中,x a、y b、z c、a、b、c为未知参数,x、y、z为变量。根据已存储 的磁向量获取预设拟合方程的参数值的推导运算过程如下。
令:
Figure PCTCN2017120071-appb-000010
那么有:
Figure PCTCN2017120071-appb-000011
转换成矩阵运算有:
Figure PCTCN2017120071-appb-000012
令:
Figure PCTCN2017120071-appb-000013
那么有:
x 2=[2x,-y 2,2y,-z 2,2z,1][k 1,k 2,k 3,k 4,k 5,k 6] T
根据采样点数n,那么有如下矩阵关系成立,有n个方程求解6个未知量,所以n≥6。
Figure PCTCN2017120071-appb-000014
令:
Figure PCTCN2017120071-appb-000015
Figure PCTCN2017120071-appb-000016
Figure PCTCN2017120071-appb-000017
最小二乘法拟合椭球,计算k 1,k 2,k 3,k 4,k 5,k 6,那么有:
K=(D TD) -1(D TE);
计算a,x a,b,y b,c,z c有:
Figure PCTCN2017120071-appb-000018
如此,可计算得到未知参数x a、y b、z c、a、b、c对应的参数值。将未知参数的参数值代入预设拟合方程得到已知拟合方程,在以后的校准运算中便可以使用。例如,采集三个轴的磁力计数据x t,y t,z t,校准后的数据为x c,y c,z c,归一化后的数据为x e,y e,z e,那么存在以下关系:
Figure PCTCN2017120071-appb-000019
Figure PCTCN2017120071-appb-000020
参考图5,一实施例中的磁力计校准的数据处理装置,包括点数获取模块110、磁向量采集模块120、夹角计算模块130、条件分析模块140、磁向量存储模块150和循环操作模块160。
点数获取模块110用于获取采样点数以及采样点数对应的夹角阈值。
磁向量采集模块120用于采集校准过程中磁力计测量的数据得到当前测量的磁向量。
夹角计算模块130用于查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角。
条件分析模块140用于根据检测夹角和夹角阈值判断当前测量的磁向量是否满足预设条件。
磁向量存储模块150用于在当前测量的磁向量满足预设条件时,存储当前测量的磁向量,判断已存储的磁向量的数量是否等于采样点数。
循环操作模块160用于在当前测量的磁向量不满足预设条件,或已存储的磁向量的数量小于采样点数时,控制磁向量采集模块120再次采集校准过程中磁力计测量的数据得到当前测量的磁向量。
上述磁力计校准的数据处理装置,通过点数获取模块110获取采样点数以及采样点数对应的夹角阈值,磁向量采集模块120采集校准过程中磁力计测量的数据得到当前测量的磁向量;夹角计算模块130查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角得到检测夹角;条件分析模块140根据检测夹角和夹角阈值检测当前测量的磁向量是否满足预设条件,磁向量存储模块150在当前测量的磁向量满足预设条件时,存储当前测量的磁向量,并判断已存储的磁向量的数量是否等于采样点数;循环操作模块160在当前测量的磁向量不满足预设条件,或已存储的磁向量的数量没有达到采样点数时,控制磁向量采集模块120继续采集校准过程中磁力计测量的数据得到当前测量的磁向量,循环直到已存储的磁向量的数量等于采样点数。如此,对于校准过程中磁力计测量得到的磁向量,需要先根据夹角阈值、测量的磁向量与已存储 的磁向量得到的检测夹角分析判断,在满足预设条件时才存储测量的磁向量,可对磁力计采集的数据进行冗余处理,提高待使用数据的准确性,从而提高校准的精确度。
在一实施例中,上述磁力计校准的数据处理装置应用于基于最小二乘法拟合曲面的立体校准方法时,还包括关系表存储模块(图未示),用于存储球面上均匀点数与夹角的关系表。本实施例中,点数获取模块110用于:获取采样点数,从关系表中查找对应采样点数的夹角得到夹角阈值。
根据关系表获取的采样点数对应的夹角阈值,为在球面上均匀分布采样点数对应数量的点时,两点之间的夹角,根据该夹角阈值对当前测量的磁向量进行预设条件的判断,可以对磁向量对应的点进行均匀度筛选,提高已存储的磁向量对应点的均匀度,从而提高校准的精确度。
在一实施例中,参考图6,上述磁力计校准的数据处理装置还包括阈值更新模块170,用于在点数获取模块110获取采样点数以及夹角阈值后,根据预设夹角误差调整夹角阈值,得到新的夹角阈值。
本实施例中,条件分析模块140用于根据检测夹角和新的夹角阈值判断当前测量的磁向量是否满足预设条件。
磁力计在实际使用过程中,可能会因电磁干扰而导致测量的数据不准确。通过设置预设夹角误差对夹角阈值进行调整,可以提高是否满足预设条件的判断准确性。
在一实施例中,参考图6,上述磁力计校准的数据处理装置还包括磁向量分析模块180,用于在磁向量采集模块120采集当前测量的磁向量之后,判断当前测量的磁向量是否为校准过程中采集的第一个磁向量;若是,则存储第一个磁向量,并控制磁向量采集模块120再次采集校准过程中磁力计测量的数据得到当前测量的磁向量;若否,则控制夹角计算模块130查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角。
在一实施例中,条件分析模块140用于:判断检测夹角是否大于或等于夹角阈值;若是,则判定当前测量的磁向量满足预设条件。
在一实施例中,上述磁力计校准的数据处理装置还包括参数获取模块(图 未示),用于在已存储的磁向量的数量等于采样点数时,根据已存储的磁向量获取预设拟合方程的参数值。
磁力计主要用途是计算航向角,通过对比航向角精度高低可以非常明显的体现出校准效果的好坏。为了对比上述磁力计校准的数据处理方法带来的有益效果,应用例中,将磁力计放在水平转台上进行旋转,转台以10度每秒旋转两周,采集磁力计测量的数据。磁力计采集的数据经过传统校准方法以及本发明的磁力计校准的数据处理方法后计算航向角。如图7所示三条曲线S1、S2、S3分别是实际的转台角度、传统方法校准后计算的航向角和本发明的磁力计校准的数据处理方法后计算的航向角,可以明显看出采用本发明的方法校准后计算得到的航向角计算更加接近实际的转台角度。如图8所示,S4为采用传统方法校准磁力计后计算的航向角和实际角度之间的残差平方,S5为采用本文方法校准磁力计后计算的航向角和实际角度之间的残差平方。由图8可知,传统方法校准后,磁力计在航向角误差呈现较大波动,而采用本文方法校准后可以很好的控制航向角误差范围。综上,经试验证明,上述磁力计校准的数据处理方法可以提高磁力计校准的精度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种磁力计校准的数据处理方法,其特征在于,包括:
    获取采样点数以及所述采样点数对应的夹角阈值;
    采集校准过程中磁力计测量的数据得到当前测量的磁向量;
    查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角;
    根据所述检测夹角和所述夹角阈值判断当前测量的磁向量是否满足预设条件;
    在当前测量的磁向量满足所述预设条件时,存储当前测量的磁向量,判断已存储的磁向量的数量是否等于所述采样点数;
    在当前测量的磁向量不满足所述预设条件,或已存储的磁向量的数量小于所述采样点数时,返回所述采集校准过程中磁力计测量的数据得到当前测量的磁向量的步骤。
  2. 根据权利要求1所述的磁力计校准的数据处理方法,其特征在于,所述获取采样点数以及所述采样点数对应的夹角阈值之后,所述根据所述检测夹角和所述夹角阈值判断当前测量的磁向量是否满足预设条件之前,还包括:
    根据预设夹角误差调整所述夹角阈值,得到新的夹角阈值;
    所述根据所述检测夹角和所述夹角阈值判断当前测量的磁向量是否满足预设条件为:
    根据所述检测夹角和新的夹角阈值判断所述当前测量的磁向量是否满足预设条件。
  3. 根据权利要求1所述的磁力计校准的数据处理方法,其特征在于,所述采集校准过程中磁力计测量的数据得到当前测量的磁向量之后,所述查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角之前,还包括:
    判断当前测量的磁向量是否为校准过程中采集的第一个磁向量;
    若是,则存储所述第一个磁向量,并返回所述采集校准过程中磁力计测量的数据得到当前测量的磁向量的步骤;
    若否,则执行所述查找已存储的磁向量,获取当前测量的磁向量与已存储 的磁向量之间的夹角,得到检测夹角的步骤。
  4. 根据权利要求1所述的磁力计校准的数据处理方法,其特征在于,所述根据所述检测夹角和所述夹角阈值判断当前测量的磁向量是否满足预设条件,包括:
    判断所述检测夹角是否大于或等于所述夹角阈值;
    若是,则判定当前测量的磁向量满足所述预设条件。
  5. 根据权利要求1所述的磁力计校准的数据处理方法,其特征在于,所述在当前测量的磁向量满足所述预设条件时,存储当前测量的磁向量,判断已存储的磁向量的数量是否等于所述采样点数之后,还包括:
    若已存储的磁向量的数量等于所述采样点数,则根据所述已存储的磁向量获取预设拟合方程的参数值。
  6. 一种磁力计校准的数据处理装置,其特征在于,包括:
    点数获取模块,用于获取采样点数以及所述采样点数对应的夹角阈值;
    磁向量采集模块,用于采集校准过程中磁力计测量的数据得到当前测量的磁向量;
    夹角计算模块,用于查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角;
    条件分析模块,用于根据所述检测夹角和所述夹角阈值判断当前测量的磁向量是否满足预设条件;
    磁向量存储模块,用于在当前测量的磁向量满足所述预设条件时,存储当前测量的磁向量,判断已存储的磁向量的数量是否等于所述采样点数;
    循环操作模块,用于在当前测量的磁向量不满足所述预设条件,或已存储的磁向量的数量小于所述采样点数时,控制所述磁向量采集模块再次采集校准过程中磁力计测量的数据得到当前测量的磁向量。
  7. 根据权利要求6所述的磁力计校准的数据处理装置,其特征在于,还包括阈值更新模块,用于在所述点数获取模块获取所述采样点数以及所述夹角阈值后,根据预设夹角误差调整所述夹角阈值,得到新的夹角阈值;
    所述条件分析模块用于根据所述检测夹角和新的夹角阈值判断所述当前测 量的磁向量是否满足预设条件。
  8. 根据权利要求6所述的磁力计校准的数据处理装置,其特征在于,还包括磁向量分析模块,用于在所述磁向量采集模块采集当前测量的磁向量之后,判断当前测量的磁向量是否为校准过程中采集的第一个磁向量;若是,则存储所述第一个磁向量,并控制所述磁向量采集模块再次采集校准过程中磁力计测量的数据得到当前测量的磁向量;若否,则控制所述夹角计算模块查找已存储的磁向量,获取当前测量的磁向量与已存储的磁向量之间的夹角,得到检测夹角。
  9. 根据权利要求6所述的磁力计校准的数据处理装置,其特征在于,所述条件分析模块用于:判断所述检测夹角是否大于或等于所述夹角阈值;若是,则判定当前测量的磁向量满足所述预设条件。
  10. 根据权利要求6所述的磁力计校准的数据处理装置,其特征在于,还包括参数获取模块,用于在已存储的磁向量的数量等于所述采样点数时,根据所述已存储的磁向量获取预设拟合方程的参数值。
PCT/CN2017/120071 2016-12-31 2017-12-29 磁力计校准的数据处理方法和装置 WO2018121765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611267544.XA CN106842094B (zh) 2016-12-31 2016-12-31 磁力计校准的数据处理方法和装置
CN201611267544.X 2016-12-31

Publications (1)

Publication Number Publication Date
WO2018121765A1 true WO2018121765A1 (zh) 2018-07-05

Family

ID=59117299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120071 WO2018121765A1 (zh) 2016-12-31 2017-12-29 磁力计校准的数据处理方法和装置

Country Status (2)

Country Link
CN (1) CN106842094B (zh)
WO (1) WO2018121765A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842094B (zh) * 2016-12-31 2020-04-24 深圳市优必选科技有限公司 磁力计校准的数据处理方法和装置
CN107907142B (zh) * 2017-10-12 2020-09-11 歌尔科技有限公司 一种磁力计的初始校准方法、装置和磁力计
CN108195399A (zh) * 2017-12-22 2018-06-22 苏州捷研芯纳米科技有限公司 用于动态校准磁场传感器的方法和系统
CN110567493B (zh) * 2019-09-05 2021-08-17 深圳市道通智能航空技术股份有限公司 一种磁力计校准数据采集方法、装置以及飞行器
CN111289933B (zh) * 2020-05-07 2020-09-01 中航金城无人系统有限公司 一种多旋翼飞行器的磁力计自动校准系统和方法
CN112985461B (zh) * 2021-03-25 2023-11-03 成都纵横自动化技术股份有限公司 一种基于gnss测向的磁传感器校准方法
CN112762965B (zh) * 2021-04-08 2021-09-07 北京三快在线科技有限公司 一种磁力计校准方法以及装置
CN116558552B (zh) * 2023-07-07 2023-10-20 北京小米移动软件有限公司 电子指南针的校准方法、校准装置、电子设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130320966A1 (en) * 2012-05-31 2013-12-05 Research In Motion Limited System and Method for Calibrating a Magnetometer on a Mobile Device
CN103901380A (zh) * 2012-12-25 2014-07-02 北京普源精电科技有限公司 校准方法及其校准装置
CN104582804A (zh) * 2012-08-17 2015-04-29 微软公司 动态磁力计校准
CN105699918A (zh) * 2016-01-28 2016-06-22 宁波兴隆磁性技术有限公司 一种用于磁偏角设备中测试基准面的校准方法
KR20160113380A (ko) * 2015-03-18 2016-09-29 현대오트론 주식회사 지자기 센서 왜곡 보정 장치 및 방법
CN106842094A (zh) * 2016-12-31 2017-06-13 深圳市优必选科技有限公司 磁力计校准的数据处理方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538071B2 (ja) * 2006-05-09 2010-09-08 アルプス電気株式会社 キャリブレーションプログラム及び電子コンパス
KR20080026395A (ko) * 2006-09-20 2008-03-25 삼성전자주식회사 자기 환경을 고려한 컴퍼스 센서의 교정 방법 및 장치와이를 이용한 방위각 측정 방법 및 장치
US8374816B2 (en) * 2010-06-08 2013-02-12 Honeywell International Inc. Automatic data collection algorithm for 3D magnetic field calibration with reduced memory requirements
CA2750975C (en) * 2011-02-11 2016-02-16 Research In Motion Limited System and method for calibrating a magnetometer with visual affordance
EP2669626A1 (en) * 2012-05-31 2013-12-04 BlackBerry Limited System and method for calibrating a magnetometer on a mobile device
CN103575293B (zh) * 2012-07-25 2016-08-10 华为终端有限公司 一种磁力计方向角校正方法及磁力计
CN103278860B (zh) * 2013-05-06 2015-10-28 国家海洋局第二海洋研究所 一种深海三分量磁力仪的现场自校正方法
CN104237822B (zh) * 2013-06-20 2018-10-19 意法半导体(中国)投资有限公司 用于电子磁力计传感器的补偿磁干扰
CN103808331B (zh) * 2014-03-05 2016-10-26 北京理工大学 一种mems三轴陀螺仪误差标定方法
CN104613983B (zh) * 2015-02-03 2018-03-02 中国航天时代电子公司 一种应用于微小型无人机的整机磁强计校准方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130320966A1 (en) * 2012-05-31 2013-12-05 Research In Motion Limited System and Method for Calibrating a Magnetometer on a Mobile Device
CN104582804A (zh) * 2012-08-17 2015-04-29 微软公司 动态磁力计校准
CN103901380A (zh) * 2012-12-25 2014-07-02 北京普源精电科技有限公司 校准方法及其校准装置
KR20160113380A (ko) * 2015-03-18 2016-09-29 현대오트론 주식회사 지자기 센서 왜곡 보정 장치 및 방법
CN105699918A (zh) * 2016-01-28 2016-06-22 宁波兴隆磁性技术有限公司 一种用于磁偏角设备中测试基准面的校准方法
CN106842094A (zh) * 2016-12-31 2017-06-13 深圳市优必选科技有限公司 磁力计校准的数据处理方法和装置

Also Published As

Publication number Publication date
CN106842094B (zh) 2020-04-24
CN106842094A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018121765A1 (zh) 磁力计校准的数据处理方法和装置
CN105444678B (zh) 手机尺寸测量方法和系统
WO2018129865A1 (zh) 一种rtk测量接收机倾斜测量方法
KR101783050B1 (ko) 3축 자계 센서의 교정 방법 및 장치
CN108426571B (zh) 一种电子罗盘本地实时校准方法及装置
CN103941309B (zh) 地磁传感器校准设备及其方法
CN109655079B (zh) 星敏感器测量坐标系到棱镜坐标系测量方法
KR101485142B1 (ko) 자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법
US20170176546A1 (en) Method for calibration of magnetic sensor
CN106767443B (zh) 一种全自动二次元影像检测仪及测量方法
US20160065932A1 (en) Device and system for three-dimensional scanning, and method thereof
CN109855583B (zh) 三坐标测量机测量不确定度的确定方法
US7464579B2 (en) Calibration block
CN104422399A (zh) 测量仪器线激光测头校准系统及方法
CN111323145A (zh) 一种温度测量方法及装置和系统
CN112417370A (zh) 粗糙表面物质的穆勒琼斯矩阵估计及偏振噪声分析方法
TW201319618A (zh) 星型探針量測校正系統及方法
KR101503046B1 (ko) 다축 감지 장치 및 이의 교정 방법
CN108572387B (zh) 一种体源测量探测器的校准方法
CN111145247B (zh) 基于视觉的位置度检测方法及机器人、计算机存储介质
WO2018090633A1 (zh) 一种优化的极大磁场测量方法及装置
CN106767654A (zh) 相机水平偏角的检测方法及系统
CN109297476B (zh) 磁力计的校准、采样及方位角确定方法和设备
CN114441469A (zh) 水分仪的校准方法、装置和计算机设备
Dan et al. Application Of Strongly Tracking Kalman Filter In MEMS Gyroscope Bias Compensation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889257

Country of ref document: EP

Kind code of ref document: A1