WO2018129865A1 - 一种rtk测量接收机倾斜测量方法 - Google Patents

一种rtk测量接收机倾斜测量方法 Download PDF

Info

Publication number
WO2018129865A1
WO2018129865A1 PCT/CN2017/089091 CN2017089091W WO2018129865A1 WO 2018129865 A1 WO2018129865 A1 WO 2018129865A1 CN 2017089091 W CN2017089091 W CN 2017089091W WO 2018129865 A1 WO2018129865 A1 WO 2018129865A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
measurement
measured
observation
coordinates
Prior art date
Application number
PCT/CN2017/089091
Other languages
English (en)
French (fr)
Inventor
宋锐
周瑾
袁本银
王杰俊
朴东国
Original Assignee
上海华测导航技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华测导航技术股份有限公司 filed Critical 上海华测导航技术股份有限公司
Priority to RU2019107900A priority Critical patent/RU2716360C1/ru
Priority to EP17891328.1A priority patent/EP3489626A4/en
Priority to US16/315,168 priority patent/US10591295B2/en
Publication of WO2018129865A1 publication Critical patent/WO2018129865A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Definitions

  • the present invention relates to the field of RTK measurement technologies, and in particular, to an RTK measurement receiver tilt measurement method.
  • the rover centering rod needs to ensure vertical placement, and then the position coordinates of the point to be measured on the ground are calculated according to the position of the phase center of the GNSS receiver antenna and the distance from the phase center to the ground.
  • the position coordinates of the point to be measured on the ground are calculated according to the position of the phase center of the GNSS receiver antenna and the distance from the phase center to the ground.
  • the present invention provides an RTK measurement receiver tilt measurement method, which calculates the position of a point to be measured according to the position, the tilt angle, and the length of the center pole of the receiver antenna phase according to a certain number of tilt measurements.
  • Level RTK when the number of observations is sufficient, the centimeter-level position calculation accuracy can be obtained.
  • the invention provides an RTK measurement receiver tilt measurement method, which comprises the following steps:
  • Step S1 fixing the bottom of the middle rod and tilting and then measuring
  • Step S2 obtaining a measurement point sequence, a measurement point tilt sequence, a measuring rod length, and an antenna phase center height based on the above measurement;
  • Step S3 obtaining a geodetic coordinate of the positioning quality target and the to-be-measured point based on the measured value
  • Step S4 determining whether the positioning quality target meets the requirement, and determining whether to end the measurement.
  • step of fixing the bottom of the centering rod and performing the tilting shaking and then measuring comprises:
  • the length of the centering rod remains unchanged during use, and the bottom of the centering rod remains fixed.
  • step of obtaining the measurement point sequence, the measurement point tilt sequence, the measurement rod length, and the antenna phase center height based on the above measurement comprises:
  • step of obtaining the positioning quality target and the geodetic coordinates of the point to be measured based on the measured value comprises:
  • the first type of observation equation is established according to the resection principle according to the position coordinate of the observation point and the distance from the observation point to the point to be measured;
  • the determining whether the positioning quality target satisfies the requirement, and the step of deciding whether to end the measurement comprises:
  • step S1 it is judged whether the positioning quality target satisfies the requirement. If the requirement is not met, the process proceeds to step S1 to step S3; if the requirement is met, the measurement is ended.
  • the estimation of the residual value of the observations after the adjustment is performed to solve the plane coordinates of the ground to be measured.
  • (v N , v E , v H ) is the coordinate correction of the point to be measured;
  • (N 0 , E 0 , H 0 ) is the approximate coordinate of the point to be measured;
  • L i is the length of the pole and the antenna height Sum; The distance calculated from the coordinates of the observation point and the approximate coordinates of the point to be measured.
  • the step of establishing a second type of observation equation is based on the cosine relationship between the height difference and the distance between the observation point and the point to be measured, and the observation angle of the observation point is Then the observation equation is
  • the simultaneous equations (2) and (4) can establish the equation of error equations.
  • V BX-W, P (5)
  • P is the weight matrix, which is set according to the precision of the observation value. If there is no such information, it can be set as a unit matrix.
  • the above method comprising the steps of: obtaining according to a weighted least squares criterion
  • A is a coefficient matrix. Calculate the ATA to obtain an identity matrix with dimensions of 3 rows and 3 columns. Add the diagonal elements of the unit matrix and take the square root to obtain the quality standard.
  • the invention has the following advantages: calculating the position of the point to be measured according to the position, the inclination angle and the length of the center pole of the receiver antenna according to a certain number of tilt measurements, and for the centimeter-level RTK, when the number of observations is sufficient, the centimeter level can be obtained.
  • the position calculation accuracy calculating the position of the point to be measured according to the position, the inclination angle and the length of the center pole of the receiver antenna according to a certain number of tilt measurements, and for the centimeter-level RTK, when the number of observations is sufficient, the centimeter level can be obtained.
  • FIG. 1 is a schematic flow chart of a tilt measurement method of an RTK measurement receiver according to the present invention.
  • FIG. 2 is a schematic diagram of a tilt measurement method of an RTK measurement receiver of the present invention.
  • the present invention provides an RTK measurement receiver tilt measurement method, comprising the following steps:
  • Step S1 Fixing the bottom of the middle rod and tilting and then measuring, the length of the centering rod in the measurement remains unchanged during the measurement, and the bottom of the center rod is kept fixed, that is, the stability of the receiver during measurement There is no limit, and you can shake it at will if the bottom is fixed.
  • Step S2 obtaining a measurement point sequence, a measurement point inclination sequence, a measurement rod length, and an antenna phase center height based on the above measurement, specifically, A, B, and C as shown in FIG. 1, wherein A is a measurement point sequence, according to chronological order Record all observation points from the start of the measurement to the end of the measurement. Each of the points has its positioning information, and the information is the measured point (antenna phase center) geodetic coordinates, and includes the earth dimension B, the earth longitude L, and the earth height H in order. The unit arc of B and L, and the unit of H is meter.
  • B is the measurement point dip sequence, and all the inclination angles from the start measurement to the end measurement are recorded according to the chronological order.
  • the inclination angle and the measurement point are one-to-one correspondence, indicating the inclination angle of the measurement point coordinates together, in units of radians .
  • C is the length of the measuring rod and the center height of the antenna phase in meters.
  • D is the positioning quality standard, called the geometric factor. The geometric factor is a positive integer with a minimum of 1, and a smaller value indicates a higher precision of the calculated result.
  • E is the geodetic coordinate of the point to be measured (ground point), which is the calculation result of the program, including the earth latitude B, the earth longitude L, and the earth height H.
  • the unit of B and L is arc, and the unit of H is meter.
  • the method includes the following steps: step S2a: observing the geodetic coordinates (B i , L i , H i ) of the observation point and measuring the inclination angle ⁇ i , and step S2b: converting the ground coordinates (B i , L i , H i ) of the observation point into plane coordinates (N i , E i , H i ), step S2c: obtaining plane coordinates of the ground to be measured based on the above plane coordinates (N i , E i , H i ) And converted to geodetic coordinates Specifically, the observation equation is established, and the indirect adjustment is performed; the estimation of the residual value of the observations after the adjustment is performed, and the plane coordinates of the ground to be measured are solved.
  • Step S3 obtaining the geodetic coordinates of the positioning quality target and the to-be-measured point based on the measured values.
  • step S3a establishing a first type of observation equation according to the principle of resection, by setting the distance between the position of the observation point and the distance from the observation point to the point to be measured, specifically setting the phase center plane coordinates (N i , E i ) of the GPS receiver antenna.
  • (v N , v E , v H ) is the coordinate correction of the point to be measured;
  • (N 0 , E 0 , H 0 ) is the approximate coordinate of the point to be measured;
  • L i is the length of the pole and the antenna height Sum; The distance calculated from the coordinates of the observation point and the approximate coordinates of the point to be measured.
  • Step S3b Establish a second type of observation equation according to the cosine relationship of the inclination difference between the observation point and the point to be measured:
  • the observation angle of the observation point is Then the observation equation is
  • the simultaneous equations (2) and (4) can establish the equation of error equations.
  • P is the weight matrix, which is set according to the precision of the observation value. If there is no such information, it can be set as a unit matrix. According to the weighted least squares criterion, it can be obtained.
  • A is a coefficient matrix. Calculate the ATA to obtain an identity matrix with dimensions of 3 rows and 3 columns. Add the diagonal elements of the unit matrix and take the square root to obtain the quality standard.
  • Step S4 determining whether the positioning quality target satisfies the requirement, determining whether to end the measurement, specifically determining whether the positioning quality target meets the requirement, and if the requirement is not met, proceeding to step S1 to step S3; if the requirement is met, ending the measurement.
  • the mass target (referred to as "geometry factor") in step (6) is a positive integer with a minimum value of 1. The smaller the value, the higher the precision.
  • the length of the centering rod during use is fixed and cannot be changed, and the bottom of the centering rod cannot be moved.
  • the receiver needs to be shaken during the measurement. The greater the amplitude of the shake, the better the effect.
  • the solution principle is: where O is the ground to be measured; A is the GPS receiver antenna phase center, which is the observation point of the tilt measurement; AB is the antenna height; OB is the centering rod length; OD is to be The reference ellipsoid normal at the measurement point; AC is the normal from the observation point A to the reference ellipsoid, and AC is parallel to the OD in the projected plane coordinate system; ⁇ is the instrument inclination.
  • the tilt measurement mainly includes two types of observations: the position of the observation point and the inclination angle, which correspond to two types of observation equations.
  • the first type of observation equation is established according to the principle of resection.
  • Set the GPS receiver antenna phase center plane coordinates (N i , E i ) and the geodetic height H i (where i 1, 2, ..., n, n is the total number of observation points, the same below), the point to be measured O
  • the plane coordinates and the height of the ground are respectively with The length from the point to be measured to the observation point is Then the observation equation is
  • (v N , v E , v H ) is the coordinate correction of the point to be measured;
  • (N 0 , E 0 , H 0 ) is the approximate coordinate of the point to be measured;
  • L i is the length of the pole and the antenna height Sum; The distance calculated from the coordinates of the observation point and the approximate coordinates of the point to be measured.
  • the simultaneous equations (2) and (4) can establish the equation of error equations.
  • P is the weight matrix, which is set according to the precision of the observation value. If there is no such information, it can be set as a unit matrix.
  • A is a coefficient matrix. Calculate ATA to obtain an identity matrix with dimensions of 3 rows and 3 columns. Add the diagonal elements of the unit matrix and take the square root to obtain the quality standard, which is called “geometry factor”. The geometric factor is used as an indicator of accuracy. The smaller the geometric factor, the higher the accuracy.
  • Magnetic field calibration is not required compared to conventional tilt measurement methods.
  • the tilt measurement method according to the present invention has the measurement accuracy of the bottom position of the middle rod depending on the geometric configuration of the observation point, the number and accuracy of the observation points, the inclination measurement accuracy, and the alignment. Rod length error and antenna phase center length error. The measurement results are more stable and the measurement accuracy is higher.
  • the measurement accuracy threshold can be set. When the accuracy meets the requirements, increasing the geometric factor threshold can shorten the measurement time.

Abstract

一种RTK测量接收机倾斜测量方法,包括以下步骤:步骤S1:将对中杆底部固定并进行倾斜摇晃然后进行测量;步骤S2:基于步骤S1的测量得到测量点序列、测量点倾斜序列、测量杆长度和天线相位中心高度;步骤S3:基于测量得到的数值得到定位质量标的和待测点大地坐标;步骤S4:判断定位质量标的是否满足要求,决定是否结束测量。这种方法根据一定数量倾斜测量时接收机天线相位中心的位置、倾角以及对中杆长度等计算待测点位置,对于厘米级的RTK,当观测值数量足够时,可以获得厘米级的位置计算精度。

Description

一种RTK测量接收机倾斜测量方法 技术领域
本发明涉及RTK测量技术领域,具体涉及一种RTK测量接收机倾斜测量方法。
背景技术
在RTK测量中,流动站对中杆需要保证竖直安置,然后根据GNSS接收机天线相位中心的位置及相位中心至地面的距离归算得到地面上待测点的位置坐标。但是在实际测量工作中,由于受到地形条件的影响和仪器本身的限制,许多测量点无法竖直安置,需要倾斜。导致了测量过程繁琐,测量误差大。
发明内容
为了解决上述不足的缺陷,本发明提供了一种RTK测量接收机倾斜测量方法,根据一定数量倾斜测量时接收机天线相位中心的位置、倾角以及对中杆长度等计算待测点位置,对于厘米级的RTK,当观测值数量足够时,可以获得厘米级的位置计算精度。
本发明提供了一种RTK测量接收机倾斜测量方法,包括以下步骤:
步骤S1:对中杆底部固定并进行倾斜摇晃然后进行测量;
步骤S2:基于上述测量得到测量点序列、测量点倾斜序列、测量杆长度和天线相位中心高度;
步骤S3:基于测量得到的数值得到定位质量标的和待测点大地坐标;
步骤S4:判断定位质量标的是否满足要求,决定是否结束测量。
上述的方法,其中,所述对中杆底部固定并进行倾斜摇晃然后进行测量的步骤包括:
测量中对中杆在使用过程中的长度保持不变,以及对中杆底部保持固定。
上述的方法,其中,所述基于上述测量得到测量点序列、测量点倾斜序列、测量杆长度和天线相位中心高度的步骤包括:
观测得到观测点的大地坐标(Bi,Li,Hi)与测量倾角θi
将观测点大地坐标(Bi,Li,Hi)转换成平面坐标(Ni,Ei,Hi);
基于上述的平面坐标(Ni,Ei,Hi)得到地面待测点平面坐标
Figure PCTCN2017089091-appb-000001
并转换成大地坐标
Figure PCTCN2017089091-appb-000002
上述的方法,其中,所述基于测量得到的数值得到定位质量标的和待测点大地坐标的步骤包括:
通过观测点位置坐标与观测点至待测点间的距离,根据后方交会原理建立第一类观测方程;
根据观测点与待测点间高差与距离的倾角余弦关系,建立第二类观测方程。
上述的方法,其中,所述判断定位质量标的是否满足要求,决定是否结束测量的步骤包括:
判断定位质量标的是否满足要求,若不满足要求,则继续步骤S1到步骤S3;若满足要求,则结束测量。
上述的方法,其中,所述基于上述的平面坐标(Ni,Ei,Hi)得到地面待测点平面坐标
Figure PCTCN2017089091-appb-000003
并转换成大地坐标
Figure PCTCN2017089091-appb-000004
的步骤包括:
建立观测方程,间接平差;
根据平差后的观测值残差进行抗差估计,求解地面待测点平面坐标
Figure PCTCN2017089091-appb-000005
上述的方法,其中,所述通过观测点位置坐标与观测点至待测点间的距离,根据后方交会原理建立第一类观测方程的步骤中,设GPS接收机天线相位中心平面坐标(Ni,Ei)及大地高Hi(其中i=1,2,...,n,n为观测点总数,下同), 待测点O的平面坐标及大地高分别为
Figure PCTCN2017089091-appb-000006
Figure PCTCN2017089091-appb-000007
待测点至观测点长度为
Figure PCTCN2017089091-appb-000008
则观测方程为
Figure PCTCN2017089091-appb-000009
线性化后可得
Figure PCTCN2017089091-appb-000010
其中
Figure PCTCN2017089091-appb-000011
为长度改正数;(vN,vE,vH)为待测点坐标改正数;(N0,E0,H0)为待测点近似坐标;Li为对中杆长度与天线高之和;
Figure PCTCN2017089091-appb-000012
为观测点坐标与待测点近似坐标计算的距离。
上述的方法,其中,所述根据观测点与待测点间高差与距离的倾角余弦关系,建立第二类观测方程的步骤中,设观测点观测倾角为
Figure PCTCN2017089091-appb-000013
则观测方程为
Figure PCTCN2017089091-appb-000014
其中
Figure PCTCN2017089091-appb-000015
整理后可得
vL'=vH-(Hi-Licosθi-H0)      (4)
联立式(2)、(4),可建立误差方程组
V=BX-W,P     (5)
式中,
Figure PCTCN2017089091-appb-000016
P为权矩阵,根据观测值的精度设定,若没有此信息,可设置为单位阵。
上述的方法,其中,包括以下步骤:根据加权最小二乘准则,可得
Figure PCTCN2017089091-appb-000017
最后通过循环迭代计算出地面待测点的平面位置
Figure PCTCN2017089091-appb-000018
与大地高
Figure PCTCN2017089091-appb-000019
Figure PCTCN2017089091-appb-000020
A为系数矩阵,计算ATA得到维度为3行3列的单位矩阵,将单位阵的对角线元素相加后取平方根得到质量标的。
本发明具有以下优点:根据一定数量倾斜测量时接收机天线相位中心的位置、倾角以及对中杆长度等计算待测点位置,对于厘米级的RTK,当观测值数量足够时,可以获得厘米级的位置计算精度。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明及其特征、外形和优点将会变得更明显。在全部附图中相同的标记指示相同的部分。并未刻意按照比例绘制附图,重点在于示出本发明的主旨。
图1为本发明的一种RTK测量接收机倾斜测量方法的流程示意图。
图2为本发明的一种RTK测量接收机倾斜测量方法的原理图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
参照图1-图2所示,本发明提供了一种RTK测量接收机倾斜测量方法,包括以下步骤:
步骤S1:对中杆底部固定并进行倾斜摇晃然后进行测量,测量中对中杆在使用过程中的长度保持不变,以及对中杆底部保持固定,也就是说对测量时接收机的稳定性没有限制,在底部固定的前提下可以随意摇晃。
步骤S2:基于上述测量得到测量点序列、测量点倾斜序列、测量杆长度和天线相位中心高度,具体为如图1中所示的A、B、C,其中A为测量点序列,根据时间顺序记录从开始测量到结束测量期间所有的观测点。其中每一个点都具有其定位信息,信息为实测点(天线相位中心)大地坐标,按照顺序包括大地维度B、大地经度L和大地高H。B、L的单位弧度,H的单位为米。B为测量点倾角序列,根据时间顺序记录了从开始测量到结束测量期间所有的倾角,倾角和测量点是一一对应的关系,表示了得到测量点坐标的同时一起的倾斜角度,单位为弧度。C为测量杆长度和天线相位中心高度,单位为米。D为定位质量标的,称之为几何因子。几何因子是一个正整数,最小值为1,数值越小表示计算的结果精度越高。E为待测点(地面点)大地坐标,为程序计算结果,包括大地纬度B、大地经度L和大地高度H。B、L的单位为弧度,H的单位为米。
具体包括步骤S2a:观测得到观测点的大地坐标(Bi,Li,Hi)与测量倾角θi,步骤S2b:将观测点大地坐标(Bi,Li,Hi)转换成平面坐标(Ni,Ei,Hi),步骤S2c:基于上述的平面坐标(Ni,Ei,Hi)得到地面待测点平面坐标
Figure PCTCN2017089091-appb-000021
并转换成大地坐标
Figure PCTCN2017089091-appb-000022
具体为建立观测方程,间接平差;根据平差后的观测值残差进行抗差估计,求解地面待测点平面坐标
Figure PCTCN2017089091-appb-000023
步骤S3:基于测量得到的数值得到定位质量标的和待测点大地坐标。
具体包括步骤S3a:通过观测点位置坐标与观测点至待测点间的距离,根据后方交会原理建立第一类观测方程,具体为设GPS接收机天线相位中心平面坐标(Ni,Ei)及大地高Hi(其中i=1,2,...,n,n为观测点总数,下同),待测点O的平面坐标及大地高分别为
Figure PCTCN2017089091-appb-000024
Figure PCTCN2017089091-appb-000025
待测点至观测点长度为
Figure PCTCN2017089091-appb-000026
则观测方程为
Figure PCTCN2017089091-appb-000027
线性化后可得
Figure PCTCN2017089091-appb-000028
其中
Figure PCTCN2017089091-appb-000029
为长度改正数;(vN,vE,vH)为待测点坐标改正数;(N0,E0,H0)为待测点近似坐标;Li为对中杆长度与天线高之和;
Figure PCTCN2017089091-appb-000030
为观测点坐标与待测点近似坐标计算的距离。
步骤S3b:根据观测点与待测点间高差与距离的倾角余弦关系,建立第二类观测方程:
具体为设观测点观测倾角为
Figure PCTCN2017089091-appb-000031
则观测方程为
Figure PCTCN2017089091-appb-000032
其中
Figure PCTCN2017089091-appb-000033
整理后可得
vL'=vH-(Hi-Licosθi-H0)     (10)
联立式(2)、(4),可建立误差方程组
V=BX-W,P   (11)
式中,
Figure PCTCN2017089091-appb-000034
P为权矩阵,根据观测值的精度设定,若没有此信息,可设置为单位阵,根据加权最小二乘准则,可得
Figure PCTCN2017089091-appb-000035
最后通过循环迭代计算出地面待测点的平面位置
Figure PCTCN2017089091-appb-000036
与大地高
Figure PCTCN2017089091-appb-000037
Figure PCTCN2017089091-appb-000038
A为系数矩阵,计算ATA得到维度为3行3列的单位矩阵,将单位阵的对角线元素相加后取平方根得到质量标的。
步骤S4:判断定位质量标的是否满足要求,决定是否结束测量,具体为判断定位质量标的是否满足要求,若不满足要求,则继续步骤S1到步骤S3;若满足要求,则结束测量。
本发明的工作过程为:参照图1和图2所示,解算步骤如下:
(1)观测得到所有观测点的大地坐标(Bi,Li,Hi)与测量倾角θi
(2)将观测点大地坐标(Bi,Li,Hi)转换成平面坐标(Ni,Ei,Hi);
(3)建立观测方程,间接平差;
(4)根据平差后的观测值残差进行抗差估计,求解地面待测点平面坐标
Figure PCTCN2017089091-appb-000039
(5)将待测点平面坐标
Figure PCTCN2017089091-appb-000040
转换成大地坐标
Figure PCTCN2017089091-appb-000041
(6)输出转换后的大地坐标和质量标的(称之为“几何因子”)。
(7)根据质量标的的数值判断精度是否达标,如果达标结束测量,输出转换后的大地坐标。如果未达标则返回过程(1)继续测量,此次观测数据增加到(1)所述的所有观测点中。
步骤(6)中的质量标的(称之为“几何因子”),是一个最小值为1的正整数,数值越小精度越高。
测量中对中杆在使用过程中的长度为固定不能更改,对中杆底部不能移动。测量时需要摇晃接收机,摇晃的幅度越大效果越好。
参照图2,其解算原理为:,其中O为地面待测点;A为GPS接收机天线相位中心,是倾斜测量的观测点;AB为天线高;OB为对中杆长度;OD为待测点处的参考椭球面法线;AC为观测点A至参考椭球面的法线,在投影后的平面坐标系中AC与OD平行;θ为仪器倾角。
倾斜测量主要包括观测点的位置和倾角两类观测值,分别对应两类观测方程。
通过观测点位置坐标与观测点至待测点间的距离,根据后方交会原理建立第一类观测方程。设GPS接收机天线相位中心平面坐标(Ni,Ei)及大地高Hi(其中i=1,2,...,n,n为观测点总数,下同),待测点O的平面坐标及大地高分别为
Figure PCTCN2017089091-appb-000042
Figure PCTCN2017089091-appb-000043
待测点至观测点长度为
Figure PCTCN2017089091-appb-000044
则观测方程为
Figure PCTCN2017089091-appb-000045
线性化后可得
Figure PCTCN2017089091-appb-000046
其中
Figure PCTCN2017089091-appb-000047
为长度改正数;(vN,vE,vH)为待测点坐标改正数;(N0,E0,H0)为待测点近似坐标;Li为对中杆长度与天线高之和;
Figure PCTCN2017089091-appb-000048
为观测点坐标与待测点近似坐标计算的距离。
根据观测点与待测点间高差与距离的倾角余弦关系,建立第二类观测方程。设观测点观测倾角为
Figure PCTCN2017089091-appb-000049
则观测方程为
Figure PCTCN2017089091-appb-000050
其中
Figure PCTCN2017089091-appb-000051
整理后可得
vL'=vH-(Hi-Licosθi-H0)      (16)
联立式(2)、(4),可建立误差方程组
V=BX-W,P     (17)
式中,
Figure PCTCN2017089091-appb-000052
P为权矩阵,根据观测值的精度设定,若没有此信息,可设置为单位阵。
根据加权最小二乘准则,可得
Figure PCTCN2017089091-appb-000053
最后通过循环迭代计算出地面待测点的平面位置
Figure PCTCN2017089091-appb-000054
与大地高
Figure PCTCN2017089091-appb-000055
Figure PCTCN2017089091-appb-000056
A为系数矩阵,计算ATA得到维度为3行3列的单位矩阵,将单位阵的对角线元素相加后取平方根得到质量标的,称之为“几何因子”。几何因子是用来作为精度指标。几何因子越小精度越高。
通过本发明的方法可以实现:
1、只需要带倾角信息的RTK测量接收机即可,不需要额外的硬件成本。
3、与传统的通过测量接收机姿态角信息的倾斜测量模块相比,不受任何外部环境(磁干扰、温度变化等)影响。
4、与传统的倾斜测量方法相比,不需要进行磁场校准。
5、本发明所述的倾斜测量方法与传统的倾斜测量方法相比,对中杆底部位置的测量精度取决于观测点的几何构型健壮性,观测点数量和精度,倾角测量精度,对中杆长度误差和天线相位中心长度误差。测量结果更稳定、测量精度更高。
6、与传统的倾斜测量方法相比,对测量时接收机的稳定性没有限制,在底部固定的前提下可以随意摇晃。
7、与传统倾斜测量方法相比,可以对测量精度阈值进行设置,在精度满足要求的情况下,提高几何因子阈值可以缩短测量时间。
以上对本发明的较佳实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例,这并不影响本发明的实质内容。因此,凡是未脱离本发明技术方案的内容,依据本发明 的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (9)

  1. 一种RTK测量接收机倾斜测量方法,其特征在于,包括以下步骤:
    步骤S1:将对中杆底部固定并进行倾斜摇晃然后进行测量;
    步骤S2:基于上述测量得到测量点序列、测量点倾斜序列、测量杆长度和天线相位中心高度;
    步骤S3:基于测量得到的数值得到定位质量标的和待测点大地坐标;
    步骤S4:判断定位质量标的是否满足要求,决定是否结束测量。
  2. 如权利要求1所述的一种RTK测量接收机倾斜测量方法,其特征在于,所述将对中杆底部固定并进行倾斜摇晃然后进行测量的步骤包括:
    测量中对中杆在使用过程中的长度保持不变,以及对中杆底部保持固定。
  3. 如权利要求1所述的一种RTK测量接收机倾斜测量方法,其特征在于,所述基于上述测量得到测量点序列、测量点倾斜序列、测量杆长度和天线相位中心高度的步骤包括:
    观测得到观测点的大地坐标(Bi,Li,Hi)与测量倾角θi
    将观测点大地坐标(Bi,Li,Hi)转换成平面坐标(Ni,Ei,Hi);
    基于上述的平面坐标(Ni,Ei,Hi)得到地面待测点平面坐标
    Figure PCTCN2017089091-appb-100001
    并转换成大地坐标
    Figure PCTCN2017089091-appb-100002
  4. 如权利要求1-3任一项所述的一种RTK测量接收机倾斜测量方法,其特征在于,所述基于测量得到的数值得到定位质量标的和待测点大地坐标的步骤包括:
    通过观测点位置坐标与观测点至待测点间的距离,根据后方交会原理建立第一类观测方程;
    根据观测点与待测点间高差与距离的倾角余弦关系,建立第二类观测方程。
  5. 如权利要求4所述的一种RTK测量接收机倾斜测量方法,其特征在于,所述判断定位质量标的是否满足要求,决定是否结束测量的步骤包括:
    判断定位质量标的是否满足要求,若不满足要求,则继续步骤S1到步骤 S3;若满足要求,则结束测量。
  6. 如权利要求3所述的一种RTK测量接收机倾斜测量方法,其特征在于,所述基于上述的平面坐标(Ni,Ei,Hi)得到地面待测点平面坐标
    Figure PCTCN2017089091-appb-100003
    并转换成大地坐标
    Figure PCTCN2017089091-appb-100004
    的步骤包括:
    建立观测方程,间接平差;
    根据平差后的观测值残差进行抗差估计,求解地面待测点平面坐标
    Figure PCTCN2017089091-appb-100005
  7. 如权利要求4所述的一种RTK测量接收机倾斜测量方法,其特征在于,所述通过观测点位置坐标与观测点至待测点间的距离,根据后方交会原理建立第一类观测方程的步骤中,设GPS接收机天线相位中心平面坐标(Ni,Ei)及大地高Hi(其中i=1,2,...,n,n为观测点总数,下同),待测点O的平面坐标及大地高分别为
    Figure PCTCN2017089091-appb-100006
    Figure PCTCN2017089091-appb-100007
    待测点至观测点长度为
    Figure PCTCN2017089091-appb-100008
    则观测方程为
    Figure PCTCN2017089091-appb-100009
    线性化后可得
    Figure PCTCN2017089091-appb-100010
    其中
    Figure PCTCN2017089091-appb-100011
    为长度改正数;(vN,vE,vH)为待测点坐标改正数;(N0,E0,H0)为待测点近似坐标;Li为对中杆长度与天线高之和;
    Figure PCTCN2017089091-appb-100012
    为观测点坐标与待测点近似坐标计算的距离。
  8. 如权利要求4所述的一种RTK测量接收机倾斜测量方法,其特征在于,所述根据观测点与待测点间高差与距离的倾角余弦关系,建立第二类观测方程的步骤中,设观测点观测倾角为
    Figure PCTCN2017089091-appb-100013
    则观测方程为
    Figure PCTCN2017089091-appb-100014
    其中
    Figure PCTCN2017089091-appb-100015
    整理后可得
    vL'=vH-(Hi-Licosθi-H0)  (4)
    联立式(2)、(4),可建立误差方程组
    V=BX-W,P  (5)
    式中,
    Figure PCTCN2017089091-appb-100016
    P为权矩阵,根据观测值的精度设定,若没有此信息,可设置为单位阵。
  9. 如权利要求8所述的一种RTK测量接收机倾斜测量方法,其特征在于,包括以下步骤:根据加权最小二乘准则,可得
    Figure PCTCN2017089091-appb-100017
    最后通过循环迭代计算出地面待测点的平面位置
    Figure PCTCN2017089091-appb-100018
    与大地高
    Figure PCTCN2017089091-appb-100019
    Figure PCTCN2017089091-appb-100020
    A为系数矩阵,计算ATA得到维度为3行3列的单位矩阵,将单位阵的对角线元素相加后取平方根得到质量标的。
PCT/CN2017/089091 2017-01-10 2017-06-20 一种rtk测量接收机倾斜测量方法 WO2018129865A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2019107900A RU2716360C1 (ru) 2017-01-10 2017-06-20 Способ измерения наклона измерительного приемника rtk
EP17891328.1A EP3489626A4 (en) 2017-01-10 2017-06-20 METHOD FOR MEASURING THE TILT OF AN RTK MEASUREMENT RECEIVER
US16/315,168 US10591295B2 (en) 2017-01-10 2017-06-20 Tilt measurement method for RTK measuring receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710016455.6 2017-01-10
CN201710016455.6A CN106595583B (zh) 2017-01-10 2017-01-10 一种rtk测量接收机倾斜测量方法

Publications (1)

Publication Number Publication Date
WO2018129865A1 true WO2018129865A1 (zh) 2018-07-19

Family

ID=58583263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089091 WO2018129865A1 (zh) 2017-01-10 2017-06-20 一种rtk测量接收机倾斜测量方法

Country Status (5)

Country Link
US (1) US10591295B2 (zh)
EP (1) EP3489626A4 (zh)
CN (1) CN106595583B (zh)
RU (1) RU2716360C1 (zh)
WO (1) WO2018129865A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199115A (zh) * 2020-09-18 2022-03-18 千寻位置网络有限公司 对中杆杆长校准方法、rtk接收机系统倾斜测量方法及系统
CN115711608A (zh) * 2022-11-04 2023-02-24 沪东中华造船(集团)有限公司 一种艉管后轴承双斜率的测量方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595583B (zh) 2017-01-10 2021-04-30 上海华测导航技术股份有限公司 一种rtk测量接收机倾斜测量方法
CN107991694B (zh) * 2017-11-24 2022-02-18 上海华测导航技术股份有限公司 一种基于rtk基准站姿态监控系统及其监控方法
CN108362263B (zh) * 2018-02-10 2020-06-12 杭州后博科技有限公司 一种多段铁塔的倾斜危险评估方法及系统
CN108507534A (zh) * 2018-03-09 2018-09-07 广州市中海达测绘仪器有限公司 Rtk倾斜测量方法和系统
CN108663695A (zh) * 2018-05-16 2018-10-16 桂林好测信息科技有限公司 一种用于gnss rtk偏移测量的方法
CN109696153B (zh) * 2018-12-25 2021-09-14 广州市中海达测绘仪器有限公司 Rtk倾斜测量精度检测方法和系统
CN109683184B (zh) * 2018-12-25 2023-05-12 深圳市华信天线技术有限公司 一种倾斜地面坐标测量方法
CN111654318A (zh) * 2020-05-25 2020-09-11 湖南科技大学 复杂地形下rtk信号增强移动端及用法
CN112284356B (zh) * 2020-09-29 2023-01-24 深圳冰河导航科技有限公司 一种基于rtk的墙角坐标自动测量方法
CN112325846B (zh) * 2020-10-21 2021-07-02 北京航空航天大学 一种rtk倾斜测量精度提升方法
CN112765824B (zh) * 2021-01-26 2024-04-19 西安电子科技大学 面向立方星伞状天线面形精度的铰链随机误差设计方法
CN112945198B (zh) * 2021-02-02 2023-01-31 贵州电网有限责任公司 一种基于激光lidar点云的输电线路铁塔倾斜自动检测方法
CN116026293B (zh) * 2023-01-05 2023-12-19 桂林理工大学 激光gnss-rtk全站仪坐标转换方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338632A (zh) * 2010-07-15 2012-02-01 中国地震局地震研究所 台阵布设的精密定位方法和装置
CN103439727A (zh) * 2013-08-29 2013-12-11 广州吉欧电子科技有限公司 一种地面坐标的测量方法
CN104215229A (zh) * 2014-08-07 2014-12-17 广州市中海达测绘仪器有限公司 Rtk设备调节方法、系统及rtk测量方法
CN105424013A (zh) * 2016-01-11 2016-03-23 广州吉欧电子科技有限公司 一种地面坐标的测量方法
US20160178369A1 (en) * 2014-12-18 2016-06-23 Javad Gnss, Inc. Portable gnss survey system
CN106595583A (zh) * 2017-01-10 2017-04-26 上海华测导航技术股份有限公司 一种rtk测量接收机倾斜测量方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112521A (ja) * 1997-06-13 1999-01-06 Fuji Photo Optical Co Ltd 傾斜センサを備えた位置計測作図装置
US6633256B2 (en) * 2001-08-24 2003-10-14 Topcon Gps Llc Methods and systems for improvement of measurement efficiency in surveying
EP1645846A1 (de) * 2004-10-11 2006-04-12 Leica Geosystems AG Geodätisches positionsbestimmungssystem
CN101490505B (zh) * 2006-07-12 2012-06-06 天宝导航有限公司 使用gps接收器提供二维位置数据的有高度修正的手持式激光探测器
JP4861772B2 (ja) 2006-08-28 2012-01-25 富士通株式会社 移動体標定プログラム、該プログラムを記録した記録媒体、移動体標定装置、および移動体標定方法
US8125379B2 (en) * 2008-04-28 2012-02-28 Trimble Navigation Limited Position measurement results by a surveying device using a tilt sensor
CN101806906A (zh) * 2010-04-14 2010-08-18 上海华测导航技术有限公司 基于gnss的位置坐标实时动态组合测量装置及方法
KR20130133596A (ko) * 2012-05-29 2013-12-09 수원대학교산학협력단 전주 기울기 측정 방법 및 장치
WO2015187993A1 (en) * 2014-06-06 2015-12-10 Carlson Software Inc. Gnss mobile base station and data collector with electronic leveling
CN205670006U (zh) * 2016-06-07 2016-11-02 北京恒华伟业科技股份有限公司 一种rtk倾斜测量装置
CN106291609A (zh) * 2016-07-29 2017-01-04 极翼机器人(上海)有限公司 一种rtk精度评估方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338632A (zh) * 2010-07-15 2012-02-01 中国地震局地震研究所 台阵布设的精密定位方法和装置
CN103439727A (zh) * 2013-08-29 2013-12-11 广州吉欧电子科技有限公司 一种地面坐标的测量方法
CN104215229A (zh) * 2014-08-07 2014-12-17 广州市中海达测绘仪器有限公司 Rtk设备调节方法、系统及rtk测量方法
US20160178369A1 (en) * 2014-12-18 2016-06-23 Javad Gnss, Inc. Portable gnss survey system
CN105424013A (zh) * 2016-01-11 2016-03-23 广州吉欧电子科技有限公司 一种地面坐标的测量方法
CN106595583A (zh) * 2017-01-10 2017-04-26 上海华测导航技术股份有限公司 一种rtk测量接收机倾斜测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489626A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199115A (zh) * 2020-09-18 2022-03-18 千寻位置网络有限公司 对中杆杆长校准方法、rtk接收机系统倾斜测量方法及系统
CN114199115B (zh) * 2020-09-18 2024-04-02 千寻位置网络有限公司 对中杆杆长校准方法、rtk接收机系统倾斜测量方法及系统
CN115711608A (zh) * 2022-11-04 2023-02-24 沪东中华造船(集团)有限公司 一种艉管后轴承双斜率的测量方法

Also Published As

Publication number Publication date
US10591295B2 (en) 2020-03-17
US20190310083A1 (en) 2019-10-10
CN106595583A (zh) 2017-04-26
EP3489626A1 (en) 2019-05-29
CN106595583B (zh) 2021-04-30
RU2716360C1 (ru) 2020-03-11
EP3489626A4 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018129865A1 (zh) 一种rtk测量接收机倾斜测量方法
CN108051835B (zh) 一种基于双天线的倾斜测量装置及测量与放样方法
CN106443722B (zh) 一种天线相位中心偏差检测方法
WO2018121765A1 (zh) 磁力计校准的数据处理方法和装置
CN105698766B (zh) 考虑定向参数精度信息的卫星影像rfm模型区域网平差方法
CN112964252B (zh) 基于惯性测量单元的定位方法、系统及rtk接收机
CN109029368A (zh) 像方补偿的遥感影像/sar影像高精度几何定位后处理方法
WO2018099051A1 (zh) 一种rtk倾斜补偿测量精度验证的方法
CN102589534B (zh) 基线约束的单站坐标转换装置及方法
Capra et al. High Accuracy Underwater Photogrammetric Surveying.
CN109883406A (zh) 基于更少点的全站仪概略位姿的计算方法及系统
CN110068313B (zh) 一种基于投影变换的数字天顶仪定向方法
CN101266153B (zh) 测绘工程类陀螺全站仪精度评定方法
RU2548115C1 (ru) Безплатформенный навигационный комплекс с инерциальной системой ориентации на "грубых" чувствительных элементах и способ коррекции его инерциальных датчиков
US10514464B2 (en) Portable prism receiver and improved portable GPS receiver and measurement method using same
CN109407089A (zh) 一种星载双侧视宽刈幅干涉成像高度计基线倾角估计方法
CN108955629A (zh) 一种天线姿态精度测量系统及测量方法
TW202001615A (zh) 一種利用點雲判斷岩石不連續面位態的方法
CN114624789A (zh) 一种磁通门经纬仪仪器差的测量模型及不确定度评定方法
CN113503865A (zh) 一种三维控制网建立方法
García-Asenjo et al. Establishment of a multi-purpose 3D geodetic reference frame for deformation monitoring in Cortes de Pallás (Spain)
CN105651310B (zh) 一种新型测绘仪倾斜量修正方法
CN102667401B (zh) 电子水平仪
CN108663695A (zh) 一种用于gnss rtk偏移测量的方法
CN113819927B (zh) 用于倾斜测量系统的检测系统及误差检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017891328

Country of ref document: EP

Effective date: 20190223

NENP Non-entry into the national phase

Ref country code: DE