WO2018121509A1 - 一种能够吸附甲醛的建筑涂料 - Google Patents

一种能够吸附甲醛的建筑涂料 Download PDF

Info

Publication number
WO2018121509A1
WO2018121509A1 PCT/CN2017/118541 CN2017118541W WO2018121509A1 WO 2018121509 A1 WO2018121509 A1 WO 2018121509A1 CN 2017118541 W CN2017118541 W CN 2017118541W WO 2018121509 A1 WO2018121509 A1 WO 2018121509A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
architectural coating
dispersion
nano silver
coating capable
Prior art date
Application number
PCT/CN2017/118541
Other languages
English (en)
French (fr)
Inventor
顾黎明
张宇
Original Assignee
苏州律点信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州律点信息科技有限公司 filed Critical 苏州律点信息科技有限公司
Publication of WO2018121509A1 publication Critical patent/WO2018121509A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the invention belongs to the technical field of architectural coatings, and in particular relates to a building coating capable of adsorbing formaldehyde.
  • the indoor environmental pollution is mainly the most serious after the renovation of the new home.
  • the most common chemical pollution toxic gases after the renovation of the new home include formaldehyde, benzene, ammonia, helium and volatile organic compounds. These five toxic gases and harmful substances are Known as the "five invisible killers" in the renovation of the living room.
  • formaldehyde is the most serious harm to the human body. It is recognized as a carcinogenic and teratogenic substance by the World Health Organization. It is a recognized source of allergic reaction and one of the potential strong mutagens. It has been listed as a mandatory test for the construction decoration project in China. project.
  • the existing methods for removing formaldehyde mainly include the following methods: ventilation method, adsorption of activated carbon, water, vinegar, black tea soaking water to remove formaldehyde, photocatalysis, orange, pineapple and other fruits to absorb formaldehyde, plants absorb formaldehyde, air purifiers formaldehyde.
  • Ventilation, activated carbon adsorption, water, vinegar, black tea soaked in water to remove formaldehyde, oranges, pineapples and other fruits to absorb formaldehyde and other methods basically do not meet the requirements of formaldehyde removal, adsorption capacity is extremely limited; in comparison, photocatalysis
  • the method has certain functions of sterilization, deodorization, mildew proof, anti-fouling and self-cleaning, and purifying air.
  • the present invention provides a building paint capable of adsorbing formaldehyde in view of the technical problems existing in the background art.
  • the technical solution adopted for achieving the object of the present invention is: an architectural coating capable of adsorbing formaldehyde, comprising the following raw materials by weight, 100 parts of vinyl acrylate emulsion, 5-10 parts of nano silver dispersion, 5-10 parts of titanium white powder 20-40 parts of activated carbon, 10-20 parts of calcium carbonate, 5-25 parts of medical stone, 20-40 parts of sepiolite, 15-35 parts of glycine, 1-20 parts of perlite, 1-5 parts of sodium nitrate, 3-7 parts of methylcellulose, 13-17 parts of iron orthophosphate, 5-25 parts of magnesium chloride, and 12-18 parts of talc.
  • the architectural coating of the present invention further comprises, in parts by weight, 1 to 20 parts of a zinc-magnesium adsorbent, which is a composite nano-material of zinc oxide and magnesium oxide.
  • the zinc-magnesium adsorbent of the present invention is prepared by the following steps: 1) dissolving zinc nitrate and magnesium acetate in a molar ratio of 1:1 in deionized water, stirring and uniformly mixing to prepare a mixed solution, wherein The mass-to-volume ratio of zinc nitrate and magnesium acetate to deionized water is 1 g: (5-15 mL); 2) the mixed solution prepared in step 1) is subjected to water bath evaporation under a water bath condition, and the water bath temperature is 80- 95 ° C, and then dried at 110-130 ° C for 1-3 hours; 3) continue to roast under high temperature conditions for 1-3 hours, the firing conditions are: 5 ° C / min to 250 ° C, holding 0.5 - 1 hour, then continue to raise the temperature to 550 ° C at 10 ° C / min, 1-3 hours
  • the nano silver dispersion according to the present invention has 5-19% of nano silver particles, 80-94% of ethanol, and 0.1-1% of triethanolamine by mass fraction.
  • the nano silver dispersion according to the present invention is prepared by directly dispersing nano silver particles in a mixed solution containing triethanolamine and ethanol; the nano silver particles have a particle diameter of 15-50 nm.
  • the nano silver particles according to the present invention are prepared by the steps of: 1) dispersing silver nitrate in an ethanol solvent to prepare a silver nitrate dispersion; 2) dispersing butyl phthalate in an ethanol solvent. The butyl titanate dispersion is obtained; 3) the silver nitrate dispersion prepared in the step 1) and the butyl titanate dispersion prepared in the step 2) are mixed and stirred until completely gelled, aged, dried, and finally calcined. A composite nano silver particle is obtained.
  • the mass to volume ratio of the silver nitrate to the ethanol in the step 1) is 1 g: 10 mL
  • the mass to volume ratio of the butyl phthalate to the ethanol in the step 2) is 1 g: 10 mL
  • the segmental calcination according to the present invention is calcined at a temperature of 5 ° C / min to 250 ° C, held for 0.5-1 hour, and then further heated to 550 ° C at 10 ° C / min for 1-3 hours. Just fine.
  • the surface dry time of the architectural coating of the invention is 10-30 min, and the dry time is 50-70 min.
  • the architectural coating of the invention has good antibacterial and anti-mildew properties, and the preferred nano-silver particles of the invention, especially the nano-titanium dioxide and the nano-silver composite silver particles have high antibacterial property and antibacterial durability.
  • the composite nano silver particles selected by the invention have good dispersibility in the coating composition, avoiding the problem that the single component nano silver is easy to agglomerate, and the added nano titanium dioxide and nano silver composite silver particles are also It can stably perform formaldehyde decomposition after formaldehyde adsorption.
  • the component of the architectural coating composition of the present invention preferably adsorbs formaldehyde and natural ore components, so that the architectural coating of the invention not only has the function of adsorbing formaldehyde, but also has the function of generating negative ions, and further in the formulation of the invention
  • the composite nanomaterial containing zinc-magnesium adsorbent, zinc oxide and magnesium oxide is designed as the adsorbent, which can also produce photocatalytic decomposition of the adsorbed formaldehyde.
  • the invention is an environmentally friendly, healthy and green architectural coating, which is in line with Modern home decoration environmental protection concept.
  • the zinc-magnesium adsorbent preferably prepared by the present invention has good dispersibility in the coating composition and avoids the problem of agglomeration of composite nanoparticles of zinc oxide and magnesium oxide.
  • the mixture is mixed with a butyl titanate dispersion to a complete gel, aged, dried, and finally calcined at a high temperature of 500 ° C for 2 hours to obtain composite nano silver particles having a particle diameter of 20 nm.
  • 5 g of the composite nano silver particles were directly ultrasonically dispersed in a mixed solution containing 1 g of triethanolamine and 94 g of ethanol to prepare a nanosilver dispersion.
  • the mixture was stirred with a butyl titanate dispersion to a complete gel, aged, dried, and finally calcined at a high temperature of 380 ° C for 3 hours to obtain composite nano silver particles having a particle diameter of 15 nm.
  • 10 g of the composite nano silver particles were directly ultrasonically dispersed in a mixed solution containing 0.1 g of triethanolamine and 89.9 g of ethanol to prepare a nanosilver dispersion.
  • the mixture is mixed with the butyl titanate dispersion to complete gelation, aged, dried, and finally calcined at 600 ° C for 2 hours to obtain composite nano silver particles having a particle diameter of 50 nm.
  • 19 g of the composite nano silver particles were directly ultrasonically dispersed in a mixed solution containing 0.5 g of triethanolamine and 80.5 g of ethanol to prepare a nanosilver dispersion.
  • the architectural coatings prepared in Examples 1-3 were tested: the surface drying time was 10-30 min, and the dryness was 50-70 min; the coating film was subjected to negative ion and antibacterial test: the amount of negative ion generated was more than 2000/min per minute. 3 , after 30 days of coating, the antibacterial rate of Escherichia coli was 95.2-96.3%; the antibacterial rate of Staphylococcus aureus was 99%, and the antibacterial rate of Aspergillus flavus was 92-94.3%.
  • the zinc-magnesium adsorbent of the present invention may be appropriately added, preferably 1 to 20 parts by mass.
  • the zinc-magnesium adsorbent of the present invention is a composite nano-material of zinc oxide and magnesium oxide, and the composite nano-material can be obtained by the following steps: 1) dissolving zinc nitrate and magnesium acetate in a molar ratio of 1:1 in deionized water and stirring uniformly.
  • the mixture is mixed with a butyl titanate dispersion to a complete gel, aged, dried, and finally calcined at a high temperature of 500 ° C for 2 hours to obtain composite nano silver particles having a particle diameter of 20 nm.
  • 5 g of the composite nano silver particles were directly ultrasonically dispersed in a mixed solution containing 1 g of triethanolamine and 94 g of ethanol to prepare a nanosilver dispersion.
  • the architectural coating prepared in Example 4 was tested: the surface drying time was about 25 min, and the drying time was about 65 min; the negative and ion resistance tests were performed on the coating film: the amount of negative ions generated was more than 2100/cm 3 per minute,
  • the membrane was measured after 30 days: the antibacterial rate of Escherichia coli was 98.3%; the antibacterial rate of S. aureus was 99%, and the antibacterial rate of Aspergillus flavus was 95.8%.

Abstract

一种能够吸附甲醛的建筑涂料,按重量份数计包括:丙烯酸乙烯酯乳液100份,纳米银分散液5‑10份,钛白粉5‑10份,活性炭20‑40份,碳酸钙10‑20份,麦饭石5‑25份,海泡石20‑40份,甘氨酸15‑35份,珍珠岩1‑20份,硝酸钠1‑5份,甲基纤维素3‑7份,正磷酸铁13‑17份,氯化镁5‑25份,滑石粉12‑18份,锌镁吸附剂1-20份。该建筑涂料具有良好的抗菌、抗霉性能。

Description

一种能够吸附甲醛的建筑涂料 技术领域
本发明属于建筑涂料技术领域,具体涉及一种能够吸附甲醛的建筑涂料。
背景技术
众所周知,室内环境污染主要以新居装修后最为严重,新居装修后最常见的化学污染有毒气体包括甲醛、苯系物、氨气、氡气以及挥发性有机物等,这五种有毒气体和有害物质被称为居室装修中的“五大隐形杀手”。其中甲醛对人体的危害最为严重,被世界卫生组织确定为致癌和致畸形物质,是公认的变态反应源,也是潜在的强致突变物之一,已经被列为我国建筑装饰工程强制执行的检测项目。
现有的去除甲醛的方法主要有以下几种:通风法,活性炭吸附,用水、醋、红茶泡水来去除甲醛,光催化法,橘子、菠萝等水果吸附甲醛,植物吸收甲醛,空气净化器除甲醛。但是,通风法、活性炭吸附、用水、醋、红茶泡水来去除甲醛,橘子、菠萝等水果吸附甲醛等方法基本上达不到去除甲醛的要求,吸附能力极其有限;相比较之下,光催化法具有一定的杀菌、除臭、防霉、防污自洁、净化空气功能。
虽然上述方法能在一定程度上减轻污染程度,但是都是在装修之后的补救措施,并不意味着能从根本上消除室内空气污染。
技术问题
现有的去除甲醛的方法虽然能在一定程度上减轻污染程度,但是都是在装修之后的补救措施,并不意味着能从根本上消除室内空气污染。
技术解决方案
本发明针对背景技术中存在的技术问题而提供一种能够吸附甲醛的建筑涂料。
实现本发明目的而采用的技术方案为:一种能够吸附甲醛的建筑涂料,包括以下重量份数的原料,丙烯酸乙烯酯乳液100份、纳米银分散液5-10份、钛白粉5-10份、活性炭20-40份,碳酸钙10-20份,麦饭石5-25份,海泡石20-40份,甘氨酸15-35份,珍珠岩1-20份,硝酸钠1-5份,甲基纤维素3-7份,正磷酸铁13-17份,氯化镁5-25份,滑石粉12-18份。
作为本发明一优选实施方式,本发明的建筑涂料按重量份数计,还含有锌镁吸附剂1-20份,该锌镁吸附剂是氧化锌和氧化镁的复合纳米材料
优选地,本发明所述的锌镁吸附剂由如下步骤制得:1)将硝酸锌和乙酸镁按摩尔比1:1溶于去离子水中,搅拌均匀混合,制得混合溶液,其中,所述的硝酸锌和乙酸镁与去离子水的质量体积比为1g:(5-15mL);2)在水浴条件下,将步骤1)制得的混合溶液进行水浴蒸干,水浴温度为80-95℃,然后再在110-130℃下干燥1-3小时;3)继续在高温条件下焙烧1-3小时,所述的焙烧条件为:以5℃/分钟升温至250℃,保温0.5-1小时,然后继续以10℃/分钟升温至550℃,保温1-3小时即可
作为本发明一优选实施方式,本发明所述的纳米银分散液,按质量分数计,纳米银颗粒5-19%、乙醇80-94%、三乙醇胺0.1-1%。
进一步优选地,本发明所述的纳米银分散液由如下步骤制得:将纳米银颗粒直接超声分散于含有三乙醇胺与乙醇的混合溶液中;所述的纳米银颗粒粒径为15-50nm。
更优选地,本发明所述的纳米银颗粒由如下步骤制得:1)将硝酸银分散于乙醇溶剂中,制得硝酸银分散液;2)将酞酸丁酯分散于乙醇溶剂中,制得钛酸丁酯分散液;3)将步骤1)制得的硝酸银分散液和步骤2)制得的钛酸丁酯分散液进行混合搅拌至完全凝胶,老化、干燥,最后经焙烧制得复合型纳米银颗粒。
其中,步骤1)中所述硝酸银与乙醇的质量体积比为1g:10mL;步骤2)中所述酞酸丁酯与乙醇的质量体积比为1g:10mL;步骤3)中所述的高温焙烧采用分段焙烧。
进一步优选地,本发明所述的分段焙烧,焙烧条件为:以5℃/分钟升温至250℃,保温0.5-1小时,然后继续以10℃/分钟升温至550℃,保温1-3小时即可。
有益效果
本发明的技术优点在于:
1)本发明建筑涂料的表干时间为10-30min,实干为50-70min。
2)本发明建筑涂料具有良好的抗菌、抗霉性能,本发明优选的纳米银颗粒,尤其是纳米二氧化钛和纳米银复合的银颗粒具有高的抗菌性和抗菌持久性。
3)本发明选用的复合纳米银颗粒在涂料组分中具有较好地分散性,避免单一组分的纳米银易产生团聚的问题,另外,所加入的纳米二氧化钛和纳米银复合的银颗粒还能在甲醛吸附后稳定的进行甲醛分解作用。
4)本发明的建筑涂料组分中优选了可以吸附甲醛的组分和天然矿石组分,使得本发明的建筑涂料不仅具有吸附甲醛的作用,还具有产生负离子的功能,而且本发明配方中进一步设计了含有锌镁吸附剂,氧化锌和氧化镁的复合纳米材料作为该吸附剂,也能够对所吸附的甲醛产生光催化分解作用,本发明是一款环保、健康、绿色的建筑涂料,符合现代家庭装修环保理念。
5)本发明所优选制备的锌镁吸附剂,其在涂料组分中具有较好地分散性,避免氧化锌和氧化镁的复合纳米颗粒发生团聚的问题。
本发明的实施方式
下面结合实施例对本发明做进一步地描述。
实施例 1
1)制备纳米银分散液
将10克硝酸银分散于100mL乙醇溶剂中,制得硝酸银分散液;将10克酞酸丁酯分散于100mL乙醇溶剂中,制得钛酸丁酯分散液;将制得的硝酸银分散液和钛酸丁酯分散液进行混合搅拌至完全凝胶,老化、干燥,最后经500℃高温、焙烧2小时,制得复合型纳米银颗粒,颗粒粒径为20nm。取该复合型纳米银颗粒5克直接超声分散于含有三乙醇胺1克与94克乙醇的混合溶液中,制得纳米银分散液。
2)制备建筑涂料
按重量份数计,称取如下原料:丙烯酸乙烯酯乳液100份、纳米银分散液8份、钛白粉8份、活性炭32份,碳酸钙16份,麦饭石12份,海泡石30份,甘氨酸20份,珍珠岩10份,硝酸钠3份,甲基纤维素5份,正磷酸铁15份,氯化镁15份,滑石粉15份,升温至80℃,1500r/min混合均匀后冷却至室温,在砂磨机上研磨至细度 10μm,过滤后即制得能够吸附甲醛的建筑涂料。
实施例 2
1)制备纳米银分散液
将10克硝酸银分散于100mL乙醇溶剂中,制得硝酸银分散液;将10克酞酸丁酯分散于100mL乙醇溶剂中,制得钛酸丁酯分散液;将制得的硝酸银分散液和钛酸丁酯分散液进行混合搅拌至完全凝胶,老化、干燥,最后经380℃高温、焙烧3小时,制得复合型纳米银颗粒,颗粒粒径为15nm。取该复合型纳米银颗粒10克直接超声分散于含有三乙醇胺0.1克与89.9克乙醇的混合溶液中,制得纳米银分散液。
2)制备建筑涂料
按重量份数计,称取如下原料:丙烯酸乙烯酯乳液100份、纳米银分散液5份、钛白粉5份、活性炭20份,碳酸钙10份,麦饭石5份,海泡石20份,甘氨酸15份,珍珠岩1份,硝酸钠1份,甲基纤维素3份,正磷酸铁13份,氯化镁5份,滑石粉12份,升温至80℃,1500r/min混合均匀后冷却至室温,在砂磨机上研磨至细度 10μm,过滤后即制得能够吸附甲醛的建筑涂料。
实施例 3
1)制备纳米银分散液
将10克硝酸银分散于100mL乙醇溶剂中,制得硝酸银分散液;将10克酞酸丁酯分散于100mL乙醇溶剂中,制得钛酸丁酯分散液;将制得的硝酸银分散液和钛酸丁酯分散液进行混合搅拌至完全凝胶,老化、干燥,最后经600℃高温、焙烧2小时,制得复合型纳米银颗粒,颗粒粒径为50nm。取该复合型纳米银颗粒19克直接超声分散于含有三乙醇胺0.5克与80.5克乙醇的混合溶液中,制得纳米银分散液。
2)制备建筑涂料
按重量份数计,称取如下原料:丙烯酸乙烯酯乳液100份、纳米银分散液10份、钛白粉10份、活性炭40份,碳酸钙20份,麦饭石25份,海泡石40份,甘氨酸35份,珍珠岩20份,硝酸钠5份,甲基纤维素7份,正磷酸铁17份,氯化镁25份,滑石粉18份,升温至80℃,1500r/min混合均匀后冷却至室温,在砂磨机上研磨至细度 10μm,过滤后即制得能够吸附甲醛的建筑涂料。
对实施例1-3所制得的建筑涂料进行测试:表干时间为10-30min,实干为50-70min;对涂料涂膜进行负离子和抗菌性测试:负离子产生量每分钟大于2000个/cm 3,涂膜30天后测得:大肠杆菌抗菌率为95.2-96.3%;金黄色葡萄球菌抗菌率为99%,黄曲霉抗菌率为92-94.3%。
在实施例1-3的配方体系中,还可以适当加入本发明的锌镁吸附剂,按质量份数计,优选1-20份。
本发明的锌镁吸附剂是氧化锌和氧化镁的复合纳米材料,该复合纳米材料可由如下步骤制得:1)将硝酸锌和乙酸镁按摩尔比1:1溶于去离子水中,搅拌均匀混合,制得混合溶液,其中,所述的硝酸锌和乙酸镁与去离子水的质量体积比为1g:(5-15mL);2)在水浴条件下,将步骤1)制得的混合溶液进行蒸干,然后再在110-130℃下干燥1-3小时;3)继续在高温条件下焙烧1-3小时,所述的焙烧条件为:以5℃/分钟升温至250℃,保温0.5-1小时,然后继续以10℃/分钟升温至550℃,保温1-3小时即可。
实施例 4
1)制备纳米银分散液
将10克硝酸银分散于100mL乙醇溶剂中,制得硝酸银分散液;将10克酞酸丁酯分散于100mL乙醇溶剂中,制得钛酸丁酯分散液;将制得的硝酸银分散液和钛酸丁酯分散液进行混合搅拌至完全凝胶,老化、干燥,最后经500℃高温、焙烧2小时,制得复合型纳米银颗粒,颗粒粒径为20nm。取该复合型纳米银颗粒5克直接超声分散于含有三乙醇胺1克与94克乙醇的混合溶液中,制得纳米银分散液。
2)制备锌镁吸附剂
按摩尔比1:1称取六水硝酸锌和无水乙酸镁溶于质量比1g:10mL的去离子水中,搅拌均匀混合,制得混合溶液;在水浴条件下,将制得的混合溶液在90℃下水浴蒸干,然后再在120℃下干燥2小时;继续在高温条件下焙烧2小时,所述的焙烧条件为:以5℃/分钟升温至250℃,保温1小时,然后继续以10℃/分钟升温至550℃,保温2小时即可。
3)制备建筑涂料
按重量份数计,称取如下原料:丙烯酸乙烯酯乳液100份、纳米银分散液8份、钛白粉8份、活性炭32份,碳酸钙16份,麦饭石12份,海泡石30份,甘氨酸20份,珍珠岩10份,硝酸钠3份,甲基纤维素5份,正磷酸铁15份,氯化镁15份,滑石粉15份,锌镁吸附剂10份,升温至80℃,1500r/min混合均匀后冷却至室温,在砂磨机上研磨至细度 10μm,过滤后即制得能够吸附甲醛的建筑涂料。
对实施例4所制得的建筑涂料进行测试:表干时间约为25min,实干时间约为65min;对涂料涂膜进行负离子和抗菌性测试:负离子产生量每分钟大于2100个/cm 3,涂膜30天后测得:大肠杆菌抗菌率为98.3%;金黄色葡萄球菌抗菌率为99%,黄曲霉抗菌率为95.8%。

Claims (10)

  1. 一种能够吸附甲醛的建筑涂料,其特征在于:该建筑涂料按重量份数计,由如下组成成分及含量组成,丙烯酸乙烯酯乳液100份、纳米银分散液5-10份、钛白粉5-10份、活性炭20-40份,碳酸钙10-20份,麦饭石5-25份,海泡石20-40份,甘氨酸15-35份,珍珠岩1-20份,硝酸钠1-5份,甲基纤维素3-7份,正磷酸铁13-17份,氯化镁5-25份,滑石粉12-18份。
  2. 根据权利要求1所述的能够吸附甲醛的建筑涂料,其特征在于:该建筑涂料按重量份数计,还含有锌镁吸附剂1-20份,该锌镁吸附剂是氧化锌和氧化镁的复合纳米材料。
  3. 根据权利要求2所述的能够吸附甲醛的建筑涂料,其特征在于:所述的锌镁吸附剂由如下步骤制得:1)将硝酸锌和乙酸镁按摩尔比1:1溶于去离子水中,搅拌均匀混合,制得混合溶液,其中,所述的硝酸锌和乙酸镁与去离子水的质量体积比为1g:(5-15mL);2)在水浴条件下,将步骤1)制得的混合溶液进行水浴蒸干,水浴温度为80-95℃,然后再在110-130℃下干燥1-3小时;3)继续在高温条件下焙烧1-3小时,所述的焙烧条件为:以5℃/分钟升温至250℃,保温0.5-1小时,然后继续以10℃/分钟升温至550℃,保温1-3小时即可。
  4. 根据权利要求1所述的能够吸附甲醛的建筑涂料,其特征在于:所述的纳米银分散液,按质量分数计,由如下组成成分及含量组成:纳米银颗粒5-19%、乙醇80-94%、三乙醇胺0.1-1%。
  5. 根据权利要求4所述的能够吸附甲醛的建筑涂料,其特征在于:所述的纳米银分散液由如下步骤制得:将纳米银颗粒直接超声分散于含有三乙醇胺与乙醇的混合溶液中,所述的纳米银颗粒粒径为15-50nm。
  6. 根据权利要求5所述的能够吸附甲醛的建筑涂料,其特征在于:所述的纳米银颗粒由如下步骤制得:1)将硝酸银分散于乙醇溶剂中,制得硝酸银分散液;2)将酞酸丁酯分散于乙醇溶剂中,制得钛酸丁酯分散液;3)将步骤1)制得的硝酸银分散液和步骤2)制得的钛酸丁酯分散液进行混合搅拌至完全凝胶,经老化和干燥后,在高温焙烧条件下制得复合型纳米银颗粒。
  7. 根据权利要求6所述的能够吸附甲醛的建筑涂料,其特征在于:步骤1)中所述的硝酸银与乙醇的质量体积比为1g:10mL。
  8. 根据权利要求6所述的能够吸附甲醛的建筑涂料,其特征在于:步骤2)中所述的酞酸丁酯与乙醇的质量体积比为1g:10mL。
  9. 根据权利要求6所述的能够吸附甲醛的建筑涂料,其特征在于:步骤3)中所述的高温焙烧采用分段焙烧。
  10. 根据权利要求9所述的能够吸附甲醛的建筑涂料,其特征在于:所述的分段焙烧,焙烧条件为:以5℃/分钟升温至250℃,保温0.5-1小时,然后继续以10℃/分钟升温至550℃,保温1-3小时即可。
PCT/CN2017/118541 2016-12-30 2017-12-26 一种能够吸附甲醛的建筑涂料 WO2018121509A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611250678.0A CN106634362A (zh) 2016-12-30 2016-12-30 一种能够吸附甲醛的建筑涂料
CN201611250678.0 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018121509A1 true WO2018121509A1 (zh) 2018-07-05

Family

ID=58836631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118541 WO2018121509A1 (zh) 2016-12-30 2017-12-26 一种能够吸附甲醛的建筑涂料

Country Status (2)

Country Link
CN (1) CN106634362A (zh)
WO (1) WO2018121509A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647185A (zh) * 2018-12-27 2019-04-19 安徽元琛环保科技股份有限公司 可吸收甲醛的空气过滤材料及其制备方法
CN112076613A (zh) * 2020-09-27 2020-12-15 安阳工学院 具有杀菌作用的甲醛捕捉剂及其制备方法及应用
CN112321270A (zh) * 2020-10-26 2021-02-05 佛山市东鹏陶瓷有限公司 含有改性多孔材料的光催化负离子陶瓷砖及其制备工艺
CN112390580A (zh) * 2020-11-20 2021-02-23 佛山市睿德建筑节能材料有限公司 一种薄层砂浆及其应用
CN113274969A (zh) * 2021-05-26 2021-08-20 广西大学 一种具有吸附甲醛功能的复合材料及其制备方法
CN113462028A (zh) * 2021-07-02 2021-10-01 科迈特新材料有限公司 一种塑料用纳米抗菌剂及其制备方法
CN113698827A (zh) * 2021-09-02 2021-11-26 和也健康科技有限公司 一种多功能保健涂料的制备方法
CN114481620A (zh) * 2022-01-22 2022-05-13 杭州富阳数马装饰工艺品有限公司 一种可降解甲醛的窗帘布及其生产方法
CN114539625A (zh) * 2022-02-28 2022-05-27 广东粤港澳大湾区国家纳米科技创新研究院 纳米金抗菌粉、抗菌塑料母粒或材料、制备方法和应用
CN114561136A (zh) * 2022-04-26 2022-05-31 河南蓝翎环科防水材料有限公司 一种环保型抗菌防霉涂料及其生产工艺
CN115138195A (zh) * 2021-08-27 2022-10-04 上海清悠空气净化科技有限公司 一种抗菌除甲醛净化剂及其制备方法
CN115651439A (zh) * 2022-11-11 2023-01-31 安徽江淮汽车集团股份有限公司 一种汽车健康座舱防菌涂层及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106634362A (zh) * 2016-12-30 2017-05-10 苏州律点信息科技有限公司 一种能够吸附甲醛的建筑涂料
CN111234638A (zh) * 2020-04-15 2020-06-05 东莞醇原纳米新材料有限公司 一种抗菌防霉的阻隔涂料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101406834A (zh) * 2008-11-04 2009-04-15 浙江大学 一种低温制备银和二氧化钛纳米复合材料的方法
CN105271321A (zh) * 2015-09-30 2016-01-27 河南科技大学 一种掺锌氧化镁纳米管的制备方法
CN106010045A (zh) * 2016-06-29 2016-10-12 芜湖县双宝建材有限公司 一种防腐防水建筑墙体涂料
CN106046884A (zh) * 2016-06-13 2016-10-26 秦晨 一种环保的建筑涂料及其制备方法
CN106519854A (zh) * 2016-12-02 2017-03-22 济南大学 一种磁性杀菌保温涂料及其制备方法
CN106634362A (zh) * 2016-12-30 2017-05-10 苏州律点信息科技有限公司 一种能够吸附甲醛的建筑涂料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005041005B4 (de) * 2005-08-29 2022-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanopartikuläres Silber enthaltende biozide Zusammensetzung, die Verwendung dieser Zusammensetzung sowie ein Verfahren zur Herstellung von biozid ausgerüsteten Produkten mittels dieser Zusammensetzung
CN103937380A (zh) * 2014-03-25 2014-07-23 周挺 一种紫外光固化涂料
CN104774516A (zh) * 2015-03-24 2015-07-15 牛无畏 一种抗甲醛净味儿童墙面涂料
CN104824024A (zh) * 2015-05-14 2015-08-12 北京中科佰卓纳米材料科技有限公司 一种多功能纳米复合材料制备方法
CN104830185A (zh) * 2015-05-21 2015-08-12 田福东 一种除甲醛环保水性内墙涂料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101406834A (zh) * 2008-11-04 2009-04-15 浙江大学 一种低温制备银和二氧化钛纳米复合材料的方法
CN105271321A (zh) * 2015-09-30 2016-01-27 河南科技大学 一种掺锌氧化镁纳米管的制备方法
CN106046884A (zh) * 2016-06-13 2016-10-26 秦晨 一种环保的建筑涂料及其制备方法
CN106010045A (zh) * 2016-06-29 2016-10-12 芜湖县双宝建材有限公司 一种防腐防水建筑墙体涂料
CN106519854A (zh) * 2016-12-02 2017-03-22 济南大学 一种磁性杀菌保温涂料及其制备方法
CN106634362A (zh) * 2016-12-30 2017-05-10 苏州律点信息科技有限公司 一种能够吸附甲醛的建筑涂料

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647185A (zh) * 2018-12-27 2019-04-19 安徽元琛环保科技股份有限公司 可吸收甲醛的空气过滤材料及其制备方法
CN112076613A (zh) * 2020-09-27 2020-12-15 安阳工学院 具有杀菌作用的甲醛捕捉剂及其制备方法及应用
CN112321270A (zh) * 2020-10-26 2021-02-05 佛山市东鹏陶瓷有限公司 含有改性多孔材料的光催化负离子陶瓷砖及其制备工艺
CN112390580A (zh) * 2020-11-20 2021-02-23 佛山市睿德建筑节能材料有限公司 一种薄层砂浆及其应用
CN113274969A (zh) * 2021-05-26 2021-08-20 广西大学 一种具有吸附甲醛功能的复合材料及其制备方法
CN113274969B (zh) * 2021-05-26 2024-02-06 青岛隆璂保温建材有限公司 一种具有吸附甲醛功能的复合材料及其制备方法
CN113462028A (zh) * 2021-07-02 2021-10-01 科迈特新材料有限公司 一种塑料用纳米抗菌剂及其制备方法
CN115138195A (zh) * 2021-08-27 2022-10-04 上海清悠空气净化科技有限公司 一种抗菌除甲醛净化剂及其制备方法
CN113698827A (zh) * 2021-09-02 2021-11-26 和也健康科技有限公司 一种多功能保健涂料的制备方法
CN114481620A (zh) * 2022-01-22 2022-05-13 杭州富阳数马装饰工艺品有限公司 一种可降解甲醛的窗帘布及其生产方法
CN114539625A (zh) * 2022-02-28 2022-05-27 广东粤港澳大湾区国家纳米科技创新研究院 纳米金抗菌粉、抗菌塑料母粒或材料、制备方法和应用
CN114539625B (zh) * 2022-02-28 2023-12-05 广东粤港澳大湾区国家纳米科技创新研究院 纳米金抗菌粉、抗菌塑料母粒或材料、制备方法和应用
CN114561136A (zh) * 2022-04-26 2022-05-31 河南蓝翎环科防水材料有限公司 一种环保型抗菌防霉涂料及其生产工艺
CN115651439A (zh) * 2022-11-11 2023-01-31 安徽江淮汽车集团股份有限公司 一种汽车健康座舱防菌涂层及其制备方法

Also Published As

Publication number Publication date
CN106634362A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018121509A1 (zh) 一种能够吸附甲醛的建筑涂料
JP5973569B2 (ja) 担持され且つ分散されているTiO2粒子を含む添加剤を調製する方法
CN102558987B (zh) 增强型甲醛分解涂料及其制备方法
CN104130619A (zh) 一种抗菌除臭涂料添加剂及其制备方法
CN107698230A (zh) 一种调湿抗菌净化空气释放负离子的复合多功能室内壁材
KR101408693B1 (ko) 토르마린 소결 담체를 포함하는 규조토 마감재 및 그 제조 방법
CN104693929A (zh) 一种基于石墨烯复合材料且吸附甲醛的涂料及制备方法
KR20090097600A (ko) 환경친화형 수성 도료 조성물 및 그 제조 방법
CN109452309A (zh) 一种硅基载银抗菌剂的制备方法
CN109776055B (zh) 一种多功能环保沸石硅藻泥内墙涂料
CN106514820B (zh) 一种能够吸附甲醛的环保复合地板
CN106007633A (zh) 一种空气净化硅藻土内墙装饰粉末涂料及其制备方法
KR100605004B1 (ko) 일라이트 담체를 함유하는 수용성 도료 조성물
CN103694769A (zh) 一种涂料用活化有机凹凸棒土的制备方法
CN105622017B (zh) 免烧硅藻生态砖及其生产方法
CN104946051A (zh) 一种健康环保的建筑内墙涂料
CN104368318A (zh) 一种pm2.5吸附剂及其制备方法
CN107603294A (zh) 一种能清除甲醛的贝壳原浆涂料及其制备方法
CN104353422A (zh) 一种抗菌口罩吸附剂及其制备方法
CN106242455B (zh) 一种复合型多功能海泡石/硅藻土基环保室内壁材
CN111849228A (zh) 无机水性涂料及其制备方法
CN110105827B (zh) 一种无机防火释放负氧离子的装饰材料及其制备方法
CN111040605A (zh) 一种多功能单组份水性内墙漆及其制备方法
WO2018074270A1 (ja) 白色消臭剤、消臭機能付き化学製品、白色消臭剤の使用方法、及び白色消臭剤の製造方法
CN106957563B (zh) 一种涂料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887881

Country of ref document: EP

Kind code of ref document: A1