WO2018121479A1 - AlGaN/GaN HEMT小信号模型及其参数的提取方法 - Google Patents

AlGaN/GaN HEMT小信号模型及其参数的提取方法 Download PDF

Info

Publication number
WO2018121479A1
WO2018121479A1 PCT/CN2017/118357 CN2017118357W WO2018121479A1 WO 2018121479 A1 WO2018121479 A1 WO 2018121479A1 CN 2017118357 W CN2017118357 W CN 2017118357W WO 2018121479 A1 WO2018121479 A1 WO 2018121479A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
parameter
parasitic
drain
resistance
Prior art date
Application number
PCT/CN2017/118357
Other languages
English (en)
French (fr)
Inventor
吴光胜
周海峰
丁庆
李晓丛
王佳佳
Original Assignee
深圳市华讯方舟微电子科技有限公司
深圳市太赫兹科技创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华讯方舟微电子科技有限公司, 深圳市太赫兹科技创新研究院有限公司 filed Critical 深圳市华讯方舟微电子科技有限公司
Priority to US16/474,162 priority Critical patent/US20190347377A1/en
Publication of WO2018121479A1 publication Critical patent/WO2018121479A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level

Definitions

  • the invention relates to the field of integrated circuit technology, in particular to an AlGaN/GaN HEMT small signal model and a method for extracting the same.
  • Microwave devices and circuits are an important development direction of today's semiconductor technology, and are widely used in the field of defense and civil applications. With the development of communication technology, the importance of microwave devices and their circuits is increasing.
  • the Monolithic Microwave Integrated Circuit (MMIC) based on AlGaN/GaN HEMTs devices has achieved good performance.
  • AlGaN/GaN HEMTs are widely used in microwave circuits due to their high operating frequency, high power density, high power added efficiency, good linearity, high input impedance, easy matching, and high temperature resistance.
  • the design of microwave monolithic integrated circuits for AlGaN/GaN HEMTs devices requires accurate device models that are inseparable from device modeling.
  • Device modeling is critical in the design of microwave integrated circuits (MMICs) to facilitate fast, accurate, and flexible simulation of the designed circuit.
  • MMICs microwave integrated circuits
  • equivalent circuit models and model parameter extraction methods are proposed to facilitate the simulation of the device.
  • the model proposed by Dambrine is the most classic.
  • the equivalent circuit model is shown in Figure 1.
  • the parameters in the dotted line are the devices.
  • the intrinsic parameters include transconductance, channel on-resistance, gate-source capacitance, etc.
  • the intrinsic parameters vary with the device bias voltage.
  • the parameters outside the dashed box are parasitic parameters, including parasitic inductance, cross capacitance, and contact resistance. Parasitic parameters are caused by the gate, source, and drain electrodes of the device and do not vary with the device bias voltage.
  • the Dambrine model is very classic and has a mature parameter extraction method
  • the AlGaN/GaN HEMT device is widely used in the high frequency field
  • the device size can be compared with the wavelength
  • the gate source The gate-drain metal electrode is equivalent to the coplanar waveguide transmission line, and its coplanar waveguide capacitance has a great influence on the device under high-frequency operation.
  • the traditional small-signal model cannot well characterize the device's operating state and device characteristics at high frequencies. .
  • An AlGaN/GaN HEMT small signal model comprising an eigencell and a parasitic cell, wherein the parasitic cell comprises a first coplanar waveguide capacitance between gate sources Second coplanar waveguide capacitance between the gate and drain
  • the first end of the eigencell is connected to the gate end, the second end of the eigencell is connected to the drain end, and the third end of the eigencell is connected to the source terminal;
  • the first coplanar waveguide capacitor Connected between the first end and the third end of the eigencell, the second coplanar waveguide capacitor Connected in series between the first end and the second end of the intrinsic unit.
  • the above AlGaN/GaN HEMT small signal model adds a first coplanar waveguide capacitance between the gate and source in the parasitic element based on the conventional AlGaN/GaN HEMT small signal model.
  • Second coplanar waveguide capacitance between the gate and the drain Since the structure of the AlGaN/GaN HEMT device is similar to that of the coplanar waveguide device, the first coplanar waveguide capacitor is introduced under high frequency conditions.
  • the parasitic unit further includes a gate parasitic inductance L g , a source parasitic inductance L s , a drain parasitic inductance L d , a gate parasitic resistance R g , a source parasitic resistance R s , and a drain.
  • a parasitic resistance R d a gate PAD parasitic capacitance C pg , a drain PAD parasitic capacitance C pd
  • a first end of the eigencell passes the gate parasitic resistance R g , a gate parasitic inductance L g , and the gate An extreme connection
  • a second end of the eigencell is connected to the drain terminal via the drain parasitic resistance L d and a drain parasitic inductance Rd
  • the third end of the eigencell is parasitic via the source a resistor R s and a source parasitic inductance L s are connected to the source terminal;
  • the first coplanar waveguide capacitor a first end connected to the common terminal of the gate parasitic resistance R g and the gate parasitic resistance R g ; the first coplanar waveguide The second end is connected to the common terminal of the source parasitic resistance R s and the source parasitic inductance L s ;
  • the second coplanar waveguide capacitor First end and the first coplanar waveguide capacitor a first end connection; a second end of the second coplanar waveguide capacitor is connected to a common end of the drain parasitic resistance L d and the drain parasitic inductance R d ;
  • the gate PAD parasitic capacitance C pg is connected in series between the gate terminal and the source terminal, and the drain PAD parasitic capacitance C pd is connected in series between the drain terminal and the source terminal.
  • the eigencell includes a gate source eigen capacitance C gs , a gate drain eigen capacitance C gd , a drain source eigen capacitance C ds , an intrinsic channel resistance R i , and a gate leakage leakage resistance R Fd , gate source leakage resistance R fs , drain source resistance R ds , gate leakage resistance R gd , and transconductance g m ;
  • the gate source eigen capacitance C gs and the intrinsic channel resistance R i are connected in series to form a first parallel circuit in parallel with the gate source leakage resistance R fs , and the first end of the first parallel circuit is the intrinsic a first end of the unit, the second end of the first parallel circuit is grounded;
  • the gate drain eigen capacitance C gd is connected in series with the gate leakage leakage resistance R fd in series with the gate leakage resistance R gd , and the gate leakage eigen capacitance C gd is away from the end of the gate leakage resistance R gd Connected to the first end of the first parallel circuit;
  • the transconductance g m , the drain-source resistance R ds , and the drain-source intrinsic capacitance C ds are connected in parallel to form a second parallel circuit, and the first end of the second parallel circuit is connected to the gate-drain resistor R gd and serves as a second end of the intrinsic unit; a second end of the second parallel circuit is grounded.
  • a method for extracting parameters of a small signal model of an AlGaN/GaN HEMT including:
  • the parasitic capacitance comprising: a first coplanar between the gate sources Waveguide capacitor Second coplanar waveguide capacitance between the gate and drain a gate PAD parasitic capacitance C pg and a drain PAD parasitic capacitance C pd , wherein the first coplanar waveguide capacitor The capacitance value is greater than the capacitance of the drain PAD parasitic capacitance C pd ;
  • the parasitic resistance including: a gate parasitic resistance R g Source parasitic resistance R s , drain parasitic resistance R d ;
  • the parasitic inductance including: a gate parasitic inductance L g , a source parasitic inductance L s , and a drain parasitic inductance L d ;
  • the S parameter of the AlGaN/GaN HEMT device is tested under the third condition, the eigenvalue Y parameter is obtained by de-embedding the S parameter, and the eigen parameter is obtained according to the local oscillator Y parameter, the eigenparameter including the gate source eigen capacitance C Gs , gate drain eigen capacitance C gd , drain source eigen capacitance C ds , transconductance g m , transconductance delay factor ⁇ , intrinsic channel resistance R i , gate leakage leakage resistance R fd , gate source leakage resistance R fs , drain-source resistance R ds , gate-drain resistance R gd .
  • the third condition is a forward bias condition of V gs ⁇ 0V, V ds >0;
  • V gs represents the gate-source voltage
  • V p represents the pinch-off voltage
  • V ds represents the source-drain voltage
  • the specific steps of converting the S parameter to the Y parameter and obtaining the parasitic capacitance according to the Y parameter include:
  • the number of roots of the Y parameter acquires the parasitic capacitance.
  • the specific steps of converting the S parameter into a Z parameter and obtaining a parasitic resistance according to the real part of the Z parameter include:
  • R j represents a gate leakage leakage resistance R fd , a gate source leakage resistance R fs , R c represents a sum of channel resistances, and ⁇ represents an angular frequency; wherein, when the device is in the cut-off region, R j and R c are ignored;
  • the parasitic resistance is obtained according to the real part of the Z parameter.
  • the method further comprises obtaining the parasitic inductance based on an imaginary part of the Z parameter.
  • the eigenvalue parameter is de-embedded by the S parameter, and the specific steps of obtaining the eigen parameter according to the local oscillator Y parameter include:
  • the eigenvalue Y parameter is obtained by de-embedding the S parameter according to the following formula:
  • represents the angular frequency
  • the intrinsic parameters are obtained according to the real part and the imaginary part of the eigenvalue Y parameter.
  • the method further includes:
  • the S parameters of the AlGaN/GaN HEMT device were verified.
  • Figure 1 is a conventional HEMT equivalent circuit model diagram
  • FIG. 2 is an equivalent circuit diagram of a small signal model of an AlGaN/GaN HEMT in an embodiment
  • FIG. 3 is a schematic view of an AlGaN/GaN HEMT device in an embodiment
  • Figure 5 is an S-parameter spectrum of a simulated AlGaN/GaN HEMT small-signal model
  • FIG. 6 is a flow chart of a method for extracting parameters of a small signal model of an AlGaN/GaN HEMT in an embodiment
  • FIG. 7 is an equivalent circuit diagram of an AlGaN/GaN HEMT device with a completely disconnected channel in an embodiment
  • Figure 8 is an equivalent circuit diagram of an AlGaN/GaN HEMT device in which the channel is turned on in an embodiment.
  • FIG. 2 is an equivalent circuit diagram of an AlGaN/GaN HEMT small signal model in an embodiment
  • FIG. 2 is a device structure corresponding to the AlGaN/GaN HETM small signal model.
  • the following specific examples are illustrative of the equivalent circuit and the method of accommodating the structure of the device.
  • the AlGaN/GaN HEMT small signal model includes an intrinsic unit 110 and a parasitic unit 120, wherein the parasitic unit 120 includes a first coplanar waveguide capacitance between gate sources Second coplanar waveguide capacitance between the gate and drain
  • the first end a of the eigen unit 110 is connected to the gate end, the second end b of the eigen unit 110 is connected to the drain end, and the third end c of the eigen unit 110 is connected to the source terminal;
  • the first coplanar waveguide capacitor is serially connected between the first end a and the third end of the eigen unit 110, and the second coplanar waveguide capacitor is serially connected to the first end of the eigen unit 110. Between a and the second end.
  • the above AlGaN/GaN HEMT small signal model adds a first coplanar waveguide capacitance between the gate and source in the parasitic element 120 based on the conventional AlGaN/GaN HEMT small signal model.
  • Second coplanar waveguide capacitance between the gate and the drain Since the structure of the AlGaN/GaN HEMT device is similar to that of the coplanar waveguide device, the first coplanar waveguide capacitor is introduced under high frequency conditions.
  • the parasitic unit 120 further includes a gate parasitic inductance L g , a source parasitic inductance L s , a drain parasitic inductance L d , a gate parasitic resistance R g , a source parasitic resistance R s , and a drain.
  • Parasitic resistance R d gate PAD parasitic capacitance C pg , and drain PAD parasitic capacitance C pd .
  • the first end a of the eigencell 110 is connected to the gate terminal via the gate parasitic resistance R g and the gate parasitic inductance L g .
  • the second end b of the eigencell 110 is connected to the drain terminal via the drain parasitic resistance L d and the drain parasitic inductance Rd .
  • the third terminal c of the eigencell 110 is connected to the source terminal via the source parasitic resistance R s and the source parasitic inductance L s .
  • the first coplanar waveguide capacitor a first end connected to the common terminal of the gate parasitic resistance R g and the gate parasitic resistance R g , the first coplanar waveguide The second end is connected to the common terminal of the source parasitic resistance R s and the source parasitic inductance L s .
  • the second coplanar waveguide capacitor First end and the first coplanar waveguide capacitor The first end is connected; the second end of the second coplanar waveguide capacitor is connected to a common end of the drain parasitic resistance L d and the drain parasitic inductance Rd .
  • the gate PAD parasitic capacitance C pg is connected in series between the gate terminal and the source terminal, and the drain PAD parasitic capacitance C pd is connected in series between the drain terminal and the source terminal.
  • the eigencell 110 includes a gate source eigen capacitance C gs , a gate drain eigen capacitance C gd , a drain source eigen capacitance C ds , an intrinsic channel resistance R i , and a gate leakage leakage resistance R Fd , gate-source leakage resistance R fs , drain-source resistance R ds , gate-drain resistance R gd , and transconductance g m .
  • the gate source eigen capacitance C gs and the intrinsic channel resistance R i are connected in series to form a first parallel circuit in parallel with the gate source leakage resistance R fs , the first end of the first parallel circuit is the The first end a of the intrinsic unit 110, the second end of the first parallel circuit is grounded.
  • the gate drain intrinsic capacitance C gd is connected in series with the gate leakage leakage resistance R fd in series with the gate leakage resistance R gd , and the gate leakage intrinsic capacitance C gd is away from the end of the gate leakage resistance R gd
  • the first end of the first parallel circuit is connected.
  • the transconductance g m , the drain-source resistance R ds , and the drain-source intrinsic capacitance C ds are connected in parallel to form a second parallel circuit, and the first end of the second parallel circuit is connected to the gate-drain resistor R gd and serves as The second end b of the intrinsic unit 110; the second end of the second parallel circuit is grounded.
  • the S-parameters of the AlGaN/GaN HEMT device are measured using an IC-CAP system and a probe station, as shown in FIG.
  • the S-parameters of the AlGaN/GaN HEMT devices can also be measured in a vector network analyzer using a test rack.
  • the AlGaN/GaN HEMT small-signal model is simulated in ADS, and the S-parameters of the AlGaN/GaN HEMT small-signal model can also be obtained by simulation, as shown in Fig. 5.
  • the measured S-parameters and the simulated S-parameters are substantially identical, that is, when the first coplanar waveguide capacitance between the gate sources is added.
  • Second coplanar waveguide capacitance between the gate and drain The subsequent AlGaN/GaN HEMT small-signal module can accurately reflect the working state of the AlGaN/GaN HEMT device, and its accuracy is greatly improved compared with the traditional small-signal module.
  • a method for extracting parameters of AlGaN/GaN HEMT small-signal model is mainly to measure the S-parameters of AlGaN/GaN HEMT devices, convert them into Y-parameters and Z-parameters according to S-parameters, and then extract parasitic-independent parasitics.
  • Parasitic parameters such as capacitance, parasitic inductance, and parasitic resistance.
  • the S parameter is called the scattering parameter
  • the Y parameter is called the admittance parameter
  • the Z parameter is called the impedance parameter.
  • the intrinsic parameters are extracted by de-embedding the parasitic portions in the thermal S parameters. Therefore, the accuracy of eigenparameter extraction is directly dependent on the accuracy of parasitic extraction, so the accuracy of parasitic extraction is particularly important.
  • the method for extracting the small signal model parameters of the AlGaN/GaN HEMT specifically includes the following steps. Referring to FIG. 6 :
  • Step S110 testing the S parameter of the AlGaN/GaN HEMT device under the first condition, and converting the S parameter into a Y parameter, and obtaining a parasitic capacitance according to the Y parameter.
  • the parasitic capacitance includes: a first coplanar waveguide capacitance between gate sources Second coplanar waveguide capacitance between the gate and drain
  • the gate PAD parasitic capacitance C pg and the drain PAD parasitic capacitance C pd are mainly parasitic effects between the gate terminal, the source terminal and the drain terminal metal and the substrate.
  • the first coplanar waveguide capacitor The capacitance is greater than the capacitance of the drain PAD parasitic capacitance C pd .
  • V gs represents the gate-source voltage
  • V p represents the pinch-off voltage
  • V ds represents the source-drain voltage. Since the channel of the device is completely disconnected, the effect of the parasitic resistance can be neglected.
  • the reactance of the parasitic inductance is small, the influence of the parasitic inductance can be ignored, and the equivalent circuit is as shown in FIG. There are only parasitic capacitive components in the circuit.
  • Step S120 testing the S parameter of the AlGaN/GaN HEMT device under the second condition, converting the S parameter into a Z parameter, and obtaining a parasitic resistance according to the real part of the Z parameter, the parasitic resistance including: gate parasitic Resistor R g , source parasitic resistance R s , and drain parasitic resistance R d .
  • the drain parasitic resistance R d and the source parasitic resistance R s respectively characterize the ohmic contact metal resistance of the drain terminal and the source terminal, and also include the bulk resistance of the diffusion implanted active region, and the gate parasitic resistance R g is mainly the gate terminal Schottky.
  • the parasitic resistances R g , R d , and R s sometimes vary with the bias voltage, but are generally considered to be constant in the small-signal model.
  • V gs represents a gate-source voltage
  • V p represents a pinch-off voltage
  • V ds represents the source-drain voltage.
  • the intrinsic capacitance can be neglected, the device is turned on, and the intrinsic resistance is small.
  • the gate differential resistance becomes smaller and smaller, so that the influence of the parasitic gate capacitance can be ignored.
  • R j represents the sum of the gate leakage leakage resistance R fd and the gate source leakage resistance R fs
  • R c represents the sum of the channel resistances.
  • Step S130 Acquire parasitic inductance according to the imaginary part of the Z parameter, and the parasitic inductance includes: a gate parasitic inductance L g , a source parasitic inductance L s , and a drain parasitic inductance L d .
  • the parasitic inductances L g , L d and L s are mainly parasitic effects of the metal at the gate, the drain and the source from the surface of the device, and the parasitic inductances L g , L d and L s have better performance on the device. Great impact, especially at high frequencies.
  • the parasitic parameters of the AlGaN/GaN HEMT can be obtained as shown in Table 1.
  • the error is related to the error of measuring the S-parameter and also related to the simulation optimization.
  • a certain error is also allowed when measuring the S parameter, and is approximated when the parameter is extracted.
  • Step S140 testing the S parameter of the AlGaN/GaN HEMT device under the third condition, de-embedding the S parameter to obtain the eigenvalue Y parameter, and obtaining the eigen parameter according to the local oscillator Y parameter.
  • the eigenparameters include a gate source eigen capacitance C gs , a gate drain eigen capacitance C gd , a drain source eigen capacitance C ds , a transconductance g m , a transconductance delay factor ⁇ , an intrinsic channel resistance R i , a gate Leakage leakage resistance R fd , gate source leakage resistance R fs , drain source resistance R ds , and gate leakage resistance R gd .
  • the gate-source intrinsic capacitance C gs can be regarded as the sum of the capacitance formed between the gate and the source and the gate and the channel by the space charge region.
  • the gate-drain eigen capacitance C gd is It is the sum of the capacitance formed between the gate and the drain and the gate and the channel;
  • the drain-source intrinsic capacitance C ds is used to characterize the coupling capacitance between the source and drain electrodes.
  • the transconductance g m is used to measure the variation of the input gate-source voltage V gs on the output drain-source current I ds . This physical parameter gives the internal gain of the device and is an important device index for measuring microwave and millimeter-wave applications. .
  • the transconductance delay factor ⁇ represents the time required for the charge at the sub-gate space point to be redistributed from one steady state to another when the V gs changes; the intrinsic channel resistance R i is the channel and the source Resistance between.
  • the third condition is V gs ⁇ 0V, V ds> 0 the forward bias condition; wherein, V gs represents a gate-source voltage, V p represents the pinch-off voltage, V ds represents the source - drain voltage.
  • V gs -2V
  • the intrinsic Y parameters are obtained by the transformation between the S parameter, the Y parameter and the Z parameter.
  • the eigenvalue Y parameter is obtained by de-embedding the S parameter according to the following formula:
  • the conduction current between the gate source and the gate drain can be equivalent to the presence of a Schottky diode between the gate source and the gate drain, and the gate current is hindered when conducting in the Schottky diode.
  • G fs , G fd representation wherein Obviously, when the applied gate voltage is greater than the turn-on voltage of the diode, the Schottky diode is turned on, the values of Rgsf and Rgdf are small, and the values of Ggsf and Ggdf are large.
  • G fd can be obtained by performing a curve of Re(Y 12i ) to ⁇ 2 , and by performing a curve of Re(Y 11i ) to ⁇ 2 , G fs +G fd can be obtained to obtain values of G fs and G fd .
  • the method further includes the step of verifying S parameters of the AlGaN/GaN HEMT device.
  • the S-parameters of the AlGaN/GaN HEMT device are measured using an IC-CAP system and a probe station, as shown in FIG.
  • the S-parameters of the AlGaN/GaN HEMT devices can also be measured in a vector network analyzer using a test rack.
  • the AlGaN/GaN HEMT small-signal model is simulated in ADS with a frequency range of 200MHz to 50GHz.
  • the S-parameters of the AlGaN/GaNHEMT small-signal model can also be obtained by simulation, as shown in Fig. 5.
  • the measured S-parameters and the simulated S-parameters are substantially identical, that is, when the first coplanar waveguide capacitance between the gate sources is added.
  • Second coplanar waveguide capacitance between the gate and drain The subsequent AlGaN/GaN HEMT small-signal module can accurately reflect the working state of the AlGaN/GaN HEMT device, and its accuracy is greatly improved compared with the traditional small-signal module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种AlGaN/GaN HEMT小信号模型及其参数的提取方法。本发明的AlGaN/GaN HEMT小信号模型在传统的AlGaN/GaN HEMT小信号模型的基础上,在寄生单元中增设了栅源之间的第一共面波导电容式(I)和栅漏之间的第二共面波导电容式(II)。由于AlGaN/GaN HEMT器件与共面波导器件的结构有着相似之处,在高频条件下,引入第一共面波导电容式(I)和第二共面波导电容式(II),也即,考虑了AlGaN/GaN HEMT器件的共面波导效应会引入额外寄生电容,可以更精准的反映AlGaN/GaN HEMT器件的工作状态和器件特性,提高了器件模型准确率。

Description

AlGaN/GaN HEMT小信号模型及其参数的提取方法 技术领域
本发明涉及集成电路技术领域,特别是涉及AlGaN/GaN HEMT小信号模型及其参数的提取方法。
背景技术
微波器件和电路是当今半导体技术的重要发展方向,在国防领域和民用领域均有广泛应用。随着通信技术的发展,微波器件及其电路的重要性日益提高。基于AlGaN/GaN HEMTs器件的微波单片集成电路(Monolithic Microwave Integrated Circuit,MMIC)已经达到了良好的性能指标。AlGaN/GaN HEMT其以工作频率高、功率密度大、功率附加效率高、线性度好、输入阻抗高、易匹配、耐高温等明显优势在微波电路中得到广泛应用。
AlGaN/GaN HEMTs器件的微波单片集成电路的设计,诸如放大器、振荡器和混频器等,都需要准确的器件模型,从而离不开器件的建模。器件建模在微波集成电路(MMIC)的设计过程中至关重要,有助于对设计的电路进行快速、精确、灵活的仿真。现如今,提出了很多等效电路模型及模型参数的提取方法以方便于对器件的模拟仿真,其中Dambrine提出的模型最为经典,等效电路模型如图1所示,虚线框内的参数为器件的本征参数,包括跨导,沟道导通电阻,栅源电容等,本征参数随着器件偏置电压的不同而变化。虚线框外的参数为寄生参数,包括寄生电感,交互电容和接触电阻,寄生参数由器件栅极、源极和漏极的电极引起,不随器件偏置电压的不同而变化。
虽然Dambrine模型非常经典,且有成熟的参数的提取方法,但是由于AlGaN/GaN HEMT器件广泛应用于高频领域,当器件工作于很高的频率下时,器件尺寸可以和波长相比拟,栅源和栅漏金属电极相当于共面波导传输线,其共面波导电容对器件在高频工作下的影响非常大,传统的小信号模型不能很好的表征器件在高频下的工作状态和器件特性。
发明内容
基于此,有必要针对上述问题,提供一种能够在高频条件工作下,且能准确反映器件的工作状态,提供小信号模型准确率的AlGaN/GaN HEMT小信号模型及模型参数的提取方法。
一种AlGaN/GaN HEMT小信号模型,包括本征单元和寄生单元,其中,所述寄生单元包括栅源之间的第一共面波导电容
Figure PCTCN2017118357-appb-000001
栅漏之间的第二共面波导电容
Figure PCTCN2017118357-appb-000002
所述本征单元的第一端与栅极端连接,所述本征单元的第二端与所述漏极端连,所述本征单元的第三端与源极端连接;
所述第一共面波导电容
Figure PCTCN2017118357-appb-000003
串接在所述本征单元的第一端与第三端之间,所述第二共面波导电容
Figure PCTCN2017118357-appb-000004
串接在所述本征单元的第一端与第二端之间。
上述AlGaN/GaN HEMT小信号模型,在传统的AlGaN/GaN HEMT小信号模型的基础上,在寄生单元中增设了栅源之间的第一共面波导电容
Figure PCTCN2017118357-appb-000005
和栅漏之间的第二共面波导电容
Figure PCTCN2017118357-appb-000006
由于AlGaN/GaN HEMT器件与共面波导器件的结构有着相似之处,在高频条件下,引入第一共面波导电容
Figure PCTCN2017118357-appb-000007
和第二共面波导电容
Figure PCTCN2017118357-appb-000008
也即,考虑了AlGaN/GaN HEMT器件的共面波导效应会引入额外寄生电容,可以更精准的反映AlGaN/GaN HEMT器件的工作状态和器件特性,提高了器件模型准确率。
在其中一个实施例中,所述寄生单元还包括栅极寄生电感L g、源极寄生电感L s、漏极寄生电感L d、栅极寄生电阻R g、源极寄生电阻R s、漏极寄生电阻R d、栅极PAD寄生电容C pg、漏极PAD寄生电容C pd;所述本征单元的第一端经所述栅极寄生电阻R g、栅极寄生电感L g与所述栅极端连接;所述本征单元的第二端经所述漏极寄生电阻L d、漏极寄生电感R d与所述漏极端连接;所述本征单元的第三端经所述源极寄生电阻R s、源极寄生电感L s与所述源极端连接;
所述第一共面波导电容
Figure PCTCN2017118357-appb-000009
的第一端与所述栅极寄生电阻R g、栅极寄生电阻R g的公共端连接;所述第一共面波导
Figure PCTCN2017118357-appb-000010
的第二端与所述源极寄生电阻R s、源极寄生电感L s的公共端连接;
所述第二共面波导电容
Figure PCTCN2017118357-appb-000011
的第一端与所述第一共面波导电容
Figure PCTCN2017118357-appb-000012
的第一端连接;所述第二共面波导电容的第二端与所述漏极寄生电阻L d、漏极寄生电感R d的公共端连接;
所述栅极PAD寄生电容C pg串接在栅极端与源极端之间,所述漏极PAD寄生电容C pd串接在漏极端与源极端之间。
在其中一个实施例中,所述本征单元包括栅源本征电容C gs、栅漏本征电容C gd、漏源本征电容C ds、本征沟道电阻R i、栅漏泄漏电阻R fd、栅源泄漏电阻R fs、漏源电阻R ds、栅漏电阻R gd以及跨导g m;其中,
所述栅源本征电容C gs、本征沟道电阻R i串联后与所述栅源泄漏电阻R fs并联构成第一并联电路,所述第一并联电路的第一端为所述本征单元的第一端,所述第一并联电路的第二端接地;
所述栅漏本征电容C gd与所述栅漏泄漏电阻R fd并联后与所述栅漏电阻R gd串联,且所述栅漏本征电容C gd远离所述栅漏电阻R gd的一端与所述第一并联电路的第一端连接;
所述跨导g m、漏源电阻R ds、漏源本征电容C ds并联,构成第二并联电路,所述第二并联电路的第一端与所述栅漏电阻R gd连接,并作为所述本征单元的第二端;所述第二并联电路的第二端接地。
此外,还提供一种AlGaN/GaN HEMT小信号模型参数的提取方法,包括:
在第一条件下测试AlGaN/GaN HEMT器件的S参数,并将所述S参数转换为Y参数,根据所述Y参数获取寄生电容,所述寄生电容包括:栅源之间的第一共面波导电容
Figure PCTCN2017118357-appb-000013
栅漏之间的第二共面波导电容
Figure PCTCN2017118357-appb-000014
栅极PAD寄生电容C pg以及漏极PAD寄生电容C pd,其中,所述第一共面波导电容
Figure PCTCN2017118357-appb-000015
的容值大于漏极PAD寄生电容C pd的容值;
在第二条件下测试AlGaN/GaN HEMT器件的S参数,将所述S参数转换为Z参数,并根据所述Z参数的实部获取寄生电阻,所述寄生电阻包括:栅极寄生电阻R g、源极寄生电阻R s、漏极寄生电阻R d
根据所述Z参数的虚部获取寄生电感,所述寄生电感包括:栅极寄生电感L g、源极寄生电感L s、漏极寄生电感L d
在第三条件下测试AlGaN/GaN HEMT器件的S参数,对S参数去嵌得到本征Y参数,根据所述本振Y参数获取本征参数,所述本征参数包括栅源本征电容C gs、栅漏本征电容C gd、漏源本征电容C ds、跨导g m、跨导延迟因子τ、本征沟道电阻R i、栅漏泄漏电阻R fd、栅源泄漏电阻R fs、漏源电阻R ds、栅漏电阻R gd
在其中一个实施例中,所述第一条件为低频测试条件下,AlGaN/GaN HEMT器件的沟道完全断开,V gs<V p、V ds=0;
所述第二条件为高频测试条件下,AlGaN/GaN HEMT器件的沟道导通,V gs=V p、V ds=0;
所述第三条件为V gs<0V,V ds>0的正向偏置条件;其中,
V gs表示栅源电压,V p表示夹断电压,V ds表示源-漏电压。
在其中一个实施例中,将所述S参数转换为Y参数,根据所述Y参数获取寄生电容的具体步骤包括:
将所述S参数按下列公式转换为Y参数:
Figure PCTCN2017118357-appb-000016
其中,ω表示角频率,且C gs=C gd
Figure PCTCN2017118357-appb-000017
根数所述Y参数获取所述寄生电容。
在其中一个实施例中,将所述S参数转换为Z参数,并根据所述Z参数的实部获取寄生电阻的具体步骤包括:
将所述S参数按下列公式转换为Z参数:
Z 11=R s+R g+R j+1/2R c+jω(L s+L g)
Z 12=Z 21=R s+1/2R c+jωL s
Z 22=R s+R d+R c++jω(L s+L d);
其中,R j表示栅漏泄漏电阻R fd、栅源泄漏电阻R fs,R c表示沟道电阻的总和,ω表示角频率;其中,器件处于截止区时,忽略R j和R c
根据所述Z参数的实部获取所述寄生电阻。
在其中一个实施例中,所述方法还包括根据所述Z参数的虚部获取所述寄 生电感。
在其中一个实施例中,对S参数去嵌得到本征Y参数,根据所述本振Y参数获取本征参数的具体步骤包括:
按下列公式对S参数去嵌得到本征Y参数:
Figure PCTCN2017118357-appb-000018
其中,
Figure PCTCN2017118357-appb-000019
ω表示角频率;
根据所述本征Y参数的实部和虚部获取本征参数。
在其中一个实施例中,所述方法还包括:
验证所述AlGaN/GaN HEMT器件的S参数。
附图说明
图1为传统的HEMT等效电路模型图;
图2为一实施例中AlGaN/GaN HEMT小信号模型的等效电路图;
图3为一实施例中AlGaN/GaN HEMT器件示意图;
图4为AlGaN/GaN HEMT器件的S参数谱图;
图5为仿真AlGaN/GaN HEMT小信号模型的S参数谱图;
图6为一实施例中AlGaN/GaN HEMT小信号模型参数的提取方法流程图;
图7为一实施例中AlGaN/GaN HEMT器件沟道完全断开时的等效电路图;
图8为一实施例中AlGaN/GaN HEMT器件沟道导通时的等效电路图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图2所示的为一实施例中AlGaN/GaN HEMT小信号模型的等效电路图;如图2所示的为AlGaN/GaN HETM小信号模型所对应的器件结构。后面的具体实例就是对采用这种器件结构的等效电路及提参方法进行的说明。AlGaN/GaNHEMT小信号模型包括本征单元110和寄生单元120,其中,所述寄生单元120包括栅源之间的第一共面波导电容
Figure PCTCN2017118357-appb-000020
栅漏之间的第二共面波导电容
Figure PCTCN2017118357-appb-000021
所述本征单元110的第一端a与栅极端连接,所述本征单元110的第二端b与所述漏极端连,所述本征单元110的第三端c与源极端连接;所述第一共面波导电容串接在所述本征单元110的第一端a与第三端之间,所述第二共面波导电容串接在所述本征单元110的第一端a与第二端之间。
上述AlGaN/GaN HEMT小信号模型,在传统的AlGaN/GaN HEMT小信号模型的基础上,在寄生单元120中增设了栅源之间的第一共面波导电容
Figure PCTCN2017118357-appb-000022
和栅漏之间的第二共面波导电容
Figure PCTCN2017118357-appb-000023
由于AlGaN/GaN HEMT器件与共面波导器件的结构有着相似之处,在高频条件下,引入第一共面波导电容
Figure PCTCN2017118357-appb-000024
和第二共面波导电容
Figure PCTCN2017118357-appb-000025
也即,考虑了AlGaN/GaN HEMT器件的共面波导效应会引入额外寄生电容,可以更精准的反映AlGaN/GaN HEMT器件的工作状态和器件特性,提高了器件模型准确率。
在一实施例中,所述寄生单元120还包括栅极寄生电感L g、源极寄生电感L s、漏极寄生电感L d、栅极寄生电阻R g、源极寄生电阻R s、漏极寄生电阻R d、栅极PAD寄生电容C pg、漏极PAD寄生电容C pd。所述本征单元110的第一端a经所述栅极寄生电阻R g、栅极寄生电感L g与所述栅极端连接。所述本征单元110的 第二端b经所述漏极寄生电阻L d、漏极寄生电感R d与所述漏极端连接。所述本征单元110的第三端c经所述源极寄生电阻R s、源极寄生电感L s与所述源极端连接。所述第一共面波导电容
Figure PCTCN2017118357-appb-000026
的第一端与所述栅极寄生电阻R g、栅极寄生电阻R g的公共端连接,所述第一共面波导
Figure PCTCN2017118357-appb-000027
的第二端与所述源极寄生电阻R s、源极寄生电感L s的公共端连接。所述第二共面波导电容
Figure PCTCN2017118357-appb-000028
的第一端与所述第一共面波导电容
Figure PCTCN2017118357-appb-000029
的第一端连接;所述第二共面波导电容的第二端与所述漏极寄生电阻L d、漏极寄生电感R d的公共端连接。所述栅极PAD寄生电容C pg串接在栅极端与源极端之间,所述漏极PAD寄生电容C pd串接在漏极端与源极端之间。
在一实施例中,所述本征单元110包括栅源本征电容C gs、栅漏本征电容C gd、漏源本征电容C ds、本征沟道电阻R i、栅漏泄漏电阻R fd、栅源泄漏电阻R fs、漏源电阻R ds、栅漏电阻R gd以及跨导g m。其中,所述栅源本征电容C gs、本征沟道电阻R i串联后与所述栅源泄漏电阻R fs并联构成第一并联电路,所述第一并联电路的第一端为所述本征单元110的第一端a,所述第一并联电路的第二端接地。所述栅漏本征电容C gd与所述栅漏泄漏电阻R fd并联后与所述栅漏电阻R gd串联,且所述栅漏本征电容C gd远离栅漏电阻R gd的一端与所述第一并联电路的第一端连接。所述跨导g m、漏源电阻R ds、漏源本征电容C ds并联,构成第二并联电路,所述第二并联电路的第一端与所述栅漏电阻R gd连接,并作为所述本征单元110的第二端b;所述第二并联电路的第二端接地。
在一实施例中,利用IC-CAP系统和探针台测量AlGaN/GaN HEMT器件的S参数,如图4所示。当然,还可以利用测试架,在矢量网络分析仪中测量AlGaN/GaN HEMT器件的S参数。同时,将AlGaN/GaN HEMT小信号模型在ADS中仿真,通过仿真也可以得到AlGaN/GaN HEMT小信号模型的S参数,如图5所示。通过对比图4和图5,可以看出,测量的S参数和仿真的S参数基本一致,也即,当增设栅源之间的第一共面波导电容
Figure PCTCN2017118357-appb-000030
栅漏之间的第二共面波导电容
Figure PCTCN2017118357-appb-000031
之后的AlGaN/GaN HEMT小信号模块能够很准确地反映AlGaN/GaN HEMT器件的工作状态,相对与传统的小信号模块,其准确率大大提高了。
一种AlGaN/GaN HEMT小信号模型参数的提取方法,提取方法主要是先通过测量AlGaN/GaN HEMT器件的S参数,根据S参数,转换为Y参数、Z参数,进而提取与偏置无关的寄生电容、寄生电感和寄生电阻等寄生参数。其中,S参数称为散射参数;Y参数称为导纳参数;Z参数称为阻抗参数。然后,通过对热S参数中的寄生部分去嵌后提取本征参数。因而,本征参数提取的精确性直接依赖于寄生参数提取的精确性,所以寄生参数的提取精度显得尤为重要。
在一实施例中,AlGaN/GaN HEMT小信号模型参数的提取方法具体包括如下步骤,参考图6:
步骤S110:在第一条件下测试AlGaN/GaN HEMT器件的S参数,并将所述S参数转换为Y参数,根据所述Y参数获取寄生电容。
所述寄生电容包括:栅源之间的第一共面波导电容
Figure PCTCN2017118357-appb-000032
栅漏之间的第二共面波导电容
Figure PCTCN2017118357-appb-000033
栅极PAD寄生电容C pg以及漏极PAD寄生电容C pd。栅极PAD寄生电容C pg以及漏极PAD寄生电容C pd主要是栅端、源端和漏端金属与衬底之间的寄生效应。其中,所述第一共面波导电容
Figure PCTCN2017118357-appb-000034
的容值大于漏极PAD寄生电容C pd的容值。
所述第一条件为低频测试,V gs<V p、V ds=0,其AlGaN/GaN HEMT器件的沟道完全断开。其中,V gs表示栅源电压,V p表示夹断电压,V ds表示源-漏电压。由于器件的沟道完全断开,因此可以忽略寄生电阻的作用,在低频测试条件下,由于寄生电感的电抗很小,可以忽略寄生电感的影响,其等效电路如图7所示,等效电路中只有寄生电容元件。
将所述S参数按下列公式转换为Y参数:
Figure PCTCN2017118357-appb-000035
其中,ω表示角频率,由于AlGaN/GaN HEMT器件的对称性,可以近似的认为C gs=C gd
Figure PCTCN2017118357-appb-000036
由于栅极和源极的PAD形状和大小几乎相等,所以栅极PAD寄生电容C pg与漏极PAD寄生电容C pd相等。由于AlGaN/GaN HEMT器件的交感电容远大于PAD寄生电容,这里也可以认为第一共面波导电容
Figure PCTCN2017118357-appb-000037
远大于PAD寄生电容,可以近似认为:
Figure PCTCN2017118357-appb-000038
根据上述Y参数的虚部,就能分别计算出寄生电容的电容值。
步骤S120:在第二条件下测试AlGaN/GaN HEMT器件的S参数,将所述S参数转换为Z参数,并根据所述Z参数的实部获取寄生电阻,所述寄生电阻包括:栅极寄生电阻R g、源极寄生电阻R s、漏极寄生电阻R d
漏极寄生电阻R d、源极寄生电阻R s分别表征漏端和源端欧姆接触金属电阻,同时也包括扩散注入有源区的体电阻,栅极寄生电阻R g主要是栅端肖特基栅金属带来的;所述寄生电阻R g、R d及R s有时会随着偏置电压发生变化,但在小信号模型中通常认为其电阻值为常数。
所述第二条件为高频测试条件下,V gs=V p、V ds=0,AlGaN/GaN HEMT器件的沟道导通;其中,V gs表示栅源电压,V p表示夹断电压,V ds表示源-漏电压。在高频测试条件下,本征电容可以忽略,器件导通,本征电阻很小,随着栅压升高,栅微分电阻越来越小从而可以忽略寄生栅电容的影响,得到如图8所示的等效电路图。
将所述S参数按下列公式转换为Z参数:
Z 11=R s+R g+R j+1/2R c+jω(L s+L g)
Z 12=Z 21=R s+1/2R c+jωL s
Z 22=R s+R d+R c++jω(L s+L d);
其中,R j表示栅漏泄漏电阻R fd、栅源泄漏电阻R fs之和,R c表示沟道电阻的总和。当器件处于截止区时,器件没有电流,可以忽略R j和R c,Z参数可以简化为:
Z 11=R s+R g++jω(L s+L g)
Z 12=Z 21=R s++jωL s
Z 22=R s+R d+jω(L s+L d);
根据所述Z参数的实部获取所述寄生电阻:
R g=Re(Z 11-Z 12)
R d=Re(Z 22-Z 12)
R s=Re(Z 12)=Re(Z 21)
步骤S130:根据所述Z参数的虚部获取寄生电感,所述寄生电感包括:栅极寄生电感L g、源极寄生电感L s、漏极寄生电感L d
所述寄生电感L g、L d及L s主要是栅端、漏端和源端处由器件表面的金属构成的寄生效应,所述寄生电感L g、L d及L s对器件性能具有较大的影响,尤其是在高频条件下。
根据所述Z参数的虚部获取所述寄生电感:
L g=Im(Z 11-Z 12)/ω
L d=Im(Z 22-Z 12)/ω
L s=Im(Z 12)/ω
通过上述方法,可以获取AlGaN/GaN HEMT的寄生参数如表1所示。
表1GaN HEMT器件共面波导模型的寄生参数
Figure PCTCN2017118357-appb-000039
虽然小信号模型的参数提取与理论计算的参数有一定得误差,其误差与测量S参数的误差有关,同时也与仿真优化相关。在测量S参数的时候也允许一定的误差,在提取参数时,通过近似处理。在ADS中仿真验证时,会将模型参数进行优化和调整,最终的模型参数以仿真后得到的参数为准。
步骤S140:在第三条件下测试AlGaN/GaN HEMT器件的S参数,对S参数去嵌得到本征Y参数,根据所述本振Y参数获取本征参数。
所述本征参数包括栅源本征电容C gs、栅漏本征电容C gd、漏源本征电容C ds、跨导g m、跨导延迟因子τ、本征沟道电阻R i、栅漏泄漏电阻R fd、栅源泄漏电阻R fs、漏源电阻R ds、栅漏电阻R gd
栅源本征电容C gs可看成是空间电荷区为介质,在栅极与源极及栅极与沟道之间形成的电容之和;与之类似地,栅漏本征电容C gd则是栅极与漏极及栅极与 沟道之间形成的电容之和;漏源本征电容C ds用来表征源漏电极之间的耦合电容。跨导g m用来衡量输入栅源电压V gs的变化在输出漏源电流I ds上的该变量,该物理参数给出了器件的内部增益,是衡量微波和毫米波应用时的重要器件指标。所述跨导延迟因子τ表征V gs变化时栅下空间点何去的电荷由一个稳态重新分布到另一个稳态所需的时间;本征沟道电阻R i为沟道与源极之间的电阻。
所述第三条件为V gs<0V,V ds>0的正向偏置条件;其中,V gs表示栅源电压,V p表示夹断电压,V ds表示源-漏电压。在一实施例中,在V gs=-2V,V ds=4V条件下测量得到的S参数包含了寄生参数和本征参数,而在V gs<V p、V ds=0和V gs=V p、V ds=0的条件下已经得到了寄生参数,通过S参数、Y参数、Z参数之间的转换,去嵌得到本征Y参数。
按下列公式对S参数去嵌得到本征Y参数:
Figure PCTCN2017118357-appb-000040
其中,
Figure PCTCN2017118357-appb-000041
AlGaN/GaN HEMT器件中,栅源和栅漏间的传导电流情况可等效为在栅源和栅漏间存在一个肖特基二极管,栅电流在肖特基二极管中传导时所受到的阻碍用G fs、G fd表征,其中,
Figure PCTCN2017118357-appb-000042
显然,当所加栅电压大于二极管的开启电压时,肖特基二极管导通,Rgsf和Rgdf的值较小,而Ggsf和Ggdf的值较大。
根据上述的本征Y参数的实部和虚部可以求出除了G fs和G fd以外的8个本征参数,参考表2。
表2V gs=-2V,V ds=4V时得到共面波导模型的本征参数
C gd/fF 42.2 R ds/kΩ 49.8
C gs/fF 99.3 R gd 135.2
C ds/fF 22.3 R iΩ 20.6
R fd/kΩ 53.5 g m/mS 28.2
R fs/kΩ 165.3 τ/ps 0.4
通过做Re(Y 12i)~ω 2的曲线可以求出G fd,通过做Re(Y 11i)~ω 2的曲线,可以求出G fs+G fd,从而得到G fs和G fd的值。
在一实施例中,所述方法还包括验证所述AlGaN/GaN HEMT器件的S参数的步骤。
在一实施例中,利用IC-CAP系统和探针台测量AlGaN/GaN HEMT器件的S参数,如图4所示。当然,还可以利用测试架,在矢量网络分析仪中测量AlGaN/GaN HEMT器件的S参数。同时,将AlGaN/GaN HEMT小信号模型在ADS中仿真,频率范围为200MHz到50GHz,通过仿真也可以得到AlGaN/GaNHEMT小信号模型的S参数,如图5所示。通过对比图4和图5,可以看出,测量的S参数和仿真的S参数基本一致,也即,当增设栅源之间的第一共面波导电容
Figure PCTCN2017118357-appb-000043
栅漏之间的第二共面波导电容
Figure PCTCN2017118357-appb-000044
之后的AlGaN/GaN HEMT小信号模块能够很准确地反映AlGaN/GaN HEMT器件的工作状态,相对与传统的小信号模块,其准确率大大提高了。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的 普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种AlGaN/GaN HEMT小信号模型,其特征在于,包括本征单元和寄生单元,其中,所述寄生单元包括栅源之间的第一共面波导电容
    Figure PCTCN2017118357-appb-100001
    栅漏之间的第二共面波导电容
    Figure PCTCN2017118357-appb-100002
    所述本征单元的第一端与栅极端连接,所述本征单元的第二端与所述漏极端连,所述本征单元的第三端与源极端连接;
    所述第一共面波导电容
    Figure PCTCN2017118357-appb-100003
    串接在所述本征单元的第一端与第三端之间,所述第二共面波导电容
    Figure PCTCN2017118357-appb-100004
    串接在所述本征单元的第一端与第二端之间。
  2. 根据权利要求1所述的AlGaN/GaN HEMT小信号模型,其特征在于,所述寄生单元还包括栅极寄生电感L g、源极寄生电感L s、漏极寄生电感L d、栅极寄生电阻R g、源极寄生电阻R s、漏极寄生电阻R d、栅极PAD寄生电容C pg、漏极PAD寄生电容C pd;所述本征单元的第一端经所述栅极寄生电阻R g、栅极寄生电感L g与所述栅极端连接;所述本征单元的第二端经所述漏极寄生电阻L d、漏极寄生电感R d与所述漏极端连接;所述本征单元的第三端经所述源极寄生电阻R s、源极寄生电感L s与所述源极端连接;
    所述第一共面波导电容
    Figure PCTCN2017118357-appb-100005
    的第一端与所述栅极寄生电阻R g、栅极寄生电阻R g的公共端连接;所述第一共面波导
    Figure PCTCN2017118357-appb-100006
    的第二端与所述源极寄生电阻R s、源极寄生电感L s的公共端连接;
    所述第二共面波导电容
    Figure PCTCN2017118357-appb-100007
    的第一端与所述第一共面波导电容
    Figure PCTCN2017118357-appb-100008
    的第一端连接;所述第二共面波导电容的第二端与所述漏极寄生电阻L d、漏极寄生电感R d的公共端连接;
    所述栅极PAD寄生电容C pg串接在栅极端与源极端之间,所述漏极PAD寄生电容C pd串接在漏极端与源极端之间。
  3. 根据权利要求1所述的AlGaN/GaN HEMT小信号模型,其特征在于,所述本征单元包括栅源本征电容C gs、栅漏本征电容C gd、漏源本征电容C ds、本征沟道电阻R i、栅漏泄漏电阻R fd、栅源泄漏电阻R fs、漏源电阻R ds、栅漏电阻R gd以及跨导g m;其中,
    所述栅源本征电容C gs、本征沟道电阻R i串联后与所述栅源泄漏电阻R fs并联 构成第一并联电路,所述第一并联电路的第一端为所述本征单元的第一端,所述第一并联电路的第二端接地;
    所述栅漏本征电容C gd与所述栅漏泄漏电阻R fd并联后与所述栅漏电阻R gd串联,且所述栅漏本征电容C gd远离所述栅漏电阻R gd的一端与所述第一并联电路的第一端连接;
    所述跨导g m、漏源电阻R ds、漏源本征电容C ds并联,构成第二并联电路,所述第二并联电路的第一端与所述栅漏电阻R gd连接,并作为所述本征单元的第二端;所述第二并联电路的第二端接地。
  4. 一种AlGaN/GaN HEMT小信号模型参数的提取方法,其特征在于,包括:
    在第一条件下测试AlGaN/GaN HEMT器件的S参数,并将所述S参数转换为Y参数,根据所述Y参数获取寄生电容,所述寄生电容包括:栅源之间的第一共面波导电容
    Figure PCTCN2017118357-appb-100009
    栅漏之间的第二共面波导电容
    Figure PCTCN2017118357-appb-100010
    栅极PAD寄生电容C pg以及漏极PAD寄生电容C pd,其中,所述第一共面波导电容
    Figure PCTCN2017118357-appb-100011
    的容值大于漏极PAD寄生电容C pd的容值;
    在第二条件下测试AlGaN/GaN HEMT器件的S参数,将所述S参数转换为Z参数,并根据所述Z参数的实部获取寄生电阻,所述寄生电阻包括:栅极寄生电阻R g、源极寄生电阻R s、漏极寄生电阻R d
    根据所述Z参数的虚部获取寄生电感,所述寄生电感包括:栅极寄生电感L g、源极寄生电感L s、漏极寄生电感L d
    在第三条件下测试AlGaN/GaN HEMT器件的S参数,对S参数去嵌得到本征Y参数,根据所述本振Y参数获取本征参数,所述本征参数包括栅源本征电容C gs、栅漏本征电容C gd、漏源本征电容C ds、跨导g m、跨导延迟因子τ、本征沟道电阻R i、栅漏泄漏电阻R fd、栅源泄漏电阻R fs、漏源电阻R ds、栅漏电阻R gd
  5. 根据权利要求4所述的方法,其特征在于,所述第一条件为低频测试条件下,AlGaN/GaN HEMT器件的沟道完全断开,V gs<V p、V ds=0;
    所述第二条件为高频测试条件下,AlGaN/GaN HEMT器件的沟道导通,V gs=V p、V ds=0;
    所述第三条件为V gs<0V,V ds>0的正向偏置条件;其中,
    V gs表示栅源电压,V p表示夹断电压,V ds表示源-漏电压。
  6. 根据权利要求4所述的方法,其特征在于,将所述S参数转换为Y参数,根据所述Y参数获取寄生电容的具体步骤包括:
    将所述S参数按下列公式转换为Y参数:
    Figure PCTCN2017118357-appb-100012
    Figure PCTCN2017118357-appb-100013
    Figure PCTCN2017118357-appb-100014
    其中,ω表示角频率,且
    Figure PCTCN2017118357-appb-100015
    根数所述Y参数获取所述寄生电容。
  7. 根据权利要求4所述的方法,其特征在于,将所述S参数转换为Z参数,并根据所述Z参数的实部获取寄生电阻的具体步骤包括:
    将所述S参数按下列公式转换为Z参数:
    Z 11=R s+R g+R j+1/2R c+jω(L s+L g)
    Z 12=Z 21=R s+1/2R c+jωL s
    Z 22=R s+R d+R c++jω(L s+L d);
    其中,R j表示栅漏泄漏电阻R fd、栅源泄漏电阻R fs,R c表示沟道电阻的总和,ω表示角频率;其中,器件处于截止区时,忽略R j和R c
    根据所述Z参数的实部获取所述寄生电阻。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括根据所述Z参数的虚部获取所述寄生电感。
  9. 根据权利要求7所述的方法,其特征在于,对S参数去嵌得到本征Y参数,根据所述本振Y参数获取本征参数的具体步骤包括:
    按下列公式对S参数去嵌得到本征Y参数:
    Figure PCTCN2017118357-appb-100016
    Figure PCTCN2017118357-appb-100017
    Figure PCTCN2017118357-appb-100018
    Figure PCTCN2017118357-appb-100019
    其中,
    Figure PCTCN2017118357-appb-100020
    ω表示角频率;根据所述本征Y参数的实部和虚部获取本征参数。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    验证所述AlGaN/GaN HEMT器件的S参数。
PCT/CN2017/118357 2016-12-27 2017-12-25 AlGaN/GaN HEMT小信号模型及其参数的提取方法 WO2018121479A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/474,162 US20190347377A1 (en) 2016-12-27 2017-12-25 Algan/gan hemt small-signal model and method for extracting parameters thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611228985.9 2016-12-27
CN201611228985.9A CN106529102B (zh) 2016-12-27 2016-12-27 AlGaN/GaN HEMT小信号模型及其参数的提取方法

Publications (1)

Publication Number Publication Date
WO2018121479A1 true WO2018121479A1 (zh) 2018-07-05

Family

ID=58337769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118357 WO2018121479A1 (zh) 2016-12-27 2017-12-25 AlGaN/GaN HEMT小信号模型及其参数的提取方法

Country Status (3)

Country Link
US (1) US20190347377A1 (zh)
CN (1) CN106529102B (zh)
WO (1) WO2018121479A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111914505A (zh) * 2020-06-15 2020-11-10 上海集成电路研发中心有限公司 一种mos器件的建模方法
CN113378371A (zh) * 2021-06-04 2021-09-10 厦门市三安集成电路有限公司 二极管电荷模型建立方法及其模型参数萃取方法
CN114002572A (zh) * 2021-10-22 2022-02-01 西安交通大学 一种用于测试功率器件的共源电感的测试电路及测试方法
CN115270679A (zh) * 2022-09-28 2022-11-01 电子科技大学 一种基于Angelov模型的GaN晶体管的建模方法
CN117391024A (zh) * 2023-12-12 2024-01-12 浙江集迈科微电子有限公司 GaN HEMT开关器件建模方法及装置、存储介质和终端

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529102B (zh) * 2016-12-27 2023-11-24 青岛君戎华讯太赫兹科技有限公司 AlGaN/GaN HEMT小信号模型及其参数的提取方法
CN107784155B (zh) * 2017-09-07 2019-12-13 浙江大学 一种GaAs Dual-Gate PHEMT小信号等效电路模型
CN107833840B (zh) * 2017-10-27 2019-11-15 西安电子科技大学 AlGaN/GaN高电子迁移率晶体管的结温测试方法
CN108416167B (zh) * 2018-03-27 2021-08-24 成都海威华芯科技有限公司 一种GaN HEMT器件多物理场耦合大信号模型建立方法
CN111832242B (zh) * 2020-06-06 2022-10-18 闽南理工学院 兼容SiC MOSFET和GaN HEMT的仿真模型电路及其创建方法
CN111835292A (zh) * 2020-06-23 2020-10-27 泰新半导体(南京)有限公司 一种消除微波放大器高频自激电路、方法
CN112098795B (zh) * 2020-08-14 2023-05-05 中国电子科技集团公司第十三研究所 两端口在片校准件模型及参数确定的方法
CN112434482A (zh) * 2020-11-30 2021-03-02 中国科学院微电子研究所 用于构建cntfet小信号模型的电路结构及参数提取方法
CN113659944A (zh) * 2021-07-13 2021-11-16 中国电子科技集团公司第二十九研究所 一种可以在片测试的载板式微波功率放大器
CN114519275B (zh) * 2022-02-22 2024-03-29 西安电子科技大学芜湖研究院 AlGaN/GaN HEMT器件小信号模型提取方法
CN114970424B (zh) * 2022-04-08 2024-03-29 浙江大学 一种提取片上校准件寄生参数的方法
CN116626460B (zh) * 2023-04-18 2024-01-30 山东大学 一种确定GaN晶体管纳米尺寸栅长二维电子气面密度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084469A1 (en) * 2000-04-28 2001-11-08 Trw, Inc. Semi-physical modeling of hemt high frequency small-signal equivalent circuit models
CN103995933A (zh) * 2014-06-18 2014-08-20 上海傲亚微电子有限公司 一种新型晶体管小信号等效电路模型
CN105046066A (zh) * 2015-07-02 2015-11-11 中航(重庆)微电子有限公司 AlGaN/GaN HETM小信号模型及其提参方法
CN106202627A (zh) * 2016-06-23 2016-12-07 南京展芯通讯科技有限公司 包含本征电感的晶体管小信号等效电路模型及参数提取方法
CN106529102A (zh) * 2016-12-27 2017-03-22 深圳市华讯方舟微电子科技有限公司 AlGaN/GaN HEMT小信号模型及其参数的提取方法
CN206421387U (zh) * 2016-12-27 2017-08-18 深圳市华讯方舟微电子科技有限公司 AlGaN/GaN HEMT小信号模型

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5863585B2 (ja) * 2012-07-11 2016-02-16 三菱電機株式会社 大信号等価回路モデルを用いたトランジスタ特性計算装置
CN105138730B (zh) * 2015-07-27 2018-05-18 电子科技大学 氮化镓高电子迁移率晶体管小信号模型参数提取方法
CN106208972B (zh) * 2016-08-22 2018-07-17 深圳市华讯方舟微电子科技有限公司 一种高效率高宽带的谐波功率放大电路及射频功率放大器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084469A1 (en) * 2000-04-28 2001-11-08 Trw, Inc. Semi-physical modeling of hemt high frequency small-signal equivalent circuit models
CN103995933A (zh) * 2014-06-18 2014-08-20 上海傲亚微电子有限公司 一种新型晶体管小信号等效电路模型
CN105046066A (zh) * 2015-07-02 2015-11-11 中航(重庆)微电子有限公司 AlGaN/GaN HETM小信号模型及其提参方法
CN106202627A (zh) * 2016-06-23 2016-12-07 南京展芯通讯科技有限公司 包含本征电感的晶体管小信号等效电路模型及参数提取方法
CN106529102A (zh) * 2016-12-27 2017-03-22 深圳市华讯方舟微电子科技有限公司 AlGaN/GaN HEMT小信号模型及其参数的提取方法
CN206421387U (zh) * 2016-12-27 2017-08-18 深圳市华讯方舟微电子科技有限公司 AlGaN/GaN HEMT小信号模型

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111914505A (zh) * 2020-06-15 2020-11-10 上海集成电路研发中心有限公司 一种mos器件的建模方法
CN111914505B (zh) * 2020-06-15 2023-12-12 上海集成电路研发中心有限公司 一种mos器件的建模方法
CN113378371A (zh) * 2021-06-04 2021-09-10 厦门市三安集成电路有限公司 二极管电荷模型建立方法及其模型参数萃取方法
CN114002572A (zh) * 2021-10-22 2022-02-01 西安交通大学 一种用于测试功率器件的共源电感的测试电路及测试方法
CN114002572B (zh) * 2021-10-22 2023-06-30 西安交通大学 一种用于测试功率器件的共源电感的测试电路及测试方法
CN115270679A (zh) * 2022-09-28 2022-11-01 电子科技大学 一种基于Angelov模型的GaN晶体管的建模方法
CN115270679B (zh) * 2022-09-28 2022-12-09 电子科技大学 一种基于Angelov模型的GaN晶体管的建模方法
CN117391024A (zh) * 2023-12-12 2024-01-12 浙江集迈科微电子有限公司 GaN HEMT开关器件建模方法及装置、存储介质和终端
CN117391024B (zh) * 2023-12-12 2024-02-23 浙江集迈科微电子有限公司 GaN HEMT开关器件建模方法及装置、存储介质和终端

Also Published As

Publication number Publication date
CN106529102A (zh) 2017-03-22
CN106529102B (zh) 2023-11-24
US20190347377A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018121479A1 (zh) AlGaN/GaN HEMT小信号模型及其参数的提取方法
Jarndal et al. A new small-signal modeling approach applied to GaN devices
WO2018032713A1 (zh) 包含沟道高级寄生元件的场效应晶体管小信号等效电路模型
CN108062442B (zh) 一种AlGaN/GaN HEMT微波功率器件小信号本征参数提取方法
CN104573173B (zh) 一种晶体管小信号等效电路模型
CN106202627B (zh) 包含本征电感的晶体管小信号等效电路模型及参数提取方法
CN105426570A (zh) 基于有源补偿子电路的GaN HEMT大信号模型改进方法
CN105046066A (zh) AlGaN/GaN HETM小信号模型及其提参方法
CN110717241B (zh) 一种InP HEMT小信号等效电路模型及其参数提取方法
US20180307789A1 (en) STATISTICAL ANALYSIS METHOD FOR TECHNOLOGICAL PARAMETERS OF GaN DEVICES BASED ON LARGE-SIGNAL EQUIVALENT CIRCUIT MODEL
CN105787210A (zh) 氮化镓高电子迁移率晶体管小信号电路模型参数提取方法
CN110717240A (zh) 一种InP HEMT器件噪声等效电路模型建立方法
Lai et al. A new pinched-off cold-FET method to determine parasitic capacitances of FET equivalent circuits
CN107818187A (zh) 一种多栅指AlGaN/GaN HETM小信号模型及其提参方法
CN107918708A (zh) 一种GaN HEMT器件寄生参数的提取方法
WO2023124137A1 (zh) InP HEMT小信号等效电路模型、参数提取方法、设备和介质
Shen et al. An improved millimeter‐wave small‐signal modeling approach for HEMTs
CN114970419B (zh) 一种InP太赫兹HEMT晶体管正负栅压小信号模型
CN114519275B (zh) AlGaN/GaN HEMT器件小信号模型提取方法
Gao et al. Direct parameter extraction method for deep submicrometer metal oxide semiconductor field effect transistor small signal equivalent circuit
CN110717242B (zh) 一种InP HEMT器件噪声等效电路模型建立方法
US20030158689A1 (en) Method for extracting parasitic capacitances of field-effect transistors
Du et al. Reliable parameter extraction of asymmetric GaN-based heterojunction field effect transistors
CN115329719B (zh) 一种InP基太赫兹HEMT晶体管小信号模型
Zhao et al. Large Signal Model of GaN HEMT with the Transconductance Compensation Circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887057

Country of ref document: EP

Kind code of ref document: A1