WO2018121204A1 - 高强阻燃镁合金及其制备方法 - Google Patents

高强阻燃镁合金及其制备方法 Download PDF

Info

Publication number
WO2018121204A1
WO2018121204A1 PCT/CN2017/114954 CN2017114954W WO2018121204A1 WO 2018121204 A1 WO2018121204 A1 WO 2018121204A1 CN 2017114954 W CN2017114954 W CN 2017114954W WO 2018121204 A1 WO2018121204 A1 WO 2018121204A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
magnesium
smelting
retardant
strength
Prior art date
Application number
PCT/CN2017/114954
Other languages
English (en)
French (fr)
Inventor
宫清
郭强
李江恒
李迪
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018121204A1 publication Critical patent/WO2018121204A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present disclosure belongs to the field of magnesium alloys, and more particularly, the present disclosure relates to a high-strength flame-retardant wrought magnesium alloy and a method of preparing the same.
  • Magnesium alloys are widely used in many fields such as automobiles, aerospace, 3C products and national defense military because of their light weight, high specific strength and specific stiffness, excellent shock absorption, machinability and easy recycling. It is one of the most recognized light metal materials in the world. At the same time, as an emerging metal structural material, magnesium alloy has its own shortcomings, such as low room temperature strength and poor flame retardancy. The development of a high-strength flame-retardant magnesium alloy is of great significance to alleviate the increasingly severe environmental and energy crisis in China.
  • the present disclosure is directed to a high-strength flame-retardant magnesium alloy and a preparation method thereof for the defects of the above-mentioned magnesium alloy.
  • the present disclosure provides a high-strength flame-retardant magnesium alloy containing 3.0-3.9 wt% of Al, 1.0-2.0 wt% of Zn, 0.5-1.0 wt% of Mn, 1.8-2.3 wt% of Ca, 0.3- 2.2 wt% of Ce, the balance is magnesium and other unavoidable impurity elements.
  • the present disclosure also provides a method for preparing a high-strength flame-retardant magnesium alloy, which comprises preparing a magnesium alloy ingot by melting a magnesium alloy raw material, and the composition of the magnesium alloy raw material is such that the obtained magnesium alloy ingot contains 3.0-3.9 wt%.
  • the high-strength flame-retardant magnesium alloy provided by the present disclosure has high flame retardancy while having high strength.
  • the present disclosure provides a high-strength flame-retardant magnesium alloy containing 3.0-3.9 wt% of Al, 1.0-2.0 wt% of Zn, 0.5-1.0 wt% Mn, 1.8-2.3 wt% Ca, 0.3-2.2 wt% Ce, the balance being magnesium and other unavoidable impurity elements.
  • the magnesium alloy provided by the present disclosure has a high flame resistance while having high strength by controlling the content of Al to be 3.0 to 3.9 wt% and the content of Zn to be 1.0 to 2.0 wt%, and appropriately adding Ca and Ce. And antioxidant properties.
  • the addition of Ca element enhances the subcooling of the front edge of the solidification interface of the alloy melt and promotes nucleation.
  • Ca can inhibit the recrystallization of the alloy during hot working and refine the recrystallized grains.
  • Ca can form dense The oxide film hinders the oxidative combustion of the alloy melt and improves the flame retardancy of the alloy.
  • Ce can increase the density and bonding strength of the alloy melt and enhance the corresponding oxidation resistance of the alloy.
  • the magnesium alloy in order to ensure the alloy has higher strength, the density and bonding force of the surface of the alloy melt are further improved, and the corresponding oxidation resistance of the alloy is enhanced.
  • the magnesium alloy contains 3.0. -3.9 wt% of Al, 1.0-2.0 wt% of Zn, 0.5-1.0 wt% of Mn, 1.8-2.3 wt% of Ca, 0.9-1.3 wt% of Ce, unavoidable impurity element ⁇ 0.1 wt%, The amount is magnesium.
  • the magnesium alloy has a yield strength of 226-235 MPa and a flame retardant temperature of 810-825 °C.
  • the present disclosure also provides a method for preparing a high-strength flame-retardant magnesium alloy, which comprises preparing a magnesium alloy ingot by melting a magnesium alloy raw material, and the composition of the magnesium alloy raw material is such that the obtained magnesium alloy ingot contains 3.0-3.9 wt%.
  • the surface of the raw material is polished before the smelting, the surface oxide scale of the raw material is removed, and the temperature is maintained in a drying oven at a temperature of 180-220 ° C. Remove water from the metal surface by 1-2h to prevent the magnesium melt from exploding with water.
  • the smelting conditions are carried out in an environment of a CO 2 +0.5% SF 6 mixed gas, the smelting temperature is 760-780 ° C, and the smelting time is 10-20 min.
  • the magnesium alloy ingot is further included.
  • Surface treatment is not particularly limited as long as the scale of the surface of the magnesium alloy can be removed, such as a scale which is removed from the surface by a lathe.
  • the method further comprises molding the magnesium alloy ingot into a magnesium alloy member, and the magnesium alloy of the present invention may be a high-strength flame-retardant wrought magnesium alloy.
  • the above molding method is not particularly limited, and may be various alloy molding methods commonly used in the art, and the molding method which is optional in the present disclosure is roll forming or extrusion molding.
  • the extrusion molding method is employed, and the extrusion molding conditions are: extrusion temperature of 350 ° C to 380 ° C, and extrusion speed of 17 to 40 mm / s.
  • the magnesium alloy ingot needs to be homogenized before extrusion; the homogenization treatment can eliminate casting defects such as composition and tissue segregation, thereby improving the extrudability of the alloy.
  • the homogenization treatment is carried out by incubating the magnesium alloy ingot at 400-440 ° C for 10-14 hours.
  • the intermediate alloy and the metal element are weighed according to the weight, and then the magnesium alloy ingot is obtained by melting according to the magnesium alloy smelting sample preparation process provided above, and the weight of each intermediate alloy and the metal element is made to obtain the magnesium alloy.
  • the content of the elements is as shown in Table 1. Specific steps are as follows:
  • Raw materials need to be cleaned before smelting, and kept in a drying oven at 200 °C for 1 h, then the raw materials are smelted in a vacuum induction furnace, and the smelting process is protected by CO 2 +0.5% SF 6 mixed gas, casting The temperature was 780 ° C, and the ingot was air cooled to room temperature.
  • step 3 Homogenization: The ingot obtained in step 2) is placed in a heat treatment furnace for homogenization treatment, the heating temperature is 420 ° C, the holding time is 12 h, and the furnace is air-cooled after the heat preservation.
  • Hot extrusion The ingot obtained by the step 3) is extruded by a horizontal positive extruder, and the extrusion temperature is 360 ° C, and the extrusion speed is 30 mm / s to prepare a magnesium alloy part A1.
  • a magnesium alloy piece A3 was obtained in the same manner as in Example 1 except that the added materials were such that the elements in the obtained magnesium alloy were as shown in Table 1.
  • a magnesium alloy part A4 was obtained in the same manner as in Example 1 except that the materials to be added were such that the elements in the obtained magnesium alloy were as shown in Table 1.
  • the magnesium alloy member A5 was prepared according to the method of Example 1, except that the added materials made the respective elements in the obtained magnesium alloy.
  • the prime is shown in Table 1.
  • a magnesium alloy member A6 was obtained in the same manner as in Example 1 except that the materials to be added were such that the elements in the obtained magnesium alloy were as shown in Table 1.
  • a magnesium alloy piece A7 was obtained in the same manner as in Example 1 except that the added materials were such that the elements in the obtained magnesium alloy were as shown in Table 1.
  • a magnesium alloy member CA1 was obtained in the same manner as in Example 1 except that the materials to be added were such that the respective elements in the obtained magnesium alloy were as shown in Table 1.
  • a magnesium alloy member CA2 was obtained in the same manner as in Example 1 except that the materials to be added were such that the elements in the obtained magnesium alloy were as shown in Table 1.
  • a magnesium alloy member CA3 was obtained in the same manner as in Example 1 except that the materials to be added were such that the elements in the obtained magnesium alloy were as shown in Table 1.
  • Example 2 3.7 1.7 2.2 0.5 0.3 91.6
  • Example 3 3.7 1.7 2.2 0.5 0.6 91.3
  • Example 4 3.7 1.7 2.2 0.5 0.9 91
  • Example 5 3.7 1.7 2.2 0.5 1.0 90.9
  • Example 6 3.7 1.7 2.2 0.5 1.3
  • Example 7 3.7 1.7 2.2 0.5 2.1 89.8 Comparative example 1 3.7 1.7 0 0.5 0 94.1
  • the sample was placed in a furnace and heated to heat, and the temperature of the sample was recorded as a function of time with a thermocouple. An inflection point appears on the heating temperature versus time curve, which is the ignition point of the alloy.
  • Table 2 The test results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种高强阻燃镁合金及其制备方法。所述镁合金含有3.0-3.9wt%的Al,1.0-2.0wt%的Zn,0.5-1.0wt%的Mn,1.8-2.3wt%的Ca,0.3-2.2wt%的Ce,余量为镁及其它不可避免的杂质元素。制备方法为熔炼、挤出成型、均匀化处理。

Description

高强阻燃镁合金及其制备方法
相关申请的交叉引用
本申请主张在2016年12月30日在中国提交的中国专利申请CN 2016112550393的优先权,其全部内容通过引用包含于此。
技术领域
本公开属于镁合金领域,更具体地,本公开涉及一种高强阻燃变形镁合金及其制备方法。
背景技术
镁合金因其具有质量轻、比强度和比刚度高,以及优良的消震性、机加工性、易回收利用等优点,被广泛应用于汽车、航空航天、3C产品和国防军工等众多领域,是目前全球公认最具发展潜力的轻金属材料之一。同时镁合金作为一种新兴金属结构材料,自身也存在一些不足之处,如室温强度低,阻燃性能差等缺点。开发一种高强阻燃镁合金对缓解我国日益严峻的环境和能源危机具有重要意义。
发明内容
本公开旨在针对上述镁合金存在的缺陷,提供一种高强阻燃镁合金及其制备方法。
本公开提供一种高强阻燃镁合金,所述镁合金含有3.0-3.9wt%的Al,1.0-2.0wt%的Zn,0.5-1.0wt%的Mn,1.8-2.3wt%的Ca,0.3-2.2wt%的Ce,余量为镁及其它不可避免的杂质元素。
本公开还提供了一种高强阻燃镁合金的制备方法,该方法包括将镁合金原料熔炼制备镁合金铸锭,所述镁合金原料的组成使得得到的镁合金铸锭含有3.0-3.9wt%的Al,1.0-2.0wt%的Zn,0.5-1.0wt%的Mn,1.8-2.3wt%的Ca,0.3-2.2wt%的Ce,余量为镁及其它不可避免的杂质元素。
本公开提供的高强阻燃镁合金,在具有高强度的同时具有很好的阻燃性能。
具体实施方式
为了使本公开所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
本公开提供一种高强阻燃镁合金,所述镁合金含有3.0-3.9wt%的Al,1.0-2.0wt%的Zn, 0.5-1.0wt%的Mn,1.8-2.3wt%的Ca,0.3-2.2wt%的Ce,余量为镁及其它不可避免的杂质元素。
本公开所提供的镁合金,通过控制Al的含量为3.0-3.9wt%和Zn的含量为1.0-2.0wt%,并适当加入Ca和Ce,在具有高强度的同时具有很好的阻燃性能和抗氧化性能。Ca元素的加入提高了合金熔体凝固界面前沿的成分过冷度,促进形核;同时,Ca元素能够抑制合金热加工过程的再结晶,细化再结晶晶粒;另外,Ca元素能够形成致密的氧化膜,阻碍合金熔体氧化燃烧,提高合金阻燃性能。Ce能提高合金熔体的致密度和结合力,增强合金相应的抗氧化性能。
根据本公开所提供的镁合金,为了保证合金具有较高强度的同时,进一步提高合金熔体表面的致密度和结合力,增强合金相应的抗氧化性能,可选地,所述镁合金含有3.0-3.9wt%的Al,1.0-2.0wt%的Zn,0.5-1.0wt%的Mn,1.8-2.3wt%的Ca,0.9-1.3wt%的Ce,不可避免的杂质元素≤0.1wt%,余量为镁。
根据本公开所提供的镁合金,可选地,所述镁合金的屈服强度为226-235MPa,阻燃温度为810-825℃。
本公开还提供了一种高强阻燃镁合金的制备方法,该方法包括将镁合金原料熔炼制备镁合金铸锭,所述镁合金原料的组成使得得到的镁合金铸锭含有3.0-3.9wt%的Al,1.0-2.0wt%的Zn,0.5-1.0wt%的Mn,1.8-2.3wt%的Ca,0.3-2.2wt%的Ce,余量为镁及其它不可避免的杂质元素。
本公开中,由于镁等金属很容易被氧化,为了保证合金的性能,在熔炼前还包括将原料进行表面打磨,去除原料表层氧化皮,并置于温度为180-220℃的干燥箱中保温1-2h去除金属表面的水分,防止镁熔体遇水爆炸。
本公开中,所述熔炼的条件为:在CO2+0.5%SF6混合气体的环境中进行,熔炼温度为760-780℃,熔炼时间为10-20min。
本公开中,镁合金在熔炼时,会在镁合金表面形成一层氧化皮,该氧化皮会影响挤出板材的表面质量,因此,可选地,在熔炼之后还包括对镁合金铸锭进行表面处理。具体的表面处理方法没有特别的限制,只要能去除镁合金表面的氧化皮即可,如可以是用车床车去表面的氧化皮等。
本公开中,该方法还包括将所述的镁合金铸锭进行成型为镁合金件,本发明的镁合金可以是一种高强阻燃变形镁合金。上述成型的方法没有特别的限制,可以为本领域常用的各种合金成型方法,在本公开中可选的所述成型的方法为轧制成型或挤出成型。在本公开的一种实施方式中,采用挤出成型的方法,所述挤压成型的条件为:挤压温度350℃~380℃,挤压速度17~40mm/s。
本公开中,在挤压之前还需对镁合金铸锭进行均匀化处理;均匀化处理可以消除成分、组织偏析等铸造缺陷,从而提高合金可挤压性。所述均匀化处理的方法为:将镁合金铸锭在400-440℃保温10-14小时。
下面通过具体实施例对本公开进行进一步的详细说明。
实施例1
经配料计算后,按重量称取各中间合金及金属单质,然后按照上述提供的镁合金熔炼制样过程进行熔炼制得镁合金铸锭,各中间合金及金属单质重量使得到的镁合金中各元素的含量百分含量如表1。具体步骤如下:
1)原材料熔炼前需打磨干净,并置于温度为200℃的干燥箱中保温1h,然后将原材料置于真空感应炉中熔炼,熔炼过程使用CO2+0.5%SF6混合气体进行保护,浇铸温度为780℃,后将铸锭空冷至室温。
2)去皮:车去1)步骤所得铸锭表层氧化皮至挤压加工尺寸。
3)均匀化:将2)步骤所得铸锭置于热处理炉中均匀化处理,加热温度420℃,保温时间12h,保温后出炉空冷。
4)热挤压:使用卧式正挤压机挤压加工3)步骤所得铸锭,挤压温度360℃,挤压速度30mm/s,制备得到镁合金件A1。
实施例2
按照实施例1的方法制备得到镁合金件A2,区别在于所加原料使得到的镁合金中各元素如表1所示。
实施例3
按照实施例1的方法制备得到镁合金件A3,区别在于所加原料使得到的镁合金中各元素如表1所示。
实施例4
按照实施例1的方法制备得到镁合金件A4,区别在于所加原料使得到的镁合金中各元素如表1所示。
实施例5
按照实施例1的方法制备得到镁合金件A5,区别在于所加原料使得到的镁合金中各元 素如表1所示。
实施例6
按照实施例1的方法制备得到镁合金件A6,区别在于所加原料使得到的镁合金中各元素如表1所示。
实施例7
按照实施例1的方法制备得到镁合金件A7,区别在于所加原料使得到的镁合金中各元素如表1所示。
对比例1
按照实施例1的方法制备得到镁合金件CA1,区别在于所加原料使得到的镁合金中各元素如表1所示。
对比例2
按照实施例1的方法制备得到镁合金件CA2,区别在于所加原料使得到的镁合金中各元素如表1所示。
对比例3
按照实施例1的方法制备得到镁合金件CA3,区别在于所加原料使得到的镁合金中各元素如表1所示。
表1
实施例 Al Zn Ca Mn Ce Mg
实施例1 3.5 1.0 1.8 0.5 0.5 92.7
实施例2 3.7 1.7 2.2 0.5 0.3 91.6
实施例3 3.7 1.7 2.2 0.5 0.6 91.3
实施例4 3.7 1.7 2.2 0.5 0.9 91
实施例5 3.7 1.7 2.2 0.5 1.0 90.9
实施例6 3.7 1.7 2.2 0.5 1.3 90.6
实施例7 3.7 1.7 2.2 0.5 2.1 89.8
对比例1 3.7 1.7 0 0.5 0 94.1
对比例2 3.7 1.7 0 0.5 0.5 93.6
对比例3 3.7 1.7 2.2 0.5 0 91.9
性能测试
1、室温力学性能
参照《GB/T 228.1-2010金属材料拉伸试验第一部分:室温试验方法》测试镁合金的抗拉强度、屈服强度和延伸率。将本公开实施例1-7及对比例1-3挤压加工后的板材经线切割制成标准拉伸试样,拉伸试样的轴线方向与挤压方向一致。结果见表2。
2、阻燃性能
将试样置于炉膛中升温加热,用热电偶记录试样的温度随时间的变化。在加热温度与时间曲线上会出现一个拐点,该拐点就是合金的起燃点。测试结果见表2。
表2
实施例 抗拉强度(Mpa) 屈服强度(Mpa) 延伸率(%) 燃点(℃)
实施例1 297 259 11.3 794
实施例2 299 238 13.8 792
实施例3 284 217 14.3 795
实施例4 287 226 13.3 810
实施例5 290 233 13.0 815
实施例6 294 235 12.7 825
实施例7 277 210 12.9 900
对比例1 278 177 15.2 575
对比例2 287 184 14.7 580
对比例3 308 258 13.2 790
经实施例1-7与对比例1-3的结果对比可以看出,Mg-Al-Zn-Ca合金中Ca含量达到2.2wt%时,合金具有优良的综合力学性能,其中屈服强度达到258MPa,延伸率为13.2%。复合添加稀土Ce元素后,合金的阻燃性能得到明显提高。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含 于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (9)

  1. 一种高强阻燃镁合金,含有3.0-3.9wt%的Al,1.0-2.0wt%的Zn,0.5-1.0wt%的Mn,1.8-2.3wt%的Ca,0.3-2.2wt%的Ce,余量为镁及其它不可避免的杂质元素。
  2. 根据权利要求1所述的镁合金,含有3.0-3.9wt%的Al,1.0-2.0wt%的Zn,0.5-1.0wt%的Mn,1.8-2.3wt%的Ca,0.9-1.3wt%的Ce,不可避免的杂质元素≤0.1wt%,余量为镁。
  3. 根据权利要求1或2所述的镁合金,其中,所述镁合金的屈服强度为226-235MPa,阻燃温度为810-825℃。
  4. 一种高强阻燃镁合金的制备方法,包括将镁合金原料熔炼制备镁合金铸锭,所述镁合金原料的组成使得得到的所述镁合金铸锭含有3.0-3.9wt%的Al,1.0-2.0wt%的Zn,0.5-1.0wt%的Mn,1.8-2.3wt%的Ca,0.3-2.2wt%的Ce,余量为镁及其它不可避免的杂质元素。
  5. 根据权利要求4所述的制备方法,其中,所述熔炼的条件为:在CO2+0.5%SF6混合气体的环境中进行,熔炼温度为760-780℃,保温时间为10-20min。
  6. 根据权利要求4或5所述的制备方法,其中,在所述熔炼之前还包括对熔炼原料进行表面处理。
  7. 根据权利要求4至6中任一项所述的制备方法,其中,在所述熔炼之后还包括对所述镁合金铸锭进行表面处理。
  8. 根据权利要求4至7中任一项所述的制备方法,还包括将所述镁合金铸锭进行成型为镁合金件,所述成型的方法为挤出成型;所述挤出成型的条件为:挤压温度350-380℃,挤压速度17-40mm/s。
  9. 根据权利要求8所述的制备方法,其中,在所述挤出成型之前还包括对所述镁合金铸锭进行均匀化处理;所述均匀化处理的方法为:将所述镁合金铸锭在400-440℃保温10-14小时。
PCT/CN2017/114954 2016-12-30 2017-12-07 高强阻燃镁合金及其制备方法 WO2018121204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611255039.3 2016-12-30
CN201611255039.3A CN108265213A (zh) 2016-12-30 2016-12-30 一种高强阻燃变形镁合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2018121204A1 true WO2018121204A1 (zh) 2018-07-05

Family

ID=62706870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114954 WO2018121204A1 (zh) 2016-12-30 2017-12-07 高强阻燃镁合金及其制备方法

Country Status (2)

Country Link
CN (1) CN108265213A (zh)
WO (1) WO2018121204A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570993A (zh) * 2020-12-04 2021-03-30 无锡通伟电力设备有限公司 一种导电铜母线的加工方法
WO2024011847A1 (zh) * 2022-07-11 2024-01-18 宝钢金属有限公司 一种高导热阻燃变形镁合金材料及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950333A (zh) * 2018-07-16 2018-12-07 江苏理工学院 一种高性能Mg-Al-Zn-Mn-Ca镁合金及其制备方法
CN110066948B (zh) * 2019-04-29 2020-09-11 东北大学 高强高塑性Mg-Ca-Al-Zn-Mn-Ce变形镁合金及其制备方法
CN111519074A (zh) * 2020-05-21 2020-08-11 东北大学 一种含轻稀土元素镧的高强度Mg-Ca-Mn-Al-Zn系变形镁合金及其制备方法
CN112322949B (zh) * 2020-11-04 2022-12-09 航天科工(长沙)新材料研究院有限公司 一种镁合金材料及包含该材料的部件和装置
CN112481535B (zh) * 2020-11-04 2022-12-09 航天科工(长沙)新材料研究院有限公司 一种镁合金铸锭及其制备方法
CN115449682B (zh) * 2022-09-28 2024-04-26 广东汇天航空航天科技有限公司 一种稀土与碱土元素复合的镁基合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108634A1 (en) * 2004-05-10 2005-11-17 Norsk Hydro Technology B.V. Magnesium alloy having improved elevated temperature performance
CN103343272A (zh) * 2013-07-16 2013-10-09 河北工业大学 一种添加钙、铈的阻燃镁合金及其制备方法
JP2015131987A (ja) * 2014-01-10 2015-07-23 公益財団法人鉄道総合技術研究所 マグネシウム合金とその製造方法、鉄道車両の構体及び交通輸送手段の構体
CN105779834A (zh) * 2014-12-17 2016-07-20 宝山钢铁股份有限公司 一种低成本高强度抗疲劳难燃变形镁合金及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108634A1 (en) * 2004-05-10 2005-11-17 Norsk Hydro Technology B.V. Magnesium alloy having improved elevated temperature performance
CN103343272A (zh) * 2013-07-16 2013-10-09 河北工业大学 一种添加钙、铈的阻燃镁合金及其制备方法
JP2015131987A (ja) * 2014-01-10 2015-07-23 公益財団法人鉄道総合技術研究所 マグネシウム合金とその製造方法、鉄道車両の構体及び交通輸送手段の構体
CN105779834A (zh) * 2014-12-17 2016-07-20 宝山钢铁股份有限公司 一种低成本高强度抗疲劳难燃变形镁合金及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570993A (zh) * 2020-12-04 2021-03-30 无锡通伟电力设备有限公司 一种导电铜母线的加工方法
CN112570993B (zh) * 2020-12-04 2024-01-30 无锡通伟电力设备有限公司 一种导电铜母线的加工方法
WO2024011847A1 (zh) * 2022-07-11 2024-01-18 宝钢金属有限公司 一种高导热阻燃变形镁合金材料及其制备方法

Also Published As

Publication number Publication date
CN108265213A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2018121204A1 (zh) 高强阻燃镁合金及其制备方法
US20220170139A1 (en) Calcium-bearing magnesium and rare earth element alloy and method for manufacturing the same
CN109136684B (zh) 一种t6状态铝合金导电管材及其制备方法
WO2021008428A1 (zh) 一种超高强铝锂合金及其制备方法
RU2404276C2 (ru) ПРОДУКТ ИЗ ВЫСОКОПРОЧНОГО, ВЫСОКОВЯЗКОГО Al-Zn СПЛАВА И СПОСОБ ИЗГОТОВЛЕНИЯ ТАКОГО ПРОДУКТА
WO2015109893A1 (zh) 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法
EP3650561A1 (en) Plastic wrought magnesium alloy and preparation method thereof
WO2017169962A1 (ja) 耐食性に優れ、良好な焼入れ性を有する高強度アルミニウム合金押出材及びその製造方法
CN110066931B (zh) 一种适于冷成形的铝合金及其制备方法
JP5918158B2 (ja) 室温時効後の特性に優れたアルミニウム合金板
WO2018177168A1 (zh) 一种镁合金及其制备和成型方法以及镁合金件
JP6348466B2 (ja) アルミニウム合金押出材及びその製造方法
CN113667912B (zh) 一种大规格铝合金板材及其制备方法
CA2950075C (en) Method for manufacturing aluminum alloy member and aluminum alloy member manufactured by the same
WO2016074423A1 (zh) 镁合金及其制备方法和应用
CN110669967A (zh) 一种快速挤压高强度变形铝合金及其制备方法
CN102965553A (zh) 用于汽车保险杠的铝合金铸锭及其生产工艺
WO2017107511A1 (zh) 铝合金及其制备方法
CN103667820B (zh) 铝合金槽型件及其制备工艺
CN110952005A (zh) 一种快速挤压高性能变形铝合金及其制备方法
US11351585B2 (en) Preparation method for a high-strength extruded profile of Mg—Zn—Sn—Mn alloy
CN113355565A (zh) 一种适于挤压铸造的可耐高温焊接的铝合金及其制备方法
CN111118351B (zh) 一种锂离子电池软包装铝塑膜用高性能铝箔及其制备方法
JP6355098B2 (ja) 熱伝導性に優れた高成形用アルミニウム合金板材およびその製造方法
CN112359235B (zh) 一种铝合金飞机行李架型材生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885644

Country of ref document: EP

Kind code of ref document: A1