WO2018120468A1 - 基于lcce优化的柴油发动机标定方法 - Google Patents

基于lcce优化的柴油发动机标定方法 Download PDF

Info

Publication number
WO2018120468A1
WO2018120468A1 PCT/CN2017/078168 CN2017078168W WO2018120468A1 WO 2018120468 A1 WO2018120468 A1 WO 2018120468A1 CN 2017078168 W CN2017078168 W CN 2017078168W WO 2018120468 A1 WO2018120468 A1 WO 2018120468A1
Authority
WO
WIPO (PCT)
Prior art keywords
lcce
diesel
amount
consumption
equivalent
Prior art date
Application number
PCT/CN2017/078168
Other languages
English (en)
French (fr)
Inventor
刘汉辉
王辉
李明星
黎幸荣
陈峙良
王任信
Original Assignee
广西玉柴机器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西玉柴机器股份有限公司 filed Critical 广西玉柴机器股份有限公司
Publication of WO2018120468A1 publication Critical patent/WO2018120468A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3827Common rail control systems for diesel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0625Fuel consumption, e.g. measured in fuel liters per 100 kms or miles per gallon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to the field of diesel engine calibration, and in particular to a diesel engine calibration method based on LCCE optimization.
  • the conventional consumption materials of diesel engines with selective catalytic reduction (SCR) treatment technology are diesel and vehicle urea.
  • diesel consumption is to maintain vehicle operation, while vehicle urea consumption is used in the SCR process to react with nitrogen oxides (NOx) in the exhaust gas to achieve the purpose of reducing gas pollutant emissions.
  • NOx nitrogen oxides
  • reducing the diesel consumption of diesel engines and reducing NOx emissions are contradictory.
  • engine NOx emissions will inevitably increase, resulting in the need to consume more vehicle urea.
  • research on engines and complete vehicles focuses on reducing diesel consumption, but does not pay enough attention to vehicle urea consumption.
  • the existing engine calibration method only focuses on diesel consumption.
  • LCCE Liquids Consumption Cost Equivalent
  • the method can effectively reduce the total cost of urea and diesel for diesel engines.
  • LCCE-optimized diesel engine calibration method comprising the following processing steps:
  • Step 1.1 Establish the LCCE calculation model, that is, obtain the vehicle urea consumption by diesel consumption, and convert the vehicle urea consumption into equivalent diesel consumption.
  • the sum of the equivalent diesel consumption and the diesel consumption is the total equivalent diesel.
  • Consumption, total equivalent diesel consumption is the amount of LCCE;
  • Step 1.2 Adjust and stabilize the engine operating conditions, calibrate the measuring device, and then measure the SCR limit efficiency, diesel consumption and original NOx emissions by variable calibration, and divide by the difference between the original NOx emissions and the target NOx emissions.
  • the target conversion efficiency is obtained by the original NOx emission, and the target conversion efficiency is compared with the SCR limit efficiency.
  • the target conversion efficiency is greater than the SCR limit efficiency, the variable group is deleted or the variable calibration is performed again. Otherwise, the target conversion efficiency is output to LCCE calculation model;
  • Step 1.3 Input the target conversion efficiency, diesel consumption and original NOx emissions into the LCCE calculation model to obtain the LCCE amount, and optimize the LCCE optimization boundary with the target diesel fuel consumption, if the currently calibrated variable group makes If the LCCE quantity is optimal, the optimal variable group is selected. Otherwise, the other variable groups are re-selected to calculate the LCCE amount until the LCCE quantity is optimal.
  • the vehicle urea consumption obtaining process is to obtain the exhaust gas amount by adding the diesel consumption amount and the air flow rate, and multiplying the exhaust gas amount by the NOx original machine discharge concentration to obtain the NOx amount, and the NOx amount is obtained.
  • the ammonia consumption is obtained by multiplying the conversion efficiency, and the ammonia consumption is sequentially obtained by multiplying the equivalent ratio, the correction coefficient, and the vehicle urea density.
  • the equivalent diesel fuel is obtained by multiplying the vehicle urea price by the reciprocal of the diesel price and the reciprocal of the diesel density, and the equivalent diesel consumption is obtained by multiplying the equivalent diesel fuel by the vehicle urea consumption.
  • the measured oil quantity and the original NOx are measured.
  • the emission data set obtains the diesel consumption through the oil quantity function model, and obtains the original NOx emission amount through the original NOx emission function model.
  • the original NOx emission function model first obtains a finite number of discrete points of the engine NOx emission, the corresponding injection timing (Time) and the corresponding injection pressure (Raip) by the calibration test, and then uses these discrete points.
  • the LCCE optimization is performed by a calibration test to obtain a limited number of discrete points of the LCCE amount of the engine, the corresponding injection timing (Time), the corresponding injection pressure (Raip), and the corresponding EGR rate. Then, these discrete points are used for 3D data interpolation and fitting, and finally a fitted function model is obtained for optimization.
  • variable calibration includes rail pressure, injection timing, and EGR rate.
  • the invention has the beneficial effects of:
  • the invention establishes the LCCE calculation model, converts the vehicle urea consumption into the equivalent diesel consumption plus the diesel consumption to obtain the LCCE amount, and performs the optimal judgment of the LCCE amount until the variable group of the optimal LCCE amount is selected.
  • the total cost of urea and diesel for vehicles in diesel engines is effectively reduced.
  • the invention can reduce the risk of excessive emissions and urea crystallization.
  • the method of the invention makes the determination of the original NOx emission more targeted, reduces the repetition amount of the calibration work, and saves the development cost.
  • Figure 1 is a schematic block diagram of the present invention
  • the present invention provides a diesel engine calibration method based on LCCE optimization, which comprises the following processing steps:
  • Step 1.1 Establish the LCCE calculation model, that is, obtain the vehicle urea consumption by diesel consumption, and convert the vehicle urea consumption into equivalent diesel consumption.
  • the sum of the equivalent diesel consumption and the diesel consumption is the total equivalent diesel.
  • Consumption, total equivalent diesel consumption is the amount of LCCE;
  • Step 1.2 Adjust and stabilize the engine operating conditions, calibrate the measuring device, and then measure the SCR limit efficiency, diesel consumption and original NOx emissions by variable calibration, and divide by the difference between the original NOx emissions and the target NOx emissions.
  • the target conversion efficiency is obtained by the target NOx emission, and the target conversion efficiency is compared with the SCR limit efficiency.
  • the variable group is deleted or the variable calibration is performed again, and the target conversion efficiency is output to the LCCE.
  • Step 1.3 Input the target conversion efficiency, diesel consumption and original NOx emissions into the LCCE calculation model to obtain the LCCE amount, and optimize the LCCE optimization boundary with the target diesel fuel consumption, if the currently calibrated variable group makes If the LCCE quantity is optimal, the optimal variable group is selected. Otherwise, the other variable groups are re-selected to calculate the LCCE amount until the LCCE quantity is optimal.
  • the target NOx emissions are required for the enterprise to be controlled according to national regulations.
  • the target diesel consumption is a target value that is customized for each diesel engine development process.
  • the SCR limit efficiency is the ratio of the conversion efficiency of the SCR catalyst, that is, the NOx concentration before conversion minus the converted NOx concentration divided by the NOx concentration before conversion.
  • step 1.1 the equivalent diesel fuel is obtained by sequentially calculating the urea price of the vehicle and the reciprocal of the diesel price and the reciprocal of the diesel density, and multiplying the equivalent diesel fuel by the vehicle urea consumption to obtain the equivalent diesel consumption.
  • step 1.2 after the variable is calibrated, the diesel consumption is obtained by the measured oil quantity and the original NOx emission data set through the oil quantity function model, and the original NOx emission quantity is obtained by the original NOx emission function model.
  • the variable calibration includes rail pressure, injection timing and EGR rate.
  • the EGR ratio is the ratio of the amount of recirculated exhaust gas to the total amount of intake air drawn into the cylinder.
  • the measuring device can be a sensor for recording key parameter information such as speed and torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种柴油发动机标定方法,包括:通过柴油消耗量得出车用尿素消耗量,并且将车用尿素消耗量转化成当量柴油消耗量,当量柴油消耗量与柴油消耗量之和为总等价柴油消耗量,总等价柴油消耗量为LCCE量;通过变量标定测得SCR极限效率、柴油消耗量和原机NOx排放量,通过原机NOx排放量与目标NOx排放量的差值除以原机NOx排放量得到目标转化效率,并且用目标转化效率与SCR极限效率进行比较,当目标转化效率大于SCR极限效率时,则删除变量组或重新进行变量标定,反之,目标转化效率输出到LCCE计算模型;将目标转化效率、柴油消耗量和原机NOx排放量输入到LCCE计算模型中获得LCCE量,并且以目标柴油消耗量为LCCE寻优边界进行寻优,如果当前标定的变量组合使得LCCE量最优,则选择该标定变量组合,否则重新选择其他变量组合计算LCCE量,直到LCCE量最优为止。该方法可使柴油发动机的车用尿素和柴油的总花费有效降低,可减小排放超标和尿素结晶的风险。

Description

基于LCCE优化的柴油发动机标定方法 技术领域
本发明涉及柴油发动机标定领域,尤其涉及一种基于LCCE优化的柴油发动机标定方法。
背景技术
目前,带选择性催化还原(SCR)处理技术路线的柴油机常规的消耗物质为柴油和车用尿素。其中,柴油消耗是为了维持车辆运行,而车用尿素的消耗则是用在SCR处理中与排气中的氮氧化物(NOx)进行反应以达到降低气体污染物排放的目的。然而,降低柴油机的柴油消耗和降低NOx排放是相互矛盾的,在发动机获取更低的油耗从而降低柴油消耗时,发动机NOx排放必然增加,导致需要消耗更多的车用尿素。目前,发动机及整车的研究是将更多的关注点集中在降低柴油消耗,而对车用尿素消耗并没有引起足够的重视,同时,现有的发动机标定方法只关注柴油的消耗量。而实际上,车用尿素价格本身不便宜,甚至有些国家车用尿素的价格会高于柴油。如何使车用尿素消耗和柴油消耗最终在花费上表现最低,必须在标定思路和方法上做改进,本发明运用了LCCE(Liquids Consumption Cost Equivalent)即当量价格的液体消耗这一思路可有效的解决这一问题。
发明内容
本发明的目的是,提供一种基于LCCE优化的柴油发动机标定方 法,可使柴油发动机的车用尿素和柴油的总花费有效降低。
为实现上述目的,提供了一种基于LCCE优化的柴油发动机标定方法,该方法包括如下处理步骤:
步骤1.1:建立LCCE计算模型,即通过柴油消耗量得出车用尿素消耗量,并且将车用尿素消耗量转化成当量柴油消耗量,当量柴油消耗量与柴油消耗量之和为总等价柴油消耗量,总等价柴油消耗量为LCCE量;
步骤1.2:调节并且稳定发动机的工况,校准测量装置,然后通过变量标定测得SCR极限效率、柴油消耗量和原机NOx排放量,通过原机NOx排放量与目标NOx排放量的差值除以原机NOx排放量得到目标转化效率,并且用目标转化效率与SCR极限效率进行比较,当目标转化效率大于SCR极限效率时,则删除变量组或重新进行变量标定,反之,目标转化效率输出到LCCE计算模型;
步骤1.3:将目标转化效率、柴油消耗量和原机NOx排放量输入到LCCE计算模型中获得LCCE量,并且以目标柴消油耗量为LCCE寻优边界进行寻优,如果当前标定的变量组使得LCCE量最优,则选择为最佳变量组,否则重新选择其他变量组计算LCCE量,直到LCCE量最优为止。
优选地,所述步骤1.1中,车用尿素消耗量获得过程为通过柴油消耗量与空气流量相加获得排气量,通过排气量与NOx原机排放浓度相乘获得NOx量,通过NOx量与转化效率相乘获得氨消耗量,通过氨消耗量依次与当量比、修正系数和车用尿素密度相乘获得。
优选地,所述步骤1.1中,当量柴油通过车用尿素价格依次乘以柴油价格的倒数和柴油密度的倒数获得,当量柴油消耗量通过当量柴油与车用尿素消耗量相乘获得。
优选地,所述步骤1.2中,变量标定后通过测得油量及原机NOx 排放数据集经油量函数模型获得柴油消耗量,并且经原机NOx排放函数模型获得原机NOx排放量。
优选地,所述油量函数模型为先通过标定试验得到发动机的油耗(FB_RATE)、对应的喷油正时(Time)和对应的喷射压力(Raip)的有限个离散点,再用这些离散点进行三维数据插值、拟合,最终得到的一个拟合的函数模型FB_RATE=F(Time,Raip)。
优选地,所述原机NOx排放函数模型为先通过标定试验得到发动机的NOx排放量、对应的喷油正时(Time)和对应的喷射压力(Raip)的有限个离散点,再用这些离散点进行三维数据插值、拟合,最终得到的一个拟合的函数模型NOx=F(Time,Raip)。
优选地,所述步骤1.3中,LCCE寻优为先通过标定试验得到发动机的LCCE量、对应的喷油正时(Time)、对应的喷射压力(Raip)和对应的EGR率的有限个离散点,再用这些离散点进行三维数据插值、拟合,最终得到的一个拟合的函数模型进行寻优。
优选地,所述变量标定中包括有轨压、喷油正时和EGR率。
本发明与现有技术相比,其有益效果在于:
本发明通过建立LCCE计算模型,将车用尿素消耗量转化为当量柴油消耗量加上柴油消耗量而获得LCCE量,并且进行LCCE量最优判断,直至选出最优LCCE量的变量组,可使柴油发动机的车用尿素和柴油的总花费有效降低。本发明可减小排放超标和尿素结晶的风险。本发明方法使得原机NOx排放量的确定更有目标性,减小标定工作的重复量,节约开发成本。
附图说明
图1是本发明的原理框图;
图2是本发明中LCCE计算模型原理框图。
具体实施方式
下面结合实施例,对本发明作进一步的描述,但不构成对本发明的任何限制,任何在本发明权利要求范围所做的有限次的修改,仍在本发明的权利要求范围内。
如图1、图2所示,本发明提供了一种基于LCCE优化的柴油发动机标定方法,该方法包括如下处理步骤:
步骤1.1:建立LCCE计算模型,即通过柴油消耗量得出车用尿素消耗量,并且将车用尿素消耗量转化成当量柴油消耗量,当量柴油消耗量与柴油消耗量之和为总等价柴油消耗量,总等价柴油消耗量为LCCE量;
步骤1.2:调节并且稳定发动机的工况,校准测量装置,然后通过变量标定测得SCR极限效率、柴油消耗量和原机NOx排放量,通过原机NOx排放量与目标NOx排放量的差值除以目标NOx排放量得到目标转化效率,并且用目标转化效率与SCR极限效率进行比较,当目标转化效率大于SCR极限效率时,则删除变量组或重新进行变量标定,反之,目标转化效率输出到LCCE计算模型;
步骤1.3:将目标转化效率、柴油消耗量和原机NOx排放量输入到LCCE计算模型中获得LCCE量,并且以目标柴消油耗量为LCCE寻优边界进行寻优,如果当前标定的变量组使得LCCE量最优,则选择为最佳变量组,否则重新选择其他变量组计算LCCE量,直到LCCE量最优为止。
在本实施例中,目标NOx排放量为企业根据国家法规,必须控制 的经过SCR转化后的最高NOx排放量。目标柴油消耗量为每个柴油机公司开发过程中自定的一个目标值。SCR极限效率为SCR催化器的转化效率即转化前的NOx浓度减去转化后的NOx浓度再除以转化前的NOx浓度所得比值。
步骤1.1中,通过柴油消耗量与空气流量相加获得排气量,通过排气量与NOx原机排放浓度相乘获得NOx量,通过NOx量与转化效率相乘获得氨消耗量,通过氨消耗量依次与当量比、修正系数和车用尿素密度相乘获得车用尿素消耗量。
步骤1.1中,通过车用尿素价格依次与柴油价格的倒数和柴油密度的倒数获得当量柴油,并且通过当量柴油与车用尿素消耗量相乘获得当量柴油消耗量。
步骤1.2中,变量标定后通过测得油量及原机NOx排放数据集经油量函数模型获得柴油消耗量,并且经原机NOx排放函数模型获得原机NOx排放量。
油量函数模型为先通过标定试验得到发动机的油耗(FB_RATE)、对应的喷油正时(Time)和对应的喷射压力(Raip)的有限个离散点,再用这些离散点进行三维数据插值、拟合,最终得到的一个拟合的函数模型FB_RATE=F(Time,Raip)。
原机NOx排放函数模型为先通过标定试验得到发动机的NOx排放量、对应的喷油正时(Time)和对应的喷射压力(Raip)的有限个离散点,再用这些离散点进行三维数据插值、拟合,最终得到的一个拟合的函数模型NOx=F(Time,Raip)。
步骤1.3中,LCCE寻优为先通过标定试验得到发动机的LCCE量、对应的喷油正时(Time)、对应的喷射压力(Raip)和对应的EGR率的有限个离散点,再用这些离散点进行三维数据插值、拟合,最终得到 的一个拟合的函数模型进行寻优。通过迭代法在该函数模型中可以得出最优LCCE量。
变量标定中包括有轨压、喷油正时和EGR率。EGR率为再循环的废气量与吸入气缸的进气总量之比。
本实施例中,测量装置可为传感器,用以记录转速、扭矩等关键参数信息。
以上仅是本发明的优选实施方式,应当指出对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些都不会影响本发明实施的效果和专利的实用性。

Claims (8)

  1. 一种基于LCCE优化的柴油发动机标定方法,其特征在于,该方法包括如下处理步骤:
    步骤1.1:建立LCCE计算模型,即通过柴油消耗量得出车用尿素消耗量,并且将车用尿素消耗量转化成当量柴油消耗量,当量柴油消耗量与柴油消耗量之和为总等价柴油消耗量,总等价柴油消耗量为LCCE量;
    步骤1.2:调节并且稳定发动机的工况,校准测量装置,然后通过变量标定测得SCR极限效率、柴油消耗量和原机NOx排放量,通过原机NOx排放量与目标NOx排放量的差值除以原机NOx排放量得到目标转化效率,并且用目标转化效率与SCR极限效率进行比较,当目标转化效率大于SCR极限效率时,则删除变量组或重新进行变量标定,反之,目标转化效率输出到LCCE计算模型;
    步骤1.3:将目标转化效率、柴油消耗量和原机NOx排放量输入到LCCE计算模型中获得LCCE量,并且以目标柴消油耗量为LCCE寻优边界进行寻优,如果当前标定的变量组使得LCCE量最优,则选择为最佳变量组,否则重新选择其他变量组计算LCCE量,直到LCCE量最优为止。
  2. 根据权利要求1所述的一种基于LCCE优化的柴油发动机标定方法,其特征在于:所述步骤1.1中,车用尿素消耗量获得过程为通过柴油消耗量与空气流量相加获得排气量,通过排气量与NOx原机排放浓度相乘获得NOx量,通过NOx量与转化效率相乘获得氨消耗量,通过氨消耗量依次与当量比、修正系数和车用尿素密度相乘获得。
  3. 根据权利要求2所述的一种基于LCCE优化的柴油发动机标定方法,其特征在于:所述步骤1.1中,当量柴油通过车用尿素价格依次乘以柴油价格的倒数和柴油密度的倒数获得,当量柴油消耗量通过当量柴油与车用尿素消耗量相乘获得。
  4. 根据权利要求1所述的一种基于LCCE优化的柴油发动机标定方法,其特征在于:所述步骤1.2中,变量标定后通过测得油量及原机NOx排放数据集经油量函数模型获得柴油消耗量,并且经原机NOx排放函数模型获得原机NOx排放量。
  5. 根据权利要求4所述的一种基于LCCE优化的柴油发动机标定方法,其特征在于:所述油量函数模型为先通过标定试验得到发动机的油耗(FB_RATE)、对应的喷油正时(Time)和对应的喷射压力(Raip)的有限个离散点,再用这些离散点进行三维数据插值、拟合,最终得到的一个拟合的函数模型FB_RATE=F(Time,Raip)。
  6. 根据权利要求4所述的一种基于LCCE优化的柴油发动机标定方法,其特征在于:所述原机NOx排放函数模型为先通过标定试验得到发动机的NOx排放量、对应的喷油正时(Time)和对应的喷射压力(Raip)的有限个离散点,再用这些离散点进行三维数据插值、拟合,最终得到的一个拟合的函数模型NOx=F(Time,Raip)。
  7. 根据权利要求1所述的一种基于LCCE优化的柴油发动机标定方法,其特征在于:所述步骤1.3中,LCCE寻优为先通过标定试验得到发动机的LCCE量、对应的喷油正时(Time)、对应的喷射压力(Raip)和对应的EGR率的有限个离散点,再用这些离散点进行三维数据插值、拟合,最终得到的一个拟合的函数模型进行寻优。
  8. 根据权利要求1或4或5所述的一种基于LCCE优化的柴油发动机标定方法,其特征在于:所述变量标定中包括有轨压、喷油正时和EGR率。
PCT/CN2017/078168 2016-12-30 2017-03-24 基于lcce优化的柴油发动机标定方法 WO2018120468A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611270444.2A CN106593672B (zh) 2016-12-30 2016-12-30 基于lcce优化的柴油发动机标定方法
CN201611270444.2 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018120468A1 true WO2018120468A1 (zh) 2018-07-05

Family

ID=58582351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078168 WO2018120468A1 (zh) 2016-12-30 2017-03-24 基于lcce优化的柴油发动机标定方法

Country Status (2)

Country Link
CN (1) CN106593672B (zh)
WO (1) WO2018120468A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411027A (zh) * 2018-12-19 2019-03-01 东风商用车有限公司 一种Urea-SCR控制参数离线标定系统及标定方法
GB2578155A (en) * 2018-10-19 2020-04-22 Delphi Automotive Systems Lux Method of controlling vehicle emissions
CN113107696A (zh) * 2021-05-18 2021-07-13 一汽解放汽车有限公司 一种基于成本最优化的发动机排放控制方法
CN114151180A (zh) * 2021-12-10 2022-03-08 潍柴动力股份有限公司 柴油机的NOx排放量获取方法与装置、汽车和存储介质
CN114183263A (zh) * 2021-10-29 2022-03-15 东风商用车有限公司 一种多种控制模式的发动机控制方法
CN114233504A (zh) * 2021-12-13 2022-03-25 潍柴动力股份有限公司 一种NOx的排放控制方法及装置
CN114991915A (zh) * 2022-06-30 2022-09-02 东风商用车有限公司 基于尿素与燃油价格变化改善整车经济性的控制方法
CN115263498A (zh) * 2022-07-22 2022-11-01 东风汽车股份有限公司 一种柴油车添加尿素去除氮氧化物过程中控制尿素结晶的方法、记录媒体及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617130A (zh) * 2019-09-24 2019-12-27 江苏大学 一种柴油机scr氨比值因子的快速标定方法
CN111006867B (zh) * 2019-11-26 2021-08-20 广西玉柴机器股份有限公司 一种发动机进气修正map表的标定方法及进气修正方法
CN114412617A (zh) * 2022-01-17 2022-04-29 潍柴动力股份有限公司 一种柴油机控制方法和相关装置
CN114320627B (zh) * 2022-01-17 2023-03-21 潍柴动力股份有限公司 一种车辆柴油发动机控制方法及装置
CN115506904A (zh) * 2022-10-18 2022-12-23 广西玉柴机器股份有限公司 一种基于多条件触发的发动机热管理标定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2071149A2 (en) * 2007-12-14 2009-06-17 Hyundai Motor Company System for controlling urea injection of selective catalyst reduction apparatus and method thereof
CN102331350A (zh) * 2011-08-19 2012-01-25 东风康明斯发动机有限公司 电控柴油发动机的标定方法
CN102619601A (zh) * 2012-04-18 2012-08-01 潍柴动力扬州柴油机有限责任公司 一种电控柴油机scr系统及其控制方法
CN103114895A (zh) * 2013-01-24 2013-05-22 东风康明斯发动机有限公司 优化scr路线国四及以上车用柴油发动机综合经济性的方法
US20130152549A1 (en) * 2006-01-19 2013-06-20 Cummins Inc. Method and system for optimizing fuel and reductant consumption

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008439A1 (ja) * 2007-07-11 2009-01-15 Mitsui Mining & Smelting Co., Ltd. 液体識別装置および液体識別センサならびにこれらを用いた液体識別方法
CN102400747B (zh) * 2010-09-11 2013-08-14 中国第一汽车集团公司 用于尿素还原剂剂量的标定方法
CN104405481B (zh) * 2014-09-29 2017-02-22 同济大学 一种尿素喷射剂量标定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130152549A1 (en) * 2006-01-19 2013-06-20 Cummins Inc. Method and system for optimizing fuel and reductant consumption
EP2071149A2 (en) * 2007-12-14 2009-06-17 Hyundai Motor Company System for controlling urea injection of selective catalyst reduction apparatus and method thereof
CN102331350A (zh) * 2011-08-19 2012-01-25 东风康明斯发动机有限公司 电控柴油发动机的标定方法
CN102619601A (zh) * 2012-04-18 2012-08-01 潍柴动力扬州柴油机有限责任公司 一种电控柴油机scr系统及其控制方法
CN103114895A (zh) * 2013-01-24 2013-05-22 东风康明斯发动机有限公司 优化scr路线国四及以上车用柴油发动机综合经济性的方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578155A (en) * 2018-10-19 2020-04-22 Delphi Automotive Systems Lux Method of controlling vehicle emissions
GB2578155B (en) * 2018-10-19 2021-01-13 Delphi Automotive Systems Lux Method of controlling vehicle emissions
CN109411027A (zh) * 2018-12-19 2019-03-01 东风商用车有限公司 一种Urea-SCR控制参数离线标定系统及标定方法
CN109411027B (zh) * 2018-12-19 2024-03-22 东风商用车有限公司 一种Urea-SCR控制参数离线标定系统及标定方法
CN113107696A (zh) * 2021-05-18 2021-07-13 一汽解放汽车有限公司 一种基于成本最优化的发动机排放控制方法
CN114183263B (zh) * 2021-10-29 2024-03-05 东风商用车有限公司 一种多种控制模式的发动机控制方法
CN114183263A (zh) * 2021-10-29 2022-03-15 东风商用车有限公司 一种多种控制模式的发动机控制方法
CN114151180A (zh) * 2021-12-10 2022-03-08 潍柴动力股份有限公司 柴油机的NOx排放量获取方法与装置、汽车和存储介质
CN114233504A (zh) * 2021-12-13 2022-03-25 潍柴动力股份有限公司 一种NOx的排放控制方法及装置
CN114233504B (zh) * 2021-12-13 2023-11-17 潍柴动力股份有限公司 一种NOx的排放控制方法及装置
CN114991915B (zh) * 2022-06-30 2023-04-21 东风商用车有限公司 基于尿素与燃油价格变化改善整车经济性的控制方法
CN114991915A (zh) * 2022-06-30 2022-09-02 东风商用车有限公司 基于尿素与燃油价格变化改善整车经济性的控制方法
CN115263498B (zh) * 2022-07-22 2023-04-25 东风汽车股份有限公司 一种柴油车添加尿素去除氮氧化物过程中控制尿素结晶的方法、记录媒体及系统
CN115263498A (zh) * 2022-07-22 2022-11-01 东风汽车股份有限公司 一种柴油车添加尿素去除氮氧化物过程中控制尿素结晶的方法、记录媒体及系统

Also Published As

Publication number Publication date
CN106593672B (zh) 2019-08-16
CN106593672A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018120468A1 (zh) 基于lcce优化的柴油发动机标定方法
CN108647430B (zh) 一种dpf碳加载计算方法
CN102102566B (zh) 汽车发动机氮氧物排放的瞬态补偿方法和系统
CN108150300B (zh) 一种柴油机NOx原排模型值的修正方法及装置
CN103696862B (zh) 一种实现egr阀开度控制的方法、装置及系统
KR101707759B1 (ko) 배기 가스 촉매 변환기의 진단 방법, 진단 장치 및 상기 장치를 구비한 자동차
US10309287B2 (en) Inferential sensor
US10371071B2 (en) Systems and methods for non-intrusive closed-loop combustion control of internal combustion engines
WO2021057444A1 (zh) 一种柴油机scr氨比值因子的快速标定方法
CN110582628A (zh) 对来自探测器的丰度信号的振荡进行过滤和校正的方法
CN112832891B (zh) 氮氧化物传感器的浓度检测值的修正方法及装置
CN106837496A (zh) 发动机微粒净化再生控制系统
CN112814793B (zh) 一种发动机进气信号修正方法、装置和系统
CN206593868U (zh) 尾气后处理装置减排效果的测试设备
CN111177864B (zh) 基于粒子群算法的内燃机燃烧模型参数优化方法及装置
Zhao et al. An ammonia coverage ratio observing and tracking controller: stability analysis and simulation evaluation
CN112945567A (zh) 一种低温柴油机车载法排放的预测方法及系统
CN116448436A (zh) 高原whtc测试工况生成方法、系统、服务端及介质
CN110309534A (zh) 一种柴油机排气后处理系统结构设计方法
Kadijk et al. Emissions of nitrogen oxides and particulates of diesel vehicles
JP2006274845A (ja) 内燃機関のNOx排出量算出装置
CN115405404A (zh) Soot原排模型的构建方法、装置及发动机后处理系统
CN114810305A (zh) 颗粒捕集器中颗粒物载量确定方法、装置及设备
JP2015218688A (ja) ターボ過給機付エンジンの制御装置
Hausberger et al. Emission behaviour of modern heavy duty vehicles in real world driving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888347

Country of ref document: EP

Kind code of ref document: A1