WO2018120344A1 - 一种制备显示面板的方法及制得的显示面板 - Google Patents

一种制备显示面板的方法及制得的显示面板 Download PDF

Info

Publication number
WO2018120344A1
WO2018120344A1 PCT/CN2017/071809 CN2017071809W WO2018120344A1 WO 2018120344 A1 WO2018120344 A1 WO 2018120344A1 CN 2017071809 W CN2017071809 W CN 2017071809W WO 2018120344 A1 WO2018120344 A1 WO 2018120344A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
alignment film
display panel
irradiation
area
Prior art date
Application number
PCT/CN2017/071809
Other languages
English (en)
French (fr)
Inventor
于晓平
李吉
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/500,297 priority Critical patent/US20180356690A1/en
Publication of WO2018120344A1 publication Critical patent/WO2018120344A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles

Definitions

  • the present invention relates to the field of liquid crystal display, and in particular to a method for preparing a display panel, and a display panel produced.
  • VA vertical alignment
  • IPS in-plane switching
  • VA display has the advantages of high contrast and no need for friction alignment, making it a common display mode for TFT-LCDs for large-size TVs.
  • color shift refers to the difference in brightness and color seen at different viewing angles when the same display panel exhibits the same color.
  • MVA multi-domain vertical alignment
  • the direction of rotation of liquid crystal molecules in different domains is different. Observing from different angles can obtain corresponding compensation, thus improving the viewing angle.
  • the MVA technology has a reduced aperture ratio due to the introduction of bumps, thereby reducing the transmittance of the display device.
  • Subsequent improvements in MVA have led to the formation of an indium tin oxide (ITO) pattern instead of a bump by an etching process, and a pattern vertical alignment (PVA) technique has been developed.
  • ITO indium tin oxide
  • PVA pattern vertical alignment
  • the PVA structure has no protrusions, and the liquid crystal molecules have no pretilt angle, and the response speed is relatively slow.
  • the present application provides a method of preparing a display panel and a display panel thereof.
  • multi-domain display can be realized, multi-domains are not required to be obtained by a plurality of TFTs, a higher aperture ratio can be obtained, and a pattern in which protrusions are additionally formed on the upper and lower substrates is not required. ), simpler and more economical in process and process.
  • a method of preparing a display panel comprising the steps of:
  • the first substrate and the second substrate respectively coated with the alignment film include an irradiation area and a shielding area; and the first substrate and the second substrate coated with the alignment film are irradiated with ultraviolet light to make the Degradation of the polymer in the alignment film in the irradiation zone of the first substrate and the second substrate;
  • the first substrate and the second substrate pair after the orientation rubbing treatment are injected into the liquid crystal molecules to form a liquid crystal cell, and finally a display panel is prepared.
  • a plurality of alignment layer (alignment film) regions having different anchoring energies are formed by UV illumination from the anchoring ability of the alignment layer (alignment film). If the anchoring energy of the alignment film is different, the threshold voltage of the corresponding VT curve is different, and the degree of tilting of the liquid crystal is different under the same applied voltage, so that the light transmittance of different regions is different, and the crack direction of the ITO electrode is different.
  • the effect of multi-domain display is realized, thereby solving the color shift problem of the VA display technology and improving the viewing angle of the display panel.
  • the opposite sides of the first substrate and the second substrate from the alignment film are transparent conductive films (such as indium tin oxide transparent conductive film ITO).
  • the first substrate is an array substrate
  • the second substrate is a color film substrate.
  • the preheat treatment (such as prebaking) has a temperature of 70-100 ° C and a time of 3-5 min.
  • the alignment film coated on the substrate functions to control the alignment direction of the liquid crystal molecules, and the liquid crystal molecules are formed due to the strong anchoring force at the interface between the liquid crystal and the alignment film.
  • a certain pretilt angle stands vertically, and the liquid crystal molecules can be quickly rotated to the corresponding orientation after the external electric field is applied.
  • the most commonly used alignment film is a polyimide film (PI film).
  • a patterned photomask is placed on the first substrate and the second substrate coated with the alignment film, thereby on the first substrate and An irradiation area and a shielding area are respectively formed on the second substrate, wherein the area covered by the mask is a shielding area, and the unobstructed part is an irradiation area. It is then irradiated with ultraviolet light. That is, the substrate coated with the alignment film (such as the PI film) is divided into different regions by using the patterned mask, and the exposure is selectively performed, so that the anchoring of the substrate surface can be regionalized differently.
  • the ultraviolet light uses low-intensity ultraviolet light.
  • the polymer in the alignment film in the irradiation zone is degraded to some extent under UV light, thereby reducing the anchoring energy of the alignment film in the irradiation zone.
  • the ultraviolet illuminance is 4-10 mw/cm 2 and the illumination time is 5-10 min.
  • the alignment film in step S3, is completely cured by heating at a higher temperature.
  • the heat treatment (such as baking) has a treatment temperature of 220-240 ° C and a treatment time of 40-60 min.
  • a groove is formed in the irradiation regions of the first substrate and the second substrate by the rubbing (step rubbing) process in step S4; thereby facilitating the alignment of the subsequently injected liquid crystal molecules.
  • Pretilt angle which in turn reduces response time.
  • the irradiation area and the shielding area of the first substrate respectively correspond to the irradiation area and the shielding area of the second substrate.
  • the first substrate and the second substrate after the directional rubbing treatment are coated with one side of the alignment film, and then bonded together to inject liquid crystal molecules to form a liquid crystal cell. Finally, the display panel is made.
  • a display panel prepared according to the above method which has multi-domain display, small color shift, strong transmittance of a display device, no need to form additional protrusions, and is widely used for a liquid crystal display device. Application prospects.
  • the display panel is multi-domain display, and the liquid crystal molecules in the irradiation region and the liquid crystal molecules in the shielding region have different tilting angles.
  • the surface of the alignment film (not irradiated with UV light) has a larger anchoring energy, and the threshold voltage of the corresponding display pixel electrode is higher; and the alignment film of the irradiation area (UV light irradiation) has a lower surface anchoring energy. Then, the threshold voltage of the pixel electrode is lowered.
  • the liquid crystal tilting angle (penetration ratio) of the two regions irradiated with UV light is different, and the multi-domain display panel technology is realized in combination with the crack direction of the ITO electrode, thereby solving the problem.
  • the color shift problem of the VA display technology improves the viewing angle of the display panel.
  • the substrate coated with the PI film is divided into different regions by using a photomask, and the exposure is selectively performed, so that the anchoring energy of the substrate surface can be regionalized differently, and the surface of the ITO electrode is combined to form different crack directions.
  • the liquid crystal molecules are presented in different reverse directions to form a multi-domain liquid crystal display panel, and the color difference seen in each viewing angle is reduced, and the color shift problem of the VA display mode is skillfully solved.
  • the technology does not need to introduce protrusions, saves cost, and operates orders, which has broad application prospects.
  • the liquid crystal molecules also have a certain pretilt angle, and the response speed is also relatively fast.
  • Figure 1 shows a process schematic diagram in accordance with one embodiment of the present invention
  • FIG. 2 is a schematic view showing a rotation angle of a liquid crystal in different regions of a display panel according to the present invention
  • FIG. 3 shows a schematic diagram of a display panel corresponding to ultraviolet light according to an embodiment of the present invention.
  • Example 1 The invention is further illustrated by the following figures and examples, but does not constitute any limitation of the invention.
  • Example 1 The invention is further illustrated by the following figures and examples, but does not constitute any limitation of the invention.
  • the method of preparing a multi-domain display panel includes the following steps:
  • the PI film 1 is irradiated with low-illuminance UV light (4-10 mw/cm 2 ), and the ultraviolet illuminance is about 5 min;
  • the irradiation area 4 (the portion not covered by the mask 2), the polyimide is decomposed under the irradiation of ultraviolet light, thereby reducing the surface anchoring energy of the alignment film of the irradiation area 4;
  • the array substrate and the color filter substrate are paired, and the liquid crystal molecules 5 are injected to form a liquid crystal cell (cell substrate); and the display panel is formed by a bonding operation or the like.
  • the surface of the alignment film 3 (not irradiated with UV light) has a larger anchoring energy, and the threshold voltage of the pixel electrode is higher; and the alignment film of the irradiation region 4 (which is irradiated with UV light) is surface-anchored.
  • the threshold voltage of the pixel electrode is lowered.
  • the liquid crystal tilting angle (penetration ratio) of the two regions irradiated with UV light is different, and the multi-domain display panel technology is realized in combination with the crack direction of the ITO electrode, thereby solving the problem.
  • the color shift problem of the VA display technology improves the viewing angle of the display panel.
  • the liquid crystal molecules corresponding to the irradiation zone 4 and the masking zone 3 exhibit different tilting angles.
  • 2a shows the tilting of the liquid crystal corresponding to the masking area 3
  • FIG. 2b shows the liquid crystal tilting corresponding to the irradiation area 4. Therefore, the liquid crystal tilting angles of the irradiation area and the shielding area are different, the transmittance is different, and the crack direction of the ITO electrode is different, thereby realizing the multi-domain display panel technology, thereby solving the color shift problem of the VA display technology, and improving the display panel.
  • the angle of view is the angle of view.
  • the prebaking (preheating) temperature of 80 ° C in step S1 of any embodiment of the present invention may be replaced by At other temperatures at 70-100 ° C, the time 3 min can be replaced with other times within 3-5 min;
  • the ultraviolet illuminance in step S2 of any embodiment of the present invention may be illuminance within 4-10 mw/cm 2 , and the irradiation time may be replaced with other time within 5-10 min;
  • the baking temperature (i.e., heat treatment temperature) 230 ° C in step S3 of any embodiment of the present invention may be replaced with other temperatures within 220-240 ° C, and the processing time 1 h may be replaced with other time within 40-60 minutes.
  • Any numerical value mentioned in the present invention includes all values of one unit at a time from the lowest value to the highest value if there is only two unit intervals between any lowest value and any highest value. For example, if the amount of a component is declared, or the value of a process variable such as temperature, pressure, time, etc. is 50-90, it means in this specification that 51-89, 52-88, ..., and 69 are specifically listed. -71 and 70-71 values. For values other than integers, it is appropriate to consider 0.1, 0.01, 0.001 or 0.0001 as a unit. This is just a few specific examples. In the present application, all possible combinations of numerical values between the lowest and highest values recited are considered to have been disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种制备显示面板的方法,包括将涂布了配向膜(1)的第一基板和第二基板上分别分成照射区(4)和遮蔽区(3),然后利用紫外光进行照射,使照射区(4)内的配向膜(1)中的聚合物降解;加热使配向膜(1)固化,然后进行定向摩擦处理形成凹槽,再经过加工制得显示面板。显示面板能够实现多畴显示。

Description

一种制备显示面板的方法及制得的显示面板
本申请要求享有2016年12月28日提交的名称为“一种制备显示面板的方法及制得的显示面板”的中国专利申请CN201611234050.1的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及液晶显示领域,具体涉及一种制备显示面板的方法,以及制得的显示面板。
背景技术
目前,液晶显示器件最常用的两种显示模式有垂直配向(VA)模式和面内开关(IPS)模式。VA显示以其高对比度和无须摩擦配向等优势,成为大尺寸TV用TFT-LCD的常见显示模式。作为VA显示的共性,不同视野角下的色偏(color shift)现象是VA产品设计必须面对的重大课题。所谓色偏,是指同一个显示面板表现同一色彩时,在不同的视野角上看到的亮度、色彩也会有差异。为解决不同视野角下的色偏问题,人们发展了在电极表面配向膜植入凸起物以实现多畴排列的多畴垂直配向(MVA)技术,不同畴内的液晶分子转动方向不同,保证从不同角度观察都可以获得相应的补偿,从而改善视野角。然而,MVA技术由于引入了凸起物,导致其开口率下降,从而降低了显示器件的穿透率。后续人们在MVA的基础上改进,用蚀刻工艺形成氧化铟锡(ITO)图案代替凸起物,发展了图案垂直配向(PVA)技术。但PVA结构没有凸起物,液晶分子没有预倾角,响应速度比较慢。
发明内容
针对现有技术中的不足,本申请提供了一种制备显示面板的方法及其制得的显示面板。根据本发明的显示面板,能够实现多畴(multi-domain)显示,不需要通过多个TFT来得到多畴,可以得到更高的开口率,也不需要在上下基板额外形成突起的图案(pattern),在制程和工艺上更简单和节约。
根据本发明的一个方面,提供了一种制备显示面板的方法,包括以下步骤:
S1.在第一基板和第二基板上分别涂布配向膜,并对所述配向膜进行预热处理;
S2.所述分别涂布了配向膜的第一基板和第二基板上包括照射区和遮蔽区;利用紫外光对所述涂布了配向膜的第一基板和第二基板进行照射,使所述第一基板和第二基板的照射区内的配向膜中的聚合物降解;
S3.将照射后的第一基板和第二基板上的配向膜进行加热处理,使配向膜固化;
S4.对固化后的所述第一基板和第二基板上的配向膜进行定向摩擦处理,在所述第一基板和第二基板的照射区形成凹槽;
S5.将定向摩擦处理后的第一基板和第二基板对组,注入液晶分子,形成液晶盒(cell),最后制得显示面板。
根据本发明提供的显示面板,从改变配向层(配向膜)的锚定能出发,通过UV光照形成多个具有不同锚定能的配向层(配向膜)区域。配向膜的锚定能不同,则对应的V-T曲线的阀值电压不同,在相同的外加电压下液晶的倾倒程度不同,从而使得不同区域的光透过率不同,结合ITO电极的裂缝方向的不同,实现多畴显示的效果,进而解决了VA显示技术的色偏问题,改善显示面板的视野角。
根据本发明的一个优选实施方式,第一基板和第二基板的与所述配向膜相对侧均为透明导电膜(如铟锡氧化物透明导电膜ITO)。其中,在一个具体的实施例中,所述第一基板为阵列基板,所述第二基板为彩膜基板。在一些具体的实施例中,在所述步骤S1中,所述预热处理(如预烘烤)的温度为70-100℃,时间为3-5min。
根据本发明,VA显示模式中,涂布在基板上的配向膜,起到控制液晶分子排列方向的作用,由于液晶与配向膜之间的界面有着很强的锚定作用力,使液晶分子形成一定的预倾角垂直站立,施加外电场后液晶分子可以快速旋转到对应的方位。最常用的配向膜是聚酰亚胺薄膜(PI膜)。
根据本发明的一个优选实施方式,在所述步骤S2中,利用图案化的光罩放置于所述涂布了配向膜的第一基板和第二基板上,由此在所述第一基板和第二基板上分别形成照射区和遮蔽区,其中,有光罩遮挡的区域为遮蔽区,未被遮挡的部分为照射区。然后采用紫外光进行照射。也即利用图案化的光罩将涂有配向膜(如PI膜)的基板划分为不同的区域,选择性的进行曝光,使得基板表面的锚定能呈现区域化的不同。所述紫外光(UV光)采用低照度的紫外光。照射区内的配向膜中的聚合物在UV光下会发生一定程度地降解,从而降低了照射区内的配向膜的锚定能。在一些具体的实施例中,紫外光照度为4-10mw/cm2,照射时间为5-10min。
根据本发明的一个优选实施方式,在步骤S3中,通过较高温度下的加热,使得配向膜完全固化。为了更好地改变薄膜的表面锚定能,必须在配向膜(如PI膜)完全固化或 称硬化前,进行UV光照射,否则很难改变配向膜的表面能。在一些具体的实施例中,在所述步骤S3中,所述加热处理(如烘烤)的处理温度为220-240℃,处理时间为40-60min。
根据本发明的一个优选实施方式,通过步骤S4中的rubbing(定向摩擦)处理,在所述第一基板和第二基板的照射区形成凹槽;从而有利于后续的注入的液晶分子定向排列形成预倾角,进而减小响应时间。
根据本发明的一些实施例,所述第一基板的照射区和遮蔽区与所述第二基板的照射区和遮蔽区分别对应。
根据本发明的一个优选实施方式,将所述定向摩擦处理后的第一基板和第二基板涂布了配向膜的一侧相对,然后贴合在一起,注入液晶分子,形成液晶盒(cell),最后制得显示面板。
根据本发明的另外一个方面,还提供了根据上述方法制备的显示面板,多畴显示,色偏小,显示器件的穿透率强,无须形成额外的突起,用于液晶显示器件,具有广阔的应用前景。
根据本发明,所述显示面板为多畴显示,照射区内的液晶分子和遮蔽区内的液晶分子具有不同的倾倒角度。遮蔽区(未经UV光照射)的配向膜的表面锚定能较大,相应的显示像素电极的阈值电压较高;而照射区(经UV光照射)的配向膜,其表面锚定能降低,则像素电极的阈值电压降低。给像素电极输入相同的电压时,UV光照射与否的两个区域的液晶倾倒角度(穿透率)就会不同,再结合ITO电极的裂缝方向的不同,实现多畴显示面板技术,进而解决VA显示技术的色偏问题,改善显示面板的视野角。
根据本发明,利用光罩将涂有PI膜的基板划分为不同的区域,选择性的进行曝光,使得基板表面的锚定能呈现区域化的不同,再结合ITO电极表面形成不同的裂纹方向,使得液晶分子呈现不同的倒向,形成多畴的液晶显示面板,缩小各个视野角看到的色彩差异,巧妙地解决了VA显示模式的色偏问题。该技术无须引入凸起物,节约成本,操作接单,具有广阔的应用前景。同时,液晶分子也具有一定的预倾角,响应速度也比较快。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1显示了根据本发明的一个实施例的工艺示意图;
图2显示了根据本发明的显示面板不同区域内的液晶转动角度的示意图;
图3显示了根据本发明的一个实施例的显示面板与紫外光照对应示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明,但并不构成对本发明的任何限制。实施例1:
制备多畴显示面板的方法包括如下步骤:
S1.在顶层为ITO覆盖的第一基板(阵列基板)上涂布一层聚酰亚胺(PI)膜1,同时,顶层为ITO覆盖的第二基板(彩膜基板)上涂布一层聚酰亚胺(PI)膜1;然后在80℃下预烘烤3min;
S2.利用印有图案的光罩2遮挡,分成照射区4和遮蔽区3;使用低照度的UV光(4-10mw/cm2)照射PI薄膜1,紫外光照度为,照射时间为5min左右;照射区4(未经过光罩2遮挡的部分),聚酰亚胺会在紫外光的照射下分解,从而降低照射区4的配向膜的表面锚定能;
S3.将照射后的第一基板和第二基板上的配向膜进行加热处理,使配向膜固化;将PI膜在230℃下烘烤1h,是PI膜完全固化;S3必须在S2后进行,否则难以通过UV光改变配向膜的锚定能;
S4.将PI膜rubbing,形成凹槽;从而方便后续步骤S5中的注入的液晶分子定向排列形成预倾角,减小响应时间;
S5.将阵列基板和彩膜基板对组,注入液晶分子5,形成液晶盒(cell基板);经bonding等动作,形成显示面板。
此时,遮蔽区3(未经UV光照射)的配向膜的表面锚定能较大,像素电极的阈值电压较高;而照射区4(经UV光照射)的配向膜,其表面锚定能降低,则像素电极的阈值电压降低。给像素电极输入相同的电压时,UV光照射与否的两个区域的液晶倾倒角度(穿透率)就会不同,再结合ITO电极的裂缝方向的不同,实现多畴显示面板技术,进而解决VA显示技术的色偏问题,改善显示面板的视野角。
如图2所示,在照射区4和遮蔽区3(图2c)对应的液晶分子呈现不同的倾倒角度。图2a为遮蔽区3对应的液晶的倾倒情况,而图2b为照射区4对应的液晶倾倒情况。因此,照射区和遮蔽区对应的液晶倾倒角度不同,穿透率不同,再加上ITO电极的裂缝方向的不同,实现多畴显示面板技术,进而解决VA显示技术的色偏问题,改善显示面板的视野角。
作为选择,本发明任一实施例步骤S1中的预烘烤(预热处理)温度80℃可以替换为 在70-100℃下的其他温度,时间3min可以替换为3-5min内的其他时间;
作为选择,本发明任一实施例步骤S2中的紫外光照度可以为4-10mw/cm2内的光照度,照射时间可以替换为5-10min内的其他时间;
作为选择,本发明任一实施例步骤S3中的烘烤温度(即加热处理温度)230℃可以替换为220-240℃内的其他温度,处理时间1h可以替换为40-60min内的其他时间。
在本发明中的提到的任何数值,如果在任何最低值和任何最高值之间只是有两个单位的间隔,则包括从最低值到最高值的每次增加一个单位的所有值。例如,如果声明一种组分的量,或诸如温度、压力、时间等工艺变量的值为50-90,在本说明书中它的意思是具体列举了51-89、52-88……以及69-71以及70-71等数值。对于非整数的值,可以适当考虑以0.1、0.01、0.001或0.0001为一单位。这仅是一些特殊指明的例子。在本申请中,以相似方式,所列举的最低值和最高值之间的数值的所有可能组合都被认为已经公开。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。
附图标记说明
1  聚酰亚胺(PI)膜
2  印有图案的光罩
3  遮蔽区
4  照射区
5  液晶分子

Claims (20)

  1. 一种制备显示面板的方法,包括以下步骤:
    S1.在第一基板和第二基板上分别涂布配向膜,并对所述配向膜进行预热处理;
    S2.所述分别涂布了配向膜的第一基板和第二基板上包括照射区和遮蔽区;利用紫外光对所述涂布了配向膜的第一基板和第二基板进行照射,使所述第一基板和第二基板的照射区内的配向膜中的聚合物降解;
    S3.将照射后的第一基板和第二基板上的配向膜进行加热处理,使配向膜固化;
    S4.对固化后的所述第一基板和第二基板上的配向膜进行定向摩擦处理,在所述第一基板和第二基板的照射区形成凹槽;
    S5.将定向摩擦处理后的第一基板和第二基板对组,注入液晶分子,形成液晶盒,最后制得显示面板。
  2. 根据权利要求1所述的方法,其中,在所述步骤S2中,紫外光照度为4-10mw/cm2,照射时间为5-10min。
  3. 根据权利要求1所述的方法,其中,所述配向膜包括聚酰亚胺膜。
  4. 根据权利要求1所述的方法,其中,在所述步骤S1中,所述预热处理的温度为70-100℃,时间为3-5min。
  5. 根据权利要求1所述的方法,其中,在所述步骤S3中,所述加热处理的处理温度为220-240℃,处理时间为40-60min。
  6. 根据权利要求1所述的方法,其中,在所述步骤S2中,将图案化的光罩放置于所述涂布了配向膜的第一基板和第二基板上,由此在所述第一基板和第二基板上分别形成照射区和遮蔽区,其中,有光罩遮挡的区域为遮蔽区,未被遮挡的部分为照射区。
  7. 根据权利要求1所述的方法,其中,在所述步骤S2中,通过所述照射区内的配向膜中的聚合物降解,从而降低了所述第一基板和第二基板照射区内的配向膜的锚定能。
  8. 根据权利要求1所述的方法,其中,所述第一基板的照射区和遮蔽区与所述第二基板的照射区和遮蔽区分别对应。
  9. 根据权利要求1所述的方法,其中,所述第一基板为阵列基板,第二基板为彩膜基板;同时,第一基板和第二基板上与所述配向膜相对侧均为透明导电膜。
  10. 根据权利要求1所述的方法,其中,所述显示面板为多畴显示,其中照射区内的液晶分子和遮蔽区内的液晶分子具有不同的倾倒角度。
  11. 一种显示面板,其通过包括以下步骤的方法制备而成:
    S1.在第一基板和第二基板上分别涂布配向膜,并对所述配向膜进行预热处理;
    S2.所述分别涂布了配向膜的第一基板和第二基板上包括照射区和遮蔽区;利用紫外光对所述涂布了配向膜的第一基板和第二基板进行照射,使所述第一基板和第二基板的照射区内的配向膜中的聚合物降解;
    S3.将照射后的第一基板和第二基板上的配向膜进行加热处理,使配向膜固化;
    S4.对固化后的所述第一基板和第二基板上的配向膜进行定向摩擦处理,在所述第一基板和第二基板的照射区形成凹槽;
    S5.将定向摩擦处理后的第一基板和第二基板对组,注入液晶分子,形成液晶盒,最后制得显示面板。
  12. 根据权利要求11所述的显示面板,其中,在所述步骤S2中,紫外光照度为4-10mw/cm2,照射时间为5-10min。
  13. 根据权利要求11所述的显示面板,其中,所述配向膜包括聚酰亚胺膜。
  14. 根据权利要求11所述的显示面板,其中,在所述步骤S1中,所述预热处理的温度为70-100℃,时间为3-5min。
  15. 根据权利要求11所述的显示面板,其中,在所述步骤S3中,所述加热处理的处理温度为220-240℃,处理时间为40-60min。
  16. 根据权利要求11所述的显示面板,其中,在所述步骤S2中,将图案化的光罩放置于所述涂布了配向膜的第一基板和第二基板上,由此在所述第一基板和第二基板上分别形成照射区和遮蔽区,其中,有光罩遮挡的区域为遮蔽区,未被遮挡的部分为照射区。
  17. 根据权利要求11所述的显示面板,其中,在所述步骤S2中,通过所述照射区内的配向膜中的聚合物降解,从而降低了所述第一基板和第二基板的照射区内的配向膜的锚定能。
  18. 根据权利要求11所述的显示面板,其中,所述第一基板的照射区和遮蔽区与所述第二基板的照射区和遮蔽区分别对应。
  19. 根据权利要求11所述的显示面板,其中,所述第一基板为阵列基板,第二基板为彩膜基板;同时,第一基板和第二基板上的顶层均为透明导电膜覆盖。
  20. 根据权利要求11所述的显示面板,其中,所述显示面板为多畴显示,其中照射区内的液晶分子和遮蔽区内的液晶分子具有不同的倾倒角度。
PCT/CN2017/071809 2016-12-28 2017-01-20 一种制备显示面板的方法及制得的显示面板 WO2018120344A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/500,297 US20180356690A1 (en) 2016-12-28 2017-01-20 Method for manufacturing display panel and display panel obtained thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611234050.1A CN106773334B (zh) 2016-12-28 2016-12-28 一种制备显示面板的方法及制得的显示面板
CN201611234050.1 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018120344A1 true WO2018120344A1 (zh) 2018-07-05

Family

ID=58924528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071809 WO2018120344A1 (zh) 2016-12-28 2017-01-20 一种制备显示面板的方法及制得的显示面板

Country Status (3)

Country Link
US (1) US20180356690A1 (zh)
CN (1) CN106773334B (zh)
WO (1) WO2018120344A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315284A (zh) * 2017-07-19 2017-11-03 武汉华星光电技术有限公司 液晶显示面板及其制作方法
CN108415614B (zh) 2018-04-26 2020-03-13 京东方科技集团股份有限公司 触控显示基板及其制备方法
CN110187564A (zh) * 2019-05-21 2019-08-30 深圳市华星光电技术有限公司 一种显示面板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030033833A (ko) * 2001-10-25 2003-05-01 엘지.필립스 엘시디 주식회사 멀티도메인 액정표시소자 및 그 제조방법
CN101387792A (zh) * 2007-09-12 2009-03-18 奇美电子股份有限公司 光配向膜的制造方法以及配向液
CN101498858A (zh) * 2009-03-05 2009-08-05 福建华映显示科技有限公司 彩色滤光基板与液晶显示面板的制作方法
CN102981300A (zh) * 2012-11-21 2013-03-20 京东方科技集团股份有限公司 液晶显示面板及其制作方法、显示装置
CN104166274A (zh) * 2014-07-22 2014-11-26 京东方科技集团股份有限公司 光配向膜及其制备方法、液晶显示基板和装置
CN104777671A (zh) * 2015-03-31 2015-07-15 深超光电(深圳)有限公司 液晶显示面板及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594291B (en) * 2003-10-09 2004-06-21 Ind Tech Res Inst Fabrication method of liquid crystal display
US8482708B2 (en) * 2009-11-30 2013-07-09 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Multi-domain liquid crystal display and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030033833A (ko) * 2001-10-25 2003-05-01 엘지.필립스 엘시디 주식회사 멀티도메인 액정표시소자 및 그 제조방법
CN101387792A (zh) * 2007-09-12 2009-03-18 奇美电子股份有限公司 光配向膜的制造方法以及配向液
CN101498858A (zh) * 2009-03-05 2009-08-05 福建华映显示科技有限公司 彩色滤光基板与液晶显示面板的制作方法
CN102981300A (zh) * 2012-11-21 2013-03-20 京东方科技集团股份有限公司 液晶显示面板及其制作方法、显示装置
CN104166274A (zh) * 2014-07-22 2014-11-26 京东方科技集团股份有限公司 光配向膜及其制备方法、液晶显示基板和装置
CN104777671A (zh) * 2015-03-31 2015-07-15 深超光电(深圳)有限公司 液晶显示面板及其制造方法

Also Published As

Publication number Publication date
US20180356690A1 (en) 2018-12-13
CN106773334B (zh) 2020-02-07
CN106773334A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
US20200249533A1 (en) Liquid crystal display device and method of manufacturing that
JP6347937B2 (ja) 液晶表示装置
US8760607B2 (en) Liquid crystal display panel and method of manufacturing the same
CN109073923A (zh) 调光膜、夹层玻璃及调光膜的制造方法
US9488878B2 (en) Liquid crystal display device
JP2008076950A (ja) 液晶表示パネル及びその製造方法
WO2017063231A1 (zh) 液晶显示面板
TWI660223B (zh) 液晶顯示裝置
WO2018120344A1 (zh) 一种制备显示面板的方法及制得的显示面板
US20180157126A1 (en) Alignment method suitable for psva liquid crystal display panel
US20160041441A1 (en) Display panel and method for manufacturing the same
WO2016176949A1 (zh) 薄膜晶体管及制备方法、阵列基板及制备方法、显示装置
JP2016173572A (ja) 液晶表示装置及びその製造方法
JP2012113215A (ja) 液晶素子
US20130340934A1 (en) LCD device, manufacturing method and equipment for LCD panel
US20190265525A1 (en) Liquid crystal panel and fabricating method thereof
JP6412695B2 (ja) 液晶表示装置の製造方法および製造装置
JP6156540B1 (ja) 調光フィルム及び調光フィルムの製造方法
US20070019149A1 (en) Liquid-crystal display panel
JP4234478B2 (ja) 液晶表示パネルの製造方法
JP6048606B1 (ja) 調光フィルム及び調光フィルムの製造方法
JP4669887B2 (ja) 液晶表示装置の製造方法
WO2017177584A1 (zh) 一种用于制造显示面板的方法、显示面板以及显示装置
JP6103108B1 (ja) 調光フィルム及び調光フィルムの製造方法
TWI432798B (zh) 彩色濾光片及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888095

Country of ref document: EP

Kind code of ref document: A1