WO2018120313A1 - 柔性面板及其制作方法 - Google Patents

柔性面板及其制作方法 Download PDF

Info

Publication number
WO2018120313A1
WO2018120313A1 PCT/CN2017/071228 CN2017071228W WO2018120313A1 WO 2018120313 A1 WO2018120313 A1 WO 2018120313A1 CN 2017071228 W CN2017071228 W CN 2017071228W WO 2018120313 A1 WO2018120313 A1 WO 2018120313A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flexible panel
photosensitive
flexible
ultraviolet blocking
Prior art date
Application number
PCT/CN2017/071228
Other languages
English (en)
French (fr)
Inventor
徐超
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/327,625 priority Critical patent/US10305050B2/en
Publication of WO2018120313A1 publication Critical patent/WO2018120313A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/502Additional features of adhesives in the form of films or foils characterized by process specific features process for debonding adherents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/006Presence of (meth)acrylic polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • C09J2479/086Presence of polyamine or polyimide polyimide in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display technology, and in particular to a flexible panel and a method of fabricating the same.
  • OLED Organic Light-Emitting Diode
  • a method for preparing an OLED flexible component is to first bond a flexible substrate to a rigid substrate, and after preparing the OLED flexible component, separate the rigid substrate from the flexible substrate.
  • the rigid substrate and the flexible substrate have high adhesion and tight adhesion, after the device is prepared, it is difficult to separate the two, resulting in an increase in the defect rate.
  • the invention provides a flexible panel and a manufacturing method thereof, which solves the technical problem that it is difficult to separate the rigid substrate from the flexible substrate in the method for preparing the OLED flexible component in the prior art, and the defect rate is easily caused.
  • a technical solution adopted by the present invention is to provide a method for manufacturing a flexible panel, the method comprising:
  • the photosensitive adhesive material is an epoxy-terminated polysiloxane or a silicone material
  • the material of the scattering layer being titanium dioxide
  • the photosensitive layer is irradiated with ultraviolet rays from the side of the glass substrate, so that the peeling strength of the photosensitive layer is lowered, so that the scattering layer is separated from the glass substrate to form the flexible panel.
  • another technical solution adopted by the present invention is to provide a method for manufacturing a flexible panel, the method comprising:
  • the photosensitive layer is irradiated with ultraviolet rays from the side of the glass substrate, so that the peeling strength of the photosensitive layer is lowered, so that the scattering layer is separated from the glass substrate to form the flexible panel.
  • the step of sequentially forming a scattering layer and an ultraviolet blocking layer on the photosensitive layer comprises:
  • a scattering layer and an ultraviolet blocking layer are sequentially formed on the photosensitive layer by a spin coating process.
  • the step of forming a flexible substrate layer on the ultraviolet blocking layer comprises:
  • a flexible substrate layer is formed on the ultraviolet blocking layer by a spraying process.
  • the material of the flexible substrate layer is polyimide or polymethyl methacrylate.
  • the photosensitive adhesive material is an epoxy terminated polysiloxane or a silicone material.
  • the material of the scattering layer is titanium dioxide.
  • the material of the ultraviolet blocking layer is a transparent organic material or an inorganic material.
  • the electronic device is a crystalline film tube.
  • the optical device is an organic light emitting diode.
  • another technical solution adopted by the present invention is to provide a flexible panel which is fabricated by the method described above.
  • the step of sequentially forming a scattering layer and an ultraviolet blocking layer on the photosensitive layer comprises:
  • a scattering layer and an ultraviolet blocking layer are sequentially formed on the photosensitive layer by a spin coating process.
  • the step of forming a flexible substrate layer on the ultraviolet blocking layer comprises:
  • a flexible substrate layer is formed on the ultraviolet blocking layer by a spraying process.
  • the material of the flexible substrate layer is polyimide or polymethyl methacrylate.
  • the photosensitive adhesive material is an epoxy terminated polysiloxane or a silicone material.
  • the material of the scattering layer is titanium dioxide.
  • the material of the ultraviolet blocking layer is a transparent organic material or an inorganic material.
  • the electronic device is a crystalline film tube.
  • the optical device is an organic light emitting diode.
  • the invention has the beneficial effects that the method for fabricating the flexible panel provided by the present invention is formed by forming a photosensitive layer, a scattering layer and an ultraviolet blocking layer on the glass substrate, and the photosensitive layer is exposed to ultraviolet rays under the irradiation of ultraviolet rays.
  • the peeling strength is reduced, so that the scattering layer can be separated from the glass substrate very easily and conveniently.
  • the method has simple process flow, convenient operation, and can improve the yield of the flexible panel.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for fabricating a flexible panel provided by the present invention
  • FIG. 2 is a schematic structural view showing a flexible panel of the first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a first embodiment of a flexible panel of the present invention.
  • FIG. 4 is a schematic flow chart of a second embodiment of a method for fabricating a flexible panel according to the present invention.
  • Figure 5 is a schematic view showing the structure of a second embodiment of the flexible panel of the present invention.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for fabricating a flexible panel according to the present invention
  • FIG. 2 is a schematic structural view of a flexible panel of the first embodiment of the present invention.
  • a photosensitive layer, a scattering layer, and an ultraviolet blocking layer are formed on a glass substrate, and the photosensitive layer is irradiated with ultraviolet rays from the side of the glass substrate, so that the peeling strength of the photosensitive layer is lowered, so that the scattering layer is separated from the glass substrate.
  • the method of this embodiment includes the following steps:
  • Step S11 coating a photosensitive adhesive on the glass substrate to form a photosensitive layer.
  • the glass substrate 101 is first placed on a substrate stage (not shown), and then the glass substrate 101 is cleaned. Then, a photosensitive adhesive is applied to the surface of the cleaned glass substrate 101 to form a photosensitive layer 110.
  • the thickness of the photosensitive layer 110 ranges from 10 to 1000 ⁇ m; further, the thickness of the photosensitive layer 110 ranges from 50 to 500 ⁇ m.
  • Photosensitive adhesive is photosensitive adhesive, also known as shadowless adhesive, UV-curable adhesive.
  • Photosensitive adhesive is a kind of adhesive that must be cured by ultraviolet radiation. It can be used as a binder or as a paint, paint, ink, etc. The rubber compound is used.
  • Ultraviolet Ultraviolet Rays, abbreviated as "UV" is invisible to the naked eye and is a piece of electromagnetic radiation other than visible light with a wavelength range of 110-400 nm.
  • the principle of curing of photosensitive glue is that the photoinitiator (or photosensitizer) in the UV curing material absorbs ultraviolet light and generates active radicals or cations under the irradiation of ultraviolet rays, which initiates polymerization of monomers and cross-linking chemical reaction, so that the binder is in units.
  • the liquid is converted to a solid state during the time.
  • the material of the photosensitive adhesive material is an epoxy-terminated polysiloxane or a silicone material.
  • Step S12 a scattering layer and an ultraviolet blocking layer are sequentially formed on the photosensitive layer.
  • the scattering layer 120 and the ultraviolet blocking layer 130 are sequentially formed on the photosensitive layer 110 by a spin coating process.
  • the area of the photosensitive layer 110 is larger than the area of the scattering layer 120, and the scattering layer 120 is located in the middle of the photosensitive layer 110.
  • spin coating is the abbreviation of rotary smearing method, which is a commonly used preparation method in organic light-emitting diodes.
  • the main equipment is a homogenizing machine.
  • the spin coating method includes three steps: batching, high-speed rotation, and volatilization into film. The thickness of the film is controlled by the time of the glue, the number of revolutions, the amount of liquid drop, and the concentration and viscosity of the solution used.
  • the material of the scattering layer 120 is an inorganic material having a function of blocking light and having a light extraction effect on visible light.
  • the material of the scattering layer 120 is titanium dioxide (TiO 2 ). Titanium dioxide absorbs ultraviolet light, reflects and scatters ultraviolet light, and transmits visible light. It is a physical shielding type UV protective agent with superior performance and promising future. Among them, the ultraviolet ray resistance of titanium dioxide is due to its high refractive index and high photoactivity. Under normal circumstances, the light propagates in a straight line, and the light is reflected and reflected on the surface of different media, and the light that is totally reflected cannot be emitted.
  • the scattering layer 120 of the present embodiment is composed of a plurality of titanium dioxide nanometers of different shapes and sizes.
  • the light beam will be reflected and refracted in all directions after the surface of the titanium dioxide nanoparticles, and the probability of light emission is increased.
  • the titanium dioxide nanoparticles that are not emitted by the total reflection can be irradiated to the scattering layer 120. After being applied, it can be emitted to further increase the probability of light emission, so that the scattering layer 120 has the function of light extraction.
  • the thickness of the scattering layer 120 ranges from 10 to 1000 nm; further, the thickness of the scattering layer 120 ranges from 250 to 500 nm.
  • the material of the ultraviolet blocking layer 130 may be a highly transparent organic or inorganic material, wherein the organic material is polyvinyl alcohol (PVA) and the inorganic material is titanium dioxide, which is consistent with the material of the scattering layer 120.
  • the function of the ultraviolet blocking layer 130 includes: on the one hand, blocking the influence of ultraviolet rays on the photosensitive layer 110 during the preparation process of the electronic device; on the other hand, preventing ultraviolet rays from being applied to the organic light emitting material when the flexible panel is subjected to ultraviolet irradiation to peel off the photosensitive layer 110. Causes adverse effects.
  • the thickness of the ultraviolet blocking layer 130 ranges from 10 to 1000 nm; further, the thickness of the ultraviolet blocking layer 130 ranges from 250 to 500 nm.
  • Step S13 forming a flexible substrate layer on the ultraviolet blocking layer.
  • the flexible substrate layer 140 is formed on the ultraviolet blocking layer 130 by a spraying process.
  • Spraying is a coating method applied to the surface of an object by means of a spray gun or a dish atomizer, which is dispersed into a uniform and fine mist by means of pressure or centrifugal force. It can be divided into air spray, airless spray, electrostatic spray and various derivative methods of the above basic spray form, which are not limited herein.
  • the material of the flexible substrate layer 140 is polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN).
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyimide (PI) is one of the best organic polymer materials with high comprehensive performance, high temperature resistance up to 400 °C, long-term use temperature range -200-300 °C, no obvious melting point, superior mechanical properties, high insulation. Performance makes it the most commonly used material for making flexible substrates.
  • the thickness of the flexible substrate layer 140 ranges from 10 to 1000 ⁇ m; further, the thickness of the ultraviolet blocking layer 130 ranges from 250 to 500
  • Step S14 sequentially fabricating an electronic device, an optical device, and an encapsulation layer on the flexible substrate layer.
  • the electronic device 150, the light emitting device 160, and the package film 170 are sequentially formed on the flexible substrate layer 140.
  • the electronic device 150 is a crystalline thin film tube for controlling and driving sub-pixels in the light emitting device 160 for light emission.
  • the light emitting device 160 is an organic light emitting diode (OLED).
  • the basic structure of the organic light emitting diode (OLED) is a thin and transparent semiconductor indium tin oxide (ITO) connected to the positive electrode of the power, plus another
  • ITO indium tin oxide
  • the metal cathode is wrapped in a sandwich-like structure.
  • the entire structural layer further includes a hole transport layer (HTL), a light emitting layer (EL), and an electron transport layer (ETL).
  • HTL hole transport layer
  • EL light emitting layer
  • ETL electron transport layer
  • the positive hole and the cathode charge are combined in the light-emitting layer (EL) to produce light, and three primary colors of red, green, and blue are generated depending on the formulation to form a basic color.
  • the characteristics of organic light-emitting diodes (OLEDs) are self-illuminating. Unlike traditional TFT-LCDs, which require backlights, they have high visibility and brightness, followed by low voltage requirements and high power-saving efficiency, plus fast response and light weight. Thin thickness, simple structure, low cost, etc., are regarded as one of the most promising products.
  • the manufacturing method of the light emitting device 160 is the same as the current mainstream manufacturing method, and is not the focus of the present invention, and will not be described in detail herein.
  • the encapsulation layer 170 is a thin film encapsulation, and is a composite of one or any combination of glass, organic thin film, inorganic thin film, and metal foil.
  • Thin film packaging technology is a technology that protects OLED materials from the external environment and protects them. It is not only in the field of large-size OLEDs that appeal to light and thin, but also in the field of soft OLED and OLED lighting. The technology that has been prepared has attracted a lot of attention from OLED development companies.
  • the method for fabricating the encapsulation layer 170 of the present invention is the same as the current mainstream production method, and is not the focus of the present invention, and will not be described in detail herein.
  • Step S15 The photosensitive layer is irradiated with ultraviolet rays from the side of the glass substrate, so that the peeling strength of the photosensitive layer is lowered, so that the scattering layer is separated from the glass substrate to form a flexible panel.
  • the photosensitive layer 110 since the photosensitive layer 110, the scattering layer 120, and the ultraviolet blocking layer 130 are formed on the glass substrate 101, the photosensitive layer 110 is slightly viscous under the irradiation of ultraviolet rays, and the peeling strength is lowered, so that the coating layer can be easily removed.
  • the scattering layer 120 is conveniently separated from the glass substrate 101.
  • the method has simple process flow, convenient operation, and can improve the yield of the flexible panel.
  • FIG. 3 is a schematic structural view of a first embodiment of the flexible panel of the present invention.
  • the photosensitive layer (see FIG. 1) is irradiated with ultraviolet rays from the side of the glass substrate (see FIG. 1), so that the peeling strength of the photosensitive layer is lowered, so that the scattering layer 120 is separated from the glass substrate to form the flexible panel 100.
  • the flexible panel 100 is formed by the above method, and specifically includes a scattering layer 120, an ultraviolet blocking layer 130, a flexible substrate layer 140, an electronic device 150, a light emitting device 160, and a package film 170.
  • the manufacturing method of the flexible panel 100 is as described above, and details are not described herein again.
  • FIG. 4 is a schematic flow chart of a second embodiment of a method for fabricating a flexible panel according to the present invention
  • FIG. 5 is a schematic structural view of a second embodiment of the flexible panel of the present invention.
  • a barrier layer is formed on the flexible substrate, and electronic devices, optical devices, and encapsulation layers are sequentially formed on the barrier layer.
  • the method of this embodiment includes the following steps:
  • Step S21 coating a photosensitive adhesive on the glass substrate to form a photosensitive layer.
  • Step S22 sequentially forming a scattering layer and an ultraviolet blocking layer on the photosensitive layer.
  • Step S23 forming a flexible substrate layer on the ultraviolet blocking layer.
  • Step S24 forming a barrier layer on the flexible substrate layer.
  • Step S25 sequentially fabricating an electronic device, an optical device, and an encapsulation layer on the barrier layer.
  • Step S26 the photosensitive layer is irradiated with ultraviolet rays from the side of the glass substrate, so that the peeling strength of the photosensitive layer is lowered, so that the scattering layer is separated from the glass substrate to form a flexible panel.
  • the flow steps of the present embodiment are substantially the same as the flow steps of the first embodiment, and the structure of the manufactured flexible panel 200 is also substantially the same, except that step S24 is added before step S25: at the flexible substrate layer.
  • the barrier layer 280 is formed on the 240, and the step S25 is changed to sequentially fabricate the electronic device 250, the optical device 260, and the encapsulation layer 270 on the barrier layer 280.
  • a barrier layer 280 is formed on the flexible substrate layer 240 by a chemical vapor deposition method (CVD), and the vapor deposition method (CVD) refers to a vapor containing a gaseous reactant or a liquid reactant constituting a thin film element and other reactions required for the reaction.
  • CVD chemical vapor deposition method
  • CVD chemical vapor deposition
  • the surface treatment film adhesion is increased by about 30%, which can prevent the formation of high-strength steel during bending and stretching. Scratches.
  • the material of the barrier layer 280 is a silicon nitride material (SiNx), which is a superhard substance.
  • SiNx silicon nitride material
  • the silicon nitride itself has lubricity and is resistant to abrasion and has an anti-oxidation effect at a high temperature.
  • the barrier layer 280 is capable of blocking moisture and oxygen, providing protection for the fabrication of the electronic device 250 and the optics 260.
  • the method for fabricating a flexible panel forms a photosensitive layer, a scattering layer, and an ultraviolet blocking layer on a glass substrate, and the photosensitive layer is slightly viscous under ultraviolet light irradiation. The strength is reduced, so that the scattering layer can be separated from the glass substrate very easily and conveniently.
  • the method has simple process flow, convenient operation and can improve the yield of the flexible panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种柔性面板及其制作方法,该方法包括:在玻璃基板(101)上涂布光敏胶材形成感光层(110);在感光层(110)上依次形成散射层(120)和紫外线阻挡层(130);在紫外线阻挡层(130)上形成柔性基板层(140);在柔性基板层(140)上依次制作电子器件(150)、光学器件(160)以及封装层(170);从玻璃基板(101)一侧通过紫外线照射感光层(110),使感光层(110)的剥离强度降低,以致散射层(120)从玻璃基板(101)上分离,形成柔性面板。通过上述方式,在玻璃基板(101)上形成感光层(110)、散射层(120)及紫外线阻挡层(130),容易将散射层从玻璃基板上分离。

Description

柔性面板及其制作方法
【技术领域】
本发明涉及显示技术领域,具体是指一种柔性面板及其制作方法。
【背景技术】
有机发光二极管(Organic Light-Emitting Diode,简称“OLED”)在显示技术具有自发光、广视角、对比度高、低耗电、反应速度快等优点,使其在显示技术领域中得到广泛应用,并且已经被逐渐应用到我们的日常生活中。OLED与传统的TFT-LCD相比,最大的优势是可制备大尺寸、超薄的柔性组件,但由于柔性基板易产生形变,在生产过程中难以操作,使得柔性组件的生产大大受到制约。
目前,制备OLED柔性组件的方法是先将柔性基板粘合在刚性基板上,制备好OLED柔性组件后,再将刚性基板与柔性基板分离开来。但是,由于刚性基板和柔性基板粘合度高,粘合的很紧,制备好器件后,二者很难分离开,从而导致不良率增加。
【发明内容】
本发明提供一种柔性面板及其制作方法,以解决现有技术中制备OLED柔性组件的方法中很难将刚性基板与柔性基板分离开,且容易导致不良率的技术问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种柔性面板的制作方法,所述方法包括:
在玻璃基板上涂布光敏胶材形成感光层,所述光敏胶材的材料为环氧封端聚硅氧烷或者有机硅材料;
在所述感光层上依次形成散射层和紫外线阻挡层,所述散射层的材料为二氧化钛;
在所述紫外线阻挡层上形成柔性基板层;
在所述柔性基板层上依次制作电子器件、光学器件以及封装层;
从所述玻璃基板一侧通过紫外线照射所述感光层,使所述感光层的剥离强度降低,以致所述散射层从所述玻璃基板上分离,形成所述柔性面板。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种柔性面板的制作方法,所述方法包括:
在玻璃基板上涂布光敏胶材形成感光层;
在所述感光层上依次形成散射层和紫外线阻挡层;
在所述紫外线阻挡层上形成柔性基板层;
在所述柔性基板层上依次制作电子器件、光学器件以及封装层;
从所述玻璃基板一侧通过紫外线照射所述感光层,使所述感光层的剥离强度降低,以致所述散射层从所述玻璃基板上分离,形成所述柔性面板。
根据本发明一实施例,所述在所述感光层上依次形成散射层和紫外线阻挡层的步骤包括:
在所述感光层上采用旋涂工艺依次形成散射层和紫外线阻挡层。
根据本发明一实施例,所述在所述紫外线阻挡层上形成柔性基板层的步骤包括:
在所述紫外线阻挡层上采用喷涂工艺形成柔性基板层。
根据本发明一实施例,所述柔性基板层的材料为聚酰亚胺或者聚甲基丙烯酸甲。
根据本发明一实施例,所述光敏胶材的材料为环氧封端聚硅氧烷或者有机硅材料。
根据本发明一实施例,所述散射层的材料为二氧化钛。
根据本发明一实施例,所述紫外线阻挡层的材料为透明的有机材料或者无机材料。
根据本发明一实施例,所述电子器件为晶体薄膜管。
根据本发明一实施例,所述光学器件为有机发光二极管。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种柔性面板,所述柔性面板采用上述所述的方法制成。
根据本发明一实施例,所述在所述感光层上依次形成散射层和紫外线阻挡层的步骤包括:
在所述感光层上采用旋涂工艺依次形成散射层和紫外线阻挡层。
根据本发明一实施例,所述在所述紫外线阻挡层上形成柔性基板层的步骤包括:
在所述紫外线阻挡层上采用喷涂工艺形成柔性基板层。
根据本发明一实施例,所述柔性基板层的材料为聚酰亚胺或者聚甲基丙烯酸甲。
根据本发明一实施例,所述光敏胶材的材料为环氧封端聚硅氧烷或者有机硅材料。
根据本发明一实施例,所述散射层的材料为二氧化钛。
根据本发明一实施例,所述紫外线阻挡层的材料为透明的有机材料或者无机材料。
根据本发明一实施例,所述电子器件为晶体薄膜管。
根据本发明一实施例,所述光学器件为有机发光二极管。
本发明的有益效果是:区别于现有技术的情况,本发明提供的柔性面板的制作方法由于在玻璃基板上形成感光层、散射层以及紫外线阻挡层,感光层在紫外线的照射下,粘性骤减,剥离强度降低,从而可以非常容易方便地将散射层从玻璃基板上分离,该方法工艺流程简单、操作方便、且能提高柔性面板的良率。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明提供的柔性面板的制作方法第一实施方式的流程示意图;
图2是本发明第一实施方式柔性面板未分离的结构示意图;
图3是本发明柔性面板第一实施例的结构示意图;
图4是本发明提供的柔性面板的制作方法第二实施方式的流程示意图;
图5是本发明柔性面板第二实施例的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请一并参阅图1和图2,图1是本发明提供的柔性面板的制作方法第一实施方式的流程示意图,图2是本发明第一实施方式柔性面板未分离的结构示意图。在本实施例中,在玻璃基板上形成感光层、散射层以及紫外线阻挡层,从玻璃基板一侧通过紫外线照射感光层,使感光层的剥离强度降低,以致散射层从玻璃基板上分离。具体来说,本实施例的方法包括以下步骤:
步骤S11:在玻璃基板上涂布光敏胶材形成感光层。
如图2所示,首先将玻璃基板101放置在基板载台(图未示)上,再清洗玻璃基板101,之后在洗干净的玻璃基板101的表面涂布光敏胶材形成感光层110。感光层110的厚度范围为10~1000μm;进一步的,感光层110的厚度范围为50~500μm。
光敏胶材为光敏胶,又称无影胶、紫外线固化胶,光敏胶是一种必须通过紫外线照射才能固化的一类胶粘剂,它可以作为粘接剂使用,也可作为油漆、涂料、油墨等的胶料使用。紫外线(Ultraviolet Rays,简称“UV”)是肉眼看不见的,是可见光以外的一段电磁辐射,波长范围为110~400nm。光敏胶固化原理是UV固化材料中的光引发剂(或光敏剂)在紫外线的照射下吸收紫外光后产生活性自由基或阳离子,引发单体聚合、交联化学反应,使粘合剂在单位时间内由液态转化为固态。本实施例中,光敏胶材的材料为环氧封端聚硅氧烷或者有机硅材料。
步骤S12:在感光层上依次形成散射层和紫外线阻挡层。
具体的,在感光层110上采用旋涂工艺依次形成散射层120和紫外线阻挡层130,感光层110的面积大于散射层120的面积,且散射层120位于感光层110的中部。其中,旋涂是旋转涂抹法的简称,是有机发光二极管中常用的制备方法,主要的设备为匀胶机,旋涂法包括:配料,高速旋转,以及挥发成膜三个步骤,通过控制匀胶的时间,转速,滴液量以及所用溶液的浓度、粘度来控制成膜的厚度。
散射层120的材料为具有阻隔UV光,且对可见光具有光提取作用的无机材料,本实施例中,散射层120的材料为二氧化钛(TiO2)。二氧化钛既能吸收紫外线,又能反射、散射紫外线,还能透过可见光,是性能优越、极有发展前途的物理屏蔽型的紫外线防护剂。其中,二氧化钛的抗紫外线能力是由于其具有高折光性和高光活性。正常情况下,光是沿直线传播的,在不同介质表面发生折射和反射,发生全反射的光就无法发射出去,而本实施例的散射层120是由很多不同形状、不同大小尺寸的二氧化钛纳米粒子组成的,光束射到这些二氧化钛纳米粒子表面后,会往各个方向进行反射和折射,提高光发射出去的几率,同样,原本发生全反射无法出射出去的光照射到散射层120的二氧化钛纳米粒子上后,可以发射出去,进一步提高光发射出去的几率,使得散射层120具有光提取的作用。散射层120的厚度范围为10~1000nm;进一步的,散射层120的厚度范围为250~500nm。
紫外线阻挡层130的材料可以为高透明的有机或无机材料,其中,有机材料为聚乙烯醇(PVA),无机材料为二氧化钛,与散射层120的材料一致。紫外线阻挡层130的作用包括:一方面,阻挡电子器件制备过程中紫外线对感光层110的影响;另一方面,在后段对柔性面板进行紫外线照射剥离感光层110时,防止紫外线对有机发光材料造成不良影响。紫外线阻挡层130的厚度范围为10~1000nm;进一步的,紫外线阻挡层130的厚度范围为250~500nm。
步骤S13:在紫外线阻挡层上形成柔性基板层。
具体的,在紫外线阻挡层130上采用喷涂工艺形成柔性基板层140。喷涂是通过喷枪或碟式雾化器,借助于压力或离心力,分散成均匀而微细的雾滴,施涂于被涂物表面的涂装方法。可分为空气喷涂、无空气喷涂、静电喷涂以及上述基本喷涂形式的各种派生的方式,在此不作限制。
柔性基板层140的材料为聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS),聚对苯二甲酸乙二醇(PET)、聚对萘二甲酸乙二醇脂(PEN)、聚甲基丙烯酸甲(PMMA)、聚酰亚胺(PI)中的一种;其中,柔性基板层140的材料优选为聚甲基丙烯酸甲(PMMA)或者聚酰亚胺(PI)。其中,聚酰亚胺(PI)是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,具有优越机械性能、高绝缘性能,使得其为制作柔性基板最常用的材料。柔性基板层140的厚度范围为10~1000μm;进一步的,紫外线阻挡层130的厚度范围为250~500μm。
步骤S14:在柔性基板层上依次制作电子器件、光学器件以及封装层。
在柔性基板层140上依次制作电子器件150、发光器件160以及封装薄膜170。电子器件150为晶体薄膜管,用于控制并驱动发光器件160中的子像素进行发光。发光器件160为有机发光二极管(OLED),有机发光二极管(OLED)的基本结构是由一层薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。其中,整个结构层中还包括了:空穴传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极空穴与阴极电荷就会在发光层(EL)中结合,产生光亮,依其配方不同产生红、绿和蓝三原色,构成基本色彩。有机发光二极管(OLED)的特性是自己发光,不像传统的TFT-LCD需要背光,因此可视度和亮度均高,其次是电压需求低且省电效率高,加上反应快、重量轻、厚度薄、构造简单、成本低等,被视为最具前途的产品之一。发光器件160的制作方法与目前主流的制作方法相同,不是本发明的重点,在此不再详述。
封装层170是薄膜封装,是玻璃、有机薄膜、无机薄膜、金属箔的一种或任意几种组成的复合体。薄膜封装技术是将OLED材料从外部环境进行隔绝而达到保护作用的技术,其不仅在诉求轻与薄的大尺寸OLED领域受到关注,更被誉为显示技术的软性OLED与OLED照明领域上必备的技术,使得被OLED开发企业受到非常高的关注。而本发明的封装层170的制作方法与目前主流的制作方法相同,不是本发明的重点,在此不再详述。
步骤S15:从玻璃基板一侧通过紫外线照射感光层,使感光层的剥离强度降低,以致散射层从玻璃基板上分离,形成柔性面板。
本发明提供的柔性面板的制作方法由于在玻璃基板101上形成感光层110、散射层120以及紫外线阻挡层130,感光层110在紫外线的照射下,粘性骤减,剥离强度降低,从而可以非常容易方便地将散射层120从玻璃基板101上分离,该方法工艺流程简单、操作方便、且能提高柔性面板的良率。
请参阅图3,图3是本发明柔性面板第一实施例的结构示意图。如图3所示,从玻璃基板(见图1)一侧通过紫外线照射感光层(见图1),使感光层的剥离强度降低,以致散射层120从玻璃基板上分离,形成柔性面板100。
该柔性面板100采用上述的方法制成,具体依次包括:散射层120、紫外线阻挡层130、柔性基板层140、电子器件150、发光器件160以及封装薄膜170。
其中,柔性面板100的制作方法见上文,此处不再赘述。
请一并参阅图4和图5,图4是本发明提供的柔性面板的制作方法第二实施方式的流程示意图;图5是本发明柔性面板第二实施例的结构示意图。在本实施例中,在柔性基板上形成阻挡层,并且在阻挡层上依次制作电子器件、光学器件以及封装层。具体来说,本实施例的方法包括以下步骤:
步骤S21:在玻璃基板上涂布光敏胶材形成感光层。
步骤S22:在感光层上依次形成散射层和紫外线阻挡层。
步骤S23:在紫外线阻挡层上形成柔性基板层。
步骤S24:在柔性基板层上形成阻隔层。
步骤S25:在阻隔层上依次制作电子器件、光学器件以及封装层。
步骤S26:从玻璃基板一侧通过紫外线照射感光层,使感光层的剥离强度降低,以致散射层从玻璃基板上分离,形成柔性面板。
如图5所示,本实施方式的流程步骤与第一实施方式的流程步骤基本相同,制作的柔性面板200的结构也基本相同,不同的是,在步骤S25之前增加步骤S24:在柔性基板层240上形成阻隔层280,步骤S25就更改为在阻隔层280上依次制作电子器件250、光学器件260以及封装层270。
具体来说,在柔性基板层240上通过化学气相沉积方法(CVD)形成阻隔层280,气相沉积方法(CVD)指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。在超大规模集成电路中很多薄膜都是采用化学气相沉积方法(CVD)方法制备,经过CVD处理后,表面处理膜密着性约提高30%,可以防止高强力钢的弯曲、拉伸等成形时产生的刮痕。阻挡层280的材料为氮化硅材料(SiNx),是一种超硬物质,氮化硅本身具有润滑性,并且耐磨损,具有高温时抗氧化的作用。
阻隔层280能够阻挡水分和氧气,为制作电子器件250和光学器件260提供保护作用。
综上所述,本领域技术人员容易理解,本发明提供的柔性面板的制作方法由于在玻璃基板上形成感光层、散射层以及紫外线阻挡层,感光层在紫外线的照射下,粘性骤减,剥离强度降低,从而可以非常容易方便地将散射层从玻璃基板上分离,该方法工艺流程简单、操作方便、且能提高柔性面板的良率。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (19)

  1. 一种柔性面板的制作方法,其中,所述方法包括:
    在玻璃基板上涂布光敏胶材形成感光层,所述光敏胶材的材料为环氧封端聚硅氧烷或者有机硅材料;
    在所述感光层上依次形成散射层和紫外线阻挡层,所述散射层的材料为二氧化钛;
    在所述紫外线阻挡层上形成柔性基板层;
    在所述柔性基板层上依次制作电子器件、光学器件以及封装层;
    从所述玻璃基板一侧通过紫外线照射所述感光层,使所述感光层的剥离强度降低,以致所述散射层从所述玻璃基板上分离,形成所述柔性面板。
  2. 一种柔性面板的制作方法,其中,所述方法包括:
    在玻璃基板上涂布光敏胶材形成感光层;
    在所述感光层上依次形成散射层和紫外线阻挡层;
    在所述紫外线阻挡层上形成柔性基板层;
    在所述柔性基板层上依次制作电子器件、光学器件以及封装层;
    从所述玻璃基板一侧通过紫外线照射所述感光层,使所述感光层的剥离强度降低,以致所述散射层从所述玻璃基板上分离,形成所述柔性面板。
  3. 根据权利要求2所述的柔性面板的制作方法,其中,所述在所述感光层上依次形成散射层和紫外线阻挡层的步骤包括:
    在所述感光层上采用旋涂工艺依次形成散射层和紫外线阻挡层。
  4. 根据权利要求2所述的柔性面板的制作方法,其中,所述在所述紫外线阻挡层上形成柔性基板层的步骤包括:
    在所述紫外线阻挡层上采用喷涂工艺形成柔性基板层。
  5. 根据权利要求4所述的柔性面板的制作方法,其中,所述柔性基板层的材料为聚酰亚胺或者聚甲基丙烯酸甲。
  6. 根据权利要求2所述的柔性面板的制作方法,其中,所述光敏胶材的材料为环氧封端聚硅氧烷或者有机硅材料。
  7. 根据权利要求2所述的柔性面板的制作方法,其中,所述散射层的材料为二氧化钛。
  8. 根据权利要求2所述的柔性面板的制作方法,其中,所述紫外线阻挡层的材料为透明的有机材料或者无机材料。
  9. 根据权利要求2所述的柔性面板的制作方法,其中,所述电子器件为晶体薄膜管。
  10. 根据权利要求2所述的柔性面板的制作方法,其中,所述光学器件为有机发光二极管。
  11. 一种柔性面板,其中,所述柔性面板采用权利要求2所述的方法制成。
  12. 根据权利要求11所述的柔性面板,其中,所述在所述感光层上依次形成散射层和紫外线阻挡层的步骤包括:
    在所述感光层上采用旋涂工艺依次形成散射层和紫外线阻挡层。
  13. 根据权利要求11所述的柔性面板,其中,所述在所述紫外线阻挡层上形成柔性基板层的步骤包括:
    在所述紫外线阻挡层上采用喷涂工艺形成柔性基板层。
  14. 根据权利要求13所述的柔性面板,其中,所述柔性基板层的材料为聚酰亚胺或者聚甲基丙烯酸甲。
  15. 根据权利要求11所述的柔性面板,其中,所述光敏胶材的材料为环氧封端聚硅氧烷或者有机硅材料。
  16. 根据权利要求11所述的柔性面板,其中,所述散射层的材料为二氧化钛。
  17. 根据权利要求11所述的柔性面板,其中,所述紫外线阻挡层的材料为透明的有机材料或者无机材料。
  18. 根据权利要求11所述的柔性面板,其中,所述电子器件为晶体薄膜管。
  19. 根据权利要求11所述的柔性面板,其中,所述光学器件为有机发光二极管。
PCT/CN2017/071228 2016-12-27 2017-01-16 柔性面板及其制作方法 WO2018120313A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/327,625 US10305050B2 (en) 2016-12-27 2017-01-16 Flexible panels and the manufacturing methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611225146.1 2016-12-27
CN201611225146.1A CN106784311A (zh) 2016-12-27 2016-12-27 柔性面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2018120313A1 true WO2018120313A1 (zh) 2018-07-05

Family

ID=58921028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071228 WO2018120313A1 (zh) 2016-12-27 2017-01-16 柔性面板及其制作方法

Country Status (3)

Country Link
US (1) US10305050B2 (zh)
CN (1) CN106784311A (zh)
WO (1) WO2018120313A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507927B (zh) * 2017-07-11 2019-04-30 武汉华星光电半导体显示技术有限公司 柔性显示装置的制作方法
CN107644916B (zh) * 2017-09-20 2020-05-08 京东方科技集团股份有限公司 薄膜晶体管及其制作方法
CN107845741B (zh) * 2017-10-23 2019-05-07 武汉华星光电半导体显示技术有限公司 柔性基板剥离方法及柔性基板
CN107819073B (zh) * 2017-10-26 2020-01-17 武汉华星光电半导体显示技术有限公司 基板及oled器件的制作方法
CN109728142B (zh) * 2017-10-31 2021-02-02 展晶科技(深圳)有限公司 发光二极管晶粒的制造方法
US10522770B2 (en) 2017-12-28 2019-12-31 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Fabricating method of flexivle panel and flexible display device
CN108230904A (zh) * 2017-12-28 2018-06-29 武汉华星光电半导体显示技术有限公司 一种柔性面板的制备方法及柔性显示装置
CN108963111B (zh) * 2018-05-03 2020-07-28 云谷(固安)科技有限公司 柔性显示面板及其制作方法、显示装置
CN108766244B (zh) * 2018-06-06 2021-02-09 京东方科技集团股份有限公司 一种柔性显示面板及其制备方法、显示装置
US11021731B2 (en) * 2018-08-23 2021-06-01 Medtronic Minimed, Inc. Analyte sensing layers, analyte sensors and methods for fabricating the same
CN110098225B (zh) * 2019-04-18 2021-06-01 武汉华星光电半导体显示技术有限公司 柔性显示面板及其制备方法
CN110429106B (zh) 2019-07-05 2021-01-15 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN111627964A (zh) * 2020-05-25 2020-09-04 福建华佳彩有限公司 一种新型柔性激光剥离面板及其制备方法
CN111789975A (zh) * 2020-07-29 2020-10-20 固安翌光科技有限公司 一种车内消毒灭菌装置
CN111755632B (zh) * 2020-07-30 2022-07-19 河南工程学院 一种柔性有机电致发光器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931136A (zh) * 2012-08-09 2013-02-13 友达光电股份有限公司 可挠式显示模块的制作方法
CN103325731A (zh) * 2013-05-20 2013-09-25 Tcl集团股份有限公司 柔性显示装置的制造方法
CN105489789A (zh) * 2016-01-18 2016-04-13 京东方科技集团股份有限公司 柔性器件制作方法及柔性显示器件
CN106098939A (zh) * 2016-08-26 2016-11-09 武汉华星光电技术有限公司 激光无损剥离柔性基板的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090024490A1 (en) * 2007-07-19 2009-01-22 Satterfield Edward W System and method for web to package printing
KR101440456B1 (ko) * 2008-03-31 2014-09-18 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
DE102009057174A1 (de) * 2009-12-05 2011-06-09 Volkswagen Ag Verfahren und Vorrichtung zur Steuerung von Hybrid-Funktionen in einem Kraftfahrzeug
EP2445029A1 (en) * 2010-10-25 2012-04-25 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Multilayered protective layer, organic opto-electric device and method of manufacturing the same
WO2013021560A1 (ja) * 2011-08-05 2013-02-14 パナソニック株式会社 フレキシブルデバイスの製造方法
WO2013132024A2 (en) * 2012-03-08 2013-09-12 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method of producing a fresnel zone plate for applications in high energy radiation
US9167248B2 (en) * 2012-07-13 2015-10-20 Qualcomm Incorporated Reference picture list modification for video coding
KR101992899B1 (ko) * 2012-12-17 2019-06-25 엘지디스플레이 주식회사 터치 패널 내장형 유기 발광 다이오드 표시 장치 및 이의 제조 방법
KR101991100B1 (ko) * 2013-01-09 2019-06-20 삼성디스플레이 주식회사 유기 발광 표시 장치
CN105325056B (zh) * 2013-06-18 2017-09-08 柯尼卡美能达株式会社 有机发光元件
FR3007844B1 (fr) * 2013-06-26 2015-07-17 Schneider Electric Ind Sas Dispositif d'estimation de l'impedance d'une liaison electrique de terre, procede d'estimation et systeme d'alimentation electrique associes
KR102113176B1 (ko) * 2013-07-16 2020-05-29 삼성디스플레이 주식회사 플렉서블 표시장치 및 그 제조방법
KR102279921B1 (ko) * 2014-02-12 2021-07-22 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR102144865B1 (ko) * 2015-08-13 2020-08-18 한국전자통신연구원 유기발광소자 및 그 제조 방법
US10267972B2 (en) * 2016-10-25 2019-04-23 Svv Technology Innovations, Inc. Shaped light guide illumination devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931136A (zh) * 2012-08-09 2013-02-13 友达光电股份有限公司 可挠式显示模块的制作方法
CN103325731A (zh) * 2013-05-20 2013-09-25 Tcl集团股份有限公司 柔性显示装置的制造方法
CN105489789A (zh) * 2016-01-18 2016-04-13 京东方科技集团股份有限公司 柔性器件制作方法及柔性显示器件
CN106098939A (zh) * 2016-08-26 2016-11-09 武汉华星光电技术有限公司 激光无损剥离柔性基板的方法

Also Published As

Publication number Publication date
US20180219164A1 (en) 2018-08-02
CN106784311A (zh) 2017-05-31
US10305050B2 (en) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2018120313A1 (zh) 柔性面板及其制作方法
US10079367B2 (en) Waterproof and anti-reflective flexible OLED apparatus and method for manufacturing the same
US10205123B2 (en) Packaging method for organic semiconductor device
WO2019205426A1 (zh) Oled显示面板及其制作方法
WO2019200650A1 (zh) 有机发光二极管的封装结构及其制备方法
WO2015108251A1 (ko) 유기 전자 소자 및 이의 제조방법
WO2018082150A1 (zh) 一种封装层及封装器件
US11581507B2 (en) Display panel and method for manufacturing same, and display apparatus
WO2019051940A1 (zh) 柔性oled面板的制作方法
TW201622205A (zh) 具有凹凸圖案之構件的製造方法
WO2006008845A1 (ja) 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法
WO2017020372A1 (zh) 柔性显示屏的制作方法、柔性玻璃基板及柔性显示屏
WO2021088256A1 (zh) 超薄柔性有机电子器件制备与封装一体式结构设计和制备流程工艺
CN108847451A (zh) 一种柔性oled器件及其制备方法
TWI694006B (zh) 阻障薄膜層合物及包含此層合物之電子元件
WO2016054837A1 (zh) 一种白光oled显示器及其封装方法
US20150203709A1 (en) High refractive index nanocomposite layer
WO2019127702A1 (zh) Oled面板及其制作方法
WO2021012402A1 (zh) 一种有机发光二极管显示面板及其制作方法
KR20140000426A (ko) 유기 발광소자용 기판 및 그 제조방법
JP5692230B2 (ja) ガスバリアフィルムの製造方法
WO2018205363A1 (zh) 一种柔性有机发光二极管显示器及其制作方法
CN111187610A (zh) 复合量子点材料、制备方法及其显示装置
WO2018201568A1 (zh) 顶发射有机发光二极管及制造方法
CN108933196A (zh) 柔性基板及其制备方法、柔性oled器件和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15327625

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888821

Country of ref document: EP

Kind code of ref document: A1